



# Pods and Services Reference

---

- Feature Summary and Revision History, on page 1
- Feature Description, on page 2
- Associating Pods to the Nodes, on page 5
- Viewing the Pod Details and Status, on page 6

## Feature Summary and Revision History

### Summary Data

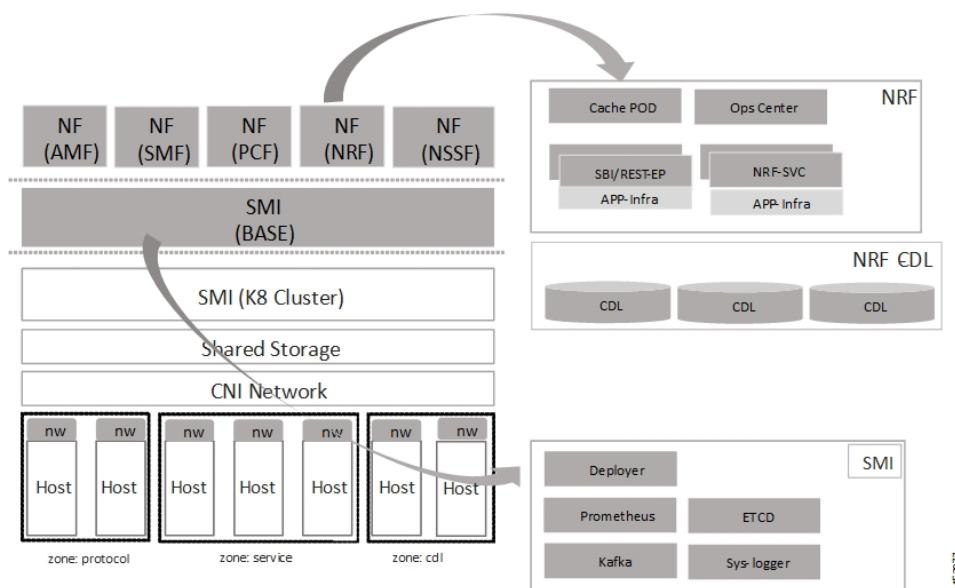
*Table 1: Summary Data*

|                                          |                     |
|------------------------------------------|---------------------|
| Applicable Product(s) or Functional Area | 5G-NRF              |
| Applicable Platform(s)                   | SMI                 |
| Feature Default Setting                  | Enabled - Always-on |
| Related Changes in this Release          | Not Applicable      |
| Related Documentation                    | Not Applicable      |

### Revision History

*Table 2: Revision History*

| Revision Details  | Release |
|-------------------|---------|
| First introduced. | 2026.01 |


# Feature Description

The NRF is built on the Kubernetes cluster strategy, which implies that it has adopted the native concepts of containerization, high availability, scalability, modularity, and ease of deployment. To achieve the benefits offered by Kubernetes, NRF uses the construct that includes the components such as pods and services.

Depending on your deployment environment, the NRF deploys the pods on the virtual machines that you have configured. Pods operate through the services that are responsible for the intrapod communications. If the machine hosting the pods fail or experiences network disruption, the pods are terminated or deleted. However, this situation is transient and NRF spins new pods to replace the invalid pods.

The following workflow provides a high-level visibility into the host machines, and the associated pods and services. It also represents how the pods interact with each other. The representation might defer based on your deployment infrastructure.

**Figure 1: Communication Workflow of Pods**



Kubernetes deployment includes the `kubectl` command-line tool to manage the Kubernetes resources in the cluster. You can manage the pods, nodes, and services.

For generic information on the Kubernetes concepts, see the [Kubernetes documentation](#).

# Pods

A pod is a process that runs on your Kubernetes cluster. Pod encapsulates a granular unit known as a container. A pod contains one or multiple containers.

Kubernetes deploys one or multiple pods on a single node which can be a physical or virtual machine. Each pod has a discrete identity with an internal IP address and port space. However, the containers within a pod can share the storage and network resources.

The following tables list the NRF and Common Execution Environment (CEE) pod names and the hosts on which they are deployed depending on the labels that you assign. For information on how to assign the labels, see [Associating Pods to the Nodes, on page 5](#).

**Table 3: NRF Pods**

| Pod Name                    | Description                                                                                                                                                         | Host Name |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| base-entitlement-nrf        | Supports Smart Licensing feature.                                                                                                                                   | OAM       |
| cache-pod                   | Operates as the pod to cache any sort of system information that will be used by other pods as applicable.                                                          | Protocol  |
| cdl-ep-session-c1           | Provides an interface to the CDL.                                                                                                                                   | Session   |
| cdl-index-session-c1        | Preserves the mapping of keys to the session pods.                                                                                                                  | Session   |
| cdl-slot-session-c1         | Operates as the CDL Session pod to store the session data.                                                                                                          | Session   |
| documentation               | Contains the documentation.                                                                                                                                         | OAM       |
| etcd-nrf-etcd-cluster       | Hosts the etcd for the NRF application to store information, such as pod instances, leader information, NF-UUID, endpoints, and so on.                              | OAM       |
| georeplication              | Responsible for cache, etcd replication across sites, and site role management.<br><br><b>Note</b><br>In the current release, this pod is not actively used in NRF. | Protocol  |
| grafana-dashboard-app-infra | Contains the default dashboard of app-infra metrics in Grafana.                                                                                                     | OAM       |
| grafana-dashboard-cdl       | Contains the default dashboard of CDL metrics in Grafana.                                                                                                           | OAM       |
| grafana-dashboard-etcd      | Contains the default dashboard of etcd metrics in Grafana.                                                                                                          | OAM       |
| grafana-dashboard-nrf       | Contains the default dashboard of nrf-service metrics in Grafana.                                                                                                   | OAM       |
| kafka                       | Hosts the Kafka details for the CDL replication.                                                                                                                    | Protocol  |

| Pod Name                   | Description                                                                                                                                          | Host Name |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| oam-pod                    | Operates as the pod to facilitate Ops Center actions, such as show commands, configuration commands, monitor protocol monitor subscriber, and so on. | OAM       |
| ops-center-nrf-ops-center  | Acts as the NRF Ops Center.                                                                                                                          | OAM       |
| prometheus-rules-cdl       | Contains the default alerting rules and recording rules for Prometheus CDL.                                                                          | OAM       |
| prometheus-rules-etcd      | Contains the default alerting rules and recording rules for Prometheus etcd.                                                                         | OAM       |
| smart-agent-nrf-ops-center | Operates as the utility pod for the NRF Ops Center.                                                                                                  | OAM       |
| nrf-nrf-service            | Contains main business logic of the NRF.                                                                                                             | Service   |
| nrf-nrf-rest-ep            | Operates as REST endpoint of NRF for HTTP/2 communication.                                                                                           | Protocol  |
| zookeeper                  | Assists Kafka for topology management.                                                                                                               | OAM       |

## Services

The NRF configuration is composed of several microservices that run on a set of discrete pods. Microservices are deployed during the NRF deployment. NRF uses these services to enable communication between the pods. When interacting with another pod, the service identifies the pod's IP address to initiate the transaction and acts as an endpoint for the pod.

The following table describes the NRF services and the pod on which they run.

**Table 4: NRF Services and Pods**

| Service Name                | Pod Name                    | Description                                                 |
|-----------------------------|-----------------------------|-------------------------------------------------------------|
| base-entitlement-nrf        | base-entitlement-nrf        | Supports Smart Licensing.                                   |
| datastore-ep-session        | cdl-ep-session-c1           | Responsible for the CDL.                                    |
| datastore-notification-ep   | nrf-rest-ep                 | Responsible for sending the CDL to the <i>nrf-service</i> . |
| datastore-tls-ep-session    | cdl-ep-session-c1           | Responsible for the security session.                       |
| documentation               | documentation               | Responsible for the NRF documentation.                      |
| etcd                        | etcd-nrf-etcd-cluster-0     | Responsible for pod discovery namespace.                    |
| etcd-nrf-etcd-cluster       | etcd-nrf-etcd-cluster-0     | Responsible for synchronizing the <i>etcd</i> cluster.      |
| grafana-dashboard-app-infra | grafana-dashboard-app-infra | Responsible for the default app-infra metrics in Grafana.   |

| Service Name                         | Pod Name                   | Description                                              |
|--------------------------------------|----------------------------|----------------------------------------------------------|
| grafana-dashboard-cdl                | grafana-dashboard-cdl      | Responsible for the metrics in Grafana.                  |
| grafana-dashboard-etcd               | grafana-dashboard-etcd     | Contains the default in Grafana.                         |
| grafana-dashboard-nrf                | grafana-dashboard-nrf      | Responsible for the nrf-service metrics in               |
| kafka                                | kafka                      | Processes the Kafka                                      |
| local-ldap-proxy-nrf-ops-center      | ops-center-nrf-ops-center  | Responsible for leveraging credentials by other Grafana. |
| oam-pod                              | oam-pod                    | Responsible to facilitate Ops Center.                    |
| ops-center-nrf-ops-center            | ops-center-nrf-ops-center  | Manages the NRF Ops Center.                              |
| ops-center-nrf-ops-center-expose-cli | ops-center-nrf-ops-center  | To access NRF Ops Center address.                        |
| smart-agent-nrf-ops-center           | smart-agent-nrf-ops-center | Responsible for the smart-agent.                         |
| nrf-rest-ep                          | nrf-rest-ep                | Responsible for routing messages to the rest-ep.         |
| nrf-service                          | nrf-service                | Responsible for interacting with the nrf-service pod.    |
| zookeeper                            | zookeeper                  | Assists Kafka for topic management.                      |
| zookeeper-service                    | zookeeper                  | Assists Kafka for topic management.                      |

## Associating Pods to the Nodes

This section describes how to associate a pod to the node based on their labels.

After you have configured a cluster, you can associate pods to the nodes through labels. This association enables the pods to get deployed on the appropriate node based on the key-value pair.

Labels are required for the pods to identify the nodes where they must get deployed and to run the services. For example, when you configure the protocol-layer label with the required key-value pair, the pods are deployed on the nodes that match the key-value pair.

To associate pods to the nodes through the labels, use the following configuration:

```
config
  label
    cdl-layer
      key key_value
      value value
    oam-layer
      key key_value
```

## Viewing the Pod Details and Status

```

value value
protocol-layer
  key key_value
  value value
service-layer
  key key_value
  value value
end

```



**Note** If you opt not to configure the labels, then NRF assumes the labels with the default key-value pair.

- **label { cd़-layer { key *key\_value* | value *value* } }**: Configures the key value pair for CDL.
- **oam-layer { key *key\_value* | value *value* }**: Configures the key value pair for OAM layer.
- **protocol-layer { key *key\_value* | value *value* }**: Configures the key value pair for protocol layer.
- **service-layer { key *key\_value* | value *value* }**: Configures the key value pair for the service layer.

# Viewing the Pod Details and Status

If the service requires additional pods, nrf creates and deploys the pods. You can view the list of pods that are participating in your deployment through the nrf Ops Center. You can run the kubectl command from the master node to manage the Kubernetes resources.

- To view the comprehensive pod details, use the following command.

```
kubectl get pods -n nrf pod_name -o yaml
```

The pod details are available in YAML format. The output of this command results in the following information:

- The IP address of the host where the pod is deployed.
- The service and application that is running on the pod.
- The ID and name of the container within the pod.
- The IP address of the pod.
- The current state and phase in which the pod is.
- The start time from which pod is in the current state.
- Use the following command to view the summary of the pod details.

```
kubectl get pods -n nrf_namespace -o wide
```

## States

Understanding the pod's state lets you determine the current health and prevent the potential risks. The following table describes the pod's states.

**Table 5: Pod States**

| State     | Description                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Running   | The pod is healthy and deployed on a node.<br>It contains one or more containers                                                                                                        |
| Pending   | The application is in the process of creating the container images for the pod                                                                                                          |
| Succeeded | Indicates that all the containers in the pod are successfully terminated. These pods cannot be restarted.                                                                               |
| Failed    | One or more containers in the pod have failed the termination process. The failure occurred as the container either exited with non zero status or the system terminated the container. |
| Unknown   | The state of the pod could not be determined. Typically, this could be observed because the node where the pod resides was not reachable.                                               |

