
NF Management Services

The Nnrf_NFManagement service enables an NF instance to register, update, or de-register its profile in the
local NRF or another NRF located in the serving PLMN.

It also enables an NF to subscribe to be notified of registration, de-registration, and profile changes of NF
instances along with their NF services.

The NF profile consists of general parameters of the NF instance, and also the parameters of the different NF
service instances exposed by the NF instance.

The Nnrf_NFManagement service also enables retrieving a list of NF instances currently registered in the
NRF or the NF Profile of a given NF instance.

• NF Registration and Deregistration Service Operations, on page 1
• NF Update Service Operation, on page 6
• NF Heart-Beat Service Operation, on page 9
• NF Status Subscribe, Status Unsubscribe, and Status Notify Service Operations, on page 13
• NF List Retrieval and Profile Retrieval Service Operations, on page 25
• Retrieving List of Profiles and Deleting Stale Profiles, on page 26
• Deep Validation of Service Request Parameters, on page 28

NF Registration and Deregistration Service Operations

Feature Summary and Revision History

Summary Data

Table 1: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Enabled – Always-onFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

NF Management Services
1



Revision History

Table 2: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
TheNFRegister and Deregister service operations enable NRF to process the NF registration or deregistration
request from any of the NF and store it in, or remove it from, the database.

How it Works
This section describes how NF Registration and Deregistration feature works.

NF Registration

NRF REST Endpoint

1. The NRF REST endpoint receives the NFRegister request over HTTP2/JSON. The HTTPmethod is PUT,
and the URL is /root/nnrf-nfm/v1/nf-instances. The body contains the NFProfile in JSON format.

Note: The default value, /root, is a configurable parameter.

2. On receiving the request, the request is validated to check if the mandatory fields are present in the request.
If not, then the response is sent back with status 400 (BAD REQUEST).

3. If the validation succeeds, then the NFRegister request is transformed into protobuf format and sent
towards the Service Pod for processing.

4. The worker, after processing the request, sends a response toward the endpoint. The response is then
transformed from protobuf-based format to JSON-based format.

5. The response is then checked for the response code; if it’s a new node success response, then the updated
NFProfile is sent back in the response body with the status code as 201 (CREATED). Else, if it’s an error
code, the error code is sent back to the client.

NRF Service Engine

1. The NRF Engine receives the protobuf-based request from the REST endpoint through the IPC system.

2. The NRF Engine gets the nfInstanceId from the message and creates an entry in CDL, with nfInstanceId
as Primary key and few other required fields as Unique and non-Unique keys.

3. The entire NFProfile is set into the data of the DBRecord request.

4. If the create is successful, the response code 201 is sent back to the REST endpoint.

5. In case of error while storing the response, error code is sent back as 500.

NF Management Services
2

NF Management Services
Revision History



NF Deregistration

NRF REST Endpoint

1. The NRF REST endpoint receives the NFDeregister request over HTTP2/JSON. The HTTP method is
DELETE, and the URL is /root/nnrf-nfm/v1/nf-instances/{nfInstanceId} with no request body.

Note: The default value, /root, is a configurable parameter.

2. The NFDeregister request is transformed into protobuf format and sent toward the Service Pod for
processing.

3. The messages are routed from REST endpoint to Service Pod based on Affinity. The nfInstanceId is the
Primary key for Affinity.

4. The Service Pod, after processing the request, sends a response toward the endpoint. The response is
transformed from protobuf-based format to JSON-based format.

5. The response is then checked for the response code; if it’s a success response, then the status code 204
(NO CONTENT) is sent back to the client with no response body. If the response code is 404, then the
status code 404 (NOT FOUND) is sent back to the client with no response body. In other error cases,
response code 500 is sent back.

NRF Service Engine

1. The NRF Engine receives the protobuf-based request from the REST endpoint through the IPC system.

2. The NRF Engine gets the nfInstanceId and attempts to load the profile from the CDL DB.

3. If the profile is not present, the response is sent back to the rest-ep with response code as 404.

4. If the profile is present, the profile is deleted by sending a delete request to the Datastore service.

5. If the request is successful, the response is sent back to the rest-ep with response code as 200.

6. For errors while deleting, response code is sent back as 500.

Call Flows

NFRegister Success Call Flow

This section describes the successful NF Registration call flow.

NF Management Services
3

NF Management Services
NF Deregistration



Figure 1: NFRegister Success Call Flow

Table 3: NFRegister Success Call Flow

DescriptionStep

The NF sends NF Registration Request to NRF API endpoint.

The NRF API endpoint transforms the REST request to gRPC.

1

The NRF API endpoint sends gRPC request to the NRF worker.

The NRF worker decodes gRPC request and prepares DBRecord message to be sent to the
Datastore service.

2

The NRF worker sends call create service to Datastore service.3

The Datastore service responds to NRF worker with SUCCESS Create Response.4

The NRF worker builds NFResponse gRPC Request and sends it to NRF API endpoint.

The NRF API endpoint transforms the gRPC NFResponse message to REST-based response
message.

5

The NRF API endpoint sends NF Registration Response to the NF.6

NFDeregister Success Call Flow

This section describes the successful NF Deregistration call flow.

NF Management Services
4

NF Management Services
Call Flows



Figure 2: NFDeregister Success Call Flow

Table 4: NFDeregister Success Call Flow

DescriptionStep

The NF sends NF Deregistration Request to NRF API endpoint.

The NRF API endpoint transforms the REST request to gRPC.

1

The NRF API endpoint sends gRPC request to the NRF worker.

The NRF worker decodes gRPC request and prepares DBRecordFilter message to be sent to the
Datastore service.

2

The NRF worker sends call delete service to Datastore service.3

The Datastore service responds to NRF worker with SUCCESS Delete Response.4

The NRF worker builds NFResponse gRPC Request and sends it to NRF API endpoint.

The NRF API endpoint transforms the gRPC NFResponse message to REST-based response
message.

5

The NRF API endpoint sends NF Deregistration Response to the NF.6

NF Management Services
5

NF Management Services
Call Flows



NF Update Service Operation

Feature Summary and Revision History

Summary Data

Table 5: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 6: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
TheNFUpdate service operation enables an NF instance to partially update or completely replace the parameters
of its NF profile in the NRF. It also enables an NF instance to add or delete its services.

The NFUpdate feature provides the following functionality:

• NRF handles PATCH request with Add, Delete, and Replace operations for all the service operation
parameters.

• NRF validates the PATCH request after receiving it and enables patch operations, which are based on
the input parameters, value range, and so on.

• NRF validates the input parameters, which are validated as part of NF Registration.

• NRF uses PUT request to discard and completely replace the old NF profile with a new profile.

• NRF performs the following validations to update an NF profile:

• The delete operation of mandatory parameters of an NF profile is not allowed.

NF Management Services
6

NF Management Services
NF Update Service Operation



How it Works
The update request is a HTTP PATCH request to the resource URI, which contains the NF instance ID. The
body of the PATCH request contains the list of operations (add, delete, or replace), which is applied to the
NF Profile of the NF instance. These operations may be directed to individual parameters of the NF Profile
or to the list of services and their parameters as offered by the NF Instances.

NRF REST Endpoint

1. The NRF Rest endpoint receives the following types of Update requests:

a. The NF Profile Partial Update request over HTTP2/JSON-PATCH+JSON. The HTTP method is
PATCH and the URL is {apiRoot}/nnrf-nfm/v1/nf-instances/{nfInstanceID}
and the body contains PATCH data in JSON format.

b. The NF Profile Complete Update request over HTTP2 request with content type header
application/JSON. The HTTP method is PUT and the URL is
{apiRoot}/nnrf-nfm/v1/nf-instances/{nfInstanceID}(NFProfile) and the
body contains the complete NF profile data in JSON format.

Note: The default value, {apiRoot}, is a configurable parameter.

2. On receiving the request, NRF validates the input message format. If the validation fails, the response is
sent with status 400 (BAD REQUEST).

3. If the validation succeeds, then the NF Profile Partial Update request is transformed into Protobuf format
and sent toward the service engine for processing.

4. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from Protobuf format to JSON format.

5. The response is then converted to OpenAPI format and sent toward the NF. If it’s a successful response,
then the response message contains the updated NF profile with the status code as 200 (OK). Else, if it’s
a failure, the error code is sent back to the client along with problem details.

NRF Service Engine

1. The NRF Service Engine receives the Protobuf-based request from the REST endpoint through the IPC
system.

2. On receiving the request, NRF validates the PATCH request.

3. NRF fetches the NF profile based on nfInstanceId as primary key, and then apply the patch locally.

4. If patch operations are successful, then NRF validates the parameters, which are validated as part of NF
Registration.

5. If complete NF profile validation (after patch operations) is:

• Successful - NRF updates the NF profile in DB, and the service engine sends response code 200
(OK) to the REST endpoint along with updated NF profile.

• Unsuccessful - The service engine sends a responsemessage with an error code to the REST endpoint,
which depends on the type of failure:

• No NF profile is available for given nfInstanceID : 404 (Not Found)

NF Management Services
7

NF Management Services
How it Works



• Any validation failure: 400 (Bad Request)

• Invalid path in the PATCH update request - 404 (Not Found)

Call Flows

NF Update Success Call Flow

This section describes the successful NF Update call flow.

Figure 3: NF Update Success Call Flow

Table 7: NF Update Success Call Flow

DescriptionStep

The NF sends NF Update Request to the NRF API endpoint.1

The NRF API endpoint transforms the PATCH (partial update) or PUT (complete replacement)
request to Protobuf format.

The NRF API endpoint sends Protobuf-based request to the NRF engine.

2

The NRF engine transforms the Protobuf-based request to JSON format and applies PATCH to
JSON format.

Then, the NRF engine successfully updates the NF profile in DB.

3

The Datastore service (DB) responds to NRF engine with the update success message.4

NF Management Services
8

NF Management Services
Call Flows



DescriptionStep

The NRF engine sends the response code 200 along with updated NF profile in Protobuf format
to the REST endpoint.

5

The NRF API endpoint decodes and transforms the Protobuf-based response message to PATCH
or PUT format, which contains the updated NF profile and response code 200.

Then, the NRF API endpoint sends NF Update Response to the NF.

6

NF Heart-Beat Service Operation

Feature Summary and Revision History

Summary Data

Table 8: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 9: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
The NF Heart-Beat service operation enables each NF that has previously registered in NRF to contact the
NRF periodically (Heart-Beat). The NF invokes the NFUpdate service operation, in order to show that the
NF is still active.

The NF Heart-Beat feature provides the following functionality:

• NRF handles NF Heart-Beat PATCH Requests with Replace operation for the following parameter:

• nfStatus

• NRF handles the start, restart, and expiry for Heart-Beat timer.

NF Management Services
9

NF Management Services
NF Heart-Beat Service Operation



• NRF configures the Hear-Beat timer differently for the NFs with different NF types.

• NRF configures the Heart-Beat service operation with the default level as NF type. If the service operation
is not configured as NF type, then NRF configures the Heart-Beat timer as global.

• If NRF modifies the Heart-Beat interval value of any registered NF instance, it returns the new value to
the registered NF. The service engine sends the new value in the response message of the next periodic
Heart-Beat interaction that is received from the NFs. Until then, NRF applies the Heart-Beat check
procedure according to the initial interval value.

How it Works
The Heart-Beat request contains a NF PATCH Request with multiple input parameters such as NF ID, type
of update (replace), path (/nfStatus), and value (REGISTERED, SUSPENDED or UNDISCOVERABLE).
After NRF validates the request, it sends the request to the DB to update the NF instance. Upon successfully
updating the NF instance, NRF sends a NF PATCH Success response to the NF instance.

NRF REST Endpoint

1. The NRF Rest endpoint receives the NF Heart-Beat request over HTTP2/JSON-PATCH+JSON. The
HTTPmethod is PATCHand theURL isroot/nnrf-nfm/v1/nf-instances/{nfInstanceID}
and the body contains Patch Data in JSON format.

2. On receiving the request, NRF validates the input message format. If the validation fails, the response is
sent with status 400 (BAD REQUEST).

3. If the validation succeeds, then the NF Heart-Beat request is transformed into Protobuf format and sent
toward the service engine for processing.

4. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from Protobuf format to JSON format.

5. The response is then converted to OpenAPI format and sent toward the NF. If it’s a successful response,
then the response message contains the status code as 204 (No Content). Else, if it’s a failure, the error
code is sent back to the client along with problem details.

NF Heart-Beat Purge Timer Expiry

1. DB sends the Timer Expiry notification with DBRecord as body, which is received as a new transaction
at REST endpoint.

2. The REST endpoint converts the Timer Expiry notification into Protobuf format and sends it toward the
service engine for processing. The REST endpoint sends the message as an asynchronous call because it
does not expect any response from NRF service engine.

NRF Service Engine

1. The NRF service engine receives the Protobuf-based request from the REST endpoint through the IPC
system.

2. On receiving the request, NRF validates the PATCH request.

3. NRF fetches the NF profile based on nfInstanceId as primary key, and then apply the patch locally.

NF Management Services
10

NF Management Services
How it Works



4. If complete NF profile validation (after patch operations) is:

• Successful -

a. NRF updates the NF profile in DB, and the service engine sends response code 204 (No Content)
to the REST endpoint.

b. NRF starts or restarts NF Heart-Beat timer (period is NF Heart-Beat timer + Heart-Beat Grace
Time). If NF Profile Purge timer is started already, then it is overwritten with NF Heart-Beat
timer + Heart-Beat Grace Time).

• Unsuccessful – The service engine sends a responsemessage with an error code to the REST endpoint,
which depends on the type of failure:

• No NF profile is available for given nfInstanceID : 404 (Not Found)

• Any validation failure: 400 (Bad Request)

NF Heart-Beat Purge Timer Expiry

1. TheNRF service engine receives the TimerExpiry Protobuf-based request from the REST endpoint through
the IPC system.

2. The body contains primary key of the NF profile to which the timer is associated. The service engine
fetches the NF profile using the same key.

• If no NF profile is available, then the service engine ignores the request.

• If an NF profile is found, then the service engine processes the request based on the following conditions:

• If the timer is Heart-Beat timer, then the service engine updates the DB with NFStatus in the NF
profile as Suspended. After this update, the service engine starts the NF Profile Purge timer.

• If the timer is NF Profile purge timer, then the service engine deletes the NF profile from DB.

Call Flows

NF Heart-Beat Success Call Flow

This section describes the successful NF Heart-Beat call flow.

NF Management Services
11

NF Management Services
Call Flows



Figure 4: NF Heart-Beat Success Call Flow

Table 10: NF Heart-Beat Success Call Flow

DescriptionStep

The NF sends NF Heart-Beat Request to the NRF API endpoint.1

The NRF API endpoint transforms the Heart-Beat request to Protobuf format.

The NRF API endpoint sends Protobuf-based request to the NRF engine.

2

The NRF engine transforms the Protobuf-based request to JSON format.

Then, the NRF engine successfully updates the NF profile in DB.

3

The Datastore service (DB) responds to NRF engine with the update success message.4

The NRF engine sends the response code 204 (No Content) in Protobuf format to the REST
endpoint.

5

The NRF API endpoint decodes and transforms the Protobuf-based response message to PATCH
format, which contains the response code 204 (no content).

Then, the NRF API endpoint sends NF Heart-Beat Response to the NF.

6

Configuring the NF Heart-Beat Service Operation
1. NRF configures Heart-Beat timers as both global and NF type levels.

NF Management Services
12

NF Management Services
Configuring the NF Heart-Beat Service Operation



2. To configure Heart-Beat service operation, the default level is NF type. If the service operation is not
configured as NF type, then NRF configures the Heart-Beat timer as global. During registration, NRF
sends the response message with the same Heart-Beat timer value in NF Profile or the newly configured
value, whichever is lesser.

3. If the Heart-Beat interval value of any registered NF instance is modified, NRF returns the new value to
the registered NF. The service engine sends the new value in the response message of the next periodic
Heart-Beat interaction received from the NFs. NRF sends the response message with the updated NF
profile and code as 200 (OK). Until then, NRF applies the Heart-Beat check procedure according to the
initial interval value.

Note:

• NF Heart-Beat request is same as NF Profile Partial Update, but with limited parameters, NFStatus
and Load.

• If NRF sends NFStatus and Load along with other parameters, it’s treated as partial update request.
The response message contains the updated NF profile and code as 200 (OK). Also, NRF handles
the Heart-Beat timer like a Heart-Beat Request.

NF Status Subscribe, Status Unsubscribe, and Status Notify
Service Operations

Feature Summary and Revision History

Summary Data

Table 11: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 12: Revision History

ReleaseRevision Details

2026.01First introduced.

NF Management Services
13

NF Management Services
NF Status Subscribe, Status Unsubscribe, and Status Notify Service Operations



Feature Description
The NFStatusSubscribe service operation enables an NF instance to subscribe to notifications for profile or
status changes of other NF instances. The NFStatusUnSubscribe service operation enables an NF instance to
unsubscribe the subscriptions registered in the NRF already.

The NFStatusNotify service operation enables the NRF to notify changes in status of NF instances to a
subscriber of NF status. The service operation also provides information regarding newly registered and
de-registered NFs.

The NFStatusSubscribe, NFStatusUnSubscribe, and NFStatusNotify feature enables NRF to provide the
following functionality:

• Process the request to subscribe from an NF and store the subscription details in the DB.

• Process the request to unsubscribe from an NF and remove the subscription details from the DB.

• Update the subscription details in DB (204 No Content).

• Support subscription in the same PLMN.

• Authorize the NF client, which requests a subscription based on reqNfType, reqFqdn, and reqSnssais.

• Support subscription for all the conditions.

• Support notification for all NotificationEventTypes.

• Support notification for any update in all parameters.

• Support notification for the update of NF Profile for complete replacement (PUT request).

• Support the update of subscription. The NRF assigns a validity time different from the value suggested
by the NF Service Consumer. The response code is 200 OK.

• Support a flag, which sends the full NF profile in the notification during NF profile PATCH update. This
flag must be enabled for the option to work properly.

• Support subscriptions for notification condition for both monitoredAttributes and unmonitoredAttributes.

• Support not to trigger “NF_PROFILE_CHANGED” notification for any change in the allowedPlmns,
allowedNfTypes, allowedNfDomains, and allowedNssais parameters.

• Support not to include allowedPlmns, allowedNfTypes, allowedNfDomains, and allowedNssais parameters
in the profile change notification.

How it Works
The following sections describe how the NFStatusSubscribe, NFStatusUnsubscribe, and NFStatusNotify
feature works.

NF Management Services
14

NF Management Services
Feature Description



NFStatusSubscribe

NRF REST Endpoint

1. The NRF Rest endpoint receives the NFStatusSubscribe request over HTTP2/JSON. The HTTP method
is POST and the URL is /root/nnrf-nfm/v1/subscriptions. The body of request message contains the
SubscriptionData in JSON format.

Note: The default value, /root, is a configurable parameter.

2. On receiving the request, it is validated to check whether the mandatory field is present, and the parameters
and their values and types are valid. If the validation fails, the response is sent with status 400 Bad Request.

3. The NFStatusSubscribe request is transformed into Protobuf format and sent toward the service engine
for processing.

4. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from protobuf-based format to JSON-based format.

5. The response is then checked for the response code; if it’s a success response, then the updated
SubscriptionData is sent back in the response body with the status code as 201 (Created). Else, if it’s an
error code, the error code is sent back to the client along with the problem details.

NRF Service Engine

1. The NRF Service Engine receives the protobuf-based request from the REST endpoint through the IPC
system.

2. The NRF Service Engine gets nfStatusNotificationUri from the request message and creates a unique
subscriptionID by considering it as an input along with the current timestamp.

3. The NRF Service Engine creates an entry in CDL with subscriptionID as primary key.

4. The NRF Service Engine checks whether the subscription is for a specific instance and validates whether
respective NFProfile instance is absent in the NRF. If the validation fails, response code is sent back as
404 Not Found.

5. If the subscription is for an NF instance, the NRF Service Engine authorizes the message based on
reqNfType, reqFqdn, and reqSnssai against all the NFProfiles. If reqNfType, reqFqdn, and reqSnssai does
not match the allowedNfTypes, allowedNfDomains, and allowedNssais of any of the NFProfiles, the
response code is sent back as 403 (Forbidden).

6. The entire SubscriptionData is set into the data of the DBRecord request.

7. If the create event is successful, the response code 201 (Created) is sent back to the REST endpoint. Or
else, in case of an error while storing the SubscriptionData, response error code is sent back as 500 (Internal
Server Error).

Note: The endpoint verifies whether the request contains a notification condition to monitor or exclude changes
in any attribute based on an array index for that attribute of the NF profile, as part of monitoredAttributes or
unmonitoredAttributes array. If the request contains such a condition, the NRF applies the same condition to
all the elements of the root element in the mentioned array.

NF Management Services
15

NF Management Services
NFStatusSubscribe



NFStatusUnSubscribe

NRF REST Endpoint

1. TheNRFRest endpoint receives the NFStatusUnSubscribe request over HTTP2/JSON. The HTTPmethod
is DELETE and the URL is /root/nnrf-nfm/v1/subscriptions/{subscriptionID} with no body of request
message.

2. Note: The default value, /root, is a configurable parameter.

3. The NFStatusUnSubscribe request is transformed into Protobuf format and sent toward the service engine
for processing.

4. The messages are routed from the REST endpoint to the NRF Service Engine based on Affinity. The
subscriptionID attribute is the primary key for Affinity.

5. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from protobuf-based format to JSON-based format.

6. The response is then checked for the response code; if it’s a success response, then the status code as 204
No Content is sent back to the client with no response body. If the response code is 404, then the status
code 404 Not Found is sent back to the client with no response body. In other error cases, response code
500 Internal Server Error is sent back to the client. Else, if it’s an error code, the error code is sent back
to the client along with the problem details.

NRF Service Engine

1. The NRF Service Engine receives the protobuf-based request from the REST endpoint through the IPC
system.

2. The NRF Service Engine gets the subscriptionID from the request message and attempts to load the NF
profile from the CDL DB.

3. If the load event for the NF profile from the CDL DB is:

• Successful: The subscription details are deleted by sending a delete request to the datastore service.

• Unsuccessful: The response is sent back to the REST endpoint with the response code as 404 Not
Found.

4. If the unsubscribe request is successful, the response code 204 No Content is sent back to the REST
endpoint. Or else, in case of an error while deleting the subscription details, response error code is sent
back as 500 (Internal Server Error).

Updating a Subscription

NRF REST Endpoint

1. The NRF REST endpoint receives the request for updating a subscription over
HTTP2/JSON-PATCH+JSON. The HTTP method is PATCH and the URL is /root/nnrf-nfm/v1/
subscriptions/{subscriptionID} and the body contains PATCH data in JSON format.

Note: The default value, /root, is a configurable parameter.

NF Management Services
16

NF Management Services
NFStatusUnSubscribe



2. On receiving the request, NRF validates the input message format. If the validation fails, the response is
sent with status 400 Bad Request.

3. If the validation succeeds, then the request for updating a subscription is transformed into Protobuf format
and sent toward the service engine for processing.

4. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from Protobuf format to JSON format.

5. The response is then checked for the response code; if it’s a success response, then the status code as 204
No Content or 200 OK with SubscriptionData is sent back to the client with no response body. If the
response code is 404, then the status code 404 Not Found is sent back to the client with no response body.
In other error cases, response code 500 Internal Server Error is sent back to the client. Else, if it’s an error
code, the error code is sent back to the client along with the problem details.

NRF Service Engine

1. The NRF Service Engine receives the Protobuf-based request from the REST endpoint through the IPC
system.

2. The NRF Service Engine fetches the subscription data based on subscriptionID as primary key, and then
replace the validity time with the value received in the request.

3. If patch operations are:

• Successful - Checks whether the validity time mentioned in the PATCH operation is more than the
timer value configured in the NRF.

• If the configured value is more than the received value, response code as 204 No Content is
sent back to the client.

• If the configured value is less than the received value, response code with 200 OK along with
the maximum possible value within the configured timer value is sent back to the client.

• Unsuccessful - The service engine sends a responsemessage with an error code to the REST endpoint,
which depends on the type of failure:

• No NF profile is available for given subscriptionID: 404 Not Found

• Any validation failure: 400 Bad Request

NFStatusNotify

NRF REST Endpoint

1. On receiving notification from the NRF Service Engine, the NRFREST endpoint creates an HTTP2/JSON
message.

2. The HTTP method is POST and the URI received as part of the notification is used as the notification
URL.

3. The NRF REST endpoint sends a response back to NRF Service Engine as received from the subscribed
NF.

NF Management Services
17

NF Management Services
NFStatusNotify



NRF Service Engine

1. The NRF REST endpoint triggers the NFStatusNotify service operation once it receives an NF
Registration, Deregistration or Update message.

2. The NRF Service Engine initiates an asynchronous routine for further processing of NFStatusNotify to
unblock other ongoing management operations.

3. The NRF Service Engine filters the subscription details based on the received NF profile and the
subscription condition.

4. The NRF Service Engine further filters duplicate subscriptions based on the notification URI.

5. The NRF Service Engine initiates sending notification to all the remaining NFs, which are subscribed
to NRF.

• For NFRegistration, it includes the NF profile, NFInstanceID and notification type in the notification
data.

• For NF Deregistration, it includes the NFInstanceID and notification type in the notification data.

• For NF Update, if there is any change in the parameter value, it includes the NF profile or partial
NF changes, NFInstanceID, and notification type in the notification data.

6. The NRF Service Engine prepares and sends the notification data and the notification URI to the NRF
REST endpoint.

7. For NF update, if there is any change in parameter value, it includes either Full NF profile or partial NF
changes, NFInstanceID, and notification type in the notification data.

8. For NF update, if the Subscription Data does not contain the Notification Condition, then NRF Service
Engine sends the notification for change of any attribute in the NF profile.

9. For NF update, if the Subscription Data contains a Notification Condition:

• If NotifCondition contains monitoredAttributes, then NRF Service Engine sends the notification
for change in only those attributes of NF profile, which are configured as part of monitoredAttributes.

• If NotifCondition contains unmonitoredAttributes, then NRF Service Engine sends the notification
for change in only those attributes of NF profile, which are not configured as part of
unmonitoredAttributes.

10. The NRF Service Engine does not include the allowedPlmns, allowedNfTypes, allowedNfDomains,
allowedNssais parameters either in NF Profile or NF Services in the NF Profile change notification.

11. The NRF Service Engine does not trigger the “NF_PROFILE_CHANGED” notification for any change
in the allowedPlmns, allowedNfTypes, allowedNfDomains, and allowedNssais parameters.

12. Partial NF changes are sent when a PATCH update is triggered. When there is a complete profile update
(PUT request), the complete NF profile is sent back to the client.

13. Partial NF changes are supported for change in only non-array parameters of PATCH update. Else,
complete NF profile is sent as a notification.

14. If the flag, notify-always-complete-profile, is enabled, NRF sends back the complete profile as a
notification.

15. The NRF Service Engine creates a separate transaction for each notification.

NF Management Services
18

NF Management Services
NFStatusNotify



16. The NRF REST endpoint sends a response toward the NRF Service Engine after getting a response
from the subscribed NF.

17. If the operation is successful, the NRF Service Engine receives a message with response code 204 No
Content. Else, the response code is 404 Not Found.

Call Flows

NFStatusSubscribe Success Call Flow

This section describes the successful NFStatusSubscribe call flow.

Figure 5: NFStatusSubscribe Success Call Flow

Table 13: NFStatusSubscribe Success Call Flow

DescriptionStep

The NF sends NF Subscription Request to the NRF API endpoint.1

The NRF API endpoint transforms the REST request to gRPC.

The NRF API endpoint sends gRPC request to the NRF Service Engine.

2

The NRF Service Engine decodes gRPC request to derive the subscription ID and prepares
DBRecord message to be sent to the Datastore service.

The NRF Service Engine sends call create service to Datastore service.

3

The Datastore service responds to NRF Service Engine with SubscriptionData in the response
body and status code as 201 (Created).

4

NF Management Services
19

NF Management Services
Call Flows



DescriptionStep

The NRF Service Engine creates the NFResponse gRPC-based message and sends it to the NRF
API endpoint.

5

The NRF API endpoint transforms the gRPC NFResponse message to REST-based response
message.

Then, the NRF API endpoint sends NF Subscription Response to the NF client.

6

NFStatusUnSubscribe Success Call Flow

This section describes the successful NFStatusUnSubscribe call flow.

Figure 6: NFStatusUnSubscribe Success Call Flow

Table 14: NFStatusUnSubscribe Success Call Flow

DescriptionStep

The NF sends NF Unsubscription Request to the NRF API endpoint.1

The NRF API endpoint transforms the REST request to gRPC.

The NRF API endpoint sends gRPC request to the NRF Service Engine.

2

The NRF Service Engine decodes gRPC request to derive the subscription ID based on Affinity
and prepares DBRecordFilter message to be sent to the Datastore service.

The NRF Service Engine sends call delete service to Datastore service.

3

The Datastore service responds to NRF Service Engine with response code 204 No Content.4

NF Management Services
20

NF Management Services
Call Flows



DescriptionStep

The NRF Service Engine creates the NFResponse gRPC-based message and sends it to the NRF
API endpoint.

5

The NRF API endpoint transforms the gRPC NFResponse message to REST-based response
message.

Then, the NRF API endpoint sends NF Subscription Response to the NF client.

6

Updating a Subscription Call Flow

This section describes the call flow for successful update of a subscription.

Figure 7: Updating a Subscription Call Flow

Table 15: Updating a Subscription Call Flow

DescriptionStep

The NF sends NF Update Subscription PATCH Request to the NRF API endpoint.1

The NRF API endpoint transforms the REST request to gRPC.

The NRF API endpoint sends gRPC request to the NRF Service Engine.

2

The NRF Service Engine decodes gRPC request and prepares DBRecordFilter for the validitytime
based on the subscription ID to be sent to the Datastore service.

The NRF Service Engine sends call update service to Datastore service.

3

The Datastore service responds to NRF Service Engine with response code 204 No Content.4

NF Management Services
21

NF Management Services
Call Flows



DescriptionStep

The NRF Service Engine creates the NFResponse gRPC-based message and sends it to the NRF
API endpoint.

5

The NRF API endpoint transforms the gRPC NFResponse message to REST-based response
message.

Then, the NRF API endpoint sends NF Update Subscription Response to the NF client.

6

NFStatusNotify Success Call Flow

This section describes the successful NFStatusNotify call flow.

Figure 8: NFStatusNotify Success Call Flow

Table 16: NFStatusNotify Success Call Flow

DescriptionStep

The NRF REST endpoint triggers the NFStatusNotify service operation once it receives an NF
Registration, Deregistration or Update message.

The NRF Service Engine initiates a gRPC request and sends it to itself.

The NRF Service Engine sends call find service to Datastore service.

1

The Datastore service responds to NRF Service Engine with the Find response containing a list
of subscriptions.

2

NF Management Services
22

NF Management Services
Call Flows



DescriptionStep

The NRF Service Engine filters the subscription details based on the subscription conditions,
reqNFType, reqFqdn, reqSnssai, and duplicate subscriptions based on the notification URI. The
NRF Service Engine creates a separate transaction for each notification.

The NRF Service Engine creates the gRPC-based NFStatusNotification message and sends it to
the NRF API endpoint.

3

The NRFAPI endpoint transforms the gRPC-basedNFStatusNotificationmessage to REST-based
response message.

Then, the NRF API endpoint sends NFStatusNotification Response to the NF client.

4

The NF client sends NFStatusNotification Response to the NRF API endpoint.5

The NRF API endpoint transforms the REST request to gRPC.

The NRF API endpoint sends gRPC request to the NRF Service Engine.

6

Handling HTTP Response Codes

Feature Summary and Revision History

Summary Data

Table 17: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Enabled – Always-onFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 18: Revision History

ReleaseRevision Details

2022.02First introduced.

Feature Description
This feature enables NRF to handle HTTP status codes received in response from other NFs. Some examples
of HTTP status codes are 503, 429, and so on.

This feature also enables NRF to resend messages for failure responses. You can configure both the number
of retry attempts and the time limit for attempting the retries, as follows:

NF Management Services
23

NF Management Services
Handling HTTP Response Codes



• max-notify-retry-count = 3

• max-notify-retry-time = 11

This feature only supports the following HTTP status codes in the retry responses:

• 403 Forbidden

• 404 Not Found

• 413 Payload Too Large

• 429 Too Many Requests

• 500 Internal Server Error

• 503 Service Unavailable

How it Works
NRF handles the failure HTTP response codes in the following ways:

• If the Retry-After header is absent, retransmit the notification after waiting for a fixed time interval of 3
seconds.

• Retransmit the notification after waiting for the time interval value received in the Retry-After header.

• Do not retransmit the notification.

• The retry process ends when one of the following conditions are met (whichever comes first):

• The configured "max-notify-retry-count" number of retry attempts are made.

• No more retry attempts is possible within the configured "max-notify-retry-time" time interval in
seconds.

Notes:

• NRF retransmits notifications only for specific error codes.

• NRF handles the Retry-After header only for overhead scenarios.

• NRF handles the Retry-After header only when the timer value is within permissible limits for NRF
application. Otherwise, NRF ignores the response code.

NRF handles the notification failure response that is based on the error codes in the HTTP response.

NF Management Services
24

NF Management Services
How it Works



NF List Retrieval and Profile Retrieval Service Operations

Feature Summary and Revision History

Summary Data

Table 19: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 20: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
The NFListRetrieval service operation enables NRF to retrieve a list of NF profiles, which are currently
registered with NRF.

For NFListRetrieval service operation, the NRF supports GET request with the following input filter parameters:

• nfType: The type of NF instance to filter the search result for NF instances.

• limit: Maximum number of list items that can be returned in the GET request.

The NFProfileRetrieval service operation retrieves the NF profile, which matches the NF Instance ID specified
in the URI.

How it Works
For NFListRetrieval service operation, the NRF service engine retrieves all the NF profile records from CDL
DB based on the nfType parameter used in the GET request. If the limit parameter is used in the GET request
after NRF service engine retrieves the NF profiles, the number of search results is limited up to that count.

For NFProfileRetrieval service operation, the NRF service engine retrieves the NF profile records from CDL
DB based on the NF Instance IDs along with the necessary validations and error handling.

NF Management Services
25

NF Management Services
NF List Retrieval and Profile Retrieval Service Operations



Retrieving List of Profiles and Deleting Stale Profiles

Feature Summary and Revision History

Summary Data

Table 21: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Not ApplicableFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 22: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
The NF CLI enables NRF to retrieve a list of NF profiles and delete stale NF profiles.

This NF CLI provides the following functionality:

• NRF supports CLI command to retrieve an NF profile with a specific NF instance ID.

• NRF supports CLI command to retrieve the list of all NF profiles currently registered. This CLI command
is used for debugging purpose.

• NRF supports CLI command to delete stale NF profiles. When an NF re-registers with a new instance
ID after recovery, this functionality is used to delete a stale NF profile, which cannot be deleted by the
NF.

How it Works
This section describes the sequence of operation.

NF Management Services
26

NF Management Services
Retrieving List of Profiles and Deleting Stale Profiles



NRF Ops Center

1. A product-call-back framework enables NRF to add a backend code for a CLI command whenever it’s
required.

2. The NFProfileRetrieval procedure retrieves the NF instance details based on the NF instance ID.

3. The NFDeregistration procedure deletes the NF profile from NRF based on the NF instance ID.

Note: To maintain integrity and reduce errors in its function, NRF does not support a command to delete
all NF Profiles together. To delete all the NF Profiles together, use search instance all option to retrieve
all the NF Profiles based on their NF instance ID. Then, NRF can delete NF Profiles based on the search
result.

NRF REST Endpoint

1. The NRF Rest endpoint receives a request from an NF with URL as
{apiRoot}/nnrf-nfm/v1/nf-instances-all.

Note: The default value, {apiRoot}, is a configurable parameter.

2. On receiving the request, NRF Rest endpoint transforms the message into Protobuf format and sends it
toward the service engine for processing.

3. The service engine sends a response toward the endpoint after processing the request. The response is
then transformed from Protobuf format to JSON format.

4. The response is then converted to OpenAPI format and sent toward the NF. If it’s a successful response,
then the response message contains the updated NF profile with the status code as 200 (OK). Else, if it’s
a failure, the error code is sent back to the client along with problem details.

NRF Service Engine

1. The NRF Service Engine receives the Protobuf-based request from the REST endpoint through the IPC
system.

2. On receiving the request, NRF fetches all the available profiles from CDL.

3. If the fetch operation is successful:

• NF profiles unavailable - The service engine sends response code 204 (No Content) to the REST
endpoint.

• NF profiles available - The service engine sends response code 200 (OK) to the REST endpoint
along with updated NF profiles.

• Unsuccessful – If there is an error, the service engine sends a response message with error code 500
along with the problem details to the REST endpoint.

NF Management Services
27

NF Management Services
How it Works



Deep Validation of Service Request Parameters

Feature Summary and Revision History

Summary Data

Table 23: Summary Data

5G-NRFApplicable Product(s) or Functional Area

SMIApplicable Platform(s)

Disabled - Configuration RequiredFeature Default Setting

Not ApplicableRelated Changes in this Release

Not ApplicableRelated Documentation

Revision History

Table 24: Revision History

ReleaseRevision Details

2026.01First introduced.

Feature Description
This configurable NRF feature enables deep validation of API request parameters for all procedures. NRF
primarily performs deep validation of service requests at the API REST endpoints.

Deep validation for the information elements (IEs) includes the following conditions:

• Verify the presence of mandatory IEs in the API-based service request.

• Verify the following criteria in the service request:

• IE range checks

• IE enumerations (enum) checks

• Conditional IE checks

• Description compliance checks

• IE syntax checks

NF Management Services
28

NF Management Services
Deep Validation of Service Request Parameters



How it Works

NRF REST Endpoint

1. The NRF REST endpoint receives the API-based service request over HTTP2/JSON.

2. On receiving the request, NRF validates the input message for the following criteria:

• Presence of Mandatory IEs in the service request.

• IE range checks for all the IEs in the service request.

• Enum checks for all the IEs in the service request.

• Conditional checks for all the IEs in the service request.

• Checks for compliance to description and syntax of all the IEs in the service request.

If the validation fails, the response is sent with status 400 (BAD REQUEST) and the corresponding error
details.

3. If the validation succeeds, then the call flow is same as per the service operation process mentioned for
the corresponding features.

• The IpEndPoint data-type can only contain a maximum of either one ipv4Address or ipv6Address.
However the presence of either ipv4Address or ipv6Address in the data-type is not mandatory.

• If the Range data-types, for example, SupiRange have all three attributes (start, end and pattern) present,
deep validation of attributes that contain such data-types fails.

Note

NRF Service Engine

1. The NRF service engine performs deep validation of those IEs in service requests, which cannot be
validated by the NRF API REST endpoint.

2. If the validation succeeds, then the call flow is same as per the service operation process mentioned for
the corresponding features.

• The discovery query parameter, service-names must contain an array of unique service names for the
NRF to provide the list of profiles in response to a query.

• The discovery query parameters, Supi and Gpsi comply with the regex pattern mentioned in 3GPP TS
29.510.

Note

Limitations
In this release, the deep validation feature has the following limitations:

NF Management Services
29

NF Management Services
How it Works



• NRF recognizes timestamps in RFC3339 date-time format except for the time-stamps that have leap
seconds.

For example, NRF considers the time-stamp 1990-12-31T15:59:60-08:00 (RFC3339 format) as invalid
because it does not support leap seconds.

Configuring Deep Validation
To configure deep validation of API request parameters for all procedures, use the following sample
configuration:

It is not recommended to enable this feature in a performance environment handling high TPS. For more
details about the performance impact, contact your Cisco account representative.

Note

config
nrf-profile profile-settings { enable-deep-validation { false | true }

exit

NOTES:

• enable-deep-validation { false | true }: E nable or disable the Deep Validation feature.

Default Value: false.

NF Management Services
30

NF Management Services
Configuring Deep Validation


	NF Management Services
	NF Registration and Deregistration Service Operations
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	NF Registration
	NF Deregistration
	Call Flows


	NF Update Service Operation
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	Call Flows


	NF Heart-Beat Service Operation
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	Call Flows

	Configuring the NF Heart-Beat Service Operation

	NF Status Subscribe, Status Unsubscribe, and Status Notify Service Operations
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	NFStatusSubscribe
	NFStatusUnSubscribe
	Updating a Subscription
	NFStatusNotify
	Call Flows

	Handling HTTP Response Codes
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works


	NF List Retrieval and Profile Retrieval Service Operations
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works

	Retrieving List of Profiles and Deleting Stale Profiles
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works

	Deep Validation of Service Request Parameters
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	How it Works
	Limitations

	Configuring Deep Validation



