NRF Logging

* Feature Summary and Revision History, on page 1

* Feature Description, on page 1
* How It Works, on page 3

Feature Summary and Revision History

Summary Data

Table 1: Summary Data

Applicable Product(s) or Functional Area

5G-NRF

Applicable Platform(s)

SMI

Feature Default Setting

Enabled - Always-on

Revision History

Related Changes in this Release Not Applicable
Related Documentation Not Applicable
Table 2: Revision History

Revision Details Release

First introduced. 2026.01

Feature Description

NRF utilizes the common logging framework to generate logs from its micro-services.

The supported log levels are:

NRF Logging .

NRF Logging |

. Error

* Error
* Warn
* Info

* Debug

* Trace

\)

Note Warn level logging takes place during production.

Error
These errors are fatal errors, which can impact service for multiple subscribers. Examples errors are as follows:
* Node discovery of SBA fails after query from NRF and local configuration.
* Mandatory IE missing in NF subscription request.
* Memory cache startup errors.

* Endpoint not found.

Warn

These errors impact few specific call-flows majorly, but not blockers of functionality. Example errors are as
follows:

* Node discovery of SBA fails but we have more options to retry.
* Mandatory IE missing in a registration message.

» RPC timeout.

* Procedural timeout.

* Validation failure (not critical). Example: Registration rejected as registration request message received
registration type as not supported registration type.

* External entity sending unexpected or negative response. Example: Heart beat failure.
» Unexpected value of objects maintained by NRF.

* Unable to fetch a subscription.

Info

This log level purpose is to know information for cause. Examples are as follows:

* Procedural outcome. Example:NF Registration.

* IE changes during NF Update.

| NRFLogging

Debug

Debug .

This log level purpose is to get debug messages. Example messages are as follows:

+ All external exchanged messages. Example: Sending Registration request.

+ State machine changes.

* Collision detailed logging.

Trace

This log level purpose is to get content of all external tracing messages. Example messages are as follows:

* Registration request message.

* Subscription requests and notifications.

How It Works

It is achieved using Log tags and Logging contexts.

Log Tags

Use Log tags to ‘tag’ logs for specific procedures which are part of flow or an event. Enabling of NRF logging
takes place at different log levels for different log tags.

Purpose

Example Log tags

NRF Service

To capture procedures.

* LogTagReg

* LogTagNrfDeReg
* LogTagNrfDis

* LogTagNrfNotify

Rest EP

To capture on the interface
basis.

» LogTagReg

* LogTagNrfDeReg
* LogTagNrfDis

* LogTagNrfNotify

NRF Logging .

. Logging contexts

NRF Logging |

Logging contexts

App Infra context (Transaction)

Capturing of transaction logging is to get the summary of a transaction when it ends. This transaction captures
log tag without the filename or a line number.

Transaction logging captures information at the Error and Warn levels.

CLI option is available to duplicate transaction logs, which capture transaction logs inline too.

* ok ok kk ok ok k ok ok ok ok TRANSACTION: OOOOS * ok ok ok k ok k ok ok ok ok ok k
TRANSACTION SUCCESS:

Start Time : 2022/04/20 11:33:55.165

GR Instance ID : 1

Txn Type : NFRegistrationRequest (1)

Priority : O

Session Namespace : none (0)

CDL Slice Name : slicel

Subscriber Id : 123c2c0b-4bf6-4204-8225-2aa2a%9abcl00
LOG MESSAGES:

2022/04/20 11:33:55.171 [DEBUG] [infra.ipc action.core] Destination Host

NRF.nrf-service.blr.nrf.0 serviced the IPC Message NFRegistrationRequest
KAk khkhkhkhkhkkhkhkkhkhhkhhkhkhhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkkhkrkhkhkhkhkhkhkhrkhkhhkkx

2022/04/20 11:33:55.170 nrf-rest-ep [DEBUG] [IpcStreamClient.go:314] [infra.bgipcstream.core]
Received Response &ResponseMessage{Key:1,Code:0,MsgType:2,Description:,Message:[10 36 49
50 51 99 50
99 48 98 45 52 98 102 54 45 52 50 48 52 45 56 50 50 53 45 50 97 97 50 97 57 97 98 99 49 48
48 16 1 26 226 1 42 51 10 2 65 65 18 3 48 65 65 42 19 10 6 97 98 99 100 50 51 18 9 10 3
49 50 51 18 2 52
53 42 19 10 6 65 66 48 48 48 49 18 9 10 3 49 50 51 18 2 52 53 64 216 54 104 200 1 122 14
49 57 50 46 49 54 56 46 49 50 48 46 50 53 122 13 49 57 50 46 49 54 56 46 49 48 48 46 51 130
1 20 49 49 49
49 58 58 49 57 50 58 49 54 56 58 49 50 48 58 50 53 130 1 19 49 49 49 49 58 58 49 57 50 58
49 54 56 58 49 48 48 58 51 136 1 20 146 1 8 66 97 110 103 103 103 103 103 154 1 36 49 50
51 99 50 99 48 98
45 52 98 102 54 45 52 50 48 52 45 56 50 50 53 45 50 97 97 50 97 57 97 98 99 49 48 48 194
1 10 82 69 71 73 83 84 69 82 69 68 202 1 3 65 77 70 242 1 9 10 3 49 50 51 18 2 52 53 248 1
10 176 2 241 37,
Name:,DestName:NRF.nrf-service.blr.nrf.0,MetaInfo:&MetalInfo{Priority:0, Instancelnfo:
NRF.nrf-service.blr.nrf.0, SubscriberID:,SlaEnabled:false,SlaTimeoutInMs:0, ProcedurelInfo:
&ProcedurelInfo{ProcedureName:,
SubProcedureName:, ProtocolStartTimestamp:4751572391071609, ServiceStartTimestamp:0,
ProcedureStage:0, IpcRegStartTimestamp:4751572392168693, IpcRespStartTimestamp:
4751572392925193, },CorrelationId:,
TraceInfo:nil,RpcInfo:[]*RpcInfo{},ExternalMsg:false,GRInstancelID:1,TestCaselD:O0,
ProtocolPayloadLength:0, },RoutingRules:map[string]string{InstanceInfo:
NRF.nrf-service.blr.nrf.0, SubscriberID:
123c2c0b-4bf6-4204-8225-2aa2a%abcl00, },} at client nrf-service 0
2022/04/20 11:33:55.171 nrf-rest-ep [DEBUG] [IpcStreamClient.go:325] [infra.bgipcstream.core]
Response object &{%!s(chan *ipc.ResponseMessage=0xc003b0cf60) %!s(bool=false) Sync} at
client nrf-service 0
2022/04/20 11:33:55.171 nrf-rest-ep [DEBUG] [IpcStreamAction private.go:137]
[infra.ipc_action.core] Time taken to execute IPC is 0.00
2022/04/20 11:33:55.171 nrf-rest-ep [DEBUG] [MasterBlueprint.go:516] [infra.transaction.core]
Last stage (init done) -> Next stage (finished) for transaction : 5
2022/04/20 11:33:55.171 nrf-rest-ep [TRACE] [rest message processor.go:144]
[rest _ep.msg-process.Int] [5]In ProcessEnd
2022/04/20 11:33:55.171 nrf-rest-ep [TRACE] [rest message processor.go:174]
[rest ep.msg-process.Int] [5]In PopulateSuccessResponse
2022/04/20 11:33:55.171 nrf-rest-ep [INFO] [register nf request.go:1935] [rest ep.app.Reg]

| NRFLogging
Logging contexts .

[123c2c0b-4bf6-4204-8225-2aa2a9%9abcl00]Sending Successful Response for NF Registration
Request

NRF Logging .

NRF Logging |
. Logging contexts

. NRF Logging

	NRF Logging
	Feature Summary and Revision History
	Summary Data
	Revision History

	Feature Description
	Error
	Warn
	Info
	Debug
	Trace

	How It Works
	Log Tags
	Logging contexts

