
Cisco Sensor Connect for IoT Services Programmability Guide
First Published: 2024-08-27

Last Modified: 2025-04-01

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2025 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Preface viiP R E F A C E

Document Conventions vii

Related Documentation vii

Communications, services, and additional information viii

Cisco Bug Search Tool viii

Documentation feedback viii

Overview 1C H A P T E R 1

Overview of Cisco Sensor Connect for IoT Services 1

Introduction to Cisco Sensor Connect APIs 1

IoT Orchestrator in Cisco Catalyst 9800 Wireless Controller 3

Solution Overview 3

About System for Cross-Domain Identity Management (SCIM) 4

About Non-IP Control (NIPC) 4

About Message Queuing Telemetry Transport (MQTT) 6

About MQTT Message Batching 6

About Shared Subscriptions 6

About Onboarding BLE Devices 7

About Control Operations on BLE Devices 7

About Data Telemetry from BLE Devices 8

About Security Model 9

Onboarding BLE Devices using SCIM 11C H A P T E R 2

SCIM API Definition 11

SCIM HTTP Methods 11

SCIM API Resource and Versions 12

Cisco Sensor Connect for IoT Services Programmability Guide
iii

SCIM Schema 12

API Example 14

Control Operations on BLE Devices 17C H A P T E R 3

Non-IP Control (NIPC) Open API Definition 17

Other Supported API Types 17

Connecting to a BLE Device 18

Connect Request - API Definition 18

Connect Response - API Definition 18

API Example – Connect Request and Connect Response 19

Reading from a BLE Device 21

Read Request - API Definition 21

Read Response - API Definition 21

API Example – Read Request and Read Response 21

Writing to a BLE Device 22

Write Request - API Definition 22

Write Response – API Definition 22

Discovering Services from a BLE Device 23

Service Discovery Request - API Definition 23

Service Discovery Response - API Definition 23

API Example - Service Discovery Request and Service Discovery Response 24

Disconnecting from a BLE Device 26

Disconnect Request - API Definition 26

Disconnect Response - API Definition 26

API Example – Disconnect from a BLE Device 26

Data Telemetry from BLE Devices 29C H A P T E R 4

Registering Topics 29

Register Topics - API Definition 29

API Example - Register Topics 29

API Example - Subscribe to Critical Application Events 30

Telemetry Data Format 30

Telemetry Message Format 30

Subscribing to Advertisements and Notifications 31

Cisco Sensor Connect for IoT Services Programmability Guide
iv

Contents

Subscribing to Advertisements and Notifications - API Definition 31

API Example – Subscribing to Advertisements and Notifications 31

Telemetry Message Format for Onboarded Advertisements and Notifications 31

Subscribing to Connection Events 33

Subscribing to Connection Events - API Definition 33

API Example – Subscribing to Connection Events 33

Use Case 1 - Asset Tracking 35C H A P T E R 5

Use Case 1: Asset Tracking 35

Onboarding a Device 36

Registering the Data Receiver Application 38

Registering a Topic 38

Onboarded Advertisements Subscription 39

Use Case 2 - Remote Patient Health Monitoring 41C H A P T E R 6

Use Case 2 - Remote Patient Health Monitoring (requiring BLE connection, reading, and writing) 41

Onboarding a Device 42

Connecting to a Device 45

Writing a Characteristic to the Device 47

Reading a Characteristic to the Device 48

Disconnecting the Device 48

Use Case 3 - BLE Notification-based Use Cases 51C H A P T E R 7

Use Case 3 - BLE Notification-Based Use Cases 51

Onboarding the BLE Device 52

Registering the Data Receiver Application 55

Registering a Topic for Application Events 56

Registering a Topic for GATT Notifications 56

Connecting to a BLE Device from an AP 57

Starting Notifications 59

MQTT Subscription Messages 60

Application Events 60

Troubleshooting 63C H A P T E R 8

Cisco Sensor Connect for IoT Services Programmability Guide
v

Contents

Troubleshooting 63

Cisco Sensor Connect for IoT Services Programmability Guide
vi

Contents

Preface

This preface describes the conventions of this document and information on how to obtain other documentation.
It also provides information on what's new in Cisco product documentation.

• Document Conventions , on page vii
• Related Documentation, on page vii
• Communications, services, and additional information, on page viii

Document Conventions
This document uses the following conventions:

DescriptionConvention

Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard. For
example, the key combination ^D orCtrl-Dmeans that you hold down the Control
key while you press the D key. (Keys are indicated in capital letters but are not
case sensitive.)

^ or Ctrl

Commands and keywords and user-entered text appear in bold font.bold font

Document titles, new or emphasized terms, and arguments for which you supply
values are in italic font.

Italic font

Elements in square brackets are optional.[x]

Reader Alert Conventions

This document may use the following conventions for reader alerts:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.Note

Related Documentation
• Cisco Sensor Connect for IoT Services Configuration Guide

Cisco Sensor Connect for IoT Services Programmability Guide
vii

• Cisco Sensor Connect for IoT Services Online Help (Refer Initial Configuration Workflow of IoT
Orchestrator section)

Communications, services, and additional information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit
Cisco DevNet.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool
Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, whichmaintains a comprehensive
list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect
information about your products and software.

Documentation feedback
To provide feedback about Cisco technical documentation, use the feedback form available in the right pane
of every online document.

Cisco Sensor Connect for IoT Services Programmability Guide
viii

Preface
Communications, services, and additional information

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/
https://www.ciscopress.com
https://connectthedots.cisco.com/connectdots/serviceWarrantyFinderRequest?fl=wf
https://bst.cloudapps.cisco.com/bugsearch/

C H A P T E R 1
Overview

• Overview of Cisco Sensor Connect for IoT Services, on page 1
• Introduction to Cisco Sensor Connect APIs, on page 1
• IoT Orchestrator in Cisco Catalyst 9800 Wireless Controller, on page 3
• Solution Overview, on page 3
• About Onboarding BLE Devices, on page 7
• About Control Operations on BLE Devices, on page 7
• About Data Telemetry from BLE Devices, on page 8
• About Security Model, on page 9

Overview of Cisco Sensor Connect for IoT Services
Enterprise customers need easy ways to onboard, authorize, and control IoT devices onto a single unified
infrastructure. The Cisco Sensor Connect addresses this by providing a set of interfaces to:

• Onboard devices into the infrastructure.

• Control and receive events from the devices.

To accomplish this, the Cisco Sensor Connect leverages the following interfaces between the network and
applications:

1. Onboarding Interface: This interface is used to onboard a device to a network.

2. Control Interface: This interface is used for bi-directional communication with a non-IP device.

3. Telemetry Interface: This interface is used for streaming telemetry from a non-IP device.

Introduction to Cisco Sensor Connect APIs
The IoT Orchestrator is a Cisco IOx container that is an integral part of the Cisco Sensor Connect solution.
You can deploy the IoT Orchestrator on the Cisco Catalyst 9800 Wireless Controllers.

The IoT Orchestrator exposes APIs that allow applications to:

• Introduce devices to enterprise networks

• Control devices

Cisco Sensor Connect for IoT Services Programmability Guide
1

• Receive telemetry from those devices

Device control and data reception are not required for IP-based end points because the devices can communicate
directly using their IP address.

Note

Figure 1: Cisco Sensor Connect APIs

The IoT Orchestrator exposes the following APIs:

• Provisioning Interface:

• Leverages the IETF System for Cross-Domain Identity Management (SCIM version 2) API,
specifically the SCIM for devices model.

For information on the Device Schema Extensions to the SCIMmodel, see https://datatracker.ietf.org/
doc/draft-ietf-scim-device-model/.

The SCIM has a hierarchical schema with a core device schema and extensions.

The SCIM allows an application to:

• Send a SCIM object to a SCIM server (gateway) to create, update, and delete
devices in networks.

For information on the System for Cross-domain Identity Management
(SCIM) API, see RFC7643 and RFC7644.

Note

• Control Interface:

• Allows an application to connect to a non-IP device.

• Enables data exchange with the device.

• Register topics for streaming telemetry. The IETF draft for this protocol is called the Non-IP Control
(NIPC).

• Telemetry Interface:

Cisco Sensor Connect for IoT Services Programmability Guide
2

Overview
Introduction to Cisco Sensor Connect APIs

https://datatracker.ietf.org/doc/draft-ietf-scim-device-model/
https://datatracker.ietf.org/doc/draft-ietf-scim-device-model/
https://datatracker.ietf.org/doc/html/rfc7643
https://datatracker.ietf.org/doc/html/rfc7644

• A streaming data interface with publisher sub-topics of different types, such as:

• Device broadcasts

• Device streaming data, or

• Device connection state.

API Security

The API security in the IoT Orchestrator is configured using either:

• API Key

• Certificate-Based Authentication

IoT Orchestrator in Cisco Catalyst 9800 Wireless Controller
The Cisco Catalyst 9800 Wireless Controller and APs support interfaces as mentioned in the Introduction to
Cisco Sensor Connect APIs for BLE devices.

The IoT Orchestrator has two internal components:

• Gateway

• BLE Controller

These components are collocated in a single containerized application.

The IoT Orchestrator works in conjunction with a BLE daemon in the Cisco Catalyst APs. The controller
unclears the AP infrastructure to the application and ensures that the device is connected to the most appropriate
AP. This means that the application can communicate with a single Gateway and does not have to manage
the network topology.

Gateway

The gateway supports the following functionalities:

• Onboarding (using SCIM) Interfaces: The gateway acts as the SCIM server.

• Control (using NIPC) Interfaces:The gateway provides NIPC interfaces as RESTful interfaces (Gateway
is the server).

• Telemetry (using MQTT) Interfaces: The gateway functions asMQTT (Gateway is theMQTT broker).

Solution Overview
To communicate with or receive data from a BLE device, an application needs to first onboard the device by
creating a SCIM object and send it to the SCIM server (the gateway). The SCIM object uses the device schema
and has a BLE extension. If the SCIM call is successful, the gateway generates a unique Device ID and returns
the complete SCIM object as registered with the Device ID.

Cisco Sensor Connect for IoT Services Programmability Guide
3

Overview
IoT Orchestrator in Cisco Catalyst 9800 Wireless Controller

Subsequently, the application uses the Device ID and leverages the control interfaces to communicate with
the device or execute a specific NIPC operation.

The NIPC API covers the following types of APIs:

• Connectivity: Connect or disconnect, and pair BLE operations.

• Data: Read or write, start notifications or indications, discover.

• Registrations: Register data application, register topic (either advertisement or connection state).

• Bulk: API that allows for bulk operations (multiple operations in one API call).

About System for Cross-Domain Identity Management (SCIM)
The System for Cross-Domain Identity Management (SCIM) is an open standard designed to manage user
identity information.

SCIM provides a defined schema to represent users and groups, and a RESTful API to run create, read, update,
delete (CRUD) operations on the user and group resources.

Figure 2: SCIM

For more information, see SCIM.

About Non-IP Control (NIPC)
The use cases in building management, healthcare, workplaces, manufacturing, logistics, and hospitality have
introduced low-power devices into these environments. These devices typically do not support IP-based
interface. Hence, there is a need for gateway functions to allow these devices to communicate with the
applications that manage them.

The control interface addresses the device and group objects as ID. Therefore, it is essential to declare a device
to the gateway before addressing a NIPC operation in a device. You can address the NIPC operation in a
device using SCIM.

Cisco Sensor Connect for IoT Services Programmability Guide
4

Overview
About System for Cross-Domain Identity Management (SCIM)

https://datatracker.ietf.org/doc/draft-ietf-scim-device-model/

• The NIPC operation can be performed using a device or group ID.

• The existing NIPC APIs were developed while the standard was still evolving, resulting in some aspects
being implemented differently. These APIs will be updated to align with the latest draft version of NIPC.
Please note that backward compatibility with APIs from version 1.x will not be supported.

Note

The gateway leverages information from the SCIM object to execute a specific NIPC operation. For instance,
the keying information in SCIM object may be required to connect to a device.

Advantages of using NIPC

• Enables bi-directional communication with non-IP devices.

• Allows an application to register publisher or subscriber topics to support the data streaming interface.

Figure 3: Non-IP Control (NIPC)

For more information, see NIPC.

SCIM and NIPC APIs have a 75-second timeout.

Each BLE device supports only one pending API request. Issuing another API for a BLE device before
completion causes the request to fail.

Note

Cisco Sensor Connect for IoT Services Programmability Guide
5

Overview
About Non-IP Control (NIPC)

https://datatracker.ietf.org/doc/draft-ietf-asdf-nipc/

About Message Queuing Telemetry Transport (MQTT)
TheMessage Queuing Telemetry Transport (MQTT) is a messaging protocol used to establish communication
between multiple devices. This protocol relies on the publish-subscribe model widely used for communication
in IoT framework.

The MQTT broker is Mosquitto, and the version is 2.0.20. The MQTT message format version is v3.1.Note

Publish-Subscribe Model

This model separates the client that sends messages (publisher) from the client that receives messages
(subscriber). Publisher and subscribers do not need to establish a direct connection and MQTT broker is
responsible to route and distribute all messages.

For example, consider the temperature sensor. It connects to the MQTT server as a client and publishes the
temperature data to a topic (Temperature), and the server receives the message and forwards it to the client
subscribed to the Temperature topic.

Topic

The MQTT protocol route messages based on topic. For information on the MQTT topics, see MQTT Topics
and Wildcards: A Beginner's Guide.

About MQTT Message Batching
To improve network efficiency and achieve high MQTT throughput in scale scenarios, the IoT Orchestrator
application supports MQTT message batching. As a result, a new protobuf message called DataBatch has
been introduced. It acts as a wrapper for multiple data subscription messages, and each DataBatch message
can contain multiple DataSubscription messages.

The partner application that consumes MQTT messages from the IoT Orchestrator must update the data
application protocol buffer from the Pre-GA Release prototype to the GA Release prototype.

You need a GitHub account to access the following links:

• For information on the Data Application Protocol Buffer (Pre-GA Release), see the https://github.com/
ietf-wg-asdf/asdf-nipc/blob/nipc-asdf-01/proto/data_app.proto.

• For information on the Data Application Protocol Buffer (GA Release), see the https://github.com/
ietf-wg-asdf/asdf-nipc/blob/cisco-iot-orchestrator-1.1/proto/data_app.proto.

Note

About Shared Subscriptions
A Shared Subscription is a feature in MQTT that allows multiple clients (subscribers) to share the workload
of receiving messages from a single topic. Instead of each subscriber receiving all published messages (as in
a normal subscription), MQTT brokers distribute messages among the subscribers in a round-robin or
load-balanced manner. This strategy distributes messages among multiple subscribers, preventing any single

Cisco Sensor Connect for IoT Services Programmability Guide
6

Overview
About Message Queuing Telemetry Transport (MQTT)

https://www.emqx.com/en/blog/advanced-features-of-mqtt-topics
https://www.emqx.com/en/blog/advanced-features-of-mqtt-topics
https://github.com/ietf-wg-asdf/asdf-nipc/blob/nipc-asdf-01/proto/data_app.proto
https://github.com/ietf-wg-asdf/asdf-nipc/blob/nipc-asdf-01/proto/data_app.proto
https://github.com/ietf-wg-asdf/asdf-nipc/blob/cisco-iot-orchestrator-1.1/proto/data_app.proto
https://github.com/ietf-wg-asdf/asdf-nipc/blob/cisco-iot-orchestrator-1.1/proto/data_app.proto

subscriber client from being overwhelmed. It also helps achieve high MQTT throughput by preventing a
single subscriber client from becoming a bottleneck.

The NIPC API for registering the topic, registering the data application, and subscribing to the topic remains
unchanged from the Pre-GA version of the IoTOrchestrator. No changes are required for the partner application.
The expected MQTT subscriber throughput, based on the 9800 platform on which the IoT Orchestrator
application is deployed, is presented in the following table:

Table 1: Platforms and MQTT Subscribers (Recommended)

MQTT Subscribers (Recommended)Platforms

2Cisco Catalyst 9800-L Wireless Controller

5Cisco Catalyst 9800-40 Wireless Controller

8Cisco Catalyst 9800-80 Wireless Controller

5Cisco Catalyst CW9800M Wireless Controller

8Cisco Catalyst CW9800H1 andCW9800H2Wireless
Controllers

Note

About Onboarding BLE Devices
The Internet of Things present a management challenge in many dimensions. One of them being the ability
to onboard and manage large number of devices. There are many models to bootstrap trust between devices
and network deployments.

The System for Cross Identity Management (SCIM) defines a protocol and a schema to provision users.
However, the SCIM is extended to provision devices. The protocol and core schema are designed to allow
such extensions.

Why SCIM for devices

The SCIM considers only the information necessary to bootstrap trust so that the device can establish
connectivity.

What’s Next

For information about the API definition, see Onboarding BLE Devices using SCIM.

About Control Operations on BLE Devices
There is a need for non-IP devices to support processes in manufacturing, healthcare, retail, home, and office.
Similarly, wireless access points are deployed nearly everywhere, many of which have radios that can transmit
and receive different frame types (such as BLE). To integrate both these use cases to leverage a single wireless
infrastructure and avoid the need of parallel infrastructure, you need a non-IP device gateway function.

Cisco Sensor Connect for IoT Services Programmability Guide
7

Overview
About Onboarding BLE Devices

The non-IP device gateway provides the following functions:

• Authenticate and authorize application clients to communicate with devices.

• APIs that allow an application to set up a connection with a device.

• APIs that allow an application to exchange data with a device.

• APIs that allow a device to create registrations in the network.

All these APIs along with the onboarding API (SCIM for devices) allows application to perform a complete
set of operations in non-IP devices.

The following are the supported API tags:

Table 2: Supported API Tags

DescriptionAPI Tags

APIs that allow applications to manage device
connections.

connectivity

APIs that allow applications to exchange data with
non-IP devices.

data

APIs that allow applications to make registrations in
the network for devices.

registrations

Compound API that allows applications to combine
requests into a single call.

bulk

What’s Next

For information about the API definition, see Control Operations on BLE Devices.

About Data Telemetry from BLE Devices
The NIPC is extensible in two ways:

• Protocol Extensions: This allows for extensions to the schema to integrate new non-IP communication
protocols.

• Interface Extensions: This allows for defining extensions, such as publish/subscribe interface or data
streaming interface.

Publish or Subscribe Interface

The publish or subscribe interface or data streaming interface is an MQTT publishing interface. Pub or sub
topics can be created and managed by means of the /register/topic NIPC element.

What’s Next

For information about the API definition, see Data Telemetry from BLE Devices.

Cisco Sensor Connect for IoT Services Programmability Guide
8

Overview
About Data Telemetry from BLE Devices

About Security Model
All RESTful and MQTT interfaces in the Gateway are TLS secured. You will need to configure a server
certificate in the Gateway.

Client authentication can be done either using an API key or a certificate. For more information, see the
Uploading Certificate and Key to Open HTTP Server and Listen for APIs section in the Cisco Sensor
Connect for IoT Services Configuration Guide.

Cisco Sensor Connect for IoT Services Programmability Guide
9

Overview
About Security Model

Cisco Sensor Connect for IoT Services Programmability Guide
10

Overview
About Security Model

C H A P T E R 2
Onboarding BLE Devices using SCIM

• SCIM API Definition, on page 11
• SCIM HTTP Methods, on page 11
• SCIM API Resource and Versions, on page 12
• SCIM Schema, on page 12
• API Example, on page 14

SCIM API Definition
DescriptionAPI for Onboarding Device

This is the API used for onboarding a BLE device
using SCIM.

POST /scim/v2/Devices

GET
/scim/v2/Devices/{id}?onboardApp={onboardAppID}

DELETE
/scim/v2/Devices/{id}?onboardApp={onboardAppID}

SCIM HTTP Methods
The SCIM protocol specifies end points and HTTP methods to manage resources.

The following are the supported HTTP methods:

SCIM UsageHTTP Method

Retrieve a resource.GET

Create a new resource.POST

Deletes a resource.DELETE

Cisco Sensor Connect for IoT Services Programmability Guide
11

SCIM API Resource and Versions
The resource and endpoint supported in the SCIM APIs are Device and /Devices respectively.

The URL path covers the base URL and version identifier as a segment. The SCIM APIs support v2 as the
version identifier.

/scim/v2/Devices are the SCIM API resource and version supported for HTTP POST, GET, or DELETE.

SCIM Schema
SCIM Core Device Schema

The SCIM core device schema supports the following attributes:

SampleDescriptionAttributes

"schemas": [

"urn:ietf:params:scim:schemas:core:2.0:Device",

"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"
]

The schemas section of the SCIM
APIs cover the list of schemas part
of the API requests.

The following are the supported
schemas:

• Core device schema

• BLE device extension schema

• Endpoint application
extension schema

schemas

"deviceDisplayName": "BLE
Heart Monitor",

The attribute is of “string” type and
provides a human-readable name
for a device.

deviceDisplayName

"adminState": true,The attribute is of “Boolean” type
and is a mutable attribute.

If adminState is set to TRUE,
connect, disconnect, and subscribe
commands that control app sends
to the controller for the devices will
be processed by the application.

If adminState is set to FALSE, any
command coming from the control
app for the device will be rejected
by the application.

adminState

BLE Device Extension Schema

The SCIM device extension schema supports the following attributes:

Cisco Sensor Connect for IoT Services Programmability Guide
12

Onboarding BLE Devices using SCIM
SCIM API Resource and Versions

SampleDescriptionAttributes

"deviceMacAddress":
"CA:2B:5C:EC:95:46",

• Is a string value that
represents a public MAC
address assigned by the
manufacturer.

• It is a unique 48-bit value.

• It is required, case-sensitive,
mutable, and returned as
default.

• The following is the regex
pattern:
[̂0-9A-Fa-f]{2}(:[0-9A-Fa-f]{2}){5}$

DeviceMacAddress

"isRandom": false,• Is a Boolean flag.

• If set to FALSE, the device
uses a public MAC address.

• If set to TRUE, the device
uses a static random MAC
address.

• This attribute is not required,
mutable, and returned by
default.

• The default value is FALSE.

isRandom

"versionSupport": [
"5.3"
],

• Provides all the BLE versions
supported by the device in the
form of an array.

• For example, [4.1, 4.2, 5.0,
5.1, 5.2,5.3].

• This attribute is required,
mutable, and returned as
default.

versionSupport

"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device",
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"
],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device":
null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device":
{
"key": null
}

• Is an array of pairing methods
associated with the BLE
device.

• May require sub-attributes,
such as key or password for
the device pairing process.

• This attribute is required,
case-sensitive, mutable, and
returned by default.

pairingMethods

Cisco Sensor Connect for IoT Services Programmability Guide
13

Onboarding BLE Devices using SCIM
SCIM Schema

SampleDescriptionAttributes

"mobility": true,• Is a Boolean flag.

• When set to FALSE, this
feature disables seamless
movement between APs,
requiringmanual intervention
for the IoT Orchestrator to
handle connections and
disconnections.

• When set to TRUE, this
feature allows devices tomove
between APs seamlessly, with
the IoT Orchestrator
automatically handling
connections and
disconnections without
manual intervention.

• This attribute is not required,
mutable, and returned by
default.

• The default value is FALSE.

mobility

API Example
The following example lists the SCIM object for onboarding the BLE device:

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"mobility": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device",
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"

],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": null

}
},

Cisco Sensor Connect for IoT Services Programmability Guide
14

Onboarding BLE Devices using SCIM
API Example

"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {
"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Cisco Sensor Connect for IoT Services Programmability Guide
15

Onboarding BLE Devices using SCIM
API Example

Cisco Sensor Connect for IoT Services Programmability Guide
16

Onboarding BLE Devices using SCIM
API Example

C H A P T E R 3
Control Operations on BLE Devices

• Non-IP Control (NIPC) Open API Definition, on page 17
• Other Supported API Types, on page 17
• Connecting to a BLE Device, on page 18
• Reading from a BLE Device, on page 21
• Writing to a BLE Device, on page 22
• Discovering Services from a BLE Device, on page 23
• Disconnecting from a BLE Device, on page 26

Non-IP Control (NIPC) Open API Definition
DescriptionAPI

This API is used to connect a BLE device to the
network.

POST /control/connectivity/connect

This API is used to read a value from an attribute in
the BLE device.

POST /control/data/read

This API is used to write a value to an attribute in the
BLE device.

POST /control/data/write

This API is used to discover services in a BLE device.POST /control/data/discover

This API is used to disconnect a connected BLE
device from the network.

POST /control/connectivity/disconnect

Other Supported API Types
SummaryPathAPI

Register a data application./registration/registerDataAppRegister Data App

Unregister a data application./registration/unregisterDataAppUnregister Data App

Cisco Sensor Connect for IoT Services Programmability Guide
17

SummaryPathAPI

Register a publish or subscribe
topic.

/registration/registerTopicRegister Topic

Unregister a publish or subscribe
topic.

/registration/unregisterTopicUnregister Topic

Subscribe to the streaming data
from an attribute in the device.

/data/subscribeSubscribe Topic

Unsubscribe to the streaming data
from an attribute in the device.

/data/unsubscribeUnsubscribe Topic

Connecting to a BLE Device

Connect Request - API Definition
DescriptionFields

Connect a BLE device to the network.location 'https:
//10.195.78.33:8081/control/connectivity/connect'

API keyheader 'x-api-key:
2215dec3718288ad9028d39864f87d4c'

Content type is JSON.header 'Content-Type: application/json'

data

BLEtechnology

Device IDid

Service ID of the BLE device.serviceID

Control application address"controlApp": "controlApplication"

Connect Response - API Definition
DescriptionFields

Status messagestatus

Device IDid

Request IDrequestID

Service IDserviceID

Handle numberhandle

Cisco Sensor Connect for IoT Services Programmability Guide
18

Control Operations on BLE Devices
Connecting to a BLE Device

DescriptionFields

Characteristic IDcharacteristicID

Descriptor IDdescriptorID

Flagsflags

API Example – Connect Request and Connect Response

Connect Request:

curl -k --location 'https: //10.195.78.33:8081/control/connectivity/connect' \
--header 'x-api-key: 2215dec3718288ad9028d39864f87d4c' \
--header 'Content-Type: application/json' \
--data '
{
"technology": "ble",
"id": "f837c89a-e1dd-4b90-a446-06016c0d2b75",
"ble": {
"services": [
{
"serviceID": "1800"
},
{
"serviceID": "2022"
},
{
"serviceID": "1822"
},
{
"serviceID": "180F"
}
]
},
"controlApp": "controlApplication"
}
'

Connect Response:

{
"status": "SUCCESS",
"id": "f837c89a-e1dd-4b90-a446-06016c0d2b75",
"requestID": "75310f89-79c6-4e7b-93cb-f58a8f18fc57",
"services": [
{
"serviceID": "1800",
"characteristics": [
{
"characteristicID": "3443",
"descriptors": [
{
"descriptorID": "9059"
}
],
"flags": [
"read",

Cisco Sensor Connect for IoT Services Programmability Guide
19

Control Operations on BLE Devices
API Example – Connect Request and Connect Response

"write",
"notify"
]
}
]
},
{
"serviceID": "2022",
"handle": 1,
"characteristics": [
{
"characteristicID": "8065",
"descriptors": [
{
"descriptorID": "9620"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
},
{
"serviceID": "1822",
"handle": 2,
"characteristics": [
{
"characteristicID": "8912",
"descriptors": [
{
"descriptorID": "1554"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
},
{
"serviceID": "180F",
"handle": 3,
"characteristics": [
{
"characteristicID": "2810",
"descriptors": [
{
"descriptorID": "1517"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
}

Cisco Sensor Connect for IoT Services Programmability Guide
20

Control Operations on BLE Devices
API Example – Connect Request and Connect Response

]
}

Reading from a BLE Device

Read Request - API Definition
DescriptionFields

Read a value from an attribute in the BLE device.location 'https:
//10.195.78.33:8081/control/data/read'

API keyheader 'x-api-key:
2215dec3718288ad9028d39864f87d4c'

Content type is JSON.header 'Content-Type: application/json'

BLEtechnology

Device IDid

Service ID of the BLE device.serviceID

Characteristic ID of the BLE device.characteristicID

Control application address."controlApp": "controlApplication"

Read Response - API Definition
DescriptionFields

Status messagestatus

Device IDid

Request IDrequestID

Valuevalue

API Example – Read Request and Read Response

Read Request:

curl -k --location 'https: //10.195.78.33:8081/control/data/read' \
--header 'x-api-key: 2215dec3718288ad9028d39864f87d4c' \
--header 'Content-Type: application/json' \
--data '
{
"technology": "ble",
"id": "decf0dc6-9e9d-4d39-8c8b-00c541699b6a",

Cisco Sensor Connect for IoT Services Programmability Guide
21

Control Operations on BLE Devices
Reading from a BLE Device

"ble": {
"serviceID": "1800",
"characteristicID": "2A00"
},
"controlApp": "controlApplication"
}
'

Read Response:

{
"status": "SUCCESS",
"id": " decf0dc6-9e9d-4d39-8c8b-00c541699b6a",
"requestID": "8ba846aa-6133-4392-b911-9850a90791f2",
"value": "2342432"
}

Writing to a BLE Device

Write Request - API Definition
DescriptionFields

Write a value to an attribute in the BLE device.location 'https:
//10.195.78.33:8081/control/data/write'

API keyheader 'x-api-key:
2215dec3718288ad9028d39864f87d4c'

Content type is JSON.header 'Content-Type: application/json'

BLEtechnology

Device IDid

Valuevalue

Service ID of the BLE device.serviceID

Characteristic ID of the BLE device.characteristicID

Control application address."controlApp": "controlApplication"

Write Response – API Definition
DescriptionFields

Status messagestatus

Device IDid

Request IDrequestID

Cisco Sensor Connect for IoT Services Programmability Guide
22

Control Operations on BLE Devices
Writing to a BLE Device

DescriptionFields

Valuevalue

Discovering Services from a BLE Device

Service Discovery Request - API Definition
DescriptionFields

Discover services in a BLE device.location 'https:
//10.195.78.33:8081/control/data/discover'

API keyheader 'x-api-key:
2215dec3718288ad9028d39864f87d4c'

Content type is JSON.header 'Content-Type: application/json'

BLEtechnology

Device IDid

Service ID of the BLE device.serviceID

Control application address"controlApp": "controlApplication"

Service Discovery Response - API Definition
DescriptionFields

Status messagestatus

Device IDid

Request IDrequestID

Service IDserviceID

Handlehandle

Characteristic IDcharacteristicID

Descriptor IDdescriptorID

Flags: read, write, notifyFlags

Cisco Sensor Connect for IoT Services Programmability Guide
23

Control Operations on BLE Devices
Discovering Services from a BLE Device

API Example - Service Discovery Request and Service Discovery Response

Service Discovery Request:

curl -k --location 'https: //10.195.78.33:8081/control/data/discover' \
--header 'x-api-key: 2215dec3718288ad9028d39864f87d4c' \
--header 'Content-Type: application/json' \
--data '
{
"technology": "ble",
"id": "f837c89a-e1dd-4b90-a446-06016c0d2b75",
"ble": {
"services": [
{
"serviceID": "1800"
},
{
"serviceID": "2022"
},
{
"serviceID": "1822"
},
{
"serviceID": "180F"
}
]
},
"controlApp": "controlApplication"
}
'

Service Discovery Response:

{
"status": "SUCCESS",
"id": "f837c89a-e1dd-4b90-a446-06016c0d2b75",
"requestID": "d4a225b1-fc62-478e-ad54-928c8973351d",
"services": [
{
"serviceID": "1800",
"characteristics": [
{
"characteristicID": "1797",
"descriptors": [
{
"descriptorID": "7062"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
},
{
"serviceID": "2022",
"handle": 1,
"characteristics": [

Cisco Sensor Connect for IoT Services Programmability Guide
24

Control Operations on BLE Devices
API Example - Service Discovery Request and Service Discovery Response

{
"characteristicID": "4654",
"descriptors": [
{
"descriptorID": "8815"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
},
{
"serviceID": "1822",
"handle": 2,
"characteristics": [
{
"characteristicID": "7126",
"descriptors": [
{
"descriptorID": "4823"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
},
{
"serviceID": "180F",
"handle": 3,
"characteristics": [
{
"characteristicID": "4675",
"descriptors": [
{
"descriptorID": "9631"
}
],
"flags": [
"read",
"write",
"notify"
]
}
]
}
]
}

Cisco Sensor Connect for IoT Services Programmability Guide
25

Control Operations on BLE Devices
API Example - Service Discovery Request and Service Discovery Response

Disconnecting from a BLE Device

Disconnect Request - API Definition
DescriptionFields

Disconnect a connected BLE device from the network.location 'https:
//10.195.78.33:8081/control/connectivity/disconnect'

API keyheader 'x-api-key:
2215dec3718288ad9028d39864f87d4c'

Content type is JSON.header 'Content-Type: application/json'

data

BLEtechnology

Device IDid

Control application address"controlApp": "controlApplication"

Disconnect Response - API Definition
DescriptionFields

Status messagestatus

Device IDid

Request IDrequestID

API Example – Disconnect from a BLE Device

Disconnect Request:

curl -k --location 'https://10.195.78.33:8081/control/connectivity/disconnect'
\
--header 'x-api-key: 2215dec3718288ad9028d39864f87d4c' \
--header 'Content-Type: application/json' \
--data '
{
"technology": "ble",
"id" : "decf0dc6-9e9d-4d39-8c8b-00c541699b6a",
"controlApp" : "controlApplication"
}
'

Cisco Sensor Connect for IoT Services Programmability Guide
26

Control Operations on BLE Devices
Disconnecting from a BLE Device

Disconnect Response:

{
"status": "SUCCESS",
"id": "decf0dc6-9e9d-4d39-8c8b-00c541699b6a",
"requestID": "cb838a8d-775b-4e71-874d-1aa22e61f9af"
}

Cisco Sensor Connect for IoT Services Programmability Guide
27

Control Operations on BLE Devices
API Example – Disconnect from a BLE Device

Cisco Sensor Connect for IoT Services Programmability Guide
28

Control Operations on BLE Devices
API Example – Disconnect from a BLE Device

C H A P T E R 4
Data Telemetry from BLE Devices

• Registering Topics, on page 29
• Subscribing to Advertisements and Notifications, on page 31
• Subscribing to Connection Events, on page 33

Registering Topics

Register Topics - API Definition
DescriptionAPI

This API registers the topic with the gateway to
subscribe to GATT notifications from device using
ID, service UUID, and characteristic UUID.

The subscriptions can be placed to various GATT
attributes:

• Blood Oxygen level

• Heart rate

• Walking rate

/control/registration/registerTopic

API Example - Register Topics

Register Topics Request:

{
"technology": "ble",
"ids": [
"df553860-975c-4d7f-8c1f-b2996f34e26f",
],
"controlApp": "controlApplication",
"topic": "enterprise/hospital/pulse_oximeter",
"dataFormat": "default",
"ble": {

Cisco Sensor Connect for IoT Services Programmability Guide
29

"type": "gatt",
"serviceID": "1800",
"characteristicID": "2A5E"
}
}

Register Topics Response:

{
"status": "SUCCESS",
"topic": "enterprise/hospital/pulse_oximeter",
"reason": "Gatt topics successfully registered!"

}

API Example - Subscribe to Critical Application Events
This subscription helps identify if the IoT Orchestrator has experienced a critical event (for example, upgrade
process, uninstallation, or restart). In the current IoT Orchestrator implementation, only devices in the
Onboarded state are persisted in the database. Devices in any state other than Onboarded will not be persisted;
therefore, if a critical event occurs in the IoT Orchestrator, a new onboarding process is required. This API
provides information about these critical events for a particular topic.

Critical Request Subscription Request:

{
"technology": "ble",
"controlApp": "controlApplication",
"topic": "enterprise/hospital/pulse_oximeter",
"ble": {

"type": "application_events"
}
}

Critical Request Subscription Response:

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/pulse_oximeter",
"reason" : "Application event topics successfully registered!"

}

Telemetry Data Format
For information, see https://github.com/iot-onboarding/non-ip-iot-control/blob/nipc-asdf-01/proto/data_
app.proto.

Telemetry Message Format
The telemetry messages are in protobuf format. All the telemetry messages are encapsulated in the
DataSubscription message.

Cisco Sensor Connect for IoT Services Programmability Guide
30

Data Telemetry from BLE Devices
API Example - Subscribe to Critical Application Events

https://github.com/iot-onboarding/non-ip-iot-control/blob/nipc-asdf-01/proto/data_app.proto
https://github.com/iot-onboarding/non-ip-iot-control/blob/nipc-asdf-01/proto/data_app.proto

Subscribing to Advertisements and Notifications

Subscribing to Advertisements and Notifications - API Definition
DescriptionAPI

Use this API to enable GATT notifications or
indications in the BLE device using the device ID,
GATT service UUID, and characteristic UUID.

/control/data/subscribe

API Example – Subscribing to Advertisements and Notifications

Request:

{
"technology": "ble",
"id": "df553860-975c-4d7f-8c1f-b2996f34e26f",
"ble": {
"serviceID": "1800",
"characteristicID": "2A5E"
},
"controlApp": "controlApplication"
}

Response:

{
"status": "SUCCESS",
"id": "df553860-975c-4d7f-8c1f-b2996f34e26f",
"requestID": "12345678-5678-1234-5578-abcdef1234"
}

MQTT Subscription Messages

Once the notification is enabled using the subscribe API, the data receiver application starts to receive the
GATT notification. To receive the notification, you will need to execute the following command in your
terminal session:

mosquitto_sub -h localhost -p 41883 -t
enterprise/hospital/pulse_oximeter -u
https://dataApplication --pw
c4e80e0483af0a4394dfb6e3ec5e820b

Telemetry Message Format for Onboarded Advertisements and Notifications
The following is the code snippet of Telemetry message format:

syntax = "proto3";

Cisco Sensor Connect for IoT Services Programmability Guide
31

Data Telemetry from BLE Devices
Subscribing to Advertisements and Notifications

import "google/protobuf/timestamp.proto";

option java_package = "org.ietf.nipc.proto";
option java_multiple_files = true;

package nipc;

message DataSubscription {
optional string device_id = 1;
bytes data = 2;
google.protobuf.Timestamp timestamp = 3;
optional string ap_mac_address = 4;

reserved 5 to 10;

oneof subscription {
BLESubscription ble_subscription = 11;
BLEAdvertisement ble_advertisement = 12;
ZigbeeSubscription zigbee_subscription = 13;
RawPayload raw_payload = 14;
BLEConnectionStatus ble_connection_status = 15;
ApplicationEvent application_event = 16;

}

message BLESubscription {
optional string service_uuid = 1;
optional string characteristic_uuid = 2;

}

message BLEAdvertisement {
string mac_address = 1;
optional int32 rssi = 2;

}

message ZigbeeSubscription {
optional int32 endpoint_id = 1;
optional int32 cluster_id = 2;
optional int32 attribute_id = 3;
optional int32 attribute_type = 4;

}

message BLEConnectionStatus {
string mac_address = 1;
bool connected = 2;
optional int32 reason = 3;

}

message RawPayload {
optional string context_id = 1;

}

message ApplicationEvent {
string message = 1;

}
}

message DataBatch {
repeated DataSubscription messages = 1;

}

Cisco Sensor Connect for IoT Services Programmability Guide
32

Data Telemetry from BLE Devices
Telemetry Message Format for Onboarded Advertisements and Notifications

Subscribing to Connection Events

Subscribing to Connection Events - API Definition
DescriptionAPI

Use this API to register a topic to provide notifications
for device connection and disconnection events.

/control/registration/registerTopic

API Example – Subscribing to Connection Events

Request:

{
"technology": "ble",
"ids": [

“df553860-975c-4d7f-8c1f-b2996f34e26f",","
],
"controlApp": "controlApplication",
"topic": "enterprise/hospital/conn_events",
"dataFormat": "default",
"ble": {

"type": "connection_events"
}

}

Response:

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/conn_events",
"reason" : "Successfully registered Connection event topics.",
"registeredIDs" : ["df553860-975c-4d7f-8c1f-b2996f34e26f"]

}

Cisco Sensor Connect for IoT Services Programmability Guide
33

Data Telemetry from BLE Devices
Subscribing to Connection Events

Cisco Sensor Connect for IoT Services Programmability Guide
34

Data Telemetry from BLE Devices
API Example – Subscribing to Connection Events

C H A P T E R 5
Use Case 1 - Asset Tracking

• Use Case 1: Asset Tracking, on page 35
• Onboarding a Device, on page 36
• Registering the Data Receiver Application, on page 38
• Registering a Topic, on page 38
• Onboarded Advertisements Subscription, on page 39

Use Case 1: Asset Tracking
If you have an asset to be tracked using a BLE tag, you need to:

• Onboard the BLE device.

• Register topics for receiving the onboarded device advertisements overMQTT using shared subscriptions.

Consider a large factory with many moving carts, each equipped with a BLE tag.

To track the location of a cart, you need to:

• Onboard the BLE device.

• Register topics for receiving the onboarded device advertisements over MQTT.

In this use case, the device to be tracked has the following details:

• Display Name: Asset Tag

• MAC Address Type: Public

• MAC Address: EF:00:00:00:00:00

For information on the BLE device tracking, refer to the following workflow:

Cisco Sensor Connect for IoT Services Programmability Guide
35

The following workflow covers the sequence of operations:

1. Onboarding a Device.

2. Registering the Data Receiver Application.

3. Registering a Topic.

4. Onboarded Advertisements Subscription.

Onboarding a Device
Request Format:

curl -k --location 'https://173.39.84.53:8081/scim/v2/Devices' \
--header 'Content-Type: application/json' \
--header 'x-api-key: 596f0eba1668e6afeb3b25669990b7d84b8bf70408f21465a05e227664763024' \
--data '{

"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"deviceDisplayName": "Asset tracking tag",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {

"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"mobility": false,
"pairingMethods": [

"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device",
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"

],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,

Cisco Sensor Connect for IoT Services Programmability Guide
36

Use Case 1 - Asset Tracking
Onboarding a Device

"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": null

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [

"controlApplication"
],
"dataReceiverUrl": []

}
}'

Response Format:

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"deviceDisplayName": "Asset tracking tag",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device",
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"

],
"mobility": false,
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": {},
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingPassKey:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingOOB:2.0:Device": {
"key": "",
"randNumber": 0,
"confirmationNumber": 0

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {
"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Cisco Sensor Connect for IoT Services Programmability Guide
37

Use Case 1 - Asset Tracking
Onboarding a Device

Registering the Data Receiver Application
You need to register a data receiver application with the app ID “dataApplication” to subscribe to the topic
“enterprise/hospital/advertisements”.

Request Format:

curl -k --location 'https://173.39.84.53:8081/control/registration/registerDataApp' \
--header 'Content-Type: application/json' \
--header 'x-api-key: b922958a7b030857b3e40f8d6a4db58f6a2bd65741f47fb120517ff8bb6fb0cb' \
--data '{

"controlApp": "controlApplication",
"topic": "enterprise/hospital/advertisements",
"dataApps": [

{
"dataAppID": "dataApplication"

}
]

}'

Response Format:

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/advertisements",
"reason" : "Data applications successfully registered!"

}

Registering a Topic
You will need to register the topic "enterprise/hospital/advertisements" with the gateway to be able to
subscribe to advertisements from the device with ID "79ca0f72-4ae2-436a-8bd4-24a2770faa83".

Request Format:

curl -k --location 'https://173.39.84.53:8081/control/registration/registerTopic' \
--header 'Content-Type: application/json' \
--header 'x-api-key: b922958a7b030857b3e40f8d6a4db58f6a2bd65741f47fb120517ff8bb6fb0cb' \
--data '{

"technology": "ble",
"topic": "enterprise/hospital/advertisements",
"ids": [

"79ca0f72-4ae2-436a-8bd4-24a2770faa83"
],
"controlApp": "controlApplication",
"ble": {

"type": "advertisements"
}

}'

Cisco Sensor Connect for IoT Services Programmability Guide
38

Use Case 1 - Asset Tracking
Registering the Data Receiver Application

Response Format:

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/advertisements",
"reason" : "Onboarded advertisement topics successfully registered!",
"registeredIDs" : ["79ca0f72-4ae2-436a-8bd4-24a2770faa83"]

}

Onboarded Advertisements Subscription
mosquitto_sub -h localhost -p 41883 -t '$share/group/enterprise/hospital/advertisements'
-u
dataApplication --pw d5a4c7b1afd862a070514528006f22d4964f6c61ec0e2e0b6c3ebd03c2fbb507

$dbdb70f8-b02d-4733-9d1e-8875fa74bda8 dnaspaces.io/iot
"44:e8:80:00:00:00b
EF:00:00:00:00:02

$dbdb70f8-b02d-4733-9d1e-8875fa74bda8 dnaspaces.io/iot
"44:e8:80:00:00:00b
EF:00:00:00:00:02

$dbdb70f8-b02d-4733-9d1e-8875fa74bda8 dnaspaces.io/iot
"44:e8:80:00:00:00b
EF:00:00:00:00:02

$dbdb70f8-b02d-4733-9d1e-8875fa74bda8 dnaspaces.io/iot
"44:e8:80:00:00:00b
EF:00:00:00:00:02

The partner application must run multiple instances of themosquitto_sub command. The number of instances
is based on the Cisco Catalyst 9800 Wireless Controller platform on which the IoT Orchestrator is deployed.
For more information, see the Table 1: Platforms and MQTT Subscribers (Recommended).

Note

Cisco Sensor Connect for IoT Services Programmability Guide
39

Use Case 1 - Asset Tracking
Onboarded Advertisements Subscription

Cisco Sensor Connect for IoT Services Programmability Guide
40

Use Case 1 - Asset Tracking
Onboarded Advertisements Subscription

C H A P T E R 6
Use Case 2 - Remote Patient Health Monitoring

• Use Case 2 - Remote Patient Health Monitoring (requiring BLE connection, reading, and writing), on
page 41

• Onboarding a Device, on page 42
• Connecting to a Device, on page 45
• Writing a Characteristic to the Device, on page 47
• Reading a Characteristic to the Device, on page 48
• Disconnecting the Device, on page 48

Use Case 2 - Remote Patient Health Monitoring (requiring BLE
connection, reading, and writing)

In this use case, you can:

1. Onboard a device.

2. Connect to the device.

3. Perform service discovery.

4. Write a characteristic.

5. Read the characteristic.

6. Disconnect from the device.

Cisco Sensor Connect for IoT Services Programmability Guide
41

The following workflow covers the sequence of operations:

1. Onboarding a Device.

2. Connecting to a Device.

3. Writing a Characteristic to the Device.

4. Reading a Characteristic to the Device.

5. Disconnecting the Device.

Onboarding a Device
API Definition

DescriptionAPI

This is the API for onboarding a device.POST /scim/v2/Devices

Request Format for Onboarding the Device without Pairing

curl -k --location 'https://173.39.84.53:8081/scim/v2/Devices' \
--header 'Content-Type: application/json' \
--header 'x-api-key: 596f0eba1668e6afeb3b25669990b7d84b8bf70408f21465a05e227664763024' \
--data '{

"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {

"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,

Cisco Sensor Connect for IoT Services Programmability Guide
42

Use Case 2 - Remote Patient Health Monitoring
Onboarding a Device

"mobility": false,
"pairingMethods": [

"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device"
],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {

"key": null
}

},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [

"controlApplication"
],
"dataReceiverUrl": []

}
}'

Response Format for Onboarding the Device without Pairing

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device"

],
"mobility": false,
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": {},
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingPassKey:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingOOB:2.0:Device": {
"key": "",
"randNumber": 0,
"confirmationNumber": 0

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {
"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Cisco Sensor Connect for IoT Services Programmability Guide
43

Use Case 2 - Remote Patient Health Monitoring
Onboarding a Device

Request Format for Onboarding the Device with Pairing

curl -k --location 'https://173.39.84.53:8081/scim/v2/Devices' \
--header 'Content-Type: application/json' \
--header 'x-api-key: 596f0eba1668e6afeb3b25669990b7d84b8bf70408f21465a05e227664763024' \
--data '{

"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {

"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"mobility": true,
"pairingMethods": [

"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"
],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {

"key": null
}

},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [

"controlApplication"
],
"dataReceiverUrl": []

}
}'

Response Format for Onboarding the Device with Pairing

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"

],
"mobility": true,
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": {},
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": 0

},

Cisco Sensor Connect for IoT Services Programmability Guide
44

Use Case 2 - Remote Patient Health Monitoring
Onboarding a Device

"urn:ietf:params:scim:schemas:extension:pairingPassKey:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingOOB:2.0:Device": {
"key": "",
"randNumber": 0,
"confirmationNumber": 0

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {
"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Connecting to a Device
To connect to a BLE device and discover its services, perform the following:

1. Use the Device ID:

The device ID is "f837c89a-e1dd-4b90-a446-06016c0d2b75".

2. Connect the BLE device from the AP:

Use the device ID to establish a connection with the BLE device from the AP.

3. Discover Services:

Discover the services with the following service UUIDs:

• 1800

• 2002

• 1822

• 180F

API Definition

DescriptionAPI

This API is used to connect to a device./control/connectivity/connect

Request Format

{
"technology": "ble",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"ble": {

"services": [
{

"serviceID": "1800"

Cisco Sensor Connect for IoT Services Programmability Guide
45

Use Case 2 - Remote Patient Health Monitoring
Connecting to a Device

},
{

"serviceID": "2022"
},
{

"serviceID": "1822"
},
{

"serviceID": "180F"
}

]
},
"controlApp": "controlApplication"

}

Response Format

{
"status": "SUCCESS",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"services": [
{
"serviceID": "1800",
"characteristics": [
{
"characteristicID": "6367",
"descriptors": [
{
"descriptorID": "7751"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{
"serviceID": "2022",
"handle": 1,
"characteristics": [
{
"characteristicID": "3670",
"descriptors": [
{
"descriptorID": "7929"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{
"serviceID": "1822",
"handle": 2,
"characteristics": [
{

Cisco Sensor Connect for IoT Services Programmability Guide
46

Use Case 2 - Remote Patient Health Monitoring
Connecting to a Device

"characteristicID": "2198",
"descriptors": [
{
"descriptorID": "5622"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{
"serviceID": "180F",
"handle": 2,
"characteristics": [
{
"characteristicID": "2198",
"descriptors": [
{
"descriptorID": "5622"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
}

],
"requestID": "251ea636-8708-43b0-b8f8-438332098c9d",
"reason": "NO_INFO"

}

Writing a Characteristic to the Device
API Definition

DescriptionAPI

This API is used to write a characteristic to the device./control/data/write

Request Format

{
"technology": "ble",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"value": "0001",
"ble": {

"serviceID": "1800",
"characteristicID": "2A00"

},
"controlApp": "controlApplication"

}

Cisco Sensor Connect for IoT Services Programmability Guide
47

Use Case 2 - Remote Patient Health Monitoring
Writing a Characteristic to the Device

Response Format

{
"status" : "SUCCESS",
"id" : "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"requestID" : "621f4b8c-c1eb-461f-ac2d-818a9193f10e"

}

Reading a Characteristic to the Device
API Definition

DescriptionAPI

This API is used to read a characteristic to the device./control/data/read

Request Format

{
"technology": "ble",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"ble": {

"serviceID": "1800",
"characteristicID": "2A00"

},
"controlApp": "controlApplication"

}

Response Format

{
"status" : "SUCCESS",
"id" : "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"value" : "2342432",
"requestID" : "7245ed08-11ff-4a3d-a023-9fe8c8fec89f"

}

Disconnecting the Device
API Definition

DescriptionAPI

This API is used to disconnect the device./control/connectivity/disconnect

Request Format

{
"technology": "ble",

Cisco Sensor Connect for IoT Services Programmability Guide
48

Use Case 2 - Remote Patient Health Monitoring
Reading a Characteristic to the Device

"id" : "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"controlApp" : "controlApplication"

}

Response Format

{
"status" : "SUCCESS",
"id" : "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"requestID" : "d1ef1fdf-d70b-4674-bb09-ff85870ad18d"

}

Cisco Sensor Connect for IoT Services Programmability Guide
49

Use Case 2 - Remote Patient Health Monitoring
Disconnecting the Device

Cisco Sensor Connect for IoT Services Programmability Guide
50

Use Case 2 - Remote Patient Health Monitoring
Disconnecting the Device

C H A P T E R 7
Use Case 3 - BLE Notification-based Use Cases

• Use Case 3 - BLE Notification-Based Use Cases, on page 51
• Onboarding the BLE Device, on page 52
• Registering the Data Receiver Application, on page 55
• Registering a Topic for Application Events, on page 56
• Registering a Topic for GATT Notifications, on page 56
• Connecting to a BLE Device from an AP, on page 57
• Starting Notifications, on page 59
• MQTT Subscription Messages, on page 60
• Application Events, on page 60

Use Case 3 - BLE Notification-Based Use Cases
A BLE device can have multiple services and each service can have multiple characteristics. For BLE
notification, you can register the topic and subscribe for a specific service or characteristic ID for which the
notification needs to be received. In this case, the best example is to subscribe for BLE GATT notification.

In this use case, you will be able to onboard a device, register a topic, connect to a device, and subscribe for
notification.

Here, the sample use case is that of a Pulse Oximeter. A Pulse Oximeter is a medical device that non-invasively
measures the oxygen saturation level (SpO2) of a person’s blood and pulse rate. The Pulse Oximeter is a small
portable device commonly used in hospitals, clinics, and home to monitor patients with respiratory or
cardiovascular conditions.

The following are the GATT attributes associated with the Pulse Oximeter:

1. Oxygen level

2. Heart rate

Cisco Sensor Connect for IoT Services Programmability Guide
51

The following workflow covers the sequence of operations:

1. Onboarding the BLE Device.

2. Registering the Data Receiver Application

3. Registering a Topic for Application Events.

4. Registering a Topic for GATT Notifications.

5. Connecting to a BLE Device from an AP.

6. Starting Notifications.

7. MQTT Subscription Messages.

8. Application Events.

Onboarding the BLE Device
API Definition

DescriptionAPI

This API is used to onboard the BLE device.POST /scim/v2/Devices

Request Format for Onboarding the Device without Pairing

curl -k --location 'https://173.39.84.53:8081/scim/v2/Devices' \
--header 'Content-Type: application/json' \
--header 'x-api-key: 596f0eba1668e6afeb3b25669990b7d84b8bf70408f21465a05e227664763024' \
--data '{

"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",

Cisco Sensor Connect for IoT Services Programmability Guide
52

Use Case 3 - BLE Notification-based Use Cases
Onboarding the BLE Device

"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"
],
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {

"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"mobility": false,
"pairingMethods": [

"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device"
],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {

"key": null
}

},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [

"controlApplication"
],
"dataReceiverUrl": []

}
}'

Response Format for Onboarding the Device without Pairing

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device"

],
"mobility": false,
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": {},
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingPassKey:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingOOB:2.0:Device": {
"key": "",
"randNumber": 0,
"confirmationNumber": 0

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

Cisco Sensor Connect for IoT Services Programmability Guide
53

Use Case 3 - BLE Notification-based Use Cases
Onboarding the BLE Device

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Request Format for Onboarding the Device with Pairing

curl -k --location 'https://173.39.84.53:8081/scim/v2/Devices' \
--header 'Content-Type: application/json' \
--header 'x-api-key: 596f0eba1668e6afeb3b25669990b7d84b8bf70408f21465a05e227664763024' \
--data '{

"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {

"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",
"isRandom": false,
"mobility": true,
"pairingMethods": [

"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"
],
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": null,
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {

"key": null
}

},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {

"onboardingUrl": "onboardApplication",
"deviceControlUrl": [

"controlApplication"
],
"dataReceiverUrl": []

}
}'

Response Format for Onboarding the Device with Pairing

{
"schemas": [
"urn:ietf:params:scim:schemas:core:2.0:Device",
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device",
"urn:ietf:params:scim:schemas:extension:endpointapps:2.0:Device"

],
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"deviceDisplayName": "BLE Heart Monitor",
"adminState": true,
"urn:ietf:params:scim:schemas:extension:ble:2.0:Device": {
"versionSupport": [
"5.3"

],
"deviceMacAddress": "CA:2B:5C:EC:95:46",

Cisco Sensor Connect for IoT Services Programmability Guide
54

Use Case 3 - BLE Notification-based Use Cases
Onboarding the BLE Device

"isRandom": false,
"pairingMethods": [
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device"

],
"mobility": true,
"urn:ietf:params:scim:schemas:extension:pairingNull:2.0:Device": {},
"urn:ietf:params:scim:schemas:extension:pairingJustWorks:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingPassKey:2.0:Device": {
"key": 0

},
"urn:ietf:params:scim:schemas:extension:pairingOOB:2.0:Device": {
"key": "",
"randNumber": 0,
"confirmationNumber": 0

}
},
"urn:ietf:params:scim:schemas:extension:endpointAppsExt:2.0:Device": {
"onboardingUrl": "onboardApplication",
"deviceControlUrl": [
"controlApplication"

],
"dataReceiverUrl": []

}
}

Registering the Data Receiver Application
You need to register a data receiver application with the app ID “dataApplication” to subscribe to the topic
“enterprise/hospital/pulse_oximeter”.

Request Format:

curl -k --location 'https://173.39.84.53:8081/control/registration/registerDataApp' \
--header 'Content-Type: application/json' \
--header 'x-api-key: b922958a7b030857b3e40f8d6a4db58f6a2bd65741f47fb120517ff8bb6fb0cb' \
--data '{

"controlApp": "controlApplication",
"topic": "enterprise/hospital/pulse_oximeter",
"dataApps": [

{
"dataAppID": "dataApplication"

}
]

}'

Response Format:

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/pulse_oximeter",
"reason" : "Data applications successfully registered!"

}

Cisco Sensor Connect for IoT Services Programmability Guide
55

Use Case 3 - BLE Notification-based Use Cases
Registering the Data Receiver Application

Registering a Topic for Application Events
You can register the topic "enterprise/hospital/app_events" with the gateway to subscribe to application
events.

API Definition

DescriptionAPI

This API is used to register a topic with the gateway
to subscribe to GATT notifications from the device.

/control/registration/registerTopic

Request Format

{
"technology": "ble",
"controlApp": "controlApplication",
"topic": "enterprise/hospital/app_events",
"ble": {
"type": "application_events"
}
}

Response Format

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/app_events",
"reason" : "Application event topics successfully registered!"
}

Registering a Topic for GATT Notifications
You can register the topic "enterprise/hospital/pulse_oximeter" with the gateway to subscribe to GATT
notifications from the device ID "df553860-975c-4d7f-8c1f-b2996f34e26f", service UUID "1800", and
characteristic UUID "2A5E".

API Definition

DescriptionAPI

This API is used to register a topic with the gateway
to subscribe to GATT notifications from the device.

/control/registration/registerTopic

Request Format

{
"technology": "ble",
"ids": [

Cisco Sensor Connect for IoT Services Programmability Guide
56

Use Case 3 - BLE Notification-based Use Cases
Registering a Topic for Application Events

"79ca0f72-4ae2-436a-8bd4-24a2770faa83"
],
"controlApp": "controlApplication",
"topic": "enterprise/hospital/pulse_oximeter",
"dataFormat": "default",
"ble": {

"type": "gatt",
"serviceID": "1800",
"characteristicID": "2A5E"

}
}

Response Format

{
"status" : "SUCCESS",
"topic" : "enterprise/hospital/pulse_oximeter",
"reason" : "Gatt topics successfully registered!",
"registeredIDs" : ["79ca0f72-4ae2-436a-8bd4-24a2770faa83"]

}

Connecting to a BLE Device from an AP
API Definition

DescriptionAPI

This API is used to connect to the BLE device from
the AP and discover the services with service UUIDs
1800, 2022, 1822, and 180F.

/control/connectivity/connect

Request Format

{
"technology": "ble",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"ble": {

"services": [
{

"serviceID": "1800"
},
{

"serviceID": "2022"
},
{

"serviceID": "1822"
},
{

"serviceID": "180F"
}

]
},
"controlApp": "controlApplication"

}

Cisco Sensor Connect for IoT Services Programmability Guide
57

Use Case 3 - BLE Notification-based Use Cases
Connecting to a BLE Device from an AP

Response Format

{
"status": "SUCCESS",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"services": [
{
"serviceID": "1800",
"characteristics": [
{
"characteristicID": "6367",
"descriptors": [
{
"descriptorID": "7751"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{
"serviceID": "2022",
"handle": 1,
"characteristics": [
{
"characteristicID": "3670",
"descriptors": [
{
"descriptorID": "7929"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{
"serviceID": "1822",
"handle": 2,
"characteristics": [
{
"characteristicID": "2198",
"descriptors": [
{
"descriptorID": "5622"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
},
{

Cisco Sensor Connect for IoT Services Programmability Guide
58

Use Case 3 - BLE Notification-based Use Cases
Connecting to a BLE Device from an AP

"serviceID": "180F",
"handle": 2,
"characteristics": [
{
"characteristicID": "2198",
"descriptors": [
{
"descriptorID": "5622"

}
],
"flags": [
"read",
"write",
"notify"

]
}

]
}

],
"requestID": "251ea636-8708-43b0-b8f8-438332098c9d",
"reason": "NO_INFO"

}

Starting Notifications
API Definition

DescriptionAPI

This API enables the GATT notifications in the device
using the device ID, GATT service UUID, and
characteristic UUID.

/control/data/subscribe

Request Format

{
"technology": "ble",
"id": "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"ble": {

"serviceID": "1800",
"characteristicID": "2A5E"

},
"controlApp": "controlApplication"

}

Response Format

{
"status" : "SUCCESS",
"id" : "79ca0f72-4ae2-436a-8bd4-24a2770faa83",
"requestID" : "5aa21160-24be-4bdb-8206-9de0f5c24898",
"serviceID" : "1800",
"characteristicID" : "2a5e"

}

Cisco Sensor Connect for IoT Services Programmability Guide
59

Use Case 3 - BLE Notification-based Use Cases
Starting Notifications

MQTT Subscription Messages
Once the notification is enabled using the subscribe API, the data receiver application starts receiving the
GATT notifications once it subscribes to the registered topic.

mosquitto_sub -h localhost -p 41883 -t '$share/group/enterprise/hospital/pulse_oximeter'
-u
dataApplication --pw d5a4c7b1afd862a070514528006f22d4964f6c61ec0e2e0b6c3ebd03c2fbb507

$dbdb70f8-b02d-4733-9d1e-8875fa74bda03baf13f
18002a5e

$dbdb70f8-b02d-4733-9d1e-8875fa74bda03baf13f
18002a5e

$dbdb70f8-b02d-4733-9d1e-8875fa74bda03baf13f
18002a5e

$dbdb70f8-b02d-4733-9d1e-8875fa74bda03baf13f
18002a5e

$dbdb70f8-b02d-4733-9d1e-8875fa74bda03baf13f
18002a5e

The partner application must run multiple instances of themosquitto_sub command. The number of instances
is based on the Cisco Catalyst 9800 Wireless Controller platform on which the IoT Orchestrator is deployed.
For more information, see the Table 1: Platforms and MQTT Subscribers (Recommended).

Note

Application Events
Application events apply to use cases that require BLE device connection. If a BLE device is connected and
any of the following scenarios occur:

• IoT Orchestrator application restarts

• Cisco Catalyst 9800 Wireless Controller reloads

• Cisco Catalyst 9800 Wireless Controller HA switchover

Then the partner application must register for the application_events topic to receive notifications such as
Application Restarted or Application Stopped.

• Application Restarted: The IoT Orchestrator application has successfully restarted.

• Application Down: The IoT Orchestrator application has been gracefully shutdown.

Upon receiving an Application Restarted notification message, the partner application must issue the "NIPC
Connect Request API" for devices that were connected prior to the IoTOrchestrator application restart.Without
this action, the connection to those BLE devices will be lost.

Once the application events are enabled using the registerTopic API, the data receiver application starts
receiving the application events once it subscribes to the registered topic.

Cisco Sensor Connect for IoT Services Programmability Guide
60

Use Case 3 - BLE Notification-based Use Cases
MQTT Subscription Messages

mosquitto_sub -h localhost -p 41883 -t '$share/group/enterprise/hospital/app_events' -u
dataApplication --pw d5a4c7b1afd862a070514528006f22d4964f6c61ec0e2e0b6c3ebd03c2fbb507

APPLICATION RESTARTED

Cisco Sensor Connect for IoT Services Programmability Guide
61

Use Case 3 - BLE Notification-based Use Cases
Application Events

Cisco Sensor Connect for IoT Services Programmability Guide
62

Use Case 3 - BLE Notification-based Use Cases
Application Events

C H A P T E R 8
Troubleshooting

• Troubleshooting, on page 63

Troubleshooting
VerificationSolutionIssue

Verify, if the Cisco Wireless AP is
connected to the Cisco Catalyst
9800Wireless Controller in the IoT
Orchestrator running as an IOx
application.

Verify, the network reachability
from the Cisco Wireless AP to the
IoT Orchestrator application IP
address.

Verify, if the Configure 9800
WLC displays as Success.

If not, see the Day 0 - Deploying
IoT Orchestrator Application on
Cisco Catalyst 9800 Wireless
Controller section inCisco Sensor
Connect for IoT Services
Configuration Guide.

If the Cisco Wireless AP does not
show up as Connected in the AP
Inventory page in IoT Orchestrator
application.

For applications with API
key-based registration, you will
need to verify:

• If the application issuing the
API call has the application
name registered in the IoT
Orchestrator.

• If the IoT Orchestrator
application uses the same API
key when registering the
application.

Verify, if the application issuing
the API call is registered in the IoT
Orchestrator application.

If the API call is rejected by the IoT
Orchestrator when the on-premise
application is registered using the
API key.

Cisco Sensor Connect for IoT Services Programmability Guide
63

VerificationSolutionIssue

For applications with
Certificate-based registration, you
will need to verify:

• If the application issuing the
API call has the application
name registered in the IoT
Orchestrator.

• If the IoT Orchestrator
application uses the same
certificate whose canonical
name is registered.

Verify, if the application issuing
the API call is registered in the IoT
Orchestrator application.

If the API call is rejected by the IoT
Orchestrator when the on-premise
application is registered using the
certificate name.

Verify, if the control application
issuing the connect API call for a
specific BLE device is specified in
the "deviceControlUrl" field of the
"endpoints" section in the
Onboarding API request for that
device.

If the Connect API call is rejected
with the “Control app is not
authorized” message.

If the BLE device does not need
pairing, you will need to check, if
the onboarded device used the
pairing method as “PairingNull”.

If the BLE device needs pairing,
you will need to check, if the
onboarded device used the pairing
method as “PairingJustWorks”.

Verify, if the BLE device can
connect and send out BLE
advertisements.

Most BLE devices stop advertising
when connected to another mobile
application. To reconnect, the user
must first disconnect the device,
which will then advertise for
reconnection upon issuing the
connect API.

If the IoT Orchestrator application
is unable to connect to the BLE
device.

Verify, if the data application is
registered using the control
application.

Verify, if the topic is registered for
the data of interest using the control
application.

Verify, if the subscription for the
topic is done using the control
application.

If the MQTT receiver in the
application does not receive
streaming data from the IoT
Orchestrator.

Cisco Sensor Connect for IoT Services Programmability Guide
64

Troubleshooting
Troubleshooting

VerificationSolutionIssue

Refer to the Logs section in Cisco Sensor Connect for IoT Services
Configuration Guide.

How to determine the real-time logs
from the IoT Orchestrator
application.

How can I capture the logs from
the Cisco Wireless AP that are
connected to the IoT Orchestrator
application.

How can I capture the logs for a
specific BLE device from the IoT
Orchestrator application and Cisco
Wireless AP.

Cisco Sensor Connect for IoT Services Programmability Guide
65

Troubleshooting
Troubleshooting

Cisco Sensor Connect for IoT Services Programmability Guide
66

Troubleshooting
Troubleshooting

	Cisco Sensor Connect for IoT Services Programmability Guide
	Contents
	Preface
	Document Conventions
	Related Documentation
	Communications, services, and additional information
	Cisco Bug Search Tool
	Documentation feedback

	Overview
	Overview of Cisco Sensor Connect for IoT Services
	Introduction to Cisco Sensor Connect APIs
	IoT Orchestrator in Cisco Catalyst 9800 Wireless Controller
	Solution Overview
	About System for Cross-Domain Identity Management (SCIM)
	About Non-IP Control (NIPC)
	About Message Queuing Telemetry Transport (MQTT)
	About MQTT Message Batching
	About Shared Subscriptions

	About Onboarding BLE Devices
	About Control Operations on BLE Devices
	About Data Telemetry from BLE Devices
	About Security Model

	Onboarding BLE Devices using SCIM
	SCIM API Definition
	SCIM HTTP Methods
	SCIM API Resource and Versions
	SCIM Schema
	API Example

	Control Operations on BLE Devices
	Non-IP Control (NIPC) Open API Definition
	Other Supported API Types
	Connecting to a BLE Device
	Connect Request - API Definition
	Connect Response - API Definition
	API Example – Connect Request and Connect Response

	Reading from a BLE Device
	Read Request - API Definition
	Read Response - API Definition
	API Example – Read Request and Read Response

	Writing to a BLE Device
	Write Request - API Definition
	Write Response – API Definition

	Discovering Services from a BLE Device
	Service Discovery Request - API Definition
	Service Discovery Response - API Definition
	API Example - Service Discovery Request and Service Discovery Response

	Disconnecting from a BLE Device
	Disconnect Request - API Definition
	Disconnect Response - API Definition
	API Example – Disconnect from a BLE Device

	Data Telemetry from BLE Devices
	Registering Topics
	Register Topics - API Definition
	API Example - Register Topics
	API Example - Subscribe to Critical Application Events
	Telemetry Data Format
	Telemetry Message Format

	Subscribing to Advertisements and Notifications
	Subscribing to Advertisements and Notifications - API Definition
	API Example – Subscribing to Advertisements and Notifications
	Telemetry Message Format for Onboarded Advertisements and Notifications

	Subscribing to Connection Events
	Subscribing to Connection Events - API Definition
	API Example – Subscribing to Connection Events

	Use Case 1 - Asset Tracking
	Use Case 1: Asset Tracking
	Onboarding a Device
	Registering the Data Receiver Application
	Registering a Topic
	Onboarded Advertisements Subscription

	Use Case 2 - Remote Patient Health Monitoring
	Use Case 2 - Remote Patient Health Monitoring (requiring BLE connection, reading, and writing)
	Onboarding a Device
	Connecting to a Device
	Writing a Characteristic to the Device
	Reading a Characteristic to the Device
	Disconnecting the Device

	Use Case 3 - BLE Notification-based Use Cases
	Use Case 3 - BLE Notification-Based Use Cases
	Onboarding the BLE Device
	Registering the Data Receiver Application
	Registering a Topic for Application Events
	Registering a Topic for GATT Notifications
	Connecting to a BLE Device from an AP
	Starting Notifications
	MQTT Subscription Messages
	Application Events

	Troubleshooting
	Troubleshooting

