Managing CPS Interfaces and APls

» CPS vDRA Interfaces And APIs, on page 1

* Multi-user Policy Builder, on page 5

* CRD APIs, on page 7

* Architecture, on page 12

» API Endpoints And Examples, on page 12

*» Logging Support Using Journald, on page 25

* Bulk Provisioning of Records in SLF Database, on page 28
* VDRA Peer API, on page 32

* Feature Description, on page 32

CPS vDRA Interfaces And APIs

CPS vDRA includes various application APIs to configure and manage the application.

CRD REST API

Purpose

The Custom Reference Data (CRD) REST API enables the query of creation, deletion, and update of CRD
table data without the need to access the Control Center GUI. The CRD APIs are available using an HTTP
REST interface.

URL and Port
https:// <master ip or control node >:443/custrefdata

Protocol
HTTPS

Accounts and Roles

Security for the CRD REST API is accomplished by using HTTP basic authentication to support read-only
and read-write access to the CRD REST APIL

Assigning a Read-Only User

Managing CPS Interfaces and APls .

. Grafana

Grafana

Managing CPS Interfaces and APIs |

Use the nacm groups group command to assign the user to the "crd-read-only" group.

For Example, nacm groups group crd-read-only user-name oper

Purpose

Grafana is a metrics dashboard and graph editor used to display graphical representations of system, application
KPIs, bulkstats of various CPS components.

)

Note

to fetch and display the latest updated values. Until the values are updated, Grafana displays the old data.

After the DRA Director (DD) failover/reboot, the TPS values in Grafana dashboards takes approx. 5 minutes

URL and Port
https:// <master ip or control node >:443/grafana

Protocol

HTTPS

Accounts and Roles

For more information on adding or deleting these user accounts, refer to the Prometheus and Grafana chapter
in this guide.

JMX Interface

Purpose

Java Management Extension (JMX) interface can be used for managing and monitoring applications and
system objects.

Resources to be managed or monitored are represented by objects called managed beans (mbeans). MBean
represents a resource running in JVM and external applications can interact with mbeans through the use of
JMX connectors and protocol adapters for collecting statistics (pull), for getting/setting application
configurations (push/pull), and notifying events like faults or state changes(push).

CLI Access

Perform the following steps to access the jmxterm:

1. Run docker connect container-id.

2. Run the jmxterm command from the CLI prompt to bring up the jmx terminal

Port

All applications run on port 9045.

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
0SGi Console .

This port is not exposed externally.

Accounts and Roles

Not applicable.

0SGi Console

Purpose

CPS is based on Open Service Gateway initiative (OSGi) and OSGi console is a command-line shell which
can be used for analyzing problems at OSGi layer of the application. It may become necessary to connect to
the OSGi console to execute specific commands. These commands are not documented in this guide but the
connection process is described below.

CLI Access
Use the following command to access the OSGi console:

1. Run the command docker connect container-id.

2. telnet <ip> <port>

Ports
All applications run on port 9091 within the executing container.

This port is not exposed externally.

Accounts and Roles

Not applicable.

Policy Builder GUI

Purpose

Policy Builder is the alternative web-based client interface for the configuration of the Cisco Policy Suite.

URL and Port
https://<Ibvip01>/pb
https://<master or control ip>/pb

Protocol
HTTPS

Accounts and Roles

Assigning a Read-Only User

Managing CPS Interfaces and APls .

[l 0rA central GuI

Managing CPS Interfaces and APIs |

It is not necessary to assign a read-only role. Any valid user that can login will have read-only access.
Assigning a Read-Write User
Use the nacm groups group command to assign the user to the "policy-admin" group.

For example, nacm groups group policy-admin user-name admin

DRA Central GUI

Purpose

DRA Central is the primary web-based client interface for the configuration and operational control of the
CPS vDRA.

URL and Port
https://<Ibvip01>/central/dra/

https://<master or control ip>/central/dra/

Protocol
HTTPS

Accounts and Roles

Assigning a Read-Only User

Use the nacm groups group command to assign the user to the "policy-ro" group.
Assigning a Read-Write User

Use the nacm groups group command to assign the user to the "policy-admin" group.

For example: nacm groups group policy-admin user-name admin

SVN Interface

Apache ™ Subversion (SVN) is the versioning and revision control system used within CPS. It maintains all
the CPS policy configurations and has repositories in which files can be created, updated and deleted. SVN
maintains the file difference each time any change is made to a file on the server and for each change it
generates a revision number.

In general, most interactions with SVN are performed via Policy Builder.

CLI Access
Use the following command to access SVN:
From a remote machine with the SVN client installed, use the following command to access SVN:

Access all files from the server as follows:
svn checkout --username <username> --password <password> <SVN Repository URL> <Local Path>

Example:

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Multi-user Policy Builder .

svn checkout --username admin --password admin https://<master ip or control ip>/repos/
If <Local Path>is not provided, files are checked out to the current directory.

Check-in the changed files to the server as follows:

svn commit --username <username> --password <password> <Local Path> -m “modified config”

Example:

svn commit --username broadhop --password broadhop /root/configuration -m “modified config”

Update local copy to latest from SVN:

svn update <Local Path>

Example:

svn update /root/configuration/

Check current revision of files:

svn info <Local Path>

Example:

svn info /root/configuration/

Use svn --help for a list of other commands.

Protocol

HTTPS

URL and Port
https://<Ibvip01>/repos/
https://<master or control ip>/repos/

Accounts and Roles

Assigning a Read-Only User

It is not necessary to assign a read-only role. Any valid user that can login will have read-only access.
Assigning a Read-Write User

Use the nacm groups group command to assign the user to the "policy-admin" group.

For example, nacm groups group policy-admin user-name admin

Multi-user Policy Builder

Multiple users can be logged into Policy Builder at the same time.

In the event that two users attempt to make changes on same screen and one user saves their changes to the
client repository, the other user may receive errors. In such cases the user must return to the login page, revert
the configuration, and repeat their changes.

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
. Revert Configuration

Revert Configuration

You can revert the configuration if changes since the last publish/save to client repository are not wanted.

This can also be necessary in the case of a ' syn conflict ' error where both perfelientO1 and perfclient02 are
in use at the same time by different users and publish/save to client repository changes to the same file. The
effect of reverting changes is that all changes since the publish/save to client repository will be undone.

Procedure

Step 1 On the Policy Builder login screen, verify the user for which changes need to be reverted is correct. This can be done by
clicking Edit and verifying that the Username and Password fields are correct.

Figure 1: Verifying User

Choose Policy Builder data repository...

#) Build policies using version controlled data

Repository - || Edit | Remove Revert

oK _ Cancel

Step 2 Click Revert.
The following confirmation dialog opens.

Figure 2: Revert Confirmation Message

This will revert ALL changes to 'Repository’ that haven't been committed using either
the 'Save to Repository’ or 'Publish’ actions.

Are you sure?

oK ' Cancel

Step 3 Click OK to revert back to the earlier configuration. The following dialog confirms that the changes are reverted
successfully.

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Publishing Data]

Figure 3: Success Confirmation Message

Success x

6__6 Changes are reverted successfully.

OK

Publishing Data

This section describes publishing Cisco Policy Builder data to the Cisco Policy Server. Publishing data occurs
in the Cisco Policy Builder client interface, but affects the Cisco Policy Server.

Cisco Policy Builder manages data stored in two areas:

* The Client Repository stores data captured from the Policy Builder GUI in Subversion. This is a place
where trial configurations can be developed and saved without affecting the operation of the Cisco Policy
Builder server data.

The default URL is http://svn/repos/configuration.

* The Server Repository is where a copy of the client repository is created/updated and where the CPS
picks up changes. This is done on Publish from Policy Builder.

The default URL is http://svn/repos/run.

CRD APIs

You can use Custom Reference Data (CRD) APIs to query, create, delete, and update CRD table data without
the need to utilize the Control Center interface. The CRD APIs are available via a REST interface.

Limitations

These APIs allow maintenance of the actual data rows in the table. They do not allow the creation of new
tables or the addition of new columns. Table creation and changes to the table structure must be completed
via the Policy Builder application.

All table names should be in lowercase alphanumeric to utilize these APIs. Spaces and special characters are
not allowed in the table name.

* Table names containing uppercase characters will return code 400 Bad Request.
* Spaces in the name are not allowed and will be flagged as an error in Policy Builder.

* Special characters even when escaped or encoded in ASCII throw errors with the APIs and should not
be used.

Managing CPS Interfaces and APls .

http://svn/repos/configuration
http://svn/repos/run

Managing CPS Interfaces and APIs |
. Setup Requirements

Setup Requirements

Policy Builder

Procedure

Step 1 Log in to the Policy Builder.
Step 2 Select Reference Data tab.
Step 3 Select Systems from the left pane.

Step 4 Select and expand your system name.
Step 5 Select Plugin Configurations(or a sub cluster or instance), a Custom Reference Data Configuration plugin configuration
is defined.

The following parameters can be configured under Custom Reference Data Configuration:

Table 1: Custom Reference Data Configuration Parameters

Parameter Description

Primary Database IP Address IP address of the primary sessionmgr database. This should remain
the default of mongo-admin-a.

Secondary Database IP Address Optional, this field is the IP address of a secondary, backup, or failover
sessionmgr database. This should remain the default of
mongo-admin-b.

Database Port Port number of the sessionmgr. It should be the same for both the
primary and secondary databases.

Db Read Preference Read preference describes how sessionmgr clients route read
operations to members of a replica set. You can select from the
following drop-down list:

* Primary: Default mode. All operations read from the current
replica set primary.

* PrimaryPreferred: In most situations, operations read from the
primary but if it is unavailable, operations read from secondary
members.

* Secondary: All operations read from the secondary members of
the replica set.

* SecondaryPreferred: In most situations, operations read from
secondary members but if no secondary members are available,
operations read from the primary.

For more information, refer to
http://docs.mongodb.org/manual/core/read-preference/.

. Managing CPS Interfaces and APIs

http://docs.mongodb.org/manual/core/read-preference/

| Managing CPS Interfaces and APls

Policy Builder [JJj

Parameter

Description

Connection Per Host

Default value is 100.

Number of connections that are allowed per database host.

Step 6 In Reference Data tab > Custom ReferenceData Tables, at least one Custom Reference Data Table must be defined.

Figure 4: Custom Reference Data Configuration

Custom Reference Data Table

Activation Condition

*Name Display Name
«| Cache Results
test select dear
*Columns
"MName Display Name *Use In Conditions Type Kay Required
keyl - Text - -
add | | Remove || 95
Column Details
Valid Values Validation Runtime Binding

The values allowed in Control Center for this column

validation used by Control Center

Regular Expression

which rows match when a message is received

List of Valid values

*Name Display Name Regular Expression Description

Add | | Remove
Walid values pulled from another table’s column (key)

select | glear Matching Operator

~ Actions
Copy:
B T far Tabl

The following parameters can be configured under Custom Reference Data Table:

Table 2: Custom Reference Data Table Parameters

Field Description

Name Name of the table that will be stored in the database. It should start with alphanumeric
characters, should be lowercase or uppercase but not mixed case, and should not start
with numbers, no special characters are allowed, use “_” to separate words. For example,

logical apn = GOOD, logicalAPN = BAD, no_spaces.

Display Name Name of the table that will be displayed in Control Center.

Cache Results Indicates if the tables should be cached in memory and should be checked for production.

Managing CPS Interfaces and APls .

B rolicy Builder

Managing CPS Interfaces and APIs |

Field

Description

Activation Condition

Custom Reference Data Trigger that needs to be true before evaluating this table. It can
be used to create multiple tables with the same data depending on conditions or to
improve performance if tables do not need to be evaluated based on initial conditions.

Best Match

When enabled, it allows "*' to be used in the values of the data and the best matching
row is returned.

Evaluation Order

Indicates the order the tables within the search table group should be evaluated. Starting
with 0 and increasing.

Columns
Name Name of the column in the database.
Display Name More readable display name.

Use In Conditions

Represents the availability of the row for conditions in Policies or Use Case Templates.
There is a performance cost to having these enabled, so it is recommended to disable
unless they are required.

Type

Determines the values in the control centre as described below:
* Text: Value can be any character. For example, example123!.
* Number: Value should be a whole number. For example, 1234.
* Decimal: Value can be any number. For example, 1.234.
* True/False: Value can be true or false. For example, true.

* Date: Value should be a date without time component. For example, May 17th
2020.

* DateTime: Value should be a date and time. For example, May 17th, 2020 5:00pm.

Key

Indicates that this column is all or part of the key for the table that makes this row
unique. By default, a key is required. Keys also are allowed to set the Runtime Binding
fields to populate this data from the current message/session. Typically, keys are bound
to data from the current session (APN, RAT Type) and other values are derived from
them. Keys can also be set to a value derived from another custom reference data table.

Required

Indicates whether this field will be marked required in Control Center. A key is always
required.

Column Details

Valid Values
All All the values of the type selected by the user.
List of Valid A list of name/display name pairs that will be used to create the list. Valid values can

also contain a name which will be the actual value of the column and a display value
which allows the Control Center to display use name.

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls

Policy Builder [JJj

Field Description

Name The name of the column in the database.
Display Name Readable display name.

Validation

Regular Expression

The Java regular expression that will be run on the proposed new cell value to validate
it.

Regular Expression
Description

A message to the user indicating what the regular expression is trying to check.

Runtime Binding

Runtime binding is how key column data gets filled out (bound) from data in the current
session. There are multiple ways to bind this data and it is also possible to set an operator
to define what should match (equals, less than, etc).

None

Bind to Subscriber AVP

This pulls the value from an AVP on the subscriber. It will also pull values from a
session AVP or a Policy Derived AVP.

Bind to Session/Policy State

This pulls the value from a Policy State Data Retriever which knows how to retrieve a
single value for a session.

Bind to a result column from
another table

This allows the key to be filled out from a columns value from another table. This allows
‘normalizing' the table structure and not having on giant table with a lot of duplicated
values.

Bind to Diameter request AVP
code

This allows the key be filled out from an AVP on the diameter request.

Matching Operator

This allows the row to be 'matched' in other ways than having the value be 'equals'.
Default value is equals.

* eq: Equal

* ne: Not Equal

* gt: Greater than

* gte: Greater than or equal
* It: Less than

« Ite: Less than or equal

Managing CPS Interfaces and APls .

. Architecture

Managing CPS Interfaces and APIs |

Architecture

MongoDB Caching

The MongoDB database containing the CRD tables and the data is located in the MongoDB instance specified
in the CRD plugin configuration.

The database is named cust_ref data.
Two system collections exist in that database and do not actually contain CRD data:

* system.indexes - It is used by MongoDB. These are indices set on the database.

* crdversion - It contains a document indicating the version of all the CRD tables you have defined. The
version field increments by one every time you make a change or add data to any of the CRD tables.

A collection is created for each CRD table defined in Policy Builder.

* This collection contains a document for each row you define in the CRD table.
* Each document contains a field for each column you define in the CRD table.
* The field contains the value specified for the column for that row in the table.

* Additionally, there is a _id field which contains the internal key used by MongoDB and _version which
is used by CPS to provide optimistic locking protection, essentially to avoid two threads overwriting the
other's update, on the document.

Setting the Cache Results to true (checked) is the default and recommended settings in most cases as it yields
the best performance. Use of the cached copy also removes the dependency on the availability of the CRD
database. So if there is an outage or performance issue the policy decisions utilizing the CRD data will not
be impacted.

The cached copy of the table is refreshed on CPS restart and whenever the API writes a change to the CRD
table, otherwise the cached copy is used and the database is not accessed.

API Endpoints And Examples

Query API

The URL used to access the CRD API is located at https://<masterip or control
ip>/custrefdata/<tablename>/ <operation>

Purpose

Returns all rows currently defined in the specified table.

HTTP Operation Type
GET

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Query API .

Example URL
https://<lbvip01>:8443/custrefdata/test/ _query

https://<master or control ip>:8443/custrefdata/test/ query

Example URL with Filtering
https://<lbvip01>:8443/custrefdata/test/ _query?keyl=Platinum

https://<master or control ip>:8443/custrefdata/test/ query?keyl=Platinum

Payload
None, although parameters can be specified on the URL for filtering.

Response

Success returns code 200 Ok; XML indicating rows defined is returned. If there are no records in the table,
200 Ok is returned with empty rows in it.

If the table does not exist, code 400 Bad Request is returned.

Example Response without Filtering

<rows>
<row>
<field code="fieldl” value="1004"/>
<field code="field2” value="testee”/>
<field code="keyl” value="Platinum”/>
</row>
<row>
<field code="fieldl” value="1004"/>
<field code="field2” value="testee”/>
<field code="keyl” value="Platinum99”/>
</row>
<row>
<field code="fieldl” value="fieldlexamplel”/>
<field code="field2” value="field2examplel”/>
<field code="keyl” value="keylexamplel”/>
</row>
<row>
<field code="fieldl” value="fieldlexample2”/>
<field code="field2” value="field2example2”/>
<field code="keyl” value="keylexamplel2”/>
</row>
</rows>

Example Response with Filtering

<rows>
<rows>
<row>
<field code="fieldl” value="1004"/>
<field code="field2” value="testee”/>
<field code="keyl” value="Platinum”/>
</row>
</rows>

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
. Create API

The response returns keys with the tag “field code”. If you want to use the output of Query as input to one of
the other APIs, the tag needs to be changed to “key code”. Currently using “field code” for a key returns code
404 Bad Request and a java.lang.NullPointerException.

Create API

Purpose

Create a new row in the specified table.

HTTP Operation Type
POST

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/test/_create

https://<master or control ip>:8443/custrefdata/test/ create

Example Payload

<row>
<key code="keyl” value="Platinum”/>
<field code="fieldl” value="1004"/>
<field code="field2” value="testee”/>
</row>

Response

Success returns code 200 Ok; no data is returned. The key cannot already exist for another row; submission
of a duplicate key returns code 400 Bad Request.

If creating a row fails, API returns 400 Bad Request.

)

Note Create API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Create operation isnot allowed for subversion table

Update API

Purpose

Updates the row indicated by the key code in the table with the values specified for the field codes.

HTTP Operation Type
POST

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Delete APl JJ||

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/test/ update

https://<master or control ip>:8443/custrefdata/test/_update

Example Payload

<row>
<key code="keyl" value="Platinum"/>
<field code="fieldl" value="1005"/>
<field code="field2" value="tester"/>
</row>

Response

Success returns code 200 Ok; no data is returned. The key cannot be changed. Any attempt to change the key
returns code 404 Not Found.

If updating a row fails, API returns 400 Bad Request.

\)

Note Update API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Update operation isnot allowed for subversion table

Delete API

Purpose

Removes the row indicated by the key code from the table.

HTTP Operation Type
POST

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/test/ delete

https://<master or control ip>:8443/custrefdata/test/ delete

Example Payload

<row>
<key code="keyl" value="Platinum"/>"/>
</row>

Response

Success returns code 200 Ok; no data is returned. If the row to delete does not exist, code 404 Not Found is
returned.

If deleting a row fails, API returns 400 Bad Request.

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
. Data Comparison API

\)

Note Delete API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Delete operation isnot allowed for subversion table

Data Comparison API

Purpose
Determines whether the same CRD table data content is being used at different data centers.
The following three optional parameters can be provided to the API:

» tableName: Returns the checksum of a specified CRD table tableName indicating if there is any change
in the specified table. If the value returned is same on different servers, it means there is no change in
the configuration and content of that table.

« includeCrdversion: Total database checksum contains combination of checksum of all CRD tables
configured in Policy Builder. If this parameter is passed as true in API, then total database checksum
includes the checksum of "crdversion" table. Default value is false.

» orderSensitive: Calculates checksum of the table by utilizing the order of the CRD table content. By
default, it does not sort the row checksums of the table and returns order sensitive checksum of every
CRD table. Default value is true.

custrefdata/_checksum

Database level Checksum API returns checksum details for all the CRD tables and the database. If the value
returned is same on different servers, there will be no change in the configuration and content of any CRD
table configured in Policy Builder.

HTTP Operation Type
GET

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/ checksum

https://<master or control ip>:8443/custrefdata/ checksum

Response

<response>
<checksum><all-tables-checksum></checksum>
<tables>
<table name="<table-l-name>" checksum="<checksum-of-table-1>"/>
<table name="<table-2-name>" checksum="<checksum-of-table-2>"/>

<table name="<table-n-name>" checksum="<checksum-of-table-n>"/>

</tables>
</response>

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Table Drop APl I}

[custrefdata/_checksum?tableName=<user-provided-table-name>

Table specific Checksum API returns the checksum details for the specific CRD table. If the value returned
is same on different servers, there will be no change in the configuration and content of that table.

HTTP Operation Type
GET

Example Endpoint URL
https://<lbvip01>:8443 /custrefdata/ checksum?tableName=<user-provided-table-name>

https://<master or control ip>:8443 /custrefdata/ checksum?tableName=<user-provided-table-name>
Response

<response>
<tables>

<table name="<user-provided-table-name>" checksum="<checksum-of-specified-table"/>
</tables>
</response>

)

Note Table specific Checksum API does not support SVN CRD table operations and displays the following error
message when Snv Crd Data checkbox is enabled in CRD table configuration:

Checksum operation isnot allowed for subversion table

Table Drop API

Purpose
Drops custom reference table from MongoDB to avoid multiple stale tables in the system.
The Table Drop API is used in the following scenarios:

+ If a CRD table does not exist in Policy Builder but exists in the database, the API can be used to delete
the table from the database.

* [f a CRD table exists in Policy Builder and database, the API cannot delete the table from the database.
If this is attempted the API will return an error: “Not permitted to drop this table as it exists in Policy
Builder”.

* If a CRD table does not exist in Policy Builder and database, the API will also return an error No table
found:<tablename>

[custrefdata/<table_name>/_drop

HTTP Operation Type
POST

Managing CPS Interfaces and APls .

B exportarl

Export API

Managing CPS Interfaces and APIs |

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/<table name>/ drop

https://<master or control ip>:8443/custrefdata/<table name>/ drop

\)

Note Drop API does not support SVN CRD table operations and displays the following error message when Snv

Crd Data checkbox is enabled in CRD table configuration:

Drop operation isnot allowed for subversion table

Purpose

Exports single and multiple CRD table and its data.

[custrefdata/_export?tableName=<table_name>
Exports single CRD table and its data.

Returns an archived file containing csv file with information of specified CRD table table name.

HTTP Operation Type
GET

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/ export?tableName=<table name>

https://<master or control ip>:8443/custrefdata/ export?tableName=<table name>

[custrefdata/_export
Exports all CRD tables and its data.

Returns an archived file containing csv file with information for each CRD Table.

HTTP Operation Type
GET

Example Endpoint URL
https://<lbvip01>:8443 /custrefdata/ export

https://<master or control ip>:8443 /custrefdata/ export

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
import AP I

A\

Note Export API does not support Svn CRD tables and displays the following warning message in the Response
Header "Export-Warning":

Datasource for tables[tablel, table2,...] is subversion. Response will not contain data for these tables
and skipped SVN CRD tablesto be a part of archive.

Import API

Purpose
Imports CRD table and its data.

It takes an archived file as an input which contains one or more csv files containing CRD tables information.

Y

Note If you try to import multiple CRD tables during traffic it may have call flow impact. It is recommended to
import multiple CRD tables during Maintenance Window (MW).

HTTP Operation Type
POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_import

https://<master or control ip>:8443/custrefdata/_import
https://<lbvip01>:8443/custrefdata/_import?batchOperation=true
https://<lbvip01>:8443/custrefdata/_import?batchOperation=false&duplicate Validation=true

)

Note 1. The "batchOperation" flag is used to insert CRD data in the batch. The default value is true and if you do
not provide it in the request parameter the default value is taken.

2. The "duplicateValidation" flag is used to validate or invalidate duplicate data in the archive. The default
value is true and if you do not provide it in the request parameter the default value is taken which means
it will always validate your data as duplicate.

3. If"batchOperation" is true, the API will validate your data as duplicate data regardless of the value provided
for "duplicateValidation".

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
[l snapshot POST API

\)

Note Import API supports SVN CRD table operations in the following scenarios:

« [f the archive contains only mongodb tables, success message is displayed in the response.
« If the archive contains only SVN tables, success and warning messages are displayed in the response.

* If the archive contains both mongodb and SVN tables, success and warning messages are displayed in
the response.

Snapshot POST API

Purpose

Creates a snapshot of the CRD tables on the system. The created snapshot will contain CRD table data, policy
configuration and checksum information for all CRD tables.

[custrefdata/_snapshot?userld=<user_id>&userComments=<user_comments>

HTTP Operation Type
POST

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/ snapshot?userld=<user id>&userComments=<user comments>

https://<master or control ip>:8443/custrefdata/ snapshot?userld=<user id>&userComments=<user comments>

Optional Parameters

userComments

\)

Note Snapshot POST API does not support export of the contents of Svn CRD tables. The API returns the following
warning message if there are any Svn CRD tables present while creating snapshot:

Datasourcefor tables[table 1,table 2...]issubversion. Datafor thesetableswill not comefrom database
(mongodb)

Snapshot GET API

Purpose
Enables you to get the list of all valid snapshots in the system.
The following information is available in the list of snapshots:

* Snapshot name

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Revert APl [JJj

* Snapshot path

* Date and time of snapshot creation

» User comments provided on creation of the snapshot
* Checksum information of CRD tables

* Policy configuration SVN version number

/custrefdata/_snapshot

HTTP Operation Type
GET

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/ snapshot

https://<master or control ip>:8443/custrefdata/_snapshot

Example Response

<snapshots>
<snapshot>
<name><date-and-time> <user-id></name>
<snapshotPath>/var/broadhop/snapshot/20160620011825306 gns</snapshotPath>
<creationDateAndTime>20/06/2016 01:18:25:306</creationDateAndTime>
<comments>snapshot-1 june</comments>
<policyVersion>903</policyVersion>
<checksum checksum="60£51dfd4cd4554910da44a776c66dbl">
<table name=<table-name-1> checksum="<table-checksum-1>"/>

<table name=<table-name-n> checksum="<table-checksum-n>"/>
</checksum>
</snapshot>
<snapshot>

</snapshot>
</snapshots>

\)

Note Snapshot GET API does not return checksum information of Svn CRD tables as they are not part of created
snapshots.

Revert API

Purpose

Enables you to revert the CRD data to a specific snapshot. If the specific snapshot name is not provided, the
API will revert to the latest snapshot.

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
[Admin Disable API

[custrefdata/_revert?snapshotName=<snapshot_name>

HTTP Operation Type
POST

Example Endpoint URL
https://<lbvip01>:8443/custrefdata/ revert?snapshotName=<snapshot name>

https://<master or control ip>:8443/custrefdata/ revert?snapshotName=<snapshot name>

Optional Parameter

snapshotName

)

Note Revert API does not support reverting of CRD data for Svn CRD tables. For Svn CRD table, it clears the
mongodb table and displays the following warning message:

Datasourcefor tables[table 1,table 2...] issubversion. Datafor thesetableswill bereverted using svn
datasour ce not from database (mongodb)

Admin Disable API

Purpose

Create multiple rows in the Peer Admin Disabled List CRD table in a single operation.

HTTP Operation Type
POST

Example Endpoint URL

https://<master or control ip>:8443/custrefdata/peer admin_disabled list/ createRows

)

Note Once https://<master or control ip>:8443/custrefdata/peer admin disabled list/ createRows
APl is complete, you need to run /dra/api/localActivePeerEndpoints/disconnect to disconnect the active
peer endpoint.

)

Note In Active Peer Endpoints GUI, after admin disable of active peer, if peer's Admin State gets changed from
Enabled to Disabled but still it is shown under Active Peer Endpoints, then peer has to be disconnected by
using the disconnect action.

. Managing CPS Interfaces and APIs

Managing CPS Interfaces and APls
Admin Disable APl [JJ}

Example Payload
{

"rows": [
{
"fields": [
{
"code": "origin host",
"value": "value for origin_ host"
}I
{
"code": "origin realm",
"value": "value for origin_realm"
}I
{
"code": "admin disable time",
"value": "time in this format only 1/9/2021 10:48:56"
}
]I
"keys": [
]
}I
{
"fields": [
{
"code": "origin host",
"value": "value for origin_host"
}I
{
"code": "origin realm",
"value": "value for origin_ realm"
}I
{
"code": "admin disable time",
"value": "time in this format only 1/9/2021 10:48:56"
}
]I
"keys": [
]
}
]
}
Response

Success returns code 200 Ok; no data is returned. If creating a row fails, API returns 400 Bad Request.

)

Note Create rows API does not support SVN CRD table operations and displays the following error message when
Snv Crd Data checkbox is enabled in CRD table configuration:

Create operation isnot allowed for subversion table

Managing CPS Interfaces and APls .

[l Admin Enable API

Admin Enable API

Purpose

Removes multiple rows indicated by the key code from the table in a single operation.

HTTP Operation Type
POST

Example Endpoint URL

https://<master or control ip>:8443/custrefdata/peer_admin_disabled list/ deleteRows

Example Payload
{

"rows": [
{
"fields": [
{

"code":

"value":

"code":

"value":

"keys": [

"code":
"value":

"code":
"value":

"fields": [
{

"eode™ !

"value":

"eode™ !
"value":

"keys": [
"eode™ !

"value":

"code":
"value":

"origin_host",
"value for origin host"

"origin realm",

"value for origin realm"

"origin_host",

"value for origin host"

"origin realm",
"value for origin realm"

"origin_host",
"value for origin host"

"origin realm",

"value for origin realm"

"origin_host",

"value for origin host"

"origin realm",
"value for origin realm"

. Managing CPS Interfaces and APIs

Managing CPS Interfaces and APIs |

| Managing CPS Interfaces and APls
Tips for Usage .

Response

Success returns code 200 Ok; no data is returned. If deleting a row fails, API returns 400 Bad Request.

)

Note Delete rows API does not support SVN CRD table operations and displays the following error message when
Snv Crd Data checkbox is enabled in CRD table configuration:

Delete operation isnot allowed for subversion table

Tips for Usage

The Query API is a GET operation which is the default operation that occurs when entering a URL into a
typical web browser.

The POST operations, Create, Update, and Delete, require the use of a REST client so that the payload and
content type can be specified in addition to the URL. REST clients are available for most web browsers as
plug-ins or as part of web service tools, such as SoapUI. The content type when using these clients should be
specified as application/xml or the equivalent in the chosen tool.

View Logs
You can view the API logs in the OAM (pcrfclient) VM at the following location:
/var/log/broadhop/consolidated-gns.log
You can view the API logs with the following commands:
* monitor log application — tail the current application log
* monitor log engine — tail the current engine log
* monitor log container — tail a specific container log
* show log application - view the current application log

* show log engine — view the current engine log

Logging Support Using Journald

To monitor and view logs, journald system service has been added that collects and stores logging data. It
creates and maintains structured, indexed journals based on logging information received from a variety of
sources. The following is a sample of CLI commands:

* monitor log application - This command is used to tail the current Policy Server (qns) log.
* monitor log engine - This command is used to tail the current Policy Server (qns) engine log

* monitor log container <container id>- This command is used to tail the container logs.

Managing CPS Interfaces and APls .

https://www.loggly.com/blog/why-journald/

Managing CPS Interfaces and APIs |

. Retaining journalctl Logs in DRA

* show log application - This command opens the consolidated logs.

* show log engine - This command is used to open the consolidate engine logs using Linux 'less' command.
For further log access, you need to connect to the OpenStack control node and from there to respective master
or control node. For example, to connect to master/control nodes use the following command:
ssh -i cps.pem cps@IPAddress
where, |PAddressis the IP address of the master or control node.

To access the logs once you are connected to control node, use the following command:
docker logs container-id

For example, use docker logs mongo-si to display all the logs of mongo-s1 container.

Retaining journalctl Logs in DRA

)

Note This feature has not been validated for all customer deployment scenarios. Please contact your Sales Account

team for support.

In vDRA, Docker engine is configured with journald logging driver on every VM. The journald logging driver
sends container's logs to journal deamon.

Use the jour nalctl command, through journal AP, or use the docker logscommand to retrieve the log entries.

As part of the logging enhancements, VDRA supports retaining of journalctl logs for longer duration around
10 days on all VMs. This helps in debugging any issues even though journal logs gets rolled over early.

All the logs are captured through automated cron job at daily basis on nonpeak time and cronjob timings are
configurable through cron job file. The collected logs are stored under /data/journal-1logs directory
on each VM and also stored at remote server. You can configure the size of the logs folder and days of retention
in the configuration file.

On every VM, log collection happens based on disk size of the /data/journal-1ogs folder, Default
/data/journal-logs directory size is 10GB. Ifthe /data/journal-logs directory size is less
than 10GB it will collect the logs and it will copy to the Control VM and remote server, If the
/data/journal-logs directory size exceeds to 10 GB , journal.sh script deletes files beyond 2 days to
free up the disk space on the VM. This parameter is also configurable from cps-journal.conf file.

You can configure the retention days and size of log storage folder on /etc/cps/cps-journal.conf
file. And copying journal logs to Control VM works with static and Virtual VIP IP.

While copying the journal logs to a control VM, journal.sh script checks the / disk usage on control VM. If
the disk size is less than 60 % it copies files to the control VM, otherwise it won't copy and these log files are
stored on same VM based on the retention period. This disk usage value for Control VM is configuration
through cps-journal.conf file.

For the CPU usage optimization, this script is limited to execute with only 50 % of the system CPU.

Prerequisites

Before you begin:

. Managing CPS Interfaces and APIs

https://www.loggly.com/blog/why-journald/

| Managing CPS Interfaces and APls

Setup DRA/Binding VNF.

A w NP

Journal Configuration

Retaining journalctl Logs in DRA .

Ensure that cps.pem file is copied to all the VMs.
Configure the remote server as PEM key based authentication.

Control VM should be reachable to remote server.

Modify the custom general configuration file:

cat /etc/cps/cps-journal.conf

You can configure the following parameters.

Table 3: Journal Configuration File Parameters

Field

Description

retention_days

Specify the number of retention days to store log files.

Example: retention_days=10

logfolder_size

Specify a size of the log storage directory. Memory value must be
entered in KB format.

Example: 10485760

clean_all Specify the number of days for which the logs are saved after clean
up.

DRA_USER Displays the DRA user as CPS.

CONTROL IP Specify the Control IP.
Note
Control IP should be reachable to all internal VMs and remote
server.
Example: Control-1 IP

DESTINATION Specify a centralized log storage path on the control-1 VM.

PEM KEY Specify an absolute path of the SSH key PEM file location.
Example: PEM_KEY=/home/cps/cps.pem

DISK SIZE Specify the maximum disk usage percentage on Control VM for

/dir (directory).

remote_server

Specify a remote server IP address.

Managing CPS Interfaces and APls .

. Bulk Provisioning of Records in SLF Database

Managing CPS Interfaces and APIs |

Field

Description

remote_destination_path

Specify the Journal Logs storage path on remote server.

Note

Use different destination paths for multiple sites and setups.
Example:

DRA Site-1: remote_destination path=/home/cps/dra-site-1

DRA Site-2: remote_destination path=/home/cps/dra-site-2
Binding Site-1: remote_destination_path=/home/cps/binding-site- 1

Binding Site-2: remote_destination_path=/home/cps/binding-site-2

remote_user

Specify a remoter server user to perform the operation.

Example: remote user=CPS

remote_pem_key

Remote a server user PEM key file absolute path.

Post Configuration and Validation Process

After all the configurations are set, perform the following steps:

1. Check the cron job scheduled for the root user. Sample configuration is shown.

#crontab -1 -u root

0 8 * * * cputool -c 50 bash /opt/custom-scripts/journal.sh

30 8 * * * cputool -c 50 bash /opt/custom-scripts/journal scp.sh
Default cron job is scheduled at 8:00 AM UTC,

Verify the collected logs that are present under /data/journal-1logs directory on each VM after
the completion of cron job and check the remote server.

Sample Log file format:.

journal-2021-06-06-09:00:01-dral-sysO4-master-0.log.gz // Log file created for VM with
hostname & timestamp.

journal-history.log // history of journals execution and file copying status

Bulk Provisioning of Records in SLF Database

|

Important This feature is not fully qualified in this release. It is available only for testing purposes.

For more information, contact your Cisco Accounts representative.

CPS vDRA provides APIs for bulk provisioning of subscriber records in the SLF database.

You can use the CSV file to provision create and update of bulk subscriber records using SLF API. You can
also check the status of the upload using the API.

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls

CSV File

csvrile [

\)

Note SLF bulk provisioning generates high number of database write operations in a short duration of time. To
spread out the operations over a period of time and mitigate the performance issue, configure the transactions
per second (TPS) for SLF provisioning in Policy Builder.

For more information, see the CPSVDRA Configuration Guide.

The CSV file format is used to bulk provision the subscriber records in SLF database. The Actions column
in the CSV file determines whether the record is for creation, updation, or deletion.

You can use # in the beginning of the line to indicate comments in the CSV file. The line is ignored when the
file is processed.

Table 4: CSV File Format

Column Description

Action The action to be performed on the subscriber record.

« Create - creates subscriber record if it does not
exist.

* Put — creates the subscriber record, if it does not
exist; if subscriber record already exists, updates
the subscriber record.

* Delete — deletes the subscriber record, if it exists.

Subscriber Id The subscriber ID of the subscriber.

IMSI The IMSI of the subscriber.

If the same subscriber has multiple IMSI, then add
multiple IMSI columns for the subscriber.

MSISDN The MSISDN of the subscriber.

If the same subscriber has multiple MSISDN, then
add multiple MSISDN columns for the subscriber.

Destination:<Tag> The destinations of the subscriber.

To provision multiple destinations, add column
name/header with prefix “Destination:” and suffix it
with the tag, for example: Destination:HSS,
Destination:MME, Destination:PCREF, etc

Sample CSV File

Action, Subscriber Id, IMSI, IMSI, MSISDN, MSISDN, Destination:MME, Destination:HSS
Put, 1001, 34101, 34102, 91001, 91002, MME]L, HSS1

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
Il Bulk Upload API

Put, 1001, 34101, , 91005, , MMEZ2, HSS2
Delete, 1010, , , , ,

Bulk Upload API

Schedules the SLF bulk subscribers provisioning task. Bulk Upload API takes the input as csv file and schedules
the job to execute in the background.

Request

Method: POST

URI: /dra/slfapi/subscriber/bulkUpload
Header: Content-Type: multipart/form-data
Body: CSV File

Request Example

HTTP POST /dra/slfapi/subscriber/bulkUpload

Response Example

HTTP STATUS: 202 (Accepted)
{
"success": {
"code": 1,
"message": "Request accepted, slf bulk upload task is scheduled for execution"

}

Example of Curl Command

curl -X POST --progress-bar -H "Content-Type: multipart/form-data"

-H "Content-Type: application/json" \ -F "file=@create subscribers.csv"
https://<MasterIP>/dra/slfapi/subscriber/bulkUpload --insecure

-u admin:admin

The file named create _subscribers.csv must be created before running this command.

Bulk Upload Status

Returns the list of bulk upload status of the bulk provisioning sorted by the latest first. Latest 10 statuses
would be saved in the system for reference, old status will automatically get purged.

The following table describes the fields in the Bulk Upload Status:

Table 5: Bulk Upload Status

Field Description

fileName The name of csv file uploaded.
startTime The time when task was scheduled.
endTime The time when task was finished

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls

Bulk Upload Status .

Field Description
approxEndTime The future time when task is expected to be finished
status The status of the task
Status can be one of these statues (scheduled,
in-progress, complete, failed)
statusMessage The detailed status of the task

numberOfTotalSubscriber

Total number of subscriber in csv file

numberOfPending The number of subscriber pending for execution

numberOfComplete The number of subscriber, whose execution is finished

numberOfSuccess The number of subscriber provisioned successfully.

numberOfFailure The number of subscriber failed in provisioning.

failedSubscriber This field contains the failure reason for each failed
subscriber. This is a map, with key as error code and
value as the list of failed subscribers.

Request

Method: GET

URI: /dra/slfapi/subscriber/bulkUploadStatus

Request Example

HTTP GET /dra/slfapi/subscriber/bulkUploadStatus

Response Example

HTTP STATUS: 200
[{

"approxEndTime": "08-17-2017 13:31:59",
"failedSubscriber": {

"1001": [
"1000000000",
"1000000001",
"1000000002"

}7

}7
{

"fileName": "create subscribers lk.csv",
"numberOfComplete": 700,

"numberOfFailure": 3,

"numberOfPending": 300,

"numberOfSuccess": 697,

"numberOfTotalSubscriber": 1000,

"startTime": "08-17-2017 13:30:16",

"status": "complete",

"statusMessage": "S1f bulk upload task execution is in

"endTime": "08-18-2017 12:41:27",

progress"

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
[l \oRAPeerAPI

"failedSubscriber": {},
"fileName": "create subscribers 10.csv",
"numberOfComplete": 10,
"numberOfFailure": O,
"numberOfPending": O,
"numberOfSuccess": 10,
"numberOfTotalSubscriber": 10,
"startTime": "08-18-2017 12:41:27",
"status": "complete",
"statusMessage": "S1f bulk upload task is completed"

H

Example of Curl Command

curl -X GET --progress-bar -H "Content-Type:
application/json" \https://<MasterIP>/dra/slfapi/subscriber/bulkUploadStatus
--insecure -u admin:admin

vDRA Peer API

The vDRA Peer API provides a REST API interface for the following functions:

* view active and inactive peer endpoints - local and remote
» view peer details for each host and/or peer key

* peer status logs

For more information about the Peer API, see the AP RAML at: https://<master ip>/central/dra/#!/dra/docs/api

Feature Description

The log collection CLIs collect the logs to support the troubleshooting based on timestamps. The
log_collection_stats KPI in the CLIs track the debug log collection status.

Following is an example using the Curl Command:

curl http://localhost:9100/metrics | grep log collection

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 51242 100 51242 0 0 6255k # HELP log collection stats Metric read from

/stats/prometheus/collector/text/log collection stats.prom
0 # TYPE log collection stats untyped
--:log collection stats{last modified="Tue Jan 31 06:43:15 GMT
2023", type="journalctl",user="admin", vm-name="WPS-DRA-master”,instance-name="NA"} 0
——i-= ——:i--:1-- —--:--:-- 6255k
node_textfile mtime seconds{file="log collection_stats.prom"} 1.678197758e+09

Table 6: Parameter Description

Parameter Description
user Specifies the name of the logged in CLI user.
time Specifies the log collection time.

. Managing CPS Interfaces and APIs

| Managing CPS Interfaces and APls
Feature Description .

Parameter Description

type The type of the logs collected. For example, journalctl.
vm-name Specifies the VM name in the CLI.

instance-name Specifies the name of the container in the CLI

Managing CPS Interfaces and APls .

Managing CPS Interfaces and APIs |
. Feature Description

. Managing CPS Interfaces and APIs

	Managing CPS Interfaces and APIs
	CPS vDRA Interfaces And APIs
	CRD REST API
	Grafana
	JMX Interface
	OSGi Console
	Policy Builder GUI
	DRA Central GUI
	SVN Interface

	Multi-user Policy Builder
	Revert Configuration
	Publishing Data

	CRD APIs
	Limitations
	Setup Requirements
	Policy Builder

	Architecture
	MongoDB Caching

	API Endpoints And Examples
	Query API
	Create API
	Update API
	Delete API
	Data Comparison API
	Table Drop API
	Export API
	Import API
	Snapshot POST API
	Snapshot GET API
	Revert API
	Admin Disable API
	Admin Enable API
	Tips for Usage
	View Logs

	Logging Support Using Journald
	Retaining journalctl Logs in DRA

	Bulk Provisioning of Records in SLF Database
	CSV File
	Bulk Upload API
	Bulk Upload Status

	vDRA Peer API
	Feature Description

