
Tracking CPS GUI and API Usage

• Track Usage, on page 1

Track Usage
Use the Audit History to track usage of the various GUIs and APIs.

If enabled, each request is submitted to the Audit History database for historical and security purposes. The
user who made the request, the entire contents of the request and if it is subscriber-related (a network ID
value), all network IDs are also stored in a searchable field.

Capped Collection
By default, the Audit History uses a 1 GB capped collection inMongoDB. The capped collection automatically
removes documents when the size restriction threshold is hit. The oldest document is removed as each new
document is added. For customers whowant more than 1GB of audit data, contact the assigned CiscoAdvanced
Services Engineer to get more information.

Configuration in Policy Builder is done in GB increments. It is possible to enter decimals, for example, 9.5
will set the capped collection to 9.5 GB.

PurgeAuditHistoryRequests
When using a capped collection, MongoDB places a restriction on the database and does not allow the deletion
of data from the collection. Therefore, the entire collection must be dropped and re-created. This means that
the PurgeAuditHistory queries have no impact on capped collections.

AuditRequests
As a consequence of the XSS defense changes to the API standard operation, any XML data sent in an
AuditRequest must be properly escaped even if inside CDATA tags.

For example, <ExampleRequest>...</ExampleRequest>

For more information on AuditType, refer to Cisco Policy Suite Unified API 2.3.0 Guide.

Tracking CPS GUI and API Usage
1

Operation
By default, Audit History is ON but it can be turned OFF.

• ua.client.submit.audit=true— property used by Policy Builder and set in
/etc/broadhop/pb/pb.conf

• Submit Requests to Audit Log—Unified API plug-in configuration in Policy Builder.

Initial Setup
There are three parts to the Audit History:

• Server — database and Unified API

• Policy Builder

• Audit Client — bundle that the Policy Builder uses to send Audit requests

Step 1 Start the Policy Builder with the following property:

-Dua.client.submit.audit=false (set in /etc/broadhop/pb/pb.conf)

Step 2 Add and configure the appropriate plug-in configurations for Audit History and Unified API.
Step 3 Publish the Policy Builder configuration.
Step 4 Start the CPS servers.
Step 5 Restart the Policy Builder with the following property:

-Dua.client.submit.audit=true

-Dua.client.server.url=https://lbvip02:8443/ua/soap

or

-Dua.client.server.url=http://lbvip02:8080/ua/soap

Read Requests
The Audit History does not log read requests by default.

• GetRefDataBalance

• GetRefDataServices

• GetSubscriber

• GetSubscriberCount

• QueryAuditHistory

• QueryBalance

• QuerySession

Tracking CPS GUI and API Usage
2

Tracking CPS GUI and API Usage
Operation

• QueryVoucher

• SearchSubscribers

The Unified API also has a Policy Builder configuration option to log read requests which is set to false by
default.

APIs
All APIs are automatically logged into the Audit Logging History database, except for QueryAuditHistory
and KeepAlive. All Unified API requests have an added Audit element that should be populated to provide
proper audit history.

Querying
The query is very flexible - it uses regex automatically for the id and dataid, and only one of the following
are required: id, dataid, or request. The dataid element typically will be the networkId (Credential) value of
a subscriber.

Disable Regex. The use of regular expressions for queries can be turned off in the Policy Builder configuration.Note

The id element is the person or application who made the API request. For example, if a CSR log into Control
Center and queries a subscriber balance, the id will be that CSR's username.

The dataid element is typically the subscriber's username. For example, if a CSR log into Control Center and
queries a subscriber, the id will be that of CSR's username, and the dataid will be the subscriber's credential
(networkId value). For queries, the dataid value is checked for spaces and then tokenized and each word is
used as a search parameter. For example, “networkId1 networkId2” is interpreted as two values to check.

The fromDate represents the date in the past from which to start the purge or query. If the date is null, the api
starts at the oldest entry in the history.

The toDate represents the date in the past to which the purge or query of data includes. If the date is null, the
api includes the most recent entry in the purge or query.

Purging
By default, the Audit History database is capped at 1 GB. Mongo provides a mechanism to do this and then
the oldest data is purged as new data is added to the repository. There is also a PurgeAuditHistory request
which can purge data from the repository. It uses the same search parameters as the QueryAuditHistory and
therefore is very flexible in how much or how little data is matched for the purge.

Regex Queries! Be very careful when purging records from the Audit History database. If a value is given
for dataid, the server uses regex to match on the dataid value and therefore will match many more records
than expected. Use the QueryAuditHistory API to test the query.

Note

Tracking CPS GUI and API Usage
3

Tracking CPS GUI and API Usage
APIs

Purge History
Each purge request is logged after the purge operation completes. This ensures that if the entire repo is
destroyed, the purge action that destroyed the repo will be logged.

Control Center
The Control Center version 2.0 automatically logs all requests.

PurgeAuditHistoryRequest
This API purges the Audit History.

The query is very flexible - it uses regex automatically for the id and dataid, and only one of the following
are required: id, dataid, or request. The dataid element typically will be the networkId (Credential) value of
a subscriber.

The id element is the person or application whomade the API request. For example, if a CSR logs into Control
Center and queries a subscriber balance, the id will be that CSR's username.

The dataid element is typically the subscriber's username. For example, if a CSR logs into Control Center and
queries a subscriber, the id will be that CSR's username, and the dataid will be the subscriber's credential
(networkId value). For queries, the dataid value is checked for spaces and then tokenized and each word is
used as a search parameter. For example, “networkId1 networkId2” is interpreted as two values to check.

The fromDate represents the date in the past from which to start the purge or query. If the date is null, the api
starts at the oldest entry in the history.

The toDate represents the date in the past to which the purge or query of data includes. If the date is null, the
api includes the most recent entry in the purge or query.

Size-Capped Database

If the database is capped by size, then the purge request ignores the request key values and drops the entire
database due to restrictions of the database software.

Note

Schema
<PurgeAuditHistoryRequest>
<key> AuditKeyType </key> [1]
</PurgeAuditHistoryRequest>

Example
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<PurgeAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>username</id>
<dataid>subscriber</dataid>
<request>API Name</request>
<fromDate>2011-01-01T00:00:00Z</fromDate>
<toDate>2011-01-01T00:00:00Z</toDate>

</key>
</PurgeAuditHistoryRequest>

Tracking CPS GUI and API Usage
4

Tracking CPS GUI and API Usage
Purge History

</se:Body>
</se:Envelope>

To purge all CreateSubscriberRequest:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<PurgeAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<request>CreateSubscriberRequest</request>

</key>
</PurgeAuditHistoryRequest>

</se:Body>
</se:Envelope>

To purge all CreateSubscriberRequest by CSR:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<PurgeAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>csrusername</id>
<request>CreateSubscriberRequest</request>

</key>
</PurgeAuditHistoryRequest>

</se:Body>
</se:Envelope>

To purge all actions by CSR for a given subscriber for a date range:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<PurgeAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>csrusername</id>
<dataid>subscriber@gmail.com</dataid>
<fromDate>2010-01-01T00:00:00Z</fromDate>
<toDate>2012-11-01T00:00:00Z</toDate>

</key>
</PurgeAuditHistoryRequest>

</se:Body>
</se:Envelope>

QueryAuditHistoryRequest
This API queries the Audit History.

The query is very flexible - it uses regex automatically for the id and dataid, and only one of the following
are required: id, dataid, or request. The dataid element typically will be the networkId (Credential) value of
a subscriber.

The id element is the person or application whomade the API request. For example, if a CSR logs into Control
Center and queries a subscriber balance, the id will be that CSR's username.

The dataid element is typically the subscriber's username. For example, if a CSR logs into Control Center and
queries a subscriber, the id will be that CSR's username, and the dataid will be the subscriber's credential
(networkId value). For queries, the dataid value is checked for spaces and then tokenized and each word is
used as a search parameter. For example, "networkId1 networkId2" is interpreted as two values to check.

Tracking CPS GUI and API Usage
5

Tracking CPS GUI and API Usage
QueryAuditHistoryRequest

The fromDate represents the date in the past from which to start the purge or query. If the date is null, the api
starts at the oldest entry in the history.

The toDate represents the date in the past to which the purge or query of data includes. If the date is null, the
api includes the most recent entry in the purge or query.

Schema:
<QueryAuditHistoryRequest>
<key> AuditKeyType </key> [1]
</QueryAuditHistoryRequest>

Example:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<QueryAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>username</id>
<dataid>subscriber</dataid>
<request>API Name</request>
<fromDate>2011-01-01T00:00:00Z</fromDate>
<toDate>2011-01-01T00:00:00Z</toDate>

</key>
</QueryAuditHistoryRequest>

</se:Body>
</se:Envelope>

To find all CreateSubscriberRequest:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<QueryAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<request>CreateSubscriberRequest</request>

</key>
</QueryAuditHistoryRequest>

</se:Body>
</se:Envelope>

To find all CreateSubscriberRequest by CSR:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<QueryAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>csrusername</id>
<request>CreateSubscriberRequest</request>

</key>
</QueryAuditHistoryRequest>

</se:Body>
</se:Envelope>

To find all actions by CSR for a given subscriber for a date range:
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<QueryAuditHistoryRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<key>
<id>csrusername</id>
<dataid>subscriber@gmail.com</dataid>
<fromDate>2010-01-01T00:00:00Z</fromDate>

Tracking CPS GUI and API Usage
6

Tracking CPS GUI and API Usage
QueryAuditHistoryRequest

<toDate>2012-11-01T00:00:00Z</toDate>
</key>

</QueryAuditHistoryRequest>
</se:Body>

</se:Envelope>

Policy Builder
The Policy Builder automatically logs all save operations (Publish and Save to Client) to the Audit History
database and also to a log file.

• Policy Builder Publish submits an entry to the Audit Logging Server (goes to database).

• Policy Builder Save to Client Repository submits an entry to the Audit Logging Server (goes to database).

• Whenever a screen is saved locally (Save button) XML is generated and logged for that user in
/var/log/broadhop/qns-pb.log.

Example log in qns-pb.log from Local Save in Policy Builder:
2013-02-06 11:57:01,214 [UIThread [vt75cjqhk7v4noguyc9c7shp]] DEBUG
c.b.c.r.BroadhopResourceSetAudit -
Audit: Local file change made by: broadhop. Updated File:
file:/var/broadhop/pb/workspace/tmp-ITC2/checkout/ConfiguredExtensionPoint-43730cd7-b238-4b29-a828-d9b4
47e5a64f-33851.xmi

XML Representation of changed screen:
<?xml version="1.0" encoding="UTF-8"?>
<policy:ConfiguredExtensionPoint xmlns:policy="http://broadhop.com/policy"
id="43730cd7-b238-4b29-a828-d9b447e5a64f-33851">
<extensionPoint
href="virtual:URI#_vxG4swK1Ed-M48DL9vicxQ"/>

<policies
href="Policy-default-_sY__4L_REeGCdakzuzzlAg.xmi#_sY__4L_REeGCdakzuzzlAg"/>

</policy:ConfiguredExtensionPoint>

Controlling Local Save output:

In the logback.xml file that controls Policy Builder logging, add
com.broadhop.client.resourceset.BroadhopResourceSetAudit as a category and set it to the desired level.

Reporting
For reporting purposes the following is the database structure in Mongo:
{
"_id" :
ObjectId("5097d75be4b0d5f7ab0d90fe"),
"_id_key" :
"username",
"comment_key" :
"comment",

"data_id_key" : [
"networkId11921"],

"timestamp_key" :
ISODate("2012-11-05T15:12:27.673Z"),
"request_key" :
"DeleteQuotaRequest",

Tracking CPS GUI and API Usage
7

Tracking CPS GUI and API Usage
Policy Builder

"data_key" :
"<DeleteQuotaRequest><audit><id>username</id></audit><networkId><![CDATA
[networkId11921]]></networkId><balanceCode>DATA</balanceCode><code>Recurring</code>
<hardDelete>false</hardDelete></DeleteQuotaRequest>
"}

The following table describes the various Reporting Keys.

Table 1: Reporting Keys

DescriptionField

The database unique identifier._id

the username of person who performed the action. In the above example the CSR
who issued the debit request.

_id_key

Some description of the audit action.comment_key

The credential of the subscriber. It is a list and so, if the subscriber has multiple
credentials, then they will all appear in this list. Please note that, it is derived from
the request data and so, for a CreateSubscriber request, there may be multiple
credentials sent in the request and each will be saved in the data_id_key list. In
the DebitRequest case, only one credential is listed because the request only has
the single networkId field.

data_id_key

The time the request was logged. If the timestamp value is null in the request then
the Audit module automatically populates this value.

timestamp_key

The name of the request. This provides a way to search on type of API request.request_key

The actual request XML.data_key

Audit Configuration

Step 1 Click the Reference Data tab, and then click Systems > system name > Plugin Configurations.

Tracking CPS GUI and API Usage
8

Tracking CPS GUI and API Usage
Audit Configuration

Figure 1: Plugin Configurations Summary

Step 2 Click Audit Configuration in the right pane to open the Audit Configuration dialog box.

Figure 2: Audit Configuration dialog box

Step 3 Under Audit Configuration there are different panes: General Configuration, Queue Submission Configuration,
Database Configuration, and Shard Configuration. An example configuration is provided in the following figures:

Tracking CPS GUI and API Usage
9

Tracking CPS GUI and API Usage
Audit Configuration

Figure 3: Queue Submission Configuration pane

Figure 4: Database Configuration pane

Figure 5: Shard Configuration pane

The following parameters are used to size and manage the internal queue that aids in the processing of Audit messages.

The application offloads message processing to a queue to speed up the response time from the API.

Tracking CPS GUI and API Usage
10

Tracking CPS GUI and API Usage
Audit Configuration

Table 2: Audit Configuration Parameters

DescriptionParameter

General Configuration

Select this check-box to activate capped collection function.Capped Collection

By default, the Audit History uses a 1 GB capped collection in MongoDB.
The capped collection automatically removes documents when the size
restriction threshold is hit.

Configuration in Policy Builder is done in GB increments. It is possible to
enter decimals, for example, 9.5 will set the capped collection to 9.5 GB.

Capped Collection Size

Select this check-box if you want read requests to be logged.Log Read Requests

Select this check-box only if you want to include read requests to be displayed
in query results.

Include Read Requests in Query Results

If you select this check-box, the use of regular expressions for queries is
turned off in the Policy Builder configuration.

Disable Regex Search

This parameter limits the search results.Search Query Results Limit

Queue Submission Configuration

Total number of messages the queue can hold at any given time.Message Queue Size

The amount of time for the runnable to sleep between batch processing. The
time is in milliseconds.

Message Queue Sleep

The number of messages to process in a given wake cycle.Message Queue Batch Size

The number of threads in the execution pool to handle message processing.Message Queue Pool Size

Database Configuration

Controls the write behavior of sessionMgr and for what errors exceptions
are raised. Default option is OneInstanceSafe.

Db Write Concern

Read preference describes how sessionMgr clients route read operations to
members of a replica set. The recommended option is typically Secondary
Preferred.

http://docs.mongodb.org/manual/core/read-preference/

Db Read Preference

This parameter is used to enter the amount of time to wait before starting
failover database handling. The time is in milliseconds.

Failover Sla Ms

Tracking CPS GUI and API Usage
11

Tracking CPS GUI and API Usage
Audit Configuration

http://docs.mongodb.org/manual/core/read-preference/

DescriptionParameter

This option specifies a time limit, in milliseconds, for the write concern.
This parameter is applicable only if you select TwoInstanceSafe in DbWrite
Concern.

This parameter causes write operations to return with an error after the
specified limit, even if the required write concern eventually succeeds.When
these write operations return, MongoDB does not undo successful data
modifications performed before the write concern exceeded the replication
wait time limit. This time is in milliseconds.

Max Replication Wait time Ms

Shard Configuration

The IP address of the sessionmgr node hosting the Audit database.Primary Ip Address

The IP address of the sessionmgr node that provides fail over support for
the primary database.

This is the mirror of the database specified in the Primary IP Address field.
Use this only for replication or replica pairs architecture.

This field is present but deprecated to maintain backward compatibility.

Secondary Ip Address

Enter the Port number of the Audit database as defined in
/etc/broadhop/mongoConfig.cfg.

The default value in Policy Builder is 27017.

For All-In-One deployments, the default Audit database port number is
configured as 27017 (no update is needed to this field).

For HA or GR deployments, the default Audit database port is 27725. You
must update this field to match the Audit database port (27725) or as defined
in /etc/broadhop/mongoConfig.cfg.

Port

According to your network requirements, configure the parameters in Audit Configuration and save the configuration.

Pre-configured auditd
In the /usr/share/doc/audit-version/ directory, the audit package provides a set of pre-configured
rules files.

The Linux Audit system provides a way to track security-relevant information on your system. Based on
pre-configured rules, Audit generates log entries to record as much information about the events that are
happening on your system as possible.

In the /usr/share/doc/audit-version/ directory, the audit package provides a set of pre-configured
rules files.

To use these pre-configured rule files, create a backup of your original /etc/audit/audit.rules file
and copy the configuration file of your choice over the /etc/audit/audit.rules file:

cp /etc/audit/audit.rules /etc/audit/audit.rules_backup
cp /usr/share/doc/audit-version/stig.rules /etc/audit/audit.rules

Tracking CPS GUI and API Usage
12

Tracking CPS GUI and API Usage
Pre-configured auditd

For more information on auditd process, refer to the link.

Tracking CPS GUI and API Usage
13

Tracking CPS GUI and API Usage
Pre-configured auditd

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-system_auditing.html

Tracking CPS GUI and API Usage
14

Tracking CPS GUI and API Usage
Pre-configured auditd

	Tracking CPS GUI and API Usage
	Track Usage
	Capped Collection
	PurgeAuditHistoryRequests
	AuditRequests
	Operation
	Initial Setup
	Read Requests
	APIs
	Querying
	Purging
	Purge History
	Control Center
	PurgeAuditHistoryRequest
	QueryAuditHistoryRequest
	Policy Builder
	Reporting
	Audit Configuration
	Pre-configured auditd

