
Overview

• General Information, on page 1
• Namespace, on page 22

General Information
Unified API version 19.3.0 works with CPS 18.0+.

Release Notes
CSCvf86865 - Added new parameter called retrieveAll in QuerySessionRequest (default: true) to retrieve
all or one session entry. Added logic to first check whether the session entry exists for the given key in
memcache. If found, then query the particular DB shard.

Default URLs

HA

Table 1: URLs - HA

endpointhttps://lbvip01:8443/ua/soap

retrieves the WSDLhttps://lbvip01:8443/ua/wsdl/UnifiedApi.wsdl

retrieves the XSD
(schema)

https://lbvip01:8443/ua/wsdl/UnifiedApi.xsd

AIO

Table 2: URLs - AIO

endpointhttp://lbvip01:8080/ua/soap

retrieves the WSDLhttp://lbvip01:8080/ua/wsdl/UnifiedApi.wsdl

Overview
1

retrieves the XSD
(schema)

http://lbvip01:8080/ua/wsdl/UnifiedApi.xsd

Audit History
The Audit History is a way to track usage of the various GUIs and APIs it provides to the customer.

If enabled, each request is submitted to the Audit History database for historical and security purposes. The
user who made the request, the entire contents of the request and if it is subscriber related (meaning that there
is a networkId value), all networkIds are stored as well in a searchable field.

Capped Collection
The Audit History uses a 1 GB capped collection inMongo Db by default. The capped collection automatically
removes documents when the size restriction threshold is hit. The oldest document is removed as each new
document is added. For customers who want more than 1 GB of audit data, please contact the assigned Cisco
Advanced Services Engineer to get more information.

Configuration in Policy Builder is done in GB increments. It is possible to enter decimals, for example, 9.5
will set the capped collection to 9.5 GB.

PurgeAuditHistoryRequests

When using a capped collection, Mongo Db places a restriction on the database and does not allow the deletion
of data from the collection. Therefore, the entire collection must be dropped and re-created. This means that
the PurgeAuditHistory queries have no impact on capped collections.

Note

AuditRequests

As a consequence of the XSS defense changes to the API standard operation, any XML data sent in an
AuditRequest must be properly escaped even if inside CDATA tags. For example,
<ExampleRequest>...</ExampleRequest> See AuditType for more information.

Note

Operation
The Audit History can be turned off, but it is on by default.

• ua.client.submit.audit=true - property used by Policy Builder and set in
/etc/broadhop/pb/pb.conf

• Submit Requests to Audit Log - Unified API plugin configuration in Policy Builder

Initial Setup
There are 3 parts to the Audit History

• Server - database and Unified API

• Policy Builder

Overview
2

Overview
Audit History

• Audit Client - bundle that the Policy Builder uses to send Audit requests

To setup the system:

Step 1 Start the Policy Builder with the following property: -Dua.client.submit.audit=false (set in
/etc/broadhop/pb/pb.conf)

Step 2 Add and configure the appropriate plugin configurations for Audit History and Unified API
Step 3 Publish the Policy Builder configuration
Step 4 Start the CPS servers.
Step 5 Restart the Policy Builder with the following property:

-Dua.client.submit.audit=true

-Dua.client.server.url=http://ADDRESS OF SERVER:PORT

Read Requests
The Audit History does not log read requests by default.

• GetRefDataBalance

• GetRefDataServices

• GetSubscriber

• GetSubscriberCount

• QueryAuditHistory

• QueryBalance

• QuerySession

• QueryVoucher

• SearchSubscribers

The Unified API also has a Policy Builder configuration option to log read requests which is set to false by
default.

APIs
All APIs are automatically logged into the Audit Logging History database, except for QueryAuditHistory
and KeepAlive. All Unified API requests have an added Audit element that should be populated to provide
proper audit history.

Querying
The query is very flexible - it uses regex automatically for the id and dataid, and only one of the following
are required: id, dataid, or request. The dataid element typically will be the networkId (Credential) value of
a subscriber.

Overview
3

Overview
Read Requests

Disable Regex

The use of regular expressions for queries can be turned off in the Policy Builder configuration.

Note

The id element is the person or application whomade the API request. For example, if a CSR logs into Control
Center and queries a subscriber balance, the id will be that CSR's username.

The dataid element is typically the subscriber's username. For example, if a CSR logs into Control Center and
queries a subscriber, the id will be that CSR's username, and the dataid will be the subscriber's credential
(networkId value). For queries, the dataid value is checked for spaces and then tokenized and each word is
used as a search parameter. For example, "networkId1 networkId2" is interpreted as two values to check.

The fromDate represents the date in the past from which to start the purge or query. If the date is null, the api
starts at the oldest entry in the history.

The toDate represents the date in the past to which the purge or query of data includes. If the date is null, the
api includes the most recent entry in the purge or query.

Purging
The Audit History database is capped at 1 GB by default. Mongo provides a mechanism to do this and then
the oldest data is purged as new data is added to the repository. There is also a PurgeAuditHistory request
which can purge data from the repository. It uses the same search parameters as the QueryAuditHistory and
therefore is very flexible in how much or how little data is matched for the purge.

Regex Queries!

Be very careful when purging records from the Audit History database. If a value is given for dataid, the
server uses regex to match on the dataid value and therefore will match many more records than expected.
Use the QueryAuditHistory API to test the query.

Note

Control Center
The Control Center version 2.0 automatically logs all requests.

Policy Builder
The Policy Builder automatically logs all save operations (Publish and Save to Client).

HTTP KeepAlive

HA

Response: <html><body><p>KeepAlive</p></body></html>https://lbvip01:8443/ua/soap/keepalive

AIO

Response: <html><body><p>KeepAlive</p></body></html>http://lbvip01:8080/ua/soap/keepalive

Overview
4

Overview
Purging

Dates
Dates are in Zulu/UTC timestamp format. For proper server operation, you must use a consistent timestamp
format for all dates in the API requests.

Parsing format: yyyy-MM-ddTHH:mm:ss[.SSS][Z|(+|-)hh:mm]

Hijri Dates

The Unified API does not support Hijri date translation at this time.

Note

Valid Timestamp Formats
These are the valid timestamps based on the parsing format listed above:

the Z indicates Zulu/UTC time - the database translates to UTC offset of
locale/timezone

2010-09-30T00:00:00Z

manual inclusion of UTC offset of locale/timezone - the database will store
as is

2010-09-30T00:00:00+00:00

uses milliseconds for extra specificity of time2010-09-30T00:00:00.000Z

uses milliseconds for extra specificity of time2010-09-30T00:00:00.000+00:00

no timezone offset or Z indication - the database translates to UTC offset
of locale/timezone unless qns.conf param is set

2010-09-30T00:00:00

no timezone offset or Z indication and uses milliseconds for extra
specificity of time - the database translates to UTC offset of locale/timezone
unless qns.conf param is set

2010-09-30T00:00:00.000

No Timezone Offset or Z - qns.conf parameter

The Unified API now supports dates that do not include a timezone offset or Z indication for UTC time.When
a date is sent that does not include a timezone offset or Z, the API assumes Z/UTC unless the following
qns.conf param is set:

-Dua.date.converter.timezone.offset. The timezone offset takes the form of (+|-)hh:mm. For example, -06:00
is Mountain Daylight Time (MDT) while -07:00 is Mountain Standard Time (MST) and +00:00 is UTC:

-Dua.date.converter.timezone.offset=-06:00

Note

Database Timestamp Translation
The database always uses yyyy-MM-ddTHH:mm:ss.SSS(+|-)hh:mm for formatting dates. The database also
always translates the datetime to the local server timezone. Therefore, the results may be unexpected if you
pass the value with the Z format. For example: 2010-10-15T00:00:00Z produces Thu Oct 14 2010 18:00:00
GMT-06:00 (MDT) in the database instead of Fri Oct 15 2010 00:00:00 GMT-06:00 (MDT) assuming your
server is set to North AmericanMountain Time. The reason is that the server reads the timezone of the incoming

Overview
5

Overview
Dates

value as UTC (+00:00 indicated by the Z) and then translates that to the local server timezone which in this
example is North American Mountain Time or -06:00. Mountain Time is 6 hours before (-) UTC.

Daylight Savings Time
Daylight Savings Time adds another wrinkle to the processing of dates and times. In the course of a year, the
server timezone will automatically shift from standard time to daylight savings time. In our examples, that
would be North American Mountain Daylight Savings Time (MST instead of MDT). During that period, the
following will happen:

2010-11-15T00:00:00-06:00 produces Sun Nov 14 2010 23:00:00 GMT-07:00 (MST) in the database

Because Nov 15th 2010 is after the switch back to Standard time in the Mountain Zone but the database is
translating to daylight savings time which is an hour earlier. To get Mon Nov 15 2010 00:00:00 GMT-07:00
(MST) during the Daylight Savings portion of the year, you need to pass in 2010-11-15T00:00:00-07:00.

Wikipedia ISO 8601
If you want to understand the ISO 8601 standard for date time handling, the followingWikipedia article could
be useful.

http://en.wikipedia.org/wiki/ISO_8601

Services and Service Schedules
Service Schedules use a traditional concept of cron taken from the Quartz package. Quartz documents cron
here. While we are not using the CronTrigger class, the explanation of the fields and how the values operate
is useful information.

We essentially are trying to model a start and end date and a start and end time using the XML structure shown
below. We do not deal with seconds or milliseconds which cron does. Instead we start at minute specificity.
Instead of using pure cron notation, we have a startTime and endTime that makes it more human readable.
We also use startDate and endDate which along with the start and end times, create the period of time over
which the service is active. Then the repeat object handles how the schedule repeats within the specified
date/timeframe. The repeat elements use actual Quartz cron notation.

startTime must be before endTime since it represents a range of time within a given day for the service to be
active and it is used to build the cron object during processing.

Service Evaluation "Gaps" - Seconds/Milliseconds

The cron processing appends :59:999 (59 seconds and 999 milliseconds) to the endTime value which means
that if you set the endTime to 12:59, the cron processing evaluates that as 12 hours 59 minutes 59 seconds
and 999 milliseconds. This helps ensure that service evaluation for start and stop times does not have any
"gaps". This is necessary for processing schedules like in the example below which cross date boundaries.

Note

Overview
6

Overview
Daylight Savings Time

http://en.wikipedia.org/wiki/ISO_8601
http://www.quartz-scheduler.org/documentation/

Crossing Date Boundaries

Schedules are tricky because they operate on two levels:

1. a date period for which the service is active

2. a time period for any given day which the service is active, meaning that you cannot cross date boundaries
with the startTime and endTime

The typical gotcha scenario is trying to have a service be active for 24 hours across 2 days - for example, the
service starts at 2 am on day 1 and ends at 2 am on day 2.

Most people try to do the following:

Schedule 1: startDate: 2013-10-03, endDate: 2013-10-04, startTime: 02:00, endTime: 01:59

The above does not work because the endTime is before the startTime which will result in an invalid cron
object for processing.

Instead, do the following:

Schedule 1: startDate: 2013-10-03, endDate: 2013-10-03, startTime: 02:00, endTime: 23:59

Schedule 2: startDate: 2013-10-04, endDate: 2013-10-04, startTime: 00:00, endTime: 01:59

The above sets 2 schedules for the service: the first is valid from 2:00 am to 11:59 pm on October 3rd and the
second is valid from 12:00 am to 1:59 am on October 4th. This creates a 24 hour active period for the service.

Note

Quartz Documentation

As the Quartz documentation mentions, dayOfMonth and dayOfWeek are related and only one of the fields
can contain ? for any given cron expression. dayOfMonth and dayOfWeek both cannot be configured at the
same time. Only one parameter can be configured at any given point of time. If configuring dayOfWeek, set
? in dayOfMonth as <dayOfMonth>?</dayOfMonth>. If configuring dayOfMonth, set ? in dayOfWeek as
<dayOfWeek>?</dayOfWeek>

Note

While there is a great of flexibility with the current data structure, it is strongly recommended that you fill in
all 4 values if you decide to include a repeat element.

defaultregexfield

[\-,0-9\?LW/]*dayOfMonth

*[\-,0-9*A-Z/]*month

?[\-,0-9*\?L#/]*dayOfWeek

[\-,0-9/]*year

<schedule>
<startDate>2011-01-01T00:00:00Z</startDate>
<endDate>2012-01-01T00:00:00Z</endDate>
<state>ON</state>
<startTime>00:00</startTime>

Overview
7

Overview
Services and Service Schedules

http://www.quartz-scheduler.org/documentation/

<endTime>23:59</endTime>
<repeat>
<dayOfMonth>*</dayOfMonth>
<month>*</month>
<dayOfWeek>?</dayOfWeek>
<year>*</year>

</repeat>
<enabled>true</enabled>

</schedule>

Possibly the best feature of the schedule definition is that most of it contains defaults, so you only need to
define a start date and if it's enabled, and you will have a schedule that operates forever from the start date,
24 hours a day.
<schedule>
<startDate>2011-01-01T00:00:00Z</startDate>
<enabled>true</enabled>

</schedule>

State
State is an additional layer of configuration that helps determine how to interpret the schedule. As noted above,
the enabled field indicates whether the service is active or not. The state field indicates whether the time/date
and cron values evaluate from a positive or negative perspective.

Example: state == ON, date range Jan 2000 - Jan 2001, time range = 9AM-5PM
<schedule>
<startDate>2000-01-01T00:00:00Z</startDate>
<endDate>2001-01-31T00:00:00Z</endDate>
<state>ON</state>
<startTime>09:00</startTime>
<endTime>17:00</endTime>
<enabled>true</enabled>

</schedule>

The above evaluates as: if at the time of evaluation the date is within range and the time is within the time
range, the Policy Engine will return serviceActive=true and the Policy Engine will turn the service on or keep
it on if already started for the subscriber.

Example: state == OFF, date range Jan 2000 - Jan 2001, time range = 9AM-5PM

The above evaluates as: if at the time of evaluation the date is within range and the time is within range, the
Policy Engine will return serviceActive=false and the Policy Engine will turn the service off.

Custom Search Params
The basic search provides for name and credential matching. However, there is a large data structure that can
be matched against. The data objects are structured as a large HashMap or KEY:VALUE pairs. Lists of
HashMaps can be included as well. An industry-standard term for KEY:VALUE pairs is Attribute:Value pairs
or AVPs. That is why the SearchSubscribersRequest uses "avp" as the element tag for complex search
parameters. Currently, the Search views all parameters as an AND operation.

Each avp contains 2 children: code and value. The Code represents the KEY in the data HashMap, and the
Value is the VALUE associated to that KEY in the data HashMap. For example, the following code block
represented in JSON (JavaScript Object Notation) shows some of the key data points of a Subscriber.

We have tried to be consistent and append "_key" to the KEY portion of the KEY:VALUE pair. Notice that
version_key is the KEY for an integer value, and that services_key is the KEY for a List of "services". Each
service is also a HashMap of KEY:VALUE pairs.

Overview
8

Overview
State

NoSQL

It's important to note that the CPS database is a NoSQL database. It does not use tables and columns to structure
the data. Because each record is a "document" (which is a HashMap of HashMaps), you can access keys in
the same way you access properties in JavaScript with dot notation. In the example below, if you want to find
subscribers who have the service AVP whose code is AVP_CODE use services_key.avps_key.code_key.

Note

{ "_id_key" : null,
"version_key" : 0,
"services_key" : [

{
"code_key" : "GOLD",
"enabled_key" : true,
"avps_key" : [

{
"code_key" : "AVP_CODE",
"value_key" : "AVP_VALUE"

},
{

"code_key" : "AVP_CODE_2",
"value_key" : "AVP_VALUE"

}
]

}
],
"name_key" : { "full_name_key" : ["Test", "Subscriber"] },
"status_key" : "ACTIVE",
"credentials_key" : [

{
"network_id_key" : "networkId1",
"password_key" : "password",
"expiration_date_key" : null

}
],
"avps_key" : [

{
"code_key" : "SUBSCRIBER_AVP_CODE",
"value_key" : "SUBSCRIBER_AVP_VALUE",

}
]
}

Example: Services:GOLD and Rate Plan:6MO_DISCOUNT. This should return all users who have the Gold
Service and the 6 month discounted payment plan.
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<SearchSubscribersRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<filter>
<avp>
<code>services_key.code_key</code>
<value>GOLD</value>

</avp>
<avp>
<code>billing_info_key.rate_plan_code_key</code>
<value>6MO_DISCOUNT</value>

</avp>
</filter>

</SearchSubscribersRequest>

Overview
9

Overview
Custom Search Params

</se:Body>
</se:Envelope>

Example: AVP:UPLINK. This should return all users who have an AVP with code = uplink.
<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/">
<se:Body>
<SearchSubscribersRequest xmlns="http://broadhop.com/unifiedapi/soap/types">
<filter>
<avp>
<code>avps_key.code_key</code>
<value>SUBSCRIBER_AVP_CODE</value>

</avp>
</filter>

</SearchSubscribersRequest>
</se:Body>

</se:Envelope>

Balance Engine Thresholds
The Threshold table in Policy Builder defines thresholds that trigger messages when quota is credited/debited
and therefore qualifies as breached/unbreached. These messages are sent back to the Policy Engine from
MSBM on Credit, Debit, Charge, and Provision functions so that a policy can make decisions and take actions
based on the threshold breach. When breached, the current amount is reported.

Thresholds can be defined for an Account Balance Template (monitors all child quotas as an aggregate) and
for a Quota Template (only monitors the credits of that quota). Thresholds operate against the total of all
currently valid credits under the specified balance/quota. A currently valid credit is a credit for which the start
date is before the current date/time and the end date is after the current date/time.

Threshold Calculation

Thresholds are based on charged amounts. Reserved amounts are not included.

Note

Example

• A Subscriber has a credit of 1 GB that ends on Oct 15th

• The system is configured with a Percentage threshold of 90% on a Balance template

• The Subscriber uses 922 MB of credit

• The threshold has been crossed: 922 MB is 90% of 1024 MB (1 GB)

• The Subscriber purchases more credit that ends on Oct 30th - another 1 GB is credited

• The threshold is recalculated and is now at 45%. The calculation formula is: ((amount charged / the
original credit amount) * 100) In this case, (922 MB / 2048 MB) * 100

• However, once the date passes Oct 15th, the first credit expires and is no longer used in the threshold
calculation. As a result, if the Subscriber has not used any more quota, the threshold will be calculated
at 0% - (0 MB / 1024) * 100

Overview
10

Overview
Balance Engine Thresholds

Determing The Calculation Values

The original amount that a threshold is compared against can be determined using the sum of balanceTotal +
debitedTotal + reservedTotal returned in a QueryBalance request. The amount charged is the debitedTotal.
Percentage thresholds are calculated as (debitedAmount/(balanceTotal + debitedTotal + reservedTotal)) *
100.

Note

Reference Data vs. Subscriber Specific
Reference Data thresholds (RDT) are defined on the Balance or Quota Template to which they apply in Policy
Builder. They are system or global thresholds and are applied to all subscribers who have purchased the related
Balance or Quota package.

Subscriber Specific thresholds (SST) are defined via API or Policy Action. SSTs are only applicable for the
subscriber for which the SST was defined. You must defined the SST individually for each subscriber for
whom you want the threshold to apply.

Unique Names

Thresholds must have unique names. SSTs and RDTs must have unique names as well. You can use the same
SST code name for multiple subscribers, but that value must be unique compared to the name values for the
RDTs.

Note

Reduction of Reservation Granted Amounts
A threshold defined on an Account Balance Template does reduce the reservation amount as it nears the
threshold.

A threshold defined on a Quota Template does NOT reduce the reservation amount as it nears the threshold.

When the reservation granted amount is reduced from the requested amount due to a threshold, the quota
granted is reduced to the amount between the current usage level and the value where the threshold would be
breached. This reduction continues on each successive reservation until the Default MinimumDosage defined
on the Balance Plugin Configuration is reached. After that value is reached for the granted amount, the next
reservation will go back to normal behavior and trigger the breach occurred condition.

Soft Thresholds
All thresholds in CPS are soft thresholds.

A soft threshold allows the Balance Engine to grant the minimum dosage even though it could cause the
subscriber's balance to breach a threshold.

Threshold Groups
It is possible to group thresholds so that they operate in concert. By adding a group name in the Policy Builder
configuration, thresholds in the same group are evaluated in the order they appear in the table (top to bottom).
The Balance Engine will then only send notifications to the Policy Engine for the first threshold breach found.

Example

Overview
11

Overview
Reference Data vs. Subscriber Specific

• The system is configured with three Percentage thresholds on a Balance template: 80%, 60% and 50%
in descending order

• All three thresholds are grouped, for example, CPSPercents

• When a Subscriber's usage gets to 62%, the Balance Engine will only send notifications for the 60%
threshold

• Once the Subscriber's usage goes above 80%, the Balance Engine will only send notifications for the
80% threshold and will not send notifications for the 60% or 50%

Threshold Group Order

Threshold group processing is based on the actual order of the thresholds in the Policy Builder configuration
table NOT on the highest value. For example, if there are 2 thresholds: 60% and 80% and the 60% threshold
is the top or first one listed, then notifications for the 80% threshold will never get sent. However, if the
thresholds are defined as amount remaining instead of amount used (amount used is the default), then
notifications for the 80% threshold will get processed and sent.

Note

Bill Cycle
Recurring Quota now has the concept of Bill Cycle. If you decide to use a Bill Cycle Quota, it supercedes the
use of manually setting Recurring Refresh dates. See Last Recurring Refresh (LRR) for more information.

Converting Recurring Quota to Bill Cycle

It is possible to change a Recurring Quota template to use Bill Cycle. For an existing subscriber, the LRR
date is used going forward but the recurrence frequency and all other behaviors for the quota are then based
on the Bill Cycle definition and are implemented during the next refresh. Existing subscribers cannot have
29, 30, or 31 as their Bill Cycle refresh date using a converted quota.

Note

Bill Cycle values are 1 - 31 inclusive.

29th, 30th, and 31st
Compared to LRR, Bill Cycle handles the end of month problem in a much more intuitive manner. If the LRR
is set to the 29th, 30th, or 31st with a Recurring Quota, the LRR gets changed to 28 on the next refresh.
Whereas, if the bill cycle day for a Bill Cycle Quota is set to 30 the refresh in February, for example, will be
on the 28th or on the 29th in a leap year. However, in any other month, the refresh will happen on the 30th
as expected.

Updating Bill Cycle

Bill cycle can be changed by referring to ChangeBillCycleRequest API.

Note

Overview
12

Overview
Bill Cycle

ChangeRecurringRefreshDay API

Do not use the ChangeRecurringRefreshDayAPI with Bill Cycle Quotas, instead useChangeBillCycleRequest.

Note

Recurrence Frequency Amount

For a regular Recurring Quota, the Recurrence Frequency Amount (RFA) field adds an additional layer of
control to when the quota refreshes. If the RFA is set to 2, then refresh will wait 2 periods before refreshing
the quota. This way you could have quota refresh every 2 months instead of every month. For Bill Cycle
Quota, the Recurrence Frequency Amount (RFA) is ignored. Refresh happens once every bill cycle.

Note

Last Recurring Refresh (LRR)
Recurring Quota uses the concept of Last Recurring Refresh (LRR) to properly calculate the refresh of the
recurring quota.

LRR is the date that a recurring quota was provisioned or last refreshed by the Balance engine. It is the date
that the system uses to determine the next time a recurring quota should be refreshed.

Monthly Recurring Quota

Be particularly careful setting this manually with a recurring quota if the refresh frequency is set to monthly.
A month is not 30 days. When set to monthly, an actual month is used for the calculations and this does vary
depending on which month you are doing this in as well as other factors like Daylight Savings Time.

Note

Refreshed means a new credit will be created automatically on the next Balance action after the LRR +
template recurrence frequency (the value of this calculation equals the Next Refresh Date). For example, if a
recurring quota is defined as monthly and the LRR is "Wed Mar 28 2012 15:05:11 GMT-0600 (MDT)"
(typically this will also be the start date of the corresponding credit), then the next refresh will occur on or
after "Fri Apr 27 2012 15:05:11GMT-0600 (MDT)" which should typically be the end date of the corresponding
credit.

The refresh occurs on the next Balance action instead of on the actual next refresh date so that not all subscriber
accounts refresh at the exact same moment, thus balancing load and resources. However, it should be noted
that the date of the new credit created by the refresh will still have its dates based on the actual stored LRR
and not on when it is actually refreshed by the Balance engine. The new credit will have a start date equal to
the new LRR after the refresh has occurred. The new credit end date will be the start date + recurrence
frequency. This value is also the new Next Refresh Date.

The LRR can be overridden in the CreateBalance or ChangeRecurringRefreshDay or ChangeBillCycle APIs.

Overview
13

Overview
Last Recurring Refresh (LRR)

Override LRR

If you override LRR, make sure that the start date and end date align properly. To do this consistently, set the
startDate value the same as the LRR. This will ensure that the endDate equals the next refresh date (LRR +
template recurrence frequency) so that the provisioned credit ends when the refresh (new credit is created)
occurs.

Note

29th, 30th, and 31st
• If the LRR is set to the 29th, 30th, or 31st, it will remain at the date until the first refresh and/or rollover
event, then the LRR will be set to the 28th.

• Customers should be encouraged to not use dates of the 29th, 30th, or 31st, particularly if this is tied to
their billing.

• Customer should be informed that while they can provision on the 29th, 30th, or 31st, the refresh date
will "float" to the 28th the next month.

30 days vs 1 month

If you use a number of days, for example 30, instead of 1 month, the Balance engine will refresh on the exact
number of days, but that will cause the refresh date to "float" to a different day of the month every month
since no two consecutive months have the same number of days (except July and August).

Note

Id, ParentId and Version
These fields require special handling. Do not modify id, parentId, and version at all for any reason.

These fields are marked as optional in the schema because the Unified API re-uses objects - in particular the
subscriber object in creates and updates. If the id, for example, which represents the database generated id
value was a required field, then the CreateSubscriber call would require a value. This does not make sense
since the subscriber object is not yet in the databse.

The version field is used for optimistic locking, since MongoDB does not implement it. Optimistic locking
is the concept of managing concurrent updates to objects using a value that increments in a known way for
each modification. If the version field does not match the expected value on update, it is assumed that another
thread modified the object and therefore the data is now "dirty".

XSS - Cross Site Scripting Defense
Each incoming request is now checked for dangerous characters and code.

Two regexes are used to check each request:

• ^.*?(?:[^\\p{L}\\p{Nd}\\p{Nl}!@#-_/:\"'\\s={}\\+]|[$^()\\\\]|([&]

(?!(amp|apos|gt|lt|quot)[;]))|(?<!([&](amp|apos|gt|lt|quot)))[;])+.*?$

• <!\\[CDATA\\[.*?[<>].*?(?!\\]\\]>)

Overview
14

Overview
29th, 30th, and 31st

The first regex returns true if the request contains any characters that are not word characters, !@#-_/:"' or
white space or if the request contains any of these characters $^&();\ The first regex allows & and ; if they
are part of the XML 1.0 valid entities (amp,apos,gt,lt,quot). The second regex checks if <> are inside CDATA
tags. Another way to explain the two regexes is that the following characters are allowed: alphanumeric
including unicode for other languages, white space, valid XML 1.0 entities, .!@#-_/:"'?*[]={}+,% and <>
except when inside CDATA tags.

For example, this is a valid request:
<CreateSubscriberRequest><subscriber><credential><networkId><![CDATA[testcredential]]></networkId></credential><service><code>GOLD</code><enabled>true</enabled></service><status>ACTIVE</status></subscriber></CreateSubscriberRequest>

This is an invalid request:
<CreateSubscriberRequest><subscriber><credential><networkId><![CDATA[<script
alert(document.cookie);>]]></networkId></credential><service><code>GOLD</code><enabled>true</enabled></service><status>ACTIVE</status></subscriber></CreateSubscriberRequest>

See CDATA for more information about using CDATA tags and XML entities with the Unified API.

Data Compatibility

Please note that because of the XSS restriction in the API, a deployment should only use the allowed character
set for all configuration in Policy Builder to make sure that all data is compatible. It is possible to adjust the
regex and to determine if only cdata is checked via two properties: -Dua.xss.pattern=#REGEX_PATTERN#
and -Dua.xss.check.cdata.only=false. If no pattern is used: -Dua.xss.pattern="", then ua.xss.check.cdata.only
will be set to true.

Note

Avoid

Even though $ & < are the only restricted characters in the Control Center and Unified API from a schema
perspective, considering the XSS checks, at a minimum, it is best to avoid the following characters: $^&();=+<\
See CDATA for more information about using CDATA tags and XML entities with the Unified API.

Note

Error Codes
The %s is used as a replacement value so that more meaningful information can be included in the message.

Error Codes

Please note that due to API changes and bug fixes, some of the error codes are no longer used.

Note

Overview
15

Overview
Error Codes

Error Codes

• Codes 9 and below apply to all APIs.

• Codes 10-15 are the Subscriber APIs like CreateSubscriber, DeleteSubscriber, etc.

• Codes 17-19 apply to all APIs.

• Code 55 is specifically related to password hashing for all APIs that modify credentials.

• For all other codes - the names match the request.

Note

messagenamecode

Request completed successfullySUCCESS_CODE_GENERIC0

Validation completed successfullySUCCESS_CODE_VALIDATION1

Unable to process the requestERROR_CODE_GENERIC2

Object: %s is nullERROR_CODE_NULL3

Invalid XML: %sERROR_CODE_ILLEGAL_VALUE4

Illegal Value: %sERROR_CODE_ILLEGAL_VALUE5

Invalid Request: %sERROR_CODE_INVALID_REQUEST6

Invalid Response: %sERROR_CODE_INVALID_RESPONSE7

Required Data: %sERROR_CODE_REQUIRED_DATA8

Duplicate Value for Unique Data
Constraint: %s

ERROR_CODE_NON_UNIQUE9

Error Creating Object: %sERROR_CODE_CREATE10

Error Updating Object: %sERROR_CODE_UPDATE11

Optimistic Locking Error - the
version number does not match the
database version, another party has
probably updated the data. Refresh
the request data and try the request
again

ERROR_CODE_UPDATE_VERSION12

Error Deleting Object: %sERROR_CODE_DELETE13

Error Deleting Credential: The
networkId(s) [%s] match(es) a
balance id - please change the
balance id before deleting the
credential(s).

ERROR_CODE_DELETE_

CREDENTIAL_BALANCE_ID

14

Overview
16

Overview
Error Codes

messagenamecode

Error Searching for Object with
key: %s

ERROR_CODE_SEARCH15

Error Authenticating
User/Subscriber Object with
credential: %s

ERROR_CODE_AUTHENTICATE16

Servlet Processing Error: %sERROR_CODE_SERVLET_EXCEPTION17

The expected module is not
installed: %s

ERROR_CODE_WS_MODULE_

NOT_INSTALLED_EXCEPTION

18

The requested api is not
implemented at this time

ERROR_CODE_WS_API_NOT_

IMPLEMENTED_EXCEPTION

19

Error Querying Sessions(s) for
Subscriber: %s

ERROR_CODE_QUERY_SESSION20

Error Refreshing Subscriber
Profile: %s

ERROR_CODE_REFRESH_SESSION21

Error Starting Session(s) for
Subscriber: %s

ERROR_CODE_START_SESSION22

Error Stopping Session(s) for
Subscriber: %s

ERROR_CODE_STOP_SESSION23

Error Updating Session for
Subscriber: %s

ERROR_CODE_UPDATE_SESSION24

Error Creating Balance for
Subscriber: %s

ERROR_CODE_CREATE_BALANCE25

Error Crediting Quota for
Subscriber: %s

ERROR_CODE_CREDIT26

Error Debiting Quota for
Subscriber: %s

ERROR_CODE_DEBIT27

Error Deleting Balance for
Subscriber: %s

ERROR_CODE_DELETE_BALANCE28

Error Deleting Quota for
Subscriber: %s

ERROR_CODE_DELETE_QUOTA29

Error Querying Balance for
Subscriber: %s

ERROR_CODE_QUERY_BALANCE30

Error Rolling Over Credit for
Subscriber: %s

ERROR_CODE_ROLLOVER_CREDIT31

Overview
17

Overview
Error Codes

messagenamecode

Error Updating Balance for
Subscriber: %s

ERROR_CODE_UPDATE_BALANCE32

Error Creating Voucher: %sERROR_CODE_CREATE_VOUCHER33

Error Deleting Voucher: %sERROR_CODE_DELETE_VOUCHER34

Error Querying Voucher: %sERROR_CODE_QUERY_VOUCHER35

Error Executing Action: %sERROR_CODE_EXECUTE_ACTION36

Error Delete Credit for Subscriber:
%s

ERROR_CODE_DELETE_CREDIT37

Error Auditing: %sERROR_CODE_AUDIT38

Error Purging Audit History: %sERROR_CODE_PURGE_

AUDIT_HISTORY

39

Error Querying Audit History: %sERROR_CODE_QUERY_

AUDIT_HISTORY

40

The Audit Module is not enabled.
Please check the plug-in
configuration.

ERROR_CODE_AUDIT_

MGR_IS_NOT_ENABLED

41

Error Getting the Subscriber Count:
%s

ERROR_CODE_GET_

SUBSCRIBER_COUNT

42

Error Generating the Voucher
Batch: %s

ERROR_CODE_

GENERATE_BATCH

43

Error Redeeming the Voucher for
Subscriber: %s

ERROR_CODE_

REDEEM_VOUCHER

44

Error Changing the Status for
Subscriber: %s

ERROR_CODE_

CHANGE_STATUS

45

Error Changing the Avps for
Subscriber: %s

ERROR_CODE_

CHANGE_SUBSCRIBER_AVPS

46

Error Updating the Service for
Subscriber: %s

ERROR_CODE_

UPDATE_SERVICE

47

Error Adding the Service for
Subscriber: %s

ERROR_CODE_

ADD_SERVICE

48

Overview
18

Overview
Error Codes

messagenamecode

Error Deleting the Service for
Subscriber: %s

ERROR_CODE_

DELETE_SERVICE

49

Error Deleting the Voucher Batch:
%s

Error Deleting the Service for Subscriber: %s50

Error Switching the Service for
Subscriber: %s

ERROR_CODE_SWITCH_SERVER51

Error Extending the Credit for
Subscriber: %s

ERROR_CODE_EXTEND_CREDIT52

Error Getting Service Reference
Data: %s

ERROR_CODE_

GET_REF_DATA_SERVICES

53

Error Getting Balance Reference
Data: %s

ERROR_CODE_

GET_REF_DATA_BALANCE

54

Error Encrypting: %sERROR_CODE_ENCRYPTION55

Error Adding SSID: %sERROR_CODE_ADD_SSID56

Error Updating SSID: %sERROR_CODE_UPDATE_SSID57

Error Deleting SSID: %sERROR_CODE_DELETE_SSID58

Policy Engine Error Codes
The Execute Action, Query Session, and Stop Session APIs send requests into the Policy Engine and interact
with the policy state. The Policy Engine has a set of error codes that can be returned in the error messages
that get returned by the APIs.

Table 3: Policy Engine Error Codes

NoteMessageCode

-• Avps are empty

• Port and/or ISG IP Address AVPs are
empty

SS002

Failed to get a response object from
startSession

-SS003

login error-SS004

timeout (usually a COA timeout)-SS005

Query Network DeviceAvps are emptyQND001

-SuccessAR00

Overview
19

Overview
Policy Engine Error Codes

NoteMessageCode

-Success ALLOW_ALL authorizationAR01

-Failed USUM_AUTHORIZATION

no domain found

AR02

-Failed USUM_AUTHORIZATION

no user id retriever

AR03

-Failed USUM_AUTHORIZATION

no user id found

AR04

-Failed USUM_AUTHORIZATION

no password found for user

AR05

-Success USUM_AUTHORIZATIONAR06

-Failed USUM_AUTHORIZATION

password and/or user name do not match

AR07

-Failed USUM_ONLY_AUTHORIZATION

no domain found

AR08

-Failed USUM_ONLY_AUTHORIZATION

no user id retriever

AR09

-Failed USUM_ONLY_AUTHORIZATION

no user id found

AR10

-Failed USUM_ONLY_AUTHORIZATION

no password found for user

AR11

-SuccessUSUM_ONLY_AUTHORIZATIONAR12

-Failed USUM_ONLY_AUTHORIZATION

password and/or user name do not match

AR13

-Success
ANONYMOUS_AUTHORIZATION -

user id, password match

AR14

-FailedANONYMOUS_AUTHORIZATION
-

user id matches, password does not match

AR15

Overview
20

Overview
Policy Engine Error Codes

NoteMessageCode

-Success
ANONYMOUS_AUTHORIZATION -

user id matches - no password check

AR16

-FailedANONYMOUS_AUTHORIZATION
-

user id does not match anonymous user id

AR17

-FailedANONYMOUS_AUTHORIZATION
-

no user id retriever

AR18

Existing SubscriberTAL successAR19

TAL with no domainTAL successAR20

-AAA_AUTHORIZATION successAR23

-AAA_AUTHORIZATION success due

to timeout

AR24

Access Reject MessageAuthorization failed for the following user [
'$userName']

to server ['$proxyAAAAuthorization.

getAaaServer().getName()']

AR25

-Could not find a User ID

from this message using the retriever:

'$userIdRetrieverClassName'

AR26

-User ID '$userId', does not equal

one-click User ID:

'$oneClickVoucher.

getOneClickUserId()'

AR27

-one-click-voucher successAR28

-Password provided: '$password'

does not equal one click password:

'$oneClickVoucher.

getOneClickPassword()'

AR29

-Voucher is expiredAR30

-Voucher authenticatedAR31

Overview
21

Overview
Policy Engine Error Codes

CDATA
The Unified API can accept CDATA tags for all fields.

Use the Plugin configuration in Policy Builder to set which fields will get CDATA tags for outgoing responses.
By default, the following fields will have CDATA tags in responses: networkId, password, data, oldNetworkId,
oldPassword, newPassword.

Policy Builder Plugin CDATA Configuration

Make sure to remove spaces from the CDATA fields configuration:
networkId,password,data,oldNetworkId,oldPassword,newPassword

Note

XML Entities
The Unified API can accept CDATA tags for all fields. If a field has a CDATA tag, any XML entities will
not get resolved.

For example, the database will store the literal characters & <, if the following is sent in a request:

<SomeUnifiedApiRequest> ... <someElement><![CDATA[& <]]></someElement> ...
</SomeUnifiedApiRequest>

Conversely, the API will resolve the entities and the database will store & < if the following is sent in a
request:

<SomeUnifiedApiRequest> ... <someElement>& <</someElement> ... </SomeUnifiedApiRequest>

Resolved XML Entities The Unified API only resolves XML entities for requests and does not resolve stored
data back into XML entities in responses! Therefore in the above example, where the & < literal characters
were stored in the database; those characters will now make the response invalid according to the XML 1.0
specification. Therefore, CDATA must be used when sending XML entity references in requests. Invalid
response: <SomeUnifiedApiRequest> ... <someElement>&<</someElement> ... </SomeUnifiedApiRequest>

Note

Namespace
http://broadhop.com/unifiedapi/soap/typesTarget Namespace

• Global element and attribute declarations belong to this schema's
target namespace.

• By default, local element declarations belong to this schema's target
namespace.

• By default, local attribute declarations have no namespace.

Element and Attribute
Namespaces

Overview
22

Overview
CDATA

	Overview
	General Information
	Release Notes
	Default URLs
	HA
	AIO

	Audit History
	Capped Collection
	Operation
	Initial Setup
	Read Requests
	APIs
	Querying
	Purging
	Control Center
	Policy Builder

	HTTP KeepAlive
	HA
	AIO

	Dates
	Valid Timestamp Formats
	Database Timestamp Translation
	Daylight Savings Time
	Wikipedia ISO 8601

	Services and Service Schedules
	State

	Custom Search Params
	Balance Engine Thresholds
	Reference Data vs. Subscriber Specific
	Reduction of Reservation Granted Amounts
	Soft Thresholds
	Threshold Groups

	Bill Cycle
	29th, 30th, and 31st

	Last Recurring Refresh (LRR)
	29th, 30th, and 31st

	Id, ParentId and Version
	XSS - Cross Site Scripting Defense
	Error Codes
	Policy Engine Error Codes

	CDATA
	XML Entities

	Namespace

