
Managing CPS Interfaces and APIs

• CPS Interfaces and APIs, on page 1
• Multi-user Policy Builder, on page 23
• Control Center Access, on page 25
• Enabling Authentication and Authorization for CRD API, on page 29
• Unified API Security: Access Privileges, on page 31
• Enabling Unified API Access on HTTP Port 8080, on page 33
• TACACS+, on page 36
• CRD APIs, on page 39

CPS Interfaces and APIs
CPS includes southbound interfaces to various policy control enforcement functions (PCEFs) in the network,
and northbound interfaces to OSS/BSS and subscriber applications, IMSs, and web applications.

Control Center GUI Interface

Purpose

Cisco Control Center enables you to do these tasks:

• Manage subscriber data, that is, find or create and edit information about your subscribers.

• View subscriber sessions.

• View system sessions.

• Populate custom reference data (CRD) tables.

URL and Port

HA: https://<lbvip01>:443

AIO: http://<ip>:8090

Protocol

HTTPS/HTTP

Managing CPS Interfaces and APIs
1

Accounts and Roles

There are two levels of administrative roles supported for Control Center: Full Privilege and View Only. The
logins and passwords for these two roles are configurable in LDAP or in
/etc/broadhop/authentication-password.xml.

• Full Privilege Admin Users: These users can view, edit, and delete information and can perform all tasks.
Admin users have access to all screens in Control Center.

• View Only Admin Users: These users can view information in Control Center, but cannot edit or change
information. View only administrators have access to a subset of screens in the interface.

CRD REST API

Purpose

The Custom Reference Data (CRD) REST API enables the query of, creation, deletion, and update of CRD
table data without the need to access the Control Center GUI. The CRD APIs are available using an HTTP
REST interface. The specific APIs are outlined in a later section in this guide.

URL and Port

HA: https:// <lbvip01>:443/custrefdata

AIO: http://<ip>:8080/custrefdata

A validation URL is:

HA: https:// <lbvip01>:8443/custrefdata

AIO: http://<ip>:8080/custrefdata

Protocol

HTTPS/HTTP

Accounts and Roles

Security and account management is accomplished by using the haproxy mechanism on the platform Policy
Director (LB) by defining user lists, user groups, and specific users.

On Cluster Manager: /etc/puppet/modules/qps/templates/etc/haproxy/haproxy.cfg

Configure HAProxy

Update the HAProxy configuration to add authentication and authorization mechanism in the CRD API
module.

1. Back up the /etc/haproxy/haproxy.cfg file.

2. Edit /etc/haproxy/haproxy.cfg on lb01/lb02 and add a userlist with at least one username and password
as shown:
userlist <userlist name>
user <username1> password <encrypted password>

For example:

Managing CPS Interfaces and APIs
2

Managing CPS Interfaces and APIs
CRD REST API

userlist cps_user_list
user readonly password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1
user apiuser password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1

Run the following command to generate an encrypted password:

/sbin/grub-crypt --sha-512

For example:
[root@host ~]# /sbin/grub-crypt --sha-512
Password:
Retype password:
<encrypted password output>

3. Add the following line in frontend https-api to enable Authentication and Authorization for CRD REST
API and create a new backend server as crd_api_servers to intercept CRD REST API requests:
mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api
backend crd_api_servers

mode http
balance roundrobin
option httpclose
option abortonclose
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s

4. Update frontend https_all_servers by replacing api_servers with crd_api_servers for CRD API as
follows:

acl crd_api path_beg -i /custrefdata/

use_backend crd_api_servers if crd_api

5. Edit /etc/haproxy/haproxy.cfg on lb01/lb02 as follows:

1. Add at least one group with user in userlist created in Step 2 as follows:

group qns-ro users readonly

group qns users apiuser

2. Add the following lines to the backend crd_api_servers:

acl authoriseUsers http_auth_group(<cps-user-list>) <user-group>

http-request auth realm CiscoApiAuth if !authoriseUsers

Map the group created in Step 5 with the acl as follows:

acl authoriseUsers http_auth_group(<cps-user-list>) <user-group>

6. Add the following in the backend crd_api_servers to set read-only permission (GET HTTP operation)
for group of users:

http-request deny if !METH_GET authoriseUsers

HAProxy Configuration Example

Managing CPS Interfaces and APIs
3

Managing CPS Interfaces and APIs
CRD REST API

userlist cps_user_list
group qns-ro users readonly
group qns users apiuser

user readonly password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75B

XKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1
user apiuser password

6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75B

XKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1
frontend https-api

description API
bind lbvip01:8443 ssl crt /etc/ssl/certs/quantum.pem

mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api

default_backend api_servers
reqadd X-Forwarded-Proto:\ https if { ssl_fc }

frontend https_all_servers
description Unified API,CC,PB,Grafana,CRD-API,PB-AP
bind lbvip01:443 ssl crt /etc/ssl/certs/quantum.pem no-sslv3 no-tlsv10
ciphers ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:RSA+AESGCM:RSA+AES:!
aNULL:!eNULL:!LOW:! 3DES:!MD5:!EXP:!PSK:!SRP:!DSS
mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api

backend crd_api_servers
mode http
balance roundrobin
option httpclose
option abortonclose
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s
acl authoriseReadonlyUsers http_auth_group(cps_user_list) qns-ro
acl authoriseAdminUsers http_auth_group(cps_user_list) qns
http-request auth realm CiscoApiAuth if !authoriseReadonlyUsers

!authoriseAdminUsers
http-request deny if !METH_GET authoriseReadonlyUsers

The haproxy.cfg file is generated by the Puppet tool. Any manual changes to the file in lb01/lb02 would be
reverted if the pupdate or vm-init scripts are run.

Note

Grafana

Purpose

Grafana is a metrics dashboard and graph editor used to display graphical representations of system, application
KPIs, bulkstats of various CPS components.

Managing CPS Interfaces and APIs
4

Managing CPS Interfaces and APIs
Grafana

URL and Port

HA: https://<lbvip01>:9443/grafana

AIO: http://<ip>:443/grafana

Protocol

HTTPS/HTTP

Accounts and Roles

In CPS 7.5 and higher, at least one Grafana user account must be created to access the Grafana web interface.

In CPS 8.1 and higher, an administrative user account must be used to add, modify, or delete Grafana dashboards
or perform other administrative actions.

Refer to the Graphite and Grafana chapter in this guide for details on adding or deleting these user accounts.

HAProxy

Purpose

Haproxy is a frontend IP traffic proxy process in lb01/lb02 that routes the IP traffic for other applications in
CPS. The details of individual port that haproxy forwards is already described in other individual sections.

As per the Diameter configuration done, haproxy-diameter statistics will bind to one of the configurations
and that URL will be displayed in about.sh output. For various options for Diameter configuration, refer to
Diameter Related Configuration section in CPS Installation Guide for VMware.

More information about HAProxy is provided in the HAProxy.

Documentation for HAProxy is available at: http://www.haproxy.org/#docs

URL and Port

To view statistics, open a browser and navigate to the following URL:

• For HAProxy Statistics: http://<diameterconfig>:5540/haproxy?stats

• For HAProxy Diameter Statistics: http://<diameterconfig>:5540/haproxy-diam?stats

Accounts and Roles

Not applicable.

JMX Interface

Purpose

Java Management Extension (JMX) interface can be used for managing and monitoring applications and
system objects.

Resources to be managed / monitored are represented by objects called managed beans (mbeans). MBean
represents a resource running in JVM and external applications can interact with mbeans through the use of

Managing CPS Interfaces and APIs
5

Managing CPS Interfaces and APIs
HAProxy

CPS18-4-0OperationsGuide_chapter7.pdf#nameddest=unique_76
http://www.haproxy.org/#docs

JMX connectors and protocol adapters for collecting statistics (pull); for getting/setting application
configurations (push/pull); and notifying events like faults or state changes (push).

CLI Access

External applications can be configured to monitor application over JMX. In addition to this, there are scripts
provided by application that connects to application over JMX and provide required statistics/information.

Port

pcrfclient01/pcrfclient02:

• Control Center: 9045

• Policy Builder: 9046

lb01/lb02:

• iomanager: 9045

• Diameter Endpoints: 9046, 9047, 9048...

qns01/qns02/qns... : 9045

Ports should be blocked using firewall to prevent access from outside the CPS system.

Accounts and Roles

Not applicable.

Logstash

Purpose

Logstash is a process that consolidates the log events fromCPS nodes into pcrfclient01/pcrfclient02 for logging
and alarms. The logs are forwarded to CPS application to raise necessary alarms and the logs are stored at
/var/log/logstash/logstash.log.

Managing CPS Interfaces and APIs
6

Managing CPS Interfaces and APIs
Logstash

If logstash in not monitoring, then check the Policy Server (qns) process using monit summary.
[root@dc1-pcrfclient01 ~]# monit summary
The Monit daemon 5.17.1 uptime: 18h 41m

Process 'whisper' Running
Process 'sssd' Running
Process 'snmpd' Running
Program 'kpi_trap' Status ok
Program 'db_trap' Status failed
Program 'failover_trap' Status ok
Program 'qps_process_trap' Status ok
Program 'admin_login_trap' Status ok
Program 'vm_trap' Status ok
Program 'qps_message_trap' Status ok
Program 'ldap_message_trap' Status ok
Program 'logstash_process_status' Status ok
Process 'qns-2' Running
Process 'qns-1' Does not exist
Process 'corosync' Running
Program 'monitor_replica' Status ok
File 'monitor-qns-2' Accessible
File 'monitor-qns-1' Accessible
Process 'logstash' Not monitored
Program 'mon_db_for_lb_failover' Status ok
Program 'mon_db_for_callmodel' Status ok
Program 'cpu_load_monitor' Status ok
Program 'cpu_load_trap' Status ok
Program 'gen_low_mem_trap' Status ok
Process 'collectd' Running
Process 'carbon-cache' Running
Process 'carbon-aggregator' Running
Process 'auditrpms.sh' Running
System 'dc1-pcrfclient01' Running

On pcrfclient node, if Policy Server (qns) process is not running, 'logstash_process_status' program stops the
logstash process so that the alarm is raised from another pcrfclient node.

Note

CLI Access

There is no specific CLI interface for logstash.

Protocol

TCP and UDP

Ports

TCP: 5544, 5545, 7546, 6514

UDP: 6514

Accounts and Roles

Not applicable.

Managing CPS Interfaces and APIs
7

Managing CPS Interfaces and APIs
Logstash

LDAP SSSD

Purpose

In CPS 14.0.0 and higher releases, SSSD based authentication is supported, allowing users to authenticate
against an external LDAP server and gain access to the CPS CLI. SSSD RPMs and default sssd.conf file
is installed on each CPS VM when you perform a new installation or upgrade CPS.

For more information, refer to the CPS Installation Guide for VMware.

/etc/monit.d/sssd file has been added with the following content so that SSSD is monitored by monit:
check process sssd with pidfile /var/run/sssd.pid
start program = "/etc/init.d/sssd start" with timeout 30 seconds
stop program = "/etc/init.d/sssd stop" with timeout 30 seconds

Also /etc/logrotate.d/sssd file has been added to rotate the SSSD log files. Here is the default
configuration:
“
/var/log/sssd/*.log {

daily
missingok
notifempty
sharedscripts
nodateext
rotate 5
size 100M
compress
delaycompress
postrotate

/bin/kill -HUP `cat /var/run/sssd.pid 2>/dev/null` 2> /dev/null || true
endscript

}
“

Use the monit summary command to view the list of services managed by monit. Here is an example:
monit summary
The Monit daemon 5.17.1 uptime: 4d 2h 22m

Process 'whisper' Running
Process 'sssd' Running
Process 'snmptrapd' Running
Process 'snmpd' Running
Program 'vip_trap' Status ok
Program 'gr_site_status_trap' Status ok
Process 'redis' Running
Process 'qns-4' Running
Process 'qns-3' Running
Process 'qns-2' Running
Process 'qns-1' Running
File 'monitor-qns-4' Accessible
File 'monitor-qns-3' Accessible
File 'monitor-qns-2' Accessible
File 'monitor-qns-1' Accessible
Process 'memcached' Running
Process 'irqbalance' Running
Process 'haproxy-diameter' Running
Process 'haproxy' Running
Process 'cutter' Running
Process 'corosync' Running

Managing CPS Interfaces and APIs
8

Managing CPS Interfaces and APIs
LDAP SSSD

Program 'cpu_load_monitor' Status ok
Program 'cpu_load_trap' Status ok
Program 'gen_low_mem_trap' Status ok
Process 'collectd' Running
Process 'auditrpms.sh' Running
System 'lb01' Running

Setting of other configuration files to support LDAP based authentication and the changes required in
sssd.conf file as per the customer deployment is out of scope of this document. For more information,
consult your Cisco Technical Representative.

Important

Grafana support LDAP authentication over httpd and does not use SSSD feature. Due to this, if LDAP server
is down then grafana is not accessible for LDAP users.

Restriction

CLI Access

No CLI is provided.

Port

Port number is not required.

Configure Policy Builder

Step 1 To provide admin access, enter username in the following file:
/var/www/svn/users-access-file

This action should be performed on pcrfclient and not on policy server (qns).
[groups]
admins = qns,qns-svn,sssd_pb_2
nonadmins = qns-ro
[/]
@admins = rw
@nonadmins = r
* = r

Note

Step 2 Verify if you can export CRD data from the following link:

http://<aio_server>:7070/central/

Configure Grafana

Step 1 Bypass the first level authentication by updating the /etc/httpd/conf.d/grafana-proxy.conf file as follows:

Managing CPS Interfaces and APIs
9

Managing CPS Interfaces and APIs
Configure Policy Builder

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
Set root to <ip address>/grafana
ProxyPass /grafana http://127.0.0.1:3000
ProxyPassReverse /grafana http://127.0.0.1:3000
Set authentication for Grafana
1) Use httpd authentication as a front-end to Grafana
2) Remove header since Grafana is configured for anonymous
authentication and will fail with a pass-thru header
#
Notice: scope of authentication and header is limited to Grafana
to avoid conflicts with other applications. Apache configuration
in this file is global unless contained in the directive below.
<Location "/grafana">

LoadModule headers_module modules/mod_headers.so
Header set Access-Control-Allow-Origin "*"
Header set Access-Control-Allow-Methods "GET, OPTIONS"
Header set Access-Control-Allow-Headers "origin, authorization, accept"
Header set Access-Control-Allow-Credentials true
Do not pass credentials to Grafana's anonymous authorization
RequestHeader unset Authorization
Satisfy Any
#AuthName "Authentication Required"
#AuthUserFile "/var/broadhop/.htpasswd"
#Require valid-user
#Order allow,deny
This is used for local calls to the API during puppet bring up
Allow from 127.0.0.1
#Satisfy Any

</Location>

Step 2 Restart httpd by running the following command:
/usr/bin/systemctl restart httpd

If port already in use error is displayed, execute the following steps:

a) Run the following command to get process ID:

ps -eaf | grep httpd

b) Run the following command to kill the pid:

kill -9 <pid>

Step 3 Update /etc/grafana/grafana.ini file to point to LDAP authentication instead of Basic Auth as follows:
#################################### Basic Auth ##########################
[auth.basic]
For CPS, trusted API requests come here and need local authentication
;enabled = true
#################################### Auth LDAP ##########################
[auth.ldap]
enabled = true
config_file = /etc/grafana/ldap.toml

Step 4 Modify /etc/grafana/ldap.toml file to provide LDAP details (for example, search base dn, bind dn, group search
base dn, member_of attribute) as follows:
Set to true to log user information returned from LDAP
verbose_logging = true

Managing CPS Interfaces and APIs
10

Managing CPS Interfaces and APIs
Configure Grafana

[[servers]]
Ldap server host (specify multiple hosts space separated)
host = "ldap_l.cisco.com"
Default port is 389 or 636 if use_ssl = true
port = 10648
Set to true if ldap server supports TLS
use_ssl = true
set to true if you want to skip ssl cert validation
ssl_skip_verify = true
set to the path to your root CA certificate or leave unset to use system defaults
#root_ca_cert = "/etc/openldap/certs/ldap_local.cer"

Search user bind dn
bind_dn = "uid=admin,ou=system"
Search user bind password
bind_password = 'secret'

User search filter, for example "(cn=%s)" or "(sAMAccountName=%s)" or "(uid=%s)"
search_filter = "(uid=%s)"

An array of base dns to search through
search_base_dns = ["ou=users,dc=sprint,dc=com"]
#search_base_dns = ["ou=groups,dc=sprint,dc=com"]

In POSIX LDAP schemas, without memberOf attribute a secondary query must be made for
groups.
This is done by enabling group_search_filter below. You must also set member_of= "cn"
in [servers.attributes] below.
Users with nested/recursive group membership and an LDAP server that supports
LDAP_MATCHING_RULE_IN_CHAIN
can set group_search_filter, group_search_filter_user_attribute, group_search_base_dns
and member_of
below in such a way that the user's recursive group membership is considered.
#
Nested Groups + Active Directory (AD) Example:
#
AD groups store the Distinguished Names (DNs) of members, so your filter must
recursively search your groups for the authenticating user's DN. For example:
#
group_search_filter = "(member:1.2.840.113556.1.4.1941:=%s)"
group_search_filter_user_attribute = "distinguishedName"
group_search_base_dns = ["ou=groups,dc=grafana,dc=org"]
#
[servers.attributes]
...
member_of = "distinguishedName"

Group search filter, to retrieve the groups of which the user is a member (only set if
memberOf attribute is not available)
#group_search_filter = "(cn=%s)"
#group_search_filter = "(&(objectClass=*)(cn=%s))"
Group search filter user attribute defines what user attribute gets substituted for %s
in group_search_filter.
Defaults to the value of username in [server.attributes]
Valid options are any of your values in [servers.attributes]
If you are using nested groups you probably want to set this and member_of in
[servers.attributes] to "distinguishedName"
group_search_filter_user_attribute = "cn"
An array of the base DNs to search through for groups. Typically uses ou=groups
group_search_base_dns = ["ou=groups,dc=sprint,dc=com"]
#group_search_base_dns = ["cn=Roles,ou=groups,dc=sprint,dc=com"]

Specify names of the ldap attributes your ldap uses
[servers.attributes]

Managing CPS Interfaces and APIs
11

Managing CPS Interfaces and APIs
Configure Grafana

name = "cn"
surname = "sn"
username = "uid"
member_of = "cn"
email = "email"

Map ldap groups to grafana org roles
[[servers.group_mappings]]
group_dn = "cn=Admin,ou=groups,dc=sprint,dc=com"
org_role = "Admin"
The Grafana organization database id, optional, if left out the default org (id 1) will
be used
org_id = 1

[[servers.group_mappings]]
group_dn = "cn=User,ou=groups,dc=sprint,dc=com"
org_role = "Editor"

#[[servers.group_mappings]]
If you want to match all (or no ldap groups) then you can use wildcard
#group_dn = "*"
#org_role = "Viewer"

Step 5 Restart Grafana server by running the following command:
service grafana-server restart

Step 6 Log in to Grafana using LDAP user credentials.

Mongo Database

Purpose

MongoDB is used tomanage session storage efficiently and address key requirements: Low latency reads/writes,
high availability, multi-key access and so on.

CPS support different models of mongo database based on CPS deployment like AIO, HA or Geo-redundancy.
Not all of the databases listed below may be used in your CPS deployment.

To rotate the mongoDB logs on the Session Manager VM, open the mongoDB file by executing the following
command:

cat /etc/logrotate.d/mongodb

You will have output as similar to the following:
{
daily
rotate 5
copytruncate
create 640 root root
sharedscripts
postrotate
endscript
}

In the above script the mongoDB logs are rotated daily and it ensures that it keeps the latest 5 backups of
these log files.

HA

Managing CPS Interfaces and APIs
12

Managing CPS Interfaces and APIs
Mongo Database

The standard definition for supported replica-set defined in configuration file. This configuration file is
self-explanatory which contains replica-set, set-name, hostname, port number, data file path and so on.

Location: /etc/broadhop/mongoConfig.cfg

Table 1: HA Mongo Databases

PurposeArbiterSecondary DB
Host

Primary DB HostPort NumberDatabase Name

Session databasepcrfclient01sessionmgr02sessionmgr0127717session_cache

Quota/Balance
database

pcrfclient01sessionmgr02sessionmgr0127718balance_mgmt

Reporting
database

pcrfclient01sessionmgr02sessionmgr0127725audit

USuM databasepcrfclient01sessionmgr02sessionmgr0127720spr

Custom
Reference Data

pcrfclient01sessionmgr02sessionmgr0127717cust_ref_data

The port number configuration is based on what is configured in each of the respective Policy Builder plug-ins.
Refer to the Plug-in Configuration chapter of the CPS Mobile Configuration Guide for correct port number
and ports defined in mongo configuration file.

Note

AIO

The All-in-One deployment mongo database runs on ports 27017 and 27729.

Table 2: AIO Mongo Databases

PurposePort NumberDatabase Name

This port is used for all the
databases.

27017All

While choosing mongo ports for replica-sets, consider the following:

• Port is not in use by any other application. To check it, login to VM on which replica-set is to be created
and execute the following command:

netstat -lnp | grep <port_no>

If no process is using same port then port can be chosen for replica-set for binding.

• Port number used should be greater than 1024 and not in ephemeral port range i.e, not in between following
range :

net.ipv4.ip_local_port_range = 32768 to 61000

Important

Managing CPS Interfaces and APIs
13

Managing CPS Interfaces and APIs
Mongo Database

CLI Access

Use the following commands to access the mongoDB CLI:

HA:

Login to pcrfclient01 or pcrfclient02 and run: diagnostics.sh --get_replica_status

This command will output information about the databases configured in the CPS cluster.

If a member is shown in an unknown state, it is likely that the member is not accessible from one of other
members, mostly an arbiter. In that case, you must go to that member and check its connectivity with other
members.

Also, you can login to mongo on that member and check its actual status.

Note

AIO:

mongo --port 27017

Protocol

Not applicable.

Port

Not applicable.

Accounts and Roles

Restrict MongoDB Access for Readonly Users: If firewall is enabled on system, then on all VMs for all
readonly users, IP table rule will be created for outgoing connections to reject outgoing traffic to MongoDB
replica sets.

For example, rule similar to the following is created.

REJECT tcp -- anywhere sessionmgr01 tcp dpt:27718 owner GID match qns-ro reject-with

icmp-port-unreachable

With this, qns-ro user has restricted MongoDB access on sessionmgr01 on port 27718. Such rules are added
for all readonly users who are part of qns-ro group for all replica sets.

OSGi Console

Purpose

CPS is based on Open Service Gateway initiative (OSGi) and OSGi console is a command-line shell which
can be used for analyzing problems at OSGi layer of the application.

CLI Access

Use the following command to access the OSGi console:

telnet <ip> <port>

Managing CPS Interfaces and APIs
14

Managing CPS Interfaces and APIs
OSGi Console

The following commands can be executed on the OSGi console:

ss : List installed bundle status.

start <bundle-id> : Start the bundle.

stop <bundle-id> : Stop the bundle.

diag <bundle-id> : Diagnose the bundle.

Sharding Commands

Use the following OSGi commands to add or remove shards:

Table 3: Sharding Commands

DescriptionCommand

Lists all the shards.listshards

Marks the shard for removal.

If shard is non-backup, rebalance is required for shard to be removed
fully.

If shard is backup, it does not require rebalance of sessions and hence
would be removed immediately.

removeshard <shard id>

Rebalances the buckets and migrates session with rate limit.

Rate limit is optional. If rate limit is passed, it is applied at rebalance.

rebalance <rate limit>

Rebalances the buckets and schedules background task to migrate
sessions.

Rate limit is optional. If rate limit is passed, it is applied at rebalance.

rebalancebg <rate limit>

Displays the current rebalance status.

Status can be one of the following:

• Rebalance is running (Remaining buckets: <pending count>)

• Rebalance is required

• Rebalanced

rebalancestatus

In order for CPS to identify a stale session from the latest session, the
secondary key mapping for each site stores the primary key in addition
to the bucket ID and the site ID, that is, Secondary Key = <Bucket Id>;
<Site Id>; <Primary Key>.

To enable this feature, add the flag -Dcache.config.version=1 in the
/etc/broadhop/qns.conf file.

Enabling this flag and running rebuildAllSkRings starts the data
migration for the new version so that CPS can load the latest version of
the session.

rebuildAllSkRings

Displays the status of the migration and the current cache version.skRingRebuildStatus

Managing CPS Interfaces and APIs
15

Managing CPS Interfaces and APIs
OSGi Console

CPS Alarm Commands

Use the following OSGi command to get the information related to open application alarms in CPS:

Table 4: Alarm Commands

DescriptionCommand

To list the open/active application alarms since last restart of policy
server (QNS) process on pcrfclient01/02 VM.

listalarms

Example:
osgi> listalarms
Active Application Alarms
id=1000 sub_id=3001 event_host=lb02 status=down date=2017-11-22,10:47:34,
051+0000 msg="3001:Host: site-host-gx Realm: site-gx-client.com is down"
id=1000 sub_id=3001 event_host=lb02 status=down date=2017-11-22,10:47:34,
048+0000 msg="3001:Host: site-host-sd Realm: site-sd-client.com is down"
id=1000 sub_id=3001 event_host=lb01 status=down date=2017-11-22,10:45:17,
927+0000 msg="3001:Host: site-server Realm: site-server.com is down"
id=1000 sub_id=3001 event_host=lb02 status=down date=2017-11-22,10:47:34,
091+0000 msg="3001:Host: site-host-rx Realm: site-rx-client.com is down"
id=1000 sub_id=3002 event_host=lb02 status=down date=2017-11-22,10:47:34,
111+0000 msg="3002:Realm: site-server.com:applicationId: 7:all peers are down"

Ports

pcrfclientXX:

• Control Center: 9091

• Policy Builder: 9092

lbXX:

• iomanager: 9091

• Diameter Endpoints: 9092, 9093, 9094 ...

qnsXX: 9091

Ports should be blocked using a firewall to prevent access from outside the CPS cluster.

Accounts and Roles

Not applicable.

Policy Builder GUI

Purpose

Policy Builder is the web-based client interface for the configuration of policies in Cisco Policy Suite.

URL and Port

HA: https://<lbvip01>:7443/pb

Managing CPS Interfaces and APIs
16

Managing CPS Interfaces and APIs
Policy Builder GUI

AIO: http://<ip>:7070/pb

Protocol

HTTPS/HTTP

Accounts and Roles

Initial accounts are created during the software installation. Refer to theCPSOperations Guide for commands
to add users and change passwords.

REST API

Purpose

To allow initial investigation into a Proof of Concept API for managing a CPS System and Custom Reference
Data related through an HTTPS accessible JSON API.

CLI Access

This is an HTTPS/Web interface and has no Command Line Interface.

URL and Port

API: http://<Cluster Manager IP>:8458

Documentation: http://<Cluster Manager IP>:7070/doc/index.html

Accounts and Roles

Initial accounts are created during the software installation. Refer to theCPSOperations Guide for commands
to add users and change passwords.

Rsyslog

Purpose

Enhanced log processing is provided using Rsyslog.

Rsyslog logs Operating System (OS) data locally (/var/log/messages etc.) using the
/etc/rsyslog.conf and /etc/rsyslog.d/*conf configuration files.

rsyslog outputs all WARN level logs on CPS VMs to /var/log/warn.log file.

On all nodes, Rsyslog forwards the OS system log data to lbvip02 via UDP over the port defined in the
logback_syslog_daemon_port variable as set in the CPS deployment template (Excel spreadsheet). To download
the most current CPS Deployment Template
(/var/qps/install/current/scripts/deployer/templates/QPS_deployment_config_template.xlsm),
refer to the CPS Installation Guide for VMware or CPS Release Notes for this release.

Additional information is available in the Logging chapter of the CPS Troubleshooting Guide. Refer also to
http://www.rsyslog.com/doc/ for the Rsyslog documentation.

Managing CPS Interfaces and APIs
17

Managing CPS Interfaces and APIs
REST API

http://www.rsyslog.com/doc/

CLI Access

Not applicable.

Protocol

UDP

Port

6514

Accounts and Roles

Account and role management is not applicable.

Rsyslog Customization
CPS provides the ability to configure forwarding of consolidated syslogs from rsyslog-proxy on Policy Director
VMs to remote syslog servers (refer to CPS Installation Guide for VMware). However, if additional
customizations are made to rsyslog configuration to forward logs to external syslog servers in customer's
network for monitoring purposes, such forwarding must be performed via dedicated action queues in rsyslog.
In the absence of dedicated action queues, when rsyslog is unable to deliver a message to the remote server,
its main message queue can fill up which can lead to severe issues, such as, preventing SSH logging, which
in turn can prevent SSH access to the VM.

Sample configuration for dedicated action queues is available in the Logging chapter of theCPS Troubleshooting
Guide. Refer to rsyslog documentation on http://www.rsyslog.com/doc/v5-stable/concepts/queues.html for
more details about action queues.

SVN Interface
Apache™ Subversion (SVN) is the versioning and revision control system used within CPS. It maintains all
the CPS policy configurations and has repositories in which files can be created, updated and deleted. SVN
maintains the file difference each time any change is made to a file on the server and for each change it
generates a revision number.

In general, most interactions with SVN are performed via Policy Builder.

CLI Access

Use the following commands to access SVN:

Get all files from the server:

svn checkout --username <username> --password <password> <SVN Repository URL> <Local Path>

Example:

svn checkout --username broadhop --password broadhop

http://pcrfclient01/repos/configuration/root/configuration

If <Local Path> is not provided, files are checked out to the current directory.

Store/check-in the changed files to the server:

svn commit --username <username> --password <password> <Local Path> -m “modified config”

Managing CPS Interfaces and APIs
18

Managing CPS Interfaces and APIs
Rsyslog Customization

http://www.rsyslog.com/doc/v5-stable/concepts/queues.html

Example:

svn commit --username broadhop --password broadhop /root/configuration -m “modified config”

Update local copy to latest from SVN:

svn update <Local Path>

Example:

svn update /root/configuration/

Check current revision of files:

svn info <Local Path>

Example:

svn info /root/configuration/

Use svn --help for a list of other commands.Note

Protocol

HTTP

Port

80

Accounts and Roles

CPS 7.0 and Higher Releases

Add User with Read Only Permission

From the pcrfclient01 VM, run adduser.sh to create a new user.

/var/qps/bin/support/adduser.sh

This command can also be run from the ClusterManager VM, but youmust include the OAM (PCRFCLIENT)
option:

/var/qps/bin/support/adduser.sh pcrfclient

Note

Example:
[root@pcrfclient01 /]# /var/qps/bin/support/adduser.sh
Enter username: <username>
Enter group for the user: <any group>
Enter password:
Re-enter password:

Managing CPS Interfaces and APIs
19

Managing CPS Interfaces and APIs
CPS 7.0 and Higher Releases

Add User with Read/Write Permission

By default, the adduser.sh script creates a new user with read-only permissions. For read-write permission,
you must assign the user to the qns-svn group and then run the vm-init command.

From the pcrfclient01 VM, run the adduser.sh script to create the new user.

Run the following command on both pcrfclient01 and pcrfclient02 VMs:

/etc/init.d/vm-init

You can now login and commit changes as the newly created user.

Change Password

From the pcrfclient01 VM, run the change_passwd.sh script to change the password of a user.

/var/qps/bin/support/change_passwd.sh

Example:
[root@pcrfclient01 /]# /var/qps/bin/support/change_passwd.sh
Enter username whose password needs to be changed: user1
Enter new password:
Re-enter new password:

CPS Versions Earlier than 7.0
Perform all of the following commands on both the pcrfclient01 and pcrfclient02 VMs.

Add User

Use the htpasswd utility to add a new user

htpasswd -mb /var/www/svn/.htpasswd <username> <password>

Example:

htpasswd -mb /var/www/svn/.htpasswd user1 password

In some versions, the password file is /var/www/svn/password

Provide Access

Update the user role file /var/www/svn/users-access-file and add the username under admins (for read/writer
permissions) or nonadmins (for read-only permissions). For example:
[groups]
admins = broadhop
nonadmins = read-only, user1
[/]
@admins = rw
@nonadmins = r

Change Password

Use the htpasswd utility to change passwords.

htpasswd -mb /var/www/svn/.htpasswd <username> <password>

Example:

Managing CPS Interfaces and APIs
20

Managing CPS Interfaces and APIs
CPS Versions Earlier than 7.0

htpasswd -mb /var/www/svn/.htpasswd user1 password

TACACS+ Interface

Purpose

CPS 7.0 and above has been designed to leverage the Terminal Access Controller Access Control System
Plus (TACACS+) to facilitate centralized management of users. Leveraging TACACS+, the system is able
to provide system-wide authentication, authorization, and accounting (AAA) for the CPS system.

Further the system allows users to gain different entitlements based on user role. These can be centrally
managed based on the attribute-value pairs (AVP) returned on TACACS+ authorization queries.

CLI Access

No CLI is provided.

Port

CPS communicates to the AAA backend using IP address/port combinations configured by the operator.

Account Management

Configuration is managed by the Cluster Management VM which deploys the /etc/tacplus.conf and
various PAM configuration files to the application VMs. For more account management information, refer
to TACACS+ Service Requirements, on page 36.

For more information about TACACS+, refer to the following links:

• TACAC+ Protocol Draft: http://tools.ietf.org/html/draft-grant-tacacs-02

• Portions of the solution reuse software from the open source pam_tacplus project hosted at:
https://github.com/jeroennijhof/pam_tacplus

For information on CLI commands, refer to Accessing the CPS CLI, on page 22.

Unified API

Purpose

Unified APIs are used to reference customer data table values.

URL and Port

HA: https://<lbvip01>:8443/ua/soap

AIO: http://<ip>:8080/ua/soap

Protocol

HTTPS/HTTP

Managing CPS Interfaces and APIs
21

Managing CPS Interfaces and APIs
TACACS+ Interface

http://tools.ietf.org/html/draft-grant-tacacs-02
https://github.com/jeroennijhof/pam_tacplus

Accounts and Roles

Currently there is no authorization for this API

Accessing the CPS CLI
sudo supports a plugin architecture for security policies and input/output logging. The default security policy
is sudoers, which is configured via the file /etc/sudoers, contains the rules that users must follow when
using the sudo command.

sudo allows a system administrator to delegate authority to give certain users (or groups of users) the ability
to run some (or all) commands as root or another user while providing an audit trail of the commands and
their arguments.

For example: %adm ALL=(ALL) NOPASSWD: ALL

This means that any user in the administrator group on any host may run any command as any user without
a password. The first ALL refers to hosts, the second to target users, and the last to allowed commands.

When an authenticated user has one of the above group permissions, they can access the CPS CLI and run
predefined commands available to that user role. A list of commands available after authentication can be
viewed using the sudo -l command (-l for list), or any user with root privileges can use sudo -l -U

<qns-role> to see the available command for a specific Policy Server (qns) role.

The /etc/sudoers file contains user specifications that define the commands that users may execute.
When sudo is invoked, these specifications are checked in order, and the last match is used. A user specification
looks like this at its most basic:

User Host = (Runas) Command

Read this as "User may run Command as the Runas user on Host". Any or all of the above may be the special
keyword ALL, which always matches. User and Runas may be usernames, group names prefixed with %,
numeric UIDs prefixed with #, or numeric GIDs prefixed with %#. Host may be a hostname, IP address, or
a whole network (for example, 192.0.2.0/24), but not 127.0.0.1.

Group Identifiers

gid

The group identifier of the TACACS+ authenticated user on the VM nodes. This value should reflect the role
assigned to a given user, based on the following values:

• group id=500 (qns)

The group identifier used by Policy Server (qns) user in application.

• group id=501 (qns-su)

This group identifier should be used for users that are entitled to attain superuser (or 'root') access on the
CPS VM nodes.

• group id=504 (qns-admin)

This group identifier should be used for users that are entitled to perform administrative maintenance on
the CPS VM nodes.

Managing CPS Interfaces and APIs
22

Managing CPS Interfaces and APIs
Accessing the CPS CLI

To execute administrative scripts from qns-admin, prefix the commandwith sudo.
For example

sudo stopall.sh

Note

• group id=505 (qns-ro)

This group identifier should be used for users that are entitled to read-only access to the CPS VM nodes.

When an authenticated user has one of the above group permissions, they can access the CPS CLI and run
predefined commands available to that user role. A list of commands available after authentication can be
viewed using the sudo -l command (-l for list), or any user with root privileges can use sudo -l -U

<qns-role> to see the available command for a specific Policy Server (qns) role.

For more information, refer to https://www.sudo.ws/intro.html.

home

The user's home directory on the CPS VM nodes. To enable simpler management of these systems, the users
should be configured with a pre-deployed shared home directory based on the role they are assigned with the
gid.

• home=/home/qns-su should be used for users in the 'qns-su' group (gid=501)

• home=/home/qns-admin should be used for users in the 'qnsadmin' group (gid=504)

• home=/home/qns-ro should be used for users in the 'qns-ro' group (gid=505)

Multi-user Policy Builder
Multiple users can be logged into Policy Builder at the same time.

In the event that two users attempt to make changes on same screen and one user saves their changes to the
client repository, the other user may receive errors. In such cases the user must return to the login page, revert
the configuration, and repeat their changes.

This section covers the following topics:

• Create Users, on page 23

• Revert Configuration, on page 24

Create Users

Step 1 Log in to the Cluster Manager.
Step 2 Add a user to CPS by executing:

adduser.sh

Step 3 When prompted for the user’s group, set ‘qns-svn’ for read-write permissions or ‘qns-ro’ for read-only permissions.

Managing CPS Interfaces and APIs
23

Managing CPS Interfaces and APIs
Multi-user Policy Builder

https://www.sudo.ws/intro.html

• To check if a user already exists, login in as root and enter su username.

• To check a user’s ‘groups’, enter groups username.

• To change a user’s password, use the change_passwd.sh command.

Refer to CPS Commands for more information about these commands.

Revert Configuration
The user can revert the configuration if changes since the last publish/save to client repository are not wanted.

This can also be necessary in the case of a ‘syn conflict’ error where both pcrfclient01 and pcrfclient02 are
in use at the same time by different users and publish/save to client repository changes to the same file. The
effect of reverting changes is that all changes since the publish/save to client repository will be undone.

Step 1 On the Policy Builder login screen, verify the user for which changes need to be reverted is correct. This can be done by
clicking Edit and verifying that the Username and Password fields are correct.
Figure 1: Verifying the User

Step 2 Click Revert.

The following confirmation dialog opens.
Figure 2: Revert Confirmation Message

Step 3 Click OK to revert back to the earlier configuration. The following dialog confirms that the changes are reverted
successfully.

Managing CPS Interfaces and APIs
24

Managing CPS Interfaces and APIs
Revert Configuration

CPS18-4-0OperationsGuide_chapter10.pdf#nameddest=unique_98

Figure 3: Success Confirmation Message

Publishing Data
This section describes publishing Cisco Policy Builder data to the Cisco Policy Server. Publishing data occurs
in the Cisco Policy Builder client interface, but affects the Cisco Policy Server. Refer to the CPS Mobile
Configuration Guide for steps to publish data to the server.

Cisco Policy Builder manages data stored in two areas:

• The Client Repository stores data captured from the Policy Builder GUI in Subversion. This is a place
where trial configurations can be developed and saved without affecting the operation of the Cisco Policy
Builder server data.

The default URL is http://pcrfclient01/repos/configuration.

• The Server Repository is where a copy of the client repository is created/updated and where the CPS
picks up changes. This is done on Publish from Policy Builder.

Publishing will also do a Save to Client Repository to ensure the Policy Builder
and Server configurations are not out of sync.

Note

The default URL is http://pcrfclient01/repos/run.

Control Center Access
After the installation is complete, you need to configure the Control Center access. This is designed to give
the customer a customized Control Center username.

Add a Control Center User

Step 1 Login to the Cluster Manager VM.
Step 2 Execute the following script to add a Control Center user.

/var/qps/bin/support/adduser.sh

To add a user with 'read/write' access to Control Center, their group should be 'qns'. To add a user with 'read'
access to Control Center, their group should be 'qns-ro'.

Note

Managing CPS Interfaces and APIs
25

Managing CPS Interfaces and APIs
Publishing Data

Example:
/var/qps/bin/support/adduser.sh
Enter username: username
Enter group for the user: groupname
Enter password: password
Re-enter password: password

This example adds username to all the VMs in the cluster.

Update Control Center Mapping
This section describes updating Control Center mapping of read-write/read-only to user groups (Default: qns
and qns-ro respectively).

Step 1 Login to the Cluster Manager VM.
Step 2 Update /etc/broadhop/authentication-provider.xml to include the group mapping for the group you

want to use.

Make sure that this group exists on at least the Policy Server (QNS) VMs or adding users will fail due to no
group available (there should be an entry in /etc/group).

In the following example, the 'test' group has been added as an read-write mapping for Control Center - updated
line in bold:
<beans:beans xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

classpath:/org/springframework/beans/factory/xml/spring-beans-3.0.xsd
http://www.springframework.org/schema/security

classpath:/org/springframework/security/config/spring-security-3.0.xsd">
<beans:bean id="authenticationProvider"
class="com.broadhop.ui.security.server.pam.PamAuthenticationProvider">

<!-- change the key value to be the customer's role that maps to the cisco role. -->
<beans:property name="roleMap">
<beans:map>
<beans:entry key="qns" value="ROLE_SUMADMIN" />
<beans:entry key="test" value="ROLE_SUMADMIN" />
<beans:entry key="qns-ro" value="ROLE_READONLY" />

</beans:map>
</beans:property>

</beans:bean>

<authentication-manager>
<authentication-provider ref="authenticationProvider" />

</authentication-manager>

</beans:beans>

Note

Step 3 Run syncconfig.sh to put this file on all VMs.
Step 4 Restart the CPS system, so that the changes done above are reflected in the VMs:

restartall.sh

Managing CPS Interfaces and APIs
26

Managing CPS Interfaces and APIs
Update Control Center Mapping

To add a new user to Control Center and specify the group you have specified in the configuration file above, refer to
Add a Control Center User, on page 25.

Multiple Concurrent User Sessions
CPS Control Center supports session limits per user. If the user exceeds the configured session limit, they are
not allowed to log in. CPS also provides notifications to the user when other users are already logged in.

When a user logs in to Control Center, a Welcome message displays at the top of the screen. A session counter
is shown next to the username. This represents the number of login sessions for this user. In the following
example, this user is logged in only once ([1]).
Figure 4: Welcome Message

The user can click the session counter ([1]) link to view details for the session(s), as shown below.
Figure 5: Viewing Session Details

When another user is already logged in with the same username, a notification displays for the second user
in the bottom right corner of the screen, as shown below.
Figure 6: Login Notification for a Second User

The first user also receives a notification, as shown, and the session counter is updated to [2].

Managing CPS Interfaces and APIs
27

Managing CPS Interfaces and APIs
Multiple Concurrent User Sessions

Figure 7: Login Notification for First User

Figure 8: Indication of Two Users with Same Username

These notifications are not displayed in real time; CPS updates this status every 30 seconds.

Configure Session Limit
The session limit can be configured by the runtime argument, which can be configured in the qns.conf file.

-Dcc.user.session.limit=3 (default value is 5)

Configure Session Timeout
The default session timeout can be changed by editing the following file on the Policy Server (QNS) instance:
./opt/broadhop/qns-1/plugins/com.broadhop.ui_3.5.0.release/war/WEB-INF/web.xml

<!-- timeout after 15 mins of inactivity -->
<session-config>
<session-timeout>15</session-timeout>

<cookie-config>
<http-only>true</http-only>
</cookie-config>
</session-config>

The same timeout value must be entered on all Policy Server (QNS) instances.

When the number of sessions of the user exceeds the session limit, the user is not allowed to log in and receives
the message “Max session limit per user exceed!”

Note

Managing CPS Interfaces and APIs
28

Managing CPS Interfaces and APIs
Configure Session Limit

Important Notes
If a user does not log out and then closes their browser, the session remains alive on the server until the session
times out. When the session timeout occurs, the session is deleted from the memcached server. The default
session timeout is 15 minutes. This is the idle time after which the session is automatically deleted.

When a Policy Server (QNS) instance is restarted, all user/session details are cleared.

When the memcached server is restarted without also restarting the Policy Server (QNS) instance, all http
sessions on the Policy Server (QNS) instance are invalidated. In this case the user is asked to log in again and
after that, the new session is created.

Enabling Authentication and Authorization for CRD API
Update the HAProxy configuration to enable authentication and authorization mechanism in the CRD API
module.

There are two options to include a username and password in an API request:

1. Include the username and password directly in the request as shown:

https://<username>:<password>@<lbvip02>:8443/custrefdata/_checksum

2. Add an authentication header to the request as shown:

Authorization: Basic <base64 encoded value of username:password>

Step 1 Back up the /etc/haproxy/haproxy.cfg file before making modifications in the following steps.
Step 2 Edit /etc/haproxy/haproxy.cfg on lb01/lb02 and add a userlist with at least one username and password.

Use the following syntax:

userlist <userlist name>
user <username1> password <encrypted password>

For example:

userlist cps_user_list
user readonly password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1
user apiuser password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1

Run the following command to generate an encrypted password:

/sbin/grub-crypt --sha-512

For example:
[root@host ~]# /sbin/grub-crypt --sha-512
Password:
Retype password:
<encrypted password output>

Managing CPS Interfaces and APIs
29

Managing CPS Interfaces and APIs
Important Notes

Step 3 Add the following line in frontend https-api to enable Authentication and Authorization for CRD REST API and create
a new backend server as crd_api_servers to intercept CRD REST API requests:
mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api

backend crd_api_servers
mode http
balance roundrobin
option httpclose
option abortonclose
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s

Step 4 Update frontend https_all_servers by replacing api_servers with crd_api_servers for CRD API as follows:

acl crd_api path_beg -i /custrefdata/

use_backend crd_api_servers if crd_api

Step 5 To enable the authentication, edit /etc/haproxy/haproxy.cfg on lb01/lb02 and add the following lines in the
backend crd_api_servers:
acl validateAuth http_auth(<userlist_name>)
http-request auth unless validateAuth

Map the userlist created in Step 2 with the acl as follows:
acl validateAuth http_auth(<userlist name>)

Step 6 To enable the authorization, add at least one group with the user in userlist created in Step 2 as follows:
group qns-ro users readonly

For example:

userlist cps_user_list
group qns-ro users readonly
user readonly password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1
user apiuser password
6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrmeAUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1

Step 7 Add the following in the backend crd_api_servers to set read-only permission (GET HTTP operation) for group of
users:
acl authoriseUsers http_auth_group(<user-list-name>) <group-name>

http-request deny if !METH_GET authoriseUsers

Map the group created in Step 6 with the acl in the following line:
acl authorizeUsers http_auth_group(<userlist name>) <group-name>

Example:

HAProxy Configuration Example

userlist cps_user_list
group qns-ro users readonly

user readonly password 6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrme
AUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1

Managing CPS Interfaces and APIs
30

Managing CPS Interfaces and APIs
Enabling Authentication and Authorization for CRD API

user apiuser password 6xRtThhVpS0w4lOoS$pyEM6VYpVaUAxO0Pjb61Z5eZrme
AUUdCMF7D75BXKbs4dhNCbXjgChVE0ckfLDp4T2CsUzzNkoqLRdn7RbAAU1

frontend https-api
description API
bind lbvip01:8443 ssl crt /etc/ssl/certs/quantum.pem

mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api
default_backend api_servers
reqadd X-Forwarded-Proto:\ https if { ssl_fc }
frontend https_all_servers
description Unified API,CC,PB,Grafana,CRD-API,PB-API
bind lbvip01:443 ssl crt /etc/ssl/certs/quantum.pem no-sslv3 no-tlsv10
ciphers ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:RSA+AESGCM:RSA+AES:!
aNULL:!eNULL:!LOW:! 3DES:!MD5:!EXP:!PSK:!SRP:!DSS
mode http
acl crd_api path_beg -i /custrefdata/
use_backend crd_api_servers if crd_api

backend crd_api_servers
mode http
balance roundrobin
option httpclose
option abortonclose
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s
acl validateAuth http_auth(cps_user_list)
acl authoriseUsers http_auth_group(cps_user_list) qns-ro
http-request auth unless validateAuth
http-request deny if !METH_GET authoriseUsers

The haproxy.cfg file is generated by the Puppet tool. Any manual changes to the file in lb01/lb02 would be
reverted if the pupdate or vm-init scripts are run.

Note

Unified API Security: Access Privileges
By default, the CPS Unified API does not require username and password authentication. To enable
authentication, refer to Enable Authentication for Unified API, on page 32.

There are two options to include a username and password in an API request:

• Include the username and password directly in the request. For example:

https://<username>:<password>@<lbvip02>:8443/ua/soap

• Add an authentication header to the request:

Authorization: Basic <base64 encoded value of username:password>

For example:

wget -d -O - --header="Authorization: Basic cG9ydGFXNjbzEyMwo="
https://lbvip02:8443/ua/soap/keepalive

Managing CPS Interfaces and APIs
31

Managing CPS Interfaces and APIs
Unified API Security: Access Privileges

Enable Authentication for Unified API
HAProxy is used to secure and balance calls to the CPS Unified API.

Step 1 Back up the /etc/haproxy/haproxy.cfg file before making modifications in the following steps.
Step 2 Edit /etc/haproxy/haproxy.cfg on lb01/lb02 and add a userlist with at least one username and password.

Use the following syntax:

userlist <userlist name>
user <username1> password <encrypted password>
user <username2> insecure-password <plain text password>

For example:
userlist L1
user apiuser password 6eC8mFOWMcRnQo7FQ$C053tv5T2mPlmGAta0ukH87MpK9aLPtWgCEK

Step 3 Run the following command to generate an encrypted password:

/sbin/grub-crypt --sha-512

For example:
[root@host ~]# /sbin/grub-crypt --sha-512
Password:
Retype password:
<encrypted password output>

Step 4 Edit /etc/haproxy/haproxy.cfg on lb01/lb02 to configure HAProxy to require authentication. Add the following
4 lines to the haproxy.cfg file:
acl validateAuth http_auth(<userlist_name>)
acl unifiedAPI path_beg -i /ua/soap
http-request allow if !unifiedAPI
http-request auth unless validateAuth

The userlist created in Step 2 needs to be mapped with the acl in the following line:
acl validateAuth http_auth(<userlist name>)

For example:
frontend https-api
description Unified API
bind lbvip01:8443 ssl crt /etc/ssl/certs/quantum.pem
default_backend api_servers
reqadd X-Forwarded-Proto:\ https if { ssl_fc }
backend api_servers
mode http
balance roundrobin
option httpclose
option abortonclose
option httpchk GET /ua/soap/keepalive
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s
server qns03_A qns03:8080 check inter 30s
server qns04_A qns04:8080 check inter 30s
acl validateAuth http_auth(L1)
acl unifiedAPI path_beg -i /ua/soap

Managing CPS Interfaces and APIs
32

Managing CPS Interfaces and APIs
Enable Authentication for Unified API

http-request allow if !unifiedAPI
http-request auth unless validateAuth

The configuration above applies authentication on context /ua/soap, which is the URL path of the Unified API.

The haproxy.cfg file is generated by the Puppet tool. Any manual changes to the file in lb01/lb02 would be
reverted if the pupdate or vm-init scripts are run.

Note

WSDL and Schema Documentation
In order to access the Unified API WSDL while using authentication change the following line:

acl unifiedAPI path_beg -i /ua/soap

to

acl unifiedAPI path_beg -i /ua/.

The default address for the WSDL is https://<lbvip01>:8443/ua/wsdl/UnifiedApi.wsdl

The Unified API contains full documentation in an html format that is compatible with all major browsers.

The default address is https://<HA-server-IP>:8443/ua/wsdl/UnifiedApi.xsd

Run the about.sh command from the Cluster Manager to display the actual addresses as configured in your
deployment.

Note

Enabling Unified API Access on HTTP Port 8080
CPS 7.x onward uses HTTPS on port 8443 for Unified API access. To enable HTTP support (like pre-7.0)
on port 8080, perform the following steps:

Make sure to open port 8080 if firewall is used on the setup.Note

Step 1 Create the following directories (ignore File exists error), on Cluster Manager:
/bin/mkdir -p /var/qps/env_config/modules/custom/templates/etc/haproxy
/bin/mkdir -p /var/qps/env_config/modules/custom/templates/etc/monit.d
/bin/mkdir -p /var/qps/env_config/nodes

Step 2 Create the file
/var/qps/env_config/modules/custom/templates/etc/haproxy/haproxy-soaphttp.erbwith
the following contents on Cluster Manager:

• Change XXXX with the Unified API interface hostname or IP

• In this example, we are adding 10 Policy Servers (QNS). You can add/remove the number of Policy Servers (QNS)
depending on your network requirements.

Managing CPS Interfaces and APIs
33

Managing CPS Interfaces and APIs
WSDL and Schema Documentation

global
daemon
nbproc 1 # number of processing cores
stats socket /tmp/haproxy-soaphttp

defaults
timeout client 60000ms # maximum inactivity time on the client side
timeout server 180000ms # maximum inactivity time on the server side
timeout connect 60000ms # maximum time to wait for a connection attempt to a server to

succeed

log 127.0.0.1 local1 err

listen pcrf_proxy XXXX:8080 ----------- > where, XXXX, is Unified API interface hostname or IP
mode http
balance roundrobin
option httpclose
option abortonclose
option httpchk GET /ua/soap/KeepAlive
server qns01_A qns01:8080 check inter 30s
server qns02_A qns02:8080 check inter 30s
server qns03_A qns03:8080 check inter 30s
server qns04_A qns04:8080 check inter 30s
server qns05_A qns05:8080 check inter 30s
server qns06_A qns06:8080 check inter 30s
server qns07_A qns07:8080 check inter 30s
server qns08_A qns08:8080 check inter 30s
server qns09_A qns09:8080 check inter 30s
server qns10_A qns10:8080 check inter 30s

Step 3 Create the file /var/qps/env_config/modules/custom/templates/etc/monit.d/haproxy-soaphttpwith the following
contents on Cluster Manager:
check process haproxy-soaphttp with pidfile /var/run/haproxy-soaphttp.pid
start = "/usr/bin/systemctl start haproxy-soaphttp"
stop = "/usr/bin/systemctl stop haproxy-soaphttp"

Step 4 Create or modify the /var/qps/env_config/nodes/lb.yaml file with the following contents on Cluster Manager:

If the file exists then just add custom::soap_http:

classes:
qps::roles::lb:
custom::soap_http:

Step 5 Create the file /var/qps/env_config/modules/custom/manifests/soap_http.ppwith the following contents on Cluster
Manager.

Change ethX with the Unified API IP interface like eth0/eth1/eth2.
class custom::soap_http(
$haproxytype = "-soaphttp",

)
{
service { "haproxy-soaphttp":
enable => false,
require => [Package ["haproxy"],File ["/etc/haproxy/haproxy-soaphttp.cfg"],

File['/etc/init.d/haproxy-soaphttp'], Exec["sysctl_refresh"]],
}
file { "/etc/init.d/haproxy-soaphttp":
owner => "root",
group => "root",
content => template('qps/etc/init.d/haproxy'),
require => Package ["haproxy"],
notify => Service['haproxy-soaphttp'],

Managing CPS Interfaces and APIs
34

Managing CPS Interfaces and APIs
Enabling Unified API Access on HTTP Port 8080

mode => 0744
}
file { "/etc/haproxy/haproxy-soaphttp.cfg":
owner => "root",
group => "root",
content => template('custom/etc/haproxy/haproxy-soaphttp.erb'),
require => Package ["haproxy"],
notify => Service['haproxy-soaphttp'],

}
file { "/etc/monit.d/haproxy-soaphttp":
content => template("custom/etc/monit.d/haproxy-soaphttp"),
notify => Service["monit"],

}
exec { "remove ckconfig for haproxy-soaphttp":
command => "/sbin/chkconfig --del haproxy-soaphttp",
require => [Service['haproxy-soaphttp']],

}
firewall { '100 allow soap http':
port => 8080,
iniface => "ethX",
proto => tcp,
action => accept,

}
}

Step 6 Validate the syntax of your newly created Puppet script on Cluster Manager:

/usr/bin/puppet parser validate /var/qps/env_config/modules/custom/manifests/soap_http.pp

Step 7 Rebuild your Environment Configuration on Cluster Manager:

/var/qps/install/current/scripts/build/build_env_config.sh

Step 8 Reinitialize your lb01/02 environments on Cluster Manager:

The following commands will take few minutes to complete.
ssh lb01 /etc/init.d/vm-init
ssh lb02 /etc/init.d/vm-init

Step 9 Validate SOAP request on http:
a) Verify the haproxy services are running on lb01 and lb02 by executing the commands on Cluster Manager:

ssh lb01 monit summary | grep haproxy-soaphttp
Process 'haproxy-soaphttp' Running
ssh lb01 service haproxy-soaphttp status
haproxy (pid 11061) is running...
ssh lb02 monit summary | grep haproxy-soaphttp
Process 'haproxy-soaphttp' Running
ssh lb02 service haproxy-soaphttp status
haproxy (pid 13458) is running...

b) Verify the following URLs are accessible:
Unified API WSDL: http://<IP address>:8080/ua/wsdl/UnifiedApi.wsdl
Unified API XSD: http://<IP address>:8080/ua/wsdl/UnifiedApi.xsd

where, <IP address> is the IP address set in Step 2, on page 33.

Managing CPS Interfaces and APIs
35

Managing CPS Interfaces and APIs
Enabling Unified API Access on HTTP Port 8080

TACACS+
This section covers the following topics:

• Overview, on page 36

• TACACS+ Service Requirements, on page 36

• Caching of TACACS+ Users, on page 37

Overview
Cisco Policy Suite (CPS) is built around a distributed system that runs on a large number of virtualized nodes.
Previous versions of the CPS software allowed operators to add custom accounts to each of these virtual
machines (VM), but management of these disparate systems introduced a large amount of administrative
overhead.

CPS has been designed to leverage the Terminal Access Controller Access Control System Plus (TACACS+)
to facilitate centralizedmanagement of users. Leveraging TACACS+, the system is able to provide system-wide
authentication, authorization, and accounting (AAA) for the CPS system.

Further the system allows users to gain different entitlements based on user role. These can be centrally
managed based on the attribute-value pairs (AVP) returned on TACACS+ authorization queries.

TACACS+ Service Requirements
To provide sufficient information for the Linux-based operating system running on the VM nodes, there are
several attribute-value pairs (AVP) that must be associated with the user on the ACS server used by the
deployment. User records on Unix-like systems need to have a valid “passwd” record for the system to operate
correctly. Several of these fields can be inferred during the time of user authentication, but the remaining
fields must be provided by the ACS server.

A standard “passwd” entry on a Unix-like system takes the following form:

<username>:<password>:<uid>:<gid>:<gecos>:<home>:<shell>

When authenticating the user via TACACS+, the software can assume values for the username, password,
and gecos fields, but the others must be provided by the ACS server. To facilitate this need, the system depends
on the ACS server provided these AVP when responding to a TACACS+ Authorization query for a given
username:

• uid

A unique integer value greater than or equal to 501 that serves as the numeric user identifier for the
TACACS+ authenticated user on the VM nodes. It is outside the scope of the CPS software to ensure
uniqueness of these values.

• gid

The group identifier of the TACACS+ authenticated user on the VM nodes. This value should reflect
the role assigned to a given user, based on the following values:

• gid=501 (qns-su)

Managing CPS Interfaces and APIs
36

Managing CPS Interfaces and APIs
TACACS+

This group identifier should be used for users that are entitled to attain superuser (or 'root') access
on the CPS VM nodes.

• gid=504 (qns-admin)

This group identifier should be used for users that are entitled to perform administrative maintenance
on the CPS VM nodes.

For stopping/starting the Policy Server (QNS) process on node, the qns-admin
user should use monit:

Note

For example,
sudo monit stop qns-1
sudo monit start qns-1

• gid=505 (qns-ro)

This group identifier should be used for users that are entitled to read-only access to the CPS VM
nodes.

• home

The user's home directory on the CPS VM nodes. To enable simpler management of these systems, the
users should be configured with a pre-deployed shared home directory based on the role they are assigned
with the gid.

• home=/home/qns-su should be used for users in the qns-su group (gid=501)

• home=/home/qns-admin should be used for users in the qnsadmin group (gid=504)

• home=/home/qns-ro should be used for users in the qns-ro group (gid=505)

• shell

The system-level login shell of the user. This can be any of the installed shells on the CPS VM nodes,
which can be determined by reviewing the contents of /etc/shells on one of the CPS VM nodes.
Typically, this set of shells is available in a CPS deployment:

• /bin/sh

• /bin/bash

• /sbin/nologin

• /bin/dash

• /usr/bin/sudosh

The /usr/bin/sudosh shell can be used to audit user's activity on the system.

Caching of TACACS+ Users
The user environment of the Linux-based VMs needs to be able to lookup a user's passwd entry via different
columns in that record at different times. The TACACS+ NSS module provided as part of the CPS solution

Managing CPS Interfaces and APIs
37

Managing CPS Interfaces and APIs
Caching of TACACS+ Users

however is only able to query the Access Control Server (ACS) for this data using the username. For this
reason the system relies upon the Name Service Cache Daemon (NSCD) to provide this facility locally after
a user has been authorized to use a service of the ACS server.

More details on the operations of NSCD can be found by referring to online help for the software (nscd --help)
or in its man page (nscd(8)). Within the CPS solution it provides a capability for the system to lookup a user's
passwd entry via their uid as well as by their username.

To avoid cache coherence issues with the data provided by the ACS server the NSCD package has a mechanism
for expiring cached information.

The default NSCD package configuration on the CPS VM nodes has the following characteristics:

• Valid responses from the ACS server are cached for 600 seconds (10 minutes)

• Invalid responses from the ACS server (user unknown) are cached for 20 seconds

• Cached valid responses are reloaded from the ACS server 5 times before the entry is completely removed
from the running set -- approximately 3000 seconds (50 minutes)

• The cache are persisted locally so it survives restart of the NSCD process or the server

It is possible for an operator to explicitly expire the cache from the command line. To do so the administrator
need to get the shell access to the target VM and execute the following command as a root user:

nscd -i passwd

The above command will invalidate all entries in the passwd cache and force the VM to consult with the ACS
server for future queries.

Theremay be some unexpected behaviors of the user environment for TACACS+ authenticated users connected
to the system when their cache entries are removed from NSCD. This can be corrected by the user by logging
out of the system and logging back into it or by issuing the following command, which forces the system to
query the ACS server:

id -a “$USER”

Reading Log Files
Only qns-ro and qns-admin users are allowed to view log files at specific paths according to their role and
maintenance requirement. Access to logs are allowed only using the following paths:

• /var/log/

• /var/log/broadhop/scripts/

• /var/log/httpd

• /var/log/redis

• /var/log/broadhop

Commands such as cat, less, more, and find cannot be executed using sudo in CPS 10.0.0 or higher releases.

To read any file, execute the following script using sudo:

$ sudo /var/qps/bin/support/logReader.py -r h -n 2 -f /var/log/puppet.log

where,

Managing CPS Interfaces and APIs
38

Managing CPS Interfaces and APIs
Reading Log Files

• -r: Corresponds to tail (t) ,tailf (tf), and head (h) respectively

• -n: Determines number of lines to be read. It works with the -r option. This is an optional parameter.

• -f: Determines the complete file path to be read.

• Non-root users cannot view the sudosh logs.

• Support to read gunzipped files is also available.

Note

CRD APIs
You use Custom Reference Data (CRD) APIs to query, create, delete, and update CRD table data without the
need to utilize the Control Center interface. The CRD APIs are available via a REST interface.

Limitations
These APIs allow maintenance of the actual data rows in the table. They do not allow the creation of new
tables or the addition of new columns. Table creation and changes to the table structure must be completed
via the Policy Builder application.

Table names must be all in lowercase alphanumeric to utilize these APIs. Neither spaces nor special characters
are allowed in the table name.

• Table names containing uppercase characters will return code 400 Bad Request.

• Spaces in the name are also not allowed and will be flagged as an error in Policy Builder.

• Special characters even when escaped or encoded in ASCII cause problems with the APIs and should
not be used.

Setup Requirements

Policy Server
The feature com.broadhop.custrefdata.service.feature needs to be installed on the Policy Server.

In a High Availability (HA)/Distributed CPS deployment, this feature should be installed on the QNS0x nodes.

Policy Builder
The featurecom.broadhop.client.feature.custrefdata needs to be installed in Policy Builder.

Step 1 Login into Policy Builder.
Step 2 Select Reference Data tab.
Step 3 From the left pane, select Systems.

Managing CPS Interfaces and APIs
39

Managing CPS Interfaces and APIs
CRD APIs

Step 4 Select and expand your system name.
Step 5 Select Plugin Configurations (or a sub cluster or instance), a Custom Reference Data Configuration plugin configuration

is defined.

The following parameters can be configured under Custom Reference Data Configuration:

Table 5: Custom Reference Data Configuration

DescriptionParameter

IP address of the primary sessionmgr database.Primary Database IP Address

Optional, this field is the IP address of a secondary, backup, or failover sessionmgr
database.

Secondary Database IP
Address

Port number of the sessionmgr. It should be the same for both the primary and secondary
databases.

Database Port

Read preference describes how sessionmgr clients route read operations to members of
a replica set. You can select from the following drop-down list:

• Primary: Default mode. All operations read from the current replica set primary.

• PrimaryPreferred: In most situations, operations read from the primary but if it is
unavailable, operations read from secondary members.

• Secondary: All operations read from the secondary members of the replica set.

• SecondaryPreferred: In most situations, operations read from secondary members
but if no secondary members are available, operations read from the primary.

For more information, refer to http://docs.mongodb.org/manual/core/read-preference/.

Db Read Preference

Number of connections that are allowed per database host.

Default value is 100.

Connection Per Host

Step 6 In Reference Data tab > Custom Reference Data Tables, at least one Custom Reference Data Table must be defined.

Managing CPS Interfaces and APIs
40

Managing CPS Interfaces and APIs
Policy Builder

http://docs.mongodb.org/manual/core/read-preference/

Figure 9: Custom Reference Data Table

The following parameters can be configured under Custom Reference Data Table:

Table 6: Custom Reference Data Table Parameters

DescriptionParameter

This is the name of the table that will be stored in the database. It should start with alphanumeric
characters, should be lowercase OR uppercase but not MixedCase, and should not start with
numbers, no special characters are allowed, use “_” to separate words. For example, logical_apn
= GOOD, logicalAPN = BAD, no_spaces.

For more information, refer to Limitations, on page 39.

Name

This is the name of the table that will be displayed in Control Center.Display Name

This indicates whether the tables should be cached in memory. This should be checked for
production.

For more information, refer to Caching, on page 44.

Cache Results

Managing CPS Interfaces and APIs
41

Managing CPS Interfaces and APIs
Policy Builder

DescriptionParameter

This is the Custom Reference Data Trigger which needs to be true before evaluating this table.
This can be used to have multiple tables create the same data depending on conditions or to
improve performance if tables don't need to be evaluated based on an initial condition(s).

Activation Condition

If checked, this allows '*' to be used in the values of the data and the best matching row is
returned.

Best Match

This indicates the order the tables within the search table group should be evaluated. Starting
with 0 and increasing.

Evaluation Order

Columns correspond to the 'schema' for each column we're creating for this Custom Reference
Data table.

• Name: The name of the column in the database.

• Display Name: A more readable display name.

• Use In Conditions: This represents whether this row will be available for conditions in
Policies or Use Case Templates. There is a performance cost to having these checked, so
we recommend to uncheck unless they are required.

Default value is checked (true).

• Type: the type determines what values will be allowed when creating them in control
center.

• Text: The value is allowed to be any characters. For example, example123!.

• Number: The value is allowed to be any whole number. For example, 1234.

• Decimal: The value is allowed to be any number (including decimals). For example,
1.234.

• True/False: The value needs to be 'true' or 'false'. For example, true.

• Date: The value is a date without a time component (May 17th, 2020).

• DateTime: The value is a date + time (May 17th, 2020 5:00pm).

• Key: This indicates that this column is all or part of the 'key' for the table that makes this
row unique. By default, a key is required. Keys also are allowed set the Runtime Binding
fields to populate this data from the current message/session. Typically, keys are bound
to data from the current session (APN, RAT Type) and other values are derived from
them. Keys can also be set to a value derived from another Custom Reference Data table.

• Required: This indicates whether this field will be marked required in Control Center. A
key is always required.

Columns

Managing CPS Interfaces and APIs
42

Managing CPS Interfaces and APIs
Policy Builder

DescriptionParameter

These are the valid values which will be allowed in Control Center (creates a list box).

• List of Valid Values: A list of name/display name pairs which will be used to create the
list. Valid values can also contain a 'name' which will be the actual value of the column
and a display value which allows Control Center to display an easier to use name.

• Valid Values pulled from another Table: This allows initializing the list based on another
Custom Reference Data table. The 'name' value will be pulled from another table. There
is no way to customize a 'display' name in this manner.

Valid Values

The validation set here will be checked by Control Center before allowing a row to be added.

• Regular Expression: This is the Java regular expression that will be run on the proposed
new cell value to validate it as described in http://docs.oracle.com/javase/7/docs/api/java/
util/regex/Pattern.html.

• Regular Expression Description: This is a message to the user indicating what the regular
expression is trying to check.

Validation

Runtime binding is how key column data gets filled out ('bound') from data in the current
session. There are multiple ways to bind this data and it is also possible to set an operator to
define what should match (equals, less than, etc).

• Bind to Subscriber AVP Code: This pulls the value from an AVP on the subscriber. It
will also pull values from a session AVP or a Policy Derived AVP.

• Bind to Session/Policy State Field: This pulls the value from a Policy State Data Retriever
which knows how to retrieve a single value for a session

• Bind to a Result Column from another Table: This allows the key to be filled out from a
columns value from another table. This allows 'normalizing' the table structure and not
having on giant table with a lot of duplicated values.

• Bind to Diameter Request AVP code: This allows the key be filled out from an AVP on
the Diameter request.

• Matching Operator: This allows the row to be 'matched' in other ways than having the
value be 'equals'. Default value is equals.

• eq: Equal

• ne: Not Equal

• gt: Greater than

• gte: Greater than or equal

• lt: Less than

• lte: Less than or equal

Runtime Binding

Managing CPS Interfaces and APIs
43

Managing CPS Interfaces and APIs
Policy Builder

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Architecture

MongoDB
TheMongoDB database containing the CRD tables and the data is located in theMongoDB instance specified
in the CRD plugin configuration.

The database is named cust_ref_data.

Two system collections exist in that database and do not actually contain CRD data:

• system.indexes — used by MongoDB. These are indices set on the database.

• crdversion — contains a document indicating the version of all the CRD tables you have defined. The
version field increments by 1 every time you make a change or add data to any of your CRD tables.

A collection is created for each CRD table defined in Policy Builder.

• This collection contains a document for each row you define in the CRD table.

• Each document contains a field for each column you define in the CRD table.

• The field contains the value specified for the column for that row in the table.

• Additionally, there is a _id field which contains the internal key used by MongoDB and _version which
is used by CPS to provide optimistic locking protection, essentially to avoid two threads overwriting the
other's update, on the document.

An example is shown below:
Figure 10: CRD Table in Policy Builder

Caching
Setting the Cache Results to true (checked) is the default and recommended settings in most cases as it yields
the best performance. Use of the cached copy also removes the dependency on the availability of the CRD
database, so if there is an outage or performance issue, policy decisions utilizing the CRD data won't be
impacted.

The cached copy of the table is refreshed on CPS restart and whenever the API writes a change to the CRD
table, otherwise the cached copy is used and the database is not accessed.

Managing CPS Interfaces and APIs
44

Managing CPS Interfaces and APIs
Architecture

API Endpoints and Examples
The URL used to access the CRD API are different depending on the type of deployment (High Availability
or All-in-One):

High Availability (HA): https://<lbvip01>:8443/custrefdata/<tablename>/_<operation>

All-In-One (AIO): http://<ip>:8080/custrefdata/<tablename>/_<operation>

The examples in the following sections refer to the HA URL.

Query API

Purpose

Returns all rows currently defined in the specified table.

HTTP Operation Type

GET

Example URL

https://<lbvip01>:8443/custrefdata/test/_query

Example URL with Filtering

https://<lbvip01>:8443/custrefdata/test/_query?key1=Platinum

Payload

None, although parameters can be specified on the URL for filtering.

Response

Success returns code 200 Ok; XML indicating rows defined is returned. If there are no records in the table,
200 Ok is returned with empty rows in it.

If the table does not exist, code 400 Bad Request is returned.

Example Response without Filtering

<rows>
<row>
<field code=”field1” value=”1004”/>
<field code=”field2” value=”testee”/>
<field code=”key1” value=”Platinum”/>

</row>
<row>
<field code=”field1” value=”1004”/>
<field code=”field2” value=”testee”/>
<field code=”key1” value=”Platinum99”/>

</row>
<row>
<field code=”field1” value=”field1example1”/>
<field code=”field2” value=”field2example1”/>
<field code=”key1” value=”key1example1”/>

</row>

Managing CPS Interfaces and APIs
45

Managing CPS Interfaces and APIs
API Endpoints and Examples

<row>
<field code=”field1” value=”field1example2”/>
<field code=”field2” value=”field2example2”/>
<field code=”key1” value=”key1example2”/>

</row>
</rows>

Example Response with Filtering

<rows>
<rows>
<row>
<field code=”field1” value=”1004”/>
<field code=”field2” value=”testee”/>
<field code=”key1” value=”Platinum”/>

</row>
</rows>

The response returns keys with the tag “field code”. If you want to use the output of Query as input to one of
the other APIs, the tag needs to be changed to “key code”. Currently using “field code” for a key returns code
404 Bad Request and a java.lang.NullPointerException.

Create API

Purpose

Create a new row in the specified table.

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/test/_create

Example Payload

<row>
<key code=”key1” value=”Platinum”/>
<field code=”field1” value=”1004”/>
<field code=”field2” value=”testee”/>

</row>

Response

Success returns code 200 Ok; no data is returned. The key cannot already exist for another row; submission
of a duplicate key returns code 400 Bad Request.

If creating a row fails, API returns 400 Bad Request.

Create API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Create operation is not allowed for subversion table

Note

Managing CPS Interfaces and APIs
46

Managing CPS Interfaces and APIs
Create API

Update API

Purpose

Updates the row indicated by the key code in the table with the values specified for the field codes.

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/test/_update

Example Payload

<row>
<key code="key1" value="Platinum"/>
<field code="field1" value="1005"/>
<field code="field2" value="tester"/>

</row>

Response

Success returns code 200 Ok; no data is returned. The key cannot be changed. Any attempt to change the key
returns code 404 Not Found.

If updating a row fails, API returns 400 Bad Request.

Update API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Update operation is not allowed for subversion table

Note

Delete API

Purpose

Removes the row indicated by the key code from the table.

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/test/_delete

Example Payload

<row>
<key code="key1" value="Platinum"/>"/>
</row>

Managing CPS Interfaces and APIs
47

Managing CPS Interfaces and APIs
Update API

Response

Success returns code 200 Ok; no data is returned. If the row to delete does not exist, code 404 Not Found is
returned.

If deleting a row fails, API returns 400 Bad Request.

Delete API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Delete operation is not allowed for subversion table

Note

Data Comparison API

Purpose

Determines whether the same CRD table data content is being used at different data centers.

The following three optional parameters can be provided to the API:

• tableName: Returns the checksum of a specified CRD table tableName indicating if there is any change
in the specified table. If the value returned is same on different servers, it means there is no change in
the configuration and content of that table.

• includeCrdversion: Total database checksum contains combination of checksum of all CRD tables
configured in Policy Builder. If this parameter is passed as true in API, then total database checksum
includes the checksum of "crdversion" table. Default value is false.

• orderSensitive: Calculates checksum of the table by utilizing the order of the CRD table content. By
default, it does not sort the row checksums of the table and returns order sensitive checksum of every
CRD table. Default value is true.

custrefdata/_checksum

Database level Checksum API returns checksum details for all the CRD tables and the database. If the value
returned is same on different servers, there will be no change in the configuration and content of any CRD
table configured in Policy Builder.

HTTP Operation Type

GET

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_checksum

Response

<response>
<checksum><all-tables-checksum></checksum>
<tables>

<table name="<table-1-name>" checksum="<checksum-of-table-1>"/>
<table name="<table-2-name>" checksum="<checksum-of-table-2>"/>

Managing CPS Interfaces and APIs
48

Managing CPS Interfaces and APIs
Data Comparison API

<table name="<table-n-name>" checksum="<checksum-of-table-n>"/>
</tables>

</response>

/custrefdata/_checksum?tableName=<user-provided-table-name>

Table specific Checksum API returns the checksum details for the specific CRD table. If the value returned
is same on different servers, there will be no change in the configuration and content of that table.

HTTP Operation Type

GET

Example Endpoint URL

https://<lbvip01>:8443 /custrefdata/_checksum?tableName=<user-provided-table-name>

Response

<response>
<tables>

<table name="<user-provided-table-name>" checksum="<checksum-of-specified-table"/>
</tables>

</response>

Table specific Checksum API does not support SVN CRD table operations and displays the following error
message when Snv Crd Data checkbox is enabled in CRD table configuration:

Checksum operation is not allowed for subversion table

Note

Table Drop API

Purpose

Drops custom reference table from MongoDB to avoid multiple stale tables in the system.

The Table Drop API is used in the following scenarios:

• If a CRD table does not exist in Policy Builder but exists in the database, the API can be used to delete
the table from the database.

• If a CRD table exists in Policy Builder and database, the API cannot delete the table from the database.
If this is attempted the API will return an error: “Not permitted to drop this table as it exists in Policy
Builder”.

• If a CRD table does not exist in Policy Builder and database, the API will also return an error No table

found:<tablename>.

Managing CPS Interfaces and APIs
49

Managing CPS Interfaces and APIs
Table Drop API

/custrefdata/<table_name>/_drop

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/<table_name>/_drop

Drop API does not support SVN CRD table operations and displays the following error message when Snv
Crd Data checkbox is enabled in CRD table configuration:

Drop operation is not allowed for subversion table

Note

Export API

Purpose

Exports single and multiple CRD table and its data.

/custrefdata/_export?tableName=<table_name>

Exports single CRD table and its data.

Returns an archived file containing csv file with information of specified CRD table table_name.

HTTP Operation Type

GET

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_export?tableName=<table_name>

/custrefdata/_export

Exports all CRD tables and its data.

Returns an archived file containing csv file with information for each CRD Table.

HTTP Operation Type

GET

Example Endpoint URL

https://<lbvip01>:8443 /custrefdata/_export

Managing CPS Interfaces and APIs
50

Managing CPS Interfaces and APIs
Export API

Export API does not support Svn CRD tables and displays the following warning message in the Response
Header "Export-Warning":

Datasource for tables [table1, table2,...] is subversion. Response will not contain data for these tables
and skipped SVN CRD tables to be a part of archive.

Note

Import API

Purpose

Imports CRD table and its data.

It takes an archived file as an input which contains one or more csv files containing CRD tables information.

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_import

https://<lbvip01>:8443/custrefdata/_import?batchOperation=true

https://<lbvip01>:8443/custrefdata/_import?batchOperation=false&duplicateValidation=true

1. The "batchOperation" flag is used to insert CRD data in the batch. The default value is true and if you do
not provide it in the request parameter the default value is taken.

2. The "duplicateValidation" flag is used to validate or invalidate duplicate data in the archive. The default
value is true and if you do not provide it in the request parameter the default value is taken which means
it will always validate your data as duplicate.

3. If "batchOperation" is true, the API will validate your data as duplicate data regardless of the value provided
for "duplicateValidation".

Note

Import API supports SVN CRD table operations in the following scenarios:

• If the archive contains only mongodb tables, success message is displayed in the response.

• If the archive contains only SVN tables, success and warning messages are displayed in the response.

• If the archive contains both mongodb and SVN tables, success and warning messages are displayed in
the response.

Note

Managing CPS Interfaces and APIs
51

Managing CPS Interfaces and APIs
Import API

Import Single File API

Purpose

Imports bulk CRD data by sending any supported file in the API request.

Supports only CSV and XLS file formats.

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_importsinglefile

1. Error responses are thrown in the following scenarios:

• When the attached file is of a different format other than CSV and XLS.

• When an empty file is attached.

• When the attached file has wrong headers.

• When the attached file does not have the same file as that of the Policy Builder table name.

• When the attached file has duplicate records.

• When no file is attached.

2. Ensure your .xls file does not contain any extra empty and colored header. If the .xls file contains any
colored and empty header (header with color but no title), it is considered as a part of the Policy Builder
table column. During import file operation, this type of header causes the API to send Mismatch found

between imported csv headers and policy builder table columns error in response. This is because
the empty header is considered as a column from Policy Builder but the Policy Builder table does not
contain this empty column.

3. Import Single File API does not support import of SVN CRD table data and displays the following error
message:

Single file import is not allowed for subversion table

Note

Snapshot POST API

Purpose

Creates a snapshot of the CRD tables on the system. The created snapshot will contain CRD table data, policy
configuration and checksum information for all CRD tables.

Managing CPS Interfaces and APIs
52

Managing CPS Interfaces and APIs
Import Single File API

/custrefdata/_snapshot?userId=<user_id>&userComments=<user_comments>

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_snapshot?userId=<user_id>&userComments=<user_comments>

Optional Parameters

userComments

Snapshot POSTAPI does not support export of the contents of Svn CRD tables. The API returns the following
warning message if there are any Svn CRD tables present while creating snapshot:

Datasource for tables [table_1, table_2…] is subversion. Data for these tables will not come fromdatabase
(mongodb)

Note

Snapshot GET API

Purpose

Enables you to get the list of all valid snapshots in the system.

The following information is available in the list of snapshots:

• Snapshot name

• Snapshot path

• Date and time of snapshot creation

• User comments provided on creation of the snapshot

• Checksum information of CRD tables

• Policy configuration SVN version number

/custrefdata/_snapshot

HTTP Operation Type

GET

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_snapshot

Managing CPS Interfaces and APIs
53

Managing CPS Interfaces and APIs
Snapshot GET API

Example Response

<snapshots>
<snapshot>

<name><date-and-time>_<user-id></name>
<snapshotPath>/var/broadhop/snapshot/20160620011825306_qns</snapshotPath>
<creationDateAndTime>20/06/2016 01:18:25:306</creationDateAndTime>
<comments>snapshot-1 june</comments>
<policyVersion>903</policyVersion>
<checksum checksum="60f51dfd4cd4554910da44a776c66db1">

<table name=<table-name-1> checksum="<table-checksum-1>"/>
…

<table name=<table-name-n> checksum="<table-checksum-n>"/>
</checksum>

</snapshot>
<snapshot>

…
</snapshot>

</snapshots>

Snapshot GET API does not return checksum information of Svn CRD tables as they are not part of created
snapshots.

Note

Revert API

Purpose

Enables you to revert the CRD data to a specific snapshot. If the specific snapshot name is not provided, the
API will revert to the latest snapshot.

/custrefdata/_revert?snapshotName=<snapshot_name>

HTTP Operation Type

POST

Example Endpoint URL

https://<lbvip01>:8443/custrefdata/_revert?snapshotName=<snapshot_name>

Optional Parameter

snapshotName

Revert API does not support reverting of CRD data for Svn CRD tables. For Svn CRD table, it clears the
mongodb table and displays the following warning message:

Datasource for tables [table_1, table_2…] is subversion. Data for these tables will be reverted using svn
datasource not from database (mongodb)

Note

Managing CPS Interfaces and APIs
54

Managing CPS Interfaces and APIs
Revert API

Tips for Usage
The Query API is a GET operation which is the default operation that occurs when entering a URL into a
typical web browser.

The POST operations, Create, Update, and Delete, require the use of a REST client so that the payload and
content type can be specified in addition to the URL. REST clients are available for most web browsers as
plug-ins or as part of web service tools, such as SoapUI. The content type when using these clients should be
specified as application/xml or the equivalent in the chosen tool.

View Logs
You can view the API logs in the OAM (pcrfclient) VM at the following location:

/var/log/broadhop/consolidated-qns.log

Managing CPS Interfaces and APIs
55

Managing CPS Interfaces and APIs
Tips for Usage

Managing CPS Interfaces and APIs
56

Managing CPS Interfaces and APIs
View Logs

	Managing CPS Interfaces and APIs
	CPS Interfaces and APIs
	Control Center GUI Interface
	CRD REST API
	Grafana
	HAProxy
	JMX Interface
	Logstash
	LDAP SSSD
	Configure Policy Builder
	Configure Grafana

	Mongo Database
	OSGi Console
	Policy Builder GUI
	REST API
	Rsyslog
	Rsyslog Customization

	SVN Interface
	CPS 7.0 and Higher Releases
	CPS Versions Earlier than 7.0

	TACACS+ Interface
	Unified API
	Accessing the CPS CLI

	Multi-user Policy Builder
	Create Users
	Revert Configuration
	Publishing Data

	Control Center Access
	Add a Control Center User
	Update Control Center Mapping
	Multiple Concurrent User Sessions
	Configure Session Limit
	Configure Session Timeout
	Important Notes

	Enabling Authentication and Authorization for CRD API
	Unified API Security: Access Privileges
	Enable Authentication for Unified API
	WSDL and Schema Documentation

	Enabling Unified API Access on HTTP Port 8080
	TACACS+
	Overview
	TACACS+ Service Requirements
	Caching of TACACS+ Users
	Reading Log Files

	CRD APIs
	Limitations
	Setup Requirements
	Policy Server
	Policy Builder

	Architecture
	MongoDB
	Caching

	API Endpoints and Examples
	Query API
	Create API
	Update API
	Delete API
	Data Comparison API
	Table Drop API
	Export API
	Import API
	Import Single File API
	Snapshot POST API
	Snapshot GET API
	Revert API
	Tips for Usage
	View Logs

