
Microservices Platform

• Installation Overview, on page 1
• Before You Begin, on page 1
• VM Roles in CPS vDRA, on page 2
• Hardware Requirements for VMs, on page 2
• Network Requirements For VMs , on page 3
• Protocols and Port Ranges, on page 4
• Launching VMs, on page 5
• Deployment Matrix, on page 8
• Startup Sequence, on page 9
• External Port Matrix, on page 11

Installation Overview
Cisco Policy Suite (CPS) architecture is now designed to use the Docker container technology.

This creates a platform that is more flexible, easier to adopt for new products, easier to deploy, and has much
less rigidity with respect to its organization. Other benefits are easier upgrade and patching, and a much crisper
separation of the “platform” common components versus the “application” components.

This document is intended to describe how the system is launched, and what inputs are required for the
collection of Docker engine VMs to self-organize.

Before You Begin
This document makes the following assumptions:

• OpenStack as a target environment.

• Use of Nova as it is the most basic of all deployment approaches.

For more information about OpenStack, see the OpenStack documentation at https://docs.openstack.org/.

Before you set up CPS vDRA, perform the following steps:

1. Create the Project and User under which the system will be launched.

2. Upload the base VM image into Glance.

Microservices Platform
1

https://docs.openstack.org/

3. Upload the distribution ISO into Glance.

4. Create a Cinder volume from the distribution ISO.

5. Create an empty 20 GB Cinder volume for the Master VM.

6. Create one 80 GB/120 GB Cinder volume for each VM that will be supporting “control” services.

• This will generally require three “control” Cinder volumes.

7. Create all the required Network entities, configured appropriately for the CPS Microservices platform.

Any config server addition or scale up must be done in maintenance window only as the operation may cause
some timeouts in production.

Note

VM Roles in CPS vDRA
The following table describes the VMs and their role in CPS vDRA:

Table 1: VM Names and Roles

RoleVM Name

masterMaster

controlControl

dra-directorDRA Director

dra-workerDRA Worker

mongo-node - persistent router, Persistent DB.Mongo DB (binding)

Hardware Requirements for VMs
The following table describes the hardware requirements for binding and non-binding CPS vDRA VMs:

Table 2: Hardware Requirements

RAM (GB)CPURole

328master

328control-0

328control-1

6416dra-director

Microservices Platform
2

Microservices Platform
VM Roles in CPS vDRA

RAM (GB)CPURole

328dra-worker

328persistence-router

648persistence-db

A standard deployment of CPS vDRA includes the following VMs:

• For vDRAVNF: one cluster manager, two management VMs, nine DRADirectors, eight DRAWorkers.

• For Binding vDRA VNF: one cluster manager, two management VMs, five Persistent Routers, 12 DB
VMs.

The number of directors, workers, routers, and database VMs varies, depending upon deployment needs.

vDRA supports the failure of one virtual machine in the set of master, control-0, and control-1 virtual machines.
Therefore, these virtual machines cannot reside on the same ESXi Server.

Note

Network Requirements For VMs
The following table describes the network requirements for each VM:

Table 3: Network Requirements for VMs

Networks RequiredVM

Internal

Management

Replication

Cluster Manager

Internal

Management

Management

Internal

Management/Diameter Traffic VLAN

DRA Directors

InternalDRA Workers

InternalPersistent Routers

Internal

Replication

Persistent Database

Microservices Platform
3

Microservices Platform
Network Requirements For VMs

Networks RequiredVM

Internal

Management

Replication

Arbiter

Protocols and Port Ranges
For each tenant in OpenStack, configure a security group and the protocol with a port range.

The following table describes the port range for each protocol:

Table 4: Port Ranges for Protocols

Port RangeProtocol

22 (SSH)TCP

80 (HTTP)TCP

443 (HTTPS)TCP

636TCP

2024TCP

2375-2376TCP

3375-3376TCP

3868TCP

5000TCP

5001TCP

5003TCP

6443TCP

6783TCP

7443TCP

7946TCP

8000TCP

8008TCP

8080TCP

8400TCP

Microservices Platform
4

Microservices Platform
Protocols and Port Ranges

Port RangeProtocol

8500TCP

8888TCP

9100TCP

9210TCP

9212TCP

9213TCP

9443TCP

12375TCP

27017-27047TCP

4789UDP

6783-6784UDP

7946UDP

12375TCP

Launching VMs
To bring up the system you must launch the VMs.

CPS vDRA includes the following two types of VMs:

• Master VM : hosts critical central system services such as the Registry and the Orchestrator.

• Docker engine VM (also sometimes called a Worker)

All VMs are launched with cloud-init configuration injected into them. This is done with the “config drive”
mechanism in OpenStack, and it conveys all the information needed for the VM to start successfully.

Launch Master VM
The Master VM is the main VM for the whole system and requires a cloud-init configuration file.

Some of the configuration details in a cloud-init configuration are:

• Users: non-root administrative user details for the ‘cps’ user that is created and assigned to the ‘docker’
group. The user also has an SSH key injected. The SSH key is user-supplied and should be unique for
every installation.

• Password: password for the ‘cps’ user. The password may be removed for all production installations.

• Default path for cps.pem is /etc/puppet/modules/qps/templates/certs

Microservices Platform
5

Microservices Platform
Launching VMs

• Configuration details in JSON format (swarm.json) for the system to start successfully.

• Informational file: details of the product and VM within that product they are working with when they
log in via SSH.

For an example of a cloud-init configuration file for a Master VM, see Master Cloud Init Example.

swarm.json

The following table describes the configuration information that is included in a swarm.json file:

Table 5: JSON Parameters

DescriptionParameters

Defines the “role” that this VM will be playing in the
system. The role is used to map into the “deployment
plan” to select the “scheduling slots” that are available
on this particular VM.

role

This value combines the “role” with an “index
number” on a per-role basis to create a unique
identifying string for the deployed VM.

identifier

Name of the product-specific “initialization image”.
This is the image to be launched by the boot scripts
when the platform is established and it is time to start
the application.

init

Name specific to a given deployment instance, used
to identify the specific deployment, useful in the event
that multiple instances of a given product (eg: PCRF)
are deployed in the same environment. (This is also
used by ESC.)

deployment_name

IP address of the Master VM, and must be
communicated to all VMs

master

CIDR for the internal network.network

IP and port for the cluster-internal Docker registry.
This is used by VMs to access the images deployed
for the system.

registry

Style of scheduler to be used by the Orchestrator.
Acceptable values are “ha” and “aio”, which launch
the Orchestrator in High-Availability or All-In-One
modes respectively. This defaults to “ha” if no
orchestrator is specified.

scheduler

Flag which, if set to 1, erases all existing data
(primarily on the ‘control’ VMs) so that the system
is started fresh. In most normal non-development
situations this would be set to 0.

reinitialize_data

Microservices Platform
6

Microservices Platform
Launch Master VM

CPS18-3-0vDRAInstallationGuide-OpenStack_appendix_011.pdf#nameddest=unique_18

DescriptionParameters

Indicates whether, for those VMs where it is
appropriate, the Azul Zing JVM should be used rather
than the normal JVM.

zing

Password used to encrypt the Weave traffic.weavePw

(ESC only) Identifies the OpenStack tenant under
which the system is being launched

tenant

(ESC only) IP address of the ESC VM.esc

(ESC only) Username required to access the ConfD
data on the ESC VM.

escUser

(ESC only) Password required to access the ConD
data on the ESC VM.

escPw

Nova Boot Command

The Nova boot command to launch the Master VM (in this example) looks like the following:
nova boot --config-drive true --user-data=node-master-0.cfg \
--flavor=cps.medium --image=docker-host-1.13.1-2 \
--nic net-id="$Internal,v4-fixed-ip=172.16.2.11" \
--nic net-id="$Management,v4-fixed-ip=172.18.11.121" \
--block-device id=${iso},source=volume,dest=volume,device=/dev/vdb \
--block-device id=${volume},source=volume,dest=volume,device=/dev/vdc \
--availability-zone nova \
--security-groups esc-security-group \
docker-pcrf-master-0

The variables in the command are:

• $Internal: The OpenStack UUID of the “Internal” network.

• $Management: The OpenStack UUID of the “Management” network.

• $iso: The OpenStack UUID of the Cinder volume which contains the deployment ISO data.

• $volume: The OpenStack UUID of the Cinder volume to be used for persistent storage.

Launch Engine VM
The launching of a Docker engine VM (aka: Worker or Engine) is identical, though with less information
injected into the ‘swarm.json’ file. Worker VMs might or might not have fixed IP addresses, and there is an
assumption that if there isn’t a need for a fixed address that the interface will get it’s address via DHCP. This
is primarily true for interfaces on the “internal” network, but there is no prohibition against doing it on other
networks.

An example of the cloud-init file for an example Worker VM can be seen in Worker Cloud Init Example. The
values included in the worker ‘swarm.json’ file are:

• role

• identifier

Microservices Platform
7

Microservices Platform
Launch Engine VM

CPS18-3-0vDRAInstallationGuide-OpenStack_appendix_011.pdf#nameddest=unique_20

• master

• network

In the simplest case a VM is launched exclusively on the “internal” network, assumed to DHCP, and has no
Cinder volumes. The Nova boot command for that situation looks like:
nova boot --config-drive true --user-data=node-pcrf-0.cfg \
--flavor=cps.medium --image=docker-host-1.13.1-2 \
--nic net-id="$Internal" \
--availability-zone nova \

Deployment Matrix
The following tables describe the minimum deployment for the DRA and DRA Binding applications.

The instances are the default choices for a minimal deployment. For those instances that have “scalable” set
to YES, new instances can be launched to additional capacity. Where Cinder volumes are indicated, it is the
case that each instance will have its own Cinder volume as defined in the table.

DRA

Table 6: Minimum Deployment for DRA

ScalableCinder VolumesInstancesRole

NO/mnt/iso - /dev/vdb

/mnt/install - /dev/vdc

/mnt/install - /dev/vdd

master-0master

NO/data - /dev/vdbcontrol-0

control-1

control

YESNonediameter-endpoint-0

diameter-endpoint-1

diameter-endpoint

YESNonebinding-0

binding-1

binding

DRA Binding

Table 7: Minimum Deployment for DRA Binding - Microservices Platform

ScalableCinder VolumesInstancesRole

NO/mnt/iso - /dev/vdb

/mnt/install - /dev/vdc

/mnt/install - /dev/vdd

master-0master

Microservices Platform
8

Microservices Platform
Deployment Matrix

ScalableCinder VolumesInstancesRole

NO/data - /dev/vdbcontrol-0

control-1

control

YESNonerouter-0

router-1

mongo-node

YESNonedb-app-0

db-app-1

db-app-2

mongo-node

Startup Sequence
All VMs can be started at any time, in any order. The Worker VMs pause until the Master VM is ready to
field their requests. Therefore, no matter the mechanism or VNFM used to launch the system ordering is not
an issue. During the boot process normal OpenStack bootup activities occur. This includes all boot-time
initialization, the execution of cloud-init, and the triggering of SystemD units. Those are all standard activities
and the description of the startup sequence will begin upon the execution of the SystemD unit which is
responsible for kicking off the CPSMicroservices system. That unit is named “cpsinstall.service” and is staged
to occur at the proper time in the Linux startup activities.

The “cpsinstall.service” is extremely simplistic, and performs one operation. It invokes the “/root/bootstrap.sh”
script. This is true for Worker VMs as well as for the Master VM. Reading through this script will show you
that it performs the following actions:

• Reads the values from the ‘swarm.json’ and sets them as environment variables

• Sets the queuing for RPS

• Determines if the VM is a Master VM, or Worker

• If the VM is a Master, do the following:

• Mount the ISO from /dev/vdb

• Mount the persistent Cinder volume from /dev/vdc

• Perform ‘fsck’ and ‘resize2fs’ operations on the Cinder volume

• Invoke the ‘install-master.py’ script

• If the VM is a Worker, do the following:

• Wait for the Master to indicate it is alive

• Mount the persistent Cinder volume from /dev/vdb

• Perform ‘fsck’ and ‘resize2fs’ operations on the Cinder volume

• Pull the ‘install-worker.py’ script from the Master with curl

• Invoke the ‘install-worker.py’ script

Microservices Platform
9

Microservices Platform
Startup Sequence

The two install Python scripts perform the various install/startup operations for their VMs. Each of those
actions will be detailed in its own section.

install-master.py
This script is specific to only the Master VM, and performs tasks that put the Master in play. The tasks will
be outlined below as a sequence of bullet points.

• Condition the target system

• If there is a /dev/vdc device first determine if it is formatted, and if not format the volume to be an
EXT4 filesystem.

• Remove all data from the mounted file system (/mnt/install) because the only time this runs on a
Master VM is when it is booting, and that always calls for a fresh installation.

• Copy all ISO data to the writable filesystem (/mnt/install).

• Create the ‘cps-app’ system user.

• Load the configuration from the ‘/root/swarm.json’ file.

• During loading combine the values from ‘/mnt/iso/release.json’ file

• Write the updated configuration to ‘/mnt/install/swarm.json’

• Stop the timesync daemon.

• Configure the Docker Engine daemon appropriately for operation on the Master.

• Restart the Docker service.

• Set the VM’s hostname to match the VM’s system-internal identifier.

• Install a locally-provided image from the saved image file ‘cps-registry-latest.tgz’.

• Launch the registry container.

• Launch the registry upgrade container.

• Launch Weave.

• Launch the Engine Proxy container.

• Launch the Personality service.

• Launch the product-specific initialization container identified by the ‘init’ value in ‘swarm.json’.

At this point control for the behavior of the system passes out of the startup processes and into the hands of
the initialization container. For now, this ultimately leads to the invocation of the product specific Orchestrator.
It is the Orchestrator that is responsible for launching all the remaining containers which make up the deployed
application.

install-worker.py
This script is run for each of the Worker VMs that are launched. Operations on the Worker are very different
from the Master, and that will be reflected in the steps detailed below.

Microservices Platform
10

Microservices Platform
install-master.py

• Load configuration information from the ‘/root/swarm.json’ file for the VM.

• Read the release information from the Master VM, and incorporate it into an updated ‘/root/swrm.json’
file.

• Determine the interface and IP for the Internal network

• If an ‘identifier’ value is not set in the provided ‘/root/swarm.json’ file, create a unique engine identifier
value.

• Create the ‘cps-app’ system user.

• If the role is ‘control’ then :

• If there is a /dev/vdc device first determine if it is formatted, and if not format the volume to be an
EXT4 filesystem.

• Mount /dev/vdc on /data.

• If ‘reinitialize_data’ is set, clear out the /data filesystem.

• If ‘zing’ is set and the role is ‘policy’, enable Zing operation.

• Set the hostname to match the ‘identifier’.

• Stop the timesync daemon.

• Configure the Docker engine to include information about this Worker instance (it’s identifier and it’s
network interface) so that the Orchestrator can know how to use the Worker in the system.

• Launch Weave

At this point the Worker VM is ready to accept containers. This will conclude the low-level startup process.
From this point forward additional startup is handled by the Orchestrator and can vary from product to product.

External Port Matrix
The following table lists the services and ports are available to external users and applications in CPS vDRA
.

It is recommended that connectivity to these ports be granted from the appropriate networks that require access
to the below services.

PortService

22/tcpSsh

443/tcphttps

2024/tcpxinuexpansion4

5000/tcpUpnp

8008/tcphttp

8080/tcphttp-proxy

Microservices Platform
11

Microservices Platform
External Port Matrix

Microservices Platform
12

Microservices Platform
External Port Matrix

	Microservices Platform
	Installation Overview
	Before You Begin
	VM Roles in CPS vDRA
	Hardware Requirements for VMs
	Network Requirements For VMs
	Protocols and Port Ranges
	Launching VMs
	Launch Master VM
	Launch Engine VM

	Deployment Matrix
	Startup Sequence
	install-master.py
	install-worker.py

	External Port Matrix

