

Cisco Catalyst IW9167I Heavy Duty Access Point Hardware Installation Guide

First Published: 2023-10-18 **Last Modified:** 2024-02-05

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387) Fax: 408 527-0883 © 2023 Cisco Systems, Inc. All rights reserved.

CONTENTS

PREFACE

Preface vii

About this Guide vii

Conventions vii

Related Documentation viii

Communications, Services, and Additional Information viii

Cisco Bug Search Tool viii

Documentation Feedback viii

CHAPTER 1

About Cisco Catalyst IW9167I Heavy Duty Access Point 1

Introduction to Cisco Catalyst IW9167I Heavy Duty Access Point 1

Cisco Catalyst IW9167I Heavy Duty Access Point Features 1

Connectors and Ports 2

4-Pin Micro-Fit Connector for DC Power 3

M12-RJ45 Adapter 3

M12-PWR Adapter 4

Power Sources 5

Power Adapters 5

Power Injectors 6

Ethernet (PoE) Ports 6

SFP Option 6

Antennas and Radios 7

Internal Antennas and GNSS Receiver 7

IW9167I (Internal Antenna) Radiation Patterns 8

CHAPTER 2

Unpacking Your Access Point 13

Package Contents 13

CHAPTER

Performing a Preinstallation Configuration (Optional) 15
Preinstallation Checks and Installation Guidelines 17
Mounting the Access Point 18
Mounting Hardware 18
Mounting Bracket Part Numbers 18
Using the Integrated Flange Mounts 19
Using the DIN Rail Mounting Bracket 20
Pole Mounting the AP with Horizontal Bracket 23
Using the Pole Mounting Bracket 24
Using the Mounting Bracket AIR-ACCPMK3700= 24
Using the Mounting Bracket AIR-ACCPMK3700-2= 25
Attaching a Power Adapter 30
Attaching a Power Adapter Using the Mounting Bracket AIR-ACCPMK3700= 30
Attaching a Power Adapter Using the Mounting Bracket AIR-ACCPMK3700-2= 3
Grounding the Access Point 33
Powering the Access Point 34
Power Feature Matrix 35
Connecting a Power Injector 35
Connecting to the DC Power Port Using Cable Gland 36
Connecting DC Power Port Using M12 Adapter 37
Connecting Data Cables 39
Connecting an Ethernet Cable to the Access Point 39
Connecting to the RJ45 Port Using Cable Gland 39
Connecting to the RJ45 Port Using M12 Adapter 40
Connecting to the SFP Port of the Access Point 42
Connecting to SFP Port Using Cable Gland 42
Using M12 Adapter on SFP Port 44

Unpacking the Access Point 13
Cisco Orderable Accessories 13

Configuring and Deploying the Access Point 47

Controller Discovery Process 47

CHAPTER 4

```
Checking the Access Point LEDs 48
CHAPTER 5
                    Troubleshooting 51
                          Using the Reset Button 51
                          Troubleshooting the Access Point to Controller Join Process 51
                          Important Information for Controller-based Deployments 52
                          Configuring DHCP Option 43 52
CHAPTER 6
                    Safety Guidelines and Warnings 55
                          Safety Instructions
                            Statement 1008—Class 1 Laser Product 56
                            ステートメント 1008―クラス 1 レーザー製品
                          FCC Safety Compliance Statement 56
                          Safety Precautions 56
                          Avoiding Damage to Radios in a Testing Environment 57
                          Performing Site Surveys 57
CHAPTER 7
                    Declarations of Conformity and Regulatory Information
                          Manufacturers Federal Communications Commission Declaration of Conformity Statement 59
                          Operation of Cisco Catalyst Access Points in México 60
                          VCCI Statement for Japan 60
                            Statement 191—Voluntary Control Council for Interference (VCCI) Class A Warning for Japan 60
                            ステートメント 191—日本向け VCCI クラス A に関する警告 61
                            Guidelines for Operating Cisco Catalyst Access Points in Japan 61
                          Compliance Statement for Canada 62
                            Industry Canada 62
                          European Community, Switzerland, Norway, Iceland, and Liechtenstein 62
                          United Kingdom Compliance 63
                          Administrative Rules for Cisco Catalyst Access Points in Taiwan 64
                          China Compliance Statement 64
                          Declaration of Conformity for RF Exposure
                            Generic Discussion on RF Exposure 65
                            This Device Meets International Guidelines for Exposure to Radio Waves 65
```

Deploying the Access Point in a Wireless Network 48

This Device Meets FCC Guidelines for Exposure to Radio Waves 66

This Device Meets the Industry Canada Guidelines for Exposure to Radio Waves 66

Cet appareil est conforme aux directives internationales en matière d'exposition aux fréquences radioélectriques 67

Additional Information on RF Exposure 67

Declaration of Conformity Statements 68

Preface

This preface describes this guide and provides information about the conventions used in this guide, and related documentation.

It includes the following sections:

- About this Guide, on page vii
- Conventions, on page vii
- Related Documentation, on page viii
- Communications, Services, and Additional Information, on page viii

About this Guide

This guide provides instructions to install your Cisco Access Point and provides links to resources that can help you configure it. This guide also provides mounting instructions and troubleshooting information.

Conventions

This document uses the following conventions for notes, cautions, and safety warnings. Notes and cautions contain important information that you should know.

Note

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

Caution

Means *reader be careful*. Cautions contain information about something you might do that could result in equipment damage or loss of data.

Warning

Safety warnings appear throughout this guide in procedures that, if performed incorrectly, can cause physical injuries. A warning symbol precedes each warning statement.

Related Documentation

All user documentation for the Catalyst IW9167I Heavy Duty access point is available at the following URL:

https://www.cisco.com/c/en/us/support/wireless/catalyst-iw9167-series/series.html

For detailed information and guidelines about configuring and deploying your access point in a wireless network, see the relevant release of Wireless Controller configuration guide at the following URL:

https://www.cisco.com/c/en/us/support/wireless/catalyst-9800-series-wireless-controllers/products-installation-and-configuration-guides-list.html

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you're looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions, and services, visit Cisco DevNet.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a gateway to the Cisco bug-tracking system, which maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. The BST provides you with detailed defect information about your products and software.

Documentation Feedback

To provide feedback about Cisco technical documentation, use the feedback form available in the right pane of every online document.

About Cisco Catalyst IW9167I Heavy Duty Access Point

- Introduction to Cisco Catalyst IW9167I Heavy Duty Access Point, on page 1
- Cisco Catalyst IW9167I Heavy Duty Access Point Features, on page 1
- Connectors and Ports, on page 2
- Power Sources, on page 5
- SFP Option, on page 6
- Antennas and Radios, on page 7

Introduction to Cisco Catalyst IW9167I Heavy Duty Access Point

The Cisco Catalyst IW9167I Heavy Duty Access Point (hereafter referred to as *IW9167I*) is designed to make wireless deployments simple in outdoor and industrial environments. It is built with a cast-aluminum case that can handle water, dust, and extreme temperatures. It includes built-in antennas and supports Wi-Fi 6E to enable higher density, higher throughput, more channels, power efficiency, and improved security.

IW9167I includes 6 GHz hardware support.

The AP hardware is supported on the following platforms:

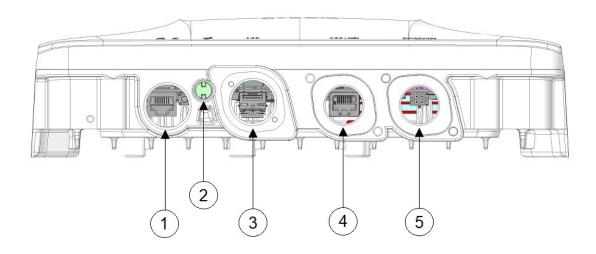
- Cisco DNA Center on-premises
- Cisco Catalyst stack

A full listing of the AP's features and specifications is provided in the Cisco Catalyst IW9167 Heavy Duty Access Point Data Sheet.

Cisco Catalyst IW9167I Heavy Duty Access Point Features

The Cisco Catalyst IW9167I Heavy Duty Access Point has the following features:

- 2 GB DDR4 memory, 1 GB NAND Flash
- Tri radios—2.4 GHz, 5 GHz, 6 GHz
- Integrated antenna—2.4 GHz 4x4:4SS, 5 GHz 4x4:4SS, 6 GHz 4x4:4SS,

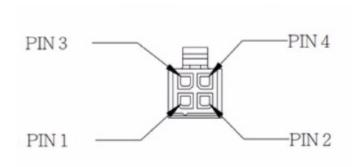

- 2.4 GHz IoT Bluetooth Low Energy (BLE) radio
- Integrated GNSS
- 1 x multi-Gigabit (mGig) copper Ethernet port (supporting PoE, including IEEE 802.3at/bt, Cisco UPoE, 100 Mbps/1 Gbps/2.5 Gbps/5 Gbps)
- 1 x SFP interface—Supports up to 10 Gbps
- Optional M12 adapter for network and power interfaces
- Dual power input options—PoE-in and 24 48VDC
- Dual mounting options—Pole or wall mount
- IP67 rating
- Indoor and outdoor mode operation supported in different countries as shown in the following table:

FCC	Indoor and outdoor
IC	Outdoor
CE	Indoor and outdoor
C-tick	Outdoor
Telec	Outdoor

Connectors and Ports

The following figure shows the available ports on the AP front panel.

Figure 1: IW9167I Front Panel Connectors and Ports



1	Console port (RJ-45) and reset button		2	Status LED)
		ation on how to use the Reset Using the Reset Button, on page			
3	SFP (copper) 100M/1000M/10G Multigigabit Ethernet /M12 X-code or SFP (fiber) 1G/10G		4	(RJ-45) / M	0M/2.5G/5G Multigigabit Ethernet 112 X-code auto-sensing PoE+ in), UPOE-in
	Note	M12 X-code port by using M12-RJ45 adapter can support up to 2.5G rate.		Note	M12 X-code port by using M12-RJ45 adapter can support up to 2.5G rate.
5		input (micro-fit, or M12 4-pin using M12 adapter)			

4-Pin Micro-Fit Connector for DC Power

The following figures show the 4-pin Micro-Fit connector for DC power.

Figure 2: Mating Connector Front View

Molex Micro-Fit Pin	Assignment
Pin 1	DC- (Negative Terminal)
Pin 2	Not assigned
Pin 3	DC+ (Positive Terminal)
Pin 4	Not assigned

M12-RJ45 Adapter

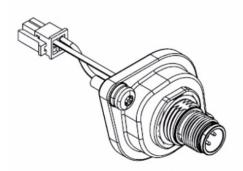
M12-RJ45 adapter (Cisco PID: IW-ACC-M12ETH=) can be used to support M12 X-coded connector.

Note

M12 X-code port by using M12-RJ45 adapter can support up to 2.5G rate.

Figure 3: M12-RJ45 Adapter (Cisco PID: IW-ACC-M12ETH=)

The following table shows the M12-RJ45 adapter pinouts.


Table 1: M12-RJ45 Pinouts

RJ45	Signal	M12 X-Code	
1	B1_DA+	1	
2	B1_DA-	2	
3	B1_DB+	3	
6	B1_DB-	4	
7	B1_DD+	5	
8	B1_DD-	6	
5	B1_DC-	7	
4	B1_DC+	8	

M12-PWR Adapter

M12-PWR adapter (Cisco PID: IW-ACC-M12PWR=) can be used to support M12 A-coded DC power connector.

Figure 4: M12-PWR Adapter (Cisco PID: IW-ACC-M12PWR=)

The following table shows the M12-PWR adapter pinouts.

Table 2: M12-PWR Pinouts

Micro-FIT 4P	Wire	M12 A-Code
3	RED (22 AWG)	1
2	N/C	2
1	BLACK (22 AWG)	3
4	N/C	4

Power Sources

The IW9167I Access Point is supported on these power sources:

- DC power: 24 to 48 VDC
- Power over Ethernet (PoE): 802.3at (PoE+), 802.3bt (PoE++), Cisco Universal PoE (Cisco UPOE). For more information, see Powering the Access Point, on page 34.

Warning

Connect the unit only to DC power source that complies with the safety extra-low voltage (SELV) requirements in IEC 60950 based safety standards. Statement 1033

Power Adapters

The IW9167I Access Point supports the following DC power adapters::

• PID: IW-PWRADPT-MFIT4P=: Operating: -40°C to +65°C, 60W.

Power Injectors

The IW9167I Access Point supports the following power injectors:

- IW-PWRINJ-60RGDMG=: Operating: -40°C to +70°C. Power derating of 60W at 70°C, and 65W at 65°C. Supports 100M/1G/2.5G/5G/10G rates.
- AIR-PWRINJ-60RGD1=: Operation: -40°C to +50°C, 60W. Supports 10M/100M/1G rates.
- AIR-PWRINJ-60RGD2=: Operation: -40°C to +50°C, 60W. Supports 10M/100M/1G rates.

Caution

When the AP is installed outdoors or in a wet or damp location, the AC branch circuit powering the AP should be provided with ground fault protection (GFCI), as required by Article 210 of the National Electrical Code (NEC).

Ethernet (PoE) Ports

The AP supports an Ethernet uplink port (also for PoE-IN). The Ethernet uplink port on the AP uses an RJ-45 connector (with weatherproofing) to link the AP to the 100BASE-T, 1000BASE-T, 2.5G BASE-T, or 5G BASE-T network. The Ethernet cable is used to send and receive Ethernet data and optionally supply inline power from the power injector or a suitably powered switch port.

Tip

The AP senses the Ethernet and power signals, and automatically switch internal circuitry to match the cable connections.

The Ethernet cable must be a *shielded*, outdoor rated, Category 5e (CAT 5e) or better cable. Category 6A (CAT 6A) cable is needed for 5G rate. The AP senses the Ethernet and power signals and automatically switches internal circuitry to match the cable connections.

SFP Option

Warning

Class 1 laser product. Statement 1008

The factory-orderable fiber option provides a fiber input and output capability. Fiber data is transmitted and received over a single or dual-strand fiber cable, depending on the SFP, which is connected to the access point using these SFP modules:

Table 3: Supported SFP Modules

PID	Distance	Fiber/Cable	Operating Temperature Range
GLC-SX-MM-RGD=	220-550m	MMF	IND
GLC-LX-SM-RGD=	550m/10km	MMF/SMF	IND

PID	Distance	Fiber/Cable	Operating Temperature Range
GLC-T-RGD=	100m	CAT 5e	IND
SFP-10G-LR10-I	10km	SMF	IND
SFP-10G-T-X	30m@10Gbps	CAT 6A/CAT 7	EXT

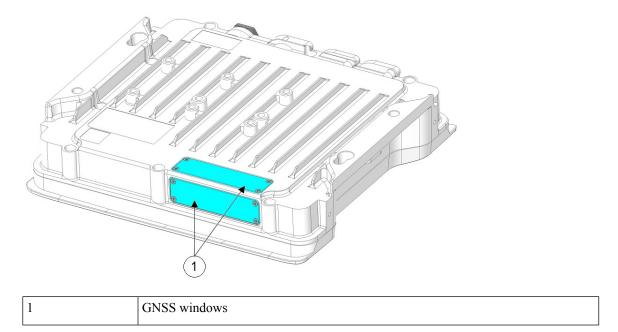
Note

SFP modules are not hot-swappable. When you plug and unplug the SFP module, a manual reload of the AP is required.

Client data is passed to the network controller through the fiber connection via a fiber-capable switch or controller. Configuration information can be found in the controller configuration guide of the switch or controller you are using.

Antennas and Radios

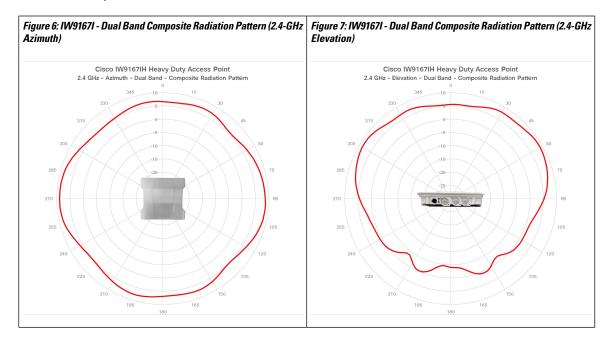
The following sections provide detailed information about the AP's antennas and radios.

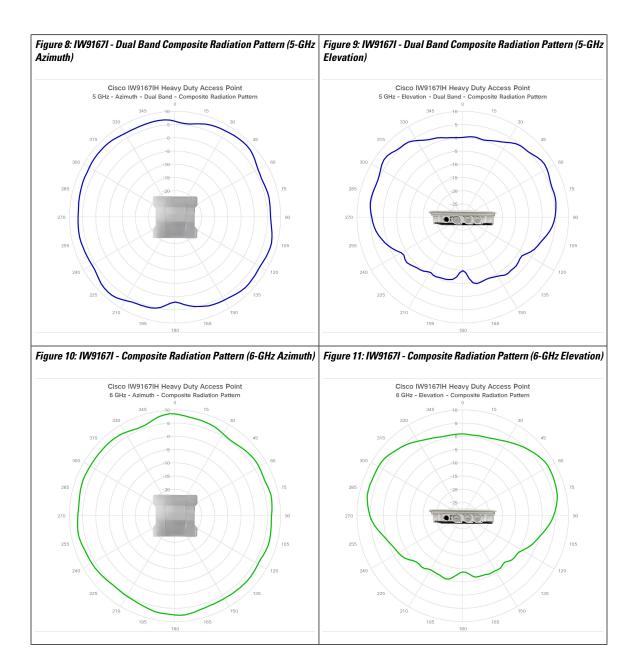

Internal Antennas and GNSS Receiver

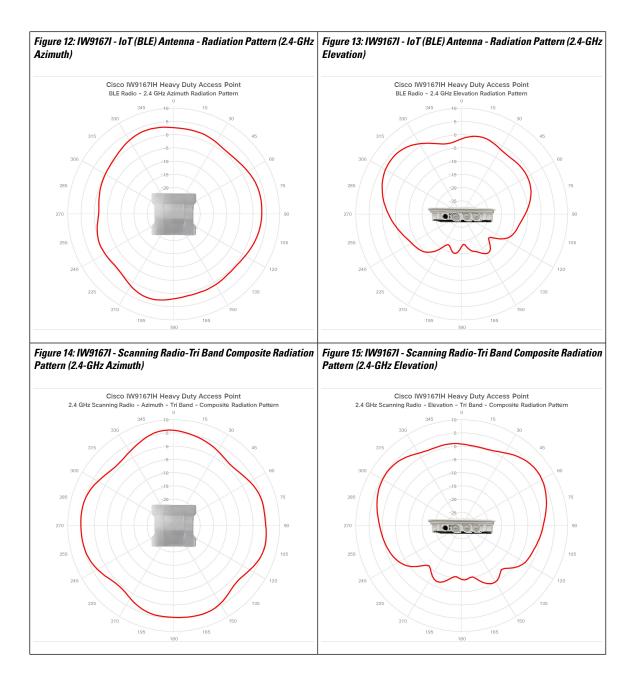
The IW9167I access point has the following internal antennas:

- Four internal dual-band antennas with a dedicated 2.4 GHz radio and a 5 GHz radio
- Four internal antennas with a dedicated 6 GHz radio
- One internal single-band antenna with a dedicated 2.4 GHz IoT radio
- Two tri-band antennas with a dedicated 2.4 GHz, 5 GHz, and 6 GHz Aux radio

The IW9167I is equipped with a standard-precision GNSS receiver for geolocation, with L1/G1/E1/B1 frequencies supported: 1.559 – 1.610 GHz. For best GNSS performance, the AP should be mounted outdoors with a clear view of the sky. Location accuracy may be affected if the antenna's view is obstructed. The following figure shows the GNSS windows on the bottom of the access point.


Figure 5: GNSS Windows




IW9167I (Internal Antenna) Radiation Patterns

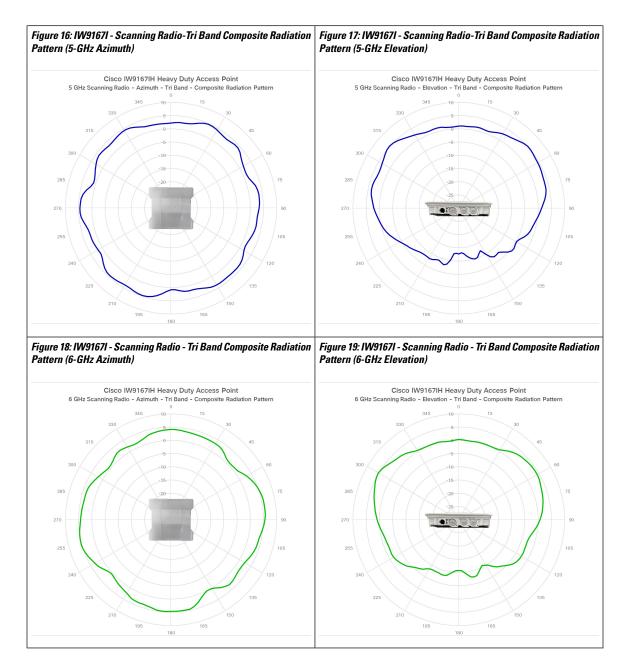

The following illustrations show the IW9167I model with internal antenna radiation patterns:

Table 4: Cisco Catalyst IW9167I Radiation Patterns

IW9167I (Internal Antenna) Radiation Patterns

Unpacking Your Access Point

- Package Contents, on page 13
- Unpacking the Access Point, on page 13
- Cisco Orderable Accessories, on page 13

Package Contents

Each AP package contains the following items:

- One IW9167I AP
- Ground lug kit
- · One PG13.5 gland
- Weatherization tape and anticorrosion sealant

Unpacking the Access Point

To unpack the AP, follow these steps:

- **Step 1** Unpack and remove the access point and the selected mounting accessory kit from the shipping box.
- **Step 2** Return the packing material to the shipping container and save it for future use.
- **Step 3** Verify that you have received all items ordered. If any item is missing or damaged, contact your Cisco representative or reseller for instructions.

Cisco Orderable Accessories

Order the following accessories separately from Cisco:

AP mounting brackets

Cisco PID	Description
AIR-ACCDMK3700=	DIN Rail Mounting Bracket
AIR-ACCPMK3700=	Pole Mounting Bracket (for 2"–3.2" diameter pole)
AIR-ACCPMK3700-2=	Pole Mounting Bracket (for 2"–16" diameter pole)
IW-ACC-9167I-BRK=	Horizontal Pole Mounting Bracket

Accessory kits

Cisco PID	Description
AIR-SFP-KIT1=	Gland kit for SFP port (Qty: 5)
IW-ACC-M12ETH=	Adapter, M12 X-code to RJ45 Ethernet connector
IW-ACC-M12PWR=	Adapter, M12 4 Pin A-Code to Micro-fit power connector
IW-ACC-M12SPCR1=	Spacer for M12 when using on SFP port (Qty: 5)

• M12 Cables

Cisco PID	Description
CAB-PWR-M12-10=	M12 DC power cable, 4 pins, A-Code, 10 ft
CAB-RJ45-M12-10=	M12 to RJ-45 Ethernet cable, 8 pins, X-Code, 10 ft
CAB-ETHM12-M12-10=	M12 to M12 Ethernet cable, 8 pins, X-Code, 10 ft

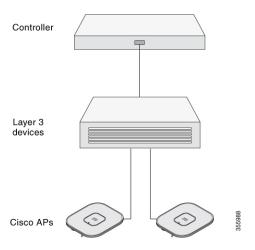
• Power adapter and power injectors when PoE is not available

Power Supply	Description
IW-PWRADPT-MFIT4P=	Power Adapter, AC-DC, Micro-Fit 4-Pin connector
IW-PWRINJ-60RGDMG=	Power Injector, 60W, outdoor 5GE
AIR-PWRINJ-60RGD1=	60W outdoor rated power injector, with North America AC power plug. For more information, see the power injector data sheet.
AIR-PWRINJ-60RGD2=	60W outdoor rated power injector, International version with blunt-end cable. For more information, see the power injector data sheet.

Installation Overview

- Performing a Preinstallation Configuration (Optional), on page 15
- Preinstallation Checks and Installation Guidelines, on page 17
- Mounting the Access Point, on page 18
- Attaching a Power Adapter, on page 30
- Grounding the Access Point, on page 33
- Powering the Access Point, on page 34
- Connecting Data Cables, on page 39

Performing a Preinstallation Configuration (Optional)


The following procedures describe the processes to ensure that your AP installation and initial operation go as expected.

Note

Performing a preinstallation configuration is an optional procedure. If your network controller is properly configured, you can install your AP in its final location and connect it to the network from there.

The following illustration shows the preinstallation configuration setup:

Perform the following steps:

Before you begin

Ensure that the Cisco Controller Distribution System (DS) port is connected to the network. Use the procedure for CLI or GUI as described in the release appropriate Cisco Catalyst 9800 Series Wireless Controller Software Configuration Guide.

- Enable Layer 3 connectivity between APs, Cisco Controller Management, and AP-Manager interface.
- Configure the switch to which your AP has to attach. See the Cisco Wireless Controller Configuration Guide for the release you are using, for additional information.
- Configure the Cisco Catalyst 9800 Series Wireless Controller as the primary so that new APs always join it.
- Ensure that the DHCP is enabled on the network. The AP must receive its IP address through DHCP.

Note

An 802.11ax AP is assigned an IP address from the DHCP server only if a default router (gateway) is configured on the DHCP server (enabling the AP to receive its gateway IP address) and the gateway ARP is resolved.

- CAPWAP UDP ports must not be blocked in the network.
- The AP must be able to find the IP address of the controller. This can be accomplished using DHCP, DNS, or IP subnet broadcast. This guide describes the DHCP method to convey the controller IP address. For other methods, see the product documentation.

Note

The AP requires a multi-gigabit Ethernet (5 Gbps) link to prevent the Ethernet port from becoming a bottleneck for traffic.

Step 1 Power the AP using supported power source.

• As the AP attempts to connect to the controller, the LED cycles through a green, red, and off sequence, which can take up to five minutes.

Note

If the AP remains in this mode for more than five minutes, the AP cannot find the primary Cisco Catalyst 9800 Series Wireless Controller. Check the connection between the AP and the Cisco Catalyst 9800 Series Wireless Controller and be sure that they are on the same subnet.

- If the AP shuts down, check the power source.
- After the AP finds the Cisco Catalyst 9800 Series Wireless Controller, it attempts to download the new operating system code if the AP code version differs from the Cisco Catalyst 9800 Series Wireless Controller code version. While this is happening, the Status LED blinks blue.

If the operating system download is successful, the AP reboots.

Step 2 (Optional) Configure the AP. Use the controller CLI, GUI, or Cisco DNA Center to customize the access point-specific 802.11ax network settings.

- **Step 3** If the preinstallation configuration is successful, the Status LED is green, indicating normal operation. Disconnect the AP and mount it at the location at which you intend to deploy it on the wireless network.
- **Step 4** If your AP does not indicate normal operation, turn it off and repeat the preinstallation configuration.

When you are installing a Layer 3 access point on a subnet that is different from the Cisco Catalyst 9800 Series Wireless Controller, ensure the following setup is configured:

- A DHCP server is reachable from the subnet on which you plan to install the AP.
- The subnet has a route back to the controller.
- This route has destination UDP ports 5246 and 5247 open for CAPWAP communications.
- The route back to the primary, secondary, and tertiary controller allows IP packet fragments.
- If address translation is used, the access point and the controller have a static 1-to-1 NAT to an outside address. Port Address Translation is not supported.

Preinstallation Checks and Installation Guidelines

Before you mount and deploy your access point, we recommend that you perform a site survey (or use the Site Planning tool) to determine the best location to install your access point.

You should have the following information about your wireless network available:

- Access point locations
- Access point mounting options: To a vertical or horizontal wall or a pole
- Access point power options: Use either of the following options to power the AP:
 - DC power input
 - Cisco-approved power injector
 - 802.3at (PoE+), 802.3bt, and Cisco Universal PoE (Cisco UPOE)
- Operating temperature: -40° to +131°F (-40° to +55°C) with solar load and still air.
 Extended operating temperature (DC powered): -58° to +149°F (-50° to +65°C) without solar loading, still air, and cold start limited to -40°C
- Console access using the console port

We recommend that you use a console cable that is one meter or less in length.

Note

The AP may face issues while booting if you use an unterminated console cable (not plugged into any device or terminal) or a console cable that is more than one meter in length.

We recommend that you make a site map showing access point locations so that you can record the device MAC addresses from each location and return them to the person who is planning or managing your wireless network.

Note

Professional installation is required.

Mounting the Access Point

This section provides instructions to mount the AP.

Note

Personnel mounting the AP must have knowledge of the wireless AP, bridging techniques, and grounding methods.

Mounting Hardware

The IW9167I access point has built-in mounting flanges. You can also use the following mounting hardware:

- DIN rail mounting bracket
- Pole mounting bracket

Required mounting hardware depends on the mounting location:

• For ceilings or hard ceilings or walls, directly mount the access point using the built-in mounting flanges.

The mounting flanges are on the sides of the access point that are without ports.

- For electrical cabinets or network boxes, directly mount the access point using the mounting flanges or use the DIN rail mounting bracket.
- For pole mounting, use the pole mounting bracket.

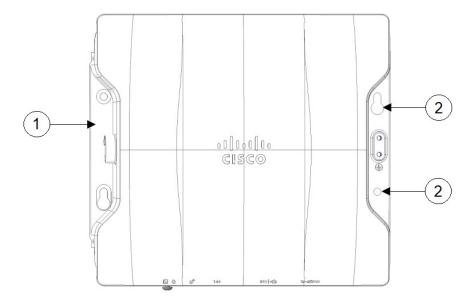
Mounting Bracket Part Numbers

Note

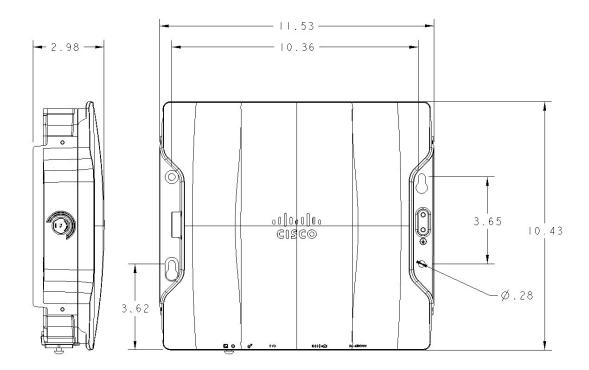
These brackets do not ship with the access point, but you can order them separately.

Table 5: Mounting Bracket Part Numbers

Mounting Bracket	Cisco Part Number
DIN Rail Mounting Bracket	AIR-ACCDMK3700=
Pole Mounting Bracket (for 2"–3.2" diameter pole)	AIR-ACCPMK3700=


Mounting Bracket	Cisco Part Number
Pole Mounting Bracket (for 2"–16" diameter pole)	AIR-ACCPMK3700-2=
Horizontal Pole Mounting Bracket	IW-ACC-9167I-BRK=

Using the Integrated Flange Mounts


Direct mounting using the integrated flange mounts is typically for confined spaces or deployments that experience severe shock and vibration.

To mount the access point using the integrated flange mounts:

- **Step 1** Choose the access point location that can safely support the weight of the access point.
- **Step 2** Use the access point mounting holes as a template, and mark them at the mounting location.

	1	Main mounting flange	2	Mounting holes
- 1				

- **Step 3** Drill holes on the mounting surface for plastic wall anchors to suit 1/4-20 or M6 bolts, and add the appropriate anchors.
- **Step 4** Align the access point mounting holes with the drilled holes.
- **Step 5** Insert a mounting screw in each of the four mounting holes and tighten.
- **Step 6** You can use the keyholes for "hands-free" installation.

Note Ensure that the access point is firmly secured.

Using the DIN Rail Mounting Bracket

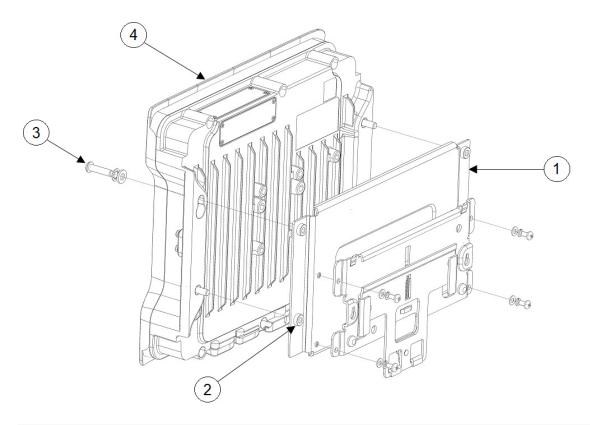

You can use DIN rail mounting in network or electrical closets or cabinets, or in wiring rooms that have low-levels of shock and vibration. The following figure shows the DIN rail and DIN rail mounting assembly.

Figure 20: DIN Rail Mounting Assembly

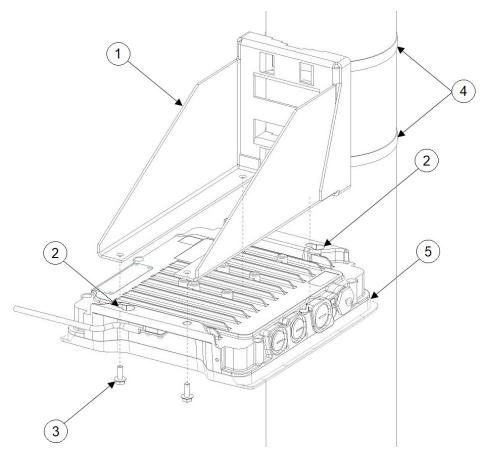
To DIN rail mount the access point:

Step 1 Assemble the access point and DIN rail mounting bracket using the M6 hardware supplied as shown in the following figure.

1	Steel DIN mounting bracket	nounting bracket 3 M6 screw (Torque 6–7 ft-lbs)	
2	M6 insert	4 Access Point	

- **Step 2** Position the access point assembly directly in front of the DIN rail.
- **Step 3** Insert the DIN rail mounting bracket under the spring-loaded upper mounting clips.

- **Note** Ensure that the DIN rail seats into the anti-slip clips.
- **Step 4** Pull down the retention handles until the lower lip of the DIN rail mounting bracket seats in the lower mounting bracket clip.
- **Step 5** Release the retention handles.


Pole Mounting the AP with Horizontal Bracket

You can use the horizontal mounting bracket to mount the AP horizontally to a pole.

- **Step 1** Attach the bracket to the pole using the band clamps as shown in the following figure.
- **Step 2** Attach the AP to the bracket, using four M6 bolts. Torque the bolts to 53-70 in-lbs.
- **Step 3** Alternate AP attach:
 - a) After the bracket is mounted to the pole, partially insert two of the M6 bolts into the bracket in the locations that align with the keyhole slots on the IW9167I access point.
 - b) Align the IW9167I keyhole slots with the partially installed M6 bolts, insert and shift the IW9167I so that the bolts are going through the narrow part of the keyhole.

Note Never leave the AP unit unattended in this state. The AP must always be supported.

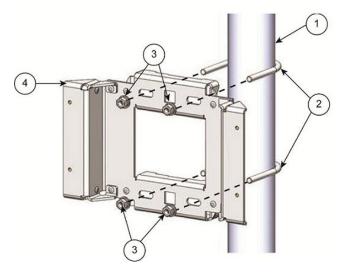
c) Install the remaining two bolts and tighten all four bolts to 53-70 in-lbs.

1	Horizontal mounting bracket	2	Mounting keyholes
3	M6 Bolt (4x)	4	Band clamps

5 IW9167I AP		
--------------	--	--

Using the Pole Mounting Bracket

You can choose one of the following pole mounting brackets in the following table, according to the size of the pole that you are going to mount your access point on.

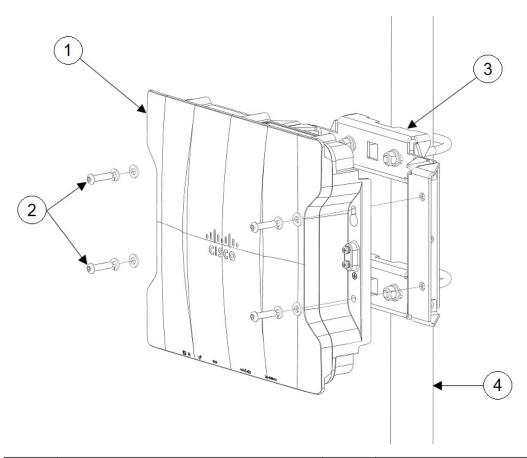

Table 6: Pole Mounting Brackets

Mounting Bracket	Cisco Part Number	Applicable Pole Diameter	
Pole Mounting Bracket	AIR-ACCPMK3700=	2–3.2 inches	
Pole Mounting Bracket 2	AIR-ACCPMK3700-2=	2–16 inches	

Using the Mounting Bracket AIR-ACCPMK3700=

To mount the access point on a pole using the mounting bracket AIR-ACCPMK3700=:

Step 1 Use the supplied U bolts, washers, and nuts to attach the mounting bracket to the pole.



1	2"- 3.2" (5-8 cm) diameter pole	3	M8 x 1.25 nuts and washers
2	M8 x 1.25 U-bolt	4 Pole mounting bracket	

Step 2 Use the included bolts, washers, and nuts to attach the access point to the mounting plate.

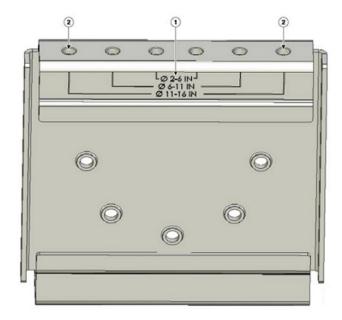
Note Ensure that you symmetrically tighten the nuts on the U-bolts. If you over tighten one side, the U-bolt will skew.

Step 3 Torque the nuts to 6 to 7 foot-pounds.

1	Access point	3	Pole mounting bracket
2	M6 bolts and washers	4	2"- 3.2" (5-8 cm) diameter pole

Note Ensure that the access point is firmly secured to the mounting bracket.

You can use the keyholes for "hands-free" installation. Ensure that you torque the nuts to 6 to 7 ft-lbs.


Caution Never leave the access point unattended if the mounting hardware is not torqued to full value.

Using the Mounting Bracket AIR-ACCPMK3700-2=

The mounting bracket AIR-ACCPMK3700-2= supports poles from 2 to 16 inches in diameter. To mount the access point on a pole using this mounting bracket:

Assemble two strap brackets on the pole clamp bracket that are positioned for the pole diameter you are using to mount the access point. The following image illustrates the pole diameter indicators and bolt holes on the pole clamp bracket.

Figure 21: Pole Clamp Bracket Adjustment Hole Locations

1	Pole size indicators
	• 2 to 6 in.
	• 6 to 11 in.
	• 11 to 16 in.
2	Bolt holes for pole diameters (11 to 16 inches indicated)

Position the strap brackets on the pole clamp bracket for the pole diameter you are using and secure each strap bracket with two M8 x16 bolts (with lock washers), as the following image shows. Tighten the bolts to 13 to 15 ft lbs (17.6 to 20.3 N-m).

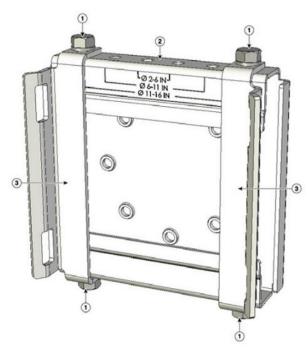


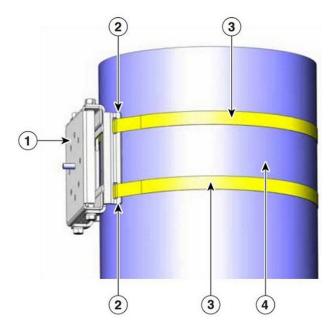
Figure 22: Assembled Pole Clamp Bracket and Strap Brackets

1	M8 x1.25x16 bolts (with lock washers)	Strap bracket (shown positioned for 11 to 16 inch diameter pole)
2	Pole clamp bracket	

Step 3 Screw the M8 nut onto the pole clamp bracket support bolt, and tighten just enough to prevent the bolt from falling off.

Step 4 To mount your access point on a vertical pole, you need to install two metal bands around the pole to support the access point. This process requires extra tools and material not provided in the pole mount kit (see the following table for details).

Table 7: Material Needed to Mount Access Point on a Pole

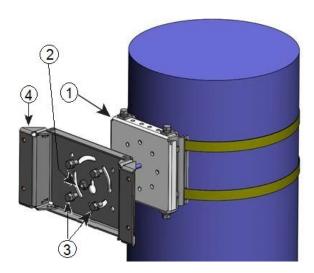

Mounting Method	Materials Required	In Kit
Vertical pole	• Two 0.75-in (1.9 cm) stainless steel bands	Yes
	Banding strap tool (BAND IT) (Cisco	No
	AIR-BAND-INST-TL=)	Yes
	Ground lug (provided with access point)	No
	Crimping tool for ground lug, Panduit CT-720 with CD-720-1 die (http://onlinecatalog.panduit.com)	No
	• #6 AWG ground wire	

Step 5 Select a mounting location on the pole to mount the access point. You can attach the access point to any pole from 2 to 16 inch (5.1 to 40.6 cm) in diameter.

For poles larger than 3.5 inch (8.9 cm), mount the pole clamp bracket assembly to a pole (see the following image) using two metal straps. Following the instructions provided with the banding strap tool (BAND IT) (AIR-BAND-INST-TL=), loop each metal strap twice through the slots on the strap bracket.

Caution Do not place the metal straps in the large open area between the pole clamp bracket and the strap brackets, because this does not properly secure the access point.

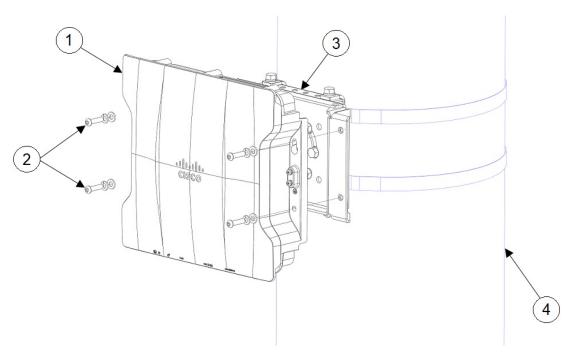
Figure 23: Clamp Bracket Assembly Mounted on Poles Larger than 3.5 inch (8.9 cm)


1	Pole clamp bracket	3	Metal mounting strap
2	Strap slot in strap bracket	4	Pole

For pole diameters of 3.5 inch (8.9 cm) or less, mount the pole clamp bracket assembly to a pole using two metal straps looped through the space between the pole clamp bracket and the strap brackets to provide maximum holding strength for extreme environments. Following the instructions provided with the banding strap tool (BAND IT) (AIR-BAND-INST-TL=), loop each metal strap twice.

Caution Do not place the metal straps in the large open area between the pole clamp bracket and the strap brackets because this does not properly secure the access point.

- **Step 8** Position the pole clamp bracket on the pole as needed before tightening the metal bands.
 - When the metal bands are tightened to the full tension, the pole clamp bracket cannot be adjusted unless the metal bands are cut or disassembled.
- Step 9 Tighten the metal bands using the banding strap tool (BAND IT) (Cisco AIR-BAND-INST-TL=) by following the operating instructions in the box with the tool. Ensure that the metal bands are as tight as possible.
- **Step 10** Place the mounting bracket onto the pole clamp bracket support bolt.
- **Step 11** Install four M8 x16 bolts (with flat and lock washers) into the bolt holes.


Figure 24: Mounting Bracket and Pole Clamp Bracket Assembly

1	Pole clamp bracket assembly	3	Bolt holes
2	Access point support bolt	4	Mounting bracket

- **Step 12** Hand-tighten the bolts and the nut (do not overtighten).
- Adjust the top edge of the mounting bracket until it is horizontal and tighten the bolts and the flange nut to 13 to 15 ft-lbs (17.6 to 20.3 N-m).
- **Step 14** Use the included bolts, washers, and nuts to attach the access point to the mounting plate.
- **Step 15** Torque the nuts to 6 to 7 ft-lbs.

Figure 25: Access Point Installed in the Mounting Bracket

1	Access point	3	Pole mounting bracket
2	M6 bolts and washers	4	Pole

Note Ensure that the access point is firmly secured to the mounting bracket.

Caution Never leave the access point unattended if the mounting hardware is not torqued to full value.

Attaching a Power Adapter

If you want to attach a power adapter (IW-PWRADPT-MFIT4P=) to the access point on a pole using the mounting bracket AIR-ACCPMK3700= or AIR-ACCPMK3700-2=, use the procedures in the following sections.

Attaching a Power Adapter Using the Mounting Bracket AIR-ACCPMK3700=

To attach a power adapter (IW-PWRADPT-MFIT4P=) to the access point on a pole using the mounting bracket AIR-ACCPMK3700=, use the following procedures:

- Ensure you have the mounting bracket set up as described in Step 1 of Using the Mounting Bracket AIR-ACCPMK3700-2=, on page 25.
- **Step 2** Attach the power supply using 4x 6-32 screws and torque the screws to 8.3-11 in-lbs, as shown in the following figure.

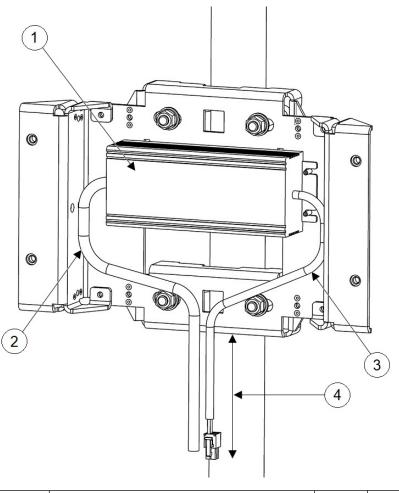
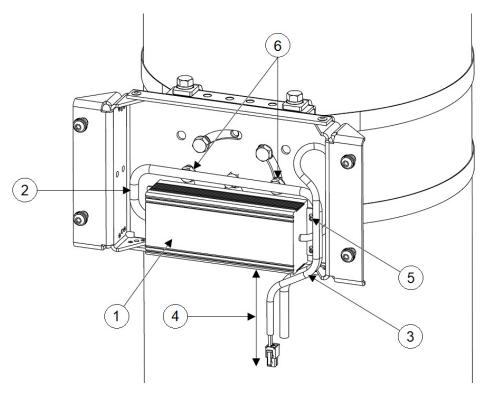


Figure 26: Power Adapter Installed Using Mounting Bracket AIR-ACCPMK3700=

1	Power Adapter	3	DC Output Cable
2	Tie Wraps	4	10 inches Minimum Length


- **Step 3** Ensure that the excess cable is bundled and tie wrapped to the mounting bracket. Route the cable as shown in the figure in Step 2.
- Ensure that there is 10 inches minimum length from the bottom edge of the power supply to the end of the connector as shown in the figure in Step 2.
- Step 5 Attach the access point to the mounting plate as described in Step 2 and Step 3 of Using the Mounting Bracket AIR-ACCPMK3700-2=, on page 25.

Attaching a Power Adapter Using the Mounting Bracket AIR-ACCPMK3700-2=

To attach a power adapter (IW-PWRADPT-MFIT4P=) to the access point on a pole using the mounting bracket AIR-ACCPMK3700-2=, use the following procedures:

- **Step 1** Ensure you have the mounting bracket set up as described in Step 1 through Step 13 of Using the Mounting Bracket AIR-ACCPMK3700-2=, on page 25. But for step 11, the 2 lower bolts need to be repositioned to the locations indicated as No. 6 in the following figure.
- **Step 2** Attach the power supply using 4x 6-32 screws and torque the screws to 8.3-11 in-lbs, as shown in the following figure.

Figure 27: Power Adapter Installed Using Mounting Bracket AIR-ACCPMK3700-2=

1	Power Adapter	4	10 inches Minimum Length
2	Tie Wraps	5	4x 6-32 Screws
3	DC Output Cable	6	Reposition the bolts

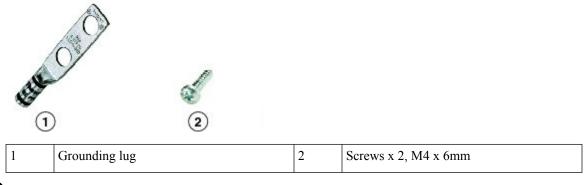
- **Step 3** Ensure that the excess cable is bundled and tie wrapped to the mounting bracket. Route the cable as shown in the figure in Step 2.
- **Step 4** Ensure that there is 10 inches minimum length from the bottom edge of the power supply to the end of the connector as shown in the figure in Step 2.
- Step 5 Attach the access point to the mounting plate as described in step 14 and step 15 of Using the Mounting Bracket AIR-ACCPMK3700-2=, on page 25.

Grounding the Access Point

In all installations, after mounting the access point, you must properly ground the unit before connecting power cables.

Warning

This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024

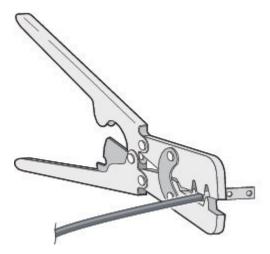


Warning

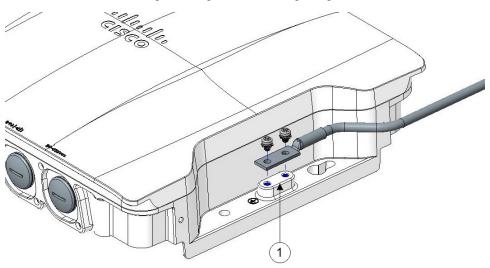
Installation of the equipment must comply with local and national electrical codes. Statement 1074

The access point is shipped with a grounding kit.

Figure 28: Access Point Grounding Kit Contents



Note


The grounding kit also includes the oxide inhibitor, which is contained in a tube.

To ground the access point:

Step 1 Use a crimping tool to crimp a 6-AWG ground wire (not included in the grounding kit) to the ground lug.

Step 2 Connect the supplied ground lug to the access point ground connection point using the supplied screws. Apply supplied oxide inhibitor between the ground lug and the access point ground connection.

1 AP ground connection point

Step 3 Tighten the screws to 20-25 inch-lbs of torque.

Step 4 If necessary, strip the other end of the ground wire and connect it to a reliable earth ground such as a grounding rod or appropriate ground point on a grounded pole. Length of the ground cable should not exceed 1 meter, and 0.5 meter is preferred. Use supplied oxide inhibitor on the grounded interface.

Powering the Access Point

The AP supports these power sources:

• DC power – 24–48 VDC

• Power-over-Ethernet (PoE)

The AP can be powered via the PoE input from an inline power injector or a suitably powered switch port. Depending on the configuration and regulatory domain, the required power for full operation is 802.3bt or UPOE.

For more information, see Power Sources, on page 5.

Power Feature Matrix

The following table provides the AP power feature matrix.

Table 8: Cisco Catalyst IW9167I Heavy Duty Access Point Power Feature Matrix

Power Input	2.4 GHz Radio	dBm Per Path	5 GHz Radio	dBm Per Path	6 GHz Radio	dBm Per Path	Aux Radio	GNSS	mGig Eth	SFP
24-48V	4x4	24	4x4	24	4x4	24	Yes	Yes	max 5G	Yes
802.3bt/ UPOE	4x4	24	4x4	24	4x4	17	Yes	Yes	max 5G	Yes
802.3at	2x2	23	2x2	23	2x2	17	Yes	Yes	max 1G	Yes/1G

Connecting a Power Injector

The AP supports the following power injectors:

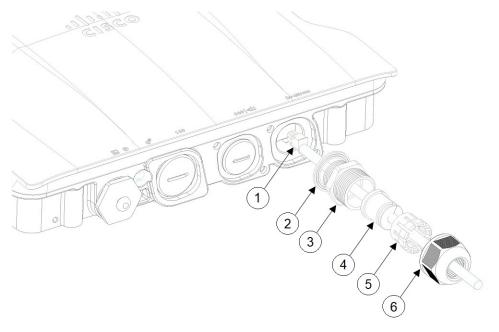
Table 9: Supporting Power Injectors

Power Source	Description
AIR-PWRINJ-60RGD1=	60W rated outdoor power injector, with North America AC plug
AIR-PWRINJ-60RGD2=	60W rated outdoor power injector, global version without AC plug
IW-PWRINJ-60RGDMG=	60W rated outdoor power injector, 5GE

The power injector provides DC voltage to the AP over the Ethernet cable and supports a total end-to-end Ethernet cable length of 100 m (328 ft) from the switch to the AP.

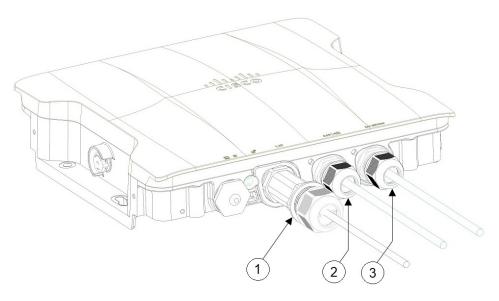
When an optional power injector powers your AP, follow these steps to complete the installation:

- **Step 1** Before applying PoE to the AP, ensure that the AP is grounded (see Grounding the Access Point, on page 33).
- **Step 2** Connect a CAT5e or better Ethernet cable from your wired LAN network to the power injector.


Note The installer is responsible for ensuring that powering the AP from this type of power injector is allowed by local and/or national safety and telecommunications equipment standards.

- Step 3 Connect a shielded outdoor-rated Ethernet (CAT5e or better) cable between the power injector and the AP's PoE-in connector.
- **Step 4** Connect the Ethernet cable to the AP PoE-In port.

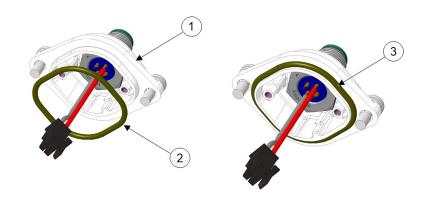
Connecting to the DC Power Port Using Cable Gland


Follow these steps to connect to the DC power port using cable gland:

Step 1 Disassemble PG13 cable gland and slide parts over DC cable in the order shown in the following figure:

1	DC cable	4	Grommet
2	Gasket	5	Ferrule
3	PG13 body	6	Clamp nut

- **Step 2** Plug 4P connector cable into the DC connector in the chassis.
- **Step 3** Thread the PG13 body (with gasket) into the chassis.
- **Step 4** Insert the grommet into the ferrule, and press it into the PG13 body.
- **Step 5** Tighten the clamp nut onto the PG13 body until the grommet compresses onto the DC cable.


1	SFP port connected using cable gland	3	DC power port connected using cable gland
2	RJ-45 port connected using cable gland		

Connecting DC Power Port Using M12 Adapter

Before you begin

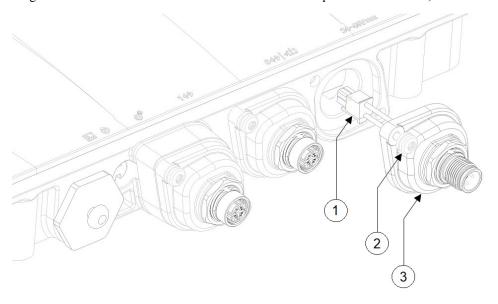
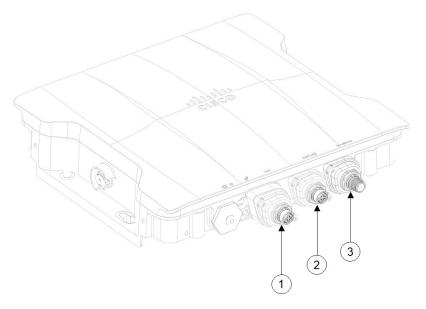

O-rings are shipped separately from the M12 adapter. You need to place the o-ring on the adapter before installing the M12 adapter to the chassis.

Figure 29: Installing O-ring on the M12 Adapter


1	M12 adapter	2	O-ring
3	O-ring installed on M12 adapter		

- **Step 1** Place the O-ring on one side of the M12 adapter. Slightly stretch the o-ring and lift it over the other side. Avoid rolling the o-ring on to the adapter.
- **Step 2** Plug in DC connector into the chassis. Press M12-PWR adapter onto the chassis, and ensure that the wires are not pinched.

1	DC connector	3	M12-PWR adapter
2	Captive screws		

Step 3 Tighten the M12-PWR adapter captive screws into the chassis. Torque to 15-20 in-lbs.

	1	SFP port connected using M12 adapter	3	DC power port connected using M12 adapter
--	---	--------------------------------------	---	---

2	RJ45 port connected using M12 adapter		
---	---------------------------------------	--	--

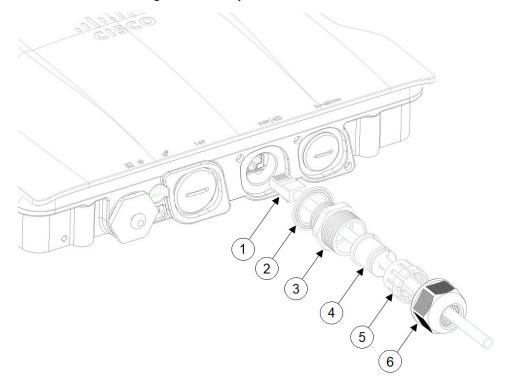
Connecting Data Cables

This AP supports data connections through the Ethernet port and the Small Form-factor Pluggable (SFP) port.

If you are using the SFP port to deliver data through a fiber-optic cable, the AP must be powered by DC power, power adapter, PoE+ power source, or a power injector.

For details on connecting to Ethernet port, see Connecting an Ethernet Cable to the Access Point, on page 39.

For details on connecting to SFP port, see Connecting to the SFP Port of the Access Point, on page 42.


Connecting an Ethernet Cable to the Access Point

Connect an Ethernet cable to the access point by using a cable gland or an M12-RJ45 adapter.

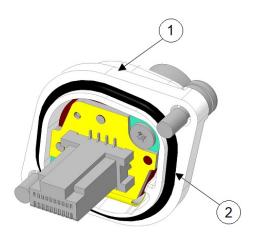
Connecting to the RJ45 Port Using Cable Gland

Follow these steps to connect to the RJ45 port using cable gland:

Step 1 Disassemble PG13 cable gland and slide parts over RJ45 cable in the order shown in the following figure:

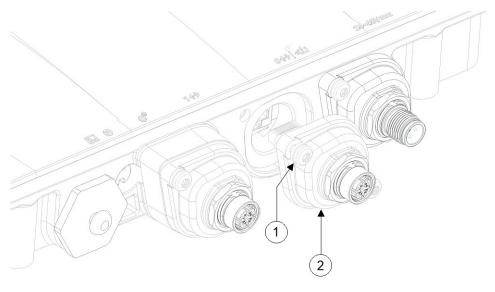
1	RJ45 cable	4	Grommet
2	Gasket	5	Ferrule
3	PG13 body	6	Clamp nut

- **Step 2** Plug the RJ45 cable into the RJ45 connector in the chassis.
- **Step 3** Thread the PG13 body (with gasket) into the chassis. The PG13 must be screwed into the chassis at this point.
- **Step 4** Insert the grommet into the ferrule, and press it into the PG13 body.
- **Step 5** Tighten the clamp nut onto the PG13 body until the grommet compresses onto the RJ45 cable.

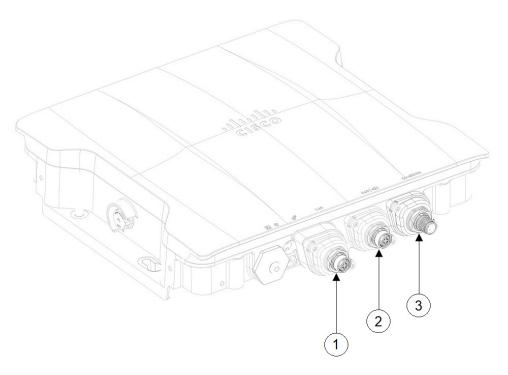


1	SFP port connected using cable gland	3	DC power port connected using cable gland
2	RJ45 port connected using cable gland		

Connecting to the RJ45 Port Using M12 Adapter


Follow these steps to connect to the RJ45 port using M12 adapter:

Step 1 Ensure the O-ring is on the M12 adapter.


1	M12 adapter	2	O-ring

Step 2 Align the RJ45 tab with the RJ45 connector in the chassis, and plug the M12 adapter into the chassis.

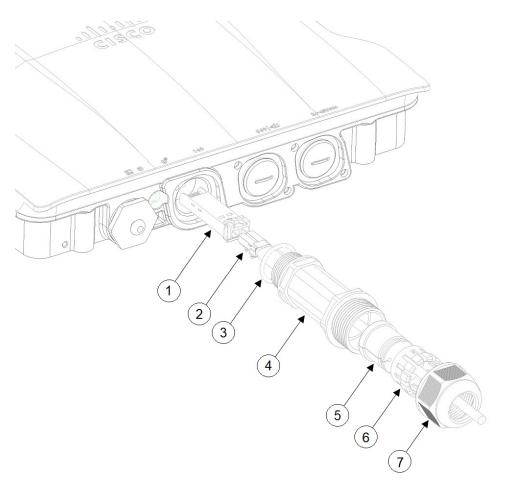
1	Captive screws	2	M12-RJ45 adapter
---	----------------	---	------------------

Step 3 Tighten the M12 adapter captive screws into the chassis. Torque to 15-20 in-lbs.

1	SFP port connected using M12 adapter	3	DC power port connected using M12 adapter
2	RJ45 port connected using M12 adapter		

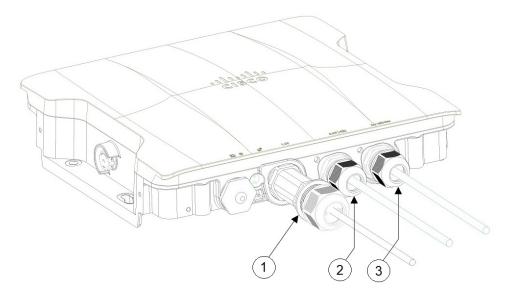
Connecting to the SFP Port of the Access Point

Connect to the SFP port by using a cable gland or an M12-RJ45 adapter.


Note

Copper SFP or Fiber SFP will be detected by the system only after a power cycle.

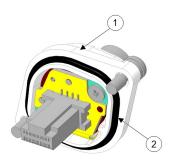
Connecting to SFP Port Using Cable Gland


Follow these steps to connect to the SFP port using cable gland:

- **Step 1** Insert the fiber SFP into the chassis.
- **Step 2** Disassemble the fiber adapter and slide parts over fiber cable in the order shown in the following figure:

1	Fiber SFP	5	Grommet
2	Fiber cable	6	Ferrule
3	O-Ring	7	Clamp nut
4	Adapter body		

- **Step 3** Plug the fiber cable into the SFP.
- **Step 4** Thread the adapter body (with O-Ring) into the chassis.
- **Step 5** Insert the grommet into the ferrule, and press it into the adapter body.
- **Step 6** Tighten the clamp nut onto the adapter body until the grommet compresses onto the fiber cable.

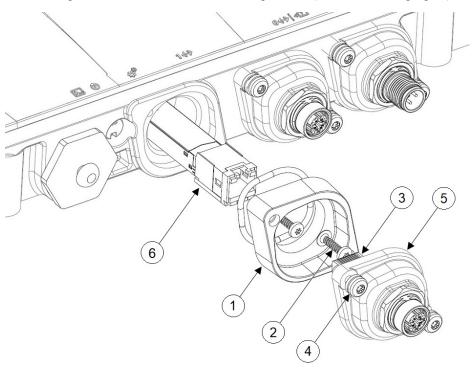

1	SFP port connected using cable gland	3	DC power port connected using cable gland
2	RJ-45 port connected using cable gland		

Using M12 Adapter on SFP Port

M12 adapter can be used only with a copper SFP and not supported with fiber SFP.

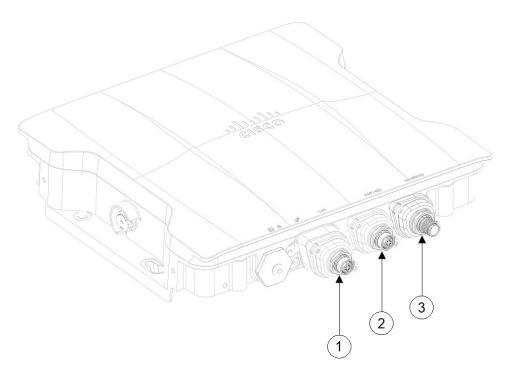
Follow these steps to connect M12 adapter to the SFP port:

- **Step 1** Insert the copper SFP in the chassis.
- **Step 2** Ensure the O-rings are on the M12 adapter and spacer.



1 M12 adapter	2	O-ring
---------------	---	--------

1 Spacer	2	O-rin	g
----------	---	-------	---


Step 3 Attach the spacer to the chassis with the screws provided (2 in the following figure)

1	Spacer	4	Captive screws
2	Spacer screws	5	M12-RJ45 adapter
3	RJ45 plug	6	Copper SFP

Step 4 Align the RJ45 plug with the RJ45 connector in the chassis and plug the M12 adapter into the chassis

Step 5 Tighten the M12 adapter captive screws into the chassis. Torque to 15-20 in-lbs.

1	SFP port connected using M12 adapter	3	DC power port connected using M12 adapter
2	RJ45 port connected using M12 adapter		

Configuring and Deploying the Access Point

This section describes how to connect the AP to a controller. For instructions on how to configure the AP, see the relevant release's *Cisco Wireless Controller Configuration Guide*.

- Controller Discovery Process, on page 47
- Deploying the Access Point in a Wireless Network, on page 48
- Checking the Access Point LEDs, on page 48

Controller Discovery Process

To support the IW916I AP, the controller must be running Cisco IOS XE Dublin 17.12.1 or a later release. For more information, see the Cisco Catalyst IW9167 Heavy Duty Series Data Sheet.

Guidelines and Limitations

- It is not possible to edit or query an access point using the controller CLI if the name of the access point contains a space.
- Make sure that the controller is set to the current time. If the controller is set to a time that has already
 occurred, the access point might not join the controller because its certificate may not be valid for that
 time.

The controller must discover AP before it can become an active part of the network. The AP supports the following controller discovery processes:

- Locally stored controller IP address discovery: If the AP was previously joined to a controller, the primary, secondary, and tertiary controllers' IP addresses are stored in the AP's non-volatile memory. This process of storing controller IP addresses on an AP for later deployment is called priming the AP. For more information about priming, see Performing a Preinstallation Configuration (Optional), on page 15.
- DHCP server discovery: This feature uses DHCP option 43 to provide controller IP address to the AP. Cisco switches support a DHCP server option that is typically used for this capability. For more information about DHCP option 43, see Configuring DHCP Option 43, on page 52.
- DNS discovery: The AP can discover controllers through your domain name server (DNS). For the AP to do so, you must configure your DNS to return controller IP addresses in response to CISCO-CAPWAP-CONTROLLER.localdomain, where localdomain is the AP domain name. Configuring the CISCO-CAPWAP-CONTROLLER provides backward compatibility in an existing customer deployment. When an AP receives an IP address and DNS information from a DHCP server, it contacts

the DNS to resolve CISCO-CAPWAP-CONTROLLER.localdomain. When the DNS sends a list of controller IP addresses, the AP sends discovery requests to the controllers.

Deploying the Access Point in a Wireless Network

After you have mounted the AP, follow these steps to deploy it in a wireless network:

- **Step 1** Connect the power supply and power up the AP.
- **Step 2** Observe the AP's LED.

For LED descriptions, see Checking the Access Point LEDs, on page 48.

- a) When you power up the AP, it begins a power-up sequence that you can verify by observing the AP's LED. If the power-up sequence is successful, the discovery and join process begins. During this process, the LED blinks sequentially green, red, and off. When the AP has joined a controller, and there are no clients associated, the LED is green or blue when clients are associated with it.
- b) If the LED is not on, the AP is most likely not receiving power.
- c) If the LED blinks sequentially for more than five minutes, the AP could not find its primary, secondary, and tertiary controller. Check the connection between the AP and the controller, and be sure the AP and the controller are either on the same subnet or that the AP has a route back to its primary, secondary, and tertiary controller. If the AP is not on the same subnet as the controller, be sure that there is a properly configured DHCP server on the same subnet as the AP. See Configuring DHCP Option 43, on page 52 for additional information.
- **Step 3** Reconfigure the controller so that it is not the primary controller.

Note Use the primary controller to configure the AP only. Avoid using this controller in a working network.

Checking the Access Point LEDs

The location of the AP status LED is shown in Connectors and Ports, on page 2.

Note

Regarding LED status colors, it is expected that there will be small variations in color intensity and hue from unit to unit. This is within the normal range of the LED manufacturer's specifications and is not a defect. However, the intensity of the LED can be changed through the controller.

The AP status LED indicates various conditions and are described in the following table.

Table 10: AP LED Signals

LED Message Type	Color	Meaning
Boot loader	Blinking Green	Boot loader status sequence:
status sequence		DRAM memory test in progress
		DRAM memory test OK
		Board initialization in progress
		Initializing FLASH file system
		FLASH memory test OK
		Initializing Ethernet
		• Ethernet OK
		Starting AP OS
		Initialization successful
Boot loader warnings	Blinking Red	Configuration recovery is in progress (the Reset button has been pushed for 2 to 3 seconds)
	Solid Red	There is an Ethernet failure or an image recovery (the Reset button has been pushed for 20-30 seconds)
	Blinking Green	Image recovery is in progress (the Reset button has been released)
CAPWAP OS	I	
Association status	Chirping (short blips) Green	This status indicates a normal operating condition. The unit is joined to a controller, but no wireless client is associated with it.
	Solid Green	Normal operating condition with at least one wireless client associated with the unit.
Operating	Blinking Amber	A software upgrade is in progress.
Status	Cycling through Green, Red, and Amber	Discovery or join process is in progress.
	Rapidly cycling through Red, Green, Amber, and Off	This status indicates that the AP location command has been invoked.
	Blinking Red	This status indicates that an Ethernet link is not operational.
	Cycling through Red, Green, and Amber	This is a general warning of insufficient inline power.

Checking the Access Point LEDs

Troubleshooting

- Using the Reset Button, on page 51
- Troubleshooting the Access Point to Controller Join Process, on page 51
- Important Information for Controller-based Deployments, on page 52
- Configuring DHCP Option 43, on page 52

Using the Reset Button

Using the **Reset** button (see Connectors and Ports, on page 2), you can reset the AP to factory default or clear the AP's internal storage.

To reset the AP to the default factory-shipped configuration, perform the following steps:

- **Step 1** Press, and continue to press the **Reset** button on the access point during the AP boot cycle.
- **Step 2** The AP status LED will turn red once the timer has started. Continue to hold the **Reset** button for more than 20 seconds, but less than 60 seconds. The following will happen:
 - The AP status LED changes to solid red.
 - All the files in the AP storage directory are cleared.
 - A full factory reset is triggered.
 - The FIPS mode flag is also cleared during the full factory reset of the AP. If the FIPS flag is set, the console access is disabled.

Note If you keep the **Reset** button pressed for more than 60 seconds, the button is assumed as being faulty and no changes are made.

Troubleshooting the Access Point to Controller Join Process

AP can fail to join a controller for many reasons: a RADIUS authorization is pending; self-signed certificates are not enabled on the controller; the AP and the controller regulatory domains do not match, and so on.

Controller software enables you to configure the AP to send all CAPWAP-related errors to a syslog server. You do not have to enable any debug commands on the controller. View all the of the CAPWAP error messages from the syslog server itself.

The AP is not maintained on the controller until it receives a CAPWAP join request from the AP. Therefore, it can be challenging to determine why the CAPWAP discovery request from a particular AP was rejected. To troubleshoot such joining problems without enabling CAPWAP debug commands on the controller, the controller collects information for all APs that send a discovery message and maintains information for any AP that has successfully joined it.

The controller collects all join-related information for each AP that sends a CAPWAP discovery request to the controller. The collection begins with the first discovery message received from the AP and ends with the last configuration payload sent from the controller to the AP.

When the controller maintains join-related information for the maximum number of APs, it does not collect information for any more APs.

An AP sends all syslog messages to IP address 255.255.255.255 by default.

You can also configure a DHCP server to return a syslog server IP address to the AP using option 7 on the server. The AP then starts sending all syslog messages to this IP address.

You can configure the syslog server for APs and view the AP join information only from the controller CLI interface.

Important Information for Controller-based Deployments

Keep these guidelines in mind when you use the AP:

- The AP can only communicate with Cisco controllers.
- The AP does not support Wireless Domain Services (WDS) and cannot communicate with WDS devices. However, the controller provides functionality equivalent to WDS when the AP joins it.
- CAPWAP does not support Layer 2. The AP must get an IP address and discover the controller using Layer 3, DHCP, DNS, or IP subnet broadcast.
- The AP console port is enabled for monitoring and debugging purposes. All configuration commands are disabled when the AP is connected to a controller.

Configuring DHCP Option 43

You can use DHCP Option 43 to provide a list of controller IP addresses to the AP, enabling it to find and join a controller.

The following is a DHCP Option 43 configuration example on a Microsoft Windows 2003 Enterprise DHCP server for Cisco Catalyst lightweight APs. For other DHCP server implementations, consult the product documentation to configure DHCP Option 43. In Option 43, use the IP address of the controller management interface.

Note

DHCP Option 43 is limited to one AP type per DHCP pool. You must configure a separate DHCP pool for each AP type.

The AP uses the type-length-value (TLV) format for DHCP Option 43. DHCP servers must be programmed to return the option based on the AP DHCP Vendor Class Identifier (VCI) string (DHCP Option 60). The VCI string for the AP:

Cisco AP IW9167IH

The format of the TLV block is listed below:

- Type—0xf1 (decimal 241)
- Length—Number of controller IP addresses * 4
- Value—IP addresses of the controller management interfaces listed sequentially in hexadecimal format.

SUMMARY STEPS

- **1.** Enter configuration mode at the Cisco IOS CLI.
- **2.** Create the DHCP pool, including the necessary parameters such as default router and name server. A DHCP scope example is as follows:
- **3.** Add the option 43 line using the following syntax:

DETAILED STEPS

- **Step 1** Enter configuration mode at the Cisco IOS CLI.
- **Step 2** Create the DHCP pool, including the necessary parameters such as default router and name server. A DHCP scope example is as follows:

Example:

```
ip dhcp pool <pool name>
network <IP Network> <Netmask>
default-router <Default router>
dns-server <DNS Server>
```

Where:

Example:

```
<pool name> is the name of the DHCP pool, such as IW9167IH
<IP Network> is the network IP address where the controller resides, such as 10.0.15.1
<Netmask> is the subnet mask, such as 255.255.255.0
<Default router> is the IP address of the default router, such as 10.0.0.1
<DNS Server> is the IP address of the DNS server, such as 10.0.10.2
```

Step 3 Add the option 43 line using the following syntax:

Example:

option 43 hex <hex string>

The hex string is assembled by concatenating the TLV values shown below:

Type + Length + Value

For example, suppose that there are two controllers with management interface IP addresses, 10.126.126.2 and 10.127.127.2. The type is f1(hex). The length is 2 * 4 = 8 = 08 (hex). The IP addresses translate to 0a7e7e02 and 0a7f7f02. Assembling the string then yields f1080a7e7e020a7f7f02. The resulting Cisco IOS command added to the DHCP scope is **option 43** hex f1080a7e7e020a7f7f02.

Safety Guidelines and Warnings

- Safety Instructions, on page 55
- FCC Safety Compliance Statement, on page 56
- Safety Precautions, on page 56
- Avoiding Damage to Radios in a Testing Environment, on page 57
- Performing Site Surveys, on page 57

Safety Instructions

The translated warnings are available in the Translated Safety Warnings for Cisco Catalyst Access Points, which is available on Cisco.com.

Warning

IMPORTANT SAFETY INSTRUCTIONSThis warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.SAVE THESE INSTRUCTIONS Statement 1071

Warning

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than 20A. Statement 1005

Warning

Installation of the equipment must comply with local and national electrical codes. Statement 1074

Warning

Ultimate disposal of this product should be handled according to all national laws and regulations. Statement 9001

Caution

Ensure to connect the power cord of the power adapter to a socket outlet with an earthing connection.

Statement 1008—Class 1 Laser Product

Warning

This product is a Class 1 laser product.

ステートメント 1008—クラス 1 レーザー製品

警告

クラス1レーザー製品です。

FCC Safety Compliance Statement

The FCC, with its action in ET Docket 96-8, has adopted a safety standard for human exposure to RF electromagnetic energy emitted by FCC-certified equipment. When used with approved Cisco antennas, Cisco Catalyst products meet the uncontrolled environmental limits found in OET-65 and ANSI C95.1, 1991. Proper operation of this radio device according to the instructions in this publication results in user exposure substantially below the FCC recommended limits.

Safety Precautions

For safety and to achieve a good installation, please read and follow these safety precautions:

- Select your installation site with safety as well as performance in mind. Remember: electric power lines and phone lines look alike. For safety, assume that any overhead line can kill.
- Call your electric power company. Tell them your plans, and ask them to come to look at your proposed installation
- Plan your installation carefully and thoroughly before you begin. Successful raising of a mast or tower
 is mostly a matter of coordination. Each person should be assigned to a specific task and know what to
 do and when to do it. One person should be in charge of the operation to issue instructions and watch
 for signs of trouble.
- When installing the AP or its antennas, remember:
 - Do not use a metal ladder.
 - Do not work on a wet or windy day.
 - Do dress properly—shoes with rubber soles and heels, rubber gloves, long-sleeved shirt or jacket.
- Use a rope to lift the AP. If the assembly starts to drop, get away from it and let it fall.
- If any part of the antenna system comes in contact with a power line, do not touch it or remove it yourself. Call your local power company. They will remove it safely.

If an accident should occur, call for qualified emergency help immediately.

Avoiding Damage to Radios in a Testing Environment

The radios on outdoor units (bridges) have higher transmit power levels than radios on indoor units (APs). When you test high-power radios in a link, you must avoid exceeding the receiver's maximum receive input level. At levels above the normal operating range, packet error rate (PER) performance is degraded. At even higher levels, the receiver can be permanently damaged. To avoid receiver damage and PER degradation, you can use one of the following techniques:

• Separate the omnidirectional antennas by at least 2 ft (0.6 m) to avoid receiver damage or by at least 25 ft (7.6 m) to avoid PER degradation.

Note

These distances assume free space path loss and are conservative estimates. Required separation distances for damage and performance degradation levels in actual deployments are less if conditions are not non-line-of-sight.

• Reduce the configured transmit power to the minimum level.

For a radiated testbed, the following equation describes the relationships among transmit power, antenna gain, attenuation, and receiver sensitivity:

```
txpwr + tx gain + rx gain - [attenuation due to antenna spacing] < max rx input level
Where:
txpwr = Radio transmit power level
tx gain = transmitter antenna gain
rx gain = receiver antenna gain</pre>
```

Performing Site Surveys

Every network application is a unique installation. Before installing multiple APs, you should perform a site survey to determine the optimum use of networking components and maximize range, coverage, and network performance.

Site surveys reveal problems that can be resolved before the network is operational. Because 802.11a/b/g/n/ac/ax operates in an unlicensed spectrum, there may be sources of interference from other 802.11a wireless devices (especially in multi-tenant buildings) that could degrade your 802.11 signals. A site survey can determine if such interference exists at the time of deployment.

Consider the following operating and environmental conditions when performing a site survey:

- Data rates: Sensitivity and range are inversely proportional to data bit rates. The maximum radio range
 is achieved at the lowest workable data rate. A decrease in receiver sensitivity occurs as the radio data
 increases.
- Antenna type and placement: Proper antenna configuration is a critical factor in maximizing radio range. As a general rule, range increases in proportion to antenna height. However, do not place the antenna higher than necessary because the extra height also increases potential interference from other unlicensed radio systems and decreases the wireless coverage from the ground.
- Physical environment: Clear or open areas provide better radio range than closed or filled areas.

- Obstructions: Physical obstructions such as buildings, trees, or hills can hinder the performance of wireless devices. Avoid locating the devices in a location where there is an obstruction between the sending and receiving antennas.
- How far is your wireless link?
- Has a previous site survey been conducted?
- Do you have a clear Fresnel zone between the APs or radio line of sight?
- What is the minimum acceptable data rate within the link?
- Do you have the correct antenna (if more than one antenna is being offered?)
- Do you have the proper permits, if required?
- Are you following the proper safety procedures and practices?
- Have you configured the APs before you go onsite? It is always easier to resolve configurations or device problems first.
- Do you have the proper tools and equipment to complete your survey?

Declarations of Conformity and Regulatory Information

- Manufacturers Federal Communications Commission Declaration of Conformity Statement, on page 59
- Operation of Cisco Catalyst Access Points in México, on page 60
- VCCI Statement for Japan, on page 60
- Compliance Statement for Canada, on page 62
- European Community, Switzerland, Norway, Iceland, and Liechtenstein, on page 62
- United Kingdom Compliance, on page 63
- Administrative Rules for Cisco Catalyst Access Points in Taiwan, on page 64
- China Compliance Statement, on page 64
- Declaration of Conformity for RF Exposure, on page 65
- Declaration of Conformity Statements, on page 68

Manufacturers Federal Communications Commission Declaration of Conformity Statement

Access Point Models	Certification Number		
IW9167IH–B	LDKIW9167IH		

Manufacturer:

Cisco Systems, Inc.

170 West Tasman Drive

San Jose, CA 95134-1706

USA

This device complies with Part 15 rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference,
- 2. This device must accept any interference received, including interference that may cause undesired operation.

Federal Communications Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Caution

The Part 15 radio device operates on a non-interference basis with other devices operating at this frequency when using the integrated antennas. Any changes or modification to the product not expressly approved by Cisco could void the user's authority to operate this device.

Caution

The operation of this device is prohibited on oil platforms, cars, trains, boats, and aircraft. Operation of transmitters in the 5.925-7.125 GHz band is prohibited for control of or communications with unmanned aircraft systems.

Operation of Cisco Catalyst Access Points in México

Declaración para México

La operación de este equipo está sujeta a las siguientes dos condiciones: (1) es posible que este equipo o dispositivo no cause interferencia perjudicial y (2) este equipo o dispositivo debe aceptar cualquier interferencia, incluyendo la que pueda causar su operación no deseada.

VCCI Statement for Japan

Statement 191—Voluntary Control Council for Interference (VCCI) Class A Warning for Japan

Warning

This is a Class A product based on the standard of the VCCI Council. If this equipment is used in a domestic environment, radio interference may occur, in which case, you may be required to take corrective actions.

ステートメント 191—日本向け VCCI クラス A に関する警告

藝牛

この装置は、クラスA機器です。この装置を住宅環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

VCCI-A

Guidelines for Operating Cisco Catalyst Access Points in Japan

This section provides guidelines for avoiding interference when operating Cisco Catalyst access points in Japan. These guidelines are provided in both Japanese and English.

この機器の使用周波数帯では、電子レンジ等の産業・科学・医療用機器のほか工場の製造ライン等で使用されている移動体識別用の構内無線局(免許を要する無線局)及び特定小電力無線局(免許を要しない無線局)が運用されています。

- 1. この機器を使用する前に、近くで移動体臓別用の構内無線局及び特定小電力無線局が運用されていないことを確認して下さい。
- 2. 万一、この機器から移動体識別用の構内無線局に対して電波干渉の事例が発生した場合には、 速やかに使用周波数を変更するか又は電波の発射を停止した上、下記連絡先にご連絡頂き、混 信回避のための処置等(例えば、ノくーティションの設置など}Iこついてご相談して下さい。
- 3. その他、この機器から移動体撒別用の特定、ト電力無線局に対して電波干渉の事例が発生した場合など何かお困りのことが起きたときは、次の連絡先へお問い合わせ下さい。

連絡先: 03-6434-6500

English Translation

This equipment operates in the same frequency bandwidth as industrial, scientific, and medical devices such as microwave ovens and mobile object identification (RF-ID) systems (licensed premises radio stations and unlicensed specified low-power radio stations) used in factory production lines.

- 1. Before using this equipment, make sure that no premises radio stations or specified low-power radio stations of RF-ID are used in the vicinity.
- 2. If this equipment causes RF interference to a premises radio station of RF-ID, promptly change the frequency or stop using the device; contact the number below and ask for recommendations on avoiding radio interference, such as setting partitions.
- **3.** If this equipment causes RF interference to a specified low-power radio station of RF-ID, contact the number below.

Contact Number: 03-6434-6500

Compliance Statement for Canada

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

Industry Canada

Access Point Models	Certification Number
IW9167IH-A	IC:2461A-IW9167IH

IC Radiation Exposure Statement

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 29cm between the radiator and your body.

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 29cm de distance entre la source de rayonnement et votre corps.

European Community, Switzerland, Norway, Iceland, and Liechtenstein

Access Point Models:

IW9167IH-E

The product carries the CE Mark:

The device is restricted to indoor use only when operating between 5150 MHz and 5350 MHz, 5925 MHz and 6425 MHz frequency range.

This equipment complies with EU radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm (7.87 inches) between the radiator & your body.

Note

This equipment is intended to be used in all EU and EFTA countries. Outdoor use may be restricted to certain frequencies and/or may require a license for operation. For more details, contact Cisco Corporate Compliance.

The frequency and the maximum transmitted power in EU are listed below:

2412-2472MHz: 19.90 dBm

2402-2480MHz (LE): 9.92 dBm

5180-5240MHz: 22.96 dBm

5260-5320MHz: 22.98 dBm

5500-5700: 29.99 dBm

5955-6415MHz: 22.95 dBm

	AT	BE	BG	HR	CY	CZ	DK
	EE	FI	FR	DE	EL	HU	ΙE
	IT	LV	LT	LU	MT	NL	PL
	PT	RO	SK	SI	ES	SE	UK(NI)

Norway(NO), Iceland(IS), Lichtenstein(LI), Turkey(TR), Switzerland(CH)

United Kingdom Compliance

The device is restricted to indoor use only when operating between 5150 MHz and 5350 MHz, 5925 MHz and 6425 MHz frequency range. This equipment should be installed and operated with minimum distance 20 cm (7.87 inches) between the radiator & your body.

Access Point Models:

IW9167IH-ROW

Manufacturer:

Cisco Systems, Inc.125 West Tasman Drive San Jose, CA 95134-1706 USA

The frequency and the maximum transmitted power in UK are listed below:

2412-2472MHz: 19.90 dBm

2402-2480MHz (LE): 9.92 dBm

5180-5240MHz: 22.96 dBm

5260-5320MHz: 22.98 dBm

5500-5700: 29.99 dBm

5955-6415MHz: 22.95 dBm

Administrative Rules for Cisco Catalyst Access Points in Taiwan

This section provides administrative rules for operating Cisco Catalyst access points in Taiwan. The rules for all access points are provided in both Simplified Chinese and English.

Access Point Models:

IW9167IH-ROW

Manufacturer:

Cisco Systems, Inc.125 West Tasman Drive San Jose, CA 95134-1706 USA

Simplified Chinese Translation

【低功率射頻器材技術規範】取得審驗證明之低功率射頻器材,非經核准,公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。低功率射頻器材之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象時,應立即停用,並改善至無干擾時方得繼續使用。前述合法通信,指依電信管理法規定作業之無線電通信。低功率射頻器材須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。應避免影響附近雷達系統之操作。

English Translation

Without permission granted by the NCC, any company, enterprise, or user is not allowed to change frequency, enhance transmitting power or alter original characteristic as well as performance to a approved low power radio-frequency devices. The low power radio-frequency devices shall not influence aircraft security and interfere legal communications; If found, the user shall cease operating immediately until no interference is achieved. The said legal communications means radio communications is operated in compliance with the Telecommunications Management Act. The low power radio-frequency devices must be susceptible with the interference from legal communications or ISM radio wave radiated devices.

China Compliance Statement

Access point model

IW9167IH-ROW 无线接入器

Simplified Chinese Translation

安全和电磁辐射证书

本设备符合FCC规则第15部分、欧洲共同体委员会发布的指令2014/53/EU、其他一些安全、电磁发射和无线电证书。

CMIIT-核准编号标识在产品本体背面标签。

English Translation

Safety and Electromagnetic Radiation Certificate

This device complies with Part 15 of the FCC Rules, Directive 2014/53/EU of the Commission of the European Communities, and other safety, Electromagnetic Emissions and Radio certificates.

This device is certified by the China State Radio Regulatory Committee (SRRC) with a valid CMIIT ID. The CMIIT ID is marked on the label of the product.

Declaration of Conformity for RF Exposure

This section contains information on compliance with guidelines related to RF exposure.

Generic Discussion on RF Exposure

The Cisco products are designed to comply with the following national and international standards on Human Exposure to Radio Frequencies:

- US 47 Code of Federal Regulations Part 2 Subpart J
- American National Standards Institute (ANSI) / Institute of Electrical and Electronic Engineers / IEEE C 95.1 (99)
- International Commission on Non Ionizing Radiation Protection (ICNIRP) 98
- Ministry of Health (Canada) Safety Code 6. Limits on Human Exposure to Radio Frequency Fields in the range from 3kHz to 300 GHz
- Australia Radiation Protection Standard

To ensure compliance with various national and international Electromagnetic Field (EMF) standards, the system should only be operated with Cisco approved antennas and accessories.

This Device Meets International Guidelines for Exposure to Radio Waves

The IW9167I device includes a radio transmitter and receiver. It is designed not to exceed the limits for exposure to radio waves (radio frequency electromagnetic fields) recommended by international guidelines. The guidelines were developed by an independent scientific organization (ICNIRP) and include a substantial safety margin designed to ensure the safety of all persons, regardless of age and health.

As such the systems are designed to be operated as to avoid contact with the antennas by the end user. It is recommended to set the system in a location where the antennas can remain at least a minimum distance as specified from the user in accordance to the regulatory guidelines which are designed to reduce the overall exposure of the user or operator.

RF Exposure Distance

20 cm

The World Health Organization has stated that present scientific information does not indicate the need for any special precautions for the use of wireless devices. They recommend that if you are interested in further reducing your exposure then you can easily do so by reorienting antennas away from the user or placing he antennas at a greater separation distance then recommended.

This Device Meets FCC Guidelines for Exposure to Radio Waves

The IW9167I device includes a radio transmitter and receiver. It is designed not to exceed the limits for exposure to radio waves (radio frequency electromagnetic fields) as referenced in FCC Part 1.1310. The guidelines are based on IEEE ANSI C 95.1 (92) and include a substantial safety margin designed to ensure the safety of all persons, regardless of age and health.

As such the systems are designed to be operated as to avoid contact with the antennas by the end user. It is recommended to set the system in a location where the antennas can remain at least a minimum distance as specified from the user in accordance to the regulatory guidelines which are designed to reduce the overall exposure of the user or operator.

The device has been tested and found compliant with the applicable regulations as part of the radio certification process.

RF Exposure Distance

50 cm

The US Food and Drug Administration has stated that present scientific information does not indicate the need for any special precautions for the use of wireless devices. The FCC recommends that if you are interested in further reducing your exposure then you can easily do so by reorienting antennas away from the user or placing the antennas at a greater separation distance then recommended or lowering the transmitter power output.

This Device Meets the Industry Canada Guidelines for Exposure to Radio Waves

The IW9167I device includes a radio transmitter and receiver. It is designed not to exceed the limits for exposure to radio waves (radio frequency electromagnetic fields) as referenced in Health Canada Safety Code 6. The guidelines include a substantial safety margin designed into the limit to ensure the safety of all persons, regardless of age and health.

As such the systems are designed to be operated as to avoid contact with the antennas by the end user. It is recommended to set the system in a location where the antennas can remain at least a minimum distance as specified from the user in accordance to the regulatory guidelines which are designed to reduce the overall exposure of the user or operator.

RF Exposure Distance

29 cm

Health Canada states that present scientific information does not indicate the need for any special precautions for the use of wireless devices. They recommend that if you are interested in further reducing your exposure you can easily do so by reorienting antennas away from the user, placing the antennas at a greater separation distance than recommended, or lowering the transmitter power output.

Cet appareil est conforme aux directives internationales en matière d'exposition aux fréquences radioélectriques

Cet appareil de la gamme IW9167I comprend un émetteur-récepteur radio. Il a été conçu de manière à respecter les limites en matière d'exposition aux fréquences radioélectriques (champs électromagnétiques de fréquence radio), recommandées dans le code de sécurité 6 de Santé Canada. Ces directives intègrent une marge de sécurité importante destinée à assurer la sécurité de tous, indépendamment de l'âge et de la santé.

Par conséquent, les systèmes sont conçus pour être exploités en évitant que l'utilisateur n'entre en contact avec les antennes. Il est recommandé de poser le système là où les antennes sont à une distance minimale telle que précisée par l'utilisateur conformément aux directives réglementaires qui sont conçues pour réduire l'exposition générale de l'utilisateur ou de l'opérateur.

Distance d'exposition RF

29 cm

Santé Canada affirme que la littérature scientifique actuelle n'indique pas qu'il faille prendre des précautions particulières lors de l'utilisation d'un appareil sans fil. Si vous voulez réduire votre exposition encore davantage, selon l'agence, vous pouvez facilement le faire en réorientant les antennes afin qu'elles soient dirigées à l'écart de l'utilisateur, en les plaçant à une distance d'éloignement supérieure à celle recommandée ou en réduisant la puissance de sortie de l'émetteur.

Additional Information on RF Exposure

You can find additional information on the subject at the following links:

- Cisco Systems Spread Spectrum Radios and RF Safety white paper at this URL: http://www.cisco.com/warp/public/cc/pd/witc/ao340ap/prodlit/rfhr wi.htm
- FCC Bulletin 56: Questions and Answers about Biological Effects and Potential Hazards of Radio Frequency Electromagnetic Fields
- FCC Bulletin 65: Evaluating Compliance with the FCC guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

You can obtain additional information from the following organizations:

- World Health Organization Internal Commission on Non-Ionizing Radiation Protection at this URL: www.who.int/emf
- United Kingdom, National Radiological Protection Board at this URL: www.nrpb.org.uk
- Cellular Telecommunications Association at this URL: www.wow-com.com
- The Mobile Manufacturers Forum at this URL: www.mmfai.org

Declaration of Conformity Statements

All the Declaration of Conformity statements related to this product can be found at the following location: https://pas.cisco.com/pdtcnc/#/