Parallel Redundancy Protocol Over Wireless Deployment Guide

Parallel Redundancy Protocol Over Wireless Deployment Guide 2
Information About Parallel Redundancy Protocol (PRP) over Wireless 2
Prerequisites and Components Used 3
Dual WGB Dual Radio PRP Redundancy Option 3
Single WGB Dual Radio PRP Redundancy Option 16
Related Documents 21

Full Cisco Trademarks with Software License
Parallel Redundancy Protocol Over Wireless Deployment Guide

This document provides details about configuring Parallel Redundancy Protocol (PRP) over wireless on the Cisco IW3702 access points.

Information About Parallel Redundancy Protocol (PRP) over Wireless

Parallel Redundancy Protocol (PRP) is defined in the International Standard IEC 62439-3. PRP is designed to provide hitless redundancy (zero recovery time after failures) in Ethernet networks.

PRP allows a data communication network to prevent data transmission failures by providing two alternate paths for the traffic to reach its destination. Two Ethernet networks (LANs) with similar topology are separated.

A device that requires protection for data across the network connects to the two independent networks (LAN-A and LAN-B) is called a Dual Attached Node implementing PRP (DANP). A DANP source sends two frames simultaneously on both LANs. A DANP destination receives both frames and discards the duplicating. If one LAN fails, a DANP destination can still receive a frame from the other LAN.

Nonredundant endpoints in the network that attach only to either LAN-A or LAN-B are known as Singly Attached Nodes (SANs). A Redundancy Box (RedBox) is used when a single interface node must be attached to both networks. Such a node can communicate with all other nodes.

The PRP functionality is available on wireless since Cisco Wireless Controller Release 8.4. The feature is designed to bridge wired client traffic (behind the WGB) using dual radio links to provide reliable wireless transmission. As shown in the following figure, the typical wireless data transmission goes over a single radio path and is susceptible to RF interference and packet loss during handoff. The PRP over Wireless feature creates a redundant radio path for data transmission and enables consistent and reliable data connectivity over the wireless network. It allows the distribution of traffic over two parallel wireless connections to achieve the highest level of resilience and reduction in delay variation.
The PRP over Wireless feature is supported on IW3702 WGB with two redundancy options. Wired client traffic is duplicated and transmitted on dual radio links either by two WGBs (dual WGB, dual radio), or by a single WGB with dual radio links (single WGB, dual radio). Each redundancy option is discussed in detail in the following sections with sample configurations provided.

Prerequisites and Components Used

The PRP over wireless feature is supported for the following software releases, platforms, and AP Modes.

- Dual WGB dual radio redundancy option – Wireless Controller Software Release 8.4
- Single WGB dual radio redundancy option – Wireless Controller Software Release 8.5
- APs on the infrastructure side – FlexConnect mode (central authentication, local switching). The following IOS-based platforms are supported: IW3702, 2700, 3700, and 1570 series.
- WGB on the mobile client side – IW3702

The configuration example that is given in this document involves the following components:

- Wireless LAN Controller (WLC) – Release 8.5.120.0
- Infrastructure APs – IW3702 APs in FlexConnect mode (central authentication, local switching)
- WGB – IW3702 AP running autonomous image of Release 15.3(3)JF
- PRP switch – IE 4000 with image version ie4000-universal-mz.152-4.EA5
- Aggregate switch with Dot1q tunneling function – Catalyst 3750

Dual WGB Dual Radio PRP Redundancy Option

These sections contain configurations of the infrastructure side and mobile client side for dual WGB dual radio PRP redundancy.
Example Network Topology

The following figure shows an example of dual WGB dual radio PRP redundancy topology.

In this topology, the redundant path is provided by two 5GHz radios on two WGBs. The two PRP switches (in this example, the Cisco IE4000) work as RedBox (redundancy box) on both the mobile client side and network infrastructure side, performing packet duplication and duplication discard.

Detailed functions of each network component are described as following:

Infrastructure side:

- The PRP capable switch (in this example, the Cisco IE4000) on the infrastructure side serves as the RedBox, performing packet duplication and duplication discard.

- APs on the infrastructure side transmit and receive redundant data traffic over different SSIDs (in this example, PRP1 and PRP2), and tag the data with different VLANs (QinQ Tunnel encapsulation or decapsulation).

- The traffic between aggregate switch and APs is in QinQ format to identify the path where they come from. The QinQ function is enabled on the aggregate switch Ethernet interfaces (Gi1/0/7 and Gi1/0/8), which connect to the IE switch PRP ports. These two interfaces perform QinQ Tunnel encapsulation for downstream traffic and decapsulation for upstream traffic, so that the duplicated traffic can be carried over different VLANs.

Mobile client side:

- The Gig port 0 (PoE IN) of each IW3702 is connected to the two PRP ports of the PRP switch. Since the IE4000 PRP port is not a PoE port, IW3702 should connect to a power injector.

- PRP-capable switch IE4000 is used to perform packet duplication and duplication discard function for the client VLAN traffic (VLAN 800).

- Each IW3702 works as a WGB, which associates to different SSIDs (in this example, PRP1 and PRP2) and locates in different VLANs (in this example, VLAN 801 and VLAN 802). The redundant wireless paths are provided for wired clients behind the WGB by two 5GHz radios on two WGBs.
Roaming Coordination:

- Gig port 1 (PoE OUT) of the two IW3702s can be connected through the IE switch Ethernet interface to provide roaming coordination function, which prevents both WGBs from roaming at the same time.

Note: When powered by the PoE IN port with 802.3at power input, the IW3072 Gig port 1 can still forward traffic. But the PoE OUT functionality is not supported.

Infrastructure Side Configuration

This section contains the following infrastructure side configurations.

Wireless LAN Controller Configuration

This section contains the following Wireless LAN Controller configurations.

- WLAN Creation, on page 5
- Enabling PRP Under WLAN, on page 9
- Configuring WGB Multiple Client VLAN, on page 10

WLAN Creation

For the PRP over wireless to function, two WLANs (SSIDs) in two different interfaces (VLANs) are required to carry redundant wireless traffic. Configure the WLANs across all the infrastructure side APs.

Procedure

Step 1 Create dynamic interfaces.

For the PRP and QinQ to work under Flexconnect and local switch mode, you should configure the following dynamic interfaces:

- WLAN VLAN interface, which maps to the WGB (wireless client) VLAN. In this example, VLAN 801 and VLAN 802 are VLANs for SSID PRP1 and SSID PRP2 respectively. This VLAN is expected to be used as the outer tag of QinQ packet.

- Wired client VLAN, which is used by the Flexconnect AP as the inner tag of QinQ packet. In this example, VLAN 800 is configured as the wired client VLAN.
Step 2 Create WLAN with SSID (PRP1/PRP2).

Step 3 The PRP over wireless feature works only in Flexconnect mode. Enable FlexConnect Local Switching mode on the WLANs that have been created.
Step 4 Connect the APs to the infrastructure and make them join the WLC in Flexconnect mode.

All APs > Details for ROAM-AP2

Step 5 Enable VLAN mappings on all APs and make sure that WLANs created for PRP are included for the VLANs.
All APs > Details for ROAM-AP2

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Name</td>
<td>ROAM-AP2</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>default location</td>
<td></td>
</tr>
<tr>
<td>AP MAC Address</td>
<td>00:81:c4:ca:59:50</td>
<td></td>
</tr>
<tr>
<td>Base Radio MAC</td>
<td>00:01:c4:d0:26:b0</td>
<td></td>
</tr>
<tr>
<td>Admin Status</td>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td>AP Mode</td>
<td>FlexConnect</td>
<td></td>
</tr>
<tr>
<td>AP Sub Mode</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Operational Status</td>
<td>REG</td>
<td></td>
</tr>
<tr>
<td>Port Number</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Venue Group</td>
<td>Unspecified</td>
<td></td>
</tr>
<tr>
<td>Venue Type</td>
<td>Unspecified</td>
<td></td>
</tr>
<tr>
<td>Add New Venue</td>
<td></td>
</tr>
</tbody>
</table>

Language Name

Network Spectrum Interface Key

F0A795FD28E8CE6C3845DA80FA6E9443

GPS Location

GPS Present

No
When using fast secure roaming method CCKM, you need to create FlexConnect Groups for CCKM to work. The group name must be the same between APs for a fast roaming to happen for CCKM.

Note

Enabling PRP Under WLAN

Make sure to enable the PRP feature only for the WLANs that require PRP functionality. In this example, PRP feature should be enabled for WLAN PRP1 and WLAN PRP2.
To enable WGB client multiple VLAN support, both WLC and WGB need to be configured.

On WLC, navigate to the **Controller > General** tab, and choose **Enable** for WGB VLAN client.

On WGB, use the following command to enable WGB VLAN tagging:

```
WGB(config)#workgroup-bridge unified-vlan-client
WGB(config)#workgroup-bridge unified-vlan-client broadcast-tagging
```
When you have multiple VLAN configurations on WGB, you need to configure the encryption cipher mode and keys for a particular VLAN, for example, `encryption vlan 801 mode ciphers aes-ccm`. Then, you need to configure the encryption cipher mode globally on the multicast/broadcast interface by entering the following command: `encryption mode ciphers aes-ccm`.

PRP Switch Configuration

Several Cisco Industrial Ethernet switches support PRP feature. The following example shows how to create a PRP channel on the IE 4000 switch.

```bash
switch# configure terminal
switch(config)# interface range GigabitEthernet1/1-2
switch(config-if)# switch port mode trunk
switch(config-if)# no keepalive
switch(config-if)# no cdp enable
switch(config-if)# udld port disable
switch(config-if)# prp-channel-group 1
switch(config-if)# no shutdown
switch(config-if)# spanning-tree bpd庶filter enable
```

The `spanning-tree portfast edge trunk` command is optional on the prp-channel interface but highly recommended. It improves the spanning tree converge time in PRP LAN-A and LAN-B.

For more information about configuring the PRP channel group, see Parallel Redundancy Protocol (PRP) for IE 4000, IE 4010, and IE 5000 Switches.

Aggregate Switch Configuration

Following is a sample configuration of aggregation Switch. VLAN 201 is the WLC management interface.

```bash
interface GigabitEthernet1/0/1
description ***Port to AP1***
switchport trunk encapsulation dot1q
switchport trunk native vlan 201
switchport trunk allowed vlan 201,801,802
switchport mode trunk

interface GigabitEthernet1/0/2
description ***Port to AP2***
switchport trunk encapsulation dot1q
switchport trunk native vlan 201
switchport trunk allowed vlan 201,801,802
switchport mode trunk

interface GigabitEthernet1/0/7
description ***Port to IE switch PRP port***
switchport access vlan 801
switchport mode dot1q-tunnel
spanning-tree portfast trunk

interface GigabitEthernet1/0/8
description ***Port to IE switch PRP port***
switchport access vlan 802
```
Mobile Client Side Configuration

This section contains the following mobile client side configurations.

Workgroup Bridge Configuration

Two IW3702 APs on the mobile client side should be configured as WGBs to associate to SSID PRP1 and SSID PRP2 respectively, with their GigabitEthernet0 ports connect to the IE4000 PRP ports.

• The following is a sample configuration on WGB1. It is configured to associates to SSID PRP1 with VLAN 801, and with wired client VLAN 800.

Note

Open security method is used in WGB configuration. In the following example, the parameters configured by the mobile station scan xx xx xx and mobile station period x threshold x command should be adjusted based on your own deployment. For more WGB configuration guidelines on roaming and security, see https://www.cisco.com/c/en/us/support/docs/wireless/aironet-1130-ag-series/113198-wgb-roam-config.html.

```
hostname WGB1
dot11 ssid PRP1
  vlan 801
  authentication open
interface Dot11Radio1
  no ip address
  ssid PRP1
  station-role workgroup-bridge
  mobile station scan 5745 5765 5785
  mobile station period 1 threshold 70
interface Dot11Radio1.800
  encapsulation dot1Q 800
  bridge-group 2
  bridge-group 2 spanning-disabled
interface Dot11Radio1.801
  encapsulation dot1Q 801 native
  bridge-group 1
  bridge-group 1 spanning-disabled
interface GigabitEthernet0.800
  encapsulation dot1Q 800
  bridge-group 2
interface GigabitEthernet0.801
  encapsulation dot1Q 801 native
  bridge-group 1
workgroup-bridge unified-vlan-client
  workgroup-bridge unified-vlan-client broadcast-tagging
```

• Similarly, WGB2 is configured to associates to SSID PRP2 with VLAN 802, and with the wired client VLAN 800, as the following example shows.
Open security method is used in WGB configuration. In the following example, the parameters configured by the `mobile station scan xx xx xx` and `mobile station period x threshold x` command should be adjusted based on your own deployment. For more WGB configuration guidelines on roaming and security, see https://www.cisco.com/c/en/us/support/docs/wireless/aironet-1130-ag-series/113198-wgb-roam-config.html.

```
hostname WGB2
dot11 ssid PRP2
  vlan 802
  authentication open
interface Dot11Radio1
  no ip address
  ssid PRP2
  station-role workgroup-bridge
mobile station scan 5745 5765 5785
mobile station period 1 threshold 70
interface Dot11Radio1.800
  encapsulation dot1Q 800
  bridge-group 2
  bridge-group 2 spanning-disabled
interface Dot11Radio1.802
  encapsulation dot1Q 802 native
  bridge-group 1
  bridge-group 1 spanning-disabled
interface GigabitEthernet0.800
  encapsulation dot1Q 800
  bridge-group 2
interface GigabitEthernet0.802
  encapsulation dot1Q 802 native
  bridge-group 1
workgroup-bridge unified-vlan-client
workgroup-bridge unified-vlan-client broadcast-tagging
```

WGB Roaming Coordination

A pair of WGBs can support roaming coordination function by communicating via their second Gigabit Ethernet interface. The Gig1 ports of the two IW3702 WGBs can be connected via the IE Switch Ethernet ports to provide roaming coordination function between the two WGBs. The following example contains the configuration needed to enable this function, where VLAN 51 is used as a communication channel between the two WGBs for the roaming coordination.

- **WGB1 Configuration**

```
dot11 coordinator uplink single Dot11Radio1
dot11 coordinator timeout roam-wait 150
interface GigabitEthernet1
  no ip address
duplex auto
  speed auto
interface GigabitEthernet1.51
  encapsulation dot1Q 51
```

Note: Change the parameters according to your own deployment.
ip address 51.0.0.1 255.255.255.0
ip coordinator peer-addr 51.0.0.2
!
workgroup-bridge service-vlan 51

• WGB2 Configuration

dot11 coordinator uplink single Dot11Radio1
dot11 coordinator timeout roam-wait 150
!
interface GigabitEthernet1
 no ip address
duplex auto
 speed auto
!
interface GigabitEthernet1.51
 encapsulation dot1q 51
 ip address 51.0.0.2 255.255.255.0
 ip coordinator peer-addr 51.0.0.1
 !
 workgroup-bridge service-vlan 51

PRP Switch Configuration

• Create PRP channel group.

 The following configurations are required to configure PRP channel group on the PRP switch of the mobile client side.

 switch#configure terminal
 switch(config)#interface range GigabitEthernet1/1-2
 switch(config-if)#switch port mode trunk
 switch(config-if)#no keepalive
 switch(config-if)#no cdp enable
 switch(config-if)#udld port disable
 switch(config-if)#prp-channel-group 1
 switch(config-if)#no shutdown
 switch(config-if)#spanning-tree bpdudfilter enable

 Note

 The **spanning-tree portfast edge trunk** command is optional on the prp-channel interface but highly recommended.
 It improves the spanning tree converge time in PRP LAN-A and LAN-B.

• Create communication channel for roaming coordination.

 interface GigabitEthernet1/7
 description ***To Gig1 of WGB1***
 switchport trunk allowed vlan 51
 switchport mode trunk
 end

 interface GigabitEthernet 1/8
 description ***To Gig1 of WGB2***
 switchport trunk allowed vlan 51
 switchport mode trunk
Verification

After the configurations are all set, use the following commands to verify the setup.

- On the infrastructure side PRP switch, create the SVI interface with service VLAN 800, and create a DHCP pool for VLAN 800.

- On the mobile client side PRP switch, simulate wired client by creating SVI interface with VLAN 800 as a DHCP client. The DHCP address should be assigned from the DHCP pool VLAN 800.

```
IE-SW# show ip interface brief
Interface      IP-Address OK? Method Status Protocol
Vlan1         unassigned YES NVRAM administratively down down
Vlan800       10.10.80.93 YES DHCP up up
```

- Verify the wired client status.

```
(WLC) > show client summary
Number of Clients......................... 4
Number of PMIPv6 Clients.................. 0
Number of EoGRE Clients.................. 0
GLAN/
RLAN/
MAC Address AP Name Slot Status WLAN Auth Protocol Port Wired Tunnel Role
----------------- ----------------- ---- ------------- ----- ---- ---------------- ---- ----- -------
----------------
00:10:94:00:00:07 AP1 1 Associated 8 Yes N/A 1 No No Local
4c:00:82:1a:c0:b0 AP1 1 Associated 7 Yes 802.11n(5 GHz) 1 No No Local
f4:0f:1b:f8:3b:c1 AP1 1 Associated 8 Yes N/A 1 No No Local
f8:72:ea:e4:a4:d8 AP1 1 Associated 8 Yes 802.11n(5 GHz) 1 No No Local

(WLC) > show client detail f4:0f:1b:f8:3b:c1
Client MAC Address............................ f4:0f:1b:f8:3b:c1
Client Username ............................... N/A
AP MAC Address................................. d4:a0:2a:98:88:00
AP Name.......................................... AP1
AP radio slot Id............................... 1
2nd AP MAC Address............................. d4:a0:2a:98:88:00
2nd AP Name...................................... AP1
2nd AP radio slot Id............................ 1
Client State.................................. Associated
Client User Group.............................
Client MAC OOB State........................... Access
Workgroup Bridge Client...................... WGB: f8:72:ea:e4:a4:d8
Workgroup Bridge Client...................... 2nd WGB: 4c:00:82:1a:c0:b0
Wireless LAN Id................................ 8
Wireless LAN Network Name (SSID)............ PRP2
Wireless LAN Profile Name.................... PRP2
2nd Wireless LAN Id............................ 7
2nd Wireless LAN Network Name (SSID)....... PRP1
2nd Wireless LAN Profile Name............... PRP1
```

- Verify data path.

Ping the infrastructure side from the mobile client side.

```
PRP-SW# ping 10.10.80.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.10.80.1, timeout is 2 seconds:
```
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/5/9 ms

Output from the infrastructure PRP switch:

```
PRP-SW# show prp statistics ingressPacketStatistics
GE ports PRP INGRESS STATS:
ingress pkt lan a: 6  <= LAN A receives 6 pkts
ingress pkt lan b: 6  <= LAN B receives 6 pkts
ingress crc lan a: 0
ingress crc lan b: 0
ingress danp pkt acpt: 5
ingress danp pkt dscrd: 5  <= discard 5 duplicate pkts
ingress supfrm rcv a: 0
ingress supfrm rcv b: 0
ingress over pkt a: 0
ingress over pkt b: 0
ingress pri over pkt_a: 0
ingress pri over pkt_b: 0
```

• Verify the roaming coordination status.

```
WGB1# show coordinator status
WGB1# show dot11 coordinator statistics
```

Single WGB Dual Radio PRP Redundancy Option

These sections contain configurations of the infrastructure side and mobile client side for single WGB dual radio PRP redundancy.

Example Network Topology

The following figure shows a sample topology of the single WGB dual radio PRP redundancy.
For the single WGB dual radio PRP redundancy option, the redundant path is available via 2.4GHz and 5GHz radios on a single WGB. The single WGB works as a RedBox (redundancy box) on the mobile client side, performing packet duplication and duplication discard. On the network infrastructure side, the PRP switch works as the RedBox. Detailed functions of each network component are illustrated as below.

Infrastructure side:
- The PRP capable switch (in this example, the Cisco IE4000) on the infrastructure side serves as the RedBox, performing packet duplication and duplication discard function.
- The APs on the infrastructure side transmit and receive the redundant data traffic over different SSIDs (in this example, PRP1 and PRP2), and tag the traffic with different VLANs (QinQ Tunnel encapsulation or decapsulation).
- The traffic between the aggregate switch and APs is in QinQ format to identify the path of where it is from. The QinQ function is enabled on the Ethernet interfaces (Gi1/0/7 and Gi1/0/8) of the aggregate switch. These two interfaces connect to the PRP ports of the IE switch, performing QinQ Tunnel encapsulation for the downstream traffic and decapsulation for the upstream traffic, so that the duplicated traffic can be carried over different VLANs.

Mobile client side:
- The IW3702 Gig0 port connects to the switch Ethernet port. The IW3702 serves as the PRP Redbox, performing packet duplication and duplication discard function for the client VLAN traffic (VLAN800).
- The IW3702 works as a WGB, with 2.4GHz and 5GHz radios associate to different SSIDs (in this example, PRP1 and PRP2) and locate in different VLANs (in this example, VLAN 801 and VLAN 802). The redundant wireless paths are provided for the wired clients behind the WGB via 2.4GHz and 5GHz radios on the single WGB.

Roaming Coordination:
- Roaming coordination between 2.4GHz and 5GHz radios is provided via internal communication to prevent two radios from roaming at the same time.
Infrastructure Side Configuration

For the PRP over wireless on single WGB dual radio redundancy option, the network topology and configurations of the infrastructure side are identical to the dual WGB dual radio redundancy option. For details, see Infrastructure Side Configuration, on page 5.

Mobile Client Side Configuration

This section contains the following mobile client side configurations.

Workgroup Bridge Configuration

Both 2.4GHz and 5GHz radios of the IW3702 on the mobile client side are configured as WGB and associate to SSID PRP1 and SSID PRP2 respectively. The IW3702 GigabitEthernet0 port connects to a normal switch port to bridge wired client traffic.

Use the following commands to enable the PRP sub mode on WGB.

iw3702(config)# dot11 wgb prp
iw3702(config-prp)# no shutdown

In the following WGB configuration example, the wired client vlan 800 traffic is bridged over parallel paths - SSID PRP1 (VLAN 801) on 2.4GHz radio and SSID PRP2 (VLAN 802) on 5GHz radio. Bvi-vlanid is used to configure the VLAN ID of the BVI interface, which should be different from the wired client's VLAN. In this example, VLAN ID 900 is configured. A dynamic interface with VLAN ID 900 is created on WLC on the infrastructure side.

Note

Open security method is used in WGB configuration. In the following example, the parameters configured by the mobile station scan xx xx xx and mobile station period x threshold x command should be adjusted based on your own deployment. For more WGB configuration guidelines on roaming and security, see https://www.cisco.com/c/en/us/support/docs/wireless/aironet-1130-ag-series/113198-wgb-roam-config.html.

```
ad dot11 wgb prp
no shutdown
bvi-vlanid 900
!
dot11 ssid PRP1
  vlan 801
  authentication open
  no ids mfp client
!
dot11 ssid PRP2
  vlan 802
  authentication open
  no ids mfp client
!
interface Dot11Radio0
  ssid PRP1
  packet retries 32 drop-packet
  station-role workgroup-bridge
  mobile station scan 2412 2437 2462
  mobile station period 1 threshold 70
  rts retries 32
  bridge-group 1
  bridge-group 1 spanning-disabled
!
interface Dot11Radio0.800
```
Roaming coordination function on single WGB works by internal communication of the 2.4GHz and 5GHz radios to avoid both radios roam at the same time. It can be enabled by using the following commands:

dot11 coordinator uplink both
dot11 coordinator timeout roam-wait 100

Switch Configuration

Following is a sample configuration of switch.

interface GigabitEthernet1/0/1
description ***Port to WGB***
switchport trunk encapsulation dot1q
switchport mode trunk
interface GigabitEthernet1/0/2
description ***Port to wired client ***
switchport access vlan 800
switchport mode access
Verification

After the configurations are all set, use the following commands to verify the setup.

- On the infrastructure side PRP switch, create the SVI interface with service VLAN 800, and create a DHCP pool for VLAN 800.

- On the mobile client side switch, simulate wired client by creating SVI interface with VLAN 800 as a DHCP client. The DHCP address should be assigned from the DHCP pool VLAN 800.

```
IE-SW# show ip interface brief
Interface          IP-Address OK? Method Status    Protocol
Vlan1             unassigned  YES NVRAM administratively down down
Vlan800           10.10.80.92  YES DHCP up           up
```

- Verify the wired client status.

```
(WLC) > show client summary
Number of Clients................................. 4
Number of PMIPv6 Clients......................... 0
Number of EoGRE Clients.......................... 0
GLAN/RLAN/MAC Address AP Name Slot Status WLAN Auth Protocol Port Wired Tunnel Role
----------------- ----------------- ---- ------------- ----- ---- ---------------- ---- ----- -------
00:81:c4:31:7d:90 AP2 1 Associated 8 Yes 802.11ac(5 GHz) 1 No No
Local
00:81:c4:31:af:50 AP2 0 Associated 7 Yes 802.11n(2.4 GHz) 1 No No
Local
00:82:c4:cc:cd:21 AP2 0 Associated 7 Yes N/A 1 No No
Local
```

```
(WLC) > show client detail 00:82:c4:cc:cd:21
Client MAC Address............................... 00:82:c4:cc:cd:21
Client Username ................................. N/A
AP MAC Address .................................. 00:81:c4:d0:26:b0
AP Name.......................................... AP2
AP radio slot Id................................. 0
2nd AP MAC Address............................... 00:81:c4:d0:26:b0
2nd AP Name...................................... AP2
2nd AP radio slot Id............................. 1
Client State..................................... Associated
Client User Group................................
Client NAC OOB State............................ Access
Workgroup Bridge Client......................... WGB: 00:81:c4:31:af:50
Workgroup Bridge Client......................... 2nd WGB: 00:81:c4:31:7d:90
Wireless LAN Id................................ 7
Wireless LAN Network Name (SSID)............... PRP1
Wireless LAN Profile Name........................ PRP1
2nd Wireless LAN Id............................. 8
2nd Wireless LAN Network Name (SSID).......... PRP2
2nd Wireless LAN Profile Name.................. PRP2
```

- Verify the data path.
Ping the infrastructure side from the mobile client side.

PRP-SW#ping 10.10.80.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.10.80.1, timeout is 2 seconds:
!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/5/9 ms

Output from WGB:

```
WGB#show dot11 wgb prp

available uplink count: 2
Index: 0 Status: UP Name: Dot11Radio0 Virtual-Dot11Radio0 AP: cc46.d616.ad84
Index: 1 Status: UP Name: Dot11Radio1 Virtual-Dot11Radio1 AP: cc46.d616.ad8a
---------- Statistic counters ----------------------
cnt_total_sent_A: 249701 <= RADIO 0 REPLICATION
cnt_total_sent_B: 249699 <= RADIO 1 REPLICATION
cnt_tx_difference: 2
cnt_total_received_A: 2136458 <= RADIO 0 DISCARD
cnt_total_received_B: 4123098 <= RADIO 1 DISCARD
cnt_rx_difference: 1986641
cnt_total_errors_A: 0
cnt_total_errors_B: 0
cnt_total_discard: 531303
cnt_discard_table_used_items: 1024
max_duplicate_delay_: 200
```

• Verify the roaming coordination status.

```
WGB1#show dot11 coordinator statistics
```

Related Documents

• Parallel Redundancy Protocol Enhancement on AP and WGB

• Dual Radio Parallel Redundancy Protocol Enhancement on WGB
Americas Headquarters
Cisco Systems, Inc.
San Jose, CA 95134-1706
USA

Asia Pacific Headquarters
CiscoSystems(USA)Pte.Ltd.
Singapore

Europe Headquarters
CiscoSystemsInternationalBV
Amsterdam, TheNetherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.