Release Notes for Cisco LTE Serving Gateway
Release 1.3.6 on the Cisco SAMI,
Cisco IOS Software Release 12.4(24)T3e

September 29, 2011
Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e

This release note describes the requirements, dependencies, and caveats for the Cisco Long Term Evolution (LTE) Serving Gateway (SGW) Release 1.x on the Cisco Service and Application Module for IP (SAMI). These release notes are updated as needed.

For a list of the software caveats that apply to the Cisco LTE SGW, Cisco IOS Releases 12.4(24)T3 releases, see the “Caveats” section on page 10 and Caveats for Cisco IOS Release 12.4 T. The caveats document is updated for every maintenance release and is located on Cisco.com and the Documentation CD-ROM.

Use these release notes with Cross-Platform Release Notes for Cisco IOS Release 12.4 located on Cisco.com.

Contents

This release note includes the following information:

- Cisco LTE SGW Overview, page 2
- System Requirements, page 4
- MIBs, page 7
- Limitations, Restrictions, and Important Notes, page 7
- New and Changed Information, page 8
- Caveats, page 10
- Related Documentation, page 24
- Implementing a Cisco LTE SGW on the Cisco SAMI, page 25
- Obtaining Documentation and Submitting a Service Request, page 26
Cisco LTE SGW Overview

The following sections provide a brief overview of the Cisco LTE SGW:

- Cisco LTE SGW Overview, page 2
- Cisco LTE SGW Description, page 4

LTE Evolved Packet Core

The Cisco LTE SGW is a service designed for LTE Evolved Packet Core (EPC). The EPC is the main component of the System Architecture Evolution (SAE). 3GPP designed SAE as a migration path for 3GPP systems. The SAE is the core network architecture of LTE communication.

The SAE is an evolution of the General Packet Radio Service (GPRS) and Universal Mobile Telecommunication System (UMTS) that provides a migration path for 3GPP systems with the following differences:

- Simplified architecture
- All IP network
- Support for higher throughput and lower latency radio access networks (RANs)
- Support for and mobility between 3GPP (GPRS, UMTS, and LTE) and non-3GPP access technologies.

The LTE EPC is made up of the following primary elements:

- Mobility Management Entity (MME)
- Serving Gateway (SGW)
- Packet Data Network (PDN) Gateway (PGW)
Figure 1 shows the interworking (and interfaces) of the LTE EPC with different radio access technologies.

Note
Cisco LTE PGW Release 1.x does not support the paths represented by dashed lines.

Figure 1 LTE Network Components with SGWs and PGWs Implemented on the Cisco Service and Application Module for IP in the Cisco 7600 Series Router

The following is a list of acronyms used in Figure 1.

- Serving GPRS Support Node (SGSN)
- UMTS Terrestrial Radio Access Network (UTRAN)
- GSM EDGE Radio Access Network (GERAN)
- Evolved UTRAN (E-UTRAN)
- Mobility Management Entity (MME)
- Serving Gateway (SGW)
- PDN Gateway (PGW)
- Charging Gateway Function (CGF)
- Home Subscriber Server (HSS)
- Policy and Charging Rules Function (PCRF)
- Online Charging System (OCS)
- Authentication, Authorization, and Accounting (AAA)
- Diameter Credit Control Application (DCCA)
Cisco LTE SGW Description

For each UE associated with the EPS, there is a single SGW at any given time.

The Cisco LTE SGW Release 1.x supports GTP-based non-roaming and roaming architectures, and control and data plane functions defined by 3GPP TS 23.401 for 3GPP access networks.

The Cisco LTE SGW provides the following support:

- Routes and forwards data packets from the UE
- Terminates the interface towards Evolved UMTS Terrestrial Radio Access Network (E-UTRAN)
- Mobility anchor point for inter-3GPP mobility (terminating S4 and relaying traffic between 2.5G/3G and LTE networks)
- ECM-IDLE mode downlink packet buffering and initiation of network triggered service request procedure
- User traffic replication for Lawful Intercept
- Uplink (UL) and downlink (DL) charging per UE, packet data network (PDN), and quality of service (QoS) Class Identifier (QCI) (for example, for roaming with home-routed traffic)
- Handling of various messages between the MME, eNodeB, serving GPRS support node (SGSN), and PGW
- Processes both control and user plane messages

The Cisco LTE SGW runs on the Cisco Service and Application Module for IP (SAMI), a new-generation high performance service module for the Cisco 7600 Series Router platforms.

For more information about the Cisco SAMI, see the Cisco Service and Application Module for IP User Guide.

System Requirements

This section describes the system requirements for Cisco LTE SGW Release 1.x and includes the following sections:

- Memory Recommendations, page 5
- Hardware and Software Requirements, page 5
- Determining the Software Version, page 6
- Upgrading to a New Software Release, page 6

For hardware requirements, such as power supply and environmental requirements and hardware installation instructions, see the Cisco Service and Application Module for IP User Guide.
Memory Recommendations

Table 1 Images and Memory Recommendations for Cisco LTE SGW Release 1.x

<table>
<thead>
<tr>
<th>Platforms</th>
<th>Feature Sets</th>
<th>Software Image</th>
<th>Recommended Flash Memory (MB)</th>
<th>Recommended DRAM Memory (GB)</th>
<th>Runs From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco SAMI/ Cisco 7600</td>
<td>SGW Standard Feature Set</td>
<td>c7svcsami-14ik9s-mz</td>
<td>128</td>
<td>2</td>
<td>RAM</td>
</tr>
</tbody>
</table>

Hardware and Software Requirements

Implementing a Cisco LTE SGW Release 1.x on the Cisco 7600 series internet router platform requires the following hardware and software.

- Any module that has ports to connect to the network.
- A Cisco 7600 series router and one of the following supervisor engines running Cisco IOS Release 15.0(1)S or later:
 - Cisco 7600 Series Supervisor Engine 720 with a Multiplayer Switch Feature Card 3 (WS-SUP720)
 - Cisco 7600 Series Supervisor Engine 720 with a Multilayer Switch Feature Card 3B (WS-SUP720-3B)
 - Cisco 7600 Series Supervisor Engine 720 with a Multilayer Switch Feature Card 3BXL (WS-SUP720-3BXL)
 - Cisco 7600 Series Supervisor Engine 32 with a Multiplayer Switch Feature Card (WS-SUP32-GE-3B) with LCP ROMMON Version 12.2(121) or later on the Cisco SAMI.
 - Cisco 7600 Series Supervisor Engine 32 with a Multilayer Switch Feature Card and 10-Gigabit Ethernet Uplinks (WS-SUP32-10GE-3B) with LCP ROMMON Version 12.2[121] or later on the Cisco SAMI.

Or one of the following Cisco 7600 series Route Switch Processors running Cisco IOS Release 15.0(1)S or later:

- Cisco 7600 Series Route Switch Processor 720 with Distributed Forwarding Card 3C (RSP720-3C-GE)
- Cisco 7600 Series Route Switch Processor 720 with Distributed Forwarding Card 3CX (RSP720-3CX-GE)
- Cisco 7600 Series Route Switch Processor 720 with 10-Gigabit Ethernet Uplinks with Distributed Forwarding Card 3CX (RSP720-3CX-10GE)

For details on upgrading the Cisco IOS release running on the supervisor engine, refer to the “Upgrading to a New Software Release” section in the Release Notes for Cisco IOS Release 15.0S. For information about verifying and upgrading the LCP ROMMON image on the Cisco SAMI, refer to the Cisco Service and Application Module for IP User Guide.

Note The Cisco IOS Software required on the supervisor engine is dependent on the supervisor engine being used and the Cisco mobile wireless application running on the Cisco SAMI processors.
- Cisco Service and Application Module for IP (Cisco Product Number: WS-SVC-SAMI-BB-K9). The Cisco SAMI must be running Cisco IOS Release 12.4(24)T3a1 or later.

Note The Cisco LTE SGW Release 1.x software application supports both the Cisco SAMI 1-GB memory default and the 2-GB memory option (Cisco Product Number: MEM-SAMI-6P-2GB=).

- For security, the IPSec VPN Services Module.
- For GTP-Session Redundancy, in addition to the required hardware and software, implementing GTP-Session Redundancy (GTP-SR) requires at minimum:
 - In a one-router implementation, two Cisco SAMIs in the Cisco 7600 Series Router, or
 - In a two-router implementation, one Cisco SAMI in each of the Cisco 7600 Series Routers.

Determining the Software Version

To determine the version of Cisco IOS Software running on your Cisco SAMI, log in to PPC3 and enter the `show version` EXEC command:

```
SGW# show version
Cisco IOS Software, SAMI Software (SAMI-L3IK9S-M), Experimental Version 12.4(20110919:095523)
Copyright (c) 1986-2011 by Cisco Systems, Inc.
Compiled Thu 22-Sep-11 17:06 by
ROM: System Bootstrap, Version 12.4(24r)MDB, RELEASE SOFTWARE (fc1)
SGW uptime is 6 hours, 49 minutes
System returned to ROM by address error at PC 0x977A0A4, address 0x977A0A4 at 11:24:24 UTC Thu Sep 22 2011
System restarted at 17:13:18 IST Thu Sep 22 2011
...
SGW#
```

Upgrading to a New Software Release

For information on upgrading to a new software release, see the product bulletin *Cisco IOS Software Upgrade Ordering Instructions* at:

Upgrading the Cisco SAMI Software

For information on upgrading the Cisco SAMI software, see the *Cisco Service and Application Module for IP User Guide*:

Note The image download process automatically loads the Cisco IOS image onto the six SAMI processors.
MIBs

To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to:

Limitations, Restrictions, and Important Notes

When configuring the Cisco LTE SGW, note the following:

- The Cisco LTE SGW does not support the Cisco Express Forwarding (CEF) neighbor resolution optimization feature, which is enabled by default.

Therefore, to avoid the possibility of incomplete adjacency on VLAN interfaces for the redirected destination IP address and an impact to the upstream traffic flow for bearers/PDP sessions upon bootup, ensure that you configure the **no ip cef optimize neighbor resolution** command.

- The number of bearer/PDP contexts supported on a SGW is dependent on the memory and platform in use and the SGW configuration (for example, whether Dynamic Feedback Protocol [DFP] is being used or the memory protection feature is enabled, and what rate of bearer creation is supported).

The Cisco LTE SGW on the Cisco SAMI with the 2-GB memory option can support 380000 PDN connections and the 380000 of default bearers. When the maximum allowable number of bearers/PDP contexts is reached, the SGW refuses new mobile sessions until sessions are available.

- To avoid issues with high CPU usage, we recommend the following configurations:
 - To reduce the CPU usage during bootup, disable logging to the console terminal by configuring the **no logging console** global configuration command.
 - To ensure that the HSRP interface does not declare itself active until it is ready to process a peer’s hello packets, configure the delay period before the initialization of HSRP groups with the **standby delay minimum 100 reload 100 interface** configuration command under the HSRP interface.
 - To minimize issues with high CPU usage for additional reasons, such as periods of high PPP PDP processing (creating and deleting), disable the notification of interface data link status changes on all virtual template interfaces of the GGSN using the **no logging event link-status interface** configuration command.

    ```
    !
    interface Virtual-Templatel
description GGSN-VT
ip unnumbered Loopback0
encapsulation gtp
no logging event link-status
gprs access-point-list gprs
derend
```
New and Changed Information

The following sections list new features and behavior changes in the Cisco IOS 12.4(24)T3 releases:

- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3e, page 8
- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T35c, page 8
- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T34d, page 8
- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3c, page 8
- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3b, page 8
- New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3a1, page 9

New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3e

There are no new implementations or behavior changes in Cisco SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T35c

There are no new implementations or behavior changes in Cisco SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T34d

There are no new implementations or behavior changes in Cisco SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3c

Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c introduces support for the 3GPP change request (CR) 278. CR 278 specifies that when the SGW receives an Error Indication either for a Radio Network Controller (RNC) or from an eNodeB, it sends a Downlink Data Notification message to the S4 SGSN or to the MME, respectively. (CSCtj66053)

New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3b

In compliance with Release 8.2.0, the following behavior changes have been introduced in Cisco IOS Release 12.4(24)T3b.

- In the Create Session Request, the first byte of the mobile station ISDN (MSISDN) number is removed (CSCtk01630).
- If a charging reporting action is enabled on the Cisco LTE PGW, the Cisco LTE SGW forwards the information element (IE) in the Create Session Response to both the Mobility Management Entity (MME) and the serving GPRS support node (SGSN). Previously, per Release 8.1.1, the Cisco LTE SGW sent the IE only to the SGSN. (CSCtk82408)
New Implementations and Behavior Changes in Cisco IOS Release 12.4(24)T3a1

Support for the following 3GPP specification CRs records for 29.274 has been introduced in Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1:

- CR 267—Serving network
- CR 358—Bearer QoS in modify bearer request
- CR 430—UE timezone and user location information (ULI) included in bearer response messages
- CR 433—Correcting misaligned information element (IE) presence type statements
- CR 451—Charging characteristics value for active PDN connections
- CR 154—Offending IE in the cause IE

Additionally, commands to configure backward compliance have been added for the following 29.274 CRs:

- CR 308—LBI clarifications for Gn/Gp handovers. By default, compliance for this CR 308 is enabled on the PGW, but is disabled by default on the SGW.
- CR 324—APN-AMBR in the create/delete bearer request. Compliance must be enabled on the PGW and SGW. By default, compliance for this CR is disabled.
- CR 137—Combined uplink and downlink traffic flow template (TFT) IEs. CR 137 Compliance must be enabled on the PGW and SGW. By default, compliance for CR 137 is disabled.

To configure compliance for the above CR, complete the following tasks:

- Creating a Compliance Profile, page 9
- Creating a Remote Path Group, page 10

Creating a Compliance Profile

Operators can create a compliance profile in which they configure CR compliance. Once a compliance profile has been created, it can be applied to a path group to a remote node. For information on creating a path group to a remote node, see “Creating a Remote Path Group” section on page 10.

To create a compliance profile and its CR configuration, complete the following tasks, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs compliance profile name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-compl-profile)# cr 29.274-0308</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-compl-profile)# cr 29.274-0324</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-compl-profile)# cr 29.274-0137</td>
</tr>
</tbody>
</table>
Creating a Remote Path Group

Once a compliance profile has been configured, operators can create a path group. In the path group, the address of the remote node is configured and as well as the compliance profile to use.

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# gprs remote group name</td>
<td>Creates or modifies a remote path group, where name is the name of the group.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-remote-group)# compliance name</td>
<td>Applies a preconfigured compliance profile to the path group.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-remote-group)# ip address {v4 start_ipv4_addr end_ipv4_addr</td>
<td>Configures an IP address range in the remote path group, where:</td>
</tr>
<tr>
<td></td>
<td>v6 start_ipv6_addr end_ipv6_addr}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• v4 start_ipv4_addr end_ipv4_addr—IPv4 address range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• v6 start_ipv6_addr end_ipv6_addr—IPv6 address range.</td>
</tr>
</tbody>
</table>

Caveats

Caveats describe unexpected behavior in Cisco IOS Software releases. Severity 1 caveats are the most serious caveats; severity 2 caveats are less serious. Severity 3 caveats are moderate caveats, and only select severity 3 caveats are included in the caveats document.

All caveats in Cisco IOS Release 12.4 and Cisco IOS Release 12.4 T are also in Cisco IOS Release 12.4(22)YE.

For information on caveats in Cisco IOS Release 12.4, see *Caveats for Cisco IOS Release 12.4*.

For information on caveats in Cisco IOS Release 12.4 T, see *Caveats for Cisco IOS Release 12.4T*, which lists severity 1 and 2 caveats and select severity 3 caveats and is located on Cisco.com and the Documentation CD-ROM.

Using the Bug Navigator II

If you have an account with Cisco.com, you can use Bug Navigator II to find caveats the most current list of caveats of any severity for any software release. To reach Bug Navigator II, log in to Cisco.com and click Software Center: Cisco IOS Software: Cisco Bugtool Navigator II. Another option is to go directly to http://www.cisco.com/support/bugtools.
This section contains the caveats for the following releases:

- Caveats - Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e, page 11
- Caveats - Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c, page 14
- Caveats - Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d, page 18
- Caveats - Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c, page 19
- Caveats - Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b, page 21
- Caveats - Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1, page 23
- Caveats - Cisco LTE SGW Release 1.0, Cisco IOS Release 12.4(24)T3a, page 23

Caveats - Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e

This section lists the open, resolved and unreported caveats that pertain to Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

- Open Caveats, page 14
- Resolved Caveats, page 15

Open Caveats

Note: Caveats open in one release are also open in prior releases.

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.

- Cisco LTE SGW Caveats, page 18
- Cisco SAMI Caveats, page 18

Cisco LTE SGW Caveats

The following SGW caveat is open in Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

- CSCtq70842

When an `snmpwalk` is run on a complete Management Information Base (MIB) Object Identifier (OID) tree against an SGW or PGW that has no bearers/PDPs, the CPU usage is approximately 20 percent. With 50,000 create and delete session requests, but no `snmpwalk` running, the CPU usage is approximately 20 percent. However, when an `snmpwalk` and the 50,000 create and delete session requests are combined, the CPU usage climbs to 99 percent.

The high CPU condition is seen when the 50,000 create and delete session requests and an `snmpwalk` of the entire MIB tree occur at the same time.

Workaround: There is currently no known work around.
• CSCts50077
The Cisco SAMI reloads because of a health monitoring failure and the following syslog message is generated:

%PLATFORM-4-DP_HM_WARN: Failed to receive response from IXP1 in 22 retries, system will reboot if it continues to fail receiving response in another 8 retries (i.e. in the next 80 secs.) Check `sami health-monitoring' configuration and see `show sami health-monitoring' for more info

This condition occurs when the Cisco SAMI network processor (IXP) fails to respond to health monitor messages sent from a PowerPC (PPC).

Workaround: There is currently no known workaround.

• CSCts63514
GTP Version 1 (GTPv1) PDPs become stuck during standby-to-active switchover.
This condition occurs with the Cisco LTE SGW or Cisco LTE PGW when PDPs are being deleted because of a new recovery information element (IE) value in the active gateway, which indicates a path restart, while the standby gateway is coming up and starts receiving bulk synchronization for create PDPs from the active gateway.
The active gateway immediately reloads after the bulk synchronization when there are PDPs remaining on the restarting path of the active gateway.

Workaround: There is currently no known workaround.

• CSCts78873
The Cisco LTE SGW Cisco Express Forwarding (CEF) packet drop counter increments.
This condition occurs when the Cisco LTE SGW is configured to buffer packets. When configured to buffer packets, the SGW buffers packets on a per bearer basis. The SGW supports up to 20 packets per second (pps). The SGW drops packets exceeding this maximum, which causes the CEF packet drop counter to increment.

Workaround: There is currently no known workaround.

• CSCts95718
The Cisco Mobile Wireless Transport Manager (MWTM) displays negative values for free memory.

Workaround: There is currently no known workaround.

Cisco SAMI Caveats

There are no known Cisco SAMI caveats open with Cisco IOS Release 12.4(24)T3e.
Resolved Caveats

The following sections list the caveats that have been resolved with Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

- Cisco LTE SGW Caveats, page 19
- Cisco SAMI Caveats, page 19

Cisco LTE SGW Caveats

This section lists the SGW caveat that is resolved with Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

- CSCtq70842
 When an `snmpwalk` is run on a complete Management Information Base (MIB) Object Identifier (OID) tree against an SGW or PGW that has no bearers/PDPs, the CPU usage is approximately 20 percent. With 50,000 create and delete session requests, but no `snmpwalk` running, the CPU usage is approximately 20 percent. However, when an `snmpwalk` and the 50,000 create and delete session requests are combined, the CPU usage climbs to 99 percent.

 The high CPU condition is seen when the 50,000 create and delete session requests and an `snmpwalk` of the entire MIB tree occur at the same time.

- CSCtr12187
 The PDP context becomes stuck on the Cisco LTE Serving Gateway (SGW).
 This condition occurs when a delete session request is sent to the Mobile Management Entity (MME) for the PDP when the SGW is waiting for a delete bearer response message from the MME.

- CSCtr70157
 Lawful interception fails to do provision a mediation device (MD) and an `snmpset` request returns a “No-Creation” error. Additionally, an `snmpwalk` returns nothing from the SNMP Mediation Table.
 This condition occurs only when the incorrect ifIndex is used in `snmpset`.

Cisco SAMI Caveats

This section lists the Cisco SAMI caveats that are resolved with Cisco LTE SGW Release 1.3.6, Cisco IOS Release 12.4(24)T3e.

- CSCtq88202
 The `ucdump -t` command does not recognize VLAN and L2VD tables as valid arguments.
 The condition relates only to the display of the VLAN and L2VD tables using the `ucdump -t` command from the IXP console. The tables are setup correctly and traffic is forwarded successfully based on these tables.

- CSCtr31428
 The Cisco SAMI IXP micro-engine threads used to configure data paths might take a lock on tables and not freeing it, thereby holding the lock indefinitely.
 This fix catches these issues for debugging purposes. Use the `ucdump -t LOCK` command to dump debugging information when a lock is held infinitely.
Caveats

- CSCtr31558
 Continuous IXP IPC failure error messages are seen from the Cisco SAMI:

 `%PLATFORM-3-SAMI_IPC_IXP_FAIL: IPC timed out for IXP<ixp no> for Msgcode <msg>, Num tries: <tries>`

 This condition typically occurs when the Cisco SAMI IXP stops processing IPC messages from the Cisco SAMI processors.

- CSCtr32854
 The syslog messages “PLATFORM-3-SAMI_IPC_IXP_FAIL:” is observed when the Cisco SAMI IXP receives out of order configuration messages, for example, when the IXP receives a modify PDP request before a create PDP request or after a free PDP message.

- CSCtr81828
 The Cisco SAMI reloads with the following syslog error message

 `"%PLATFORM-1-DP_HM_FAIL: Failed to receive response from IXP<1/2>. Check 'sami health-monitoring' configuration and see 'show sami health-monitoring' for more info"`

 The condition occurs when the network processor (IXP) fails to respond to Health Monitoring (HM) messages sent by the SAMI PowerPCs (PPCs).

 The IXP maintains packets, including HM messages, in DRAM buffers. The pointers to these buffers (also known as the buffer handles) are maintained by q-arrays. Expected behavior is that the q-arrays provide valid buffer handles, however, when a Null (invalid) buffer handle is de-queued by q-array, the hardware assist, which maintains the q-array buffer becomes corrupted and the IXP reaches a state where it does not process incoming packets any longer.

Caveats - Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c

This section lists the open, resolved and unreported caveats that pertain to Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- Open Caveats, page 14
- Resolved Caveats, page 15
- Unreproducible Caveats, page 17

Open Caveats

Note

Caveats open in one release are also open in prior releases.

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.

- Cisco LTE SGW Caveats, page 18
- Cisco SAMI Caveats, page 18
Cisco LTE SGW Caveats

This section lists the SGW caveats that are open in Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCtq81769
 Sessions remain stale in the Cisco LTE SGW.
 This condition occurs when a bearer resource create (BRC) is sent with a bidirectional traffic flow template (TFT) from the Mobility Management Entity (MME), and the SGW forwards the same to Cisco LTE PGW. The PGW rejects the BRC and replies to the SGW with bearer resource failure indication (BRFI). The SGW rejects the BRFI from the PGW.
 Workaround: Reconnect or perform a local clear on the SGW to remove the stale session.

Cisco SAMI Caveats

This section lists the SAMI caveats that are open with Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCti31555
 For dual stack sessions belonging to APNs with Mobile Express Forwarding (MEF) switching enabled, the “MEF uplink packets / links” field displays some non zero values immediately after the sessions come up.
 This condition occurs when sessions belonging to an APN, which has dual stack configured (using the `gtp bearer dual-addr` access-point configuration command) and has MEF switching enabled. The `show gprs gtp pdp-context tid` command output displays some non zero values in the “MEF uplink packets / links” field.
 Workaround: There is currently no known workaround.

- CSCtk01565
 Mobile Express Forwarding (MEF) stops forwarding packets in the Cisco LTE SGW.
 This condition occurs when the Cisco LTE SGW receives a packet in which the inner IP packet is malformed. Specifically, the length field of the inner packet has a corrupted value.
 Workaround: Disable MEF using the `no mef` access-point configuration command.

Resolved Caveats

The following sections list the caveats that have been resolved with Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- Cisco LTE SGW Caveats, page 19
- Cisco SAMI Caveats, page 19
- Miscellaneous Caveats, page 17
Cisco LTE SGW Caveats

This section lists the SGW caveats that are resolved with Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCtk83766
 When the limit volume yyy command is configured under a charging profile, the limit volume yyy reset command does not work, and vice versa.
 This condition occurs when the values for the two commands are not the same.

- CSCtq57867
 In a redundant implementation, the requested APN Aggregate Maximum Bit Rate (APN-AMBR) values are not synced to the standby Cisco LTE SGW.
 This condition occurs when the session is created.

- CSCtq65935
 The Cisco LTE SGW crashes when a error indication is received from eNodeB/Radio Network Controller (RNC) for a dual-stack APN PDP context.
 This condition occurs when change request (CR) 278 of 3GPP TS 29.274 is enabled on the SGW by using the cr LTE compliance profile command, and the dual-stack session is deleted in the eNodeB/RNC and the SGW forwards downstream data to it.

- CSCtq70714
 A progressive memory leak occurs on the Cisco LTE SGW Proxy Control Processor (PCOP) when there is a Connection Set Identifier (CSID) delete PDP connection response failure received.

 This condition occurs when the SGW deletes a set of PDP contexts that have a common CSID and sends a delete PDN connection request to the Cisco LTE PGW. The PGW returns a negative response.

- CSCtq71187
 Downstream data traffic is sent to the Cisco LTE SGW instead of an SGSN when a GTPv1 to GTPv2 handover failure occurs because of Quality of Service (QoS).
 This condition occurs with the following sequence of events:
 1. A GTPv1 PDP context with streaming class is created.
 2. A GTPv1 to GTPv2 handoff request is sent to the SGW so that it sends a Maximum Bit Rate (MBR) to the Cisco LTE PGW.
 3. The converted QoS is used as QCI-4, which is Guarantee Bit Rate (GBR) bearer. Therefore, the PGW rejects the handover saying the default bearer can not be the GBR bearer and sends the packets to the SGW instead of the SGSN.

- CSCtq74189
 In a redundant implementation, a memory leak occurs on the active Cisco LTE SGW Traffic and Control Plane processors (TCOPs) after a couple of hours of continuous traffic and PDP context creates and deletes.
 This condition occurs when the path protocol to the charging gateway is TCP (gprs charging path-protocol tcp).
Cisco SAMI Caveats

This section lists the Cisco SAMI caveats that are resolved with Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCtk12410
 When two Cisco SAMIs are configured as an active standby pairs, any unexpected reload of one of the processors in the standby SAMI can cause the active SAMI to reload because of an RF induced self-reload.
 This condition occurs if the HSRP priority of the standby SAMI is greater than the priority of the active SAMI, either because of explicit configuration or based on the IP address of the active and standby SAMIs.

- CSCtn10003
 When Remote Console and Logging (RCAL) is enabled on the Cisco Service and Application Module for IP (SAMI), the following error messages displays when a create context request is received, or a GTPv2 to GTPv1 handoff occurs on the PGW with the Radio Access Technology Type (RAT) type “5” (HSPA EVOLUTION):

 SAMI 1/4: Jun 8 04:47:42.859: %GTP-0-NORESOURCE: GSN: 0.0.0.0, TID: 00, APN: NULL, Reason: Invalid RAT value for recommended RAT IE
 The RAT type is set to null.

Miscellaneous Caveats

This section lists a miscellaneous Cisco IOS software caveat that is resolved with Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCtc68037
 A Cisco IOS device might experience an unexpected reload as a result of mtrace packet processing.

Unreproducible Caveats

This section lists a caveats that are unreproducible in Cisco LTE SGW Release 1.3.5, Cisco IOS Release 12.4(24)T35c.

- CSCtq63118
 After a system reload, both gateways in a redundant implementation might end up in an active or active-drain state. This condition is rarely seen upon a reload at almost the same time of both gateways in a redundant implementation. This condition is more likely to occur when the Stream Control Transmission Protocol (SCTP) connectivity for the redundant configuration is lost.

- CSCtq74652
 When Remote Console and Logging (RCAL) is enabled on the Cisco SAMI, the RCAL show proc cpu and the show proc memory commands cause the TCOP CPU to become stuck at 99% usage.
 This issue is observed after a few hours under the following conditions:
 a. 66K sessions are created and deleted at 300 calls per sec.
 b. Standby gateway is continuously reloading.
c. The charging gateway interface is flapping.
d. A script is executed every 5 seconds to show the following commands
 - `show proc cpu | include five seconds`
 - `show gprs gtp status | inc activated session`
 - `show gprs gtp status | inc activated sessions`
 - `show proc mem | include Processor`
 - `show proc mem | include I/O`

Caveats - Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d

This section contains open and resolved caveats that pertain to Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

Open Caveats

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caveats open in one release are also open in prior releases.</td>
</tr>
</tbody>
</table>

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.

- [Cisco LTE SGW Caveats, page 18](#)
- [Cisco SAMI Caveats, page 18](#)

Cisco LTE SGW Caveats

There are no known SGW caveats open in Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

Cisco SAMI Caveats

This section lists the SAMI caveats that are open with Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

- **CSCti31555**

 For dual stack sessions belonging to APNs with Mobile Express Forwarding (MEF) switching enabled, the “MEF uplink packets / links” field displays some non zero values immediately after the sessions come up.

 This condition occurs when sessions belonging to an APN, which has dual stack configured (using the `gtp bearer dual-addr` access-point configuration command) and has MEF switching enabled. The `show gprs gtp pdp-context tid` command output displays some non zero values in the “MEF uplink packets / links” field.

 Workaround: There is currently no known workaround.

- **CSCtk01565**

 Mobile Express Forwarding (MEF) stops forwarding packets in the Cisco LTE SGW.
This condition occurs when the Cisco LTE SGW receives a packet in which the inner IP packet is malformed. Specifically, the length field of the inner packet has a corrupted value.

Workaround: Disable MEF using the `no mef` access-point configuration command.

Resolved Caveats

The following sections list the caveats that have been resolved with Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

- [Cisco LTE SGW Caveats](#)
- [Cisco SAMI Caveats](#)

Cisco LTE SGW Caveats

This section lists the SGW caveat that is resolved with Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

- `CSCtq44038`
 - The LTE SGW or LTE PGW might log “Active Charging Gateway NOT matching on Processors”
 - This condition occurs when the Cisco SAMI is running the Cisco LTE SGW Release 1.x or the Cisco LTE PGW Release 1.x images.

- `CSCtq71301`
 - An “INVALID_ID: bad id in id_get (Out of IDs!) (id: 0x0)” syslog message is generated on the standby SGW/PGW. This syslog message is a generic one and does not always indicate the issue.
 - This condition occurs when more that 16384 paths are created (but do not necessarily exist simultaneously) and are synchronized to the standby gateway.
 - If on the standby gateway, the `show gprs redundancy` command output displays a count more than 16384 in the Path Setup messages field, this is probably the issue.

Cisco SAMI Caveats

There are no Cisco SAMI caveats newly resolved with Cisco LTE SGW Release 1.3.4, Cisco IOS Release 12.4(24)T34d.

Caveats - Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c

This section contains open and resolved caveats that pertain to Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.

Open Caveats

Note: Caveats open in one release are also open in prior releases.

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.
Caveats

Cisco LTE SGW Caveats

There are no known SGW caveats open in Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.

Cisco SAMI Caveats

This section lists the Cisco SAMI caveat that is open with Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.

- CSCtk01565
 Mobile Express Forwarding (MEF) stops forwarding packets in the Cisco LTE SGW.
 This condition occurs when the Cisco LTE SGW receives a packet in which the inner IP packet is malformed. Specifically, the length field of the inner packet has a corrupted value.
 Workaround: Disable MEF using the `no mef` access-point configuration command.

Resolved Caveats

The following sections list the caveats that have been resolved with Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.

Cisco LTE SGW Caveats

This section lists the SGW caveats that are resolved with Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.

- CSCtl8889
 The Cisco LTE SGW and Cisco LTE PGW ignore the User Location Information (ULI) information element (IE) when it is sent in a delete session request.

- CSCtn25629
 SNMP query for `entPhysicalParentRelPos` returns an incorrect value. This condition occurs because the SNMP query returns negative values because of an error in initialization of the data structure containing the processor details.

- CSCtn31609
 SNMP query for `cpmCPUTotalPhysicalIndex` returns an incorrect value. This condition occurs when the SNMP query is made for `cpmCPUTotalPhysicalIndex 1`, and an invalid value of 0 (zero) is returned instead of 2 because of an initialization error of the related table.

- CSCtn48330
 A crash occurs on the standby SGW when synchronizing SNMP MIB information. This condition occurs because MIB information is being synchronized from the PCOP and TCOPs when it should only be synchronized from the PCOP.

Cisco SAMI Caveats

There are no Cisco SAMI caveats newly resolved with Cisco LTE SGW Release 1.3, Cisco IOS Release 12.4(24)T3c.
Caveats - Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b

This section contains open and resolved caveats that pertain to Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.

Open Caveats

Note

Caveats open in one release are also open in prior releases.

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.

Cisco LTE SGW Caveats

There are no known SGW caveats open in Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.

Cisco SAMI Caveats

This section lists the Cisco SAMI caveat that is open with Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.

- CSCtk01565

Mobile Express Forwarding (MEF) stops forwarding packets in the Cisco LTE SGW.

This condition occurs when the Cisco LTE SGW receives a packet in which the inner IP packet is malformed. Specifically, the length field of the inner packet has a corrupted value.

Workaround: Disable MEF using the no mef access-point configuration command.

Resolved Caveats

The following sections list the caveats that have been resolved with Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.
Cisco LTE SGW Caveats

This section lists the SGW caveats that are resolved with Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.

- **CSCjt06869**
 A Traffic and Control Plane Processor (TCOP) spikes for a long time during an SNMP query with 192K static traffic, 192K create/delete requests, and 192K create at 1200 cps.

 This condition occurs with the following sequence of events:

 a. Reload gateways

 b. Create 192K static dual-stack sessions with traffic

 c. Create/delete 192K at 1200CPS in a loop

 d. Create 192K at 120CPS with same International Mobile Subscriber Identity (IMSI) as in Step c

 e. On the SNMP server, do an `snmpwalk` and `getmany` on cGgsnExtMIB

 Issue the `show processor cpu` command to display that the Proxy Control Processor (PCOP) stays at 98% for a long time.

- **CSCtk82409**
 For dual-stack or IPv6 only sessions, the Cisco LTE SGW returns the prefix in the Create Session Request it received from the mobile management entity (MME) instead of sending the prefix length that Cisco LTE PGW returns in the Create Session Response.

 This condition occurs only when the UE uses dual-stack (IPv4 and IPv6) and IPv6 sessions.

Cisco SAMI Caveats

The following Cisco SAMI caveat is resolved with Cisco LTE SGW Release 1.2, Cisco IOS Release 12.4(24)T3b.

- **CSCtg64608**
 The Cisco LTE gateway allows out of sequence traffic. This condition occurs when sending upstream traffic with the sequence number set to FFFF only with Mobile Express Forwarding (MEF). With Cisco Express Forwarding (CEF), the packets are dropped as designed.
Caveats - Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1

This section contains open and resolved caveats that pertain to Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1.

- Open Caveats, page 23
- Resolved Caveats, page 23

Open Caveats

Note

Caveats open in one release are also open in prior releases.

The following sections document possible unexpected behavior and describe only severity 1 and 2 caveats and select severity 3 caveats.

- Cisco LTE SGW Caveats, page 23
- Cisco SAMI Caveats, page 23

Cisco LTE SGW Caveats

There are no known Cisco LTE SGW caveats open for Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1.

Cisco SAMI Caveats

This section lists the Cisco SAMI caveats that are open with Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1.

- CSCtg64608
 The Cisco LTE gateway allows out of sequence traffic. This condition occurs when sending upstream traffic with the sequence number set to FFFF only with Mobile Express Forwarding (MEF). With Cisco Express Forwarding (CEF), the packets are dropped as designed.
 Workaround: Use CEF instead of MEF.

Resolved Caveats

There are no newly resolved caveats with Cisco LTE SGW Release 1.1, Cisco IOS Release 12.4(24)T3a1.

Caveats - Cisco LTE SGW Release 1.0, Cisco IOS Release 12.4(24)T3a

This section contains the following types of caveats that pertain to Cisco LTE SGW Release 1.0, Cisco IOS Release 12.4(24)T3a.

- Open Caveats—Cisco LTE SGW, page 24
- Open Caveats—Cisco SAMI, page 24
Open Caveats—Cisco LTE SGW

There are no Cisco LTE SGW caveats open for Cisco IOS Release 12.4(24)T3a.

Open Caveats—Cisco SAMI

This section lists the SAMI caveats that are open with Cisco IOS Release 12.4(24)T3a.

- CSCtg64608
 The Cisco LTE gateway allows out-of-sequence traffic. This condition occurs when sending upstream traffic with the sequence number set to FFFF only with Mobile Express Forwarding (MEF). With Cisco Express Forwarding (CEF), the packets are dropped as designed.

 Workaround: Use CEF instead of MEF.

Related Documentation

Except for feature modules, documentation is available as printed manuals or electronic documents. Feature modules are available online on Cisco.com.

Use these release notes with these documents:

- Release-Specific Documents, page 24
- Platform-Specific Documents, page 25

Release-Specific Documents

The following documents are specific to Cisco IOS Release 12.4 and are located at Cisco.com:

- Cisco IOS Release 12.4 Mainline Release Notes
 Documentation > Cisco IOS Software > Cisco IOS Software Releases 12.4 Mainline > Release Notes

- Cisco IOS Release 12.4 T Release Notes
 Documentation > Cisco IOS Software > Cisco IOS Software Releases 12.4 T > Release Notes

Note
If you have an account with Cisco.com, you can use Bug Navigator II to find caveats of any severity for any release. You can reach Bug Navigator II on Cisco.com at http://www.cisco.com/support/bugtools.

- Product bulletins, field notices, and other release-specific documents on Cisco.com at:
 Documentation > Cisco IOS Software > Cisco IOS Software Releases 12.4 Mainline
Platform-Specific Documents

These documents are available for the Cisco 7600 series router platform on Cisco.com and the Documentation CD-ROM:

- Cisco Service and Application Module for IP User Guide
- Cisco 7600 series routers documentation:
 - Cisco 7600 Series Internet Router Installation Guide
 - Cisco 7600 Series Internet Router Module Installation Guide
 - Cisco 7609 Internet Router Installation Guide

Cisco 7600 series router documentation is available at:

- Cisco IOS Software Documentation Set

The Cisco IOS software documentation set consists of the Cisco IOS configuration guides, Cisco IOS command references, and several other supporting documents that are shipped with your order in electronic form on the Documentation CD-ROM, unless you specifically ordered the printed versions.

Documentation Modules

Each module in the Cisco IOS documentation set consists of two books: a configuration guide and a corresponding command reference guide. Chapters in a configuration guide describe protocols, configuration tasks, Cisco IOS Software functionality, and contain comprehensive configuration examples. Chapters in a command reference guide list command syntax information. Use each configuration guide with its corresponding command reference. On Cisco.com at:

Documentation > Cisco IOS Software > Cisco IOS Software Releases 12.4 Mainline > Command References

Documentation > Cisco IOS Software > Cisco IOS Software Releases 12.4 Mainline > Command References > Configuration Guides

Note

To view a list of MIBs supported by Cisco, by product, go to:

Implementing a Cisco LTE SGW on the Cisco SAMI

The following sections list related documentation (by category and then by task) to use when you implement a Cisco LTE SGW on the Cisco SAMI platform.

General Overview Documents

Core Cisco 7609 Router Documents
Documentation List by Task

For the most up-to-date list of documentation on the Cisco 7600 Series Router, refer to the Cisco 7600 Series Routers Documentation Roadmap on Cisco.com at:

Getting Started

- Cisco 7600 Series Internet Router Essentials
- Regulatory Compliance and Safety Information for the Cisco 7600 Series Internet Routers

Unpacking and installing the Cisco 7600 router:

- Cisco 7600 Internet Router Installation Guide

Installing the supervisor module and configuring the router (basic configuration, such as VLANs, IP):

- Cisco 7600 Series Internet Router Module Installation Guides
 l
- Cisco IOS Software Configuration Guide that applies to the latest release at the time of FCS

Installing and completing the Cisco SAMI configuration:

- Cisco 7600 Series Internet Router Module Installation Guides
 l
- Cisco Service and Application Module for IP User Guide
 ml

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.
This document is to be used in conjunction with the Cisco LTE SGW Configuration Guide and the Cisco LTE SGW Command Reference publications.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco’s trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Copyright © 2011, Cisco Systems, Inc.
All rights reserved.