Packet Capture

- Using the Debug Facility, page 1
- Configuring Wireless Sniffing, page 6

Using the Debug Facility

Information About Using the Debug Facility

The debug facility enables you to display all packets going to and from the controller CPU. You can enable it for received packets, transmitted packets, or both. By default, all packets received by the debug facility are displayed. However, you can define access control lists (ACLs) to filter packets before they are displayed. Packets not passing the ACLs are discarded without being displayed.

Each ACL includes an action (permit, deny, or disable) and one or more fields that can be used to match the packet. The debug facility provides ACLs that operate at the following levels and on the following values:

- Driver ACL
 - NPU encapsulation type
 - Port

- Ethernet header ACL
 - Destination address
 - Source address
 - Ethernet type
 - VLAN ID

- IP header ACL
 - Source address
 - Destination address
 - Protocol
At each level, you can define multiple ACLs. The first ACL that matches the packet is the one that is selected.

Configuring the Debug Facility (CLI)

Step 1 To enable the debug facility, enter this command:

```
• debug packet logging enable {rx | tx | all} packet_count display_size
```
Packet Capture

Configuring the Debug Facility (CLI)

where

- `rx` displays all received packets, `tx` displays all transmitted packets, and `all` displays both transmitted and received packets.

- `packet_count` is the maximum number of packets to log. You can enter a value between 1 and 65535 packets, and the default value is 25 packets.

- `display_size` is the number of bytes to display when printing a packet. By default, the entire packet is displayed.

Note To disable the debug facility, enter this command: `debug packet logging disable`.

- **debug packet logging acl driver** `rule_index action npu_encap port`

where

- `rule_index` is a value between 1 and 6 (inclusive).
- `action` is permit, deny, or disable.
- `npu_encap` specifies the NPU encapsulation type, which determines how packets are filtered. The possible values include dhcp, dot11-mgmt, dot11-probe, dot1x, eoip-ping, iapp, ip, lwapp, multicast, orphan-from-sta, orphan-to-sta, rbcp, wired-guest, or any.
- `port` is the physical port for packet transmission or reception.

- Use these commands to configure packet-logging ACLs:

 - **debug packet logging acl eth** `rule_index action dst src type vlan`

where

- `rule_index` is a value between 1 and 6 (inclusive).
- `action` is permit, deny, or disable.
- `dst` is the destination MAC address.
- `src` is the source MAC address.
- `type` is the two-byte type code (such as 0x800 for IP, 0x806 for ARP). This parameter also accepts a few common string values such as "ip" (for 0x800) or "arp" (for 0x806).
- `vlan` is the two-byte VLAN ID.

 - **debug packet logging acl ip** `rule_index action src dst proto src_port dst_port`

where

- `proto` is a numeric or any string recognized by getprotobynumber(). The controller supports the following strings: ip, icmp, igmp, ggp, ipencap, st, tcp, egp, pup, udp, hmp, xns-idp, rdp, iso-tp4, xtp, ddp, idpr-icmp, rsrp, vmp, osrp, ipip, and encaps.

- `src_port` is the UDP/TCP two-byte source port (for example, telnet, 23) or "any." The controller accepts a numeric or any string recognized by getservbyname(). The controller supports the following strings: tcpmux, echo, discard, systat, daytime, netstat, qotd, msp, chargen, ftp-data, ftp, fsp, ssh, telnet, smtp, time, rlp, nameserver, whois, re-mail-ck, domain, mtp, bootps, bootpc, tftp, gopher, rje, finger, www, link, kerberos, supdup, hostnames, iso-tsap, csnetsys, 3com-tmux, rtlnet, pop-2, pop-3, sunrpc, auth, sftp, uucp-path, nntp, ntp, netbios-ns, netbios-dgm, netbios-ssn, imap2, smtp, smtp-trap, cmip-man, cmip-agent, xdmcp, nextstep.
bgp, prospero, irc, smux, at-rtmp, at-nbp, at-echo, at-zis, qmtp, z3950, ipx, imap3, ulistserv, https, snpp, saft, npmp-local, npmp-gui, and hmmp-ind.

*dst_port is the UDP/TCP two-byte destination port (for example, telnet, 23) or "any." The controller accepts a numeric or any string recognized by getservbyname(). The controller supports the same strings as those for the src_port.

• debug packet logging acl eoip-eth rule_index action dst src type vlan
• debug packet logging acl eoip-ip rule_index action src dst proto src_port dst_port
• debug packet logging acl lwapp-dot11 rule_index action dst src bssid snap_type

where

* bssid is the Basic Service Set Identifier.

* snap_type is the Ethernet type.

• debug packet logging acl lwapp-ip rule_index action src dst proto src_port dst_port

Note To remove all configured ACLs, enter this command: debug packet logging acl clear-all.

Step 2 To configure the format of the debug output, enter this command:

debug packet logging format {hex2pcap | text2pcap}

The debug facility supports two output formats: hex2pcap and text2pcap. The standard format used by IOS supports the use of hex2pcap and can be decoded using an HTML front end. The text2pcap option is provided as an alternative so that a sequence of packets can be decoded from the same console log file.

This figure shows an example of hex2pcap output.

Figure 1: Sample Hex2pcap Output

tx	len=118, encap=n/a, port=1
0000	000C3168 73F00003 854D0450 000D4500 ...1n....0.0..E.
0004	00000000 00000000 00000000 00000000
0002	6c000000 00050000 00000000 l....Ye.........
0012	00000000 00000000 00000000 00000000
0016	1E1F2021 22232245 26272829 2A2B2C2D ...1"#$%'

tx	len=118, encap=ip, port=1
0000	000B3430 060C0000 31627F90 00045000 ...0.0..Lin....E.
0004	00000000 00000000 00000000 00000000
0002	6c000000 00050000 00000000 00000000 l....Ye.........
0012	00000000 00000000 00000000 00000000
0016	1E1F2021 22232245 26272829 2A2B2C2D ...1"#$%'

tx	len=118, encap=ip, port=1
0000	000B3430 060C0000 31627F90 00045000 ...0.0..Lin....E.
0004	00000000 00000000 00000000 00000000
0002	6c000000 00050000 00000000 00000000 l....Ye.........
0012	00000000 00000000 00000000 00000000
0016	1E1F2021 22232245 26272829 2A2B2C2D ...1"#$%'

Cisco Wireless Controller Configuration Guide, Release 8.3
This figure shows an example of text2pcap output.

Figure 2: Sample Text2pcap Output

```
0000 00 0c 31 00 00 09 00 08 00 00 00 .in...0.0...E.
0010 00 00 00 40 00 40 01 5F 0E 0F 00 00 64 .h...@.@.).d1..d
0020 0E 01 00 08 00 00 00 00 00 00 00 00 00 l....Ye........
0030 00 00 00 00 00 00 00 00 00 00 00 00 1C 1D ............
0040 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D ...!"#$%&'()*+,-
0050 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D ./0123456789;:<
0060 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D >/?ABCDEFGHIJKLMNOPQRSTUVWXYZ`\{\}
0070 4E 4F 50 51 52 53 
```

Step 3
To determine why packets might not be displayed, enter this command:
```
debug packet error {enable | disable}
```

Step 4
To display the status of packet debugging, enter this command:
```
show debug packet
```

Information similar to the following appears:

```
Status................................. disabled
Number of packets to display.............. 25
Bytes/packet to display.................... 0
Packet display format.................... text2pcap

Driver ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled

Ethernet ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled

IP ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled

EoIP-Ethernet ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled
```
Configuring Wireless Sniffing

Information About Wireless Sniffing

The controller enables you to configure an access point as a network “sniffer,” which captures and forwards all the packets on a particular channel to a remote machine that runs packet analyzer software. These packets contain information on time stamps, signal strength, packet sizes, and so on. Sniffers allow you to monitor and record network activity and to detect problems.

Prerequisites for Wireless Sniffing

To perform wireless sniffing, you need the following hardware and software:

• A dedicated access point—An access point configured as a sniffer cannot simultaneously provide wireless access service on the network. To avoid disrupting coverage, use an access point that is not part of your existing wireless network.

• A remote monitoring device—A computer capable of running the analyzer software.

• Software and supporting files, plug-ins, or adapters—Your analyzer software may require specialized files before you can successfully enable

Restrictions on Wireless Sniffing

• Supported third-party network analyzer software applications are as follows:

 ◦ Wildpackets Omnippeek or Airopeek
Packet Capture

Configuring Sniffing on an Access Point (GUI)

Step 1 Choose Wireless > Access Points > All APs to open the All APs page.
Step 2 Click the name of the access point that you want to configure as the sniffer. The All APs > Details for page appears.
Step 3 From the AP Mode drop-down list, choose Sniffer.
Step 4 Click Apply.
Step 5 Click OK when prompted that the access point will be rebooted.
Step 6 Choose Wireless > Access Points > Radios > 802.11a/n/ac (or 802.11b/g/n) to open the 802.11a/n (or 802.11b/g/n) Radios page.
Step 7 Hover your cursor over the blue drop-down arrow for the desired access point and choose Configure. The 802.11a/n/ac (or 802.11b/g/n) Cisco APs > Configure page appears.
Step 8 Select the Sniff check box to enable sniffing on this access point, or leave it unselected to disable sniffing. The default value is unchecked.
Step 9 If you enabled sniffing in Step 8, follow these steps:
 a) From the Channel drop-down list, choose the channel on which the access point sniffs for packets.
 b) In the Server IP Address text box, enter the IP address of the remote machine running Omnipeek, Airopeek, AirMagnet, or Wireshark.
Step 10 Click Apply.
Step 11 Click Save Configuration.

Configuring Sniffing on an Access Point (CLI)

Step 1 Configure the access point as a sniffer by entering this command:
 `config ap mode sniffer Cisco_AP`
 where `Cisco_AP` is the access point configured as the sniffer.
Step 2 When warned that the access point will be rebooted and asked if you want to continue, enter Y. The access point reboots in sniffer mode.

Step 3 Enable sniffing on the access point by entering this command:
```
config ap sniff {802.11a | 802.11b} enable channel server_IP_address Cisco_AP
```
where
- `channel` is the radio channel on which the access point sniffs for packets. The default values are 36 (802.11a/n/ac) and 1 (802.11b/g/n).
- `server_IP_address` is the IP address of the remote machine running Omnipeek, Airopeek, AirMagnet, or Wireshark.
- `Cisco_AP` is the access point configured as the sniffer.

Note To disable sniffing on the access point, enter the `config ap sniff {802.11a | 802.11b} disable Cisco_AP` command.

Step 4 Save your changes by entering this command:
```
save config
```

Step 5 See the sniffer configuration settings for an access point by entering this command:
```
show ap config {802.11a | 802.11b} Cisco_AP
```