Configuring System and Message Logging

Information About System and Message Logging

System logging allows controllers to log their system events to up to three remote syslog servers. The controller sends a copy of each syslog message as it is logged to each syslog server configured on the controller. Being able to send the syslog messages to multiple servers ensures that the messages are not lost due to the temporary unavailability of one syslog server. Message logging allows system messages to be logged to the controller buffer or console.

Configuring System and Message Logging (GUI)

Step 1 Choose Management > Logs > Config. The Syslog Configuration page appears.

![Figure 1: Syslog Configuration Page](image)

Step 2 In the Syslog Server IP Address (IPv4/IPv6) text box, enter the IPv4/IPv6 address of the server to which to send the syslog messages and click Add. You can add up to three syslog servers to the controller. The list of syslog servers that have already been added to the controller appears below this text box.

Note If you want to remove a syslog server from the controller, click Remove to the right of the desired server.

Step 3 To set the severity level for filtering syslog messages to the syslog servers, choose one of the following options from the Syslog Level drop-down list:

- **Emergencies** = Severity level 0
- **Alerts** = Severity level 1 (default value)
- **Critical** = Severity level 2
- **Errors** = Severity level 3
- **Warnings** = Severity level 4
- **Notifications** = Severity level 5
- **Informational** = Severity level 6
- **Debugging** = Severity level 7
If you set a syslog level, only those messages whose severity is equal to or less than that level are sent to the syslog servers. For example, if you set the syslog level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are sent to the syslog servers.

Note If you have enabled logging of debug messages to the logging buffer, some messages from application debug could be listed in message log with severity that is more than the level set. For example, if you execute the `debug client mac-addr` command, the client event log could be listed in message log even though the message severity level is set to **Errors**.

Step 4
To set the facility for outgoing syslog messages to the syslog servers, choose one of the following options from the **Syslog Facility** drop-down list:

- **Kernel** = Facility level 0
- **User Process** = Facility level 1
- **Mail** = Facility level 2
- **System Daemons** = Facility level 3
- **Authorization** = Facility level 4
- **Syslog** = Facility level 5 (default value)
- **Line Printer** = Facility level 6
- **USENET** = Facility level 7
- **Unix-to-Unix Copy** = Facility level 8
- **Cron** = Facility level 9
- **FTP Daemon** = Facility level 11
- **System Use 1** = Facility level 12
- **System Use 2** = Facility level 13
- **System Use 3** = Facility level 14
- **System Use 4** = Facility level 15
- **Local Use 0** = Facility level 16
- **Local Use 2** = Facility level 17
- **Local Use 3** = Facility level 18
- **Local Use 4** = Facility level 19
- **Local Use 5** = Facility level 20
- **Local Use 5** = Facility level 21
- **Local Use 5** = Facility level 22
- **Local Use 5** = Facility level 23

Step 5
Click **Apply**.

Step 6
To set the severity level for logging messages to the controller buffer and console, choose one of the following options from both the **Buffered Log Level** and **Console Log Level** drop-down lists:
• Emergencies = Severity level 0
• Alerts = Severity level 1
• Critical = Severity level 2
• Errors = Severity level 3 (default value)
• Warnings = Severity level 4
• Notifications = Severity level 5
• Informational = Severity level 6
• Debugging = Severity level 7
• Disable — This option is available only for Console Log level. Select this option to disable console logging.

If you set a logging level, only those messages whose severity is equal to or less than that level are logged by the controller. For example, if you set the logging level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are logged.

Step 7 Select the File Info check box if you want the message logs to include information about the source file. The default value is enabled.
Step 8 Select the Trace Info check box if you want the message logs to include traceback information. The default is disabled.
Step 9 Click Apply.
Step 10 Click Save Configuration.

Viewing Message Logs (GUI)

To view message logs using the controller GUI, choose Management > Logs > Message Logs. The Message Logs page appears.

Note To clear the current message logs from the controller, click Clear.

Configuring System and Message Logging (CLI)

Step 1 Enable system logging and set the IP address of the syslog server to which to send the syslog messages by entering this command:

```bash
config logging syslog host server_IP_address
```

You can add up to three syslog servers to the controller.

Note To remove a syslog server from the controller by entering this command: config logging syslog host server_IP_address delete
Step 2 Set the severity level for filtering syslog messages to the syslog server by entering this command:

```
config logging syslog level severity_level
```

where `severity_level` is one of the following:

- emergencies = Severity level 0
- alerts = Severity level 1
- critical = Severity level 2
- errors = Severity level 3
- warnings = Severity level 4
- notifications = Severity level 5
- informational = Severity level 6
- debugging = Severity level 7

Note As an alternative, you can enter a number from 0 through 7 for the `severity_level` parameter.

Note If you set a syslog level, only those messages whose severity is equal to or less than that level are sent to the syslog server. For example, if you set the syslog level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are sent to the syslog server.

Step 3 Set the severity level for filtering syslog messages for a particular access point or for all access points by entering this command:

```
config ap logging syslog level severity_level {Cisco_AP | all}
```

where `severity_level` is one of the following:

- emergencies = Severity level 0
- alerts = Severity level 1
- critical = Severity level 2
- errors = Severity level 3
- warnings = Severity level 4
- notifications = Severity level 5
- informational = Severity level 6
- debugging = Severity level 7

Note If you set a syslog level, only those messages whose severity is equal to or less than that level are sent to the access point. For example, if you set the syslog level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are sent to the access point.

Step 4 Set the facility for outgoing syslog messages to the syslog server by entering this command:

```
config logging syslog facility facility-code
```

where `facility-code` is one of the following:

- ap = AP related traps.
• auth-private = Authorization system (private). Facility level = 10.
• cron = Cron/at facility. Facility level = 9.
• daemon = System daemons. Facility level = 3.
• ftp = FTP daemon. Facility level = 11.
• kern = Kernel. Facility level = 0.
• local0 = Local use. Facility level = 16.
• local1 = Local use. Facility level = 17.
• local2 = Local use. Facility level = 18.
• local3 = Local use. Facility level = 19.
• local4 = Local use. Facility level = 20.
• local5 = Local use. Facility level = 21.
• local6 = Local use. Facility level = 22.
• local7 = Local use. Facility level = 23.
• lpr = Line printer system. Facility level = 6.
• mail = Mail system. Facility level = 2.
• news = USENET news. Facility level = 7.
• syslog = The syslog itself. Facility level = 5.
• user = User process. Facility level = 1.
• uucp = Unix-to-Unix copy system. Facility level = 8.

Step 5 Configure the syslog facility for AP using the following command:
config logging syslog facility AP
where AP can be:
• associate = Associated sys log for AP
• disassociate = Disassociate sys log for AP

Step 6 Configure the syslog facility for an AP or all APs by entering this command:
config ap logging syslog facility facility-level {Cisco_AP | all}
where facility-level is one of the following:
• auth = Authorization system
• cron = Cron/at facility
- daemon = System daemons
- kern = Kernel
- local0 = Local use
- local1 = Local use
- local2 = Local use
- local3 = Local use
- local4 = Local use
- local5 = Local use
- local6 = Local use
- local7 = Local use
- lpr = Line printer system
- mail = Mail system
- news = USENET news
- sys10 = System use
- sys11 = System use
- sys12 = System use
- sys13 = System use
- sys14 = System use
- syslog = Syslog itself
- user = User process
- uucp = Unix-to-Unix copy system

Step 7

Configure the syslog facility for Client by entering this command:
```
config logging syslog facility Client
```

where `facility-code` can be:
- assocfail Dot11= association fail syslog for clients
- associate Dot11=association syslog for clients
- authentication=authentication success syslog for clients
- authfail Dot11=authentication fail syslog for clients
- deauthenticate Dot11=deauthentication syslog for clients
- disassociate Dot11=disassociation syslog for clients
- excluded Excluded=syslog for clients
Step 8
Set the severity level for logging messages to the controller buffer and console, enter these commands:

- `config logging buffered severity_level`
- `config logging console severity_level`

where `severity_level` is one of the following:

- emergencies = Severity level 0
- alerts = Severity level 1
- critical = Severity level 2
- errors = Severity level 3
- warnings = Severity level 4
- notifications = Severity level 5
- informational = Severity level 6
- debugging = Severity level 7

Note As an alternative, you can enter a number from 0 through 7 for the `severity_level` parameter.

Note If you set a logging level, only those messages whose severity is equal to or less than that level are logged by the controller. For example, if you set the logging level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are logged.

Step 9
Save debug messages to the controller buffer, the controller console, or a syslog server by entering these commands:

- `config logging debug buffered {enable | disable}`
- `config logging debug console {enable | disable}`
- `config logging debug syslog {enable | disable}`

By default, the console command is enabled, and the buffered and syslog commands are disabled.

Step 10
To cause the controller to include information about the source file in the message logs or to prevent the controller from displaying this information by entering this command:

`config logging fileinfo {enable | disable}`

The default value is enabled.

Step 11
Configure the controller to include process information in the message logs or to prevent the controller from displaying this information by entering this command:

`config logging procinfo {enable | disable}`

The default value is disabled.

Step 12
Configure the controller to include traceback information in the message logs or to prevent the controller from displaying this information by entering this command:

`config logging traceinfo {enable | disable}`

The default value is disabled.

Step 13
Enable or disable timestamps in log messages and debug messages by entering these commands:
• config service timestamps log {datetime | disable}
• config service timestamps debug {datetime | disable}

where

◦ datetime = Messages are timestamped with the standard date and time. This is the default value.
◦ disable = Messages are not timestamped.

Step 14 Save your changes by entering this command:
save config

Viewing System and Message Logs (CLI)

To see the logging parameters and buffer contents, enter this command:
show logging

Viewing Access Point Event Logs

Information About Access Point Event Logs

Access points log all system messages (with a severity level greater than or equal to notifications) to the access point event log. The event log can contain up to 1024 lines of messages, with up to 128 characters per line. When the event log becomes filled, the oldest message is removed to accommodate a new event message. The event log is saved in a file on the access point flash, which ensures that it is saved through a reboot cycle. To minimize the number of writes to the access point flash, the contents of the event log are written to the event log file during normal reload and crash scenarios only.

Viewing Access Point Event Logs (CLI)

Use these CLI commands to view or clear the access point event log from the controller:

• To see the contents of the event log file for an access point that is joined to the controller, enter this command:
 show ap eventlog Cisco_AP

 Information similar to the following appears:

 AP event log download has been initiated
 Waiting for download to complete
 AP event log download completed.
 -- AP Event log Contents ------------------------
 *Sep 22 11:44:00.573: %CAPWAP-5-CHANGED: CAPWAP changed state to IMAGE
 *Sep 22 11:44:01.514: %LINEPROTO-5-UPDOWN: Line protocol on Interface Dot11Radio0, changed state to down
Using the Debug Facility

Information About Using the Debug Facility

The debug facility enables you to display all packets going to and from the controller CPU. You can enable it for received packets, transmitted packets, or both. By default, all packets received by the debug facility are displayed. However, you can define access control lists (ACLs) to filter packets before they are displayed. Packets not passing the ACLs are discarded without being displayed.

Each ACL includes an action (permit, deny, or disable) and one or more fields that can be used to match the packet. The debug facility provides ACLs that operate at the following levels and on the following values:

- **Driver ACL**
 - NPU encapsulation type
 - Port

- **Ethernet header ACL**
 - Destination address
 - Source address
 - Ethernet type
 - VLAN ID

- **IP header ACL**
 - Source address
 - Destination address

To delete the existing event log and create an empty event log file for a specific access point or for all access points joined to the controller, enter this command:

```
clear ap-eventlog {specific Cisco_AP | all}
```
At each level, you can define multiple ACLs. The first ACL that matches the packet is the one that is selected.

Configuring the Debug Facility (CLI)

Step 1
To enable the debug facility, enter this command:
• debug packet logging enable {rx | tx | all} packet_count display_size

 where
 * rx displays all received packets, tx displays all transmitted packets, and all displays both transmitted and received packets.
 * packet_count is the maximum number of packets to log. You can enter a value between 1 and 65535 packets, and the default value is 25 packets.
 * display_size is the number of bytes to display when printing a packet. By default, the entire packet is displayed.

 Note To disable the debug facility, enter this command: debug packet logging disable.

• debug packet logging acl driver rule_index action npu_encap port

 where
 * rule_index is a value between 1 and 6 (inclusive).
 * action is permit, deny, or disable.
 * npu_encap specifies the NPU encapsulation type, which determines how packets are filtered. The possible values include dhcp, dot11-mgmt, dot11-probe, dot1x, coip-ping, iapp, ip, lwapp, multicast, orphan-from-sta, orphan-to-sta, rbcp, wired-guest, or any.
 * port is the physical port for packet transmission or reception.

• Use these commands to configure packet-logging ACLs:

 debug packet logging acl eth rule_index action dst src type vlan

 where
 * rule_index is a value between 1 and 6 (inclusive).
 * action is permit, deny, or disable.
 * dst is the destination MAC address.
 * src is the source MAC address.
 * type is the two-byte type code (such as 0x800 for IP, 0x806 for ARP). This parameter also accepts a few common string values such as "ip" (for 0x800) or "arp" (for 0x806).
 * vlan is the two-byte VLAN ID.

• debug packet logging acl ip rule_index action src dst proto src_port dst_port

 where
 * proto is a numeric or any string recognized by getprotobyname(). The controller supports the following strings: ip, icmp, igmp, ggp, ipencap, st, tcp, egp, pup, udp, hmp, xns-idp, rdp, is-tp4, xtp, ddp, idpr-encap, rsbf, vmtop, ospf, ipip, and encap.
 * src_port is the UDP/TCP two-byte source port (for example, telnet, 23) or "any." The controller accepts a numeric or any string recognized by getservbyname(). The controller supports the following strings: tcpmux, echo, discard, sstat, daytime, netstat, qotd, msp, chargen, ftp-data, ftp, fsp, ssh, telnet, smtp, time, rlp, nameserver, whois, re-mail-ck, domain, mtp, bootps, bootpc, tftp, gopher, rje, finger, www, link, kerberos,

- **dst_port** is the UDP/TCP two-byte destination port (for example, telnet, 23) or "any." The controller accepts a numeric or any string recognized by getservbyname(). The controller supports the same strings as those for the **src_port**.

- **debug packet logging acl eoip-eth** rule_index action dst src type vlan
- **debug packet logging acl eoip-ip** rule_index action src dst proto src_port dst_port
- **debug packet logging acl lwapp-dot11** rule_index action dst src bssid snap_type

 where

 - **bssid** is the Basic Service Set Identifier.
 - **snap_type** is the Ethernet type.

- **debug packet logging acl lwapp-ip** rule_index action src dst proto src_port dst_port

 Note To remove all configured ACLs, enter this command: debug packet logging acl clear-all.

Step 2
To configure the format of the debug output, enter this command:

debug packet logging format \{hex2pcap | text2pcap\}

The debug facility supports two output formats: hex2pcap and text2pcap. The standard format used by IOS supports the use of hex2pcap and can be decoded using an HTML front end. The text2pcap option is provided as an alternative so that a sequence of packets can be decoded from the same console log file.

This figure shows an example of hex2pcap output.

Figure 2: Sample Hex2pcap Output

```plaintext
[0000]: 00000000 00000000 00000450 //..in......0.0..E.
[0010]: 00000000 00000000 00000000 00000000 00000000 00000000 //...0.0...\..d1..d
[0020]: 00000000 00000000 00000000 00000000 00000000 00000000 //...0.0...\..d1..d
[0030]: 00000000 00000000 00000000 00000000 00000000 00000000 //...0.0...\..d1..d
[0040]: 181f2021 22324242 22324242 22324242 22324242 22324242 //...\..\..\..\..\..
[0050]: 202f0031 22224031 22324031 22324031 22324031 22324031 //./0123456789;:<=
[0060]: 337f4041 42344444 46674849 4a4b4c4d >?099876543210
[0070]: 08450501 5253 //ROFOR3
```

This figure shows an example of hex2pcap output.
This figure shows an example of text2pcap output.

Figure 3: Sample Text2pcap Output

```plaintext
0000 00 00 31 6E 7F 00 00 00 00 00 00 00 00 45 00 ....in....0.0...x.
0010 68 00 00 00 00 00 01 5F BE 01 64 6C 0E 01 64 .h..0..._.>..dl..d
0020 6C 01 08 00 08 59 E5 00 00 00 00 00 00 00 00 00 00 l....Ye.....
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1C 1D .............
0040 1B 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D ...."#$%&'()*+,-
0050 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D ./0123456789;<=
0060 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D >?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0070 4E 4F 50 51 52 53

**rx len=118, encaps=n/a, port=1**

```plaintext
0000 00 35 40 08 C0 00 00 31 6E 7F 00 00 00 45 000...in....x.
0010 68 00 00 00 00 00 00 00 FF 01 A0 BD 01 AD 6C 01 01 AD0...=..dl..d
0020 6C 01 08 00 08 59 E5 00 00 00 00 00 00 00 00 00 00 l....Ye.....
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1C 1D
0040 1B 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D"#$%&'()*+,-
0050 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D ./0123456789;<=
0060 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D >?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0070 4E 4F 50 51 52 53

rx len=110, encaps=ip, port=1

```plaintext
0000 00 35 40 08 00 00 00 31 6E 7F 00 00 00 45 00 ....0...in....x.
0010 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .h..0..._.>..<dl..d
0020 6C 01 08 00 08 59 E5 00 00 00 00 00 00 00 00 00 00 l....Ye.....
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1C 1D .............
0040 1B 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D ...."#$%&'()*+,-
0050 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D ./0123456789;<=
0060 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D >?@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0070 4E 4F 50 51 52 53
```

Step 3

To determine why packets might not be displayed, enter this command:

```
debug packet error {enable | disable}
```

Step 4

To display the status of packet debugging, enter this command:

```
show debug packet
```

Information similar to the following appears:

```
Status.......................... disabled
Number of packets to display................. 25
Bytes/packet to display...................... 0
Packet display format...................... text2pcap

Driver ACL:
(1): disabled
(2): disabled
(3): disabled
(4): disabled
(5): disabled
(6): disabled

Ethernet ACL:
(1): disabled
(2): disabled
(3): disabled
(4): disabled
(5): disabled
(6): disabled

IP ACL:
(1): disabled
(2): disabled
(3): disabled
(4): disabled
(5): disabled
(6): disabled

EoIP-Ethernet ACL:
(1): disabled
(2): disabled
(3): disabled
(4): disabled
```
EoIP-IP ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled

LWAPP-Dot11 ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled

LWAPP-IP ACL:
[1]: disabled
[2]: disabled
[3]: disabled
[4]: disabled
[5]: disabled
[6]: disabled