FlexConnect

- Information About FlexConnect, page 1
- Restrictions on FlexConnect, page 6
- Configuring FlexConnect, page 8

Information About FlexConnect

FlexConnect (previously known as Hybrid Remote Edge Access Point or H-REAP) is a wireless solution for branch office and remote office deployments. It enables customers to configure and control access points (AP) in a branch or remote office from the corporate office through a wide area network (WAN) link without deploying a controller in each office. The FlexConnect access points can switch client data traffic locally and perform client authentication locally when their connection to the controller is lost. When they are connected to the controller, they can also send traffic back to the controller. In the connected mode, the FlexConnect access point can also perform local authentication.

The figure below shows a typical FlexConnect deployment.

Figure 1: FlexConnect Deployment
The controller software has a more robust fault tolerance methodology to FlexConnect access points. In previous releases, whenever a FlexConnect access point disassociates from a controller, it moves to the standalone mode. The clients that are centrally switched are disassociated. However, the FlexConnect access point continues to serve locally switched clients. When the FlexConnect access point rejoins the controller (or a standby controller), all clients are disconnected and are authenticated again. This functionality has been enhanced and the connection between the clients and the FlexConnect access points are maintained intact and the clients experience seamless connectivity. When both the access point and the controller have the same configuration, the connection between the clients and APs is maintained.

After the client connection has been established, the controller does not restore the original attributes of the client. The client username, current rate and supported rates, and listen interval values are reset to the default values only after the session timer expires.

There is no deployment restriction on the number of FlexConnect access points per location. Multiple FlexConnect groups can be defined in a single location.

The controller can send multicast packets in the form of unicast or multicast packets to the access point. In FlexConnect mode, the access point can receive multicast packets only in unicast form.

FlexConnect access points support a 1-1 network address translation (NAT) configuration. They also support port address translation (PAT) for all features except true multicast. Multicast is supported across NAT boundaries when configured using the Unicast option. FlexConnect access points also support a many-to-one NAT/PAT boundary, except when you want true multicast to operate for all centrally switched WLANs.

Although NAT and PAT are supported for FlexConnect access points, they are not supported on the corresponding controller. Cisco does not support configurations in which the controller is behind a NAT/PAT boundary.

VPN and PPTP are supported for locally switched traffic if these security types are accessible locally at the access point.

FlexConnect access points support multiple SSIDs.

Workgroup bridges and Universal Workgroup bridges are supported on FlexConnect access points for locally switched clients.

FlexConnect supports IPv6 clients by bridging the traffic to local VLAN, similar to IPv4 operation. FlexConnect supports Client Mobility for a group of up to 100 access points.

When an AP changes the mode from Local to FlexConnect, the AP needs to reboot. The reboot, in turn delays the overall deployment of the AP in a branch office.

The access point does not have to reboot when moving from local to FlexConnect mode.

When the FlexConnect parameters are configured, the connection between an AP and the Cisco WLC is maintained. There is no disassociation.

The mode change from Local to FlexConnect is supported for faster deployment. For other mode changes, APs have to reboot. In case of a change in the AP submode to wireless Intrusion Prevention System (wIPS), reboot is not required.
For the Cisco Flex 7510 WLC, auto convert mode is available on the CLI. The auto convert mode triggers the change on all the connected APs. The change of the mode from Local to FlexConnect and the reboot works in conjunction with the auto convert mode for the Cisco Flex 7510 WLC.

Note
When AP is changed from local to FlexConnect it will not reboot, but when it is changed from FlexConnect to local it reboots and displays the following error message, "Warning: Changing AP Mode will reboot the AP and will rejoin the controller after a few minutes. Are you sure you want to continue?" but CLI remains the same. Changing the AP's mode will also cause the AP to reboot.

FlexConnect Authentication Process

When an access point boots up, it looks for a controller. If it finds one, it joins the controller, downloads the latest software image and configuration from the controller, and initializes the radio. It saves the downloaded configuration in nonvolatile memory for use in standalone mode.

Note
Once the access point is rebooted after downloading the latest controller software, it must be converted to the FlexConnect mode. This can be done using the GUI or CLI.

A FlexConnect access point can learn the controller IP address in one of these ways:

• If the access point has been assigned an IP address from a DHCP server, it can discover a controller through the regular CAPWAP or LWAPP discovery process.

Note
OTAP is no longer supported on the controllers with 6.0.196.0 and later releases.

• If the access point has been assigned a static IP address, it can discover a controller through any of the discovery process methods except DHCP option 43. If the access point cannot discover a controller through Layer 3 broadcast, we recommend DNS resolution. With DNS, any access point with a static IP address that knows of a DNS server can find at least one controller.

• If you want the access point to discover a controller from a remote network where CAPWAP or LWAPP discovery mechanisms are not available, you can use priming. This method enables you to specify (through the access point CLI) the controller to which the access point is to connect.

Note

When a FlexConnect access point can reach the controller (referred to as the connected mode), the controller assists in client authentication. When a FlexConnect access point cannot access the controller, the access point enters the standalone mode and authenticates clients by itself.
The LEDs on the access point change as the device enters different FlexConnect modes. See the hardware installation guide for your access point for information on LED patterns.

When a client associates to a FlexConnect access point, the access point sends all authentication messages to the controller and either switches the client data packets locally (locally switched) or sends them to the controller (centrally switched), depending on the WLAN configuration. With respect to client authentication (open, shared, EAP, web authentication, and NAC) and data packets, the WLAN can be in any one of the following states depending on the configuration and state of controller connectivity:

- **central authentication, central switching**—In this state, the controller handles client authentication, and all client data is tunneled back to the controller. This state is valid only in connected mode.
- **central authentication, local switching**—In this state, the controller handles client authentication, and the FlexConnect access point switches data packets locally. After the client authenticates successfully, the controller sends a configuration command with a new payload to instruct the FlexConnect access point to start switching data packets locally. This message is sent per client. This state is applicable only in connected mode.

For the FlexConnect local switching, central authentication deployments, if there is a passive client with a static IP address, it is recommended to disable the Learn Client IP Address feature under the WLAN > Advanced tab.

- **local authentication, local switching**—In this state, the FlexConnect access point handles client authentication and switches client data packets locally. This state is valid in standalone mode and connected mode.

In connected mode, the access point provides minimal information about the locally authenticated client to the controller. The following information is not available to the controller:

- Policy type
- Access VLAN
- VLAN name
- Supported rates
- Encryption cipher

Local authentication is useful where you cannot maintain a remote office setup of a minimum bandwidth of 128 kbps with the round-trip latency no greater than 100 ms and the maximum transmission unit (MTU) no smaller than 576 bytes. In local authentication, the authentication capabilities are present in the access point itself. Local authentication reduces the latency requirements of the branch office.

Local authentication can only be enabled on the WLAN of a FlexConnect access point that is in local switching mode.

Notes about local authentication are as follows:

- Guest authentication cannot be done on a FlexConnect local authentication-enabled WLAN.
• Local RADIUS on the controller is not supported.

• Once the client has been authenticated, roaming is only supported after the controller and the other FlexConnect access points in the group are updated with the client information.

• Local authentication in connected mode requires a WLAN configuration.

Note

When locally switched clients that are connected to a FlexConnect access point renew the IP addresses, on joining back, the client continues to stay in the run state. These clients are not reauthenticated by the controller.

- authentication down, switch down—In this state, the WLAN disassociates existing clients and stops sending beacon and probe requests. This state is valid in both standalone mode and connected mode.

- authentication down, local switching—In this state, the WLAN rejects any new clients trying to authenticate, but it continues sending beacon and probe responses to keep existing clients alive. This state is valid only in standalone mode.

When a FlexConnect access point enters standalone mode, WLANs that are configured for open, shared, WPA-PSK, or WPA2-PSK authentication enter the “local authentication, local switching” state and continue new client authentications. In controller software release 4.2 or later releases, this configuration is also correct for WLANs that are configured for 802.1X, WPA-802.1X, WPA2-802.1X, or CCKM, but these authentication types require that an external RADIUS server be configured. You can also configure a local RADIUS server on a FlexConnect access point to support 802.1X in a standalone mode or with local authentication.

Other WLANs enter either the “authentication down, switching down” state (if the WLAN was configured for central switching) or the “authentication down, local switching” state (if the WLAN was configured for local switching).

When FlexConnect access points are connected to the controller (rather than in standalone mode), the controller uses its primary RADIUS servers and accesses them in the order specified on the RADIUS Authentication Servers page or in the `config radius auth add` CLI command (unless the server order is overridden for a particular WLAN). However, to support 802.1X EAP authentication, FlexConnect access points in standalone mode need to have their own backup RADIUS server to authenticate clients.

Note

A controller does not use a backup RADIUS server. The controller uses the backup RADIUS server in local authentication mode.

You can configure a backup RADIUS server for individual FlexConnect access points in standalone mode by using the controller CLI or for groups of FlexConnect access points in standalone mode by using either the GUI or CLI. A backup server configured for an individual access point overrides the backup RADIUS server configuration for a FlexConnect.

When a FlexConnect access point enters standalone mode, it disassociates all clients that are on centrally switched WLANs. For web-authentication WLANs, existing clients are not disassociated, but the FlexConnect access point stops sending beacons when the number of associated clients reaches zero (0). It also sends disassociation messages to new clients associating to web-authentication WLANs. Controller-dependent activities, such as network access control (NAC) and web authentication (guest access), are disabled, and the access point does not send any intrusion detection system (IDS) reports to the controller. Most radio resource management (RRM) features (such as neighbor discovery; noise, interference, load, and coverage measurements;
use of the neighbor list; and rogue containment and detection) are disabled. However, a FlexConnect access point supports dynamic frequency selection in standalone mode.

When web-authentication is used on FlexConnect access points at a remote site, the clients get the IP address from the remote local subnet. To resolve the initial URL request, the DNS is accessible through the subnet's default gateway. In order for the controller to intercept and redirect the DNS query return packets, these packets must reach the controller at the data center through a CAPWAP connection. During the web-authentication process, the FlexConnect access points allows only DNS and DHCP messages; the access points forward the DNS reply messages to the controller before web-authentication for the client is complete. After web-authentication for the client is complete, all the traffic is switched locally.

Note

If your controller is configured for NAC, clients can associate only when the access point is in connected mode. When NAC is enabled, you need to create an unhealthy (or quarantined) VLAN so that the data traffic of any client that is assigned to this VLAN passes through the controller, even if the WLAN is configured for local switching. After a client is assigned to a quarantined VLAN, all of its data packets are centrally switched. See the Configuring Dynamic Interfaces section for information about creating quarantined VLANs and the Configuring NAC Out-of-Band section for information about configuring NAC out-of-band support.

When a FlexConnect access point enters into a standalone mode, the following occurs:

- The access point checks whether it is able to reach the default gateway via ARP. If so, it will continue to try and reach the controller.

If the access point fails to establish the ARP, the following occurs:

- The access point attempts to discover for five times and if it still cannot find the controller, it tries to renew the DHCP on the ethernet interface to get a new DHCP IP.
- The access point will retry for five times, and if that fails, the access point will renew the IP address of the interface again, this will happen for three attempts.
- If the three attempts fail, the access point will fall back to the static IP and will reboot (only if the access point is configured with a static IP).
- Reboot is done to remove the possibility of any unknown error the access point configuration.

Once the access point reestablishes a connection with the controller, it disassociates all clients, applies new configuration information from the controller, and allows client connectivity again.

Restrictions on FlexConnect

- You can deploy a FlexConnect access point with either a static IP address or a DHCP address. In the case of DHCP, a DHCP server must be available locally and must be able to provide the IP address for the access point at bootup.
- FlexConnect supports up to four fragmented packets or a minimum 576-byte maximum transmission unit (MTU) WAN link.
- Round-trip latency must not exceed 300 milliseconds (ms) between the access point and the controller, and CAPWAP control packets must be prioritized over all other traffic. In cases where you cannot
achieve the 300 milliseconds round-trip latency, you can configure the access point to perform local authentication.

- Client connections are restored only for locally switched clients that are in the RUN state when the access point moves from standalone mode to connected mode.
- The configuration on the controller must be the same between the time the access point went into standalone mode and the time the access point came back to connected mode. Similarly, if the access point is falling back to a secondary or backup controller, the configuration between the primary and secondary or backup controller must be the same.
- A newly connected access point cannot be booted in FlexConnect mode.
- To use CCKM fast roaming with FlexConnect access points, you must configure FlexConnect Groups.
- NAC out-of-band integration is supported only on WLANs configured for FlexConnect central switching. It is not supported for use on WLANs configured for FlexConnect local switching.
- The primary and secondary controllers for a FlexConnect access point must have the same configuration. Otherwise, the access point might lose its configuration, and certain features (such as WLAN overrides, VLANs, static channel number, and so on) might not operate correctly. In addition, make sure to duplicate the SSID of the FlexConnect access point and its index number on both controllers.
- Do not connect access points in FlexConnect mode directly to a 2504 WLC.
- If you configure a FlexConnect access point with a syslog server configured on the access point, after the access point is reloaded and the native VLAN other than 1, at time of initialization, few syslog packets from the access point are tagged with VLAN ID 1. This is a known issue.
- MAC Filtering is not supported on FlexConnect access points in standalone mode. However, MAC Filtering is supported on FlexConnect access points in connected mode with local switching and central authentication. Also, Open SSID, MAC Filtering, and RADIUS NAC for a locally switched WLAN with FlexConnect access points is a valid configuration where MAC is checked by ISE.
- FlexConnect does not support IPv6 ACLs, neighbor discovery caching, and DHCPv6 snooping of IPv6 NDP packets.
- FlexConnect does not display any IPv6 client addresses within the client detail page.
- FlexConnect Access Points with Locally Switched WLAN cannot perform IP Source Guard and prevent ARP spoofing. For Centrally Switched WLAN, the wireless controller performs the IP Source Guard and ARP Spoofing.
- To prevent ARP spoofing attacks in FlexConnect AP with Local Switching, we recommend that you use ARP Inspection.
- When you enable local switching on WLAN for the FlexConnect APs, then APs perform local switching. However, for the APs in local mode, central switching is performed.

A scenario where the roaming of a client between FlexConnect mode AP and Local mode AP is not supported. The client may not get correct IP address due to VLAN difference after the move. Also, L2 and L3 roaming between FlexConnect mode AP and Local mode AP are not supported.
- For Wi-Fi Protected Access version 2 (WPA2) in FlexConnect standalone mode or local-auth in connected mode or CCKM fast-roaming in connected mode, only Advanced Encryption Standard (AES) is supported.
- For Wi-Fi Protected Access (WPA) in FlexConnect standalone mode or local-auth in connected mode or CCKM fast-roaming in connected mode, only Temporal Key Integrity Protocol (TKIP) is supported.
• WPA2 with TKIP and WPA with AES is not supported in standalone mode, local-auth in connected mode, and CCKM fast-roaming in connected mode.

• AVC on locally switched WLANs is supported on Second-Generation APs.

• Flexconnect access points in WIPS mode can significantly increase the bandwidth utilization depending on the activity detected by the access points. If the rules have forensics enabled, the link utilization can go up by almost 100kbps.

• Local authentication fall back is not supported when user is not available in the external RADIUS server.

• For WLAN configured for the FlexConnect AP in the local switching and local authentication, synchronization of dot11 clients information is supported.

• It is not possible for the Cisco WLC to detect if an AP has dissociated and with that whether the radio is in operational state or non-operational state.

When a FlexConnect AP dissociates from the Cisco WLC, the AP can still serve the clients with the radios being operational; however, with all other AP modes, the radios go into non-operational state.

• When you apply a configuration change to a locally switched WLAN, the access point resets the radio, causing associated client devices to disassociate (including the clients that are not associated with the modified WLAN). However, this behavior does not occur if the modified WLAN is centrally switched. We recommend that you modify the configuration only during a maintenance window. This is also applicable when a centrally switched WLAN is changed to a locally switched WLAN.

• ACL override is not supported in TKIP encrypted clients.

Configuring FlexConnect

Note The configuration tasks must be performed in the order in which they are listed.

Configuring the Switch at a Remote Site

Step 1 Attach the access point that will be enabled for FlexConnect to a trunk or access port on the switch.

Note The sample configuration in this procedure shows the FlexConnect access point connected to a trunk port on the switch.

Step 2 See the sample configuration in this procedure to configure the switch to support the FlexConnect access point. In this sample configuration, the FlexConnect access point is connected to trunk interface FastEthernet 1/0/2 with native VLAN 100. The access point needs IP connectivity on the native VLAN. The remote site has local servers/resources on VLAN 101. A DHCP pool is created in the local switch for both VLANs in the switch. The first DHCP pool (NATIVE) is used by the FlexConnect access point, and the second DHCP pool (LOCAL-SWITCH) is used by the clients when they associate to a WLAN that is locally switched. The bolded text in the sample configuration shows these settings.

A sample local switch configuration is as follows:

```bash
ip dhcp pool NATIVE
```
Configuring the Controller for FlexConnect

You can configure the controller for FlexConnect in two environments:

- Centrally switched WLAN
- Locally switched WLAN

The controller configuration for FlexConnect consists of creating centrally switched and locally switched WLANs. This table shows three WLAN scenarios.

Table 1: WLANs Example

<table>
<thead>
<tr>
<th>WLAN</th>
<th>Security</th>
<th>Authentication</th>
<th>Switching</th>
<th>Interface Mapping (VLAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>employee</td>
<td>WPA1+WPA2</td>
<td>Central</td>
<td>Central</td>
<td>management (centrally switched VLAN)</td>
</tr>
<tr>
<td>employee-local</td>
<td>WPA1+WPA2 (PSK)</td>
<td>Local</td>
<td>Local</td>
<td>101 (locally switched VLAN)</td>
</tr>
</tbody>
</table>
Configuring the Controller for FlexConnect for a Centrally Switched WLAN Used for Guest Access

Before You Begin

You must have created guest user accounts. For more information about creating guest user accounts, see the *Cisco Wireless LAN Controller System Management Guide*.

<table>
<thead>
<tr>
<th>WLAN</th>
<th>Security</th>
<th>Authentication</th>
<th>Switching</th>
<th>Interface Mapping (VLAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest-central</td>
<td>Web authentication</td>
<td>Central</td>
<td>Central</td>
<td>management (centrally switched VLAN)</td>
</tr>
<tr>
<td>employee-local-auth</td>
<td>WPA1+WPA2</td>
<td>Local</td>
<td>Local</td>
<td>101 (locally switched VLAN)</td>
</tr>
</tbody>
</table>

Step 1 Choose WLANs to open the WLANs page.

Step 2 From the drop-down list, choose Create New and click Go to open the WLANs > New page.

Step 3 From the Type drop-down list, choose WLAN.

Step 4 In the Profile Name text box, enter guest-central.

Step 5 In the WLAN SSID text box, enter guest-central.

Step 6 From the WLAN ID drop-down list, choose an ID for the WLAN.

Step 7 Click Apply. The WLANs > Edit page appears.

Step 8 In the General tab, select the Status check box to enable the WLAN.

Step 9 In the Security > Layer 2 tab, choose None from the Layer 2 Security drop-down list.

Step 10 In the Security > Layer 3 tab:

a) Choose None from the Layer 3 Security drop-down list.

b) Choose the Web Policy check box.

c) Choose Authentication.

Note

If you are using an external web server, you must configure a preauthentication access control list (ACL) on the WLAN for the server and then choose this ACL as the WLAN preauthentication ACL on the Layer 3 tab.

Step 11 Click Apply.

Step 12 Click Save Configuration.
Configuring the Controller for FlexConnect (GUI)

Step 1 Choose WLANs to open the WLANs page.

Step 2 From the drop-down list, choose **Create New** and click **Go** to open the WLANs > New page.

Step 3 From the **Type** drop-down list, choose **WLAN**.

Step 4 In the **Profile Name** text box, enter a unique profile name for the WLAN.

Step 5 In the **WLAN SSID** text box, enter a name for the WLAN.

Step 6 From the **WLAN ID** drop-down list, choose the ID number for this WLAN.

Step 7 Click **Apply**.

The WLANs > Edit page is displayed.

Step 8 You can configure the controller for FlexConnect in both centrally switched and locally switched WLANs:

Note Do not enable ip-learn on FlexConnect local switched WLAN. When several sites use similar local subnets or overlapping subnets that are terminated on the same WLC, you will see ip-theft false positives. If ip-theft exclusion is enabled on the WLC, the clients might get blacklisted or a similar message is displayed to convey the feature behavior.

To configure the controller for FlexConnect in a centrally switched WLAN:

a) In the **General** tab, check the **Status** check box to enable the WLAN.

b) If you have enabled NAC and have created a quarantined VLAN and want to use it for this WLAN, select the interface from the Interface/Interface Group(G) drop-down list in the **General** tab.

c) In the **Security > Layer 2** tab, choose WPA+WPA2 from the **Layer 2 Security** drop-down list and then set the WPA+WPA2 parameters as required.

To configure the controller for FlexConnect in a locally switched WLAN:

a) In the **General** tab, check the **Status** check box to enable the WLAN.

b) If you have enabled NAC and have created a quarantined VLAN and want to use it for this WLAN, select the interface from the Interface/Interface Group(G) drop-down list in the **General** tab.

c) In the **Security > Layer 2** tab, choose WPA+WPA2 from the **Layer 2 Security** drop-down list and then set the WPA+WPA2 parameters as required.

d) In the **Advanced** tab:

- Check or uncheck the **FlexConnect Local Switching** check box to enable or disable local switching of client data associated with the APs in FlexConnect mode.
The guidelines and limitations for this feature are as follows:

- When you enable local switching, any FlexConnect access point that advertises this WLAN is able to locally switch data packets (instead of tunneling them to the controller).

- When you enable FlexConnect local switching, the controller is enabled to learn the client’s IP address by default. However, if the client is configured with Fortress Layer 2 encryption, the controller cannot learn the client’s IP address, and the controller periodically drops the client. Disable the client IP address learning feature so that the controller maintains the client connection without waiting to learn the client’s IP address. The ability to disable this option is supported only with FlexConnect local switching; it is not supported with FlexConnect central switching.

- For FlexConnect access points, the interface mapping at the controller for WLANs that is configured for FlexConnect Local Switching is inherited at the access point as the default VLAN tagging. This mapping can be changed per SSID and per FlexConnect access point. Non-FlexConnect access points tunnel all traffic back to the controller, and VLAN tagging is determined by each WLAN’s interface mapping.

- Intermittently, on the Cisco 1240 series FlexConnect APs that have smaller memory, all the clients connecting to the particular SSID on the AP are stuck in DHCP process and the clients don’t get an IP address. This may occur randomly and it is fixed on its own after some time. There is no debug available for the client on the AP, it is recommended that per-client debugging is done from the Cisco WLC.

- Select or unselect the FlexConnect Local Auth check box to enable or disable local authentication for the WLAN.

- Select or unselect the Learn Client IP Address check box to enable or disable the IP address of the client to be learned.

- Select or unselect the VLAN based Central Switching check box to enable or disable central switching on a locally switched WLAN based on AAA overridden VLAN.

These are the guidelines and limitations for this feature:

- VLAN based central switching is not supported by mac filter.

- Multicast on overridden interfaces is not supported.

- This feature is available only on a per-WLAN basis, where the WLAN is locally switched.

- IPv6 ACLs, CAC, NAC, and IPv6 are not supported.

- IPv4 ACLs are supported only with VLAN-based central switching enabled and applicable only to central switching clients on the WLAN.

- This feature is applicable to APs in FlexConnect mode in locally switched WLANs.

- This feature is not applicable to APs in Local mode.

- This feature is not supported on APs in FlexConnect mode in centrally switched WLANs.

- This feature is supported on central authentication only.

- This features is not supported on web authentication security clients.

- Layer 3 roaming for local switching clients is not supported.
Select or unselect the Central DHCP Processing check box to enable or disable the feature. When you enable this feature, the DHCP packets received from AP are centrally switched to the controller and then forwarded to the corresponding VLAN based on the AP and the SSID.

Select or unselect the Override DNS check box to enable or disable the overriding of the DNS server address on the interface assigned to the locally switched WLAN. When you override DNS in centrally switched WLANs, the clients get their DNS server IP address from the AP, not from the controller.

Select or unselect the NAT-PAT check box to enable or disable Network Address Translation (NAT) and Port Address Translation (PAT) on locally switched WLANs. You must enable Central DHCP Processing to enable NAT and PAT.

Select or unselect the Central Assoc check box to enable or disable client reassociation and security key caching on the Cisco WLC. The PMIPv6 MAG on AP feature requires that the client reassociation be handled centrally at the Cisco WLC in large-scale deployments of Cisco APs, to support fast roaming.

Configuration of central association with local authentication is not supported for the WLAN. After the PMIPv6 tunnel is set up, all data traffic from the PMIPv6 clients are forwarded from the Cisco AP to the local mobility anchor (LMA) in the Generic Routing Encapsulation (GRE) tunnel. If the connectivity between the Cisco AP and the Cisco WLC is lost, the data traffic for the existing PMIPv6 clients continue to flow until the connectivity between the Cisco AP and the client is lost. When the AP is in stand-alone mode, no new client associations are accepted on the PMIPv6 enabled WLAN.

Step 9 Click Apply.
Step 10 Click Save Configuration.

Configuring the Controller for FlexConnect (CLI)

- config wlan flexconnect local-switching wlan_id enable—Configures the WLAN for local switching.

Note
When you enable FlexConnect local switching, the controller waits to learn the client IP address by default. However, if the client is configured with Fortress Layer 2 encryption, the controller cannot learn the client IP address, and the controller periodically drops the client. Use the config wlan flexconnect learn-ipaddr wlan_id disable command to disable the client IP address learning feature so that the controller maintains the client connection without waiting to learn the client’s IP address. The ability to disable this feature is supported only with FlexConnect local switching; it is not supported with FlexConnect central switching. To enable this feature, enter the config wlan flexconnect learn-ipaddr wlan_id enable command.

Note
When a WLAN is locally switched (LS), you must use the config wlan flexconnect learn-ipaddr wlan-id {enable | disable} command. When the WLAN is centrally switched (CS), you must use the config wlan learn-ipaddr-cswlan wlan-id {enable | disable} command.
• **config wlan flexconnect local-switching wlan_id {enable | disable}**—Configures the WLAN for central switching.

• **config wlan flexconnect vlan-central-switching wlan_id {enable | disable}**—Configures central switching on a locally switched WLAN based on an AAA overridden VLAN.

The guidelines and limitations for this feature are as follows:

• VLAN based central switching is not supported by mac filter.

• Multicast on overridden interfaces is not supported.

• This feature is available only on a per-WLAN basis, where the WLAN is locally switched.

• IPv6 ACLs, CAC, NAC, and IPv6 are not supported.

• IPv4 ACLs are supported only with VLAN-based central switching enabled and applicable only to central switching clients on the WLAN.

• This feature is applicable to APs in FlexConnect mode in locally switched WLANs.

• This feature is not applicable to APs in Local mode.

• This feature is not supported on APs in FlexConnect mode in centrally switched WLANs.

• This feature is supported on central authentication only.

• This features is not supported on web authentication security clients.

• Layer 3 roaming for local switching clients is not supported.

• **config wlan flexconnect central-assoc wlan-id {enable | disable}**—Informs the Cisco AP in FlexConnect mode to handle client association and reassociation and security key caching for the clients on the WLAN by the Cisco WLC. The PMIPv6 MAG on AP feature requires that the client reassociation be handled centrally at the Cisco WLC in large-scale deployments of Cisco APs, to support fast roaming.

By default, the client association and reassociation and security key caching are handled by the Cisco AP in FlexConnect mode.

Configuration of central association with local authentication is not supported for the WLAN. After the PMIPv6 tunnel is set up, all data traffic from the PMIPv6 clients are forwarded from the Cisco AP to the local mobility anchor (LMA) in the Generic Routing Encapsulation (GRE) tunnel. If the connectivity between the Cisco AP and the Cisco WLC is lost, the data traffic for the existing PMIPv6 clients continue to flow until the connectivity between the Cisco AP and the client is lost. When the AP is in stand-alone mode, no new client associations are accepted on the PMIPv6 enabled WLAN.

Use these commands to get FlexConnect information:

• **show ap config general Cisco_AP**—Shows VLAN configurations.

• **show wlan wlan_id**—Shows whether the WLAN is locally or centrally switched.

• **show client detail client_mac**—Shows whether the client is locally or centrally switched.

Use these commands to obtain debug information:

• **debug flexconnect aaa {event | error} {enable | disable}**—Enables or disables debugging of FlexConnect backup RADIUS server events or errors.

• **debug flexconnect cckm {enable | disable}**—Enables or disables debugging of FlexConnect CCKM.
• debug flexconnect {enable | disable}—Enables or disables debugging of FlexConnect Groups.
• debug pem state {enable | disable}—Enables or disables debugging of the policy manager state machine.
• debug pem events {enable | disable}—Enables or disables debugging of policy manager events.

Configuring an Access Point for FlexConnect

Configuring an Access Point for FlexConnect (GUI)

Before You Begin
Ensure that the access point has been physically added to your network.

Note
The AP will reboot when you change the AP behavior from Flexconnect to Local.

Step 1 Choose Wireless to open the All APs page.
Step 2 Click the name of the desired access point. The All APs > > Details page appears.
Step 3 From the AP Mode drop-down list, choose FlexConnect to enable FlexConnect for this access point.
Note The last parameter in the Inventory tab indicates whether the access point can be configured for FlexConnect.
Step 4 Click Apply to commit your changes and to cause the access point to reboot.
Step 5 Choose the FlexConnect tab to open the All APs > Details for (FlexConnect) page.
If the access point belongs to a FlexConnect group, the name of the group appears in the FlexConnect Name text box.
Step 6 To configure WLAN VLAN mapping, choose from the following options in the drop-down list:
 • Make AP Specific
 • Remove AP Specific

Step 7 Select the VLAN Support check box and enter the number of the native VLAN on the remote network (such as 100) in the Native VLAN ID text box.
Note By default, a VLAN is not enabled on the FlexConnect access point. After FlexConnect is enabled, the access point inherits the VLAN ID associated to the WLAN. This configuration is saved in the access point and received after the successful join response. By default, the native VLAN is 1. One native VLAN must be configured per FlexConnect access point in a VLAN-enabled domain. Otherwise, the access point cannot send and receive packets to and from the controller.
Note If PMIPv6 MAG on FlexConnect AP is configured, VLAN Support can be checked or unchecked on the FlexConnect AP. If you check the VLAN Support check box, enter the number of the native VLAN on the remote network in the Native VLAN ID text box.
Note To preserve the VLAN mappings in the access point after an upgrade or downgrade, it is necessary that the access point join is restricted to the controller for which it is primed. That is, no other discoverable controller with a different configuration should be available by other means. Similarly, at the time the access point joins, if it moves across controllers that have different VLAN mappings, the VLAN mappings at the access point may get mismatched.
For Cisco 1140 access point, when the native VLAN ID is set, it disconnects and joins back the Cisco 8510 WLC. And after resuming the admin mode for the AP, is disabled.

Step 8
Click **Apply**. The access point temporarily loses its connection to the controller while its Ethernet port is reset.

Step 9
Click the name of the same access point and then click the **FlexConnect** tab.

Step 10
Click **VLAN Mappings** to open the All APs > Access Point Name > VLAN Mappings page.

Step 11
Enter the number of the VLAN from which the clients will get an IP address when doing local switching (VLAN 101, in this example) in the **VLAN ID** text box.

Step 12
To configure Web Authentication ACLs, do the following:

a) Click the **External WebAuthentication ACL** link to open the ACL mappings page. The ACL Mappings page lists details of WLAN ACL mappings and web policy ACLs.

b) In the **WLAN Id** box, enter the WLAN ID.

c) From the **WebAuth ACL** drop-down list, choose the FlexConnect ACL.

Note
To create a FlexConnect ACL, choose **Wireless > FlexConnect Groups > FlexConnect ACLs**, click **New**, enter the FlexConnect ACL name, and click **Apply**.

d) Click **Add**.
e) Click **Apply**.

Step 13
To configure Local Split ACLs:

a) Click the **Local Split ACLs** link to open the ACL Mappings page.

b) In the **WLAN Id** box, enter the WLAN ID.

c) From the **Local-Split ACL** drop-down list, choose the FlexConnect ACL.

Note
To create a FlexConnect ACL, choose **Wireless > FlexConnect Groups > FlexConnect ACLs**, click **New**, enter the FlexConnect ACL name, and click **Apply**.

If a client that connects over a WAN link associated with a centrally switched WLAN has to send some traffic to a device present in the local site, the client has to send traffic over CAPWAP to the controller and then get the same traffic back to the local site either over CAPWAP or using some offband connectivity. This process unnecessarily consumes WAN link bandwidth. To avoid this issue, you can use the split tunneling feature, which allows the traffic sent by a client to be classified based on the packet contents. The matching packets are locally switched and the rest of the traffic is centrally switched. The traffic that is sent by the client that matches the IP address of the device present in the local site can be classified as locally switched traffic and the rest of the traffic as centrally switched.

To configure local split tunneling on an AP, ensure that you have enabled DCHP Required on the WLAN, which ensures that the client associating with the split WLAN does DHCP.

Note
Local split tunneling is not supported on Cisco 1500 Series, Cisco 1130, and Cisco 1240 access points, and does not work for clients with static IP address.

d) Click **Add**.

e) Click **Apply**.

Step 14
To configure Central DHCP processing:

a) In the **WLAN Id** box, enter the WLAN ID with which you want to map Central DHCP.

b) Select or unselect the **Central DHCP** check box to enable or disable Central DHCP for the mapping.

c) Select or unselect the **Override DNS** check box to enable or disable overriding of DNS for the mapping.

d) Select or unselect the **NAT-PAT** check box to enable or disable network address translation and port address translation for the mapping.

e) Click **Add** to add the Central DHCP - WLAN mapping.

Step 15
To map a locally switched WLAN with a WebAuth ACL, follow these steps:

a) In the **WLAN Id** box, enter the WLAN ID.

b) From the **WebAuth ACL** drop-down list, choose the FlexConnect ACL.
To create a FlexConnect ACL, choose **Wireless > FlexConnect Groups > FlexConnect ACLs**, click **New**, enter the FlexConnect ACL name, and click **Apply**.

c) Click **Add**.

Note The FlexConnect ACLs that are specific to an AP have the highest priority. The FlexConnect ACLs that are specific to WLANs have the lowest priority.

Step 16 From the **WebPolicy ACL** drop-down list, choose a FlexConnect ACL and then click **Add** to configure the FlexConnect ACL as a web policy.

Note You can configure up to 16 Web Policy ACLs that are specific to an access point.

Step 17 Click **Apply**.

Step 18 Click **Save Configuration**.

Note Repeat this procedure for any additional access points that need to be configured for FlexConnect at the remote site.

Configuring an Access Point for FlexConnect (CLI)

The AP will reboot when you change the AP behavior from FlexConnect to Local.

- **config ap mode flexconnect** *Cisco_AP*—Enables FlexConnect for this access point.

- **config ap flexconnect radius auth set {primary | secondary} ip_address auth_port secret** *Cisco_AP*—Configures a primary or secondary RADIUS server for a specific FlexConnect access point.

 Note Only the Session Timeout RADIUS attribute is supported in standalone mode. All other attributes as well as RADIUS accounting are not supported.

 To delete a RADIUS server that is configured for a FlexConnect access point, enter the **config ap flexconnect radius auth delete {primary | secondary}** *Cisco_AP* command.

- **config ap flexconnect vlan wlan wlan_id vlan-id** *Cisco_AP*—Enables you to assign a VLAN ID to this FlexConnect access point. By default, the access point inherits the VLAN ID associated to the WLAN.

- **config ap flexconnect vlan {enable | disable}** *Cisco_AP*—Enables or disables VLAN tagging for this FlexConnect access point. By default, VLAN tagging is not enabled. After VLAN tagging is enabled on the FlexConnect access point, WLANs that are enabled for local switching inherit the VLAN assigned at the controller.

- **config ap flexconnect vlan native vlan-id** *Cisco_AP*—Enables you to configure a native VLAN for this FlexConnect access point. By default, no VLAN is set as the native VLAN. One native VLAN must be configured per FlexConnect access point (when VLAN tagging is enabled). Make sure the switch port to which the access point is connected has a corresponding native VLAN configured as well. If the
FlexConnect access point’s native VLAN setting and the upstream switch port native VLAN do not match, the access point cannot transmit packets to and from the controller.

Note
To save the VLAN mappings in the access point after an upgrade or downgrade, you should restrict the access point to join the controller for which it is primed. No other discoverable controller with a different configuration should be available by other means. Similarly, at the time the access point joins, if it moves across controllers that have different VLAN mappings, the VLAN mappings at the access point might get mismatched.

• Configure the mapping of a Web-Auth or a Web Passthrough ACL to a WLAN for an access point in FlexConnect mode by entering this command:

```
cfg ap flexconnect web-auth wlan wlan_id cisco_ap acl_name {enable | disable}
```

Note
The FlexConnect ACLs that are specific to an AP have the highest priority. The FlexConnect ACLs that are specific to WLANs have the lowest priority.

• Configure a Web Policy ACL on an AP in FlexConnect mode by entering this command:

```
cfg ap flexconnect web-policy policy acl {add | delete} acl_name cisco_ap
```

Note
You can configure up to 16 Web Policy ACLs that are specific to an access point.

• To configure local split tunneling on a per-AP basis, enter this command:

```
cfg ap local-split {enable | disable} wlan-id acl acl-name ap-name
```

• Configure central DHCP on the AP per WLAN by entering this command:

```
cfg ap flexconnect central-dhcp wlan-id ap-name {enable override dns | disable | delete}
```

Note
The gratuitous ARP for the gateway is sent by the access point to the client, which obtained an IP address from the central site. This is performed to proxy the gateway by the access point.

Use these commands on the FlexConnect access point to get status information:

• **show capwap reap status**—Shows the status of the FlexConnect access point (connected or standalone).

• **show capwap reap association**—Shows the list of clients associated with this access point and their SSIDs.

Use these commands on the FlexConnect access point to get debug information:

• **debug capwap reap**—Shows general FlexConnect activities.

• **debug capwap reap mgmt**—Shows client authentication and association messages.
• debug capwap reap load—Shows payload activities, which are useful when the FlexConnect access point boots up in standalone mode.

• debug dot11 mgmt interface—Shows 802.11 management interface events.

• debug dot11 mgmt msg—Shows 802.11 management messages.

• debug dot11 mgmt ssid—Shows SSID management events.

• debug dot11 mgmt state-machine—Shows the 802.11 state machine.

• debug dot11 mgmt station—Shows client events.

Configuring an Access Point for Local Authentication on a WLAN (GUI)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose WLANs to open the WLANs page.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the ID of the WLAN. The WLANs > Edit page appears.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Clicked the Advanced tab to open the WLANs > Edit (WLAN Name) page.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Select the FlexConnect Local Switching check box to enable FlexConnect local switching.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Select the FlexConnect Local Auth check box to enable FlexConnect local authentication.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click Apply to commit your changes.</td>
</tr>
</tbody>
</table>

Configuring an Access Point for Local Authentication on a WLAN (CLI)

Before You Begin

Before you begin, you must have enabled local switching on the WLAN where you want to enable local authentication for an access point. For instructions on how to enable local switching on the WLAN, see the Configuring the Controller for FlexConnect (CLI) section.

- **config wlan flexconnect ap-auth wlan_id {enable | disable}**—Configures the access point to enable or disable local authentication on a WLAN.

Caution Do not connect access points in FlexConnect mode directly to 2500 Series Controllers.

- **show wlan wlan-id**—Displays the configuration for the WLAN. If local authentication is enabled, the following information appears:

```
  Web Based Authentication...................... Disabled
  Web-Passthrough............................... Disabled
  Conditional Web Redirect...................... Disabled
  Splash-Page Web Redirect...................... Disabled
  Auto Anchor................................... Disabled
  FlexConnect Local Switching.................... Enabled
  FlexConnect Local Authentication............... Enabled
```
Connecting Client Devices to WLANs

Follow the instructions for your client device to create profiles to connect to the WLANs you created in the Configuring the Controller for FlexConnect.

In the example scenarios (see Table 1: WLANs Example), there are three profiles on the client:

1. To connect to the "employee" WLAN, create a client profile that uses WPA/WPA2 with PEAP-MSCHAPV2 authentication. After the client becomes authenticated, the client gets an IP address from the management VLAN of the controller.

2. To connect to the "local-employee" WLAN, create a client profile that uses WPA/WPA2 authentication. After the client becomes authenticated, the client gets an IP address from VLAN 101 on the local switch.

3. To connect to the "guest-central" WLAN, create a client profile that uses open authentication. After the client becomes authenticated, the client gets an IP address from VLAN 101 on the network local to the access point. After the client connects, the local user can type any HTTP address in the web browser. The user is automatically directed to the controller to complete the web-authentication process. When the web login page appears, the user enters the username and password.

To determine if a client’s data traffic is being locally or centrally switched, choose Monitor > Clients on the controller GUI, click the Detail link for the desired client, and look at the Data Switching parameter under AP Properties.

Configuring FlexConnect Ethernet Fallback

Information About FlexConnect Ethernet Fallback

You can configure an AP to shut down its radio when the Ethernet link is not operational. When the Ethernet link comes back to operational state, you can configure the AP to set its radio back to operational state. This feature is independent of the AP being in connected or standalone mode. When the radios are shut down, the AP does not broadcast the WLANs, and therefore, the clients cannot connect to the AP, either through first association or through roaming.

To prevent radios from flapping when there is flapping of the Ethernet interface, a delay timer, which you can configure, is provided.

Restrictions for FlexConnect Ethernet Fallback

- The FlexConnect Ethernet Fallback configuration is at the global level and is applicable to all the FlexConnect APs. However, this feature is not applicable to Cisco AP1130, AP1240, and AP1150.

- The FlexConnect Ethernet Fallback feature is not applicable to APs with multiple ports such as Cisco AP1520, AP1550.
The carrier delay that you configure on the Ethernet interface shuts down and reloads the interface based on hysteresis. Therefore, the delay that you configure might not be the exact delay before the Ethernet and 802.11 interfaces are shut down and reloaded.

Configuring FlexConnect Ethernet Fallback (GUI)

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Wireless > Access Points > Global Configuration. The Global Configuration page is displayed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the FlexConnect Ethernet Fallback area, select or unselect the Radio Interface Shutdown check box.</td>
</tr>
<tr>
<td>Step 3</td>
<td>If you select the Radio Interface Shutdown check box, enter the delay or the Ethernet interface downtime, in seconds, after which the AP radio interface must be shut down. The default delay is 0 seconds. Note You can enter the delay only if you select the Radio Interface Shutdown check box.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the FlexConnect Ethernet Fallback area, select the FlexConnect Arp-Cache check box to add ARP entry for a client with locally switched WLAN on FlexConnect APs. Note This step enables the broadcast of ARP requests and the APs respond on behalf of the client.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Apply.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click Save Configuration.</td>
</tr>
</tbody>
</table>

Configuring FlexConnect Ethernet Fallback (CLI)

| Step 1 | Configure the radio interface by entering this command: \(\text{config flexconnect fallback-radio-shut \{disable | enable delay time-in-seconds\}} \) |
|--------|--|
| Step 2 | See the status of the FlexConnect Ethernet Fallback feature configuration by entering this command: \(\text{show flexconnect summary} \) |
| Step 3 | Add proxy ARP with locally switched WLAN on FlexConnect APs by entering this command: \(\text{config flexconnect arp-cache} \). |

VideoStream for FlexConnect

Information About VideoStream for FlexConnect

For FlexConnect Access Points, the Cisco Wireless LAN Controller (WLC) configures both centrally switched WLANs and locally switched WLANs. FlexConnect APs support multicast-to-unicast video traffic in the Local switching mode. In this mode, the WLANs are configured to bridge the data from the client to the wired interface of the FlexConnect APs.
A wireless client subscribes to an IP multicast stream by sending an Internet Group Management Protocol (IGMP) packet or JOIN message. The AP eBridge module receives the IGMP packets. See the section Enabling Multicast Mode for more information about enabling IGMP snooping module. The IGMP packets are forwarded to the IGMP snooping module for processing. The IGMP snooping module searches the VideoStream configuration table. If the destination group address is configured as a multicast-to-unicast stream, the module adds a record to the multicast-to-unicast list in the group-tracking table. Otherwise, it adds the record to the multicast-only list. The module tracks the hosts, groups, and group memberships for each radio in the database.

When downstream multicast packets arrive at the AP from the locally switched WLANs, the packet handler searches the mgroup table. If the VideoStream exists on an AP and the locally switched WLAN has the Multicast Direct feature enabled, and streams are provided for the IP addresses, all the clients on the WLAN for the stream have the Multicast-to-Unicast feature enabled. In all scenarios, only the Multicast Direct feature is enabled.

Note
The VideoStream feature is available to all the Cisco WLC platforms and in the 1600, 2600, 3600, 3500, 1260, 1250, 3700 Series APs.

The VideoStream feature makes the IP multicast stream delivery reliable over air, by converting a multicast frame to a unicast frame over air.

Configuring VideoStream for FlexConnect (GUI)

The Internet Group Management Protocol (IGMP) module analyzes the multicast packets and places packet information into the host and group-tracking databases. On the basis of the Cisco Wireless LAN Controller (WLC) configuration, the IGMP module admits the video multicast-to-unicast stream. IGMP snooping and multicast forwarding is enabled on the local switch. The VideoStream group IP address is configured on Cisco WLC and the index is less than 100. Cisco WLC has an On/Off switch for the Multicast-to-Unicast feature at the global level, and per WLAN.

Each WLAN maps to a VLAN for a FlexConnect access point (AP). Therefore, a WLAN is equal to the On/Off switch. When the feature is turned on for a VLAN, it is only applied to provisioned media stream groups.

Before You Begin

Before you configure VideoStream for FlexConnect, enable the multicast mode and the IGMP snooping as follows:

1. Choose **Controller > Multicast** to open the Multicast page.
2. Check the **Enable Global Multicast Mode** check box to configure the sending multicast packets task. (The check box is disabled by default.)
3. Click **Save Configuration** to save your changes.

Note

Currently, VideoStream for FlexConnect configuration does not support IPv6 and the Multicast Listener Discovery (MLD) snooping.
See the section Configuring the Controller for FlexConnect (GUI) for information about configuring the Cisco WLC for FlexConnect in a locally switched WLAN.

Note Choose **Wireless > Media Stream > Streams** to open the Media Stream page.

Step 1 Choose **Wireless > Media Stream > Streams** to open the Media Stream page.

Step 2 Click **Add New** to configure a new media stream. The **Media Streams** page is displayed.

Step 3 In the **Stream Name** text box, enter the media stream name. The stream name can be up to 64 characters.

Step 4 In the **Multicast Destination Start IP Address** text box, enter the start IPv4 address of the multicast media stream.

Step 5 In the **Multicast Destination End IP Address** text box, enter the end IPv4 address of the multicast media stream.

Note For the resource reservation control, only the start and end IP addresses are important.

Step 6 Click **Apply**.

Because of the CAPWAP payload length limit, only the first 100 media streams are pushed from the Cisco WLC to the corresponding AP.

The media stream configurations are pushed to the AP after the AP joins the WLC.

Note Roaming is not supported in the standalone mode of the FlexConnect AP feature.

What to Do Next

Verify that the clients are associated by performing these steps:

1. Choose **Monitor > Multicast**.

 The Multicast Groups page is displayed.

2. View the details in the FlexConnect Multicast Media Stream Clients table.

Configuring VideoStream for FlexConnect (CLI)

Step 1 Configure the Multicast feature on the WLANs media stream by entering the **config wlan media-stream multicast-direct {wlan_id | all} {enable | disable}** command.

Step 2 Enable or disable the Multicast feature by entering the **config media-stream multicast-direct {enable | disable}** command.

Step 3 Configure the various message-configuration parameters by entering the **config media-stream message {state {enable | disable} | url url | email email | phone phone_number | note note}** command.

Step 4 Save your changes by entering the **save config** command.

Step 5 Configure various global media-stream configurations by entering the **config media-stream add multicast-direct media_stream_name start_IP end_IP [template {very-coarse | coarse | ordinary | low-resolution | med-resolution | high-resolution} | detail {max_bandwidth avg-packet-size | {periodic | initial}}] qos usage-priority {drop | fallback}** command.

The Resource Reservation Control (RRC) parameters are assigned with the predefined values based on the values assigned to the template. The following templates can be used to assign RRC parameters to the media stream:
• Very Coarse (below 3000 KBps)
• Coarse (below 500 KBps)
• Ordinary (below 750 KBps)
• Low Resolution (below 1 MBps)
• Medium Resolution (below 3 MBps)
• High Resolution (below 5 MBps)

Step 6 Delete a media stream by entering the `config media-stream delete media_stream_name` command.

Step 7 Save your changes by entering the `save config` command.

What to Do Next
To view the FlexConnect summary, use the following commands:

- `show capwap mcast flexconnect clients`
- `show running b | i mcuc`
- `show capwap mcast flexconnect groups`
- `show media-stream client FlexConnect summary`

The following is the output `show media-stream client FlexConnect summary` of command:

```
Client Mac Stream-Name Multicast-IP AP-Name VLAN
---------- ----------- ----------- ---- -------- --------
media-stream client FlexConnect <Media Stream Name>
```

```
Media Stream Name................................. test
IP Multicast Destination Address (start)......... 224.0.0.1
IP Multicast Destination Address (end).......... 224.0.0.50
```

Viewing and Debugging Media Streams
Use these commands on a FlexConnect AP to get debug information:

```
DETAILED STEPS
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 debug capwap mcast</td>
<td>Shows general multicast activities.</td>
</tr>
<tr>
<td>Step 2 debug ip igmp snooping group</td>
<td>Shows the IGMP snooping group.</td>
</tr>
<tr>
<td>Step 3 debug ip igmp snooping timer</td>
<td>Shows IGMP snooping timer.</td>
</tr>
<tr>
<td>Step 4 debug ip igmp snooping host</td>
<td>Shows IGMP snooping host.</td>
</tr>
</tbody>
</table>
What to Do Next

- View a summary of the media stream and client information by entering the `show media-stream group summary` command.
- View details about a particular media stream group by entering `show media-stream group detail media_stream_name` command.
- Enable debugging of the media stream history by entering `debug media-stream history {enable | disable}` command.

FlexConnect plus Bridge Mode

Information about FlexConnect plus Bridge Mode

Currently, a Control and Provisioning of Wireless Access Points protocol (CAPWAP) Access Point (AP) can be configured to operate in two different modes:

- FlexConnect mode
- Bridge/Mesh mode

The limitations are:

- An AP needs to be restarted, with a different bridging sub system, after bridge mode is changed.
- The Flexconnect and mesh modes are incompatible. A child mesh AP can only attach to another mesh AP; a child mesh AP cannot attach to a Flexconnect AP.
- A Flexconnect WLAN cannot be configured on a mesh AP.

Note

FlexConnect plus Bridge Mode is not supported on Cisco 1130 and 1240 access points.

From 8.0 release onwards, FlexConnect + Bridge mode allows the Flexconnect functionality across mesh APs. Flex + Bridge mode is used to enable Flexconnect capabilities on Mesh (Bridge mode) APs. Mesh APs inherit VLANs from the root AP that it is connected to it.

You can enable or disable the VLAN trunking and configure a native VLAN ID, on each AP, for any of the following modes:

- Flexconnect
- Flex + Bridge (Flexconnect + Mesh)

For the Flex + Bridge mode, control plane supports:

- Connected (CAPWAP connected, WLC is reachable.)
- Standalone (CAPWAP disconnected, WLC is not reachable.)

For the Flex + Bridge mode, data plane supports:

- Centralized (split MAC) - Data traffic via WLC
- Local (local MAC) - Data traffic by local switching from Root AP

The following are the bridging features for Flex + Bridge mode:

- The Flex + Bridge mode supports the centrally switched 802.11 WLAN. Traffic for this tunneled WLAN is forwarded to and from a CAPWAP controller over an IP tunnel.

- The Flex + Bridge mode supports the Root Ethernet VLAN Bridging. A root AP bridges the traffic for bridged 802.11 WLANs and secondary Ethernet LANs to a local Ethernet LAN over its root Ethernet port.

- The Flex + Bridge mode bridging is supported on Secondary Ethernet Access Ports and Secondary Ethernet VLAN Trunk Ports.

- Fault Tolerant Resilient Mode enables an AP to continue bridging traffic when the connection to the CAPWAP controller is lost. Both mesh and non-mesh root APs continue to bridge traffic. A child mesh AP (MAP) maintains its link to a parent AP and continues to bridge traffic till the parent link is lost. A child mesh AP cannot establish a new parent or child link till it reconnects to the CAPWAP controller. Existing wireless clients on the locally switching WLAN can stay connected with their AP in this mode. Their traffic will continue to flow through the Mesh and wired network. No new or disconnected wireless client can associate to the Mesh AP in this mode.

- You can configure a separate set of security ACLs for each VLAN that is configured for an Ethernet root port. In a mesh network, only root APs (RAPs) have an Ethernet root port.

- VLAN transparent bridging is not supported on Flex + Bridge mode. You must enter a set of allowed VLAN IDs for each secondary Ethernet trunk port.

- Path Control Protocol to create or delete path instances is supported on the Flex + Bridge mode.

- In a mesh network, a child mesh AP (MAP) inherits local WLAN/VLAN ID bindings, for bridged WLANs, and local secondary Ethernet access port/VLAN ID bindings. The bindings are inherited from the root AP (RAP) via path control messages. Bindings are required in a multi-hop mesh links to support FlexConnect capabilities in Mesh APs.

Note

A maximum of eight mesh hops are supported when operating in Flex + Bridge mode. The maximum number of Mesh APs per Root AP is 32.
Configuring FlexConnect plus Bridge Mode (GUI)

Step 1 Choose Wireless > Access Points > All APs to open the All APs page.
Step 2 Click an AP name from the list of AP names and then click the General tab.
Step 3 From the AP mode drop-down list, choose Flex+Bridge mode.
Step 4 From the AP Sub mode drop-down list, choose none.
Step 5 Click Apply.
Step 6 Click Save Configuration.
Step 7 Resilient mode is enabled by default. To disable the resilient mode, click the FlexConnect tab and uncheck the Resilient Mode (Standalone mode support) check-box.
Step 8 To push the root AP or Flex WLAN to VLAN mapping to the other mesh APs, check the Install mapping on radio backhaul check box.

Configuring FlexConnect plus Bridge Mode (CLI)

Step 1 Configure the Flex + Bridge mode by entering this command: `config ap mode flex+bridge`.
Step 2 Configure the Flex + Bridge sub mode by entering this command: `config ap mode flex+bridge submode`.
Step 3 Configure no sub mode by entering this command: `config ap mode flex+bridge submode none`.
Step 4 Enable or disable resilient Flex + Bridge mode by entering this command: `config ap flexconnect bridge resilient <ap name>`.
Step 5 Enable WLAN to VLAN mapping between the root APs and mesh APs by entering this command: `config ap flexconnect bridge backhaul-wlan <ap name> (enable | disable)`.