THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2015 Cisco Systems, Inc. All rights reserved.
CONTENTS

PREFACE

Preface xlvii

Using the Command-Line Interface 51

PART I

Using the Command-Line Interface 1

CHAPTER 1

Using the Command-Line Interface 1

CLI Command Keyboard Shortcuts 2

Using the Interactive Help Feature 4

Using the help Command 4

Using the ? command 5

Using the partial? command 5

Using the partial command<tab> 6

Using the command ? 6

command keyword ? 6

PART II

Clear Commands 9

CHAPTER 2

Clear Commands: a to l 11

clear advanced 12

clear acl counters 13

clear ap config 14

clear ap eventlog 15

clear ap join stats 16
clear arp 17
clear ap tsm 18
clear avc statistics 19
clear client tsm 21
clear config 22
clear ext-webauth-url 23
clear location rfid 24
clear location statistics rfid 25
clear lomp statistics 26
clear login-banner 27
clear lwapp private-config 28

CHAPTER 3 Clear Commands: m to z 29
clear mdns service-database 30
clear nmsp statistics 31
clear radius acct statistics 32
clear session 33
clear tacacs auth statistics 34
clear redirect-url 35
clear stats ap wlan 36
clear stats local-auth 37
clear stats mobility 38
clear stats port 39
clear stats radius 40
clear stats switch 41
clear stats tacacs 42
clear transfer 43
clear traplog 44
clear webimage 45
clear webmessage 46
clear webtitle 47

PART III Config Commands 49
CHAPTER 4

Config Commands: 802.11 51

config 802.11-abgn 54
config 802.11a 11aSupport 55
config 802.11-a antenna extAntGain 56
config 802.11-a channel ap 57
config 802.11-a txpower ap 58
config 802.11 antenna diversity 59
config 802.11 antenna extAntGain 60
config 802.11 antenna mode 61
config 802.11 antenna selection 62
config 802.11b 11gSupport 63
config 802.11b preamble 64
config 802.11h channelswitch 65
config 802.11h powerconstraint 66
config 802.11h setchannel 67
config 802.11 11nsupport 68
config 802.11 11nsupport a-mpdu tx priority 69
config 802.11 11nsupport a-mpdu tx scheduler 71
config 802.11 11nsupport antenna 72
config 802.11 11nsupport guard-interval 73
config 802.11 11nsupport mcs tx 74
config 802.11 11nsupport rifs 76
config 802.11 antenna diversity 77
config 802.11 antenna extAntGain 78
config 802.11 antenna mode 79
config 802.11 antenna selection 80
config 802.11 channel 81
config 802.11 channel ap 83
config 802.11 chan_width 84
config 802.11 rx-sop threshold 86
config 802.11 txPower 87
config 802.11 beamforming 89
config 802.11h channelswitch 90
config 802.11h powerconstraint 91
config 802.11h setchannel 92
config 802.11h smart dfs 93
config 802.11i 11nsupport 94
config 802.11i 11nsupport a-mpdu tx priority 95
config 802.11i 11nsupport a-mpdu tx scheduler 97
config 802.11i 11nsupport antenna 98
config 802.11i 11nsupport guard-interval 99
config 802.11i 11nsupport mcs tx 100
config 802.11i 11nsupport rifs 102
config 802.11i beacon period 103
config 802.11i cac defaults 104
config 802.11i cac video acm 106
config 802.11i cac video cac-method 108
config 802.11i cac video load-based 110
config 802.11i cac video max-bandwidth 112
config 802.11i cac media-stream 114
config 802.11i cac multimedia 116
config 802.11i cac video roam-bandwidth 118
config 802.11i cac video sip 120
config 802.11i cac video tspec-inactivity-timeout 122
config 802.11i cac voice acm 123
config 802.11i cac voice max-bandwidth 124
config 802.11i cac voice roam-bandwidth 126
config 802.11i cac voice tspec-inactivity-timeout 128
config 802.11i cac voice load-based 130
config 802.11i cac voice max-calls 132
config 802.11i cac voice sip bandwidth 134
config 802.11i cac voice sip codec 136
config 802.11i cac voice stream-size 138
config 802.11i cleanair 140
config 802.11i cleanair device 142
config 802.11i cleanair alarm 144
config 802.11i disable 146
config 802.11 dtpc 147
config 802.11 enable 148
config 802.11 exp-bwreq 149
config 802.11 fragmentation 150
config 802.11 l2roam rf-params 151
config 802.11 max-clients 153
config 802.11 media-stream multicast-direct 154
config 802.11 media-stream video-redirect 156
config 802.11 multicast data-rate 157
config 802.11 rate 158
config 802.11 rssi-check 159
config 802.11 rssi-threshold 160
config 802.11 tsm 161
config 802.11b preamble 162

 CHAPTER 5

Config Commands: a to i 163
config aaa auth 170
config aaa auth mgmt 171
config acl apply 172
config acl counter 173
config acl create 174
config acl cpu 175
config acl delete 176
config acl layer2 177
config acl rule 179
config acl url-domain 181
config advanced 802.11 7920VSIEConfig 182
config advanced 802.11 channel add 183
config advanced 802.11 channel cleanair-event 184
config advanced 802.11 channel dca anchor-time 185
config advanced 802.11 channel dca chan-width-11n 186
config advanced 802.11 channel dca interval 187
config advanced 802.11 channel dca min-metric 188
config advanced 802.11 channel dca sensitivity 189
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>config ap 802.1Xuser disable</td>
<td>267</td>
</tr>
<tr>
<td>config advanced dot11-padding</td>
<td>268</td>
</tr>
<tr>
<td>config ap</td>
<td>269</td>
</tr>
<tr>
<td>config ap aid-audit</td>
<td>270</td>
</tr>
<tr>
<td>config ap antenna band-mode</td>
<td>271</td>
</tr>
<tr>
<td>config ap atf 802.11</td>
<td>272</td>
</tr>
<tr>
<td>config ap atf 802.11 policy</td>
<td>273</td>
</tr>
<tr>
<td>config ap autoconvert</td>
<td>274</td>
</tr>
<tr>
<td>config ap bhrate</td>
<td>275</td>
</tr>
<tr>
<td>config ap bridgegroupname</td>
<td>276</td>
</tr>
<tr>
<td>config ap bridging</td>
<td>277</td>
</tr>
<tr>
<td>config ap cdp</td>
<td>278</td>
</tr>
<tr>
<td>config ap core-dump</td>
<td>280</td>
</tr>
<tr>
<td>config ap crash-file clear-all</td>
<td>281</td>
</tr>
<tr>
<td>config ap crash-file delete</td>
<td>282</td>
</tr>
<tr>
<td>config ap crash-file get-crash-file</td>
<td>283</td>
</tr>
<tr>
<td>config ap crash-file get-radio-core-dump</td>
<td>284</td>
</tr>
<tr>
<td>config ap dtls-cipher-suite</td>
<td>285</td>
</tr>
<tr>
<td>config ap ethernet duplex</td>
<td>286</td>
</tr>
<tr>
<td>config ap ethernet tag</td>
<td>287</td>
</tr>
<tr>
<td>config ap autoconvert</td>
<td>288</td>
</tr>
<tr>
<td>config ap flexconnect bridge</td>
<td>289</td>
</tr>
<tr>
<td>config ap flexconnect central-dhcp</td>
<td>290</td>
</tr>
<tr>
<td>config ap flexconnect local-split</td>
<td>291</td>
</tr>
<tr>
<td>config ap flexconnect policy</td>
<td>292</td>
</tr>
<tr>
<td>config ap flexconnect radius auth set</td>
<td>293</td>
</tr>
<tr>
<td>config ap flexconnect vlan</td>
<td>294</td>
</tr>
<tr>
<td>config ap flexconnect vlan add</td>
<td>295</td>
</tr>
<tr>
<td>config ap flexconnect vlan native</td>
<td>296</td>
</tr>
<tr>
<td>config ap flexconnect wlan</td>
<td>297</td>
</tr>
<tr>
<td>config ap flexconnect web-auth</td>
<td>298</td>
</tr>
<tr>
<td>config ap flexconnect web-policy acl</td>
<td>299</td>
</tr>
<tr>
<td>config ap flexconnect wlan</td>
<td>300</td>
</tr>
<tr>
<td>config ap group-name</td>
<td>301</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>config logging buffered</td>
<td>519</td>
</tr>
<tr>
<td>config logging console</td>
<td>520</td>
</tr>
<tr>
<td>config logging debug</td>
<td>521</td>
</tr>
<tr>
<td>config logging fileinfo</td>
<td>522</td>
</tr>
<tr>
<td>config logging procinfo</td>
<td>523</td>
</tr>
<tr>
<td>config logging traceinfo</td>
<td>524</td>
</tr>
<tr>
<td>config logging syslog host</td>
<td>525</td>
</tr>
<tr>
<td>config logging syslog facility</td>
<td>528</td>
</tr>
<tr>
<td>config logging syslog facility client</td>
<td>531</td>
</tr>
<tr>
<td>config logging syslog facility ap</td>
<td>532</td>
</tr>
<tr>
<td>config logging syslog level</td>
<td>533</td>
</tr>
<tr>
<td>config login session close</td>
<td>534</td>
</tr>
<tr>
<td>config macfilter</td>
<td>535</td>
</tr>
<tr>
<td>config macfilter description</td>
<td>536</td>
</tr>
<tr>
<td>config macfilter interface</td>
<td>537</td>
</tr>
<tr>
<td>config macfilter ip-address</td>
<td>538</td>
</tr>
<tr>
<td>config macfilter mac-delimiter</td>
<td>539</td>
</tr>
<tr>
<td>config macfilter radius-compat</td>
<td>540</td>
</tr>
<tr>
<td>config macfilter wlan-id</td>
<td>541</td>
</tr>
<tr>
<td>config mdns ap</td>
<td>542</td>
</tr>
<tr>
<td>config mdns profile</td>
<td>543</td>
</tr>
<tr>
<td>config mdns query interval</td>
<td>545</td>
</tr>
<tr>
<td>config mdns service</td>
<td>546</td>
</tr>
<tr>
<td>config mdns snooping</td>
<td>548</td>
</tr>
<tr>
<td>config mdns policy enable</td>
<td>549</td>
</tr>
<tr>
<td>config mdns policy service-group</td>
<td>550</td>
</tr>
<tr>
<td>config mdns policy service-group parameters</td>
<td>551</td>
</tr>
<tr>
<td>config mdns policy service-group user-name</td>
<td>552</td>
</tr>
<tr>
<td>config mdns policy service-group user-role</td>
<td>553</td>
</tr>
<tr>
<td>config media-stream multicast-direct</td>
<td>554</td>
</tr>
<tr>
<td>config media-stream message</td>
<td>555</td>
</tr>
<tr>
<td>config media-stream add</td>
<td>556</td>
</tr>
<tr>
<td>config media-stream admit</td>
<td>558</td>
</tr>
<tr>
<td>config media-stream deny</td>
<td>559</td>
</tr>
</tbody>
</table>
config media-stream delete 560
config memory monitor errors 561
config memory monitor leaks 562
config mesh alarm 564
config mesh astools 565
config mesh backhaul rate-adapt 566
config mesh backhaul slot 567
config mesh battery-state 568
config mesh client-access 569
config mesh convergence 570
config mesh ethernet-bridging allow-bpdu 571
config mesh ethernet-bridging vlan-transparent 572
config mesh full-sector-dfs 573
config mesh linkdata 574
config mesh linktest 576
config mesh lsc 579
config mesh lsc advanced 580
config mesh lsc advanced ap-provision 581
config mesh multicast 582
config mesh parent preferred 584
config mesh public-safety 585
config mesh radius-server 586
config mesh range 587
config mesh secondary-backhaul 588
config mesh security 589
config mesh slot-bias 591
config mgmtuser add 592
config mgmtuser delete 593
config mgmtuser description 594
config mgmtuser password 595
config mgmtuser telnet 596
config mobility dscp 597
config mobility group anchor 598
config mobility group domain 599
<table>
<thead>
<tr>
<th>config network ap-discovery</th>
<th>636</th>
</tr>
</thead>
<tbody>
<tr>
<td>config network ap-fallback</td>
<td>637</td>
</tr>
<tr>
<td>config network ap-priority</td>
<td>638</td>
</tr>
<tr>
<td>config network apple-talk</td>
<td>639</td>
</tr>
<tr>
<td>config network arptimeout</td>
<td>640</td>
</tr>
<tr>
<td>config assisted-roaming</td>
<td>641</td>
</tr>
<tr>
<td>config network bridging-shared-secret</td>
<td>642</td>
</tr>
<tr>
<td>config network broadcast</td>
<td>643</td>
</tr>
<tr>
<td>config network fast-ssid-change</td>
<td>644</td>
</tr>
<tr>
<td>config network ip-mac-binding</td>
<td>645</td>
</tr>
<tr>
<td>config network link local bridging</td>
<td>646</td>
</tr>
<tr>
<td>config network master-base</td>
<td>647</td>
</tr>
<tr>
<td>config network mgmt-via-wireless</td>
<td>648</td>
</tr>
<tr>
<td>config network multicast global</td>
<td>649</td>
</tr>
<tr>
<td>config network multicast igmp query interval</td>
<td>650</td>
</tr>
<tr>
<td>config network multicast igmp snooping</td>
<td>651</td>
</tr>
<tr>
<td>config network multicast igmp timeout</td>
<td>652</td>
</tr>
<tr>
<td>config network multicast l2mcast</td>
<td>653</td>
</tr>
<tr>
<td>config network multicast mld</td>
<td>654</td>
</tr>
<tr>
<td>config network multicast mode multicast</td>
<td>655</td>
</tr>
<tr>
<td>config network multicast mode unicast</td>
<td>656</td>
</tr>
<tr>
<td>config network oeap-600 dual-rlan-ports</td>
<td>657</td>
</tr>
<tr>
<td>config network oeap-600 local-network</td>
<td>658</td>
</tr>
<tr>
<td>config network otap-mode</td>
<td>659</td>
</tr>
<tr>
<td>config pmipv6 domain</td>
<td>660</td>
</tr>
<tr>
<td>config pmipv6 add profile</td>
<td>661</td>
</tr>
<tr>
<td>config pmipv6 delete</td>
<td>662</td>
</tr>
<tr>
<td>config pmipv6 mag apn</td>
<td>663</td>
</tr>
<tr>
<td>config pmipv6 mag binding init-retx-time</td>
<td>664</td>
</tr>
<tr>
<td>config pmipv6 mag binding lifetime</td>
<td>665</td>
</tr>
<tr>
<td>config pmipv6 mag binding max-retx-time</td>
<td>666</td>
</tr>
<tr>
<td>config pmipv6 mag binding maximum</td>
<td>667</td>
</tr>
<tr>
<td>config pmipv6 mag binding refresh-time</td>
<td>668</td>
</tr>
<tr>
<td>config pmipv6 mag bri delay</td>
<td>669</td>
</tr>
</tbody>
</table>
config pmipv6 mag bri retries 670
config pmipv6 mag lma 671
config pmipv6 mag replay-protection 672
config port power 673
config network rf-network-name 674
config network secureweb 675
config network secureweb cipher-option 676
config network ssh 678
config network telnet 679
config network usertimeout 680
config network web-auth captive-bypass 681
config network web-auth cmcc-support 682
config network web-auth port 683
config network web-auth proxy-redirect 684
config network web-auth secureweb 685
config network web-auth https-redirect 686
config network webcolor 687
config network webmode 688
config network web-auth 689
config network zero-config 690
config network allow-old-bridge-aps 691
config network ap-discovery 692
config network ap-fallback 693
config network ap-priority 694
config network apple-talk 695
config network bridging-shared-secret 696
config network master-base 697
config network oeap-600 dual-rlan-ports 698
config network oeap-600 local-network 699
config network otap-mode 700
config network zero-config 701
config nmsp notify-interval measurement 702
config paging 703
config passwd-cleartext 704
Config Commands: r to z

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>config radius acct</td>
<td>733</td>
</tr>
<tr>
<td>config radius acct ipsec authentication</td>
<td>736</td>
</tr>
<tr>
<td>config radius acct ipsec disable</td>
<td>737</td>
</tr>
<tr>
<td>config radius acct ipsec enable</td>
<td>738</td>
</tr>
<tr>
<td>config radius acct ipsec encryption</td>
<td>739</td>
</tr>
<tr>
<td>config radius acct ipsec ike</td>
<td>740</td>
</tr>
<tr>
<td>config radius acct mac-delimiter</td>
<td>741</td>
</tr>
<tr>
<td>config radius acct network</td>
<td>742</td>
</tr>
<tr>
<td>config radius acct realm</td>
<td>743</td>
</tr>
<tr>
<td>config radius acct retransmit-timeout</td>
<td>744</td>
</tr>
<tr>
<td>config radius auth</td>
<td>745</td>
</tr>
<tr>
<td>config radius auth callStationIdType</td>
<td>747</td>
</tr>
<tr>
<td>config radius auth framed-mtu</td>
<td>749</td>
</tr>
<tr>
<td>config radius auth IPsec authentication</td>
<td>750</td>
</tr>
<tr>
<td>config radius auth ipsec disable</td>
<td>751</td>
</tr>
<tr>
<td>config radius auth ipsec encryption</td>
<td>752</td>
</tr>
</tbody>
</table>
config radius auth ipsec ike 753
config radius auth keywrap 755
config radius auth mac-delimiter 756
config radius auth management 757
config radius auth mgmt-retransmit-timeout 758
config radius auth network 759
config radius auth realm 760
config radius auth retransmit-timeout 761
config radius auth rfc3576 762
config radius auth retransmit-timeout 763
config radius aggressive-failover disabled 764
config radius backward compatibility 765
config radius callStationIdCase 766
config radius callStationIdType 767
config radius dns 769
config radius fallback-test 770
config radius acct retransmit-timeout 772
config radius auth mgmt-retransmit-timeout 773
config radius auth retransmit-timeout 774
config radius auth retransmit-timeout 775
config redundancy interface address peer-service-port 776
config redundancy mobilitymac 777
config redundancy mode 778
config redundancy peer-route 779
config redundancy timer keep-alive-timer 780
config redundancy timer peer-search-timer 781
config redundancy unit 782
config remote-lan 783
config remote-lan aaa-override 784
config remote-lan acl 785
config remote-lan create 786
config remote-lan custom-web 787
config remote-lan delete 789
config remote-lan dhcp_server 790
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>config remote-lan exclusionlist</td>
<td>791</td>
</tr>
<tr>
<td>config remote-lan interface</td>
<td>792</td>
</tr>
<tr>
<td>config remote-lan ldap</td>
<td>793</td>
</tr>
<tr>
<td>config remote-lan mac-filtering</td>
<td>794</td>
</tr>
<tr>
<td>config remote-lan mab</td>
<td>795</td>
</tr>
<tr>
<td>config remote-lan max-associated-clients</td>
<td>796</td>
</tr>
<tr>
<td>config remote-lan radius_server</td>
<td>797</td>
</tr>
<tr>
<td>config remote-lan security</td>
<td>799</td>
</tr>
<tr>
<td>config remote-lan session-timeout</td>
<td>800</td>
</tr>
<tr>
<td>config remote-lan webauth-exclude</td>
<td>801</td>
</tr>
<tr>
<td>config rf-profile band-select</td>
<td>802</td>
</tr>
<tr>
<td>config rf-profile channel</td>
<td>804</td>
</tr>
<tr>
<td>config rf-profile client-trap-threshold</td>
<td>805</td>
</tr>
<tr>
<td>config rf-profile create</td>
<td>806</td>
</tr>
<tr>
<td>config rf-profile fra client-aware</td>
<td>807</td>
</tr>
<tr>
<td>config rf-profile data-rates</td>
<td>808</td>
</tr>
<tr>
<td>config rf-profile delete</td>
<td>809</td>
</tr>
<tr>
<td>config rf-profile description</td>
<td>810</td>
</tr>
<tr>
<td>config rf-profile load-balancing</td>
<td>811</td>
</tr>
<tr>
<td>config rf-profile max-clients</td>
<td>812</td>
</tr>
<tr>
<td>config rf-profile multicast data-rate</td>
<td>813</td>
</tr>
<tr>
<td>config rf-profile out-of-box</td>
<td>814</td>
</tr>
<tr>
<td>config rf-profile rx-sop threshold</td>
<td>815</td>
</tr>
<tr>
<td>config rf-profile trap-threshold</td>
<td>816</td>
</tr>
<tr>
<td>config rf-profile tx-power-control-thresh-v1</td>
<td>817</td>
</tr>
<tr>
<td>config rf-profile tx-power-control-thresh-v2</td>
<td>818</td>
</tr>
<tr>
<td>config rf-profile tx-power-max</td>
<td>819</td>
</tr>
<tr>
<td>config rf-profile tx-power-min</td>
<td>820</td>
</tr>
<tr>
<td>config rogue ap timeout</td>
<td>821</td>
</tr>
<tr>
<td>config rogue adhoc</td>
<td>822</td>
</tr>
<tr>
<td>config rogue ap classify</td>
<td>825</td>
</tr>
<tr>
<td>config rogue ap friendly</td>
<td>827</td>
</tr>
<tr>
<td>config rogue ap rldp</td>
<td>829</td>
</tr>
<tr>
<td>config rogue ap ssid</td>
<td>831</td>
</tr>
</tbody>
</table>
config rogue ap timeout 833
config rogue auto-contain level 834
config rogue ap valid-client 836
config rogue client 838
config rogue containment 840
config rogue detection 841
config rogue detection client-threshold 842
config rogue detection min-rssi 843
config rogue detection monitor-ap 844
config rogue detection report-interval 846
config rogue detection security-level 847
config rogue detection transient-rogue-interval 848
config rogue rule 849
config rogue rule condition ap 853
config remote-lan session-timeout 855
config rfid auto-timeout 856
config rfid status 857
config rfid timeout 858
config rogue ap timeout 859
config route add 860
config route delete 861
config serial baudrate 862
config serial timeout 863
config service timestamps 864
config sessions maxsessions 865
config sessions timeout 866
config slot 867
config switchconfig boot-break 868
config switchconfig fips-prerequisite 869
config switchconfig ucapl 870
config switchconfig wlancc 871
config switchconfig strong-pwd 872
config switchconfig flowcontrol 875
config switchconfig mode 876
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>config switch config secret-obfuscation</td>
<td>877</td>
</tr>
<tr>
<td>config sysname</td>
<td>878</td>
</tr>
<tr>
<td>config snmp community accessmode</td>
<td>879</td>
</tr>
<tr>
<td>config snmp community create</td>
<td>880</td>
</tr>
<tr>
<td>config snmp community delete</td>
<td>881</td>
</tr>
<tr>
<td>config snmp community ipaddr</td>
<td>882</td>
</tr>
<tr>
<td>config snmp community mode</td>
<td>883</td>
</tr>
<tr>
<td>config snmp engineID</td>
<td>884</td>
</tr>
<tr>
<td>config snmp syscontact</td>
<td>885</td>
</tr>
<tr>
<td>config snmp syslocation</td>
<td>886</td>
</tr>
<tr>
<td>config snmp trapreceiver create</td>
<td>887</td>
</tr>
<tr>
<td>config snmp trapreceiver delete</td>
<td>888</td>
</tr>
<tr>
<td>config snmp trapreceiver mode</td>
<td>889</td>
</tr>
<tr>
<td>config snmp v3user create</td>
<td>890</td>
</tr>
<tr>
<td>config snmp v3user delete</td>
<td>892</td>
</tr>
<tr>
<td>config snmp version</td>
<td>893</td>
</tr>
<tr>
<td>config tacacs acct</td>
<td>894</td>
</tr>
<tr>
<td>config tacacs athr</td>
<td>896</td>
</tr>
<tr>
<td>config tacacs athr mgmt-server-timeout</td>
<td>898</td>
</tr>
<tr>
<td>config tacacs auth</td>
<td>899</td>
</tr>
<tr>
<td>config tacacs auth mgmt-server-timeout</td>
<td>901</td>
</tr>
<tr>
<td>config tacacs dns</td>
<td>902</td>
</tr>
<tr>
<td>config time manual</td>
<td>903</td>
</tr>
<tr>
<td>config time ntp</td>
<td>904</td>
</tr>
<tr>
<td>config time timezone</td>
<td>907</td>
</tr>
<tr>
<td>config time timezone location</td>
<td>908</td>
</tr>
<tr>
<td>config trapflags 802.11-Security</td>
<td>912</td>
</tr>
<tr>
<td>config trapflags aaa</td>
<td>913</td>
</tr>
<tr>
<td>config trapflags adjchannel-rogueap</td>
<td>914</td>
</tr>
<tr>
<td>config trapflags ap</td>
<td>915</td>
</tr>
<tr>
<td>config trapflags authentication</td>
<td>916</td>
</tr>
<tr>
<td>config trapflags client</td>
<td>917</td>
</tr>
<tr>
<td>config trapflags client max-warning-threshold</td>
<td>918</td>
</tr>
<tr>
<td>config trapflags configsave</td>
<td>919</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>config trapflags IPsec</td>
<td>920</td>
</tr>
<tr>
<td>config trapflags linkmode</td>
<td>921</td>
</tr>
<tr>
<td>config trapflags mesh</td>
<td>922</td>
</tr>
<tr>
<td>config trapflags multiusers</td>
<td>923</td>
</tr>
<tr>
<td>config trapflags rfid</td>
<td>924</td>
</tr>
<tr>
<td>config trapflags rogueap</td>
<td>926</td>
</tr>
<tr>
<td>config trapflags rrm-params</td>
<td>927</td>
</tr>
<tr>
<td>config trapflags rrm-profile</td>
<td>928</td>
</tr>
<tr>
<td>config trapflags stpmode</td>
<td>929</td>
</tr>
<tr>
<td>config trapflags strong-pwdcheck</td>
<td>930</td>
</tr>
<tr>
<td>config trapflags wps</td>
<td>931</td>
</tr>
<tr>
<td>config watchlist add</td>
<td>932</td>
</tr>
<tr>
<td>config watchlist delete</td>
<td>933</td>
</tr>
<tr>
<td>config watchlist disable</td>
<td>934</td>
</tr>
<tr>
<td>config watchlist enable</td>
<td>935</td>
</tr>
<tr>
<td>config wgb vlan</td>
<td>936</td>
</tr>
<tr>
<td>config wlan</td>
<td>937</td>
</tr>
<tr>
<td>config wlan 7920-support</td>
<td>938</td>
</tr>
<tr>
<td>config wlan 802.11e</td>
<td>939</td>
</tr>
<tr>
<td>config wlan aaa-override</td>
<td>940</td>
</tr>
<tr>
<td>config wlan acl</td>
<td>941</td>
</tr>
<tr>
<td>config wlan apgroup</td>
<td>942</td>
</tr>
<tr>
<td>config wlan apgroup atf 802.11</td>
<td>949</td>
</tr>
<tr>
<td>config wlan apgroup atf 802.11 policy</td>
<td>950</td>
</tr>
<tr>
<td>config wlan apgroup qinq</td>
<td>951</td>
</tr>
<tr>
<td>config wlan assisted-roaming</td>
<td>952</td>
</tr>
<tr>
<td>config wlan atf</td>
<td>953</td>
</tr>
<tr>
<td>config wlan avc</td>
<td>954</td>
</tr>
<tr>
<td>config wlan band-select allow</td>
<td>955</td>
</tr>
<tr>
<td>config wlan broadcast-ssid</td>
<td>956</td>
</tr>
<tr>
<td>config wlan call-snoop</td>
<td>957</td>
</tr>
<tr>
<td>config wlan chd</td>
<td>958</td>
</tr>
<tr>
<td>config wlan ccx aironet-ie</td>
<td>959</td>
</tr>
<tr>
<td>config wlan channel-scan defer-priority</td>
<td>960</td>
</tr>
</tbody>
</table>
config wlan channel-scan defer-time 961
config wlan custom-web 962
config wlan dhcp_server 964
config wlan diag-channel 965
config wlan dim 966
config wlan exclusionlist 967
config wlan fabric 968
config wlan flexconnect ap-auth 969
config wlan flexconnect central-assoc 970
config wlan flexconnect learn-ipaddr 971
config wlan flexconnect local-switching 972
config wlan flexconnect vlan-central-switching 974
config wlan flow 975
config wlan hotspot 976
config wlan hotspot dot11u 977
config wlan hotspot dot11u 3gpp-info 978
config wlan hotspot dot11u auth-type 979
config wlan hotspot dot11u disable 980
config wlan hotspot dot11u domain 981
config wlan hotspot dot11u enable 982
config wlan hotspot dot11u hessid 983
config wlan hotspot dot11u ipaddr-type 984
config wlan hotspot dot11u nai-realm 985
config wlan hotspot dot11u network-type 988
config wlan hotspot dot11u roam-oi 989
config wlan hotspot hs2 990
config wlan hotspot msap 993
config wlan interface 994
config wlan ipv6 acl 995
config wlan kts-cac 996
config wlan layer2 acl 997
config wlan ldap 998
config wlan learn-ipaddr-cswlan 999
config wlan load-balance 1000
config wlan mac-filtering 1001
config wlan max-associated-clients 1002
config wlan max-radio-clients 1003
config wlan mdns 1004
config wlan media-stream 1005
config wlan mfp 1006
config wlan mobility anchor 1007
config wlan mobility foreign-map 1008
config wlan multicast buffer 1009
config wlan multicast interface 1010
config wlan nac 1011
config wlan override-rate-limit 1012
config wlan passive-client 1014
config wlan peer-blocking 1015
config wlan pmipv6 default-realm 1016
config wlan pmipv6 mobility-type 1017
config wlan pmipv6 profile_name 1018
config wlan policy 1019
config wlan profile 1020
config wlan profiling 1021
config wlan qos 1022
config wlan radio 1023
config wlan radius_server acct 1024
config wlan radius_server acct interim-update 1025
config wlan radius_server auth 1026
config wlan radius_server overwrite-interface 1027
config wlan radius_server realm 1028
config wlan roamed-voice-client re-anchor 1029
config wlan security 802.1X 1030
config wlan security ckip 1032
config wlan security cond-web-redir 1033
config wlan security eap-params 1034
config wlan security eap-passthru 1036
config wlan security ft 1037
config wlan security ft over-the-ds 1038
config wlan security IPsec disable 1039
config wlan security IPsec enable 1040
config wlan security IPsec authentication 1041
config wlan security IPsec encryption 1042
config wlan security IPsec config 1043
config wlan security IPsec ike authentication 1044
config wlan security IPsec ike dh-group 1045
config wlan security IPsec ike lifetime 1046
config wlan security IPsec ike phase1 1047
config wlan security IPsec ike contivity 1048
config wlan security wpa akm ft 1049
config wlan security ft 1050
config wlan security passthru 1051
config wlan security pmf 1052
config wlan security splash-page-web-redir 1054
config wlan security static-wep-key authentication 1055
config wlan security static-wep-key disable 1056
config wlan security static-wep-key enable 1057
config wlan security static-wep-key encryption 1058
config wlan security tkip 1059
config wlan usertimeout 1060
config wlan security web-auth 1061
config wlan security web-passthrough acl 1063
config wlan security web-passthrough disable 1064
config wlan security web-passthrough email-input 1065
config wlan security web-passthrough enable 1066
config wlan security wpa akm 802.1x 1067
config wlan security wpa akm cckm 1068
config wlan security wpa akm ft 1069
config wlan security wpa akm pmf 1070
config wlan security wpa akm psk 1071
config wlan security wpa disable 1072
config wlan security wpa enable 1073
config wlan security wpa ciphers 1074
config wlan security wpa gtk-random 1075
config wlan security wpa wpa1 disable 1076
config wlan security wpa wpa1 enable 1077
config wlan security wpa wpa2 disable 1078
config wlan security wpa wpa2 enable 1079
config wlan security wpa wpa2 cache 1080
config wlan security wpa wpa2 cache sticky 1081
config wlan security wpa wpa2 ciphers 1082
config wlan session-timeout 1083
config wlan sip-cac disassoc-client 1084
config wlan sip-cac send-486busy 1085
config wlan ssid 1086
config wlan static-ip tunneling 1087
config wlan uapsd compliant client enable 1088
config wlan uapsd compliant-client disable 1089
config wlan user-idle-threshold 1090
config wlan usertimeout 1091
config wlan webauth-exclude 1092
config wlan wifidirect 1093
config wlan wmm 1094
config wps ap-authentication 1095
config wps auto-immune 1096
config wps cids-sensor 1097
config wps client-exclusion 1099
config wps mfp 1100
config wps shun-list re-sync 1101
config wps signature 1102
config wps signature frequency 1104
config wps signature interval 1105
config wps signature mac-frequency 1106
config wps signature quiet-time 1107
config wps signature reset 1108
PART IV

CHAPTER 8

Debug Commands: 802.11 1111

dbg 11k 1112
dbg 11w-pmf 1113
dbg 11v all 1114
dbg 11v detail 1115
dbg 11v error 1116
dbg 11w-pmf 1117

CHAPTER 9

Debug Commands: a to i 1119

dbg aaa 1121
dbg aaa events 1122
dbg aaa local-auth 1123
dbg airewave-director 1125
dbg ap 1127
dbg ap enable 1129
dbg ap packet-dump 1131
dbg ap show stats 1132
dbg ap show stats video 1134
dbg arp 1135
dbg avc 1136
dbg bcast 1137
dbg call-control 1138
dbg capwap 1139
dbg capwap reap 1140
dbg ccxdig 1141
dbg ccxrm 1142
dbg ccxs69 1143
dbg cckm 1144
dbg client 1145
dbg cts xsp 1146
dbg cac 1147
debug cdp 1148
debug crypto 1149
debug dhcp 1150
debug dhcp service-port 1151
debug disable-all 1152
debug dns 1153
debug dot11 1154
debug dot11 1155
ddebug dot11 mgmt interface 1156
ddebug dot11 mgmt msg 1157
ddebug dot11 mgmt ssid 1158
ddebug dot11 mgmt state-machine 1159
ddebug dot11 mgmt station 1160
ddebug dot1x 1161
ddebug dtls 1162
ddebug fastpath 1163
ddebug flexconnect avc 1168
ddebug flexconnect aaa 1169
ddebug flexconnect acl 1170
ddebug flexconnect cckm 1171
ddebug group 1172
ddebug fmchs 1173
ddebug flexconnect group 1174
ddebug ft 1175
ddebug hotspot 1176
ddebug ipv6 1177

d
d
d
CHAPTER 10

Debug Commands: j to q 1179
ddebug l2age 1180
ddebug mac 1181
ddebug mdns all 1182
ddebug mdns detail 1183
ddebug mdns error 1184
ddebug mdns message 1185
<table>
<thead>
<tr>
<th>Debug Commands: r to z</th>
<th>1205</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug rbcp</td>
<td>1206</td>
</tr>
<tr>
<td>debug rfid</td>
<td>1207</td>
</tr>
<tr>
<td>debug snmp</td>
<td>1208</td>
</tr>
<tr>
<td>debug transfer</td>
<td>1209</td>
</tr>
<tr>
<td>debug voice-diag</td>
<td>1210</td>
</tr>
<tr>
<td>debug wcp</td>
<td>1212</td>
</tr>
<tr>
<td>debug web-auth</td>
<td>1213</td>
</tr>
<tr>
<td>debug wips</td>
<td>1214</td>
</tr>
<tr>
<td>debug wps sig</td>
<td>1215</td>
</tr>
<tr>
<td>debug wps mfp</td>
<td>1216</td>
</tr>
</tbody>
</table>

| IMM Commands | 1217 |

<table>
<thead>
<tr>
<th>IMM Commands</th>
<th>1219</th>
</tr>
</thead>
<tbody>
<tr>
<td>imm address</td>
<td>1220</td>
</tr>
<tr>
<td>imm dhcp</td>
<td>1221</td>
</tr>
<tr>
<td>imm mode</td>
<td>1222</td>
</tr>
</tbody>
</table>
PART VI License Commands 1227

CHAPTER 13 License Commands 1229

 license activate ap-count eval 1230
 license activate feature 1231
 license add ap-count 1232
 license add feature 1233
 license clear 1234
 license comment 1235
 license deactivate ap-count eval 1236
 license deactivate feature 1237
 license delete ap-count 1238
 license delete feature 1239
 license install 1240
 license modify priority 1241
 license revoke 1243
 license save 1244

PART VII Show Commands 1245

CHAPTER 14 Show Commands: 802.11 1247

 show 802.11 1248
 show 802.11 1250
 show 802.11 cleanair 1252
 show 802.11 cleanair air-quality summary 1254
 show 802.11 cleanair air-quality worst 1255
 show 802.11 cleanair device ap 1256
 show 802.11 cleanair device type 1257
 show 802.11 cu-metrics 1259
 show 802.11 extended 1260
CHAPTER 15

Show Commands: a to i 1263

show aaa auth 1267
show acl 1268
show acl detailed 1270
show acl summary 1271
show advanced 802.11 channel 1272
show advanced 802.11 coverage 1273
show advanced 802.11 group 1274
show advanced 802.11 l2roam 1275
show advanced 802.11 logging 1276
show advanced 802.11 monitor 1277
show advanced 802.11 optimized roaming 1278
show advanced 802.11 profile 1279
show advanced 802.11 receiver 1280
show advanced 802.11 summary 1281
show advanced 802.11 txpower 1282
show advanced backup-controller 1283
show advanced dot11-padding 1284
show advanced hotspot 1285
show advanced max-1x-sessions 1286
show advanced probe 1287
show advanced rate 1288
show advanced timers 1289
show advanced client-handoff 1290
show advanced eap 1291
show advanced send-disassoc-on-handoff 1292
show advanced sip-preferred-call-no 1293
show advanced sip-snooping-ports 1294
show arp kernel 1295
show arp switch 1296
show ap auto-rf 1297
show ap aid-audit-mode 1299
show client ccx operating-parameters 1386
show client ccx profiles 1387
show client ccx results 1389
show client ccx rm 1390
show client ccx stats-report 1392
show client detail 1393
show client location-calibration summary 1397
show client roam-history 1398
show client summary 1399
show client summary guest-lan 1401
show client tsm 1402
show client username 1404
show client voice-diag 1405
show client detail 1406
show client location-calibration summary 1408
show client probing 1409
show client roam-history 1410
show client summary 1411
show client wlan 1413
show cloud-services cmx summary 1414
show cloud-services cmx statistics 1415
show coredump summary 1416
show country 1417
show country channels 1418
show country supported 1419
show cpu 1421
show custom-web 1422
show database summary 1423
show dhcp 1424
show dhcp proxy 1425
show dhcp timeout 1426
show dtls connections 1427
show exclusionlist 1428
show flexconnect acl detailed 1429
show flexconnect acl summary 1430
show flexconnect group detail 1431
show flexconnect group summary 1432
show flexconnect office-extend 1433
show flow exporter 1434
show flow monitor summary 1435
show guest-lan 1436
show ike 1437
show interface summary 1438
show interface detailed 1439
show interface group 1441
show invalid-config 1443
show inventory 1444
show IPSec 1445
show ipv6 acl 1447
show ipv6 summary 1448
show guest-lan 1449
show ipv6 acl 1450
show ipv6 acl cpu 1451
show ipv6 acl detailed 1452
show ipv6 neighbor-binding 1453
show ipv6 ra-guard 1457
show ipv6 route summary 1458
show ipv6 summary 1459
show known ap 1460

CHAPTER 16

Show Commands: j to q 1461
show l2tp 1464
show lag eth-port-hash 1465
show lag ip-port-hash 1466
show lag summary 1467
show ldap 1468
show ldap statistics 1469
show ldap summary 1470
show license all 1471
show license capacity 1472
show license detail 1473
show license expiring 1474
show license evaluation 1475
show license feature 1476
show license file 1477
show license handle 1478
show license image-level 1479
show license in-use 1480
show license permanent 1481
show license status 1482
show license statistics 1483
show license summary 1484
show license udi 1485
show load-balancing 1486
show local-auth config 1487
show local-auth statistics 1489
show local-auth certificates 1491
show logging 1492
show logging config-history 1494
show logging flags 1495
show login session 1496
show mac filter 1497
show mdns ap summary 1498
show mdns domain-name-ip summary 1499
show mdns profile 1501
show mdns service 1503
show media-stream client 1505
show media-stream group detail 1506
show media-stream group summary 1507
show mesh ap 1508
show mesh astools stats 1509
show mesh backhaul 1510
show nmsp subscription summary 1554
show ntp-keys 1555
show ntp-keys 1556
show pmk-cache 1557
show pmipv6 domain 1558
show pmipv6 mag bindings 1559
show pmipv6 mag globals 1560
show pmipv6 mag stats 1561
show pmipv6 profile summary 1563
show policy 1564
show port 1566
show profiling policy summary 1568
show qos 1571
show queue-info 1572

CHAPTER 17

Show Commands: r to z 1575
show radius acct detailed 1578
show radius acct statistics 1579
show radius auth detailed 1580
show radius auth statistics 1581
show radius avp-list 1582
show radius summary 1583
show redundancy interfaces 1584
show redundancy latency 1585
show redundancy mobilitymac 1586
show redundancy peer-route summary 1587
show redundancy peer-system statistics 1588
show redundancy statistics 1589
show redundancy summary 1590
show redundancy timers 1591
show remote-lan 1592
show reset 1594
show rfid client 1595
show rfid config 1596
show spanningtree port 1641
show spanningtree switch 1642
show stats port 1643
show stats switch 1645
show switchconfig 1647
show sysinfo 1648
show system iostat 1650
show system top 1651
show tacacs acct statistics 1655
show tacacs athr statistics 1656
show tacacs auth statistics 1657
show tacacs summary 1658
show tech-support 1659
show time 1660
show trapflags 1662
show traplog 1664
show watchlist 1665
show wlan 1666
show wps ap-authentication summary 1671
show wps cids-sensor 1672
show wps mfp 1673
show wps shun-list 1674
show wps signature detail 1675
show wps signature events 1676
show wps signature summary 1678
show wps summary 1680
show wps wips statistics 1682
show wps wips summary 1683
show wps ap-authentication summary 1684

PART VIII

Miscellaneous Commands 1685

CHAPTER 18

Miscellaneous Commands: 1 1687

cping 1688
CHAPTER 19

Miscellaneous Commands: 1

capwap ap controller ip address 1695
capwap ap dot1x 1696
capwap ap hostname 1697
capwap ap ip address 1698
capwap ap ip default-gateway 1699
capwap ap log-server 1700
capwap ap mode 1701
capwap ap primary-base 1702
capwap ap primed-timer 1703
capwap ap secondary-base 1704
capwap ap tertiary-base 1705
lwapp ap controller ip address 1706
reset system at 1707
reset system in 1708
reset system cancel 1709
reset system notify-time 1710
reset peer-system 1711
save config 1712
transfer download certpassword 1713
transfer download datatype 1714
transfer download filename 1716
transfer download mode 1717
transfer download password 1718
transfer download path 1719
transfer download port 1720
transfer download serverip 1721
transfer download start 1722
transfer download tftpPktTimeout 1723
transfer download tftpMaxRetries 1724
Preface

This preface describes the audience, organization, and conventions of the Cisco Wireless LAN Controller Command Reference Guide. It also provides information on how to obtain other documentation. This chapter includes the following sections:

• Audience, on page xlvii
• Document Conventions, on page xlvii
• Related Documentation, on page 1
• Obtaining Documentation and Submitting a Service Request, on page 1

Audience

This publication is for experienced network administrators who configure and maintain Cisco wireless controllers (Cisco WLCs) and Cisco lightweight access points (Cisco APs).

Note

Usage of test commands may cause system disruption such as unexpected reboot of the Cisco WLC. Therefore, we recommend that you use the test commands on Cisco WLCs for debugging purposes with the help of Cisco Technical Assistance Center (TAC) personnel.

Document Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold font</td>
<td>Commands and keywords and user-entered text appear in bold font.</td>
</tr>
<tr>
<td>italic font</td>
<td>Document titles, new or emphasized terms, and arguments for which you supply values are in italic font.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
</tbody>
</table>
Convention

<table>
<thead>
<tr>
<th>Description</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional alternative keywords are grouped in brackets and separated by vertical bars.</td>
<td>`[x</td>
</tr>
<tr>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
<td><code>string</code></td>
</tr>
<tr>
<td>Terminal sessions and information the system displays appear in courier font.</td>
<td><code>courier font</code></td>
</tr>
<tr>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
<td><code><></code></td>
</tr>
<tr>
<td>Default responses to system prompts are in square brackets.</td>
<td><code>[]</code></td>
</tr>
<tr>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
<td><code>!</code>, <code>#</code></td>
</tr>
</tbody>
</table>

Note

Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

Tip

Means the following information will help you solve a problem.

Caution

Means reader be careful. In this situation, you might perform an action that could result in equipment damage or loss of data.

Warning

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. (To see translations of the warnings that appear in this publication, refer to the appendix "Translated Safety Warnings.")

<table>
<thead>
<tr>
<th>Warning Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waarschuwing</td>
<td>Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij elektrische schakelingen betrokken risico's en dient u op de hoogte te zijn van standaard maatregelen om ongelukken te voorkomen. (Voor vertalingen van de waarschuwingen die in deze publicatie verschijnen, kunt u het aanhangsel "Translated Safety Warnings" (Vertalingen van veiligheidsvoorschriften) raadplegen.)</td>
</tr>
<tr>
<td>Varoitus</td>
<td>Tämä varoitusmerkki merkitsee vaaraa. Olet tilanteessa, joka voi johtaa ruumiinvammaan. Ennen kuin työskentelet minkään laitteiston parissa, ota selvää sähkökytkentöihin liittyvistä vaaroista ja tavanomaisista onnettomuuksien ehkäisykeinoista. (Tässä julkaisussa esiintyvien varoitusten käännökset löydät liitteestä "Translated Safety Warnings" (käännetyt turvallisuutta koskevat varoitukset).)</td>
</tr>
<tr>
<td>Warning Title</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Attention</td>
<td>Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures. Avant d'accéder à cet équipement, soyez conscient des dangers posés par les circuits électriques et familiarisez-vous avec les procédures courantes de prévention des accidents. Pour obtenir les traductions des mises en garde figurant dans cette publication, veuillez consulter l'annexe intitulée « Translated Safety Warnings » (Traduction des avis de sécurité).</td>
</tr>
<tr>
<td>Warnung</td>
<td>Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu einer Körperverletzung führen könnte. Bevor Sie mit der Arbeit an irgendeinem Gerät beginnen, seien Sie sich der mit elektrischen Stromkreisen verbundenen Gefahren und der Standardpraktiken zur Vermeidung von Unfällen bewußt. (Übersetzungen der in dieser Veröffentlichung enthaltenen Warnhinweise finden Sie im Anhang mit dem Titel "Translated Safety Warnings" (Übersetzung der Warnhinweise).)</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>Questo simbolo di avvertenza indica un pericolo. Si è in una situazione che può causare infortuni. Prima di lavorare su qualsiasi apparecchiatura, occorre conoscere i pericoli relativi ai circuiti elettrici ed essere al corrente delle pratiche standard per la prevenzione di incidenti. La traduzione delle avvertenze riportate in questa pubblicazione si trova nell'appendice, "Translated Safety Warnings" (Traduzione delle avvertenze di sicurezza).</td>
</tr>
<tr>
<td>Advarsel</td>
<td>Dette varselsymbolet betyr fare. Du befinner deg i en situasjon som kan føre til personskade. For du utfører arbeid på utstyret, må du være oppmerksom på de faremomentene som elektriske kretser innebærer, samt gjøre deg kjent med vanlig praksis når det gjelder å unngå ulykker. (Hvis du vil se oversettelser av de avvarslene som finnes i denne publikasjonen, kan du se i vedlegget "Translated Safety Warnings" [Oversatte sikkerhetsadvarsler].)</td>
</tr>
<tr>
<td>Aviso</td>
<td>Este símbolo de aviso indica perigo. Encontra-se numa situação que lhe poderá causar danos físicos. Antes de começar a trabalhar com qualquer equipamento, familiarize-se com os perigos relacionados com circuitos elétricos, e com quaisquer práticas comuns que possam prevenir possíveis acidentes. (Para ver as traduções dos avisos que constam desta publicação, consulte o apêndice "Translated Safety Warnings" - "Traduções dos Avisos de Segurança").</td>
</tr>
<tr>
<td>¡Advertencia!</td>
<td>Este símbolo de aviso significa peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considerar los riesgos que entraña la corriente eléctrica y familiarizarse con los procedimientos estándar de prevención de accidentes. (Para ver traducciones de las advertencias que aparecen en esta publicación, consultar el apéndice titulado "Translated Safety Warnings.").</td>
</tr>
<tr>
<td>Warning</td>
<td>Denna varningssymbol signalerar fara. Du befinner dig i en situation som kan leda till personskada. Innan du utför arbete på någon utrustning måste du vara medveten om farorna med elkretsar och känna till vanligt förfarande för att förebygga skador. (Se förklaringar av de varningar som förekommer i denna publikation i appendix "Translated Safety Warnings" [Översatta säkerhetsvarningar].)</td>
</tr>
</tbody>
</table>
Related Documentation

These documents provide complete information about the Cisco Unified Wireless Network solution:

- *Cisco Wireless LAN Controller Configuration Guide*
- *Cisco Wireless LAN Controller System Message Guide*
- *Release Notes for Cisco Wireless LAN Controllers and Lightweight Access Points*

Obtaining Documentation and Submitting a Service Request

For information about obtaining documentation, submitting a service request, and gathering additional information, see the monthly *What's New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the *What's New in Cisco Product Documentation* as an RSS feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service. Cisco currently supports RSS Version 2.0.
PART I

Using the Command-Line Interface

• Using the Command-Line Interface, on page 1
Using the Command-Line Interface

This chapter contains the following topics:

- CLI Command Keyboard Shortcuts, on page 2
- Using the Interactive Help Feature, on page 4
CLI Command Keyboard Shortcuts

The table below lists the CLI keyboard shortcuts to help you enter and edit command lines on the controller.

Table 1: CLI Command Keyboard Shortcuts

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Keyboard Shortcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>The word at the cursor to lowercase.</td>
<td>Esc I</td>
</tr>
<tr>
<td></td>
<td>The word at the cursor to uppercase.</td>
<td>Esc u</td>
</tr>
<tr>
<td>Delete</td>
<td>A character to the left of the cursor.</td>
<td>Ctrl-h, Delete, or Backspace</td>
</tr>
<tr>
<td></td>
<td>All characters from the cursor to the beginning of the line.</td>
<td>Ctrl-u</td>
</tr>
<tr>
<td></td>
<td>All characters from the cursor to the end of the line.</td>
<td>Ctrl-k</td>
</tr>
<tr>
<td></td>
<td>All characters from the cursor to the end of the word.</td>
<td>Esc d</td>
</tr>
<tr>
<td></td>
<td>The word to the left of the cursor.</td>
<td>Ctrl-w or Esc Backspace</td>
</tr>
<tr>
<td>Display MORE output</td>
<td>Exit from MORE output.</td>
<td>q, Q, or Ctrl-C</td>
</tr>
<tr>
<td></td>
<td>Next additional screen. The default is one screen. To display</td>
<td>Spacebar</td>
</tr>
<tr>
<td></td>
<td>more than one screen, enter a number before pressing the Spacebar key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Next line. The default is one line. To display more than one</td>
<td>Enter</td>
</tr>
<tr>
<td></td>
<td>line, enter the number before pressing the Enter key.</td>
<td></td>
</tr>
<tr>
<td>Enter or Return key character.</td>
<td></td>
<td>Ctrl-m</td>
</tr>
<tr>
<td>Expand the command or abbreviation.</td>
<td></td>
<td>Ctrl-t or Tab</td>
</tr>
<tr>
<td>Move the cursor</td>
<td>One character to the left (back).</td>
<td>Ctrl-b or Left Arrow</td>
</tr>
<tr>
<td></td>
<td>One character to the right (forward).</td>
<td>Ctrl-f or Right Arrow</td>
</tr>
<tr>
<td></td>
<td>One word to the left (back), to the beginning of the current or previous word.</td>
<td>Esc b</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Keyboard Shortcut</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>One word to the right (forward), to the end of the current or next word.</td>
<td>Esc f</td>
</tr>
<tr>
<td></td>
<td>To the beginning of the line.</td>
<td>Ctrl-a</td>
</tr>
<tr>
<td></td>
<td>To the end of the line.</td>
<td>Ctrl-e</td>
</tr>
<tr>
<td></td>
<td>Redraw the screen at the prompt.</td>
<td>Ctrl-l or Ctrl-r</td>
</tr>
<tr>
<td></td>
<td>Return to the EXEC mode from any configuration mode</td>
<td>Ctrl-z</td>
</tr>
<tr>
<td></td>
<td>Return to the previous mode or exit from the CLI from Exec mode.</td>
<td>exit command</td>
</tr>
<tr>
<td></td>
<td>Transpose a character at the cursor with a character to the left of the cursor.</td>
<td>Ctrl-t</td>
</tr>
</tbody>
</table>
Using the Interactive Help Feature

The question mark (?) character allows you to get the following type of help about the command at the command line. The table below lists the interactive help feature list.

Table 2: Interactive Help Feature List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Provides a brief description of the Help feature in any command mode.</td>
</tr>
<tr>
<td>? at the command prompt</td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td>partial command?</td>
<td>Provides a list of commands that begin with the character string.</td>
</tr>
<tr>
<td>partial command<Tab></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td>command ?</td>
<td>Lists the keywords, arguments, or both associated with a command.</td>
</tr>
<tr>
<td>command keyword ?</td>
<td>Lists the arguments that are associated with the keyword.</td>
</tr>
</tbody>
</table>

Using the help Command

Before you begin

To look up keyboard commands, use the help command at the root level.

help

Help may be requested at any point in a command by entering a question mark ‘?’ . If nothing matches, the help list will be empty and you must back up until entering a ‘?’ shows the available options. Two types of help are available:

1. Full help is available when you are ready to enter a command argument (for example show ?) and describes each possible argument.
2. Partial help is provided when an abbreviated argument is entered and you want to know what arguments match the input (for example show pr?).

Example:

> help
HELP:
Special keys:
 DEL, BS... delete previous character
 Ctrl-A go to beginning of line
 Ctrl-E go to end of line
 Ctrl-F go to forward one character
Using the Command-Line Interface

Using the ? command

Before you begin
To display all of the commands in your current level of the command tree, or to display more information about a particular command, use the ? command.

command name ?
When you enter a command information request, put a space between the command name and ?.

Examples
This command shows you all the commands and levels available from the root level.

> ?
clear Clear selected configuration elements.
cfg Configure switch options and settings.
dbg Manage system debug options.
help Help
linktest Perform a link test to a specified MAC address.
logout Exit this session. Any unsaved changes are lost.
ping Send ICMP echo packets to a specified IP address.
reset Reset options.
save Save switch configurations.
show Display switch options and settings.
transfer Transfer a file to or from the switch.

Using the partial? command

Before you begin
To provide a list of commands that begin with the character string, use the partial command ?.

partial command?
There should be no space between the command and the question mark.

This example shows how to provide a command that begin with the character string “ad”:

> controller> config>ad?
The command that matches with the string “ad” is as follows:

```
advanced
```

Using the partial command<tab>

Before you begin

To completes a partial command name, use the partial command<tab> command.

```
partial command<tab>
```

There should be no space between the command and <tab>.

This example shows how to complete a partial command name that begin with the character string “cert”:

```
Controller >config>cert<tab> certificate
```

Using the command ?

Examples

To list the keywords, arguments, or both associated with the command, use the command ?.

```
command-name ?
```

There should be a space between the command and the question mark.

This example shows how to list the arguments and keyword for the command acl:

```
Controller >config acl ?
```

Information similar to the following appears:

```
apply   Applies the ACL to the data path.
counter Start/Stop the ACL Counters.
create Create a new ACL.
delete  Delete an ACL.
rule    Configure rules in the ACL.
cpu     Configure the CPU ACL Information
```

command keyword ?

To list the arguments that are associated with the keyword, use the command keyword ?:

```
command keyword ?
```

There should be space between the keyword and the question mark.

This example shows how to display the arguments associated with the keyword cpu:

```
Controller >config acl cpu ?
```
Information similar to the following appears:

<table>
<thead>
<tr>
<th>none</th>
<th>None - Disable the CPU ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td><name></td>
<td><name> - Name of the CPU ACL</td>
</tr>
</tbody>
</table>
PART II

Clear Commands

- Clear Commands: a to l, on page 11
- Clear Commands: m to z, on page 29
Clear Commands: a to l

- clear advanced, on page 12
- clear acl counters, on page 13
- clear ap config, on page 14
- clear ap eventlog, on page 15
- clear ap join stats, on page 16
- clear arp, on page 17
- clear ap tsm, on page 18
- clear avc statistics, on page 19
- clear client tsm, on page 21
- clear config, on page 22
- clear ext-webauth-url, on page 23
- clear location rfid, on page 24
- clear location statistics rfid, on page 25
- clear lopc statistics, on page 26
- clear login-banner, on page 27
- clear lwapp private-config, on page 28
clear advanced

To reset EDCA parameters, packet parameters, or optimized roaming statistics to their default values, use `clear advanced` command.

```
clear advanced {802.11a | 802.11b} {optimized-roaming stats | packet | edca-parameter}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11b network.</td>
</tr>
<tr>
<td>optimized-roaming stats</td>
<td>Clear the 802.11a optimized roaming statistics.</td>
</tr>
<tr>
<td>packet</td>
<td>Clear the 802.11a packet parameters configuration.</td>
</tr>
<tr>
<td>edca-parameter</td>
<td>Clear the 802.11a edca-parameter configuration.</td>
</tr>
</tbody>
</table>

Command Default

None

The following example shows how to reset edca-parameter values to default:

```
(Cisco Controller) >clear advanced 802.11a optimized-roaming stats
(Cisco Controller) >clear advanced 802.11a packet
(Cisco Controller) >clear advanced 802.11a edca-parameter
```
clear acl counters

To clear the current counters for an Access Control List (ACL), use the **clear acl counters** command.

```
clear acl counters acl_name
```

Syntax Description

<table>
<thead>
<tr>
<th>acl_name</th>
<th>ACL name.</th>
</tr>
</thead>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

ACL counters are available only on the following controllers: Cisco 4400 Series Controller, Cisco WiSM, and Catalyst 3750G Integrated Wireless LAN Controller Switch.

The following example shows how to clear the current counters for acl1:

```
(Cisco Controller) > clear acl counters acl1
```
clear ap config

To clear (reset to the default values) a lightweight access point’s configuration settings, use the clear ap config command.

clear ap config ap_name

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap_name</td>
<td>None</td>
<td>Release</td>
</tr>
<tr>
<td>Access point name</td>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Entering this command does not clear the static IP address of the access point.

The following example shows how to clear the access point’s configuration settings for the access point named ap1240_322115:

(Cisco Controller) > **clear ap config ap1240_322115**

Clear ap-config will clear ap config and reboot the AP. Are you sure you want continue? (y/n)
clear ap eventlog

To delete the existing event log and create an empty event log file for a specific access point or for all access points joined to the controller, use the clear ap eventlog command.

clear ap eventlog { specific ap_name | all }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>specific</td>
<td>Specifies a specific access point log file.</td>
</tr>
<tr>
<td>ap_name</td>
<td>Name of the access point for which the event log file is emptied.</td>
</tr>
<tr>
<td>all</td>
<td>Deletes the event log for all access points joined to the controller.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the event log for all access points:

(Cisco Controller) > clear ap eventlog all
This will clear event log contents for all APs. Do you want continue? (y/n) : y
All AP event log contents have been successfully cleared.
clear ap join stats

To clear the join statistics for all access points or for a specific access point, use the `clear ap join stats` command.

```
clear ap join stats { all | ap_mac }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>Access point MAC address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the join statistics of all the access points:

```
(Cisco Controller) > clear ap join stats all
```
clear arp

To clear the Address Resolution Protocol (ARP) table, use the **clear arp** command.

```plaintext
clear arp
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the ARP table:

```plaintext
(Cisco Controller) >clear arp
Are you sure you want to clear the ARP cache? (y/n)
```

Related Commands
- clear transfer
- clear download datatype
- clear download filename
- clear download mode
- clear download serverip
- clear download start
- clear upload datatype
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
- clear stats port
clear ap tsm

To clear the Traffic Stream Metrics (TSM) statistics of clients associated to an access point, use the clear ap tsm command.

clear ap tsm {802.11a | 802.11b} cisco_ap all

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Clears 802.11a TSM statistics of clients associated to an access point.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Clears 802.11b TSM statistics of clients associated to an access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Clears TSM statistics of clients associated to the access point.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear 802.11a TSM statistics for all clients of an access point:

(Cisco Controller) >clear ap tsm 802.11a AP3600_1 all
clear avc statistics

To clear Application Visibility and Control (AVC) statistics of a client, guest LAN, remote LAN, or a WLAN use the `clear avc statistics` command.

```
clear avc statistics { client { all | client-mac } | guest-lan { all | guest-lan-id } | remote-lan { all | remote-lan-id } | wlan { all | wlan-id } }
```

Syntax Description

client
- Clears AVC statistics of a client.

all
- Clears AVC statistics of all clients.

client-mac
- MAC address of a client.

guest-lan
- Clears AVC statistics of a guest LAN.

all
- Clears AVC statistics of all guest LANs.

guest-lan-id
- Guest LAN Identifier between 1 and 5.

remote-lan
- Clears AVC statistics of a remote LAN.

all
- Clears AVC statistics of all remote LANs.

remote-lan-id
- Remote LAN Identifier between 1 and 512.

wlan
- Clears AVC statistics of a WLAN.

all
- Clears AVC statistics of all WLANs.

wlan-id
- WLAN Identifier between 1 and 512.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6 | This command was introduced in a release earlier than Release 7.6.

The following example shows how to clear the AVC statistics of a client:

```
(Cisco Controller) >clear avc statistics client 00:21:1b:ea:36:60
```

Related Commands
- config avc profile create
- config avc profile delete
- config avc profile rule
- config wlan avc
- show avc profile
- show avc applications
clear avc statistics

display avc statistics

display avc error

display avc events
clear client tsm

To clear the Traffic Stream Metrics (TSM) statistics for a particular access point or all the access points to which this client is associated, use the clear client tsm command.

clear client tsm {802.11a | 802.11b} client_mac {ap_mac | all}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11b network.</td>
</tr>
<tr>
<td>client_mac</td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of a Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the TSM for the MAC address 00:40:96:a8:f7:98:

(Cisco Controller) >clear client tsm 802.11a 00:40:96:a8:f7:98 all

Related Commands

clear upload start
clear config

To reset configuration data to factory defaults, use the clear config command.

```
clear config
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.

The following example shows how to reset the configuration data to factory defaults:

```
(Cisco Controller) >clear config
Are you sure you want to clear the configuration? (y/n)
n
Configuration not cleared!
```

Related Commands
- clear transfer
- clear download datatype
- clear download filename
- clear download mode
- clear download serverip
- clear download start
- clear upload datatype
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
- clear stats port
clear ext-webauth-url

To clear the external web authentication URL, use the clear ext-webauth-url command.

```
clear ext-webauth-url
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History
The following example shows how to clear the external web authentication URL:

```
(Cisco Controller) > clear ext-webauth-url
URL cleared.
```

Related Commands
clear transfer
clear download datatype
clear download filename
clear download mode
clear download serverip
clear download start
clear upload datatype
clear upload filename
clear upload mode
clear upload path
clear upload serverip
clear upload start
clear stats port
clear location rfid

To clear a specific Radio Frequency Identification (RFID) tag or all of the RFID tags in the entire database, use the `clear location rfid` command.

```
clear location rfid (mac_address  |  all)
```

Syntax Description

<table>
<thead>
<tr>
<th>mac_address</th>
<th>MAC address of a specific RFID tag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all the RFID tags in the database.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear all the RFID tags in the database:

```
(Cisco Controller) > clear location rfid all
```
clear location statistics rfid

To clear Radio Frequency Identification (RFID) statistics, use the clear location statistics rfid command.

clear location statistics rfid

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear RFID statistics:

```
(Cisco Controller) > clear location statistics rfid
```

Related Commands
- config location
- show location
- show location statistics rfid
clear locp statistics

To clear the Location Protocol (LOCP) statistics, use the **clear locp statistics** command.

clear locp statistics

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the statistics related to LOCP:

```
(Cisco Controller) > clear locp statistics
```

Related Commands
- **clear nmsp statistics**
- **config nmsp notify-interval measurement**
- **show nmsp notify-interval summary**
- **show nmsp statistics**
- **show nmsp status**
clear login-banner

To remove the login banner file from the controller, use the **clear login-banner** command.

clear login-banner

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the login banner file:

(Cisco Controller) >clear login-banner

Related Commands

transfer download datatype
clear lwapp private-config

To clear (reset to default values) an access point’s current Lightweight Access Point Protocol (LWAPP) private configuration, which contains static IP addressing and controller IP address configurations, use the clear lwapp private-config command.

clear lwapp private-config

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter the command on the access point console port.

Prior to changing the FlexConnect configuration on an access point using the access point’s console port, the access point must be in standalone mode (not connected to a Cisco WLC) and you must remove the current LWAPP private configuration by using the clear lwapp private-config command.

Note

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

The following example shows how to clear an access point’s current LWAPP private configuration:

```
ap_console > clear lwapp private-config
removing the reap config file flash:/lwapp_reap.cfg
```
Clear Commands: m to z

- clear mdns service-database, on page 30
- clear nmsp statistics, on page 31
- clear radius acct statistics, on page 32
- clear session, on page 33
- clear tacacs auth statistics, on page 34
- clear redirect-url, on page 35
- clear stats ap wlan, on page 36
- clear stats local-auth, on page 37
- clear stats mobility, on page 38
- clear stats port, on page 39
- clear stats radius, on page 40
- clear stats switch, on page 41
- clear stats tacacs, on page 42
- clear transfer, on page 43
- clear traplog, on page 44
- clear webimage, on page 45
- clear webmessage, on page 46
- clear webtitle, on page 47
clear mdns service-database

To clear the multicast DNS service database, use the **clear mdns service-database** command.

```
clear mdns service-database  { all  |  service-name }
```

Syntax Description

- `all` Clears the mDNS service database.
- `service-name` Name of the mDNS service. The Cisco WLC clears the details of the mDNS service.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The Cisco WLC snoops and learns about the mDNS service advertisements only if the service is available in the Master Services database.

The following example shows how to clear the mDNS service database:

```
(Cisco Controller) > clear mdns service-database all
```

Related Commands

- `config mdns query interval`
- `config mdns service`
- `config mdns snooping`
- `config interface mdns-profile`
- `config interface group mdns-profile`
- `config wlan mdns`
- `show mdns profile`
- `show mdns service`
- `config mdns profile`
- `debug mdns all`
- `debug mdns error`
- `debug mdns detail`
- `debug mdns message`
clear nmsp statistics

To clear the Network Mobility Services Protocol (NMSP) statistics, use the **clear nmsp statistics** command.

clear nmsp statistics

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the NMSP statistics log file:

```
(Cisco Controller) > clear nmsp statistics
```
clear radius acct statistics

To clear the RADIUS accounting statistics on the controller, use the `clear radius acct statistics` command.

clear radius acct statistics [index | all]

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>(Optional) Specifies the index of the RADIUS accounting server.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Specifies all RADIUS accounting servers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the RADIUS accounting statistics:

(Cisco Controller) > `clear radius acct statistics`

Related Commands

`show radius acct statistics`
clear session

To clear sessions that are created when user logs in through Telnet or SSH, use the clear session command.

`clear session session-id`

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The session ID for clearing the session should be taken from the show login-session command.

The following example shows how to clear Telnet or SSH sessions:

(Cisco Controller) > `clear session 3`
clear tacacs auth statistics

To clear the RADIUS authentication server statistics in the controller, use the `clear tacacs auth statistics` command.

`clear tacacs auth statistics [index | all]`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>(Optional) Specifies the index of the RADIUS authentication server.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Specifies all RADIUS authentication servers.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the RADIUS authentication server statistics:

```
(Cisco Controller) >clear tacacs auth statistics
```

Related Commands

- `show tacacs auth statistics`
- `show tacacs summary`
- `config tacacs auth`
clear redirect-url

To clear the custom web authentication redirect URL on the Cisco Wireless LAN Controller, use the **clear redirect-url** command.

```
clear redirect-url
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the custom web authentication redirect URL:

```
(Cisco Controller) >clear redirect-url
URL cleared.
```

Related Commands
- clear transfer
- clear download datatype
- clear download filename
- clear download mode
- clear download path
- clear download start
- clear upload datatype
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
clear stats ap wlan

To clear the WLAN statistics, use the **clear stats ap wlan** command.

clear stats ap wlan cisco_ap

Syntax Description

| cisco_ap | Selected configuration elements. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the WLAN configuration elements of the access point cisco_ap:

(Cisco Controller) >**clear stats ap wlan cisco_ap**

WLAN statistics cleared.
clear stats local-auth

To clear the local Extensible Authentication Protocol (EAP) statistics, use the `clear stats local-auth` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the local EAP statistics:

```
(Cisco Controller) >clear stats local-auth
Local EAP Authentication Stats Cleared.
```

Related Commands

- `config local-auth active-timeout`
- `config local-auth eap-profile`
- `config local-auth method fast`
- `config local-auth user-credentials`
- `debug aaa local-auth`
- `show local-auth certificates`
- `show local-auth config`
- `show local-auth statistics`
clear stats mobility

To clear mobility manager statistics, use the clear stats mobility command.

```
clear stats mobility
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History
The following examples show how to clear mobility manager statistics:

```
(Cisco Controller) > clear stats mobility

Mobility stats cleared.
```
clear stats port

To clear statistics counters for a specific port, use the **clear stats port** command.

clear stats port port

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>Physical interface port number.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the statistics counters for port 9:

(Cisco Controller) > **clear stats port 9**

Related Commands

- clear transfer
- clear download datatype
- clear download datatype
- clear download filename
- clear download mode
- clear download serverip
- clear download start
- clear upload datatype
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
- clear stats port
clear stats radius

To clear the statistics for one or more RADIUS servers, use the `clear stats radius` command.

```
clear stats radius {auth | acct} {index | all}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Clears statistics regarding authentication.</td>
</tr>
<tr>
<td>acct</td>
<td>Clears statistics regarding accounting.</td>
</tr>
<tr>
<td>index</td>
<td>Specifies the index number of the RADIUS server to be cleared.</td>
</tr>
<tr>
<td>all</td>
<td>Clears statistics for all RADIUS servers.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the statistics for all RADIUS authentication servers:

```
(Cisco Controller) > clear stats radius auth all
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear transfer</td>
</tr>
<tr>
<td>clear download datatype</td>
</tr>
<tr>
<td>clear download filename</td>
</tr>
<tr>
<td>clear download mode</td>
</tr>
<tr>
<td>clear download serverip</td>
</tr>
<tr>
<td>clear download start</td>
</tr>
<tr>
<td>clear upload datatype</td>
</tr>
<tr>
<td>clear upload filename</td>
</tr>
<tr>
<td>clear upload mode</td>
</tr>
<tr>
<td>clear upload path</td>
</tr>
<tr>
<td>clear upload serverip</td>
</tr>
<tr>
<td>clear upload start</td>
</tr>
<tr>
<td>clear stats port</td>
</tr>
</tbody>
</table>
clear stats switch

To clear all switch statistics counters on a Cisco wireless LAN controller, use the `clear stats switch` command.

```plaintext
clear stats switch
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear all switch statistics counters:

```
(Cisco Controller) clear stats switch
```
clear stats tacacs

To clear the TACACS+ server statistics on the controller, use the `clear stats tacacs` command.

```
clear stats tacacs [auth | athr | acct] [index | all]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>auth</code></td>
<td>(Optional) Clears the TACACS+ authentication server statistics.</td>
</tr>
<tr>
<td><code>athr</code></td>
<td>(Optional) Clears the TACACS+ authorization server statistics.</td>
</tr>
<tr>
<td><code>acct</code></td>
<td>(Optional) Clears the TACACS+ accounting server statistics.</td>
</tr>
<tr>
<td><code>index</code></td>
<td>(Optional) Specifies index of the TACACS+ server.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>(Optional) Specifies all TACACS+ servers.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the TACACS+ accounting server statistics for index 1:

```
(Cisco Controller) > clear stats tacacs acct 1
```

Related Commands

- `show tacacs summary`
clear transfer

To clear the transfer information, use the **clear transfer** command.

```
clear transfer
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to clear the transfer information:

```
(Cisco Controller) >clear transfer
Are you sure you want to clear the transfer information? (y/n) y
Transfer Information Cleared.
```

Related Commands

- `transfer upload datatype`
- `transfer upload pac`
- `transfer upload password`
- `transfer upload port`
- `transfer upload path`
- `transfer upload username`
- `transfer upload datatype`
- `transfer upload serverip`
- `transfer upload start`
clear traplog

To clear the trap log, use the **clear traplog** command.

clear traplog

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6 | This command was introduced in a release earlier than Release 7.6.

The following example shows how to clear the trap log:

```
(Cisco Controller) > clear traplog
Are you sure you want to clear the trap log? (y/n) y
Trap Log Cleared.
```

Related Commands

- clear transfer
- clear download datatype
- clear download filename
- clear download mode
- clear download path
- clear download serverip
- clear download start
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
clear webimage

To clear the custom web authentication image, use the **clear webimage** command.

```
clear webimage
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the custom web authentication image:

```
(Cisco Controller) > clear webimage
```

Related Commands

- clear transfer
- clear download datatype
- clear download filename
- clear download mode
- clear download path
- clear download serverip
- clear download start
- clear upload filename
- clear upload mode
- clear upload path
- clear upload serverip
- clear upload start
clear webmessage

To clear the custom web authentication message, use the `clear webmessage` command.

```
clear webmessage
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the custom web authentication message:

```
(Cisco Controller) > clear webmessage
Message cleared.
```

Related Commands

- `clear transfer`
- `clear download datatype`
- `clear download filename`
- `clear download mode`
- `clear download path`
- `clear download serverip`
- `clear download start`
- `clear upload filename`
- `clear upload mode`
- `clear upload path`
- `clear upload serverip`
- `clear upload start`
clear webtitle

To clear the custom web authentication title, use the clear webtitle command.

clear webtitle

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the custom web authentication title:

(Cisco Controller) >clear webtitle
Title cleared.

Related Commands

clear transfer
clear download datatype
clear download filename
clear download mode
clear download path
clear download serverip
clear download start
clear upload filename
clear upload mode
clear upload path
clear upload serverip
clear upload start
clear webtitle
PART III

Config Commands

- Config Commands: 802.11, on page 51
- Config Commands: a to i, on page 163
- Config Commands: j to q, on page 495
- Config Commands: r to z, on page 725
Config Commands: 802.11

- config 802.11-abgn, on page 54
- config 802.11a 11acsupport, on page 55
- config 802.11-a antenna extAntGain, on page 56
- config 802.11-a channel ap, on page 57
- config 802.11-a txpower ap, on page 58
- config 802.11 antenna diversity, on page 59
- config 802.11 antenna extAntGain, on page 60
- config 802.11 antenna mode, on page 61
- config 802.11 antenna selection, on page 62
- config 802.11b 11gSupport, on page 63
- config 802.11b preamble, on page 64
- config 802.11h channelswitch, on page 65
- config 802.11h powerconstraint, on page 66
- config 802.11h setchannel, on page 67
- config 802.11 11nsupport, on page 68
- config 802.11 11nsupport a-mpdu tx priority, on page 69
- config 802.11 11nsupport a-mpdu tx scheduler, on page 71
- config 802.11 11nsupport antenna, on page 72
- config 802.11 11nsupport guard-interval, on page 73
- config 802.11 11nsupport mcs tx, on page 74
- config 802.11 11nsupport rifs, on page 76
- config 802.11 antenna diversity, on page 77
- config 802.11 antenna extAntGain, on page 78
- config 802.11 antenna mode, on page 79
- config 802.11 antenna selection, on page 80
- config 802.11 channel, on page 81
- config 802.11 channel ap, on page 83
- config 802.11 chan_width, on page 84
- config 802.11 rx-sop threshold, on page 86
- config 802.11 txPower, on page 87
- config 802.11 beamforming, on page 89
- config 802.11h channelswitch, on page 90
- config 802.11h powerconstraint, on page 91
• config 802.11h setchannel, on page 92
• config 802.11h smart dfs, on page 93
• config 802.11 11nsupport, on page 94
• config 802.11 11nsupport a-mpdu tx priority, on page 95
• config 802.11 11nsupport a-mpdu tx scheduler, on page 97
• config 802.11 11nsupport antenna, on page 98
• config 802.11 11nsupport guard-interval, on page 99
• config 802.11 11nsupport mcs tx, on page 100
• config 802.11 11nsupport rifs, on page 102
• config 802.11 beacon period, on page 103
• config 802.11 cac defaults, on page 104
• config 802.11 cac video acm, on page 106
• config 802.11 cac video cac-method, on page 108
• config 802.11 cac video load-based, on page 110
• config 802.11 cac video max-bandwidth, on page 112
• config 802.11 cac media-stream, on page 114
• config 802.11 cac multimedia, on page 116
• config 802.11 cac video roam-bandwidth, on page 118
• config 802.11 cac video sip, on page 120
• config 802.11 cac video tspec-inactivity-timeout, on page 122
• config 802.11 cac voice acm, on page 123
• config 802.11 cac voice max-bandwidth, on page 124
• config 802.11 cac voice roam-bandwidth, on page 126
• config 802.11 cac voice tspec-inactivity-timeout, on page 128
• config 802.11 cac voice load-based, on page 130
• config 802.11 cac voice max-calls, on page 132
• config 802.11 cac voice sip bandwidth, on page 134
• config 802.11 cac voice sip codec, on page 136
• config 802.11 cac voice stream-size, on page 138
• config 802.11 cleanair, on page 140
• config 802.11 cleanair device, on page 142
• config 802.11 cleanair alarm, on page 144
• config 802.11 disable, on page 146
• config 802.11 dtpc, on page 147
• config 802.11 enable, on page 148
• config 802.11 exp-bwreq, on page 149
• config 802.11 fragmentation, on page 150
• config 802.11 l2roam rf-params, on page 151
• config 802.11 max-clients, on page 153
• config 802.11 media-stream multicast-direct, on page 154
• config 802.11 media-stream video-redirect, on page 156
• config 802.11 multicast data-rate, on page 157
• config 802.11 rate, on page 158
• config 802.11 rssi-check, on page 159
• config 802.11 rssi-threshold, on page 160
• config 802.11 tsm, on page 161
• config 802.11b preamble, on page 162
config 802.11-abgn

To configure dual-band radio parameters on an access point, use the `config 802.11-abgn` command.

```
config 802.11-abgn { cleanair { enable | disable } { cisco_ap band band } | { enable | disable } { cisco_ap } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>cleanair</th>
<th>Configures CleanAir on the dual-band radio.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables CleanAir for both 2.4-GHz and 5-GHz radios.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Disables CleanAir for both 2.4-GHz and 5-GHz radios.</td>
</tr>
<tr>
<td></td>
<td>cisco_ap</td>
<td>Name of the access point to which the command applies.</td>
</tr>
<tr>
<td></td>
<td>band</td>
<td>Configures the radio band.</td>
</tr>
<tr>
<td></td>
<td>band</td>
<td>Radio band that can be 2.4-GHz or 5-GHz.</td>
</tr>
<tr>
<td></td>
<td>enable</td>
<td>Enables the dual-band radio on an access point.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Disables the dual-band radio on an access point.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | Only Cisco CleanAir-enabled access point radios can be configured for Cisco CleanAir. |

The following example shows how to enable Cisco CleanAir on an access point:

```
(Cisco Controller) > config 802.11-abgn cleanair enable AP3600 band 5
```
config 802.11a 11acsupport

To configure 802.11ac 5-GHz parameters, use the `config 802.11a 11acsupport`

```
config 802.11a 11acsupport { enable | disable | mcs tx mcs_index ss spatial_stream { enable | disable} }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables 802.11ac 5-GHz mode.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11ac 5-GHz mode.</td>
</tr>
<tr>
<td>mcs tx</td>
<td>Configures 802.11ac 5-GHz Modulation and Coding Scheme (MCS) rates at which data can be transmitted between the access point and the client.</td>
</tr>
<tr>
<td>tx</td>
<td>Configures 802.11ac 5-GHz MCS transmit rates.</td>
</tr>
<tr>
<td>mcs_index</td>
<td>MCS index value of 8 or 9. MCS data rates with index 8 or 9 are specific to 802.11ac. When you enable an MCS data rate with index 9, the data rate with MCS index 8 is automatically enabled.</td>
</tr>
<tr>
<td>ss</td>
<td>Configures the 802.11ac 5-GHz MCS spatial stream (SS).</td>
</tr>
<tr>
<td>spatial_stream</td>
<td>Spatial stream within which you can enable or disable an MCS data rate. Signals transmitted by the various antennae are multiplexed by using different spaces within the same spectral channel. These spaces are known as spatial streams. Three spatial streams are available within which you can enable or disable a MCS rate. The range is from 1 to 3.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Disabling the 802.11n/ac mode applies only to access radios. Backhaul radios always have 802.11n/ac mode enabled if they are 802.11n capable.

The following example shows how to configure the MCS index for spatial stream 3:

```
(Cisco Controller) > config 802.11a 11acsupport mcs tx 9 ss 3
```
To configure the external antenna gain for the 4.9-GHz and 5.8-GHz public safety channels on an access point, use the `config 802.11-a antenna extAntGain` commands.

```
config (802.11-a49 | 802.11-a58) antenna extAntGain ant_gain cisco_ap {global | channel_no}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11-a49</td>
<td>Specifies the 4.9-GHz public safety channel.</td>
</tr>
<tr>
<td>802.11-a58</td>
<td>Specifies the 5.8-GHz public safety channel.</td>
</tr>
<tr>
<td>ant_gain</td>
<td>Value in .5-dBi units (for instance, 2.5 dBi = 5).</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point to which the command applies.</td>
</tr>
<tr>
<td>global</td>
<td>Specifies the antenna gain value to all channels.</td>
</tr>
<tr>
<td>channel_no</td>
<td>Antenna gain value for a specific channel.</td>
</tr>
</tbody>
</table>

Command Default

Channel properties are disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you enter the `config 802.11-a antenna extAntGain` command, disable the 802.11 Cisco radio with the `config 802.11-a disable` command.

After you configure the external antenna gain, use the `config 802.11-a enable` command to reenable the 802.11 Cisco radio.

The following example shows how to configure an 802.11-a49 external antenna gain of 10 dBi for AP1:

```
(Cisco Controller) > config 802.11-a antenna extAntGain 10 AP1
```
config 802.11-a channel ap

To configure the channel properties for the 4.9-GHz and 5.8-GHz public safety channels on an access point, use the **config 802.11-a channel ap** command.

```
config {802.11-a49 | 802.11-a58} channel ap cisco_ap {global | channel_no}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11-a49</td>
<td>Specifies the 4.9-GHz public safety channel.</td>
</tr>
<tr>
<td>802.11-a58</td>
<td>Specifies the 5.8-GHz public safety channel.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point to which the command applies.</td>
</tr>
<tr>
<td>global</td>
<td>Enables the Dynamic Channel Assignment (DCA) on all 4.9-GHz and 5.8-GHz subband radios.</td>
</tr>
<tr>
<td>channel_no</td>
<td>Custom channel for a specific mesh access point. The range is 1 through 26, inclusive, for a 4.9-GHz band and 149 through 165, inclusive, for a 5.8-GHz band.</td>
</tr>
</tbody>
</table>

Command Default

Channel properties are disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the channel properties:

```
(Cisco Controller) > config 802.11-a channel ap
```
config 802.11-a txpower ap

To configure the transmission power properties for the 4.9-GHz and 5.8-GHz public safety channels on an access point, use the `config 802.11-a txpower ap` command.

```
config {802.11-a49 | 802.11-a58} txpower ap cisco_ap {global | power_level}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11-a49</td>
<td>Specifies the 4.9-GHz public safety channel.</td>
</tr>
<tr>
<td>802.11-a58</td>
<td>Specifies the 5.8-GHz public safety channel.</td>
</tr>
<tr>
<td>txpower</td>
<td>Configures transmission power properties.</td>
</tr>
<tr>
<td>ap</td>
<td>Configures access point channel settings.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point to which the command applies.</td>
</tr>
<tr>
<td>global</td>
<td>Applies the transmission power value to all channels.</td>
</tr>
<tr>
<td>power_level</td>
<td>Transmission power value to the designated mesh access point. The range is from 1 to 5.</td>
</tr>
</tbody>
</table>

Command Default
The default transmission power properties for the 4.9-GHz and 5.8-GHz public safety channels on an access point is disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an 802.11-a49 transmission power level of 4 for AP1:

```
(Cisco Controller) > config 802.11-a txpower ap 4 AP1
```
config 802.11 antenna diversity

To configure the diversity option for 802.11 antennas, use the `config 802.11 antenna diversity` command.

```
config 802.11 {a | b} antenna diversity {enable | sideA | sideB} cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the diversity.</td>
</tr>
<tr>
<td><code>sideA</code></td>
<td>Specifies the diversity between the internal antennas and an external antenna connected to the Cisco lightweight access point left port.</td>
</tr>
<tr>
<td><code>sideB</code></td>
<td>Specifies the diversity between the internal antennas and an external antenna connected to the Cisco lightweight access point right port.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable antenna diversity for AP01 on an 802.11b network:

```
(Cisco Controller) > config 802.11a antenna diversity enable AP01
```

The following example shows how to enable diversity for AP01 on an 802.11a network, using an external antenna connected to the Cisco lightweight access point left port (sideA):

```
(Cisco Controller) > config 802.11a antenna diversity sideA AP01
```
To configure external antenna gain for an 802.11 network, use the `config 802.11 antenna extAntGain` command.

```bash
config 802.11 \{ a | b \} antenna extAntGain antenna_gain cisco_ap
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>antenna_gain</code></td>
<td>Antenna gain in 0.5 dBm units (for example, 2.5 dBm = 5).</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you enter the `config 802.11 antenna extAntGain` command, disable the 802.11 Cisco radio with the `config 802.11 disable` command.

After you configure the external antenna gain, use the `config 802.11 enable` command to enable the 802.11 Cisco radio.

The following example shows how to configure an 802.11a external antenna gain of 0.5 dBm for AP1:

```bash
(Cisco Controller) > config 802.11 antenna extAntGain 1 AP1
```
config 802.11 antenna mode

To configure the Cisco lightweight access point to use one internal antenna for an 802.11 sectorized 180-degree coverage pattern or both internal antennas for an 802.11 360-degree omnidirectional pattern, use the **config 802.11 antenna mode** command.

```
config 802.11 \{ a | b \} antenna mode \{ omni | sectorA | sectorB \} cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>omni</td>
<td>Specifies to use both internal antennas.</td>
</tr>
<tr>
<td>sectorA</td>
<td>Specifies to use only the side A internal antenna.</td>
</tr>
<tr>
<td>sectorB</td>
<td>Specifies to use only the side B internal antenna.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default: None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure access point AP01 antennas for a 360-degree omnidirectional pattern on an 802.11b network:

```
(Cisco Controller) > config 802.11 antenna mode omni AP01
```
config 802.11 antenna selection

To select the internal or external antenna selection for a Cisco lightweight access point on an 802.11 network, use the config 802.11 antenna selection command.

```
config 802.11 {a | b} antenna selection {internal | external} cisco_ap
```

Syntax Description

- **a**
 - Specifies the 802.11a network.

- **b**
 - Specifies the 802.11b/g network.

- **internal**
 - Specifies the internal antenna.

- **external**
 - Specifies the external antenna.

- **cisco_ap**
 - Cisco lightweight access point name.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure access point AP02 on an 802.11b network to use the internal antenna:

```
(Cisco Controller) >config 802.11a antenna selection internal AP02
```
config 802.11b 11gSupport

To enable or disable the Cisco wireless LAN solution 802.11g network, use the `config 802.11b 11gSupport` command.

```
config 802.11b 11gSupport { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the 802.11g network.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11g network.</td>
</tr>
</tbody>
</table>

Command Default

The default network for Cisco wireless LAN solution 802.11g is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you enter the `config 802.11b 11gSupport { enable | disable }` command, disable the 802.11 Cisco radio with the `config 802.11 disable` command.

After you configure the support for the 802.11g network, use the `config 802.11 enable` command to enable the 802.11 radio.

Note

To disable an 802.11a, 802.11b and/or 802.11g network for an individual wireless LAN, use the `config wlan radio` command.

The following example shows how to enable the 802.11g network:

```
(Cisco Controller) > config 802.11b 11gSupport enable
Changing the 11gSupport will cause all the APs to reboot when you enable 802.11b network.
Are you sure you want to continue? (y/n) n
11gSupport not changed!
```
config 802.11b preamble

To change the 802.11b preamble as defined in subclause 18.2.2.2 to **long** (slower, but more reliable) or **short** (faster, but less reliable), use the `config 802.11b preamble` command.

```
config 802.11b preamble {long | short}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td>Specifies the long 802.11b preamble.</td>
</tr>
<tr>
<td>short</td>
<td>Specifies the short 802.11b preamble.</td>
</tr>
</tbody>
</table>

Command Default

The default 802.11b preamble value is short.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must reboot the Cisco Wireless LAN Controller (reset system) with save to implement this command.

This parameter must be set to **long** to optimize this Cisco wireless LAN controller for some clients, including SpectraLink NetLink telephones.

This command can be used any time that the CLI interface is active.

The following example shows how to change the 802.11b preamble to short:

```
(Cisco Controller) > config 802.11b preamble short
(Cisco Controller) > (reset system with save)
```
config 802.11h channelswitch

To configure an 802.11h channel switch announcement, use the config 802.11h channelswitch command.

```
config 802.11h channelswitch {enable {loud | quiet} | disable}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the 802.11h channel switch announcement.</td>
</tr>
<tr>
<td>loud</td>
<td>Enables the 802.11h channel switch announcement in the loud mode. The 802.11h-enabled clients can send packets while switching channel.</td>
</tr>
<tr>
<td>quiet</td>
<td>Enables 802.11h-enabled clients to stop transmitting packets immediately because the AP has detected radar and client devices should also quit transmitting to reduce interference.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11h channel switch announcement.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6 | • This command was introduced in a release earlier than Release 7.6.
 • The loud and quiet parameters were introduced. |

The following example shows how to disable an 802.11h switch announcement:

```
(Cisco Controller) > config 802.11h channelswitch disable
```
config 802.11h powerconstraint

To configure the 802.11h power constraint value, use the `config 802.11h powerconstraint` command.

`config 802.11h powerconstraint value`

Syntax Description

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>802.11h power constraint value.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the 802.11h power constraint to 5:

```
(Cisco Controller) >config 802.11h powerconstraint 5
```
config 802.11h setchannel

To configure a new channel using 802.11h channel announcement, use the `config 802.11h setchannel` command.

```
config 802.11h setchannel cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a new channel using the 802.11h channel:

```
(Cisco Controller) > config 802.11h setchannel ap02
```
config 802.11 11nsupport

To enable 802.11n support on the network, use the `config 802.11 11nsupport` command.

```
config 802.11 {a | b} 11nsupport {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network settings.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network settings.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 802.11n support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11n support.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the 802.11n support on an 802.11a network:

```
(Cisco Controller) >config 802.11a 11nsupport enable
```
config 802.11 11nsupport a-mpdu tx priority

To specify the aggregation method used for 802.11n packets, use the **config 802.11 11nsupport a-mpdu tx priority** command.

```
config 802.11 (a | b) 11nsupport a-mpdu tx priority (0-7 | all) {enable | disable}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>0-7</td>
<td>Specifies the aggregated MAC protocol data unit priority level between 0 through 7.</td>
</tr>
<tr>
<td>all</td>
<td>Configures all of the priority levels at once.</td>
</tr>
<tr>
<td>enable</td>
<td>Specifies the traffic associated with the priority level uses A-MPDU transmission.</td>
</tr>
<tr>
<td>disable</td>
<td>Specifies the traffic associated with the priority level uses A-MSDU transmission.</td>
</tr>
</tbody>
</table>

Command Default

Priority 0 is enabled.

Usage Guidelines

Aggregation is the process of grouping packet data frames together rather than transmitting them separately. Two aggregation methods are available: Aggregated MAC Protocol Data Unit (A-MPDU) and Aggregated MAC Service Data Unit (A-MSDU). A-MPDU is performed in the software whereas A-MSDU is performed in the hardware.

Aggregated MAC Protocol Data Unit priority levels assigned per traffic type are as follows:

- 1—Background
- 2—Spare
- 0—Best effort
- 3—Excellent effort
- 4—Controlled load
- 5—Video, less than 100-ms latency and jitter
- 6—Voice, less than 10-ms latency and jitter
- 7—Network control
- all—Configure all of the priority levels at once.

Note Configure the priority levels to match the aggregation method used by the clients.
The following example shows how to configure all the priority levels at once so that the traffic associated with the priority level uses A-MSDU transmission:

(Cisco Controller) > config 802.11a 11nsupport a-mpdu tx priority all enable
config 802.11 11nsupport a-mpdu tx scheduler

To configure the 802.11n-5 GHz A-MPDU transmit aggregation scheduler, use the config 802.11 11nsupport a-mpdu tx scheduler command.

```
config 802.11 {a | b} 11nsupport a-mpdu tx scheduler {enable | disable | timeout rt timeout-value}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the 802.11n-5 GHz A-MPDU transmit aggregation scheduler.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the 802.11n-5 GHz A-MPDU transmit aggregation scheduler.</td>
</tr>
<tr>
<td><code>timeout rt</code></td>
<td>Configures the A-MPDU transmit aggregation scheduler realtime traffic timeout.</td>
</tr>
<tr>
<td><code>timeout-value</code></td>
<td>Timeout value in milliseconds. The valid range is between 1 millisecond to 1000 milliseconds.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

Ensure that the 802.11 network is disabled before you enter this command.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the A-MPDU transmit aggregation scheduler realtime traffic timeout of 100 milliseconds:

```
(Cisco Controller) > config 802.11 11nsupport a-mpdu tx scheduler timeout rt 100
```
config 802.11 11nsupport antenna

To configure an access point to use a specific antenna, use the config 802.11 11nsupport antenna command.

```
config 802.11 { a | b } 11nsupport antenna cisco_ap { A | B | C | D } { enable | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a/n network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Access point.</td>
</tr>
<tr>
<td>A/B/C/D</td>
<td>Specifies an antenna port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the configuration.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the configuration.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure transmission to a single antenna for legacy orthogonal frequency-division multiplexing:

```
(Cisco Controller) > config 802.11 11nsupport antenna AP1 C enable
```
config 802.11 11nsupport guard-interval

To configure the guard interval, use the `config 802.11 11nsupport guard-interval` command.

```
config 802.11 {a | b} 11nsupport guard-interval {any | long}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Enables either a short or a long guard interval.</td>
</tr>
<tr>
<td>long</td>
<td>Enables only a long guard interval.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a long guard interval:

```
(Cisco Controller) > config 802.11 11nsupport guard-interval long
```
To specify the modulation and coding scheme (MCS) rates at which data can be transmitted between the access point and the client, use the `config 802.11 11nsupport mcs tx` command.

```bash
config 802.11 { a | b } 11nsupport mcs tx { 0-15 } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>11nsupport</code></td>
<td>Specifies support for 802.11n devices.</td>
</tr>
<tr>
<td><code>mcs tx</code></td>
<td>Specifies the modulation and coding scheme data rates as follows:</td>
</tr>
<tr>
<td></td>
<td>• 0 (7 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 1 (14 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 2 (21 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 3 (29 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 4 (43 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 5 (58 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 6 (65 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 7 (72 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 8 (14 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 9 (29 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 10 (43 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 11 (58 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 12 (87 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 13 (116 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 14 (130 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• 15 (144 Mbps)</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables this configuration.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables this configuration.</td>
</tr>
</tbody>
</table>

Command Default: None
The following example shows how to specify MCS rates:

(Cisco Controller) >config 802.11a 11nsupport mcs tx 5 enable
To configure the Reduced Interframe Space (RIFS) between data frames and its acknowledgment, use the `config 802.11 11nsupport rifs` command.

```
cfg 802.11 {a | b} 11nsupport rifs {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RIFS for the 802.11 network.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RIFS for the 802.11 network.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable RIFS:

```
(config Controller) > config 802.11a 11nsupport rifs enable
```
config 802.11 antenna diversity

To configure the diversity option for 802.11 antennas, use the `config 802.11 antenna diversity` command.

```
config 802.11 {a | b} antenna diversity {enable | sideA | sideB} cisco_ap
```

Syntax Description

- **a**
 - Specifies the 802.11a network.

- **b**
 - Specifies the 802.11b/g network.

- **enable**
 - Enables the diversity.

- **sideA**
 - Specifies the diversity between the internal antennas and an external antenna connected to the Cisco lightweight access point left port.

- **sideB**
 - Specifies the diversity between the internal antennas and an external antenna connected to the Cisco lightweight access point right port.

- **cisco_ap**
 - Cisco lightweight access point name.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable antenna diversity for AP01 on an 802.11b network:

```
(Cisco Controller) >config 802.11a antenna diversity enable AP01
```

The following example shows how to enable diversity for AP01 on an 802.11a network, using an external antenna connected to the Cisco lightweight access point left port (sideA):

```
(Cisco Controller) >config 802.11a antenna diversity sideA AP01
```
config 802.11 antenna extAntGain

To configure external antenna gain for an 802.11 network, use the `config 802.11 antenna extAntGain` command.

```
config 802.11 {a | b} antenna extAntGain antenna_gain cisco_ap
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>antenna_gain</code></td>
<td>Antenna gain in 0.5 dBm units (for example, 2.5 dBm = 5).</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you enter the `config 802.11 antenna extAntGain` command, disable the 802.11 Cisco radio with the `config 802.11 disable` command.

After you configure the external antenna gain, use the `config 802.11 enable` command to enable the 802.11 Cisco radio.

The following example shows how to configure an 802.11a external antenna gain of 0.5 dBm for AP1:

(Cisco Controller) > `config 802.11 antenna extAntGain 1 AP1`
config 802.11 antenna mode

To configure the Cisco lightweight access point to use one internal antenna for an 802.11 sectorized 180-degree coverage pattern or both internal antennas for an 802.11 360-degree omnidirectional pattern, use the `config 802.11 antenna mode` command.

```
config 802.11 {a | b} antenna mode {omni | sectorA | sectorB} cisco_ap
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>omni</td>
<td>Specifies to use both internal antennas.</td>
</tr>
<tr>
<td>sectorA</td>
<td>Specifies to use only the side A internal antenna.</td>
</tr>
<tr>
<td>sectorB</td>
<td>Specifies to use only the side B internal antenna.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure access point AP01 antennas for a 360-degree omnidirectional pattern on an 802.11b network:

```
(Cisco Controller) >config 802.11 antenna mode omni AP01
```
config 802.11 antenna selection

To select the internal or external antenna selection for a Cisco lightweight access point on an 802.11 network, use the **config 802.11 antenna selection** command.

```
config 802.11 {a | b} antenna selection {internal | external} cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>internal</td>
<td>Specifies the internal antenna.</td>
</tr>
<tr>
<td>external</td>
<td>Specifies the external antenna.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default: None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure access point AP02 on an 802.11b network to use the internal antenna:

```
(Cisco Controller) >config 802.11a antenna selection internal AP02
```
config 802.11 channel

To configure an 802.11 network or a single access point for automatic or manual channel selection, use the config 802.11 channel command.

```plaintext
config 802.11 {a | b} channel {global [auto | once | off | restart]} | ap {ap_name [global | channel]}
```

Syntax Description

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `global`: Specifies the 802.11a operating channel that is automatically set by RRM and overrides the existing configuration setting.
- `auto`: (Optional) Specifies that the channel is automatically set by Radio Resource Management (RRM) for the 802.11a radio.
- `once`: (Optional) Specifies that the channel is automatically set once by RRM.
- `off`: (Optional) Specifies that the automatic channel selection by RRM is disabled.
- `restarts`: (Optional) Restarts the aggressive DCA cycle.
- `ap_name`: Access point name.
- `channel`: Manual channel number to be used by the access point. The supported channels depend on the specific access point used and the regulatory region.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When configuring 802.11 channels for a single lightweight access point, enter the config 802.11 disable command to disable the 802.11 network. Enter the config 802.11 channel command to set automatic channel selection by Radio Resource Management (RRM) or manually set the channel for the 802.11 radio, and enter the config 802.11 enable command to enable the 802.11 network.

Note

See the Channels and Maximum Power Settings for Cisco Aironet Lightweight Access Points document for the channels supported by your access point. The power levels and available channels are defined by the country code setting and are regulated on a country-by-country basis.
The following example shows how to have RRM automatically configure the 802.11a channels for automatic channel configuration based on the availability and interference:

(Cisco Controller) >config 802.11a channel global auto

The following example shows how to configure the 802.11b channels one time based on the availability and interference:

(Cisco Controller) >config 802.11b channel global once

The following example shows how to turn 802.11a automatic channel configuration off:

(Cisco Controller) >config 802.11a channel global off

The following example shows how to configure the 802.11b channels in access point AP01 for automatic channel configuration:

(Cisco Controller) >config 802.11b AP01 channel global

The following example shows how to configure the 802.11a channel 36 in access point AP01 as the default channel:

(Cisco Controller) >config 802.11a channel AP01 36
config 802.11 channel ap

To set the operating radio channel for an access point, use the config 802.11 channel ap command.

```plaintext
config 802.11 {a | b} channel ap cisco_ap {global | channel_no}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco access point.</td>
</tr>
<tr>
<td>global</td>
<td>Enables auto-RF on the designated access point.</td>
</tr>
<tr>
<td>channel_no</td>
<td>Default channel from 1 to 26, inclusive.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable auto-RF for access point AP01 on an 802.11b network:

```
(Cisco Controller) > config 802.11b channel ap AP01 global
```
config 802.11 chan_width

To configure the channel width for a particular access point, use the `config 802.11 chan_width` command.

```
config 802.11 { a | b } chan_width cisco_ap { 20 | 40 | 80 | 160 | best }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Configures the 802.11a radio on slot 1 and 802.11ac radio on slot 2.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g radio.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Access point.</td>
</tr>
<tr>
<td>20</td>
<td>Allows the radio to communicate using only 20-MHz channels.</td>
</tr>
<tr>
<td></td>
<td>Choose this option for legacy 802.11a radios, 20-MHz 802.11n radios, or 40-MHz 802.11n radios that you want to operate using only 20-MHz channels.</td>
</tr>
<tr>
<td>40</td>
<td>Allows 40-MHz 802.11n radios to communicate using two adjacent 20-MHz channels bonded together.</td>
</tr>
<tr>
<td>80</td>
<td>Allows 80-MHz 802.11ac radios to communicate using two adjacent 40-MHz channels bonded together.</td>
</tr>
<tr>
<td>160</td>
<td>Allows 160-MHz 802.11ac radios to communicate.</td>
</tr>
<tr>
<td>best</td>
<td>In this mode, the device selects the optimum bandwidth channel.</td>
</tr>
</tbody>
</table>

Command Default

The default channel width is 20.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.3</td>
<td>This command was enhanced in this release with the inclusion of 160 MHz and best channel bandwidth modes.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This parameter can be configured only if the primary channel is statically assigned.

Caution

We recommend that you do not configure 40-MHz channels in the 2.4-GHz radio band because severe co-channel interference can occur.

Statically configuring an access point’s radio for 20-MHz or 40-MHz mode overrides the globally configured DCA channel width setting (configured by using the `config advanced 802.11 channel dca chan-width` command).
command). If you change the static configuration back to global on the access point radio, the global DCA configuration overrides the channel width configuration that the access point was previously using.

The following example shows how to configure the channel width for access point AP01 on an 802.11 network using 40-MHz channels:

(Cisco Controller) >config 802.11a chan_width AP01 40
config 802.11 rx-sop threshold

To configure the threshold values for Receiver Start of Packet Detection Threshold (RxSOP) for each 802.11 band, use the **config 802.11 rx-sop threshold** command.

```
config {802.11a | 802.11b} rx-sop threshold {high | medium | low | auto} {ap ap_name | default}
```

Syntax Description

- **802.11a**: Configures an RxSOP threshold value for the 802.11a network.
- **802.11b**: Configures an RxSOP threshold value for the 802.11b network.
- **high**: Configures the high RxSOP threshold value for 802.11a/b networks.
- **medium**: Configures the medium RxSOP threshold value for 802.11a/b networks.
- **low**: Configures the low RxSOP threshold value for 802.11a/b networks.
- **auto**: Configures an auto RxSOP threshold value for 802.11a/b networks. When you choose auto, the access point determines the best RxSOP threshold value.
- **ap ap_name**: Configures the RxSOP threshold value on an access point of an 802.11 network.
- **default**: Configures the RxSOP threshold value on all access points of an 802.11 network.

Command Default

The default RxSOP threshold option is auto.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

RxSOP determines the Wi-Fi signal level in dBm at which an access point's radio demodulates and decodes a packet. Higher the level, less sensitive the radio is and smaller the receiver cell size. The table below shows the RxSOP threshold values for high, medium and low levels for each 802.11 band.

Table 3: RxSOP Thresholds

<table>
<thead>
<tr>
<th>802.11 Band</th>
<th>High Threshold</th>
<th>Medium Threshold</th>
<th>Low Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 GHz</td>
<td>−76 dBm</td>
<td>−78 dBm</td>
<td>−80 dBm</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>−79 dBm</td>
<td>−82 dBm</td>
<td>−85 dBm</td>
</tr>
</tbody>
</table>

The following example shows how to configure a high RxSOP threshold value for all access points in the 802.11a band:

```
(Cisco Controller) > config 802.11a rx-sop threshold high
```
config 802.11 txPower

To configure the transmit power level for all access points or a single access point in an 802.11 network, use the `config 802.11 txPower` command.

```
config 802.11 {a | b} txPower {global {power_level | auto | max | min | once} | ap cisco_ap}
```

Syntax Description

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **global**: Configures the 802.11 transmit power level for all lightweight access points.
- **auto**: (Optional) Specifies the power level is automatically set by Radio Resource Management (RRM) for the 802.11 Cisco radio.
- **once**: (Optional) Specifies the power level is automatically set once by RRM.
- **power_level**: (Optional) Manual Transmit power level number for the access point.
- **ap**: Configures the 802.11 transmit power level for a specified lightweight access point.
- **ap_name**: Access point name.

Command Default

The command default (`global, auto`) is for automatic configuration by RRM.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The supported power levels depend on the specific access point used and the regulatory region. For example, the 1240 series access point supports eight levels and the 1200 series access point supports six levels. See the Channels and Maximum Power Settings for Cisco Aironet Lightweight Access Points document for the maximum transmit power limits for your access point. The power levels and available channels are defined by the country code setting and are regulated on a country-by-country basis.

The following example shows how to automatically set the 802.11a radio transmit power level in all lightweight access points:

```
(Cisco Controller) > config 802.11a txPower auto
```

The following example shows how to manually set the 802.11b radio transmit power to level 5 for all lightweight access points:
The following example shows how to automatically set the 802.11b radio transmit power for access point AP1:

(Cisco Controller) > config 802.11b txPower AP1 global

The following example shows how to manually set the 802.11a radio transmit power to power level 2 for access point AP1:

(Cisco Controller) > config 802.11b txPower AP1 2

Related Commands

- show ap config 802.11a
- config 802.11b txPower
config 802.11 beamforming

To enable or disable Beamforming (ClientLink) on the network or on individual radios, enter the `config 802.11 beamforming` command.

```
config 802.11 {a | b} beamforming {global | ap ap_name} {enable | disable}
```

Syntax Description

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **global**: Specifies all lightweight access points.
- **ap ap_name**: Specifies the Cisco access point name.
- **enable**: Enables beamforming.
- **disable**: Disables beamforming.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enable Beamforming on the network, it is automatically enabled for all the radios applicable to that network type.

Follow these guidelines for using Beamforming:

- Beamforming is supported only for legacy orthogonal frequency-division multiplexing (OFDM) data rates (6, 9, 12, 18, 24, 36, 48, and 54 mbps).

 Note Beamforming is not supported for complementary-code keying (CCK) data rates (1, 2, 5.5, and 11 Mbps).

- Beamforming is supported only on access points that support 802.11n (AP1250 and AP1140).
- Two or more antennas must be enabled for transmission.
- All three antennas must be enabled for reception.
- OFDM rates must be enabled.

 If the antenna configuration restricts operation to a single transmit antenna, or if OFDM rates are disabled, Beamforming is not used.

The following example shows how to enable Beamforming on the 802.11a network:

```
(Cisco Controller) > config 802.11 beamforming global enable
```
To configure an 802.11h channel switch announcement, use the `config 802.11h channelswitch` command.

```
config 802.11h channelswitch { enable { loud | quiet } | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the 802.11h channel switch announcement.</td>
</tr>
<tr>
<td>loud</td>
<td>Enables the 802.11h channel switch announcement in the loud mode. The 802.11h-enabled clients can send packets while switching channel.</td>
</tr>
<tr>
<td>quiet</td>
<td>Enables 802.11h-enabled clients to stop transmitting packets immediately because the AP has detected radar and client devices should also quit transmitting to reduce interference.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11h channel switch announcement.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>• This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td></td>
<td>• The <code>loud</code> and <code>quiet</code> parameters were introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to disable an 802.11h switch announcement:

```
(Cisco Controller) > config 802.11h channelswitch disable
```
config 802.11h powerconstraint

To configure the 802.11h power constraint value, use the config 802.11h powerconstraint command.

`config 802.11h powerconstraint value`

Syntax Description

| value | 802.11h power constraint value. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the 802.11h power constraint to 5:

(Cisco Controller) > `config 802.11h powerconstraint 5`
config 802.11h setchannel

To configure a new channel using 802.11h channel announcement, use the config 802.11h setchannel command.

config 802.11h setchannel cisco_ap

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a new channel using the 802.11h channel:

(Cisco Controller) > config 802.11h setchannel ap02
config 802.11h smart dfs

To enable or disable 802.11h smart-dfs feature, use the `config 802.11h smart-dfs` command.

```
config 802.11h smart-dfs { enable | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables non occupancy time doubling for Radar interfere channel.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables non occupancy time doubling and use legacy time (30 minutes) for Radar interference channel. Use disable to match legacy DFS behavior.</td>
</tr>
</tbody>
</table>

Command Default

Enabled

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.141.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.11h smart-dfs:

```
(Cisco Controller) > config 802.11h smart-dfs enable
```
config 802.11 11nsupport

To enable 802.11n support on the network, use the **config 802.11 11nsupport** command.

```
config 802.11 {a | b} 11nsupport {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network settings.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network settings.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 802.11n support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11n support.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the 802.11n support on an 802.11a network:

```
(Cisco Controller) > config 802.11a 11nsupport enable
```
config 802.11 11nsupport a-mpdu tx priority

To specify the aggregation method used for 802.11n packets, use the `config 802.11 11nsupport a-mpdu tx priority` command.

```
config 802.11 { a | b } 11nsupport a-mpdu tx priority { 0-7 | all } { enable | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>0-7</td>
<td>Specifies the aggregated MAC protocol data unit priority level between 0 through 7.</td>
</tr>
<tr>
<td>all</td>
<td>Configures all of the priority levels at once.</td>
</tr>
<tr>
<td>enable</td>
<td>Specifies the traffic associated with the priority level uses A-MPDU transmission.</td>
</tr>
<tr>
<td>disable</td>
<td>Specifies the traffic associated with the priority level uses A-MSDU transmission.</td>
</tr>
</tbody>
</table>

Command Default

Priority 0 is enabled.

Usage Guidelines

Aggregation is the process of grouping packet data frames together rather than transmitting them separately. Two aggregation methods are available: Aggregated MAC Protocol Data Unit (A-MPDU) and Aggregated MAC Service Data Unit (A-MSDU). A-MPDU is performed in the software whereas A-MSDU is performed in the hardware.

Aggregated MAC Protocol Data Unit priority levels assigned per traffic type are as follows:

- 1—Background
- 2—Spare
- 0—Best effort
- 3—Excellent effort
- 4—Controlled load
- 5—Video, less than 100-ms latency and jitter
- 6—Voice, less than 10-ms latency and jitter
- 7—Network control
- all—Configure all of the priority levels at once.

Note Configure the priority levels to match the aggregation method used by the clients.
The following example shows how to configure all the priority levels at once so that the traffic associated with the priority level uses A-MSDU transmission:

(Cisco Controller) >config 802.11a 11nsupport a-mpdu tx priority all enable

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
config 802.11 11nsupport a-mpdu tx scheduler

To configure the 802.11n-5 GHz A-MPDU transmit aggregation scheduler, use the `config 802.11 11nsupport a-mpdu tx scheduler` command.

```
config 802.11 { a | b } 11nsupport a-mpdu tx scheduler { enable | disable | timeout rt timeout-value }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the 802.11n-5 GHz A-MPDU transmit aggregation scheduler.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11n-5 GHz A-MPDU transmit aggregation scheduler.</td>
</tr>
<tr>
<td>timeout rt</td>
<td>Configures the A-MPDU transmit aggregation scheduler realtime traffic timeout.</td>
</tr>
<tr>
<td>timeout-value</td>
<td>Timeout value in milliseconds. The valid range is between 1 millisecond to 1000 milliseconds.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

Ensure that the 802.11 network is disabled before you enter this command.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the A-MPDU transmit aggregation scheduler realtime traffic timeout of 100 milliseconds:

```
(Cisco Controller) > config 802.11 11nsupport a-mpdu tx scheduler timeout rt 100
```
config 802.11 11nsupport antenna

To configure an access point to use a specific antenna, use the config 802.11 11nsupport antenna command.

```plaintext
config 802.11 { a | b } 11nsupport antenna cisco_ap { A | B | C | D } { enable | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a/n network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Access point.</td>
</tr>
<tr>
<td>A/B/C/D</td>
<td>Specifies an antenna port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the configuration.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the configuration.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure transmission to a single antenna for legacy orthogonal frequency-division multiplexing:

```plaintext
(Cisco Controller) > config 802.11 11nsupport antenna AP1 C enable
```
config 802.11 11nsupport guard-interval

To configure the guard interval, use the config 802.11 11nsupport guard-interval command.

```bash
config 802.11 {a | b} 11nsupport guard-interval {any | long}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Enables either a short or a long guard interval.</td>
</tr>
<tr>
<td>long</td>
<td>Enables only a long guard interval.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>Release Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a long guard interval:

```bash
(Cisco Controller) >config 802.11 11nsupport guard-interval long
```
To specify the modulation and coding scheme (MCS) rates at which data can be transmitted between the access point and the client, use the `config 802.11 11nsupport mcs tx` command.

```
config 802.11 { a | b } 11nsupport mcs tx { 0-15 } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>11nsupport</td>
<td>Specifies support for 802.11n devices.</td>
</tr>
</tbody>
</table>
| mcs tx | Specifies the modulation and coding scheme data rates as follows:
| | • 0 (7 Mbps)
| | • 1 (14 Mbps)
| | • 2 (21 Mbps)
| | • 3 (29 Mbps)
| | • 4 (43 Mbps)
| | • 5 (58 Mbps)
| | • 6 (65 Mbps)
| | • 7 (72 Mbps)
| | • 8 (14 Mbps)
| | • 9 (29 Mbps)
| | • 10 (43 Mbps)
| | • 11 (58 Mbps)
| | • 12 (87 Mbps)
| | • 13 (116 Mbps)
| | • 14 (130 Mbps)
| | • 15 (144 Mbps)

| enable | Enables this configuration. |
| disable | Disables this configuration. |

Command Default: None
The following example shows how to specify MCS rates:

(Cisco Controller) >config 802.11a 11nsupport mcs tx 5 enable
config 802.11 11nsupport rifs

To configure the Reduced Interframe Space (RIFS) between data frames and its acknowledgment, use the `config 802.11 11nsupport rifs` command.

```plaintext
config 802.11 { a | b } 11nsupport rifs { enable | disable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RIFS for the 802.11 network.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RIFS for the 802.11 network.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable RIFS:

```plaintext
(Cisco Controller) > config 802.11a 11nsupport rifs enable
```
config 802.11 beacon period

To change the beacon period globally for an 802.11a, 802.11b, or other supported 802.11 network, use the `config 802.11 beacon period` command.

```
config 802.11 {a | b} beacon period time_units
```

Note
Disable the 802.11 network before using this command. See the “Usage Guidelines” section.

Syntax Description

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>time_units</td>
<td>Beacon interval in time units (TU). One TU is 1024 microseconds.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

In Cisco wireless LAN solution 802.11 networks, all Cisco lightweight access point wireless LANs broadcast a beacon at regular intervals. This beacon notifies clients that the 802.11a service is available and allows the clients to synchronize with the lightweight access point.

Before you change the beacon period, make sure that you have disabled the 802.11 network by using the `config 802.11 disable` command. After changing the beacon period, enable the 802.11 network by using the `config 802.11 enable` command.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to configure an 802.11a network for a beacon period of 120 time units:

```
(Cisco Controller) > config 802.11 beacon period 120
```

Related Commands

- `show 802.11a`
- `config 802.11b beaconperiod`
- `config 802.11a disable`
- `config 802.11a enable`
To configure the default Call Admission Control (CAC) parameters for the 802.11a and 802.11b/g network, use the `config 802.11 cac defaults` command.

```
config 802.11 { a | b } cac defaults
```

Syntax Description
- `a` Specifies the 802.11a network.
- `b` Specifies the 802.11b/g network.

Usage Guidelines

CAC commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 { a | b } disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 { a | b } cac voice acm enable` or `config 802.11 { a | b } cac video acm enable` command.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to configure the default CAC parameters for the 802.11a network:

```
(Cisco Controller) > config 802.11 cac defaults
```

Related Commands

- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video acm`
- `config 802.11 cac video sip`
- `config 802.11 cac video roam-bandwidth`
config 802.11 cac load-based
config 802.11 cac media-stream
config 802.11 cac multimedia
config 802.11 cac video cac-method
debug cac
config 802.11 cac video acm

To enable or disable video Call Admission Control (CAC) for the 802.11a or 802.11b/g network, use the `config 802.11 cac video acm` command.

```
config 802.11 {a | b} cac video acm {enable | disable}
```

Syntax Description

- **a**
 - Specifies the 802.11a network.
- **b**
 - Specifies the 802.11b/g network.
- **enable**
 - Enables video CAC settings.
- **disable**
 - Disables video CAC settings.

Command Default

The default video CAC settings for the 802.11a or 802.11b/g network is disabled.

Usage Guidelines

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable`, or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the video CAC for the 802.11a network:

```
(Cisco Controller) > config 802.11 cac video acm enable
```

The following example shows how to disable the video CAC for the 802.11b network:

```
(Cisco Controller) > config 802.11 cac video acm disable
```

Related Commands

- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video roam-bandwidth`
config 802.11 cac video tspec-inactivity-timeout
To configure the Call Admission Control (CAC) method for video applications on the 802.11a or 802.11b/g network, use the `config 802.11 cac video cac-method` command.

```
config 802.11 {a | b} cac video cac-method {static | load-based}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>static</td>
<td>Enables the static CAC method for video applications on the 802.11a or 802.11b/g network. Static or bandwidth-based CAC enables the client to specify how much bandwidth or shared medium time is required to accept a new video request and in turn enables the access point to determine whether it is capable of accommodating the request.</td>
</tr>
<tr>
<td>load-based</td>
<td>Enables the load-based CAC method for video applications on the 802.11a or 802.11b/g network. Load-based or dynamic CAC incorporates a measurement scheme that takes into account the bandwidth consumed by all traffic types from itself, from co-channel access points, and by collocated channel interference. Load-based CAC also covers the additional bandwidth consumption results from PHY and channel impairment. The access point admits a new call only if the channel has enough unused bandwidth to support that call. Load-based CAC is not supported if SIP-CAC is enabled.</td>
</tr>
</tbody>
</table>

Command Default
Static.

Usage Guidelines
CAC commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable or config 802.11 {a | b} cac video acm enable` command.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.
Video CAC consists of two parts: Unicast Video-CAC and MC2UC CAC. If you need only Unicast Video-CAC, you must configure only static mode. If you need only MC2UC CAC, you must configure Static or Load-based CAC. Load-based CAC is not supported if SIP-CAC is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable the static CAC method for video applications on the 802.11a network:

```
(Cisco Controller) > config 802.11 cac video cac-method static
```

Related Commands

- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video acm`
- `config 802.11 cac video sip`
- `config 802.11 cac video roam-bandwidth`
- `config 802.11 cac load-based`
- `config 802.11 cac defaults`
- `config 802.11 cac media-stream`
- `config 802.11 cac multimedia`
- `debug cac`
To enable or disable load-based Call Admission Control (CAC) for video applications on the 802.11a or 802.11b/g network, use the `config 802.11 cac video load-based` command.

```
config 802.11 { a | b } cac video load-based { enable | disable }
```

Syntax Description

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables load-based CAC for video applications on the 802.11a or 802.11b/g network.</td>
</tr>
<tr>
<td></td>
<td>Load-based or dynamic CAC incorporates a measurement scheme that takes into account the bandwidth consumed by all traffic types from itself, from co-channel access points, and by collocated channel interference. Load-based CAC also covers the additional bandwidth consumption results from PHY and channel impairment. The access point admits a new call only if the channel has enough unused bandwidth to support that call.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables load-based CAC method for video applications on the 802.11a or 802.11b/g network.</td>
</tr>
</tbody>
</table>

Command Default

Disabled.

Usage Guidelines

CAC commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 { a | b } disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 { a | b } cac voice acm enable` command or `config 802.11 { a | b } cac video acm enable` command.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the `Cisco Wireless LAN Controller Configuration Guide` for your release.

Video CAC consists of two parts: Unicast Video-CAC and MC2UC CAC. If you need only Unicast Video-CAC, you must configure only static mode. If you need only MC2UC CAC, you must configure Static or Load-based CAC. Load-based CAC is not supported if SIP-CAC is enabled.
Load-based CAC is not supported if SIP-CAC is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable load-based CAC method for video applications on the 802.11a network:

(Cisco Controller) > `config 802.11 cac video load-based enable`

Related Commands

- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video acm`
- `config 802.11 cac video sip`
- `config 802.11 cac video roam-bandwidth`
- `config 802.11 cac load-based`
- `config 802.11 cac defaults`
- `config 802.11 cac media-stream`
- `config 802.11 cac multimedia`
- `config 802.11 cac video cac-method`
- `debug cac`
config 802.11 cac video max-bandwidth

To set the percentage of the maximum bandwidth allocated to clients for video applications on the 802.11a or 802.11b/g network, use the **config 802.11 cac video max-bandwidth** command.

```
config 802.11 {a | b} cac video max-bandwidth bandwidth
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>bandwidth</td>
<td>Bandwidth percentage value from 5 to 85%.</td>
</tr>
</tbody>
</table>

Command Default

The default maximum bandwidth allocated to clients for video applications on the 802.11a or 802.11b/g network is 0%.

Usage Guidelines

The maximum radio frequency (RF) bandwidth cannot exceed 85% for voice and video. Once the client reaches the value specified, the access point rejects new calls on this network.

If this parameter is set to zero (0), the controller assumes that you do not want to allocate any bandwidth and allows all bandwidth requests.

Call Admission Control (CAC) commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the **config wlan disable wlan_id** command.
- Disable the radio network you want to configure by entering the **config 802.11 {a | b} disable network** command.
- Save the new configuration by entering the **save config command**.
- Enable voice or video CAC for the network you want to configure by entering the **config 802.11 {a | b} cac voice acm enable**, or **config 802.11 {a | b} cac video acm enable** commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the percentage of the maximum allocated bandwidth for video applications on the selected radio band:

```
(Cisco Controller) > config 802.11 cac video max-bandwidth 50
```
Related Commands

- `config 802.11 cac video acm`
- `config 802.11 cac video roam-bandwidth`
- `config 802.11 cac voice stream-size`
- `config 802.11 cac voice roam-bandwidth`
config 802.11 cac media-stream

To configure media stream Call Admission Control (CAC) voice and video quality parameters for 802.11a and 802.11b networks, use the config 802.11 cac media-stream command.

config 802.11 {a | b} cac media-stream multicast-direct {max-retry-percent retry-percentage | min-client-rate dot11-rate}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>multicast-direct</td>
<td>Configures CAC parameters for multicast-direct media streams.</td>
</tr>
<tr>
<td>max-retry-percent</td>
<td>Configures the percentage of maximum retries that are allowed for multicast-direct media streams.</td>
</tr>
<tr>
<td>retry-percentage</td>
<td>Percentage of maximum retries that are allowed for multicast-direct media streams.</td>
</tr>
<tr>
<td>min-client-rate</td>
<td>Configures the minimum transmission data rate to the client for multicast-direct media streams.</td>
</tr>
<tr>
<td>dot11-rate</td>
<td>Minimum transmission data rate to the client for multicast-direct media streams. Rate in kbps at which the client can operate. If the transmission data rate is below this rate, either the video will not start or the client may be classified as a bad client. The bad client video can be demoted for better effort QoS or subject to denial. The available data rates are 6000, 9000, 12000, 18000, 24000, 36000, 48000, 54000, and 11n rates.</td>
</tr>
</tbody>
</table>

Command Default

The default value for the maximum retry percent is 80. If it exceeds 80, either the video will not start or the client might be classified as a bad client. The bad client video will be demoted for better effort QoS or subject to denial.

Usage Guidelines

CAC commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the config wlan disable wlan_id command.
- Disable the radio network you want to configure by entering the config 802.11 {a | b} disable network command.
- Save the new configuration by entering the save config command.
- Enable voice or video CAC for the network you want to configure by entering the config 802.11 {a | b} cac voice acm enable or config 802.11{a | b} cac video acm enable command.
For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the Cisco Wireless LAN Controller Configuration Guide for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the maximum retry percent for multicast-direct media streams as 90 on a 802.11a network:

```
(Cisco Controller) > config 802.11 cac media-stream multicast-direct max-retry-percent 90
```

Related Commands

- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video acm`
- `config 802.11 cac video sip`
- `config 802.11 cac video roam-bandwidth`
- `config 802.11 cac load-based`
- `config 802.11 cac defaults`
- `config 802.11 cac multimedia`
- `debug cac`
config 802.11 cac multimedia

To configure the CAC media voice and video quality parameters for 802.11a and 802.11b networks, use the `config 802.11 cac multimedia` command.

```plaintext
config 802.11 {a | b} cac multimedia max-bandwidth bandwidth
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>max-bandwidth</code></td>
<td>Configures the percentage of maximum bandwidth allocated to Wi-Fi Multimedia (WMM) clients for voice and video applications on the 802.11a or 802.11b/g network.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>Percentage of the maximum bandwidth allocated to WMM clients for voice and video applications on the 802.11a or 802.11b/g network. Once the client reaches the specified value, the access point rejects new calls on this radio band. The range is from 5 to 85%.</td>
</tr>
</tbody>
</table>

Command Default

The default maximum bandwidth allocated to Wi-Fi Multimedia (WMM) clients for voice and video applications on the 802.11a or 802.11b/g network is 85%.

Usage Guidelines

Call Admission Control (CAC) commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` command.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the percentage of the maximum bandwidth allocated to WMM clients for voice and video applications on the 802.11a network:
(Cisco Controller) > config 802.11 cac multimedia max-bandwidth 80

Related Commands

- show cac voice stats
- show cac voice summary
- show cac video stats
- show cac video summary
- config 802.11 cac video tspec-inactivity-timeout
- config 802.11 cac video max-bandwidth
- config 802.11 cac video acm
- config 802.11 cac video sip
- config 802.11 cac video roam-bandwidth
- config 802.11 cac load-based
- config 802.11 cac defaults
- debug cac
config 802.11 cac video roam-bandwidth

To configure the percentage of the maximum allocated bandwidth reserved for roaming video clients on the 802.11a or 802.11b/g network, use the `config 802.11 cac video roam-bandwidth` command.

```
config 802.11 {a | b} cac video roam-bandwidth bandwidth
```

Syntax Description

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `bandwidth`: Bandwidth percentage value from 5 to 85%.

Command Default

The maximum allocated bandwidth reserved for roaming video clients on the 802.11a or 802.11b/g network is 0%.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The controller reserves the specified bandwidth from the maximum allocated bandwidth for roaming video clients.

- **Note**
 - If this parameter is set to zero (0), the controller assumes that you do not want to do any bandwidth allocation and, therefore, allows all bandwidth requests.

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` command.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

The following example shows how to specify the percentage of the maximum allocated bandwidth reserved for roaming video clients on the selected radio band:

```
(Cisco Controller) > config 802.11 cac video roam-bandwidth 10
```
Related Commands

- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video acm`
- `config 802.11 cac video cac-method`
- `config 802.11 cac video sip`
- `config 802.11 cac video load-based`
To enable or disable video Call Admission Control (CAC) for nontraffic specifications (TSPEC) SIP clients using video applications on the 802.11a or 802.11b/g network, use the `config 802.11 cac video sip` command.

```
config 802.11 {a | b} cac video sip {enable | disable}
```

Syntax Description

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **enable**: Enables video CAC for non-TSPEC SIP clients using video applications on the 802.11a or 802.11b/g network.
 - When you enable video CAC for non-TSPEC SIP clients, you can use applications like Facetime and CIUS video calls.
- **disable**: Disables video CAC for non-TSPEC SIP clients using video applications on the 802.11a or 802.11b/g network.

Command Default

None

Usage Guidelines

CAC commands for video applications on the 802.11a or 802.11b/g network require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Gold.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` command.
- For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.
- Enable call snooping on the WLAN on which the SIP client is present by entering the `config wlan call-snoop enable wlan_id` command.

The following example shows how to enable video CAC for non-TSPEC SIP clients using video applications on the 802.11a network:

```
(Cisco Controller) > config 802.11 cac video sip enable
```

Related Commands

- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
config 802.11 cac video acm
config 802.11 cac video cac-method
config 802.11 cac video load-based
config 802.11 cac video roam-bandwidth
To process or ignore the Call Admission Control (CAC) Wi-Fi Multimedia (WMM) traffic specifications (TSPEC) inactivity timeout received from an access point, use the `config 802.11 cac video tspec-inactivity-timeout` command.

```
config 802.11 {a | b} cac video tspec-inactivity-timeout {enable | ignore}
```

Syntax Description
- `a`: Specifies the 802.11a network.
- `ab`: Specifies the 802.11b/g network.
- `enable`: Processes the TSPEC inactivity timeout messages.
- `ignore`: Ignores the TSPEC inactivity timeout messages.

Command Default
The default CAC WMM TSPEC inactivity timeout received from an access point is disabled (ignore).

Usage Guidelines
CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

This example shows how to process the response to TSPEC inactivity timeout messages received from an access point:

```
(Cisco Controller) > config 802.11a cac video tspec-inactivity-timeout enable
```

This example shows how to ignore the response to TSPEC inactivity timeout messages received from an access point:

```
(Cisco Controller) > config 802.11a cac video tspec-inactivity-timeout ignore
```

Related Commands
- `config 802.11 cac video acm`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 cac video roam-bandwidth`
config 802.11 cac voice acm

To enable or disable bandwidth-based voice Call Admission Control (CAC) for the 802.11a or 802.11b/g network, use the `config 802.11 cac voice acm` command.

```
config 802.11 {a | b} cac voice acm {enable | disable}
```

Syntax Description

- `a` Specifies the 802.11a network.
- `b` Specifies the 802.11b/g network.
- `enable` Enables the bandwidth-based CAC.
- `disable` Disables the bandwidth-based CAC.

Command Default

The default bandwidth-based voice CAC for the 802.11a or 802.11b/g network id disabled.

Usage Guidelines

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

This example shows how to enable the bandwidth-based CAC:

```
(Cisco Controller) > config 802.11c cac voice acm enable
```

This example shows how to disable the bandwidth-based CAC:

```
(Cisco Controller) > config 802.11b cac voice acm disable
```
To set the percentage of the maximum bandwidth allocated to clients for voice applications on the 802.11a or 802.11b/g network, use the `config 802.11 cac voice max-bandwidth` command.

```
config 802.11 {a | b} cac voice max-bandwidth bandwidth
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>bandwidth</td>
<td>Bandwidth percentage value from 5 to 85%.</td>
</tr>
</tbody>
</table>

Command Default

The default maximum bandwidth allocated to clients for voice applications on the 802.11a or 802.11b/g network is 0%.

Usage Guidelines

The maximum radio frequency (RF) bandwidth cannot exceed 85% for voice and video. Once the client reaches the value specified, the access point rejects new calls on this network.

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the percentage of the maximum allocated bandwidth for voice applications on the selected radio band:

```
(Cisco Controller) > config 802.11a cac voice max-bandwidth 50
```

Related Commands

- `config 802.11 cac voice roam-bandwidth`
- `config 802.11 cac voice stream-size`
- `config 802.11 exp-bwreq`
config 802.11 tsm
config wlan save
show wlan
show wlan summary
config 802.11 cac voice tspec-inactivity-timeout
config 802.11 cac voice load-based
config 802.11 cac video acm
config 802.11 cac voice roam-bandwidth

To configure the percentage of the Call Admission Control (CAC) maximum allocated bandwidth reserved for roaming voice clients on the 802.11a or 802.11b/g network, use the `config 802.11 cac voice roam-bandwidth` command.

```
config 802.11 {a | b} cac voice roam-bandwidth bandwidth
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>bandwidth</td>
<td>Bandwidth percentage value from 0 to 85%.</td>
</tr>
</tbody>
</table>

Command Default

The default CAC maximum allocated bandwidth reserved for roaming voice clients on the 802.11a or 802.11b/g network is 85%.

Usage Guidelines

The maximum radio frequency (RF) bandwidth cannot exceed 85% for voice and video. The controller reserves the specified bandwidth from the maximum allocated bandwidth for roaming voice clients.

If this parameter is set to zero (0), the controller assumes you do not want to allocate any bandwidth and therefore allows all bandwidth requests.

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the Cisco Wireless LAN Controller Configuration Guide for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the percentage of the maximum allocated bandwidth reserved for roaming voice clients on the selected radio band:

```
(Cisco Controller) > config 802.11 cac voice roam-bandwidth 10
```
Related Commands

- `config 802.11 cac voice acm`
- `config 802.11 cac voice max-bandwidth`
- `config 802.11 cac voice stream-size`
config 802.11 cac voice tspec-inactivity-timeout

To process or ignore the Wi-Fi Multimedia (WMM) traffic specifications (TSPEC) inactivity timeout received from an access point, use the `config 802.11 cac voice tspec-inactivity-timeout` command.

```
config 802.11 {a | b} cac voice tspec-inactivity-timeout {enable | ignore}
```

Syntax Description
- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `enable`: Processes the TSPEC inactivity timeout messages.
- `ignore`: Ignores the TSPEC inactivity timeout messages.

Command Default
The default WMM TSPEC inactivity timeout received from an access point is disabled (ignore).

Usage Guidelines
Call Admission Control (CAC) commands require that the WLAN you are planning to modify is configured for Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the voice TSPEC inactivity timeout messages received from an access point:

```
(Cisco Controller) > config 802.11 cac voice tspec-inactivity-timeout enable
```

Related Commands
- `config 802.11 cac voice load-based`
- `config 802.11 cac voice roam-bandwidth`
- `config 802.11 cac voice acm`
config 802.11 cac voice max-bandwidth
config 802.11 cac voice stream-size
config 802.11 cac voice load-based

To enable or disable load-based Call Admission Control (CAC) for the 802.11a or 802.11b/g network, use the `config 802.11 cac voice load-based` command.

```
config 802.11 {a | b} cac voice load-based {enable | disable}
```

Syntax Description

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `enable`: Enables load-based CAC.
- `disable`: Disables load-based CAC.

Command Default

The default load-based CAC for the 802.11a or 802.11b/g network is disabled.

Usage Guidelines

CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the voice load-based CAC parameters:

(Cisco Controller) > `config 802.11a cac voice load-based enable`

The following example shows how to disable the voice load-based CAC parameters:

(Cisco Controller) > `config 802.11a cac voice load-based disable`

Related Commands

- `config 802.11 cac voice tspec-inactivity-timeout`
- `config 802.11 cac video max-bandwidth`
config 802.11 cac video acm
config 802.11 cac voice stream-size
config 802.11 cac voice max-calls

Note
Do not use the `config 802.11 cac voice max-calls` command if the SIP call snooping feature is disabled and if the SIP based Call Admission Control (CAC) requirements are not met.

To configure the maximum number of voice call supported by the radio, use the `config 802.11 cac voice max-calls` command.

`config 802.11 {a | b} cac voice max-calls number`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Number of calls to be allowed per radio.</td>
</tr>
</tbody>
</table>

Command Default
The default maximum number of voice call supported by the radio is 0, which means that there is no maximum limit check for the number of calls.

Usage Guidelines
CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable network` command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the maximum number of voice calls supported by radio:

```
(Cisco Controller) > config 802.11 cac voice max-calls 10
```

Related Commands
`config 802.11 cac voice roam-bandwidth`
config 802.11 cac voice stream-size
config 802.11 exp-bwreq
cfg 802.11 cac voice tspec-inactivity-timeout
cfg 802.11 cac voice load-based
cfg 802.11 cac video acm
config 802.11 cac voice sip bandwidth

Note
SIP bandwidth and sample intervals are used to compute per call bandwidth for the SIP-based Call Admission Control (CAC).

To configure the bandwidth that is required per call for the 802.11a or 802.11b/g network, use the `config 802.11 cac voice sip bandwidth` command.

```plaintext
config 802.11 {a | b} cac voice sip bandwidth bw_kbps sample-interval number_msecs
```

Syntax Description
- `a`
 - Specifies the 802.11a network.
- `b`
 - Specifies the 802.11b/g network.
- `bw_kbps`
 - Bandwidth in kbps.
- `sample-interval`
 - Specifies the packetization interval for SIP codec.
- `number_msecs`
 - Packetization sample interval in msecs. The sample interval for SIP codec is 20 seconds.

Command Default
None

Usage Guidelines
CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable` network command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the bandwidth and voice packetization interval for a SIP codec:

```plaintext
(Cisco Controller) > config 802.11 cac voice sip bandwidth 10 sample-interval 40
```
Related Commands

- `config 802.11 cac voice acm`
- `config 802.11 cac voice load-based`
- `config 802.11 cac voice max-bandwidth`
- `config 802.11 cac voice roam-bandwidth`
- `config 802.11 cac voice tspec-inactivity-timeout`
- `config 802.11 exp-bwreq`
config 802.11 cac voice sip codec

To configure the Call Admission Control (CAC) codec name and sample interval as parameters and to calculate the required bandwidth per call for the 802.11a or 802.11b/g network, use the `config 802.11 cac voice sip codec` command.

```plaintext
config 802.11 {a | b} cac voice sip codec {g711 | g729} sample-interval number_msecs
```

Syntax Description
- `a` Specifies the 802.11a network.
- `b` Specifies the 802.11b/g network.
- `g711` Specifies CAC parameters for the SIP G711 codec.
- `g729` Specifies CAC parameters for the SIP G729 codec.
- `sample-interval` Specifies the packetization interval for SIP codec.
- `number_msecs` Packetization interval in msecs. The sample interval for SIP codec value is 20 seconds.

Command Default
The default CAC codec parameter is g711.

Usage Guidelines
CAC commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable` network command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the codec name and sample interval as parameters for SIP G711 codec:

```
(Cisco Controller) > config 802.11a cac voice sip codec g711 sample-interval 40
```
This example shows how to configure the codec name and sample interval as parameters for SIP G729 codec:

(Cisco Controller) > config 802.11a cac voice sip codec g729 sample-interval 40

Related Commands

- config 802.11 cac voice acm
- config 802.11 cac voice load-based
- config 802.11 cac voice max-bandwidth
- config 802.11 cac voice roam-bandwidth
- config 802.11 cac voice tspec-inactivity-timeout
- config 802.11 exp-bwreq
config 802.11 cac voice stream-size

To configure the number of aggregated voice Wi-Fi Multimedia (WMM) traffic specification (TSPEC) streams at a specified data rate for the 802.11a or 802.11b/g network, use the `config 802.11 cac voice stream-size` command.

```
config 802.11 {a | b} cac voice stream-size stream_size number mean_data_rate max-streams mean_data_rate
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>stream-size</td>
<td>Configures the maximum data rate for the stream.</td>
</tr>
<tr>
<td>stream_size</td>
<td>Range of stream size is between 84000 and 92100.</td>
</tr>
<tr>
<td>number</td>
<td>Number (1 to 5) of voice streams.</td>
</tr>
<tr>
<td>mean_data_rate</td>
<td>Configures the mean data rate.</td>
</tr>
<tr>
<td>max-streams</td>
<td>Configures the mean data rate of a voice stream.</td>
</tr>
<tr>
<td>mean_data_rate</td>
<td>Mean data rate (84 to 91.2 kbps) of a voice stream.</td>
</tr>
</tbody>
</table>

Command Default

The default number of streams is 2 and the mean data rate of a stream is 84 kbps.

Usage Guidelines

Call Admission Control (CAC) commands require that the WLAN you are planning to modify is configured for the Wi-Fi Multimedia (WMM) protocol and the quality of service (QoS) level be set to Platinum.

Before you can configure CAC parameters on a network, you must complete the following prerequisites:

- Disable all WLANs with WMM enabled by entering the `config wlan disable wlan_id` command.
- Disable the radio network you want to configure by entering the `config 802.11 {a | b} disable` network command.
- Save the new configuration by entering the `save config` command.
- Enable voice or video CAC for the network you want to configure by entering the `config 802.11 {a | b} cac voice acm enable` or `config 802.11 {a | b} cac video acm enable` commands.

For complete instructions, see the “Configuring Voice and Video Parameters” section in the “Configuring Controller Settings” chapter of the *Cisco Wireless LAN Controller Configuration Guide* for your release.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the number of aggregated voice traffic specifications stream with the stream size 5 and the mean data rate of 85000 kbps:
(Cisco Controller) > config 802.11 cac voice stream-size 5 max-streams size 85

Related Commands

- config 802.11 cac voice acm
- config 802.11 cac voice load-based
- config 802.11 cac voice max-bandwidth
- config 802.11 cac voice roam-bandwidth
- config 802.11 cac voice tspec-inactivity-timeout
- config 802.11 exp-bwreq
config 802.11 cleanair

To enable or disable CleanAir for the 802.11 a or 802.11 b/g network, use the **config 802.11 cleanair** command.

Syntax

```plaintext
config 802.11 {a | b} cleanair {alarm {air-quality (disable | enable | threshold alarm_threshold) | device (disable device_type | enable device_type | reporting (disable | enable) | unclassified (disable | enable | threshold alarm_threshold) | device (disable device_type | enable device_type | reporting (disable | enable) | network (disable | enable) | cisco_ap} | enable {network | cisco_ap})
```

Syntax Description

- **a**
 - Specifies the 802.11a network.
- **b**
 - Specifies the 802.11b/g network.
- **alarm**
 - Configure 5-GHz cleanair alarms.
- **air-quality**
 - Configures the 5-GHz air quality alarm.
- **enable**
 - Enables the CleanAir settings.
- **disable**
 - Disables the CleanAir settings.
- **threshold**
 - Configure the 5-GHz air quality alarm threshold.
- **alarm_threshold**
 - Air quality alarm threshold (1 is bad air quality, and 100 is good air quality).
- **device**
 - Configures the 5-GHz cleanair interference devices alarm.
Device types. The device types are as follows:

- **802.11-nonstd**—Devices using nonstandard Wi-Fi channels.
- **802.11-inv**—Devices using spectrally inverted Wi-Fi signals.
- **superag**—802.11 SuperAG devices.
- **all**—All interference device types.
- **cont-tx**—Continuous Transmitter.
- **dect-like**—Digital Enhanced Cordless Communication (DECT) like phone.
- **tdd-tx**—TDD Transmitter.
- **jammer**—Jammer.
- **canopy**—Canopy devices.
- **video**—Video cameras.
- **wimax-mobile**—WiMax Mobile.
- **wimax-fixed**—WiMax Fixed.

device_type

Configure the 5-GHz CleanAir interference devices alarm reporting.

reporting

Configure the 5-GHz air quality alarm on exceeding unclassified category severity.

unclassified

5-GHz Cisco APs.

network

Name of the access point to which the command applies.

cisco_ap

The default CleanAir settings for the 802.11 a or 802.11 b/g network is disabled.

Command Default

This command was introduced in a release earlier than Release 7.6.

Command History

The following example shows how to enable the CleanAir settings on access point ap_24:

```
(Cisco Controller) > config 802.11a cleanair enable ap_24
```
config 802.11 cleanair device

To configure CleanAir interference device types, use the **config 802.11 cleanair device** command.

```
config 802.11 { a | b } cleanair device { enable | disable | reporting { enable | disable } }
```

device_type

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the CleanAir reporting for the interference device type.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the CleanAir reporting for the interference device type.</td>
</tr>
<tr>
<td>reporting</td>
<td>Configures CleanAir interference device reporting.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 5-GHz Cleanair interference devices reporting.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 5-GHz Cleanair interference devices reporting.</td>
</tr>
</tbody>
</table>
| **device_type** | Interference device type. The device type are as follows:

- 802.11-nonstd—Devices using nonstandard WiFi channels.
- 802.11-inv—Devices using spectrally inverted WiFi signals.
- superag—802.11 SuperAG devices.
- all—all interference device types.
- cont-tx—Continuous Transmitter.
- dect-like—Digital Enhanced Cordless Communication (DECT) like phone.
- tdd-tx—TDD Transmitter.
- jammer—Jammer.
- canopy—Canopy devices.
- video—Video cameras.
- wimax-mobile—WiMax Mobile.
- wimax-fixed—WiMax Fixed.
The default setting CleanAir reporting for the interference device type is disabled.

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
</tr>
<tr>
<td>7.6</td>
</tr>
</tbody>
</table>

The following example shows how to enable the CleanAir reporting for the device type jammer:

(Cisco Controller) > `config 802.11a cleanair device enable jammer`

The following example shows how to disable the CleanAir reporting for the device type video:

(Cisco Controller) > `config 802.11a cleanair device disable video`

The following example shows how to enable the CleanAir interference device reporting:

(Cisco Controller) > `config 802.11a cleanair device reporting enable`
config 802.11 cleanair alarm

To configure the triggering of the air quality alarms, use the `config 802.11 cleanair alarm` command.

```bash
config 802.11 {a | b} cleanair alarm {air-quality {disable | enable | threshold \textit{alarm_threshold}}
| device {disable device_type | enable device_type | reporting {disable | enable} | unclassified {disable | enable | threshold \textit{alarm_threshold}}} }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>air-quality</td>
<td>Configures the 5-GHz air quality alarm.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 5-GHz air quality alarm.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 5-GHz air quality alarm.</td>
</tr>
<tr>
<td>threshold</td>
<td>Configures the 5-GHz air quality alarm threshold.</td>
</tr>
<tr>
<td>\textit{alarm_threshold}</td>
<td>Air quality alarm threshold (1 is bad air quality, and 100 is good air quality).</td>
</tr>
<tr>
<td>device</td>
<td>Configures the 5-GHz cleanair interference devices alarm.</td>
</tr>
<tr>
<td>all</td>
<td>Configures all the device types at once.</td>
</tr>
<tr>
<td>reporting</td>
<td>Configures the 5-GHz CleanAir interference devices alarm reporting.</td>
</tr>
<tr>
<td>unclassified</td>
<td>Configures the 5-GHz air quality alarm on exceeding unclassified category severity.</td>
</tr>
</tbody>
</table>
Device types. The device types are as follows:

- 802.11-nonstd—Devices using nonstandard Wi-Fi channels.
- 802.11-inv—Devices using spectrally inverted Wi-Fi signals.
- superag—802.11 SuperAG devices.
- all—All interference device types.
- cont-tx—Continuous Transmitter.
- dect-like—Digital Enhanced Cordless Communication (DECT) like phone.
- tdd-tx—TDD Transmitter.
- jammer—Jammer.
- canopy—Canopy devices.
- video—Video cameras.
- wimax-mobile—WiMax Mobile.
- wimax-fixed—WiMax Fixed.

The default setting for 5-GHz air quality alarm is enabled.

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the CleanAir alarm to monitor the air quality:

(Cisco Controller) > config 802.11a cleanair alarm air-quality enable

The following example shows how to enable the CleanAir alarm for the device type video:

(Cisco Controller) > config 802.11a cleanair alarm device enable video

The following example shows how to enable alarm reporting for the CleanAir interference devices:

(Cisco Controller) > config 802.11a cleanair alarm device reporting enable
config 802.11 disable

To disable radio transmission for an entire 802.11 network or for an individual Cisco radio, use the `config 802.11 disable` command.

```plaintext
config 802.11 {a | b} disable {network | cisco_ap}
```

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Configures the 802.11a on slot 1 and 802.11ac radio on slot 2. radio.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>network</td>
<td>Disables transmission for the entire 802.11a network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Individual Cisco lightweight access point radio.</td>
</tr>
</tbody>
</table>

Command Default

The transmission is enabled for the entire network by default.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- You must use this command to disable the network before using many config 802.11 commands.
- This command can be used any time that the CLI interface is active.

The following example shows how to disable the entire 802.11a network:

```
(Cisco Controller) >config 802.11a disable network
```

The following example shows how to disable access point AP01 802.11b transmissions:

```
(Cisco Controller) >config 802.11b disable AP01
```
config 802.11 dtpc

To enable or disable the Dynamic Transmit Power Control (DTPC) setting for an 802.11 network, use the `config 802.11 dtpc` command.

```
config 802.11 {a | b} dtpc {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the support for this command.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the support for this command.</td>
</tr>
</tbody>
</table>

Command Default

The default DTPC setting for an 802.11 network is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable DTPC for an 802.11a network:

```
(Cisco Controller) > config 802.11a dtpc disable
```
config 802.11 enable

To enable radio transmission for an entire 802.11 network or for an individual Cisco radio, use the config 802.11 enable command.

```
config 802.11 { a | b } enable { network | cisco_ap }
```

Syntax Description

- **a**
 - Configures the 802.11a radio on slot 1 and 802.11ac on slot 2.
- **b**
 - Specifies the 802.11b/g network.
- **network**
 - Disables transmission for the entire 802.11a network.
- **cisco_ap**
 - Individual Cisco lightweight access point radio.

Command Default

The transmission is enabled for the entire network by default.

Usage Guidelines

Use this command with the config 802.11 disable command when configuring 802.11 settings. This command can be used any time that the CLI interface is active.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable radio transmission for the entire 802.11a network:

```plaintext
(Cisco Controller) > config 802.11a enable network
```

The following example shows how to enable radio transmission for AP1 on an 802.11b network:

```plaintext
(Cisco Controller) > config 802.11b enable AP1
```

Related Commands

- show sysinfo
- show 802.11a
- config wlan radio
- config 802.11a disable
- config 802.11b disable
- config 802.11b enable
- config 802.11b 11gSupport enable
- config 802.11b 11gSupport disable
config 802.11 exp-bwreq

To enable or disable the Cisco Client eXtension (CCX) version 5 expedited bandwidth request feature for an 802.11 radio, use the **config 802.11 exp-bwreq** command.

```
config 802.11 {a | b} exp-bwreq {enable | disable}
```

Syntax Description
- **a**
 - Specifies the 802.11a network.
- **b**
 - Specifies the 802.11b/g network.
- **enable**
 - Enables the expedited bandwidth request feature.
- **disable**
 - Disables the expedited bandwidth request feature.

Command Default
The expedited bandwidth request feature is disabled by default.

Usage Guidelines
When this command is enabled, the controller configures all joining access points for this feature.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the CCX expedited bandwidth settings:

```
(Cisco Controller) > config 802.11a exp-bwreq enable
Cannot change Exp Bw Req mode while 802.11a network is operational.
```

The following example shows how to disable the CCX expedited bandwidth settings:

```
(Cisco Controller) > config 802.11a exp-bwreq disable
```

Related Commands
- `show 802.11a`
- `show ap stats 802.11a`
config 802.11 fragmentation

To configure the fragmentation threshold on an 802.11 network, use the config 802.11 fragmentation command.

```
config 802.11 { a | b } fragmentation threshold
```

Note
This command can only be used when the network is disabled using the config 802.11 disable command.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>threshold</td>
<td>Number between 256 and 2346 bytes (inclusive).</td>
</tr>
</tbody>
</table>

Command Default
None.

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

This example shows how to configure the fragmentation threshold on an 802.11a network with the threshold number of 6500 bytes:

```
(Cisco Controller) > config 802.11a fragmentation 6500
```

Related Commands
- config 802.11b fragmentation
- show 802.11b
- show ap auto-rtf
config 802.11 l2roam rf-params

To configure 802.11a or 802.11b/g Layer 2 client roaming parameters, use the `config 802.11 l2roam rf-params` command.

```plaintext
config 802.11 { a | b } l2roam rf-params { default | custom min_rssi roam_hyst scan_thresh trans_time }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>default</td>
<td>Restores Layer 2 client roaming RF parameters to default values.</td>
</tr>
<tr>
<td>custom</td>
<td>Configures custom Layer 2 client roaming RF parameters.</td>
</tr>
<tr>
<td>min_rssi</td>
<td>Minimum received signal strength indicator (RSSI) that is required for the client to associate to the access point. If the client’s average received signal power dips below this threshold, reliable communication is usually impossible. Clients must already have found and roamed to another access point with a stronger signal before the minimum RSSI value is reached. The valid range is –80 to –90 dBm, and the default value is –85 dBm.</td>
</tr>
<tr>
<td>roam_hyst</td>
<td>How much greater the signal strength of a neighboring access point must be in order for the client to roam to it. This parameter is intended to reduce the amount of roaming between access points if the client is physically located on or near the border between the two access points. The valid range is 2 to 4 dB, and the default value is 2 dB.</td>
</tr>
<tr>
<td>scan_thresh</td>
<td>Minimum RSSI that is allowed before the client should roam to a better access point. When the RSSI drops below the specified value, the client must be able to roam to a better access point within the specified transition time. This parameter also provides a power-save method to minimize the time that the client spends in active or passive scanning. For example, the client can scan slowly when the RSSI is above the threshold and scan more rapidly when the RSSI is below the threshold. The valid range is –70 to –77 dBm, and the default value is –72 dBm.</td>
</tr>
</tbody>
</table>
Maximum time allowed for the client to detect a suitable neighboring access point to roam to and to complete the roam, whenever the RSSI from the client’s associated access point is below the scan threshold. The valid range is 1 to 10 seconds, and the default value is 5 seconds.

Note: For high-speed client roaming applications in outdoor mesh environments, we recommend that you set the transition time to 1 second.

Command Default

The default minimum RSSI is -85 dBm. The default signal strength of a neighboring access point is 2 dB. The default scan threshold value is -72 dBm. The default time allowed for the client to detect a suitable neighboring access point to roam to and to complete the roam is 5 seconds.

Usage Guidelines

For high-speed client roaming applications in outdoor mesh environments, we recommend that you set the `trans_time` to 1 second.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure custom Layer 2 client roaming parameters on an 802.11a network:

```
(Cisco Controller) > config 802.11 l2roam rf-params custom -80 2 -70 7
```

Related Commands

- `show advanced 802.11 l2roam`
- `show l2tp`
config 802.11 max-clients

To configure the maximum number of clients per access point, use the **config 802.11 max-clients** command.

```
config 802.11 {a | b} max-clients max-clients
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>max-clients</td>
<td>Configures the maximum number of client connections per access point.</td>
</tr>
<tr>
<td>max-clients</td>
<td>Maximum number of client connections per access point. The range is from 1 to 200.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the maximum number of clients at 22:

```
(Cisco Controller) > config 802.11 max-clients 22
```

Related Commands

- `show ap config 802.11a`
- `config 802.11b rate`
config 802.11 media-stream multicast-direct

To configure the media stream multicast-direct parameters for the 802.11 networks, use the config 802.11 media-stream multicast-direct command.

config 802.11 { a | b } media-stream multicast-direct { admission-besteffort { enable | disable } | { client-maximum | radio-maximum } { value | no-limit } | enable | disable }

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>802.11a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>admission-besteffort</td>
<td>Enable media stream to best-effort queue.</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables multicast-direct on a 2.4-GHz or a 5-GHz band.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables multicast-direct on a 2.4-GHz or a 5-GHz band.</td>
<td></td>
</tr>
<tr>
<td>client-maximum</td>
<td>Specifies the maximum number of streams allowed on a client.</td>
<td></td>
</tr>
<tr>
<td>radio-maximum</td>
<td>Specifies the maximum number of streams allowed on a 2.4-GHz or a 5-GHz band.</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td>Number of streams allowed on a client or on a 2.4-GHz or a 5-GHz band, between 1 to 20.</td>
<td></td>
</tr>
<tr>
<td>no-limit</td>
<td>Specifies the unlimited number of streams allowed on a client or on a 2.4-GHz or a 5-GHz band.</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before you configure the media stream multicast-direct parameters on a 802.11 network, ensure that the network is nonoperational.

This example shows how to enable a media stream multicast-direct settings on an 802.11a network:

> config 802.11a media-stream multicast-direct enable

This example shows how to admit the media stream to the best-effort queue:

> config 802.11a media-stream multicast-direct admission-besteffort enable
This example shows how to set the maximum number of streams allowed on a client:

```plaintext
> config 802.11a media-stream multicast-direct client-maximum 10
```

Related Commands

- `config 802.11 media-stream video-redirect`
- `show 802.11a media-stream name`
- `show media-stream group summary`
- `show media-stream group detail`
config 802.11 media-stream video-redirect

To configure the media stream video-redirect for the 802.11 networks, use the config 802.11 media-stream video-redirect command.

config 802.11 {a | b} media-stream video-redirect {enable | disable}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>802.11a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td></td>
<td>enable</td>
<td>Enables traffic redirection.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Disables traffic redirection.</td>
</tr>
</tbody>
</table>

Command Default

None.

Usage Guidelines

Before you configure the media stream video-redirect on a 802.11 network, ensure that the network is nonoperational.

This example shows how to enable media stream traffic redirection on an 802.11a network:

> config 802.11a media-stream video-redirect enable

Related Commands

config 802.11 media-stream multicast-redirect
show 802.11a media-stream name
show media-stream group summary
show media-stream group detail
config 802.11 multicast data-rate

To configure the minimum multicast data rate, use the `config 802.11 multicast data-rate` command.

```
config 802.11 {a | b} multicast data-rate data_rate [ap ap_name | default]
```

Syntax Description

- **data_rate**: Minimum multicast data rates. The options are 6, 9, 12, 18, 24, 36, 48, 54. Enter 0 to specify that APs will dynamically adjust the number of the buffer allocated for multicast.

- **ap_name**: Specific AP radio in this data rate.

- **default**: Configures all APs radio in this data rate.

Command Default

The default is 0 where the configuration is disabled and the multicast rate is the lowest mandatory data rate and unicast client data rate.

Usage Guidelines

When you configure the data rate without the AP name or `default` keyword, you globally reset all the APs to the new value and update the controller global default with this new data rate value. If you configure the data rate with `default` keyword, you only update the controller global default value and do not reset the value of the APs that are already joined to the controller. The APs that join the controller after the new data rate value is set receives the new data rate value.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure minimum multicast data rate settings:

```
(Cisco Controller) > config 802.11 multicast data-rate 12
```
config 802.11 rate

To set mandatory and supported operational data rates for an 802.11 network, use the **config 802.11 rate** command.

```
config 802.11 { a | b } rate { disabled | mandatory | supported } rate
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>disabled</td>
<td>Disables a specific data rate.</td>
</tr>
<tr>
<td>mandatory</td>
<td>Specifies that a client supports the data rate in order to use the network.</td>
</tr>
<tr>
<td>supported</td>
<td>Specifies to allow any associated client that supports the data rate to use the network.</td>
</tr>
<tr>
<td>rate</td>
<td>Rate value of 6, 9, 12, 18, 24, 36, 48, or 54 Mbps.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

The data rates set with this command are negotiated between the client and the Cisco wireless LAN controller. If the data rate is set to **mandatory**, the client must support it in order to use the network. If a data rate is set as **supported** by the Cisco wireless LAN controller, any associated client that also supports that rate may communicate with the Cisco lightweight access point using that rate. It is not required that a client is able to use all the rates marked **supported** in order to associate.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the 802.11b transmission at a mandatory rate at 12 Mbps:

```
(Cisco Controller) > config 802.11b rate mandatory 12
```

Related Commands

- `show ap config 802.11a`
- `config 802.11b rate`
To configure the 802.11 RSSI Low Check feature, use the **config 802.11 rssi-check** command.

```
config 802.11 {a|b} rssi-check {enable|disable}
```

Syntax Description
- **rssi-check**: Configures the RSSI Low Check feature.
- **enable**: Enables the RSSI Low Check feature.
- **disable**: Disables the RSSI Low Check feature.

Command Default
- None

Command History
- **Release** 7.5
 - Modification: This command was introduced.
config 802.11 rssi-threshold

To configure the 802.11 RSSI Low Check threshold, use the config 802.11 rssi-threshold command.

```
config 802.11 {a|b} rssi-threshold value-in-dBm
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rssi-threshold</td>
<td>Configures the RSSI Low Check threshold value.</td>
</tr>
<tr>
<td>value-in-dBm</td>
<td>RSSI threshold value in dBm. The default value is –80 dBm.</td>
</tr>
</tbody>
</table>

Command Default
The default value of the RSSI Low Check threshold is –80 dBm.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The following example shows how to configure the RSSI threshold value to –70 dBm for an 802.11a network:

```
(Cisco Controller) > config 802.11a rssi-threshold –70
```
config 802.11 tsm

To enable or disable the video Traffic Stream Metric (TSM) option for the 802.11a or 802.11b/g network, use the `config 802.11 tsm` command.

```
config 802.11 {a | b} tsm {enable | disable}
```

Syntax Description

- `a` Specifies the 802.11a network.
- `b` Specifies the 802.11b/g network.
- `enable` Enables the video TSM settings.
- `disable` Disables the video TSM settings.

Command Default

By default, the TSM for the 802.11a or 802.11b/g network is disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the video TSM option for the 802.11b/g network:

```
(Cisco Controller) > config 802.11b tsm enable
```

The following example shows how to disable the video TSM option for the 802.11b/g network:

```
(Cisco Controller) > config 802.11b tsm disable
```

Related Commands

- `show ap stats`
- `show client tsm`
To change the 802.11b preamble as defined in subclause 18.2.2.2 to **long** (slower, but more reliable) or **short** (faster, but less reliable), use the `config 802.11b preamble` command.

```
config 802.11b preamble {long | short}
```

Syntax Description
- **long**: Specifies the long 802.11b preamble.
- **short**: Specifies the short 802.11b preamble.

Command Default
The default 802.11b preamble value is short.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- You must reboot the Cisco Wireless LAN Controller (reset system) with save to implement this command.
- This parameter must be set to **long** to optimize this Cisco wireless LAN controller for some clients, including SpectraLink NetLink telephones.
- This command can be used any time that the CLI interface is active.

The following example shows how to change the 802.11b preamble to short:

```
(Cisco Controller) >config 802.11b preamble short
(Cisco Controller) >(reset system with save)
```
Config Commands: a to i

- config aaa auth, on page 170
- config aaa auth mgmt, on page 171
- config acl apply, on page 172
- config acl counter, on page 173
- config acl create, on page 174
- config acl cpu, on page 175
- config acl delete, on page 176
- config acl layer2, on page 177
- config acl rule, on page 179
- config acl url-domain, on page 181
- config advanced 802.11 7920VSIEConfig, on page 182
- config advanced 802.11 channel add, on page 183
- config advanced 802.11 channel cleanair-event, on page 184
- config advanced 802.11 channel dca anchor-time, on page 185
- config advanced 802.11 channel dca chan-width-11n, on page 186
- config advanced 802.11 channel dca interval, on page 187
- config advanced 802.11 channel dca min-metric, on page 188
- config advanced 802.11 channel dca sensitivity, on page 189
- config advanced 802.11 channel foreign, on page 191
- config advanced 802.11 channel load, on page 192
- config advanced 802.11 channel noise, on page 193
- config advanced 802.11 channel outdoor-ap-dca, on page 194
- config advanced 802.11 channel pda-prop, on page 195
- config advanced 802.11 channel update, on page 196
- config advanced 802.11 coverage, on page 197
- config advanced 802.11 coverage exception global, on page 198
- config advanced 802.11 coverage fail-rate, on page 199
- config advanced 802.11 coverage level global, on page 200
- config advanced 802.11 coverage packet-count, on page 201
- config advanced 802.11 coverage rssi-threshold, on page 202
- config advanced 802.11 edca-parameters, on page 204
- config advanced 802.11 factory, on page 206
- config advanced 802.11 group-member, on page 207
- config advanced 802.11 group-mode, on page 208
- config advanced 802.11 logging channel, on page 209
- config advanced 802.11 logging coverage, on page 210
- config advanced 802.11 logging foreign, on page 211
- config advanced 802.11 logging load, on page 212
- config advanced 802.11 logging noise, on page 213
- config advanced 802.11 logging performance, on page 214
- config advanced 802.11 logging txpower, on page 215
- config advanced 802.11 monitor channel-list, on page 216
- config advanced 802.11 monitor coverage, on page 217
- config advanced 802.11 monitor load, on page 218
- config advanced 802.11 monitor mode, on page 219
- config advanced 802.11 monitor ndp-type, on page 220
- config advanced 802.11 monitor noise, on page 221
- config advanced 802.11 monitor signal, on page 222
- config advanced 802.11 optimized roaming, on page 223
- config advanced 802.11 packet, on page 224
- config advanced 802.11 profile clients, on page 226
- config advanced 802.11 profile customize, on page 227
- config advanced 802.11 profile foreign, on page 228
- config advanced 802.11 profile noise, on page 229
- config advanced 802.11 profile throughput, on page 230
- config advanced 802.11 profile utilization, on page 231
- config advanced 802.11 receiver, on page 232
- config advanced 802.11 tpc-version, on page 233
- config advanced 802.11 tpcv1-thresh, on page 234
- config advanced 802.11 tpcv2-intense, on page 235
- config advanced 802.11 tpcv2-per-chan, on page 236
- config advanced 802.11 tpcv2-thresh, on page 237
- config advanced 802.11 txpower-update, on page 238
- config advanced eap, on page 239
- config advanced hotspot, on page 241
- config advanced timers auth-timeout, on page 242
- config advanced timers eap-timeout, on page 243
- config advanced timers eap-identity-request-delay, on page 244
- config advanced timers, on page 245
- config advanced fastpath fastcache, on page 248
- config advanced fastpath pkt-capture, on page 249
- config advanced sip-preferred-call-no, on page 250
- config advanced sip-snooping-ports, on page 251
- config advanced backup-controller primary, on page 252
- config advanced backup-controller secondary, on page 253
- config advanced client-handoff, on page 254
- config advanced dot11-padding, on page 255
- config advanced assoc-limit, on page 256
- config advanced max-1x-sessions, on page 257
• config advanced rate, on page 258
• config advanced probe backoff, on page 259
• config advanced probe filter, on page 260
• config advanced probe limit, on page 261
• config advanced timers, on page 262
• config ap 802.1Xuser, on page 265
• config ap 802.1Xuser delete, on page 266
• config ap 802.1Xuser disable, on page 267
• config advanced dot11-padding, on page 268
• config ap, on page 269
• config ap aid-audit, on page 270
• config ap antenna band-mode, on page 271
• config ap atf 802.11, on page 272
• config ap atf 802.11 policy, on page 273
• config ap autoconvert, on page 274
• config ap bhrate, on page 275
• config ap bridgegroupname, on page 276
• config ap bridging, on page 277
• config ap cdp, on page 278
• config ap core-dump, on page 280
• config ap crash-file clear-all, on page 281
• config ap crash-file delete, on page 282
• config ap crash-file get-crash-file, on page 283
• config ap crash-file get-radio-core-dump, on page 284
• config ap dtls-cipher-suite, on page 285
• config ap ethernet duplex, on page 286
• config ap ethernet tag, on page 287
• config ap autoconvert, on page 288
• config ap flexconnect bridge, on page 289
• config ap flexconnect central-dhcp, on page 290
• config ap flexconnect local-split, on page 291
• config ap flexconnect policy, on page 292
• config ap flexconnect radius auth set, on page 293
• config ap flexconnect vlan, on page 294
• config ap flexconnect vlan add, on page 295
• config ap flexconnect vlan native, on page 296
• config ap flexconnect vlan wlan, on page 297
• config ap flexconnect web-auth, on page 298
• config ap flexconnect web-policy acl, on page 299
• config ap flexconnect wlan, on page 300
• config ap group-name, on page 301
• config ap hotspot, on page 302
• config ap image predownload, on page 309
• config ap image swap, on page 310
• config ap led-state, on page 311
• config ap link-encryption, on page 312
• config ap link-latency, on page 313
• config ap location, on page 314
• config ap logging syslog level, on page 315
• config ap logging syslog facility, on page 316
• config ap max-count, on page 318
• config ap mgmtuser add, on page 319
• config ap mgmtuser delete, on page 321
• config ap mode, on page 322
• config ap monitor-mode, on page 324
• config ap name, on page 325
• config ap packet-dump, on page 326
• config ap port, on page 329
• config ap power injector, on page 330
• config ap power pre-standard, on page 331
• config ap preferred-mode, on page 332
• config ap primary-base, on page 333
• config ap priority, on page 334
• config ap reporting-period, on page 335
• config ap reset, on page 336
• config ap retransmit interval, on page 337
• config ap retransmit count, on page 338
• config ap role, on page 339
• config ap rst-button, on page 340
• config ap secondary-base, on page 341
• config ap sniff, on page 342
• config ap ssh, on page 343
• config ap static-ip, on page 344
• config ap stats-timer, on page 346
• config ap syslog host global, on page 347
• config ap syslog host specific, on page 348
• config ap tcp-mss-adjust, on page 349
• config ap telnet, on page 350
• config ap tertiary-base, on page 351
• config ap tftp-downgrade, on page 352
• config ap username, on page 353
• config ap venue, on page 354
• config ap wlan, on page 359
• config atf 802.11, on page 360
• config atf policy, on page 361
• config auth-list add, on page 362
• config auth-list ap-policy, on page 363
• config auth-list delete, on page 364
• config auto-configure voice, on page 365
• config avc profile create, on page 368
• config avc profile delete, on page 369
• config avc profile rule, on page 370
• config band-select cycle-count, on page 372
• config band-select cycle-threshold, on page 373
• config band-select expire, on page 374
• config band-select client-rssi, on page 375
• config boot, on page 376
• config cdp, on page 377
• config certificate lsc, on page 378
• config certificate ssc, on page 380
• config certificate use-device-certificate webadmin, on page 381
• config client ccx clear-reports, on page 382
• config client ccx clear-results, on page 383
• config client ccx default-gw-ping, on page 384
• config client ccx dhcp-test, on page 385
• config client ccx dns-ping, on page 386
• config client ccx dns-resolve, on page 387
• config client ccx get-client-capability, on page 388
• config client ccx get-manufacturer-info, on page 389
• config client ccx get-operating-parameters, on page 390
• config client ccx get-profiles, on page 391
• config client ccx log-request, on page 392
• config client ccx send-message, on page 394
• config client ccx stats-request, on page 398
• config client ccx test-abort, on page 399
• config client ccx test-association, on page 400
• config client ccx test-dot1x, on page 401
• config client ccx test-profile, on page 402
• config client deauthenticate, on page 403
• config client location-calibration, on page 404
• config coredump, on page 405
• config coredump ftp, on page 406
• config coredump username, on page 407
• config country, on page 408
• config cts sxp, on page 409
• config custom-web ext-webauth-mode, on page 410
• config custom-web ext-webauth-url, on page 411
• config custom-web ext-webserver, on page 412
• config custom-web logout-popup, on page 413
• config custom-web radiusauth, on page 414
• config custom-web redirectUrl, on page 415
• config custom-web sleep-client, on page 416
• config custom-web webauth-type, on page 417
• config custom-web weblogo, on page 418
• config custom-web webmessage, on page 419
• config custom-web webtitle, on page 420
• config database size, on page 421
• config dhcp, on page 422
• config dhcp opt-82 format, on page 424
• config dhcp opt-82 remote-id, on page 425
• config dhcp proxy, on page 426
• config dhcp timeout, on page 427
• config exclusionlist, on page 428
• config flexconnect [ipv6] acl, on page 429
• config flexconnect [ipv6] acl rule, on page 430
• config flexconnect [ipv6] acl url-domain, on page 432
• config flexconnect arp-caching, on page 433
• config flexconnect avc profile, on page 434
• config flexconnect fallback-radio-shut, on page 435
• config flexconnect group, on page 436
• config flexconnect group vlan, on page 441
• config flexconnect group group-name dhcp overridden-interface, on page 442
• config flexconnect group web-auth, on page 443
• config flexconnect group web-policy, on page 444
• config flexconnect join min-latency, on page 445
• config flexconnect office-extend, on page 446
• config flow, on page 447
• config guest-lan, on page 448
• config guest-lan custom-web ext-webauth-url, on page 449
• config guest-lan custom-web global disable, on page 450
• config guest-lan custom-web login_page, on page 451
• config guest-lan custom-web webauth-type, on page 452
• config guest-lan ingress-interface, on page 453
• config guest-lan interface, on page 454
• config guest-lan mobility anchor, on page 455
• config guest-lan nac, on page 456
• config guest-lan security, on page 457
• config interface acl, on page 458
• config interface address, on page 459
• config interface address redundancy-management, on page 461
• config interface ap-manager, on page 462
• config interface create, on page 463
• config interface delete, on page 464
• config interface dhcp management, on page 465
• config interface dhcp, on page 467
• config interface address, on page 468
• config interface guest-lan, on page 470
• config interface hostname, on page 471
• config interface nasid, on page 472
• config interface nat-address, on page 473
• config interface port, on page 474
• config interface quarantine vlan, on page 475
• config interface vlan, on page 476
• config interface group mdns-profile, on page 477
• config interface mdns-profile, on page 478
• config ipv6 disable, on page 480
• config ipv6 enable, on page 481
• config ipv6 acl, on page 482
• config ipv6 capwap, on page 484
• config ipv6 interface, on page 485
• config ipv6 multicast, on page 487
• config ipv6 neighbor-binding, on page 488
• config ipv6 na-mcast-fwd, on page 490
• config ipv6 ns-mcast-fwd, on page 491
• config ipv6 ra-guard, on page 492
• config ipv6 route, on page 493
config aaa auth

To configure the AAA authentication search order for management users, use the `config aaa auth` command.

```
config aaa auth mgmt [aaa_server_type1 | aaa_server_type2]
```

Syntax Description

- `mgmt` (Command): Configures the AAA authentication search order for controller management users by specifying up to three AAA authentication server types. The order that the server types are entered specifies the AAA authentication search order.

- `aaa_server_type` (Optional): AAA authentication server type (`local`, `radius`, or `tacacs`). The `local` setting specifies the local database, the `radius` setting specifies the RADIUS server, and the `tacacs` setting specifies the TACACS+ server.

Command Default

None

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines

- You can enter two AAA server types as long as one of the server types is `local`. You cannot enter `radius` and `tacacs` together.

- The following example shows how to configure the AAA authentication search order for controller management users by the authentication server type `local`:

```
(Cisco Controller) > config aaa auth radius local
```

Related Commands

- `show aaa auth`
config aaa auth mgmt

To configure the order of authentication when multiple databases are configured, use the `config aaa auth mgmt` command.

```
config aaa auth mgmt [radius | tacacs]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius</td>
<td>(Optional) Configures the order of authentication for RADIUS servers.</td>
</tr>
<tr>
<td>tacacs</td>
<td>(Optional) Configures the order of authentication for TACACS servers.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the order of authentication for the RADIUS server:

```
(Cisco Controller) > config aaa auth mgmt radius
```

The following example shows how to configure the order of authentication for the TACACS server:

```
(Cisco Controller) > config aaa auth mgmt tacacs
```

Related Commands

- `show aaa auth order`
To apply an access control list (ACL) to the data path, use the `config acl apply` command.

`config acl apply rule_name`

Syntax Description

| `rule_name` | ACL name that contains up to 32 alphanumeric characters. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN preauthentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to apply an ACL to the data path:

```
(Cisco Controller) > config acl apply acl01
```

Related Commands

- `show acl`
config acl counter

To see if packets are hitting any of the access control lists (ACLs) configured on your controller, use the `config acl counter` command.

```plaintext
config acl counter { start | stop }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>start</code></td>
<td>Enables ACL counters on your controller.</td>
</tr>
<tr>
<td><code>stop</code></td>
<td>Disables ACL counters on your controller.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

ACL counters are available only on the following controllers: 4400 series, Cisco WiSM, and Catalyst 3750G Integrated Wireless LAN Controller Switch.

The following example shows how to enable ACL counters on your controller:

```plaintext
(Cisco Controller) > config acl counter start
```

Related Commands

- `clear acl counters`
- `show acl detailed`
config acl create

To create a new access control list (ACL), use the config acl create command.

config acl create rule_name

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rule_name</th>
<th>ACL name that contains up to 32 alphanumeric characters.</th>
</tr>
</thead>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN preauthentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to create a new ACL:

(Cisco Controller) > config acl create acl01

Related Commands

show acl
config acl cpu

To create a new access control list (ACL) rule that restricts the traffic reaching the CPU, use the `config acl cpu` command.

```
config acl cpu rule_name { wired  |  wireless  |  both }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rule_name</code></td>
<td>Specifies the ACL name.</td>
</tr>
<tr>
<td><code>wired</code></td>
<td>Specifies an ACL on wired traffic.</td>
</tr>
<tr>
<td><code>wireless</code></td>
<td>Specifies an ACL on wireless traffic.</td>
</tr>
<tr>
<td><code>both</code></td>
<td>Specifies an ACL on both wired and wireless traffic.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command allows you to control the type of packets reaching the CPU.

The following example shows how to create an ACL named acl101 on the CPU and apply it to wired traffic:

```
(Cisco Controller) > config acl cpu acl01 wired
```

Related Commands

`show acl cpu`
config acl delete

To delete an access control list (ACL), use the `config acl delete` command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config acl delete</code></td>
<td><code>rule_name</code></td>
</tr>
<tr>
<td></td>
<td>ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN preauthentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to delete an ACL named acl101 on the CPU:

(Cisco Controller) > `config acl delete acl101`

Related Commands

- `show acl`
To configure a Layer 2 access control list (ACL), use the `config acl layer2` command.

```plaintext
config acl layer2
  { apply acl_name | create acl_name | delete acl_name | rule { action acl_name index (permit | deny) | add acl_name index | change acl_name old_index new_index | delete acl_name index | etherType acl_name index etherType etherTypeMask | swap index acl_name index1 index2 })
```

Syntax Description

- **apply**
 - Applies a Layer 2 ACL to the data path.

- **acl_name**
 - Layer 2 ACL name. The name can be up to 32 alphanumeric characters.

- **create**
 - Creates a Layer 2 ACL.

- **delete**
 - Deletes a Layer 2 ACL.

- **rule**
 - Configures a Layer 2 ACL rule.

- **action**
 - Configures the action for the Layer 2 ACL rule.

- **index**
 - Index of the Layer 2 ACL rule.

- **permit**
 - Permits rule action.

- **deny**
 - Denies rule action.

- **add**
 - Creates a Layer 2 ACL rule.

- **change index**
 - Changes the index of the Layer 2 ACL rule.

- **old_index**
 - Old index of the Layer 2 ACL rule.

- **new_index**
 - New index of the Layer 2 ACL rule.

- **delete**
 - Deletes a Layer 2 ACL rule.

- **etherType**
 - Configures the EtherType of a Layer 2 ACL rule.

- **etherType**
 - EtherType of a Layer 2 ACL rule. EtherType is used to indicate the protocol that is encapsulated in the payload of an Ethernet frame. The range is a hexadecimal value from 0x0 to 0xffff.

- **etherTypeMask**
 - Netmask of the EtherType. The range is a hexadecimal value from 0x0 to 0xffff.

- **swap index**
 - Swaps the index values of two rules.

- **index1 index2**
 - Index values of two Layer 2 ACL rules.
The Cisco WLC does not have any Layer2 ACLs.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can create a maximum of 16 rules for a Layer 2 ACL.

You can create a maximum of 64 Layer 2 ACLs on a Cisco WLC.

A maximum of 16 Layer 2 ACLs are supported per access point because an access point supports a maximum of 16 WLANs.

Ensure that the Layer 2 ACL names do not conflict with the FlexConnect ACL names because an access point does not support the same Layer 2 and Layer 3 ACL names.

The following example shows how to apply a Layer 2 ACL:

```
(Cisco Controller) >config acl layer2 apply acl_l2_1
```
To configure ACL rules, use the **config acl rule** command.

```
config acl rule {action rule_name rule_index {permit | deny} | add rule_name rule_index | change index rule_name old_index new_index | delete rule_name rule_index | destination address rule_name rule_index ip_address netmask | destination port range rule_name rule_index start_port end_port | direction rule_name rule_index {in | out | any} | dscp rule_name rule_index dscp | protocol rule_name rule_index protocol | source address rule_name rule_index ip_address netmask | source port range rule_name rule_index start_port end_port | swap index rule_name index_1 index_2}
```

Syntax Description

- **action**: Configures whether to permit or deny access.
- **rule_name**: ACL name that contains up to 32 alphanumeric characters.
- **rule_index**: Rule index between 1 and 32.
- **permit**: Permits the rule action.
- **deny**: Denies the rule action.
- **add**: Adds a new rule.
- **change**: Changes a rule’s index.
- **index**: Specifies a rule index.
- **delete**: Deletes a rule.
- **destination address**: Configures a rule’s destination IP address and netmask.
- **destination port range**: Configure a rule's destination port range.
- **ip_address**: IP address of the rule.
- **netmask**: Netmask of the rule.
- **start_port**: Start port number (between 0 and 65535).
- **end_port**: End port number (between 0 and 65535).
- **direction**: Configures a rule’s direction to in, out, or any.
- **in**: Configures a rule’s direction to in.
- **out**: Configures a rule’s direction to out.
- **any**: Configures a rule’s direction to any.
- **dscp**: Configures a rule’s DSCP.
Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN pre-authentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to configure an ACL to permit access:

```
(Cisco Controller) > config acl rule action labl 4 permit
```
config acl url-domain

To add or delete an URL domain for the access control list, use the **config acl url-domain** command.

```
config acl url-domain {add|delete} domain_name acl_name
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain_name</td>
<td>URL domain name for the access control list</td>
</tr>
<tr>
<td>acl_name</td>
<td>Name of the access control list</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new URL domain for the access control list:

(Cisco Controller) > config acl url-domain add cisco.com android

The following example shows how to delete an existing URL domain from the access control list:

(Cisco Controller) > config acl url-domain delete play.google.com android
To configure the Cisco unified wireless IP phone 7920 VISE parameters, use the `config advanced 802.11 7920VSIEConfig` command.

```
config advanced 802.11 {a | b} 7920VSIEConfig {call-admission-limit limit | G711-CU-Quantum quantum}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>call-admission-limit</td>
<td>Configures the call admission limit for the 7920s.</td>
</tr>
<tr>
<td>G711-CU-Quantum</td>
<td>Configures the value supplied by the infrastructure indicating the current number of channel utilization units that would be used by a single G.711-20ms call.</td>
</tr>
<tr>
<td>limit</td>
<td>Call admission limit (from 0 to 255). The default value is 105.</td>
</tr>
<tr>
<td>quantum</td>
<td>G711 quantum value. The default value is 15.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to configure the call admission limit for 7920 VISE parameters:

```
(Cisco Controller) >config advanced 802.11 7920VSIEConfig call-admission-limit 4
```
config advanced 802.11 channel add

To add channel to the 802.11 networks auto RF channel list, use the `config advanced 802.11 channel add` command.

```
config advanced 802.11 { a | b } channel add channel_number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a channel to the 802.11 network auto RF channel list.</td>
</tr>
<tr>
<td>channel_number</td>
<td>Channel number to add to the 802.11 network auto RF channel list.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a channel to the 802.11a network auto RF channel list:

(Cisco Controller) > `config advanced 802.11 channel add 132`
config advanced 802.11 channel cleanair-event

To configure CleanAir event driven Radio Resource Management (RRM) parameters for all 802.11 Cisco lightweight access points, use the `config advanced 802.11 channel cleanair-event` command.

```bash
config advanced 802.11 { a | b } channel cleanair-event { enable | disable | sensitivity [ low | medium | high ] | custom threshold threshold_value }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the CleanAir event-driven RRM parameters.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the CleanAir event-driven RRM parameters.</td>
</tr>
<tr>
<td><code>sensitivity</code></td>
<td>Sets the sensitivity for CleanAir event-driven RRM.</td>
</tr>
<tr>
<td><code>low</code></td>
<td>(Optional) Specifies low sensitivity.</td>
</tr>
<tr>
<td><code>medium</code></td>
<td>(Optional) Specifies medium sensitivity.</td>
</tr>
<tr>
<td><code>high</code></td>
<td>(Optional) Specifies high sensitivity.</td>
</tr>
<tr>
<td><code>custom</code></td>
<td>Specifies custom sensitivity.</td>
</tr>
<tr>
<td><code>threshold</code></td>
<td>Specifies the EDRRM AQ threshold value.</td>
</tr>
<tr>
<td><code>threshold_value</code></td>
<td>Number of custom threshold.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the CleanAir event-driven RRM parameters:

(Cisco Controller) > config advanced 802.11 channel cleanair-event enable

The following example shows how to configure high sensitivity for CleanAir event-driven RRM:

(Cisco Controller) > config advanced 802.11 channel cleanair-event sensitivity high
config advanced 802.11 channel dca anchor-time

To specify the time of day when the Dynamic Channel Assignment (DCA) algorithm is to start, use the `config advanced 802.11 channel dca anchor-time` command.

```plaintext
config advanced 802.11 {a | b} channel dca anchor-time value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>value</td>
<td>Hour of the time between 0 and 23. These values represent the hour from 12:00 a.m. to 11:00 p.m.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the time of delay when the DCA algorithm starts:

```
(Cisco Controller) > config advanced 802.11 channel dca anchor-time 17
```

Related Commands

- `config advanced 802.11 channel dca interval`
- `config advanced 802.11 channel dca sensitivity`
- `config advanced 802.11 channel`
config advanced 802.11 channel dca chan-width-11n

To configure the Dynamic Channel Assignment (DCA) channel width for all 802.11n radios in the 5-GHz band, use the `config advanced 802.11 channel dca chan-width-11n` command.

```
config advanced 802.11 {a | b} channel dca chan-width-11n {20 | 40 | 80}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>20</td>
<td>Sets the channel width for 802.11n radios to 20 MHz.</td>
</tr>
<tr>
<td>40</td>
<td>Sets the channel width for 802.11n radios to 40 MHz.</td>
</tr>
<tr>
<td>80</td>
<td>Sets the channel width for 802.11ac radios to 80-MHz.</td>
</tr>
</tbody>
</table>

Command Default
The default channel width is 20.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you choose 40, be sure to set at least two adjacent channels in the `config advanced 802.11 channel {add | delete} channel_number` command (for example, a primary channel of 36 and an extension channel of 40). If you set only one channel, that channel is not used for the 40-MHz channel width.

To override the globally configured DCA channel width setting, you can statically configure an access point’s radio for 20- or 40-MHz mode using the `config 802.11 chan_width` command. If you then change the static configuration to global on the access point radio, the global DCA configuration overrides the channel width configuration that the access point was previously using.

The following example shows how to add a channel to the 802.11a network auto channel list:

```
(Cisco Controller) >config advanced 802.11a channel dca chan-width-11n 40
```

The following example shows how to set the channel width for the 802.11ac radio as 80-MHz:

```
(Cisco Controller) >config advanced 802.11a channel dca chan-width-11n 80
```
config advanced 802.11 channel dca interval

To specify how often the Dynamic Channel Assignment (DCA) is allowed to run, use the `config advanced 802.11 channel dca interval` command.

```
config advanced 802.11 { a | b } channel dca interval value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>value</code></td>
<td>Valid values are 0, 1, 2, 3, 4, 6, 8, 12, or 24 hours. 0 is 10 minutes (600 seconds).</td>
</tr>
</tbody>
</table>

Command Default

The default DCA channel interval is 10 (10 minutes).

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If your controller supports only OfficeExtend access points, we recommend that you set the DCA interval to 6 hours for optimal performance. For deployments with a combination of OfficeExtend access points and local access points, the range of 10 minutes to 24 hours can be used.

The following example shows how often the DCA algorithm is allowed to run:

```
(Cisco Controller) > config advanced 802.11 channel dca interval 8
```

Related Commands

- `config advanced 802.11 dca anchor-time`
- `config advanced 802.11 dca sensitivity`
- `show advanced 802.11 channel`
config advanced 802.11 channel dca min-metric

To configure the 5-GHz minimum RSSI energy metric for DCA, use the `config advanced 802.11 channel dca min-metric` command.

```
config advanced 802.11 {a | b} channel dca RSSI_value
```

Syntax Description

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **RSSI_value**: Minimum received signal strength indicator (RSSI) that is required for the DCA to trigger a channel change. The range is from –100 to –60 dBm.

Command Default

The default minimum RSSI energy metric for DCA is –95 dBm.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the minimum 5-GHz RSSI energy metric for DCA:

```text
(Cisco Controller) > config advanced 802.11a channel dca min-metric -80
```

In the above example, the RRM must detect an interference energy of at least -80 dBm in RSSI for the DCA to trigger a channel change.

Related Commands

- `config advanced 802.11 dca interval`
- `config advanced 802.11 dca anchor-time`
- `show advanced 802.11 channel`
config advanced 802.11 channel dca sensitivity

To specify how sensitive the Dynamic Channel Assignment (DCA) algorithm is to environmental changes (for example, signal, load, noise, and interference) when determining whether or not to change channels, use the config advanced 802.11 channel dca sensitivity command.

```config advanced 802.11 { a | b } channel dca sensitivity { low | medium | high }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>low</td>
<td>Specifies the DCA algorithm is not particularly sensitive to environmental changes. See the “Usage Guidelines” section for more information.</td>
</tr>
<tr>
<td>medium</td>
<td>Specifies the DCA algorithm is moderately sensitive to environmental changes. See the “Usage Guidelines” section for more information.</td>
</tr>
<tr>
<td>high</td>
<td>Specifies the DCA algorithm is highly sensitive to environmental changes. See the “Usage Guidelines” section for more information.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The DCA sensitivity thresholds vary by radio band as shown in the table below.

To aid in troubleshooting, the output of this command shows an error code for any failed calls. This table explains the possible error codes for failed calls.

Table 4: DCA Sensitivity Thresholds

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>2.4-GHz DCA Sensitivity Threshold</th>
<th>5-GHz DCA Sensitivity Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>5 dB</td>
<td>5 dB</td>
</tr>
<tr>
<td>Medium</td>
<td>15 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>Low</td>
<td>30 dB</td>
<td>35 dB</td>
</tr>
</tbody>
</table>

The following example shows how to configure the value of DCA algorithm’s sensitivity to low:

```(Cisco Controller) > config advanced 802.11 channel dca sensitivity low```
config advanced 802.11 channel dca sensitivity

**Related Commands**

- config advanced 802.11 dca interval
- config advanced 802.11 dca anchor-time
- show advanced 802.11 channel
config advanced 802.11 channel foreign

To have Radio Resource Management (RRM) consider or ignore foreign 802.11a interference avoidance in making channel selection updates for all 802.11a Cisco lightweight access points, use the config advanced 802.11 channel foreign command.

```
config advanced 802.11 { a | b } channel foreign { enable | disable }
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **enable**: Enables the foreign access point 802.11a interference avoidance in the channel assignment.
- **disable**: Disables the foreign access point 802.11a interference avoidance in the channel assignment.

**Command Default**

The default value for the foreign access point 802.11a interference avoidance in the channel assignment is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to have RRM consider foreign 802.11a interference when making channel selection updates for all 802.11a Cisco lightweight access points:

(Cisco Controller) > config advanced 802.11a channel foreign enable

**Related Commands**

- show advanced 802.11a channel
- config advanced 802.11b channel foreign
**config advanced 802.11 channel load**

To have Radio Resource Management (RRM) consider or ignore the traffic load in making channel selection updates for all 802.11a Cisco lightweight access points, use the **config advanced 802.11 channel load** command.

```
config advanced 802.11 {a | b} channel load {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the Cisco lightweight access point 802.11a load avoidance in the channel assignment.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Cisco lightweight access point 802.11a load avoidance in the channel assignment.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for Cisco lightweight access point 802.11a load avoidance in the channel assignment is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to have RRM consider the traffic load when making channel selection updates for all 802.11a Cisco lightweight access points:

```
(Cisco Controller) > config advanced 802.11 channel load enable
```

**Related Commands**

- `show advanced 802.11a channel`
- `config advanced 802.11b channel load`
config advanced 802.11 channel noise

To have Radio Resource Management (RRM) consider or ignore non-802.11a noise in making channel selection updates for all 802.11a Cisco lightweight access points, use the `config advanced 802.11 channel noise` command.

```
(config advanced 802.11 channel noise {enable | disable})
```

**Syntax Description**

a	Specifies the 802.11a network.
b	Specifies the 802.11b/g network.
enable	Enables non-802.11a noise avoidance in the channel assignment or ignore.
disable	Disables the non-802.11a noise avoidance in the channel assignment.

**Command Default**

The default value for non-802.11a noise avoidance in the channel assignment is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to have RRM consider non-802.11a noise when making channel selection updates for all 802.11a Cisco lightweight access points:

```
(Cisco Controller) > config advanced 802.11 channel noise enable
```

**Related Commands**

- `show advanced 802.11a channel`
- `config advanced 802.11b channel noise`
To enable or disable the controller to avoid checking the non-Dynamic Frequency Selection (DFS) channels, use the `config advanced 802.11 channel outdoor-ap-dca` command.

```plaintext
config advanced 802.11 {a | b} channel outdoor-ap-dca {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables 802.11 network DCA list option for outdoor access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11 network DCA list option for outdoor access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for 802.11 network DCA list option for outdoor access point is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `config advanced 802.11 {a | b} channel outdoor-ap-dca {enable | disable}` command is applicable only for deployments having outdoor access points such as 1522 and 1524.

The following example shows how to enable the 802.11a DCA list option for outdoor access point:

```plaintext
(Cisco Controller) > config advanced 802.11a channel outdoor-ap-dca enable
```

**Related Commands**

- `show advanced 802.11a channel`
- `config advanced 802.11b channel noise`
config advanced 802.11 channel pda-prop

To enable or disable propagation of persistent devices, use the `config advanced 802.11 channel pda-prop` command.

```
config advanced 802.11 {a | b} channel pda-prop {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the 802.11 network DCA list option for the outdoor access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the 802.11 network DCA list option for the outdoor access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The default 802.11 network DCA list option for the outdoor access point is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable or disable propagation of persistent devices:

```
(Cisco Controller) > config advanced 802.11 channel pda-prop enable
```
config advanced 802.11 channel update

To have Radio Resource Management (RRM) initiate a channel selection update for all 802.11a Cisco lightweight access points, use the config advanced 802.11 channel update command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config advanced 802.11 {a</td>
<td>b} channel update</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to initiate a channel selection update for all 802.11a network access points:

(Cisco Controller) > config advanced 802.11a channel update
config advanced 802.11 coverage

To enable or disable coverage hole detection, use the `config advanced 802.11 coverage` command.

```
config advanced 802.11 {a | b} coverage {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the coverage hole detection.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the coverage hole detection.</td>
</tr>
</tbody>
</table>

**Command Default**

The default coverage hole detection value is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you enable coverage hole detection, the Cisco WLC automatically determines, based on data that is received from the access points, whether any access points have clients that are potentially located in areas with poor coverage.

If both the number and percentage of failed packets exceed the values that you entered in the `config advanced 802.11 coverage packet-count` and `config advanced 802.11 coverage fail-rate` commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the `config advanced 802.11 coverage level global` and `config advanced 802.11 coverage exception global` commands over a 90-second period. The Cisco WLC determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to enable coverage hole detection on an 802.11a network:

```
(Cisco Controller) > config advanced 802.11a coverage enable
```

**Related Commands**

- `config advanced 802.11 coverage exception global`
- `config advanced 802.11 coverage fail-rate`
- `config advanced 802.11 coverage level global`
- `config advanced 802.11 coverage packet-count`
- `config advanced 802.11 coverage rssi-threshold`
config advanced 802.11 coverage exception global

To specify the percentage of clients on an access point that are experiencing a low signal level but cannot roam to another access point, use the `config advanced 802.11 coverage exception global` command.

```
config advanced 802.11 { a | b } coverage exception global percent
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>percent</td>
<td>Percentage of clients. Valid values are from 0 to 100%.</td>
</tr>
</tbody>
</table>

**Command Default**
The default percentage value for clients on an access point is 25%.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If both the number and percentage of failed packets exceed the values that you entered in the `config advanced 802.11 coverage packet-count` and `config advanced 802.11 coverage fail-rate` commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the `config advanced 802.11 coverage level global` and `config advanced 802.11 coverage exception global` commands over a 90-second period. The controller determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to specify the percentage of clients for all 802.11a access points that are experiencing a low signal level:

```
(Cisco Controller) > config advanced 802.11 coverage exception global 50
```

**Related Commands**

- `config advanced 802.11 coverage exception global`
- `config advanced 802.11 coverage fail-rate`
- `config advanced 802.11 coverage level global`
- `config advanced 802.11 coverage packet-count`
- `config advanced 802.11 coverage rssi-threshold`
- `config advanced 802.11 coverage`
config advanced 802.11 coverage fail-rate

To specify the failure rate threshold for uplink data or voice packets, use the config advanced 802.11 coverage fail-rate command.

```
config advanced 802.11 {a | b} coverage {data | voice} fail-rate percent
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>data</td>
<td>Specifies the threshold for data packets.</td>
</tr>
<tr>
<td>voice</td>
<td>Specifies the threshold for voice packets.</td>
</tr>
<tr>
<td>percent</td>
<td>Failure rate as a percentage. Valid values are from 1 to 100 percent.</td>
</tr>
</tbody>
</table>

**Command Default**

The default failure rate threshold uplink coverage fail-rate value is 20%.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If both the number and percentage of failed packets exceed the values that you entered in the `config advanced 802.11 coverage packet-count` and `config advanced 802.11 coverage fail-rate` commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the `config advanced 802.11 coverage level global` and `config advanced 802.11 coverage exception global` commands over a 90-second period. The controller determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to configure the threshold count for minimum uplink failures for data packets:

```
(Cisco Controller) > config advanced 802.11 coverage fail-rate 80
```

**Related Commands**

- config advanced 802.11 coverage exception global
- config advanced 802.11 coverage level global
- config advanced 802.11 coverage packet-count
- config advanced 802.11 coverage rssi-threshold
- config advanced 802.11 coverage

Cisco Wireless LAN Controller Command Reference, Release 8.0
config advanced 802.11 coverage level global

To specify the minimum number of clients on an access point with an received signal strength indication (RSSI) value at or below the data or voice RSSI threshold, use the **config advanced 802.11 coverage level global** command.

**Syntax**

```plaintext
config advanced 802.11 {a | b} coverage level global clients
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **clients**: Minimum number of clients. Valid values are from 1 to 75.

**Command Default**

The default minimum number of clients on an access point is 3.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If both the number and percentage of failed packets exceed the values that you entered in the **config advanced 802.11 coverage packet-count** and **config advanced 802.11 coverage fail-rate** commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the **config advanced 802.11 coverage level global** and **config advanced 802.11 coverage exception global** commands over a 90-second period. The controller determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to specify the minimum number of clients on all 802.11a access points with an RSSI value at or below the RSSI threshold:

```plaintext
(Cisco Controller) > config advanced 802.11 coverage level global 60
```

**Related Commands**

- config advanced 802.11 coverage exception global
- config advanced 802.11 coverage fail-rate
- config advanced 802.11 coverage packet-count
- config advanced 802.11 coverage rssi-threshold
- config advanced 802.11 coverage
config advanced 802.11 coverage packet-count

To specify the minimum failure count threshold for uplink data or voice packets, use the **config advanced 802.11 coverage packet-count** command.

```
config advanced 802.11 {a | b} coverage {data | voice} packet-count packets
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>data</td>
<td>Specifies the threshold for data packets.</td>
</tr>
<tr>
<td>voice</td>
<td>Specifies the threshold for voice packets.</td>
</tr>
<tr>
<td>packets</td>
<td>Minimum number of packets. Valid values are from 1 to 255 packets.</td>
</tr>
</tbody>
</table>

### Command Default

The default failure count threshold for uplink data or voice packets is 10.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If both the number and percentage of failed packets exceed the values that you entered in the **config advanced 802.11 coverage packet-count** and **config advanced 802.11 coverage fail-rate** commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the **config advanced 802.11 coverage level global** and **config advanced 802.11 coverage exception global** commands over a 90-second period. The controller determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to configure the failure count threshold for uplink data packets:

```
(Cisco Controller) > config advanced 802.11 coverage packet-count 100
```

### Related Commands

- **config advanced 802.11 coverage exception global**
- **config advanced 802.11 coverage fail-rate**
- **config advanced 802.11 coverage level global**
- **config advanced 802.11 coverage rssi-threshold**
- **config advanced 802.11 coverage**
config advanced 802.11 coverage rssi-threshold

To specify the minimum receive signal strength indication (RSSI) value for packets that are received by an access point, use the `config advanced 802.11 coverage rssi-threshold` command.

```
config advanced 802.11 { a | b } coverage { data | voice } rssi-threshold rssi
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **data**: Specifies the threshold for data packets.
- **voice**: Specifies the threshold for voice packets.
- **rssi**: Valid values are from –60 to –90 dBm.

**Command Default**

- The default RSSI value for data packets is –80 dBm.
- The default RSSI value for voice packets is –75 dBm.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `rssi` value that you enter is used to identify coverage holes (or areas of poor coverage) within your network. If the access point receives a packet in the data or voice queue with an RSSI value that is below the value that you enter, a potential coverage hole has been detected.

The access point takes RSSI measurements every 5 seconds and reports them to the controller in 90-second intervals.

If both the number and percentage of failed packets exceed the values that you entered in the `config advanced 802.11 coverage packet-count` and `config advanced 802.11 coverage fail-rate` commands for a 5-second period, the client is considered to be in a pre-alarm condition. The controller uses this information to distinguish between real and false coverage holes and excludes clients with poor roaming logic. A coverage hole is detected if both the number and percentage of failed clients meet or exceed the values entered in the `config advanced 802.11 coverage level global` and `config advanced 802.11 coverage exception global` commands over a 90-second period. The controller determines whether the coverage hole can be corrected and, if appropriate, mitigates the coverage hole by increasing the transmit power level for that specific access point.

The following example shows how to configure the minimum receive signal strength indication threshold value for data packets that are received by an 802.11a access point:

```
(Cisco Controller) > config advanced 802.11a coverage rssi-threshold -60
```

**Related Commands**

- `config advanced 802.11 coverage exception global`
- `config advanced 802.11 coverage fail-rate`
config advanced 802.11 coverage level global
config advanced 802.11 coverage packet-count
config advanced 802.11 coverage
config advanced 802.11 edca-parameters

To enable a specific Enhanced Distributed Channel Access (EDCA) profile on a 802.11a network, use the `config advanced 802.11 edca-parameters` command.

```
config advanced 802.11 {a | b} edca-parameters {wmm-default | svp-voice | optimized-voice | optimized-video-voice | custom-voice | custom-set { QoS Profile Name } { aifs AP-value (0-16) Client value (0-16) | ecwmax AP-Value (0-10) Client value (0-10) | ecwmin AP-Value (0-10) Client value (0-10) | txop AP-Value (0-255) Client value (0-255) } }
```

### Syntax Description

- **a**
  - Specifies the 802.11a network.

- **b**
  - Specifies the 802.11b/g network.

- **wmm-default**
  - Enables the Wi-Fi Multimedia (WMM) default parameters. Choose this option if voice or video services are not deployed on your network.

- **svp-voice**
  - Enables Spectralink voice-priority parameters. Choose this option if Spectralink phones are deployed on your network to improve the quality of calls.

- **optimized-voice**
  - Enables EDCA voice-optimized profile parameters. Choose this option if voice services other than Spectralink are deployed on your network.

- **optimized-video-voice**
  - Enables EDCA voice-optimized and video-optimized profile parameters. Choose this option when both voice and video services are deployed on your network.

  **Note**
  - If you deploy video services, admission control must be disabled.

- **custom-voice**
  - Enables custom voice EDCA parameters for 802.11a.
  - The EDCA parameters under this option also match the 6.0 WMM EDCA parameters when this profile is applied.
custom-set

Enables customization of EDCA parameters

- **aifs**—Configures the Arbitration Inter-Frame Space.
  - AP Value (0-16) Client value (0-16)
- **ecwmax**—Configures the maximum Contention Window.
  - AP Value (0-10) Client Value (0-10)
- **ecwmin**—Configures the minimum Contention Window.
  - AP Value (0-10) Client Value (0-10)
- **txop**—Configures the Arbitration Transmission Opportunity Limit.
  - AP Value (0-255) Client Value (0-255)

QoS Profile Name - Enter the QoS profile name:

- bronze
- silver
- gold
- platinum

**Command Default**

The default EDCA parameter is **wmm-default**.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.2.110.0</td>
<td>In this release, custom-set keyword was added to edca-parameters command.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to enable Spectralink voice-priority parameters:

```
(Cisco Controller) > config advanced 802.11 edca-parameters svp-voice
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config advanced 802.11b edca-parameters</td>
<td>Enables a specific Enhanced Distributed Channel Access (EDCA) profile on the 802.11a network.</td>
</tr>
<tr>
<td>show 802.11a</td>
<td>Displays basic 802.11a network settings.</td>
</tr>
</tbody>
</table>
**config advanced 802.11 factory**

To reset 802.11a advanced settings back to the factory defaults, use the `config advanced 802.11 factory` command.

```
config advanced 802.11 {a | b} factory
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to return all the 802.11a advanced settings to their factory defaults:

```
(Cisco Controller) > config advanced 802.11a factory
```

**Related Commands**

`show advanced 802.11a channel`
config advanced 802.11 group-member

To configure members in 802.11 static RF group, use the **config advanced 802.11 group-member** command.

```
config advanced 802.11 {a | b} group-member {add | remove} controller controller-ip-address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Adds a controller to the static RF group.</td>
</tr>
<tr>
<td><strong>remove</strong></td>
<td>Removes a controller from the static RF group.</td>
</tr>
<tr>
<td><strong>controller</strong></td>
<td>Name of the controller to be added.</td>
</tr>
<tr>
<td><strong>controller-ip-address</strong></td>
<td>IP address of the controller to be added.</td>
</tr>
</tbody>
</table>

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a controller in the 802.11a automatic RF group:

(Cisco Controller) > config advanced 802.11a group-member add cisco-controller 209.165.200.225

**Related Commands**

- `show advanced 802.11a group`
- `config advanced 802.11 group-mode`
config advanced 802.11 group-mode

To set the 802.11a automatic RF group selection mode on or off, use the `config advanced 802.11 group-mode` command.

```
config advanced 802.11 {a | b} group-mode {auto | leader | off | restart}
```

**Syntax Description**
- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **auto**: Sets the 802.11a RF group selection to automatic update mode.
- **leader**: Sets the 802.11a RF group selection to static mode, and sets this controller as the group leader.
- **off**: Sets the 802.11a RF group selection to off.
- **restart**: Restarts the 802.11a RF group selection.

**Command Default**
The default 802.11a automatic RF group selection mode is auto.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the 802.11a automatic RF group selection mode on:

```
(Cisco Controller) > config advanced 802.11a group-mode auto
```

The following example shows how to configure the 802.11a automatic RF group selection mode off:

```
(Cisco Controller) > config advanced 802.11a group-mode off
```

**Related Commands**
- `show advanced 802.11a group`
- `config advanced 802.11 group-member`
config advanced 802.11 logging channel

To turn the channel change logging mode on or off, use the **config advanced 802.11 logging channel** command.

```
config advanced 802.11 {a | b} logging channel {on | off}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>logging channel</td>
<td>Logs channel changes.</td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 channel logging.</td>
</tr>
<tr>
<td>off</td>
<td>Disables 802.11 channel logging.</td>
</tr>
</tbody>
</table>

**Command Default**

The default channel change logging mode is Off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a logging channel selection mode on:

```
(Cisco Controller) > config advanced 802.11a logging channel on
```

**Related Commands**

- **show advanced 802.11a logging**
- **config advanced 802.11b logging channel**
config advanced 802.11 logging coverage

To turn the coverage profile logging mode on or off, use the config advanced 802.11 logging coverage command.

```
cfg adv 802.11 { a | b } logging coverage { on | off }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 coverage profile violation logging.</td>
</tr>
<tr>
<td>off</td>
<td>Disables the 802.11 coverage profile violation logging.</td>
</tr>
</tbody>
</table>

**Command Default**

The default coverage profile logging mode is Off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a coverage profile violation logging selection mode on:

```
(Cisco Controller) > config advanced 802.11a logging coverage on
```

**Related Commands**

- `show advanced 802.11a logging`
- `config advanced 802.11b logging coverage`
**config advanced 802.11 logging foreign**

To turn the foreign interference profile logging mode on or off, use the `config advanced 802.11 logging foreign` command.

```plaintext
config advanced 802.11 {a | b} logging foreign {on | off}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 foreign interference profile violation logging.</td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>Disables the 802.11 foreign interference profile violation logging.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

The default foreign interference profile logging mode is Off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a foreign interference profile violation logging selection mode on:

```
(Cisco Controller) > config advanced 802.11a logging foreign on
```

**Related Commands**

- `show advanced 802.11a logging`
- `config advanced 802.11b logging foreign`
config advanced 802.11 logging load

To turn the 802.11a load profile logging mode on or off, use the **config advanced 802.11 logging load** command.

```
config advanced 802.11 {a | b} logging load {on | off}
```

### Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 load profile violation logging.</td>
</tr>
<tr>
<td>off</td>
<td>Disables the 802.11 load profile violation logging.</td>
</tr>
</tbody>
</table>

### Command Default

The default 802.11a load profile logging mode is Off (disabled).

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a load profile logging mode on:

```
(Cisco Controller) > config advanced 802.11 logging load on
```

### Related Commands

- show advanced 802.11a logging
- config advanced 802.11b logging load
**config advanced 802.11 logging noise**

To turn the 802.11a noise profile logging mode on or off, use the `config advanced 802.11 logging noise` command.

```
config advanced 802.11 {a | b} logging noise {on | off}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 noise profile violation logging.</td>
</tr>
<tr>
<td>off</td>
<td>Disables the 802.11 noise profile violation logging.</td>
</tr>
</tbody>
</table>

**Command Default**

The default 802.11a noise profile logging mode is off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a noise profile logging mode on:

```
(Cisco Controller) > config advanced 802.11a logging noise on
```

**Related Commands**

- `show advanced 802.11a logging`
- `config advanced 802.11b logging noise`
**config advanced 802.11 logging performance**

To turn the 802.11a performance profile logging mode on or off, use the `config advanced 802.11 logging performance` command.

```
config advanced 802.11 {a | b} logging performance {on | off}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
<td></td>
</tr>
<tr>
<td>on</td>
<td>Enables the 802.11 performance profile violation logging.</td>
<td></td>
</tr>
<tr>
<td>off</td>
<td>Disables the 802.11 performance profile violation logging.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

The default 802.11a performance profile logging mode is off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a performance profile logging mode on:

```
(Cisco Controller) > config advanced 802.11a logging performance on
```

**Related Commands**

- `show advanced 802.11a logging`
- `config advanced 802.11b logging performance`
config advanced 802.11 logging txpower

To turn the 802.11a transmit power change logging mode on or off, use the config advanced 802.11 logging txpower command.

```
config advanced 802.11 {a | b} logging txpower {on | off}
```

**Syntax Description**

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `on`: Enables the 802.11 transmit power change logging.
- `off`: Disables the 802.11 transmit power change logging.

**Command Default**

The default 802.11a transmit power change logging mode is off (disabled).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn the 802.11a transmit power change mode on:

```
(Cisco Controller) > config advanced 802.11 logging txpower off
```

**Related Commands**

- show advanced 802.11 logging
- config advanced 802.11b logging power
**config advanced 802.11 monitor channel-list**

To set the 802.11a noise, interference, and rogue monitoring channel list, use the `config advanced 802.11 monitor channel-list` command.

```
config advanced 802.11 {a | b} monitor channel-list {all | country | dca}
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **all**: Monitors all channels.
- **country**: Monitors the channels used in the configured country code.
- **dca**: Monitors the channels used by the automatic channel assignment.

**Command Default**

The default 802.11a noise, interference, and rogue monitoring channel list is country.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to monitor the channels used in the configured country:

```
(Cisco Controller) > config advanced 802.11 monitor channel-list country
```

**Related Commands**

- `show advanced 802.11a monitor coverage`
config advanced 802.11 monitor coverage

To set the coverage measurement interval between 60 and 3600 seconds, use the `config advanced 802.11 monitor coverage` command.

```
config advanced 802.11 { a | b } monitor coverage seconds
```

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>seconds</td>
<td>Coverage measurement interval between 60 and 3600 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default coverage measurement interval is 180 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the coverage measurement interval to 60 seconds:

```
(Cisco Controller) > config advanced 802.11 monitor coverage 60
```

**Related Commands**

- `show advanced 802.11a monitor`
- `config advanced 802.11b monitor coverage`
config advanced 802.11 monitor load

To set the load measurement interval between 60 and 3600 seconds, use the `config advanced 802.11 monitor load` command.

```
config advanced 802.11 {a | b} monitor load seconds
```

**Syntax Description**

- `a`  
  Specifies the 802.11a network.

- `b`  
  Specifies the 802.11b/g network.

- `seconds`  
  Load measurement interval between 60 and 3600 seconds.

**Command Default**

The default load measurement interval is 60 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the load measurement interval to 60 seconds:

```
(Cisco Controller) > config advanced 802.11 monitor load 60
```

**Related Commands**

- `show advanced 802.11a monitor`
- `config advanced 802.11b monitor load`
config advanced 802.11 monitor mode

To enable or disable 802.11a access point monitoring, use the `config advanced 802.11 monitor mode` command.

```
config advanced 802.11 {a | b} monitor mode {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 802.11 access point monitoring.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11 access point monitoring.</td>
</tr>
</tbody>
</table>

The default 802.11a access point monitoring is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the 802.11a access point monitoring:

```
(Cisco Controller) > config advanced 802.11a monitor mode enable
```

**Related Commands**

- `show advanced 802.11a monitor`
- `config advanced 802.11b monitor mode`
To configure the 802.11 access point radio resource management (RRM) Neighbor Discovery Protocol (NDP) type, use the `config advanced 802.11 monitor ndp-type` command:

```
config advanced 802.11 { a | b } monitor ndp-type { protected | transparent }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>protected</td>
<td>Specifies the Tx RRM protected NDP.</td>
</tr>
<tr>
<td>transparent</td>
<td>Specifies the Tx RRM transparent NDP.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Before you configure the 802.11 access point RRM NDP type, ensure that you have disabled the network by entering the `config 802.11 disable network` command.

The following example shows how to enable the 802.11a access point RRM NDP type as protected:

```
(Cisco Controller) > config advanced 802.11 monitor ndp-type protected
```
config advanced 802.11 monitor noise

To set the 802.11a noise measurement interval between 60 and 3600 seconds, use the `config advanced 802.11 monitor noise` command.

```
config advanced 802.11 {a | b} monitor noise seconds
```

**Syntax Description**

a	Specifies the 802.11a network.
b	Specifies the 802.11b/g network.
seconds	Noise measurement interval between 60 and 3600 seconds.

**Command Default**

The default 802.11a noise measurement interval is 80 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the noise measurement interval to 120 seconds:

```
(Cisco Controller) > config advanced 802.11 monitor noise 120
```

**Related Commands**

- `show advanced 802.11a monitor`
- `config advanced 802.11b monitor noise`
config advanced 802.11 monitor signal

To set the signal measurement interval between 60 and 3600 seconds, use the `config advanced 802.11 monitor signal` command.

```
config advanced 802.11 { a | b } monitor signal seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>seconds</td>
<td>Signal measurement interval between 60 and 3600 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default signal measurement interval is 60 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the signal measurement interval to 120 seconds:

```
(Cisco Controller) > config advanced 802.11 monitor signal 120
```

**Related Commands**

- `show advanced 802.11a monitor`
- `config advanced 802.11b monitor signal`
config advanced 802.11 optimized roaming

To configure the optimized roaming parameters for each 802.11 band, use the `config advanced 802.11 optimized roaming` command.

```
config advanced {802.11a | 802.11b} optimized-roaming {enable | disable | interval seconds | datarate mbps}
```

**Syntax Description**
- **802.11a**: Configures optimized roaming parameters for 802.11a network.
- **802.11b**: Configures optimized roaming parameters for 802.11b network.
- **enable**: Enables optimized roaming.
- **disable**: Disables optimized roaming.
- **interval**: Configures the client coverage reporting interval for 802.11a/b networks.
- **seconds**: Client coverage reporting interval in seconds. The range is from 5 to 90 seconds.
- **datarate**: Configures the threshold data rate for 802.11a/b networks.
- **mbps**: Threshold data rate in Mbps for 802.11a/b networks.
  - For 802.11a, the configurable data rates are 6, 9, 12, 18, 24, 36, 48, and 54.
  - For 802.11b, the configurable data rates are 1, 2, 5.5, 11, 6, 9, 12, 18, 24, 36, 48, and 54.
  - You can configure 0 to disable the data rate for disassociating clients.

**Command Default**
By default, optimized roaming is disabled. The default value for client coverage reporting interval is 90 seconds and threshold data rate is 0 (disabled state).

**Command History**
- **Release**: 8.0
  - Modification: This command was introduced.

**Usage Guidelines**
You must disable the 802.11a/b network before you configure the optimized roaming reporting interval. If you configure a low value for the reporting interval, the network can get overloaded with coverage report messages.

The following example shows how to enable optimized roaming for the 802.11a network:

```
(Cisco Controller) > config advanced 802.11a optimized roaming enable
```

The following example shows how to configure the data rate interval for the 802.11a network:

```
(Cisco Controller) > config advanced 802.11a optimized roaming datarate 9
```
## config advanced 802.11 packet

To configure the maximum packet retries, consecutive packet failure thresholds, and the default timeout value, use `config advanced 802.11 packet` command.

```
config advanced 802.11 {a | b} < QoS Profile Name > { max-client-count <threshold value (0-1000)> | max-packet-count <threshold value (0-1000)> | max-retry <maximum retry count> | timeout <time (in milliseconds)> }
```

### Syntax Description

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the 802.11a network.</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

| QoS Profile Name | • bronze  
|                 | • silver  
|                 | • gold  
|                 | • platinum |

| max-client-count | Configures the consecutive packet failure threshold before disassociating a client.  
| threshold value | - Enter the client count threshold value in the range 0 to 1000 |

| max-packet-count | Configures the consecutive packet failure threshold before not retrying failure packet.  
| threshold value | - Enter the packet failure threshold value in the range 0 to 1000 |

| max-retry | Configures the packet retry time for failure packet.  
| maximum retry count | - Enter the maximum number of retries allowed. |

| timeout | Configures the packet aging or discard timeout threshold.  
| time | - Enter the maximum time before the packet times out. |

### Command Default

The default values for parameters in `config advanced 802.11 packet` command are:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max-client-count</td>
<td>500</td>
</tr>
<tr>
<td>max-packet-count</td>
<td>100</td>
</tr>
<tr>
<td>max-retry</td>
<td>3</td>
</tr>
</tbody>
</table>
### Keyword | Default Value
---|---
timeout | 35 milliseconds

**Command History**

Release	Modification
8.2 | packet command was introduced in this release.

(Cisco Controller) > `config advanced 802.11a packet platinum max-packet-count 200`

**Related Commands**

Command	Description
show 802.11a | Displays basic 802.11a network settings. |
config advanced 802.11 profile clients

To set the Cisco lightweight access point clients threshold between 1 and 75 clients, use the config advanced 802.11 profile clients command.

```plaintext
config advanced 802.11 { a | b } profile clients { global | cisco_ap } clients
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>global</code></td>
<td>Configures all 802.11a Cisco lightweight access points.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td><code>clients</code></td>
<td>802.11a Cisco lightweight access point client threshold between 1 and 75 clients.</td>
</tr>
</tbody>
</table>

**Command Default**

The default Cisco lightweight access point clients threshold is 12 clients.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set all Cisco lightweight access point clients thresholds to 25 clients:

```
(Cisco Controller) >config advanced 802.11 profile clients global 25
Global client count profile set.
```

The following example shows how to set the AP1 clients threshold to 75 clients:

```
(Cisco Controller) >config advanced 802.11 profile clients AP1 75
Global client count profile set.
```
config advanced 802.11 profile customize

To turn customizing on or off for an 802.11a Cisco lightweight access point performance profile, use the `config advanced 802.11 profile customize` command.

```
config advanced 802.11 {a | b} profile customize cisco_ap {on | off}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a/n network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point.</td>
</tr>
<tr>
<td>on</td>
<td>Customizes performance profiles for this Cisco lightweight access point.</td>
</tr>
<tr>
<td>off</td>
<td>Uses global default performance profiles for this Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The default state of performance profile customization is Off.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to turn performance profile customization on for 802.11a Cisco lightweight access point AP1:

```
(Cisco Controller) >config advanced 802.11 profile customize AP1 on
```
config advanced 802.11 profile foreign

To set the foreign 802.11a transmitter interference threshold between 0 and 100 percent, use the config advanced 802.11 profile foreign command.

```
config advanced 802.11 { a | b } profile foreign { global | cisco_ap } percent
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>global</td>
<td>Configures all 802.11a Cisco lightweight access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td>percent</td>
<td>802.11a foreign 802.11a interference threshold between 0 and 100 percent.</td>
</tr>
</tbody>
</table>

**Command Default**
The default foreign 802.11a transmitter interference threshold value is 10.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the foreign 802.11a transmitter interference threshold for all Cisco lightweight access points to 50 percent:

(Cisco Controller) > config advanced 802.11a profile foreign global 50

The following example shows how to set the foreign 802.11a transmitter interference threshold for AP1 to 0 percent:

(Cisco Controller) > config advanced 802.11 profile foreign AP1 0
config advanced 802.11 profile noise

To set the 802.11a foreign noise threshold between –127 and 0 dBm, use the config advanced 802.11 profile noise command.

```
config advanced 802.11 {a | b} profile noise {global | cisco_ap} dBm
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a/n network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td>global</td>
<td>Configures all 802.11a Cisco lightweight access point specific profiles.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td>dBm</td>
<td>802.11a foreign noise threshold between –127 and 0 dBm.</td>
</tr>
</tbody>
</table>

**Command Default**

The default foreign noise threshold value is –70 dBm.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the 802.11a foreign noise threshold for all Cisco lightweight access points to –127 dBm:

```
(Cisco Controller) > config advanced 802.11a profile noise global –127
```

The following example shows how to set the 802.11a foreign noise threshold for AP1 to 0 dBm:

```
(Cisco Controller) > config advanced 802.11a profile noise AP1 0
```
config advanced 802.11 profile throughput

To set the Cisco lightweight access point data-rate throughput threshold between 1000 and 10000000 bytes per second, use the `config advanced 802.11 profile throughput` command.

```
config advanced 802.11 {a | b} profile throughput {global | cisco_ap} value
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>global</td>
<td>Configures all 802.11a Cisco lightweight access point specific profiles.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td>value</td>
<td>802.11a Cisco lightweight access point throughput threshold between 1000 and 10000000 bytes per second.</td>
</tr>
</tbody>
</table>

**Command Default**

The default Cisco lightweight access point data-rate throughput threshold value is 1,000,000 bytes per second.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set all Cisco lightweight access point data-rate thresholds to 1000 bytes per second:

```
(Cisco Controller) >config advanced 802.11 profile throughput global 1000
```

The following example shows how to set the AP1 data-rate threshold to 10000000 bytes per second:

```
(Cisco Controller) >config advanced 802.11 profile throughput AP1 10000000
```
config advanced 802.11 profile utilization

To set the RF utilization threshold between 0 and 100 percent, use the `config advanced 802.11 profile utilization` command. The operating system generates a trap when this threshold is exceeded.

```
config advanced 802.11 {a | b} profile utilization {global | cisco_ap} percent
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **global**: Configures a global Cisco lightweight access point specific profile.
- **cisco_ap**: Cisco lightweight access point name.
- **percent**: 802.11a RF utilization threshold between 0 and 100 percent.

**Command Default**

The default RF utilization threshold value is 80 percent.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the RF utilization threshold for all Cisco lightweight access points to 0 percent:

(Cisco Controller) >config advanced 802.11 profile utilization global 0

The following example shows how to set the RF utilization threshold for AP1 to 100 percent:

(Cisco Controller) >config advanced 802.11 profile utilization AP1 100
config advanced 802.11 receiver

To set the advanced receiver configuration settings, use the `config advanced 802.11 receiver` command.

```
config advanced 802.11 {a | b} receiver {default | rxstart jumpThreshold value}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>receiver</code></td>
<td>Specifies the receiver configuration.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Specifies the default advanced receiver configuration.</td>
</tr>
<tr>
<td><code>rxstart jumpThreshold</code></td>
<td>Specifies the receiver start signal.</td>
</tr>
</tbody>
</table>

*Note:* We recommend that you do not use this option as it is for Cisco internal use only.

| `value`                      | Jump threshold configuration value between 0 and 127. |

### Command Default

None

### Usage Guidelines

- Before you change the 802.11 receiver configuration, you must disable the 802.11 network.

- We recommend that you do not use the `rxstart jumpThreshold value` option as it is for Cisco internal use only.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to prevent changes to receiver parameters while the network is enabled:

```
(Cisco Controller) > config advanced 802.11 receiver default
```
config advanced 802.11 tpc-version

To configure the Transmit Power Control (TPC) version for a radio, use the config advanced 802.11 tpc-version command.

```
config advanced 802.11 {a | b} tpc-version {1 | 2}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>1</th>
<th>Specifies the TPC version 1 that offers strong signal coverage and stability.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Specifies TPC version 2 is for scenarios where voice calls are extensively used. The Tx power is dynamically adjusted with the goal of minimum interference. It is suitable for dense networks. In this mode, there could be higher roaming delays and coverage hole incidents.</td>
</tr>
</tbody>
</table>

Command Default
The default TPC version for a radio is 1.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the TPC version as 1 for the 802.11a radio:

```
(Cisco Controller) > config advanced 802.11a tpc-version 1
```

Related Commands
config advanced 802.11 tpcv1-thresh
config advanced 802.11 tpcv1-thresh

To configure the threshold for Transmit Power Control (TPC) version 1 of a radio, use the config advanced 802.11 tpcv1-thresh command.

`config advanced 802.11 {a | b} tpcv1-thresh threshold`

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td><strong>threshold</strong></td>
<td>Threshold value between –50 dBm to –80 dBm.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold as –60 dBm for TPC version 1 of the 802.11a radio:

```
(Cisco Controller) > config advanced 802.11 tpcv1-thresh -60
```

**Related Commands**

- `config advanced 802.11 tpc-thresh`
- `config advanced 802.11 tpcv2-thresh`
**config advanced 802.11 tpcv2-intense**

To configure the computational intensity for Transmit Power Control (TPC) version 2 of a radio, use the `config advanced 802.11 tpcv2-intense` command.

```
config advanced 802.11 {a | b} tpcv2-intense intensity
```

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g/n network.</td>
</tr>
<tr>
<td><strong>intensity</strong></td>
<td>Computational intensity value between 1 to 100.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the computational intensity as 50 for TPC version 2 of the 802.11a radio:

```
(Cisco Controller) > config advanced 802.11 tpcv2-intense 50
```

**Related Commands**

- `config advanced 802.11 tpc-thresh`
- `config advanced 802.11 tpcv2-thresh`
- `config advanced 802.11 tpcv2-per-chan`
**config advanced 802.11 tpcv2-per-chan**

To configure the Transmit Power Control Version 2 on a per-channel basis, use the `config advanced 802.11 tpcv2-per-chan` command.

```
config advanced 802.11 {a | b} tpcv2-per-chan {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables the configuration of TPC version 2 on a per-channel basis.</td>
<td>Disables the configuration of TPC version 2 on a per-channel basis.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable TPC version 2 on a per-channel basis for the 802.11a radio:

```
(Cisco Controller) > config advanced 802.11 tpcv2-per-chan enable
```

**Related Commands**

- `config advanced 802.11 tpc-thresh`
- `config advanced 802.11 tpcv2-thresh`
- `config advanced 802.11 tpcv2-intense`
**config advanced 802.11 tpcv2-thresh**

To configure the threshold for Transmit Power Control (TPC) version 2 of a radio, use the **config advanced 802.11 tpcv2-thresh** command.

```
config advanced 802.11 { a | b } tpcv2-thresh threshold
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>threshold</code></td>
<td>Threshold value between –50 dBm to –80 dBm.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold as –60 dBm for TPC version 2 of the 802.11a radio:

```
(Cisco Controller) > config advanced 802.11a tpcv2-thresh -60
```

**Related Commands**

- `config advanced 802.11 tpc-thresh`
- `config advanced 802.11 tpcv1-thresh`
- `config advanced 802.11 tpcv2-per-chan`
To initiate updates of the 802.11a transmit power for every Cisco lightweight access point, use the config advanced 802.11 txpower-update command.

```config
config advanced 802.11 txpower-update
```

**Syntax Description**

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to initiate updates of 802.11a transmit power for an 802.11a access point:

```
(Cisco Controller) > config advanced 802.11 txpower-update
```

**Related Commands**

- config advance 802.11b txpower-update
config advanced eap

To configure advanced extensible authentication protocol (EAP) settings, use the config advanced eap command.

```
config advanced eap { bcast-key-interval seconds | eapol-key-timeout timeout | eapol-key-retries retries | identity-request-timeout timeout | identity-request-retries retries | key-index index | max-login-ignore-identity-response { enable | disable } | request-timeout timeout | request-retries retries }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bcast-key-interval</strong></td>
<td>Specifies the EAP-broadcast key renew interval time in seconds.</td>
</tr>
<tr>
<td><strong>seconds</strong></td>
<td>The range is from 120 to 86400 seconds.</td>
</tr>
<tr>
<td><strong>eapol-key-timeout</strong></td>
<td>Specifies the amount of time (200 to 5000 milliseconds) that the controller</td>
</tr>
<tr>
<td><strong>timeout</strong></td>
<td>waits before retransmitting an EAPOL (WPA) key message to a wireless client</td>
</tr>
<tr>
<td></td>
<td>using EAP or WPA/WPA-2 PSK.</td>
</tr>
<tr>
<td><strong>eapol-key-retries</strong></td>
<td>Specifies the maximum number of times (0 to 4 retries) that the controller</td>
</tr>
<tr>
<td><strong>retries</strong></td>
<td>retransmits an EAPOL (WPA) key message to a wireless client.</td>
</tr>
<tr>
<td><strong>identity-request-timeout</strong></td>
<td>Specifies the amount of time (1 to 120 seconds) that the controller</td>
</tr>
<tr>
<td><strong>timeout</strong></td>
<td>waits before retransmitting an EAP Identity Request message to a wireless</td>
</tr>
<tr>
<td></td>
<td>client.</td>
</tr>
<tr>
<td><strong>identity-request-retries</strong></td>
<td>Specifies the maximum number of times (0 to 4 retries) that the controller</td>
</tr>
<tr>
<td></td>
<td>retransmits an EAPOL (WPA) key message to a wireless client.</td>
</tr>
<tr>
<td><strong>key-index</strong></td>
<td>Specifies the key index (0 or 3) used for dynamic wired equivalent privacy (WEP).</td>
</tr>
<tr>
<td><strong>index</strong></td>
<td></td>
</tr>
<tr>
<td><strong>max-login-ignore-identity-response</strong></td>
<td></td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td></td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td></td>
</tr>
<tr>
<td><strong>request-timeout</strong></td>
<td></td>
</tr>
<tr>
<td><strong>timeout</strong></td>
<td></td>
</tr>
<tr>
<td><strong>request-retries</strong></td>
<td></td>
</tr>
</tbody>
</table>
**max-login-ignore-identity-response**

When enabled, this command ignores the limit set for the number of devices that can be connected to the controller with the same username using 802.1x authentication. When disabled, this command limits the number of devices that can be connected to the controller with the same username. This option is not applicable for Web auth user.

Use the command `config netuser maxUserLogin` to set the limit of maximum number of devices per same username.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Ignores the same username reaching the maximum EAP identity response.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Checks the same username reaching the maximum EAP identity response.</td>
</tr>
<tr>
<td><strong>request-timeout</strong></td>
<td>For EAP messages other than Identity Requests or EAPOL (WPA) key messages, specifies the amount of time (1 to 120 seconds) that the controller waits before retransmitting the message to a wireless client. The default value is 30 seconds.</td>
</tr>
<tr>
<td><strong>request-retries</strong></td>
<td>(Optional) For EAP messages other than Identity Requests or EAPOL (WPA) key messages, specifies the maximum number of times (0 to 20 retries) that the controller retransmits the message to a wireless client. The default value is 2.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the key index used for dynamic wired equivalent privacy (WEP):

```
(Cisco Controller) > config advanced eap key-index 0
```

**Related Commands**

`show advanced eap`
config advanced hotspot

To configure advanced hotspot configurations, use the `config advanced hotspot` command.

```
config advanced hotspot { anqp-4way { disable | enable | threshold value } | cmbk-delay value |
garp { disable | enable } | gas-limit { disable | enable } }
```

### Syntax Description

- **anqp-4way** Enables, disables, or configures the Access Network Query Protocol (ANQP) four way fragment threshold.
  - **disable** Disables the ANQP four way message.
  - **enable** Enables the ANQP four way message.
  - **threshold** Configures the ANQP fourway fragment threshold.
  - **value** ANQP four way fragment threshold value in bytes. The range is from 10 to 1500. The default value is 1500.

- **cmbk-delay** Configures the ANQP comeback delay in Time Units (TUs).
  - **value** ANQP comeback delay in Time Units (TUs). 1 TU is defined by 802.11 as 1024 usec. The range is from 1 milliseconds to 30 seconds.

- **garp** Disables or enables the Gratuitous ARP (GARP) forwarding to wireless network.
  - **disable** Disables the Gratuitous ARP (GARP) forwarding to wireless network.
  - **enable** Enables the Gratuitous ARP (GARP) forwarding to wireless network.

- **gas-limit** Limits the number of Generic Advertisement Service (GAS) request action frames sent to the switch by an access point in a given interval.
  - **disable** Disables the GAS request action frame limit on access points.
  - **enable** Enables the GAS request action frame limit on access points.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the ANQP four way fragment threshold value:

```
(Cisco Controller) >config advanced hotspot anqp-4way threshold 200
```
config advanced timers auth-timeout

To configure the authentication timeout, use the `config advanced timers auth-timeout` command.

```
config advanced timers auth-timeout seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>seconds</th>
<th>Authentication response timeout value in seconds between 10 and 600.</th>
</tr>
</thead>
</table>

**Command Default**

The default authentication timeout value is 10 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the authentication timeout to 20 seconds:

```
(Cisco Controller) > config advanced timers auth-timeout 20
```
**config advanced timers eap-timeout**

To configure the Extensible Authentication Protocol (EAP) expiration timeout, use the `config advanced timers eap-timeout` command.

```
config advanced timers eap-timeout seconds
```

**Syntax Description**

- `seconds` EAP timeout value in seconds between 8 and 120.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the EAP expiration timeout to 10 seconds:

(Cisco Controller) > `config advanced timers eap-timeout 10`
To configure the advanced Extensible Authentication Protocol (EAP) identity request delay in seconds, use the `config advanced timers eap-identity-request-delay` command.

```
(config advanced timers eap-identity-request-delay) > config advanced timers eap-identity-request-delay seconds
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>seconds</th>
<th>Advanced EAP identity request delay in number of seconds between 0 and 10.</th>
</tr>
</thead>
</table>

| Command Default   | None    |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the advanced EAP identity request delay to 8 seconds:

```
(config) > config advanced timers eap-identity-request-delay 8
```
### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ap-coverage-report</strong></td>
<td>Configures RRM coverage report interval for all APs.</td>
</tr>
<tr>
<td><strong>seconds</strong></td>
<td>Configures the ap coverage report interval in seconds. The range is between 60 and 90 seconds. Default is 90 seconds.</td>
</tr>
<tr>
<td><strong>ap-discovery-timeout</strong></td>
<td>Configures the Cisco lightweight access point discovery timeout value.</td>
</tr>
<tr>
<td><strong>discovery-timeout</strong></td>
<td>Cisco lightweight access point discovery timeout value, in seconds. The range is from 1 to 10.</td>
</tr>
<tr>
<td><strong>ap-fast-heartbeat</strong></td>
<td>Configures the fast heartbeat timer, which reduces the amount of time it takes to detect a controller failure in access points.</td>
</tr>
<tr>
<td><strong>local</strong></td>
<td>Configures the fast heartbeat interval for access points in local mode.</td>
</tr>
<tr>
<td><strong>flexconnect</strong></td>
<td>Configures the fast heartbeat interval for access points in FlexConnect mode.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Configures the fast heartbeat interval for all the access points.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables the fast heartbeat interval.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables the fast heartbeat interval.</td>
</tr>
<tr>
<td><strong>fast_heartbeat_seconds</strong></td>
<td>Small heartbeat interval, which reduces the amount of time it takes to detect a controller failure, in seconds. The range is from 1 to 10.</td>
</tr>
<tr>
<td><strong>ap-heartbeat-timeout</strong></td>
<td>Configures Cisco lightweight access point heartbeat timeout value.</td>
</tr>
<tr>
<td><strong>heartbeat_seconds</strong></td>
<td>Cisco the Cisco lightweight access point heartbeat timeout value, in seconds. The range is from 1 to 30. This value should be at least three times larger than the fast heartbeat timer.</td>
</tr>
</tbody>
</table>
ap-primary-discovery-timeout

Configures the access point primary discovery request timer.

primary_discovery_timeout

Access point primary discovery request time, in seconds. The range is from 30 to 3600.

ap-primed-join-timeout

Configures the access point primed discovery timeout value.

primed_join_timeout

Access point primed discovery timeout value, in seconds. The range is from 120 to 43200.

auth-timeout

Configures the authentication timeout.

auth_timeout

Authentication response timeout value, in seconds. The range is from 10 to 600.

pkt-fwd-watchdog

Configures the packet forwarding watchdog timer to protect from fastpath deadlock.

watchdog_timer

Packet forwarding watchdog timer, in seconds. The range is from 60 to 300.

default

Configures the watchdog timer to the default value of 240 seconds.

eap-identity-request-delay

Configures the advanced Extensible Authentication Protocol (EAP) identity request delay, in seconds.

eap_identity_request_delay

Advanced EAP identity request delay, in seconds. The range is from 0 to 10.

eap-timeout

Configures the EAP expiration timeout.

eap_timeout

EAP timeout value, in seconds. The range is from 8 to 120.

Command Default

- The default access point discovery timeout is 10 seconds.
- The default access point heartbeat timeout is 30 seconds.
- The default access point primary discovery request timer is 120 seconds.
- The default authentication timeout is 10 seconds.
- The default packet forwarding watchdog timer is 240 seconds.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.3</td>
<td>This command was enhanced.</td>
</tr>
</tbody>
</table>
The Cisco lightweight access point discovery timeout indicates how often a Cisco WLC attempts to discover unconnected Cisco lightweight access points.

The Cisco lightweight access point heartbeat timeout controls how often the Cisco lightweight access point sends a heartbeat keepalive signal to the Cisco Wireless LAN Controller.

The following example shows how to configure an access point discovery timeout with a timeout value of 20:

(Cisco Controller) > config advanced timers ap-discovery-timeout 20

The following example shows how to enable the fast heartbeat interval for an access point in FlexConnect mode:

(Cisco Controller) > config advanced timers ap-fast-heartbeat flexconnect enable 8

The following example shows how to configure the authentication timeout to 20 seconds:

(Cisco Controller) > config advanced timers auth-timeout 20
**config advanced fastpath fastcache**

To configure the fastpath fast cache control, use the `config advanced fastpath fastcache` command.

```
config advanced fastpath fastcache { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the fastpath fast cache control.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the fastpath fast cache control.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the fastpath fast cache control:

```
(Cisco Controller) > config advanced fastpath fastcache enable
```

**Related Commands**

- `config advanced fastpath pkt-capture`
config advanced fastpath pkt-capture

To configure the fastpath packet capture, use the **config advanced fastpath pkt-capture** command.

```
config advanced fastpath pkt-capture { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the fastpath packet capture.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the fastpath packet capture.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the fastpath packet capture:

```
(Cisco Controller) > config advanced fastpath pkt-capture enable
```

**Related Commands**

- config advanced fastpath fastcache
**config advanced sip-preferred-call-no**

To configure voice prioritization, use the `config advanced sip-preferred-call-no` command.

```
config advanced sip-preferred-call-no call_index {call_number | none}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>call_index</code></td>
<td>Call index with valid values between 1 and 6.</td>
</tr>
<tr>
<td><code>call_number</code></td>
<td>Preferred call number that can contain up to 27 characters.</td>
</tr>
<tr>
<td><code>none</code></td>
<td>Deletes the preferred call set for the specified index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Usage Guidelines**

Before you configure voice prioritization, you must complete the following prerequisites:

- Set the voice to the platinum QoS level by entering the `config wlan qos wlan-id platinum` command.
- Enable the admission control (ACM) to this radio by entering the `config 802.11 {a | b} cac {voice | video} acm enable` command.
- Enable the call-snooping feature for a particular WLAN by entering the `config wlan call-snoop enable wlan-id` command.

To view statistics about preferred calls, enter the `show ap stats {802.11 {a | b} | wlan} cisco_ap` command.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new preferred call for index 2:

```
(Cisco Controller) > config advanced sip-preferred-call-no 2 0123456789
```

**Related Commands**

- `config wlan qos`
- `config 802.11 cac video acm`
- `config 802.11 cac voice acm`
- `config wlan call-snoop`
- `show ap stats`
**config advanced sip-snooping-ports**

To configure call snooping ports, use the `config advanced sip-snooping-ports` command.

```
config advanced sip-snooping-ports start_port end_port
```

**Syntax Description**

- **start_port**: Starting port for call snooping. The range is from 0 to 65535.
- **end_port**: Ending port for call snooping. The range is from 0 to 65535.

**Usage Guidelines**

If you need only a single port for call snooping, configure the start and end port with the same number. The port used by the CIUS tablet is 5060 and the port range used by Facetime is from 16384 to 16402.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the call snooping ports:

```
(Cisco Controller) > config advanced sip-snooping-ports 4000 4500
```

**Related Commands**

- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video sip`
- `config 802.11 cac voice sip`
- `show advanced sip-preferred-call-no`
- `show advanced sip-snooping-ports`
- `debug cac`
config advanced backup-controller primary

To configure a primary backup controller, use the config advanced backup-controller primary command.

```
config advanced backup-controller primary system name IP addr
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system name</td>
<td>Configures primary</td>
</tr>
<tr>
<td>IP addr</td>
<td>IP address of the backup controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To delete a primary backup controller entry (IPv6 or IPv4), enter 0.0.0.0 for the controller IP address.

The following example shows how to configure the IPv4 primary backup controller:

```
(Cisco Controller) >config advanced backup-controller primary Controller_1 10.10.10.10
```

The following example shows how to configure the IPv6 primary backup controller:

```
(Cisco Controller) >config advanced backup-controller primary systemname 2001:9:6:40::623
```

The following example shows how to remove the IPv4 primary backup controller:

```
(Cisco Controller) >config advanced backup-controller primary Controller_1 0.0.0.0
```

**Related Commands**

- show advanced back-up controller
config advanced backup-controller secondary

To configure a secondary backup controller, use the `config advanced backup-controller secondary` command.

**Syntax Description**

<table>
<thead>
<tr>
<th><code>system name</code></th>
<th>Configures primary/secondary backup controller.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>IP addr</code></td>
<td>IP address of the backup controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To delete a secondary backup controller entry (IPv4 or IPv6), enter 0.0.0.0 for the controller IP address.

The following example shows how to configure an IPv4 secondary backup controller:

```
(Cisco Controller) > config advanced backup-controller secondary Controller_2 10.10.10.10
```

The following example shows how to configure an IPv6 secondary backup controller:

```
(Cisco Controller) > config advanced backup-controller secondary Controller_2 2001:9:6:40::623
```

The following example shows how to remove an IPv4 secondary backup controller:

```
(Cisco Controller) > config advanced backup-controller secondary Controller_2 0.0.0.0
```

The following example shows how to remove an IPv6 secondary backup controller:

```
(Cisco Controller) > config advanced backup-controller secondary Controller_2 0.0.0.0
```

**Related Commands**

- `show advanced back-up controller`
config advanced client-handoff

To set the client handoff to occur after a selected number of 802.11 data packet excessive retries, use the `config advanced client-handoff` command.

```
config advanced client-handoff num_of_retries
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>num_of_retries</code></td>
<td>Number of excessive retries before client handoff (from 0 to 255).</td>
</tr>
</tbody>
</table>

| Command Default     | Default value for the number of 802.11 data packet excessive retries is 0. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

| Usage Guidelines    | This command is supported only for the 1000/1510 series access points. |

This example shows how to set the client handoff to 100 excessive retries:

```
(Cisco Controller) >config advanced client-handoff 100
```
config advanced dot11-padding

To enable or disable over-the-air frame padding, use the config advanced dot11-padding command.

```
config advanced dot11-padding {enable | disable}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the over-the-air frame padding.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the over-the-air frame padding.</td>
</tr>
</tbody>
</table>

Command Default

The default over-the-air frame padding is disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable over-the-air frame padding:

```
(Cisco Controller) > config advanced dot11-padding enable
```

Related Commands

- debug dot11
- debug dot11 mgmt interface
- debug dot11 mgmt msg
- debug dot11 mgmt ssid
- debug dot11 mgmt state-machine
- debug dot11 mgmt station
- show advanced dot11-padding
config advanced assoc-limit

To configure the rate at which access point radios send association and authentication requests to the controller, use the `config advanced assoc-limit` command.

```
config advanced assoc-limit { enable [number of associations per interval | interval] | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the configuration of the association requests per access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the configuration of the association requests per access point.</td>
</tr>
<tr>
<td><code>number of associations per interval</code></td>
<td>(Optional) Number of association request per access point slot in a given interval. The range is from 1 to 100.</td>
</tr>
<tr>
<td><code>interval</code></td>
<td>(Optional) Association request limit interval. The range is from 100 to 10000 milliseconds.</td>
</tr>
</tbody>
</table>

**Command Default**
The default state of the command is disabled state.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

**Usage Guidelines**

When 200 or more wireless clients try to associate to a controller at the same time, the clients no longer become stuck in the DHCP_REQD state when you use the `config advanced assoc-limit` command to limit association requests from access points.

The following example shows how to configure the number of association requests per access point slot in a given interval of 20 with the association request limit interval of 250:

```
(Cisco Controller) > config advanced assoc-limit enable 20 250
```
**config advanced max-1x-sessions**

To configure the maximum number of simultaneous 802.1X sessions allowed per access point, use the `config advanced max-1x-sessions` command.

```
config advanced max-1x-sessions no_of_sessions
```

**Syntax Description**

- **no_of_sessions**: Number of maximum 802.1x session initiation per AP at a time. The range is from 0 to 255, where 0 indicates unlimited.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the maximum number of simultaneous 802.1X sessions:

```
(Cisco Controller) > config advanced max-1x-sessions 200
```
config advanced rate

To configure switch control path rate limiting, use the `config advanced rate` command.

```
cfg adv rate { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the switch control path rate limiting feature.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the switch control path rate limiting feature.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable switch control path rate limiting:

```
(Cisco Controller) > config advanced rate enable
```
To configure the backoff parameters for probe queue in a Cisco AP, use the `config advanced probe backoff` command.

```
config advanced probe backoff { enable | disable }
```

**Syntax Description**
- `enable` To use default backoff parameter value for probe response.
- `disable` To use increased backoff parameters for probe response.

**Command Default**
Disabled

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to use increased backoff parameters for probe response:

```
(Cisco Controller) > config advanced probe backoff enable
```
config advanced probe filter

To configure the filtering of probe requests forwarded from an access point to the controller, use the `config advanced probe filter` command.

`config advanced probe filter { enable | disable }`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the filtering of probe requests.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the filtering of probe requests.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the filtering of probe requests forwarded from an access point to the controller:

```
(Cisco Controller) > config advanced probe filter enable
```
To limit the number of probes sent to the WLAN controller per access point per client in a given interval, use the `config advanced probe limit` command.

```
config advanced probe limit num_probes interval
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>num_probes</code></td>
<td>Number of probe requests (from 1 to 100) forwarded to the controller per client per access point radio in a given interval.</td>
</tr>
<tr>
<td><code>interval</code></td>
<td>Probe limit interval (from 100 to 10000 milliseconds).</td>
</tr>
</tbody>
</table>

**Command Default**

The default number of probe requests is 2. The default interval is 500 milliseconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to set the number of probes per access point per client to 5 and the probe interval to 800 milliseconds:

```
(Cisco Controller) >config advanced probe limit 5 800
```
To configure an advanced system timer, use the `config advanced timers` command.

```plaintext
config advanced timers { ap-coverage-report seconds | ap-discovery-timeout discovery-timeout | ap-fast-heartbeat { local | flexconnect | all } { enable | disable } fast_heartbeat_seconds | ap-heartbeat-timeout heartbeat_seconds | ap-primary-discovery-timeout primary_discovery_timeout | ap-primed-join-timeout primed_join_timeout | auth-timeout auth_timeout | pkt-fwd-watchdog { enable | disable } { watchdog_timer | default } | eap-identity-request-delay eap_identity_request_delay | eap-timeout eap_timeout }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-coverage-report</td>
<td>Configures RRM coverage report interval for all APs.</td>
</tr>
<tr>
<td>seconds</td>
<td>Configures the ap coverage report interval in seconds. The range is between 60 and 90 seconds. Default is 90 seconds.</td>
</tr>
<tr>
<td>ap-discovery-timeout</td>
<td>Configures the Cisco lightweight access point discovery timeout value.</td>
</tr>
<tr>
<td>discovery-timeout</td>
<td>Cisco lightweight access point discovery timeout value, in seconds. The range is from 1 to 10.</td>
</tr>
<tr>
<td>ap-fast-heartbeat</td>
<td>Configures the fast heartbeat timer, which reduces the amount of time it takes to detect a controller failure in access points.</td>
</tr>
<tr>
<td>local</td>
<td>Configures the fast heartbeat interval for access points in local mode.</td>
</tr>
<tr>
<td>flexconnect</td>
<td>Configures the fast heartbeat interval for access points in FlexConnect mode.</td>
</tr>
<tr>
<td>all</td>
<td>Configures the fast heartbeat interval for all the access points.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the fast heartbeat interval.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the fast heartbeat interval.</td>
</tr>
<tr>
<td>fast_heartbeat_seconds</td>
<td>Small heartbeat interval, which reduces the amount of time it takes to detect a controller failure, in seconds. The range is from 1 to 10.</td>
</tr>
<tr>
<td>ap-heartbeat-timeout</td>
<td>Configures Cisco lightweight access point heartbeat timeout value.</td>
</tr>
<tr>
<td>heartbeat_seconds</td>
<td>Cisco the Cisco lightweight access point heartbeat timeout value, in seconds. The range is from 1 to 30. This value should be at least three times larger than the fast heartbeat timer.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>ap-primary-discovery-timeout</strong></td>
<td>Configures the access point primary discovery request timer.</td>
</tr>
<tr>
<td><strong>primary_discovery_timeout</strong></td>
<td>Access point primary discovery request time, in seconds. The range is from 30 to 3600.</td>
</tr>
<tr>
<td><strong>ap-primed-join-timeout</strong></td>
<td>Configures the access point primed discovery timeout value.</td>
</tr>
<tr>
<td><strong>primed_join_timeout</strong></td>
<td>Access point primed discovery timeout value, in seconds. The range is from 120 to 43200.</td>
</tr>
<tr>
<td><strong>auth-timeout</strong></td>
<td>Configures the authentication timeout.</td>
</tr>
<tr>
<td><strong>auth_timeout</strong></td>
<td>Authentication response timeout value, in seconds. The range is from 10 to 600.</td>
</tr>
<tr>
<td><strong>pkt-fwd-watchdog</strong></td>
<td>Configures the packet forwarding watchdog timer to protect from fastpath deadlock.</td>
</tr>
<tr>
<td><strong>watchdog_timer</strong></td>
<td>Packet forwarding watchdog timer, in seconds. The range is from 60 to 300.</td>
</tr>
<tr>
<td><strong>default</strong></td>
<td>Configures the watchdog timer to the default value of 240 seconds.</td>
</tr>
<tr>
<td><strong>eap-identity-request-delay</strong></td>
<td>Configures the advanced Extensible Authentication Protocol (EAP) identity request delay, in seconds.</td>
</tr>
<tr>
<td><strong>eap_identity_request_delay</strong></td>
<td>Advanced EAP identity request delay, in seconds. The range is from 0 to 10.</td>
</tr>
<tr>
<td><strong>eap-timeout</strong></td>
<td>Configures the EAP expiration timeout.</td>
</tr>
<tr>
<td><strong>eap_timeout</strong></td>
<td>EAP timeout value, in seconds. The range is from 8 to 120.</td>
</tr>
</tbody>
</table>

**Command Default**

- The default access point discovery timeout is 10 seconds.
- The default access point heartbeat timeout is 30 seconds.
- The default access point primary discovery request timer is 120 seconds.
- The default authentication timeout is 10 seconds.
- The default packet forwarding watchdog timer is 240 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.3</td>
<td>This command was enhanced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The Cisco lightweight access point discovery timeout indicates how often a Cisco WLC attempts to discover unconnected Cisco lightweight access points.

The Cisco lightweight access point heartbeat timeout controls how often the Cisco lightweight access point sends a heartbeat keepalive signal to the Cisco Wireless LAN Controller.

The following example shows how to configure an access point discovery timeout with a timeout value of 20:

(Cisco Controller) > config advanced timers ap-discovery-timeout 20

The following example shows how to enable the fast heartbeat interval for an access point in FlexConnect mode:

(Cisco Controller) > config advanced timers ap-fast-heartbeat flexconnect enable 8

The following example shows how to configure the authentication timeout to 20 seconds:

(Cisco Controller) > config advanced timers auth-timeout 20
config ap 802.1Xuser

To configure the global authentication username and password for all access points currently associated with the controller as well as any access points that associate with the controller in the future, use the `config ap 802.1Xuser` command.

`config ap 802.1Xuser add username ap-username password ap-password { all | cisco_ap }`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add username</code></td>
<td>Specifies to add a username.</td>
</tr>
<tr>
<td><code>ap-username</code></td>
<td>Username on the Cisco AP.</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Specifies to add a password.</td>
</tr>
<tr>
<td><code>ap-password</code></td>
<td>Password.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Specific access point.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must enter a strong `password`. Strong passwords have the following characteristics:

- They are at least eight characters long.
- They contain a combination of uppercase and lowercase letters, numbers, and symbols.
- They are not a word in any language.

You can set the values for a specific access point.

This example shows how to configure the global authentication username and password for all access points:

(Cisco Controller) > `config ap 802.1Xuser add username cisco123 password cisco2020 all`
**config ap 802.1Xuser delete**

To force a specific access point to use the controller’s global authentication settings, use the `config ap 802.1Xuser delete` command.

```
config ap 802.1Xuser delete cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Access point.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cisco_ap</code></td>
<td><code>config ap 802.1Xuser delete</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>802.1Xuser delete</code></td>
<td><code>7.6</code></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete access point AP01 to use the controller’s global authentication settings:

```
(Cisco Controller) > config ap 802.1Xuser delete AP01
```
config ap 802.1Xuser disable

To disable authentication for all access points or for a specific access point, use the config ap 802.1Xuser disable command.

config ap 802.1Xuser disable { all | cisco_ap }

Syntax Description

<table>
<thead>
<tr>
<th>disable</th>
<th>Disables authentication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Access point.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can disable 802.1X authentication for a specific access point only if global 802.1X authentication is not enabled. If global 802.1X authentication is enabled, you can disable 802.1X for all access points only.

The following example shows how to disable the authentication for access point cisco_ap1:

(Cisco Controller) >config ap 802.1Xuser disable
To enable or disable over-the-air frame padding, use the `config advanced dot11-padding` command.

```
config advanced dot11-padding { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the over-the-air frame padding.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the over-the-air frame padding.</td>
</tr>
</tbody>
</table>

### Command Default

The default over-the-air frame padding is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable over-the-air frame padding:

```
(Cisco Controller) > config advanced dot11-padding enable
```

### Related Commands

- `debug dot11`
- `debug dot11 mgmt interface`
- `debug dot11 mgmt msg`
- `debug dot11 mgmt ssid`
- `debug dot11 mgmt state-machine`
- `debug dot11 mgmt station`
- `show advanced dot11-padding`
config ap

To configure a Cisco lightweight access point or to add or delete a third-party (foreign) access point, use the `config ap` command.

```
config ap {{ { enable | disable } cisco_ap | { add | delete } MAC port { enable | disable } IP_address }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Cisco lightweight access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Cisco lightweight access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
<tr>
<td>add</td>
<td>Adds foreign access points.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes foreign access points.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of a foreign access point.</td>
</tr>
<tr>
<td>port</td>
<td>Port number through which the foreign access point can be reached.</td>
</tr>
<tr>
<td>IP_address</td>
<td>IP address of the foreign access point.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable lightweight access point AP1:

(Cisco Controller) > config ap disable AP1

The following example shows how to add a foreign access point with MAC address 12:12:12:12:12:12 and IP address 192.12.12.1 from port 2033:

(Cisco Controller) > config ap add 12:12:12:12:12:12 2033 enable 192.12.12.1
To configure the Cisco lightweight access point AID audit mechanism, use the `config ap aid-audit` command.

```
config ap aid-audit
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aid-audit</td>
<td>Configures AID audit mechanism.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables AID audit mechanism.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables AID audit mechanism.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable AP aid-audit:

```
(Cisco Controller) > config ap aid-audit enable
```
**config ap antenna band-mode**

To configure a Cisco AP antenna's band mode as either single or dual, use the **config ap antenna band-mode** command.

```
config ap antenna band-mode { single | dual } cisco-ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>Configures single band antenna mode for a Cisco AP.</td>
</tr>
<tr>
<td>dual</td>
<td>Configures dual band antenna mode for a Cisco AP.</td>
</tr>
<tr>
<td>cisco-ap</td>
<td>Cisco AP name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>8.3 and later</td>
<td>The <strong>antenna-band-mode</strong> parameter was modified to <strong>antenna band-mode</strong>.</td>
</tr>
</tbody>
</table>
config ap atf 802.11

Configure Cisco Airtime Fairness at an AP level by using the `config ap atf 802.11` command.

```
config ap atf 802.11 {a | b} {mode {disable | monitor | enforce-policy} ap-name} |
{optimization {enable | disable}}
```

### Syntax Description

- **a**  
  Specifies the 802.11a network settings

- **b**  
  Specifies the 802.11b/g network settings

- **mode**  
  Configures the granularity of Cisco ATF enforcement

- **disable**  
  Disables Cisco ATF

- **monitor**  
  Configures Cisco ATF in monitor mode

- **enforce-policy**  
  Configures Cisco ATF in enforcement mode

- **ap-name**  
  AP name that you must specify

- **optimization**  
  Configures airtime optimization

- **enable**  
  Enables airtime optimization

- **disable**  
  Disables airtime optimization

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

To enable airtime optimization on an 802.11a network for a Cisco AP, `my-ap`, enter the following command:

```
(Cisco Controller) > config ap atf 802.11a optimization enable my-ap
```
config ap atf 802.11 policy

To configure AP-level override for Cisco ATF policy on a WLAN, enter this command:

```
conﬁt ap atf 802.11 { a | b } policy wlan-id policy-name ap-name override { enable | disable }
```

**Syntax Description**

- **a**: Specifies the 802.11a network settings
- **b**: Specifies the 802.11b network settings
- **policy**: Specifies the Cisco ATF policy
- **wlan-id**: WLAN ID or Remote LAN ID that you must specify
- **policy-name**: Cisco ATF policy name that you must specify
- **ap-name**: Name of the AP that you must specify
- **override**: Configures ATF policy override for a WLAN in the AP group
- **enable**: Enables ATF policy override for a WLAN in the AP group
- **disable**: Disables ATF policy override for a WLAN in the AP group

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>
config ap autoconvert

To automatically convert all access points to FlexConnect mode or Monitor mode upon associating with the Cisco WLC, use the `config ap autoconvert` command.

```
config ap autoconvert {flexconnect | monitor | disable}
```

**Syntax Description**
- `flexconnect`: Configures all the access points automatically to FlexConnect mode.
- `monitor`: Configures all the access points automatically to monitor mode.
- `disable`: Disables the autoconvert option on the access points.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When access points in local mode connect to a Cisco 7500 Series Wireless Controller, they do not serve clients. The access point details are available in the controller. To enable access points to serve clients or perform monitoring related tasks when connected to the Cisco 7500 Series Wireless Controller, the access points must be in FlexConnect mode or Monitor mode.

The command can also be used for conversion of AP modes in Cisco 5520, 8540, and 8510 Series Wireless Controller platforms.

The following example shows how to automatically convert all access points to the FlexConnect mode:

```
(Cisco Controller) > config ap autoconvert flexconnect
```

The following example shows how to disable the autoconvert option on the APs:

```
(Cisco Controller) > config ap autoconvert disable
```
config ap bhrate

To configure the Cisco bridge backhaul Tx rate, use the `config ap bhrate` command.

```
config ap bhrate \{rate | auto\} cisco_ap
```

**Syntax Description**

- `rate`  
  Cisco bridge backhaul Tx rate in kbps. The valid values are 6000, 12000, 18000, 24000, 36000, 48000, and 54000.

- `auto`  
  Configures the auto data rate.

- `cisco_ap`  
  Name of a Cisco lightweight access point.

**Command Default**

The default status of the command is set to Auto.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In previous software releases, the default value for the bridge data rate was 24000 (24 Mbps). In controller software release 6.0, the default value for the bridge data rate is `auto`. If you configured the default bridge data rate value (24000) in a previous controller software release, the bridge data rate is configured with the new default value (auto) when you upgrade to controller software release 6.0. However, if you configured a non default value (for example, 18000) in a previous controller software release, that configuration setting is preserved when you upgrade to Cisco WLC Release 6.0.

When the bridge data rate is set to `auto`, the mesh backhaul chooses the highest rate where the next higher rate cannot be used due to unsuitable conditions for that specific rate (and not because of conditions that affect all rates).

The following example shows how to configure the Cisco bridge backhaul Tx rate to 54000 kbps:

```
(Cisco Controller) > config ap bhrate 54000 AP01
```
config ap bridgegroupname

To set or delete a bridge group name on a Cisco lightweight access point, use the `config ap bridgegroupname` command.

```
config ap bridgegroupname { set groupname | delete | { strict-matching { enable | disable } } } cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set</code></td>
<td>Sets a Cisco lightweight access point’s bridge group name.</td>
</tr>
<tr>
<td><code>groupname</code></td>
<td>Bridge group name.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a Cisco lightweight access point’s bridge group name.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
<tr>
<td><code>strict-matching</code></td>
<td>Restricts the possible parent list, if the MAP has a non-default BGN, and the potential parent has a different BGN.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables a Cisco lightweight access point's group name.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables a Cisco lightweight access point's group name.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>Release 8.0</td>
<td>The <code>strict-matching</code> parameter was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Only access points with the same bridge group name can connect to each other. Changing the AP bridgegroupname may strand the bridge AP.

The following example shows how to delete a bridge group name on Cisco access point’s bridge group name AP02:

```
(Cisco Controller) > config ap bridgegroupname delete AP02
Changing the AP's bridgegroupname may strand the bridge AP. Please continue with caution.
Changing the AP's bridgegroupname will also cause the AP to reboot.
Are you sure you want to continue? (y/n)
```
config ap bridging

To configure Ethernet-to-Ethernet bridging on a Cisco lightweight access point, use the `config ap bridging` command.

```
config ap bridging {enable | disable} cisco_ap
```

**Syntax Description**

- `enable`: Enables the Ethernet-to-Ethernet bridging on a Cisco lightweight access point.
- `disable`: Disables Ethernet-to-Ethernet bridging.
- `cisco_ap`: Name of a Cisco lightweight access point.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable bridging on an access point:

```
(Cisco Controller) >config ap bridging enable nyc04-44-1240
```

The following example shows how to disable bridging on an access point:

```
(Cisco Controller) >config ap bridging disable nyc04-44-1240
```
config ap cdp

To configure the Cisco Discovery Protocol (CDP) on a Cisco lightweight access point, use the `config ap cdp` command.

```plaintext
config ap cdp { enable | disable | interface { ethernet interface_number | slot slot_id } } { cisco_ap | all }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CDP on an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables CDP on an access point.</td>
</tr>
<tr>
<td>interface</td>
<td>Configures CDP in a specific interface.</td>
</tr>
<tr>
<td>ethernet</td>
<td>Configures CDP for an ethernet interface.</td>
</tr>
<tr>
<td>interface_number</td>
<td>Ethernet interface number between 0 and 3.</td>
</tr>
<tr>
<td>slot</td>
<td>Configures CDP for a radio interface.</td>
</tr>
<tr>
<td>slot_id</td>
<td>Slot number between 0 and 3.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

**Command Default**

Enabled on radio interfaces of mesh APs and disabled on radio interfaces of non-mesh APs. Enabled on Ethernet interfaces of all APs.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `config ap cdp disable all` command disables CDP on all access points that are joined to the controller and all access points that join in the future. CDP remains disabled on both current and future access points even after the controller or access point reboots. To enable CDP, enter the `config ap cdp enable all` command.

CDP over Ethernet/radio interfaces is available only when CDP is enabled. After you enable CDP on all access points joined to the controller, you may disable and then reenable CDP on individual access points using the `config ap cdp { enable | disable } cisco_ap command`. After you disable CDP on all access points joined to the controller, you may not enable and then disable CDP on individual access points.
The following example shows how to enable CDP on all access points:

(Cisco Controller) >>conf ap cdp enable all

The following example shows how to disable CDP on ap02 access point:

(Cisco Controller) >>conf ap cdp disable ap02

The following example shows how to enable CDP for Ethernet interface number 2 on all access points:

(Cisco Controller) >>conf ap cdp ethernet 2 enable all
To configure a Cisco lightweight access point’s memory core dump, use the `config ap core-dump` command.

```bash
config ap core-dump { disable | enable tftp_server_ipaddress filename { compress | uncompress } { cisco_ap | all } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the Cisco lightweight access point’s memory core dump setting.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the Cisco lightweight access point’s memory core dump setting.</td>
</tr>
<tr>
<td><code>tftp_server_ipaddress</code></td>
<td>IP address of the TFTP server to which the access point sends core dump files.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name that the access point uses to label the core file.</td>
</tr>
<tr>
<td><code>compress</code></td>
<td>Compresses the core dump file.</td>
</tr>
<tr>
<td><code>uncompress</code></td>
<td>Uncompresses the core dump file.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

### Note

If an AP itself is configured with the name ‘all’, then the ‘all access points’ case takes precedence over the AP that is named ‘all’.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The access point must be able to reach the TFTP server. This command is applicable for both IPv4 and IPv6 addresses.

The following example shows how to configure and compress the core dump file:

```
(Cisco Controller) > config ap core-dump enable 209.165.200.225 log compress AP02
```
config ap crash-file clear-all

To delete all crash and radio core dump files, use the `config ap crash-file clear-all` command.

```
config ap crash-file clear-all
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete all crash files:

```
(Cisco Controller) > config ap crash-file clear-all
```
config ap crash-file delete

To delete a single crash or radio core dump file, use the `config ap crash-file delete` command.

`config ap crash-file delete filename`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_filename</code></td>
<td>Name of the file to delete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
<td><strong>Modification</strong></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete crash file 1:

```
(Cisco Controller) > config ap crash-file delete crash_file_1
```
config ap crash-file get-crash-file

To collect the latest crash data for a Cisco lightweight access point, use the `config ap crash-file get-crash-file` command.

`config ap crash-file get-crash-file cisco_ap`

**Syntax Description**

<table>
<thead>
<tr>
<th><code>cisco_ap</code></th>
<th>Name of the Cisco lightweight access point.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `transfer upload datatype` command to transfer the collected data to the Cisco wireless LAN controller.

The following example shows how to collect the latest crash data for access point AP3:

```plaintext
(Cisco Controller) > config ap crash-file get-crash-file AP3
```
# config ap crash-file get-radio-core-dump

To get a Cisco lightweight access point’s radio core dump, use the `config ap crash-file get-radio-core-dump` command.

```
config ap crash-file get-radio-core-dump slot_id cisco_ap
```

## Syntax Description

<table>
<thead>
<tr>
<th>Slot ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot_id</td>
<td>Slot ID (either 0 or 1).</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to collect the radio core dump for access point AP02 and slot 0:

```
(Cisco Controller) > config ap crash-file get-radio-core-dump 0 AP02
```
config ap dtls-cipher-suite

To enable new cipher suites for DTLS connection between AP and controller, use the config ap dtls-cipher-suite command.

```
config ap dtls-cipher-suite { RSA-AES256-SHA256 | RSA-AES256-SHA | RSA-AES128-SHA }
```

**Syntax Description**
- **RSA-AES256-SHA256**
  Cipher suite using either RSA key exchange or authentication, using 256 bit AES and SHA 256.
- **RSA-AES256-SHA**
  Cipher suite using either RSA key exchange or authentication, using 256 bit AES and SHA.
- **RSA-AES128-SHA**
  Cipher suite using either RSA key exchange or authentication, using 128 bit AES and SHA.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable RSA cipher suites using 256 bit AES and SHA 256 for DTLS connection between AP and controller:

```
(Cisco Controller) > config ap dtls-cipher-suite RSA-AES256-SHA256
```
**config ap ethernet duplex**

To configure the Ethernet port duplex and speed settings of the lightweight access points, use the `config ap ethernet duplex` command.

```
config ap ethernet duplex [auto | half | full] speed [auto | 10 | 100 | 1000] { all | cisco_ap }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>(Optional) Specifies the Ethernet port duplex auto settings.</td>
</tr>
<tr>
<td>half</td>
<td>(Optional) Specifies the Ethernet port duplex half settings.</td>
</tr>
<tr>
<td>full</td>
<td>(Optional) Specifies the Ethernet port duplex full settings.</td>
</tr>
<tr>
<td>speed</td>
<td>Specifies the Ethernet port speed settings.</td>
</tr>
<tr>
<td>auto</td>
<td>(Optional) Specifies the Ethernet port speed to auto.</td>
</tr>
<tr>
<td>10</td>
<td>(Optional) Specifies the Ethernet port speed to 10 Mbps.</td>
</tr>
<tr>
<td>100</td>
<td>(Optional) Specifies the Ethernet port speed to 100 Mbps.</td>
</tr>
<tr>
<td>1000</td>
<td>(Optional) Specifies the Ethernet port speed to 1000 Mbps.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies the Ethernet port setting for all connected access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the Ethernet port duplex half settings as 10 Mbps for all access points:

```
(Cisco Controller) > config ap ethernet duplex half speed 10 all
```
config ap ethernet tag

To configure VLAN tagging of the Control and Provisioning of Wireless Access Points protocol (CAPWAP) packets, use the `config ap ethernet tag` command.

```
config ap ethernet tag {id vlan_id | disable} {cisco_ap | all}
```

**Syntax Description**

- `id` Specifies the VLAN id.
- `vlan_id` ID of the trunk VLAN.
- `disable` Disables the VLAN tag feature. When you disable VLAN tagging, the access point untags the CAPWAP packets.
- `cisco_ap` Name of the Cisco AP.
- `all` Configures VLAN tagging on all the Cisco access points.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After you configure VLAN tagging, the configuration comes into effect only after the access point reboots. You cannot configure VLAN tagging on mesh access points.

If the access point is unable to route traffic or reach the controller using the specified trunk VLAN, it falls back to the untagged configuration. If the access point joins the controller using this fallback configuration, the controller sends a trap to a trap server such as the Cisco Prime Infrastructure, which indicates the failure of the trunk VLAN. In this scenario, the "Failover to untagged" message appears in show command output.

The following example shows how to configure VLAN tagging on a trunk VLAN:

```
(Cisco Controller) >config ap ethernet tag 6 AP1
```
config ap autoconvert

To automatically convert all access points to FlexConnect mode or Monitor mode upon associating with the Cisco WLC, use the **config ap autoconvert** command.

```
config ap autoconvert {flexconnect | monitor | disable}
```

### Syntax Description

- **flexconnect**: Configures all the access points automatically to FlexConnect mode.
- **monitor**: Configures all the access points automatically to monitor mode.
- **disable**: Disables the autoconvert option on the access points.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When access points in local mode connect to a Cisco 7500 Series Wireless Controller, they do not serve clients. The access point details are available in the controller. To enable access points to serve clients or perform monitoring related tasks when connected to the Cisco 7500 Series Wireless Controller, the access points must be in FlexConnect mode or Monitor mode.

The command can also be used for conversion of AP modes in Cisco 5520, 8540, and 8510 Series Wireless Controller platforms.

The following example shows how to automatically convert all access points to the FlexConnect mode:

```
(Cisco Controller) > config ap autoconvert flexconnect
```

The following example shows how to disable the autoconvert option on the APs:

```
(Cisco Controller) > config ap autoconvert disable
```
config ap flexconnect bridge

To configure flexconnect bridge backhaul on a flex+bridge access point, use the config ap flexconnect bridge command.

```
config ap flexconnect bridge { backhaul-wlan | resilient } cisco_ap { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backhaul-wlan</td>
<td>Enables backhaul WLAN on the flexconnect AP.</td>
</tr>
<tr>
<td>resilient</td>
<td>Enables standalone mode in flex+bridge AP.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the selected mode on the access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the selected mode on the access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The default resilient mode is enabled on the Flex-bridge AP.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable resilient mode on an AP:

```
(Cisco Controller) > config ap flexconnect bridge resilient AP2 enable
```
To enable central-DHCP on a FlexConnect access point in a WLAN, use the `config ap flexconnect central-dhcp` command.

```plaintext
config ap flexconnect central-dhcp wlan_id cisco_ap [add | delete] {enable | disable} override dns {enable | disable} nat-pat {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>(Optional) Adds a new WLAN DHCP mapping.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>(Optional) Deletes a WLAN DHCP mapping.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables central-DHCP on a FlexConnect access point. When you enable this feature, the DHCP packets received from the access point are centrally switched to the controller and then forwarded to the corresponding VLAN based on the AP and the SSID.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables central-DHCP on a FlexConnect access point.</td>
</tr>
<tr>
<td><code>override dns</code></td>
<td>Overrides the DNS server address on the interface assigned by the controller. When you override DNS in centrally switched WLANs, the clients get their DNS server IP address from the AP and not from the controller.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the Override DNS feature on a FlexConnect access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the Override DNS feature on a FlexConnect access point.</td>
</tr>
<tr>
<td><code>nat-pat</code></td>
<td>Network Address Translation (NAT) and Port Address Translation (PAT) that you can enable or disable.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables NAT-PAT on a FlexConnect access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Deletes NAT-PAT on a FlexConnect access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable central-DHCP, Override DNS, and NAT-PAT on a FlexConnect access point:

```plaintext
(Cisco Controller) > config ap flexconnect central-dhcp 1 ap1250 enable override dns enable nat-pat enable
```
config ap flexconnect local-split

To configure a local-split tunnel on a FlexConnect access point, use the **config ap flexconnect local-split** command.

```
config ap flexconnect local-split wlan_id cisco_ap { enable | disable } acl acl_name
```

**Syntax Description**

- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **cisco_ap**: Name of the FlexConnect access point.
- **enable**: Enables local-split tunnel on a FlexConnect access point.
- **disable**: Disables local-split tunnel feature on a FlexConnect access point.
- **acl**: Configures a FlexConnect local-split access control list.
- **acl_name**: Name of the FlexConnect access control list.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command allows you to configure a local-split tunnel in a centrally switched WLAN using a FlexConnect ACL. A local split tunnel supports only for unicast Layer 4 IP traffic as NAT/PAT does not support multicast IP traffic.

The following example shows how to configure a local-split tunnel using a FlexConnect ACL:

```
(Cisco Controller) >config ap flexconnect local-split 6 AP2 enable acl flex6
```
config ap flexconnect policy

To configure a policy ACL on a FlexConnect access point, use the config ap flexconnect policy command.

```
config ap flexconnect policy {add | delete} acl_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a policy ACL on a FlexConnect access point.</td>
</tr>
<tr>
<td>deletes</td>
<td>Deletes a policy ACL on a FlexConnect access point.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Name of the ACL.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to add a policy ACL on a FlexConnect access point:

(Cisco Controller) > config ap flexconnect policy add acl1
**config ap flexconnect radius auth set**

To configure a primary or secondary RADIUS server for a specific FlexConnect access point, use the `config ap flexconnect radius auth set` command.

```
config ap flexconnect radius auth set {primary | secondary} ip_address auth_port secret
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Specifies the primary RADIUS server for a specific FlexConnect access point</td>
</tr>
<tr>
<td>secondary</td>
<td>Specifies the secondary RADIUS server for a specific FlexConnect AP</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of the RADIUS server</td>
</tr>
<tr>
<td>auth_port secret</td>
<td>Name of the port</td>
</tr>
<tr>
<td>secret</td>
<td>RADIUS server secret</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6</td>
</tr>
</tbody>
</table>

The following example shows how to configure a primary RADIUS server for a specific access point:

```
(Cisco Controller) >config ap flexconnect radius auth set primary 192.12.12.1
```
config ap flexconnect vlan

To enable or disable VLAN tagging for a FlexConnect access, use the config ap flexconnect vlan command.

```
config ap flexconnect vlan { enable | disable } cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the access point’s VLAN tagging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the access point’s VLAN tagging.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled. Once enabled, WLANs enabled for local switching inherit the VLAN assigned at the Cisco WLC.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable the access point’s VLAN tagging for a FlexConnect access:

```
(Cisco Controller) > config ap flexconnect vlan enable AP02
```
config ap flexconnect vlan add

To add a VLAN to a FlexConnect access point, use the `config ap flexconnect vlan add` command.

`config ap flexconnect vlan add vlan-id acl in-acl out-acl cisco_ap`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan-id</code></td>
<td>VLAN identifier.</td>
</tr>
<tr>
<td><code>acl</code></td>
<td>ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><code>in-acl</code></td>
<td>Inbound ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><code>out-acl</code></td>
<td>Outbound ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the FlexConnect access point:

```bash
(Cisco Controller) > config ap flexconnect vlan add 21 acl inacl1 outacl1 ap1
```
**config ap flexconnect vlan native**

To configure a native VLAN for a FlexConnect access point, use the `config ap flexconnect vlan native` command.

```
config ap flexconnect vlan native vlan-id cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan-id</code></td>
<td>VLAN identifier.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a native VLAN for a FlexConnect access point mode:

```
(Cisco Controller) > config ap flexconnect vlan native 6 AP02
```
**config ap flexconnect vlan wlan**

To assign a VLAN ID to a FlexConnect access point, use the `config ap flexconnect vlan wlan` command.

```plaintext
config ap flexconnect vlan wlan wlan-id vlan-id cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan-id</td>
<td>WLAN identifier</td>
</tr>
<tr>
<td>vlan-id</td>
<td>VLAN identifier (1 - 4094).</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

VLAN ID associated to the WLAN.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to assign a VLAN ID to a FlexConnect access point:

```
(Cisco Controller) > config ap flexconnect vlan wlan 192.12.12.1 6 AP02
```
config ap flexconnect web-auth

To configure a FlexConnect ACL for external web authentication in locally switched WLANs, use the `config ap flexconnect web-auth` command.

```
config ap flexconnect web-auth wlan wlan_id cisco_ap acl_name { enable | disable }
```

**Syntax Description**

- `wlan`  
  Specifies the wireless LAN to be configured with a FlexConnect ACL.

- `wlan_id`  
  Wireless LAN identifier between 1 and 512 (inclusive).

- `cisco_ap`  
  Name of the FlexConnect access point.

- `acl_name`  
  Name of the FlexConnect ACL.

- `enable`  
  Enables the FlexConnect ACL on the locally switched wireless LAN.

- `disable`  
  Disables the FlexConnect ACL on the locally switched wireless LAN.

**Command Default**

FlexConnect ACL for external web authentication in locally switched WLANs is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The FlexConnect ACLs that are specific to an AP have the highest priority. The FlexConnect ACLs that are specific to WLANs have the lowest priority.

The following example shows how to enable FlexConnect ACL for external web authentication on WLAN 6:

```
(Cisco Controller) >config ap flexconnect web-auth wlan 6 AP2 flexacl2 enable
```
**config ap flexconnect web-policy acl**

To configure a Web Policy FlexConnect ACL on an access point, use the `config ap flexconnect web-policy acl` command.

```
cfg ap flexconnect web-policy acl {add | delete} acl_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a Web Policy FlexConnect ACL on an access point.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes Web Policy FlexConnect ACL on an access point.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Name of the Web Policy FlexConnect ACL.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a Web Policy FlexConnect ACL on an access point:

```
(Cisco Controller) >config ap flexconnect web-policy acl add flexacl2
```
**config ap flexconnect wlan**

To configure a FlexConnect access point in a locally switched WLAN, use the `config ap flexconnect wlan` command.

```plaintext
config ap flexconnect wlan l2acl { add wlan_id cisco_ap acl_name | delete wlan_id cisco_ap }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a Layer 2 ACL to the FlexConnect access point.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Layer 2 ACL name. The name can be up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a Layer 2 ACL from the FlexConnect access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

- **Release**
- **Modification**
  - 7.5  This command was introduced.

**Usage Guidelines**

- You can create a maximum of 16 rules for a Layer 2 ACL.
- You can create a maximum of 64 Layer 2 ACLs on a Cisco WLC.
- A maximum of 16 Layer 2 ACLs are supported per AP because an AP supports a maximum of 16 WLANs.
- Ensure that the Layer 2 ACL names do not conflict with the FlexConnect ACL names because an AP does not support the same Layer 2 and Layer 3 ACL names.

The following example shows how to configure a Layer 2 ACL on a FlexConnect AP.

```plaintext
(Cisco Controller) > config ap flexconnect wlan add 1 AP1600_1 acl_l2_1
```
config ap group-name

To specify a descriptive group name for a Cisco lightweight access point, use the `config ap group-name` command.

**config ap group-name** *groupname cisco_ap*

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>groupname</td>
<td>Descriptive name for the access point group.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The Cisco lightweight access point must be disabled before changing this parameter.

The following example shows how to configure a descriptive name for access point AP01:

(Cisco Controller) > `config ap group-name superusers AP01`
config ap hotspot

To configure hotspot parameters on an access point, use the **config ap hotspot** command.

```bash
config ap hotspot venue { type group_code type_code | name { add language_code venue_name | delete } }
```

cisco_ap Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>venue</td>
<td>Configures venue information for given AP group.</td>
</tr>
<tr>
<td>type</td>
<td>Configures the type of venue for given AP group.</td>
</tr>
<tr>
<td>group_code</td>
<td>Venue group information for given AP group.</td>
</tr>
</tbody>
</table>

The following options are available:

- 0—UNSPECIFIED
- 1—ASSEMBLY
- 2—BUSINESS
- 3—EDUCATIONAL
- 4—FACTORY-INDUSTRIAL
- 5—INSTITUTIONAL
- 6—MERCANTILE
- 7—RESIDENTIAL
- 8—STORAGE
- 9—UTILITY-MISC
- 10—VEHICULAR
- 11—OUTDOOR
type_code
Venue type information for the AP group.

For venue group 1 (ASSEMBLY), the following options are available:

- 0—UNSPECIFIED ASSEMBLY
- 1—ARENA
- 2—STADIUM
- 3—PASSENGER TERMINAL
- 4—AMPHITHEATER
- 5—AMUSEMENT PARK
- 6—PLACE OF WORSHIP
- 7—CONVENTION CENTER
- 8—LIBRARY
- 9—MUSEUM
- 10—RESTAURANT
- 11—THEATER
- 12—BAR
- 13—COFFEE SHOP
- 14—ZOO OR AQUARIUM
- 15—EMERGENCY COORDINATION CENTER

For venue group 2 (BUSINESS), the following options are available:

- 0—UNSPECIFIED BUSINESS
- 1—DOCTOR OR DENTIST OFFICE
- 2—BANK
- 3—FIRE STATION
- 4—POLICE STATION
- 6—POST OFFICE
- 7—PROFESSIONAL OFFICE
- 8—RESEARCH AND DEVELOPMENT FACILITY
- 9—ATTORNEY OFFICE

For venue group 3 (EDUCATIONAL), the following options are available:

- 0—UNSPECIFIED EDUCATIONAL
- 1—PRIMARY SCHOOL
- 2—SECONDARY SCHOOL
• 3—UNIVERSITY OR COLLEGE

For venue group 4 (FACTORY-INDUSTRIAL), the following options are available:
  • 0—UNSPECIFIED FACTORY AND INDUSTRIAL
  • 1—FACTORY

For venue group 5 (INSTITUTIONAL), the following options are available:
  • 0—UNSPECIFIED INSTITUTIONAL
  • 1—HOSPITAL
  • 2—LONG-TERM CARE FACILITY
  • 3—ALCOHOL AND DRUG RE-HABILITATION CENTER
  • 4—GROUP HOME
  • 5—PRISON OR JAIL
config ap hotspot

type_code
For venue group 6 (MERCANTILE), the following options are available:

- 0—UNSPECIFIED MERCANTILE
- 1—RETAIL STORE
- 2—GROCERY MARKET
- 3—AUTOMOTIVE SERVICE STATION
- 4—SHOPPING MALL
- 5—GAS STATION

For venue group 7 (RESIDENTIAL), the following options are available:

- 0—UNSPECIFIED RESIDENTIAL
- 1—PRIVATE RESIDENCE
- 2—HOTEL OR MOTEL
- 3—DORMITORY
- 4—BOARDING HOUSE

For venue group 8 (STORAGE), the option is:

- 0—UNSPECIFIED STORAGE

For venue group 9 (UTILITY-MISC), the option is:

- 0—UNSPECIFIED UTILITY AND MISCELLANEOUS

For venue group 10 (VEHICULAR), the following options are available:

- 0—UNSPECIFIED VEHICULAR
- 1—AUTOMOBILE OR TRUCK
- 2—AIRPLANE
- 3—BUS
- 4—FERRY
- 5—SHIP OR BOAT
- 6—TRAIN
- 7—MOTOR BIKE

For venue group 11 (OUTDOOR), the following options are available:

- 0—UNSPECIFIED OUTDOOR
- 1—MINI-MESH NETWORK
- 2—CITY PARK
- 3—REST AREA
- 4—TRAFFIC CONTROL
- 5—BUS STOP
- 6—KIOSK

<table>
<thead>
<tr>
<th>name</th>
<th>Configures the name of venue for this access point.</th>
</tr>
</thead>
<tbody>
<tr>
<td>language_code</td>
<td>ISO-639 encoded string defining the language used at the venue. This string is a three-character language code. For example, you can enter ENG for English.</td>
</tr>
<tr>
<td>venue_name</td>
<td>Venue name for this access point. This name is associated with the basic service set (BSS) and is used in cases where the SSID does not provide enough information about the venue. The venue name is case sensitive and can be up to 252 alphanumeric characters.</td>
</tr>
<tr>
<td>add</td>
<td>Adds the HotSpot venue name for this access point.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the HotSpot venue name for this access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco access point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the venue group as educational and venue type as university:

(Cisco Controller) > config ap hotspot venue type 3 3
To configure an image on a specified access point, use the `config ap image predownload` command.

```
config ap image predownload {abort | primary | backup} {cisco_ap | all}
```

**Syntax Description**
- `abort` : Aborts the predownload image process.
- `primary` : Predownloads an image to a Cisco access point from the controller's primary image.
- `cisco_ap` : Name of a Cisco lightweight access point.
- `all` : Specifies all access points to predownload an image.

**(Cisco Controller) >**

**Note**
If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to predownload an image to an access point from the primary image:

```
(Cisco Controller) >config ap image predownload primary all
```
config ap image swap

To swap an access point’s primary and backup images, use the **config ap image swap** command.

```
config ap image swap {cisco_ap | all}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all access points to interchange the boot images.</td>
</tr>
</tbody>
</table>

**Note**

If an AP itself is configured with the keyword **all**, the all access points case takes precedence over the AP that is with the keyword **all**.

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to swap an access point’s primary and secondary images:

```
(Cisco Controller) > config ap image swap all
```
config ap led-state

To configure the LED state of an access point or to configure the flashing of LEDs, use the `config ap led-state` command.

```
config ap led-state { enable | disable } { cisco_ap | all }
config ap led-state flash { seconds | indefinite | disable } { cisco_ap | dual-band }
```

**Syntax Description**

- `enable`: Enables the LED state of an access point.
- `disable`: Disables the LED state of an access point.
- `cisco_ap`: Name of a Cisco lightweight access point.
- `flash`: Configure the flashing of LEDs for an access point.
- `seconds`: Duration that the LEDs have to flash. The range is from 1 to 3600 seconds.
- `indefinite`: Configures indefinite flashing of the access point’s LED.
- `dual-band`: Configures the LED state for all dual-band access points.

**Usage Guidelines**

If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

LEDs on access points with dual-band radio module will flash green and blue when you execute the led state flash command.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the LED state for an access point:

```
(Cisco Controller) > config ap led-state enable AP02
```

The following example shows how to enable the flashing of LEDs for dual-band access points:

```
(Cisco Controller) > config ap led-state flash 20 dual-band
```
config ap link-encryption

To configure the Datagram Transport Layer Security (DTLS) data encryption for access points on the 5500 series controller, use the config ap link-encryption command.

Note

If an AP itself is configured with the keyword all, the all access points case takes precedence over the AP that is with the keyword all.

config ap link-encryption { enable | disable } { cisco_ap | all }

Syntax Description

enable Enables the DTLS data encryption for access points.

disable Disables the DTLS data encryption for access points.

cisco_ap Name of a Cisco lightweight access point.

all Specifies all access points.

Command Default

DTLS data encryption is enabled automatically for OfficeExtend access points but disabled by default for all other access points.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Only Cisco 5500 Series Controllers support DTLS data encryption. This feature is not available on other controller platforms. If an access point with data encryption enabled tries to join any other controller, the access point joins the controller, but data packets are sent unencrypted.

Only Cisco 1130, 1140, 1240, and 1250 series access points support DTLS data encryption, and data-encrypted access points can join a Cisco 5500 Series Controller only if the wplus license is installed on the controller. If the wplus license is not installed, the access points cannot join the controller.

The following example shows how to enable the data encryption for an access point:

(Cisco Controller) > config ap link-encryption enable AP02
**config ap link-latency**

To configure link latency for a specific access point or for all access points currently associated to the controller, use the `config ap link-latency` command:

```
(config ap link-latency {enable | disable | reset} {cisco_ap | all})
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the link latency for an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the link latency for an access point.</td>
</tr>
<tr>
<td>reset</td>
<td>Resets all link latency for all access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

### Command Default

By default, link latency is in disabled state.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command enables or disables link latency only for access points that are currently joined to the controller. It does not apply to access points that join in the future.

The following example shows how to enable the link latency for all access points:

```
(Cisco Controller) >config ap link-latency enable all
```
config ap location

To modify the descriptive location of a Cisco lightweight access point, use the **config ap location** command.

```
config ap location location cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>location</th>
<th>Location name of the access point (enclosed by double quotation marks).</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The Cisco lightweight access point must be disabled before changing this parameter.

The following example shows how to configure the descriptive location for access point AP1:

```
(Cisco Controller) > config ap location "Building 1" AP1
```
config ap logging syslog level

To set the severity level for filtering syslog messages for a particular access point or for all access points, use the `config ap logging syslog level` command.

```
config ap logging syslog level severity_level {cisco_ap | all}
```

**Syntax Description**

- `severity_level`  
  Severity levels are as follows:
  - emergencies—Severity level 0
  - alerts—Severity level 1
  - critical—Severity level 2
  - errors—Severity level 3
  - warnings—Severity level 4
  - notifications—Severity level 5
  - informational—Severity level 6
  - debugging—Severity level 7

- `cisco_ap`  
  Cisco access point.

- `all`  
  Specifies all access points.

**Note**

If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you set a syslog level, only those messages whose severity is equal to or less than that level are sent to the access point. For example, if you set the syslog level to Warnings (severity level 4), only those messages whose severity is between 0 and 4 are sent to the access point.

This example shows how to set the severity for filtering syslog messages to 3:

```
(Cisco Controller) > config ap logging syslog level 3
```
config ap logging syslog facility

To set the facility level for filtering syslog messages for a particular access point or for all access points, use the config ap logging syslog facility command.

`config ap logging syslog facility facility-level  { cisco_ap | all}`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Facility level is one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>facility-level</code></td>
<td>• auth = Authorization system.</td>
</tr>
<tr>
<td></td>
<td>• cron = Cron/at facility.</td>
</tr>
<tr>
<td></td>
<td>• daemon = System daemons.</td>
</tr>
<tr>
<td></td>
<td>• kern = Kernel.</td>
</tr>
<tr>
<td></td>
<td>• local0 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local1 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local2 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local3 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local4 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local5 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local6 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• local7 = Local use.</td>
</tr>
<tr>
<td></td>
<td>• lpr = Line printer system.</td>
</tr>
<tr>
<td></td>
<td>• mail = Mail system.</td>
</tr>
<tr>
<td></td>
<td>• news = USENET news.</td>
</tr>
<tr>
<td></td>
<td>• sys10 = System use.</td>
</tr>
<tr>
<td></td>
<td>• sys11 = System use.</td>
</tr>
<tr>
<td></td>
<td>• sys12 = System use.</td>
</tr>
<tr>
<td></td>
<td>• sys13 = System use.</td>
</tr>
<tr>
<td></td>
<td>• sys14 = System use.</td>
</tr>
<tr>
<td></td>
<td>• syslog = Syslog itself.</td>
</tr>
<tr>
<td></td>
<td>• user = User process.</td>
</tr>
<tr>
<td></td>
<td>• uucp Unix-to-Unix copy system.</td>
</tr>
</tbody>
</table>
Configures for a specific access point.

<table>
<thead>
<tr>
<th>cisco_ap</th>
<th>Configures for a specific access point.</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures for all access points.</td>
</tr>
</tbody>
</table>

**Command Default**

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to set the facility level for filtering syslog messages to auth for all access points:

(Cisco Controller) > `config ap logging syslog facility auth all`
config ap max-count

To configure the maximum number of access points supported by the Cisco Wireless LAN Controller (WLC), use the `config ap max-count` command.

```
config ap max-count number
```

**Syntax Description**

| number | Number of access points supported by the Cisco WLC. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The access point count of the Cisco WLC license overrides this count if the configured value is greater than the access point count of the license. A value of 0 indicates that there is no restriction on the maximum number of access points. If high availability is configured, you must reboot both the active and the standby Cisco WLCs after you configure the maximum number of access points supported by the Cisco WLC.

The following example shows how to configure the number of access points supported by the Cisco WLC:

```
(Cisco Controller) >config ap max-count 100
```
config ap mgmtuser add

To configure username, password, and secret password for AP management, use the `config ap mgmtuser add` command.

```
config ap mgmtuser add username AP_username password AP_password secret secret { all | cisco_ap }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Configures the username for AP management.</td>
</tr>
<tr>
<td><code>AP_username</code></td>
<td>Management username.</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Configures the password for AP management.</td>
</tr>
<tr>
<td><code>AP_password</code></td>
<td>AP management password.</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>Configures the secret password for privileged AP management.</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>AP management secret password.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Applies configuration to every AP that does not have a specific username.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The following requirements are enforced on the password:

- The password should contain characters from at least three of the following classes: lowercase letters, uppercase letters, digits, and special characters.
- No character in the password can be repeated more than three times consecutively.
- The password should not contain management username or reverse of username.
- The password should not contain words like Cisco, oscic, admin, nimda or any variant obtained by changing the capitalization of letters by substituting 1, |, or ! or substituting 0 for o or substituting $ for s.

The following requirement is enforced on the secret password:

- The secret password should contain characters from at least three of the following classes: lowercase letters, uppercase letters, digits, or special characters.

The following example shows how to add a username, password, and secret password for AP management:
(Cisco Controller) > config ap mgmtuser add username acd password Arc_1234 secret Mid_45 all
## config ap mgmtuser delete

To force a specific access point to use the controller’s global credentials, use the `config ap mgmtuser delete` command.

### Syntax Description

<table>
<thead>
<tr>
<th><code>cisco_ap</code></th>
<th>Access point.</th>
</tr>
</thead>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the credentials of an access point:

```
(Cisco Controller) > config ap mgmtuser delete cisco_ap1
```
## config ap mode

To change a Cisco WLC communication option for an individual Cisco lightweight access point, use the `config ap mode` command.

```plaintext
config ap mode { bridge | flexconnect submode { none | wips | pppoe-only | pppoe-wips } | local submode { none | wips } | reap | rogue | sniffer | se-connect | monitor submode { none | wips } | flex+bridge submode { none | wips | pppoe-only | pppoe-wips } } cisco_ap
```

### Syntax Description

- **bridge**
  - Converts from a lightweight access point to a mesh access point (bridge mode).

- **flexconnect**
  - Enables FlexConnect mode on an access point.

- **local**
  - Converts from an indoor mesh access point (MAP or RAP) to a nonmesh lightweight access point (local mode).

- **reap**
  - Enables remote edge access point mode on an access point.

- **rogue**
  - Enables wired rogue detector mode on an access point.

- **sniffer**
  - Enables wireless sniffer mode on an access point.

- **se-connect**
  - Enables flex+bridge mode on an access point.

- **flex+bridge**
  - Enables spectrum expert mode on an access point.

- **submode**
  - (Optional) Configures wIPS submode on an access point.

- **none**
  - Disables the wIPS on an access point.

- **wips**
  - Enables the wIPS submode on an access point.

- **pppoe-only**
  - Enables the PPPoE submode on an access point.

- **pppoe-wips**
  - Enables the PPPoE-wIPS submode on an access point.

- **cisco_ap**
  - Name of the Cisco lightweight access point.

### Command Default

Local

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The <code>flex+bridge</code> keyword was added.</td>
</tr>
</tbody>
</table>
The sniffer mode captures and forwards all the packets from the clients on that channel to a remote machine that runs AiroPeek or other supported packet analyzer software. It includes information on the timestamp, signal strength, packet size and so on.

The following example shows how to set the controller to communicate with access point AP91 in bridge mode:

(Cisco Controller) > config ap mode bridge AP91

The following example shows how to set the controller to communicate with access point AP01 in local mode:

(Cisco Controller) > config ap mode local AP01

The following example shows how to set the controller to communicate with access point AP91 in remote office (REAP) mode:

(Cisco Controller) > config ap mode flexconnect AP91

The following example shows how to set the controller to communicate with access point AP91 in a wired rogue access point detector mode:

(Cisco Controller) > config ap mode rogue AP91

The following example shows how to set the controller to communicate with access point AP02 in wireless sniffer mode:

(Cisco Controller) > config ap mode sniffer AP02
### config ap monitor-mode

To configure Cisco lightweight access point channel optimization, use the `config ap monitor-mode` command.

```bash
config ap monitor-mode { 802.11b fast-channel | no-optimization | tracking-opt | wips-optimized } cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b fast-channel</td>
<td>Configures 802.11b scanning channels for a monitor-mode access point.</td>
</tr>
<tr>
<td>no-optimization</td>
<td>Specifies no channel scanning optimization for the access point.</td>
</tr>
<tr>
<td>tracking-opt</td>
<td>Enables tracking optimized channel scanning for the access point.</td>
</tr>
<tr>
<td>wips-optimized</td>
<td>Enables wIPS optimized channel scanning for the access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default:** None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a Cisco wireless intrusion prevention system (wIPS) monitor mode on access point AP01:

(Cisco Controller) > config ap monitor-mode wips-optimized AP01
config ap name

To modify the name of a Cisco lightweight access point, use the config ap name command.

\texttt{config ap name new\_name old\_name}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>new_name</td>
<td>Desired Cisco lightweight access point name.</td>
</tr>
<tr>
<td>old_name</td>
<td>Current Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to modify the name of access point AP1 to AP2:

(Cisco Controller) > config ap name AP1 AP2
config ap packet-dump

To configure the Packet Capture parameters on access points, use the **config ap packet-dump** command.

```plaintext
config ap packet-dump { buffer-size Size_in_KB | capture-time Time_in_Min | ftp serverip IP_addr path path username username password password | start MAC_address Cisco_AP | stop | truncate Length_in_Bytes }
config ap packet-dump classifier { { arp | broadcast | control | data | dot1x | iapp | ip | management | multicast } { enable | disable } | tcp { enable | disable | port TCP_Port { enable | disable } } | udp { enable | disable | port UDP_Port { enable | disable } } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>buffer-size</strong></td>
<td>Configures the buffer size for Packet Capture in the access point.</td>
</tr>
<tr>
<td>Size_in_KB</td>
<td>Size of the buffer. The range is from 1024 to 4096 KB.</td>
</tr>
<tr>
<td><strong>capture-time</strong></td>
<td>Configures the timer value for Packet Capture.</td>
</tr>
<tr>
<td>Time_in_Min</td>
<td>Timer value for Packet Capture. The range is from 1 to 60 minutes.</td>
</tr>
<tr>
<td><strong>ftp</strong></td>
<td>Configures FTP parameters for Packet Capture.</td>
</tr>
<tr>
<td>serverip</td>
<td>Configures the FTP server.</td>
</tr>
<tr>
<td>IP_addr</td>
<td>IP address of the FTP server.</td>
</tr>
<tr>
<td>path</td>
<td>Configures FTP server path.</td>
</tr>
<tr>
<td>username user_ID</td>
<td>Configures the username for the FTP server.</td>
</tr>
<tr>
<td>password password</td>
<td>Configures the password for the FTP server.</td>
</tr>
<tr>
<td><strong>start</strong></td>
<td>Starts Packet Capture from the access point.</td>
</tr>
<tr>
<td>MAC_address</td>
<td>Client MAC Address for Packet Capture.</td>
</tr>
<tr>
<td>Cisco_AP</td>
<td>Name of the Cisco access point.</td>
</tr>
<tr>
<td><strong>stop</strong></td>
<td>Stops Packet Capture from the access point.</td>
</tr>
<tr>
<td><strong>truncate</strong></td>
<td>Truncates the packet to the specified length during Packet Capture.</td>
</tr>
<tr>
<td><strong>Length_in_Bytes</strong></td>
<td>Length of the packet after truncation. The range is from 20 to 1500.</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>classifier</strong></td>
<td>Configures the classifier information for Packet Capture. You can specify the type of packets that needs to be captured.</td>
</tr>
<tr>
<td><strong>arp</strong></td>
<td>Captures ARP packets.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables capture of ARP, broadcast, 802.11 control, 802.11 data, dot1x, Inter Access Point Protocol (IAPP), IP, 802.11 management, or multicast packets.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables capture of ARP, broadcast, 802.11 control, 802.11 data, dot1x, IAPP, IP, 802.11 management, or multicast packets.</td>
</tr>
<tr>
<td><strong>broadcast</strong></td>
<td>Captures broadcast packets.</td>
</tr>
<tr>
<td><strong>control</strong></td>
<td>Captures 802.11 control packets.</td>
</tr>
<tr>
<td><strong>data</strong></td>
<td>Captures 802.11 data packets.</td>
</tr>
<tr>
<td><strong>dot1x</strong></td>
<td>Captures dot1x packets.</td>
</tr>
<tr>
<td><strong>iapp</strong></td>
<td>Captures IAPP packets.</td>
</tr>
<tr>
<td><strong>ip</strong></td>
<td>Captures IP packets.</td>
</tr>
<tr>
<td><strong>management</strong></td>
<td>Captures 802.11 management packets.</td>
</tr>
<tr>
<td><strong>multicast</strong></td>
<td>Captures multicast packets.</td>
</tr>
<tr>
<td><strong>tcp</strong></td>
<td>Captures TCP packets.</td>
</tr>
<tr>
<td><strong>TCP_Port</strong></td>
<td>TCP port number. The range is from 1 to 65535.</td>
</tr>
<tr>
<td><strong>udp</strong></td>
<td>Captures TCP packets.</td>
</tr>
<tr>
<td><strong>UDP_Port</strong></td>
<td>UDP port number. The range is from 1 to 65535.</td>
</tr>
<tr>
<td><strong>ftp</strong></td>
<td>Configures FTP parameters for Packet Capture.</td>
</tr>
<tr>
<td><strong>server_ip</strong></td>
<td>FTP server IP address.</td>
</tr>
</tbody>
</table>
The default buffer size is 2 MB. The default capture time is 10 minutes.

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>This command is not supported for Cisco Wave 2 APs. For more information, see CSCvj19314.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Packet Capture does not work during intercontroller roaming.

The controller does not capture packets created in the radio firmware and sent out of the access point, such as a beacon or probe response. Only packets that flow through the Radio driver in the Tx path will be captured.

Use the command `config ap packet-dump start` to start the Packet Capture from the access point. When you start Packet Capture, the controller sends a Control and Provisioning of Wireless Access Points protocol (CAPWAP) message to the access point to which the client is associated and captures packets. You must configure the FTP server and ensure that the client is associated to the access point before you start Packet Capture. If the client is not associated to the access point, you must specify the name of the access point.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to start Packet Capture from an access point:

(Cisco Controller) > `config ap packet-dump start 00:0d:28:f4:c0:45 AP1`

The following example shows how to capture 802.11 control packets from an access point:

(Cisco Controller) > `config ap packet-dump classifier control enable`
To configure the port for a foreign access point, use the `config ap port` command.

`config ap port MAC port`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Foreign access point MAC address.</td>
</tr>
<tr>
<td>port</td>
<td>Port number for accessing the foreign access point.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the port for a foreign access point MAC address:

(Cisco Controller) > `config ap port 12:12:12:12:12 20`
# config ap power injector

To configure the power injector state for an access point, use the `config ap power injector` command.

```
config ap power injector {enable | disable} {cisco_ap | all} {installed | override | switch_MAC}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the power injector state for an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the power injector state for an access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all Cisco lightweight access points connected to the controller.</td>
</tr>
<tr>
<td>installed</td>
<td>Detects the MAC address of the current switch port that has a power injector.</td>
</tr>
<tr>
<td>override</td>
<td>Overrides the safety checks and assumes a power injector is always installed.</td>
</tr>
<tr>
<td>switch_MAC</td>
<td>MAC address of the switch port with an installed power injector.</td>
</tr>
</tbody>
</table>

**Note**

If an AP itself is configured with the keyword all, the all access points case takes precedence over the AP that is with the keyword all.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the power injector state for all access points:

```
(Cisco Controller) > config ap power injector enable all 12:12:12:12:12:12
```
**config ap power pre-standard**

To enable or disable the inline power Cisco pre-standard switch state for an access point, use the `config ap power pre-standard` command.

```
config ap power pre-standard {enable | disable} cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the inline power Cisco pre-standard switch state for an access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the inline power Cisco pre-standard switch state for an access point.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the inline power Cisco pre-standard switch state for access point AP02:

```
(Cisco Controller) > config ap power pre-standard enable AP02
```
config ap preferred-mode

To configure the preferred mode, use the `config ap preferred-mode` command.

```
config ap preferred-mode {ipv4 | ipv6 | any} {AP_name | Ap-group_name | all}
```

**Syntax Description**

- `ipv4`: Configures IPv4 as the preferred mode
- `ipv6`: Configures IPv6 as the preferred mode
- `any`: Configures any as the preferred mode
- `AP_name`: Configures the preferred mode to the AP
- `Ap-group_name`: Configures the preferred mode to the AP group members
- `all`: Configures the preferred mode to all the APs

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced. It supports both IPv4 and IPv6.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure IPv6 as the preferred mode to lightweight access point AP1

```
(Cisco Controller) >config ap preferred-mode ipv6 AP1
```
config ap primary-base

To set the Cisco lightweight access point primary Cisco WLC, use the `config ap primary-base` command.

```
config ap primary-base controller_name Cisco_AP [controller_ip_address]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>controller_name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the Cisco WLC.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cisco_AP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco lightweight access point name.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>controller_ip_address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) If the backup controller is outside the mobility group to which the access point is connected, then you need to provide the IP address of the primary, secondary, or tertiary controller.</td>
<td></td>
</tr>
</tbody>
</table>

**Note**
For OfficeExtend access points, you must enter both the name and IP address of the controller. Otherwise, the access point cannot join this controller.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The Cisco lightweight access point associates with this Cisco WLC for all network operations and in the event of a hardware reset.

OfficeExtend access points do not use the generic broadcast or over-the-air (OTAP) discovery process to find a controller. You must configure one or more controllers because OfficeExtend access points try to connect only to their configured controllers.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to set an access point primary Cisco WLC IPv4 address for an Cisco AP:

```
(Cisco Controller) > config ap primary-base SW_1 AP2 10.0.0.0
```

The following example shows how to set an access point primary Cisco WLC IPv6 address for an Cisco AP:

```
(Cisco Controller) > config ap primary-base SW_1 AP2 2001:DB8:0:1::1
```

**Related Commands**

- `show ap config general`
config ap priority

To assign a priority designation to an access point that allows it to reauthenticate after a controller failure by priority rather than on a first-come-until-full basis, use the **config ap priority** command.

```plaintext
config ap priority { 1 | 2 | 3 | 4 } cisco_ap
```

**Syntax Description**

- **1**
  - Specifies low priority.
- **2**
  - Specifies medium priority.
- **3**
  - Specifies high priority.
- **4**
  - Specifies the highest (critical) priority.

**cisco_ap**

Cisco lightweight access point name.

**Command Default**

1 - Low priority.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In a failover situation, if the backup controller does not have enough ports to allow all the access points in the affected area to reauthenticate, it gives priority to higher-priority access points over lower-priority ones, even if it means replacing lower-priority access points.

The following example shows how to assign a priority designation to access point AP02 that allows it to reauthenticate after a controller failure by assigning a reauthentication priority 3:

```plaintext
(Cisco Controller) > config ap priority 3 AP02
```
**config ap reporting-period**

To reset a Cisco lightweight access point, use the `config ap reporting-period` command.

```
config ap reporting-period period
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>period</code></td>
<td>Time period in seconds between 10 and 120.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to reset an access point reporting period to 120 seconds:

```
> config ap reporting-period 120
```
config ap reset

To reset a Cisco lightweight access point, use the **config ap reset** command.

**config ap reset cisco_ap**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

| Command Default     | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to reset an access point:

(Cisco Controller) > **config ap reset AP2**
config ap retransmit interval

To configure the access point control packet retransmission interval, use the `config ap retransmit interval` command.

`config ap retransmit interval seconds {all | cisco_ap}`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>AP control packet retransmission timeout between 2 and 5 seconds.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the retransmission interval for all access points globally:

```
(Cisco Controller) > config ap retransmit interval 4 all
```
To configure the access point control packet retransmission count, use the `config ap retransmit count` command.

`config ap retransmit count count {all | cisco_ap}`

**Syntax Description**

- `count`: Number of times control packet will be retransmitted. The range is from 3 to 8.
- `all`: Specifies all access points.
- `cisco_ap`: Cisco lightweight access point name.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure the retransmission retry count for a specific access point:

```
(Cisco Controller) > config ap retransmit count 6 cisco_ap
```
config ap role

To specify the role of an access point in a mesh network, use the config ap role command.

```plaintext
config ap role {rootAP | meshAP} cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rootAP</td>
<td>Designates the mesh access point as a root access point (RAP).</td>
</tr>
<tr>
<td>meshAP</td>
<td>Designates the mesh access point as a mesh access point (MAP).</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

meshAP.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the meshAP keyword if the access point has a wireless connection to the controller, or use the rootAP keyword if the access point has a wired connection to the controller. If you change the role of the AP, the AP will be rebooted.

The following example shows how to designate mesh access point AP02 as a root access point:

```
(Cisco Controller) > config ap role rootAP AP02
Changing the AP's role will cause the AP to reboot.
Are you sure you want to continue? (y/n)
```
config ap rst-button

To configure the Reset button for an access point, use the `config ap rst-button` command.

```
config ap rst-button { enable | disable } cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Reset button for an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Reset button for an access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the Reset button for access point AP03:

```
(Cisco Controller) > config ap rst-button enable AP03
```
### config ap secondary-base

To set the Cisco lightweight access point secondary Cisco WLC, use the `config ap secondary-base` command.

```plaintext
config ap secondary-base Controller_name Cisco_AP [Controller_IP_address]
```

#### Syntax Description

<table>
<thead>
<tr>
<th><strong>controller_name</strong></th>
<th>Name of the Cisco WLC.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cisco_AP</strong></td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td><strong>Controller_IP_address</strong></td>
<td>(Optional). If the backup Cisco WLC is outside the mobility group to which the access point is connected, then you need to provide the IP address of the primary, secondary, or tertiary Cisco WLC.</td>
</tr>
</tbody>
</table>

*Note:* For OfficeExtend access points, you must enter both the name and IP address of the Cisco WLC. Otherwise, the access point cannot join this Cisco WLC.

#### Command Default

None

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

The Cisco lightweight access point associates with this Cisco WLC for all network operations and in the event of a hardware reset.

OfficeExtend access points do not use the generic broadcast or over-the-air (OTAP) discovery process to find a Cisco WLC. You must configure one or more Cisco WLCs because OfficeExtend access points try to connect only to their configured Cisco WLCs.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to set an access point secondary Cisco WLC:

```
(Cisco Controller) > config ap secondary-base SW_1 AP2 10.0.0.0
```

The following example shows how to set an access point primary Cisco WLC IPv6 address for an Cisco AP:

```
(Cisco Controller) > config ap secondary-base SW_1 AP2 2001:DB8:0:1::1
```

#### Related Commands

- `show ap config general`
config ap sniff

To enable or disable sniffing on an access point, use the `config ap sniff` command.

```
config ap sniff \{802.11a | 802.11b\} \{enable channel server_ip | disable\} cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>802.11a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b</td>
<td>Specifies the 802.11b network.</td>
</tr>
<tr>
<td></td>
<td>enable</td>
<td>Enables sniffing on an access point.</td>
</tr>
<tr>
<td></td>
<td>channel</td>
<td>Channel to be sniffed.</td>
</tr>
<tr>
<td></td>
<td>server_ip</td>
<td>IP address of the remote machine running Omnipeek, Airopeek, AirMagnet, or Wireshark software.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Disables sniffing on an access point.</td>
</tr>
<tr>
<td></td>
<td>cisco_ap</td>
<td>Access point configured as the sniffer.</td>
</tr>
</tbody>
</table>

**Command Default**

Channel 36.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the sniffer feature is enabled on an access point, it starts sniffing the signal on the given channel. It captures and forwards all the packets to the remote computer that runs Omnipeek, Airopeek, AirMagnet, or Wireshark software. It includes information on the timestamp, signal strength, packet size and so on.

Before an access point can act as a sniffer, a remote computer that runs one of the listed packet analyzers must be set up so that it can receive packets sent by the access point. After the Airopeek installation, copy the following .dll files to the location where airopeek is installed:

- socket.dll file to the Plug-ins folder (for example, C:\Program Files\WildPackets\AiroPeek\Plugins)
- socketres.dll file to the PluginRes folder (for example, C:\Program Files\WildPackets\AiroPeek\1033\PluginRes)

The following example shows how to enable the sniffing on the 802.11a an access point from the primary Cisco WLC:

```
(Cisco Controller) > config ap sniff 80211a enable 23 11.22.44.55 AP01
```
config ap ssh

To enable Secure Shell (SSH) connectivity on an access point, use the `config ap ssh` command.

```
config ap ssh {enable | disable | default} cisco_ap | all
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the SSH connectivity on an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the SSH connectivity on an access point.</td>
</tr>
<tr>
<td>default</td>
<td>Replaces the specific SSH configuration of an access point with the global SSH configuration.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco access point name.</td>
</tr>
<tr>
<td>all</td>
<td>All access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The Cisco lightweight access point associates with this Cisco wireless LAN controller for all network operation and in the event of a hardware reset.

The following example shows how to enable SSH connectivity on access point Cisco_ap2:

```
> config ap ssh enable cisco_ap2
```
# config ap static-ip

To configure Static IP address settings on Cisco lightweight access point, use the `config ap static-ip` command.

```plaintext
config ap static-ip { enable Cisco_AP AP_IP_addr IP_netmask/prefix_length gateway | disable Cisco_AP | add { domain Cisco_AP | all } domain_name | nameserver Cisco_AP | all } nameserver-ip } | delete { domain | nameserver } Cisco_AP | all }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Enables the Cisco lightweight access point static IP address.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables the Cisco lightweight access point static IP address. The access point uses DHCP to get the IP address.</td>
</tr>
<tr>
<td><strong>Cisco_AP</strong></td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td><strong>AP_IP_addr</strong></td>
<td>Cisco lightweight access point IP address.</td>
</tr>
<tr>
<td><strong>IP_netmask/prefix_length</strong></td>
<td>Cisco lightweight access point network mask.</td>
</tr>
<tr>
<td><strong>gateway</strong></td>
<td>IP address of the Cisco lightweight access point gateway.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Adds a domain or DNS server.</td>
</tr>
<tr>
<td><strong>domain</strong></td>
<td>Specifies the domain to which a specific access point or all access points belong.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td><strong>domain_name</strong></td>
<td>Specifies a domain name.</td>
</tr>
<tr>
<td><strong>nameserver</strong></td>
<td>Specifies a DNS server so that a specific access point or all access points can discover the controller using DNS resolution.</td>
</tr>
<tr>
<td><strong>nameserver-ip</strong></td>
<td>DNS server IP address.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a domain or DNS server.</td>
</tr>
</tbody>
</table>

## Note
If an AP itself is configured with the keyword all, the all access points case takes precedence over the AP that is with the keyword all.

## Command Default
None
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

Usage Guidelines

An access point cannot discover the controller using Domain Name System (DNS) resolution if a static IP address is configured for the access point, unless you specify a DNS server and the domain to which the access point belongs.

After you enter the IPv6 address, Prefix-length and IPv6 gateway address, the CAPWAP tunnel will restart for access point. Changing the AP's IP address will cause the AP to disjoin. After the access point rejoins the controller, you can enter the domain and IPv6 DNS server information.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to configure static IP address on an access point:

```plaintext
(Cisco Controller) > config ap static-ip enable AP2 209.165.200.225 255.255.255.0 209.165.200.254
```

The following example shows how to configure static IPv6 address on an access point:

```plaintext
(Cisco Controller) > config ap static-ip enable AP2 2001:DB8:0:1::1
```

Related Commands

- show ap config general
**config ap stats-timer**

To set the time in seconds that the Cisco lightweight access point sends its DOT11 statistics to the Cisco wireless LAN controller, use the `config ap stats-timer` command.

```bash
config ap stats-timer period cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>period</code></td>
<td>Time in seconds from 0 to 65535. A zero value disables the timer.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value is 0 (disabled state).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A value of 0 (zero) means that the Cisco lightweight access point does not send any DOT11 statistics. The acceptable range for the timer is from 0 to 65535 seconds, and the Cisco lightweight access point must be disabled to set this value.

The following example shows how to set the stats timer to 600 seconds for access point AP2:

```bash
(Cisco Controller) > config ap stats-timer 600 AP2
```
config ap syslog host global

To configure a global syslog server for all access points that join the controller, use the `config ap syslog host global` command.

```
config ap syslog host global ip_address
```

Syntax Description

| ip_address | IPv4/IPv6 address of the syslog server. |

Command Default

The default value of the IPv4 address of the syslog server is 255.255.255.255.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, the global syslog server IP address for all access points is 255.255.255.255. Make sure that the access points can reach the subnet on which the syslog server resides before configuring the syslog server on the controller. If the access points cannot reach this subnet, the access points are unable to send out syslog messages.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to configure a global syslog server, using IPv4 address, for all access points:

```
(Cisco Controller) > config ap syslog host global 255.255.255.255
```

The following example shows how to configure a global syslog server, using IPv6 address, for all access points:

```
(Cisco Controller) > config ap syslog host global 2001:9:10:56::100
```
config ap syslog host specific

To configure a syslog server for a specific access point, use the config ap syslog host specific command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ap_name</strong></td>
<td>Cisco lightweight access point.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td>IPv4/IPv6 address of the syslog server.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value of the syslog server IP address is 0.0.0.0.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

By default, the syslog server IP address for each access point is 0.0.0.0, indicating that it is not yet set. When the default value is used, the global access point syslog server IP address is pushed to the access point.

This command supports both IPv4 and IPv6 address formats.

The following example shows how to configure a syslog server:

(Cisco Controller) > config ap syslog host specific 0.0.0.0

The following example shows how to configure a syslog server for a specific AP, using IPv6 address:

(Cisco Controller) > config ap syslog host specific AP3600 2001:9:10:56::100
**config ap tcp-mss-adjust**

To enable or disable the TCP maximum segment size (MSS) on a particular access point or on all access points, use the `config ap tcp-mss-adjust` command.

```
config ap tcp-mss-adjust { enable | disable } { cisco_ap | all } size
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the TCP maximum segment size on an access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the TCP maximum segment size on an access point.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco access point name.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Maximum segment size.</td>
</tr>
</tbody>
</table>

- IPv4—Specify a value between 536 and 1363.
- IPv6—Specify a value between 1220 and 1331.

**Note**

Any TCP MSS value that is below 1220 and above 1331 will not be effective for CAPWAP v6 AP.

If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable this feature, the access point checks for TCP packets to and from wireless clients in its data path. If the MSS of these packets is greater than the value that you configured or greater than the default value for the CAPWAP tunnel, the access point changes the MSS to the new configured value.

This example shows how to enable the TCP MSS on access point `cisco_ap1` with a segment size of 1200 bytes:

```
(Cisco Controller) > config ap tcp-mss-adjust enable cisco_ap1 1200
```
config ap telnet

To enable Telnet connectivity on an access point, use the `config ap telnet` command.

```
config ap telnet { enable | disable | default } cisco_ap | all
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Telnet connectivity on an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Telnet connectivity on an access point.</td>
</tr>
<tr>
<td>default</td>
<td>Replaces the specific Telnet configuration of an access point with the global Telnet configuration.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco access point name.</td>
</tr>
<tr>
<td>all</td>
<td>All access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- The Cisco lightweight access point associates with this Cisco WLC for all network operation and in the event of a hardware reset.
- Telnet is not supported on Cisco Aironet 1810 OEAP, 1810W, 1830, 1850, 2800, and 3800 Series APs.

The following example shows how to enable Telnet connectivity on access point `cisco_ap1`:

```
(Cisco Controller) > config ap telnet enable cisco_ap1
```

The following example shows how to disable Telnet connectivity on access point `cisco_ap1`:

```
(Cisco Controller) > config ap telnet disable cisco_ap1
```
**config ap tertiary-base**

To set the Cisco lightweight access point tertiary Cisco WLC, use the `config ap tertiary-base` command.

```
config ap tertiary-base controller_name Cisco_AP [controller_ip_address]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>controller_name</td>
<td>Name of the Cisco WLC.</td>
</tr>
<tr>
<td>Cisco_AP</td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td>controller_ip_address</td>
<td>(Optional) If the backup controller is outside the mobility group to which the access point is connected, then you need to provide the IP address of the primary, secondary, or tertiary Cisco WLC.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

OfficeExtend access points do not use the generic broadcast or over-the-air (OTAP) discovery process to find a Cisco WLC. You must configure one or more controllers because OfficeExtend access points try to connect only to their configured Cisco WLCs.

The Cisco lightweight access point associates with this Cisco WLC for all network operations and in the event of a hardware reset.

This command supports both IPv4 and IPv6 address formats.

This example shows how to set the access point tertiary Cisco WLC:

```
(Cisco Controller) > config ap tertiary-base SW_1 AP02 10.0.0.0
```

The following example shows how to set an access point tertiary Cisco WLC IPv6 address for an Cisco AP:

```
(Cisco Controller) > config ap tertiary-base SW_1 AP2 2001:DB8:0:1::1
```

**Related Commands**

`show ap config general`
config ap tftp-downgrade

To configure the settings used for downgrading a lightweight access point to an autonomous access point, use the `config ap tftp-downgrade` command.

`config ap tftp-downgrade tftp_ip_address filename Cisco_AP`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tftp_ip_address</code></td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Filename of the access point image file on the TFTP server.</td>
</tr>
<tr>
<td><code>Cisco_AP</code></td>
<td>Access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the settings for downgrading access point ap1240_102301:

```
(Cisco Controller) > config ap tftp-downgrade 209.165.200.224 1238.tar ap1240_102301
```
config ap username

To assign a username and password to access either a specific access point or all access points, use the `config ap username` command.

```
config ap username user_id password passwd [all | ap_name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user_id</td>
<td>Administrator username.</td>
</tr>
<tr>
<td>passwd</td>
<td>Administrator password.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Specifies all access points.</td>
</tr>
<tr>
<td>ap_name</td>
<td>Name of a specific access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to assign a username and password to a specific access point:

```
(Cisco Controller) > config ap username jack password blue la204
```

The following example shows how to assign the same username and password to all access points:

```
(Cisco Controller) > config ap username jack password blue all
```
config ap venue

To configure the venue information for 802.11u network on an access point, use the config ap venue command.

```
config ap venue { add venue_name venue-group venue-type lang-code cisco-ap | delete }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds venue information.</td>
</tr>
<tr>
<td><strong>venue_name</strong></td>
<td>Venue name.</td>
</tr>
<tr>
<td><strong>venue_group</strong></td>
<td>Venue group category. See the table below for details on venue group mappings.</td>
</tr>
<tr>
<td><strong>venue_type</strong></td>
<td>Venue type. This value depends on the venue-group specified. See the table below for venue group mappings.</td>
</tr>
<tr>
<td><strong>lang_code</strong></td>
<td>Language used. An ISO-14962-1997 encoded string that defines the language. This string is a three character language code. Enter the first three letters of the language in English (for example, eng for English).</td>
</tr>
<tr>
<td><strong>cisco_ap</strong></td>
<td>Name of the access point.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes venue information.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the venue details for an access point named cisco-ap1:

```
(Cisco Controller) > config ap venue add test 11 34 eng cisco-ap1
```

This table lists the different venue types for each venue group.

**Table 5: Venue Group Mapping**

<table>
<thead>
<tr>
<th>Venue Group Name</th>
<th>Value</th>
<th>Venue Type for Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNSPECIFIED</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Venue Group Name</td>
<td>Value</td>
<td>Venue Type for Group</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| ASSEMBLY         | 1     | • 0—UNSPECIFIED ASSEMBLY  
|                  |       | • 1—ARENA           
|                  |       | • 2—STADIUM         
|                  |       | • 3—PASSENGER TERMINAL (E.G., AIRPORT, BUS, FERRY, TRAIN STATION)  
|                  |       | • 4—AMPHITHEATER    
|                  |       | • 5—AMUSEMENT PARK  
|                  |       | • 6—PLACE OF WORSHIP  
|                  |       | • 7—CONVENTION CENTER  
|                  |       | • 8—LIBRARY         
|                  |       | • 9—MUSEUM          
|                  |       | • 10—RESTAURANT     
|                  |       | • 11—THEATER        
|                  |       | • 12—BAR            
|                  |       | • 13—COFFEE SHOP    
|                  |       | • 14—ZOO OR AQUARIUM  
<p>|                  |       | • 15—EMERGENCY COORDINATION CENTER  |</p>
<table>
<thead>
<tr>
<th>Venue Group Name</th>
<th>Value</th>
<th>Venue Type for Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS</td>
<td>2</td>
<td>• 0—UNSPECIFIED BUSINESS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1—DOCTOR OR DENTIST OFFICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2—BANK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3—FIRE STATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 4—POLICE STATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 6—POST OFFICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 7—PROFESSIONAL OFFICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 8—RESEARCH AND DEVELOPMENT FACILITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 9—ATTORNEY OFFICE</td>
</tr>
<tr>
<td>EDUCATIONAL</td>
<td>3</td>
<td>• 0—UNSPECIFIED EDUCATIONAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1—SCHOOL, PRIMARY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2—SCHOOL, SECONDARY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3—UNIVERSITY OR COLLEGE</td>
</tr>
<tr>
<td>FACTORY-INDUSTRIAL</td>
<td>4</td>
<td>• 0—UNSPECIFIED FACTORY AND INDUSTRIAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1—FACTORY</td>
</tr>
<tr>
<td>INSTITUTIONAL</td>
<td>5</td>
<td>• 0—UNSPECIFIED INSTITUTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1—HOSPITAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2—LONG-TERM CARE FACILITY (E.G., NURSING HOME, HOSPICE, ETC.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3—ALCOHOL AND DRUG RE-HABILITATION CENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 4—GROUP HOME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 5—PRISON OR JAIL</td>
</tr>
<tr>
<td>Venue Group Name</td>
<td>Value</td>
<td>Venue Type for Group</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| MERCANTILE       | 6     | • 0—UNSPECIFIED MERCANTILE  
|                  |       | • 1—RETAIL STORE        
|                  |       | • 2—GROCERY MARKET      
|                  |       | • 3—AUTOMOTIVE SERVICE STATION 
|                  |       | • 4—SHOPPING MALL       
|                  |       | • 5—GAS STATION         |
| RESIDENTIAL      | 7     | • 0—UNSPECIFIED RESIDENTIAL  
|                  |       | • 1—PRIVATE RESIDENCE    
|                  |       | • 2—HOTEL OR MOTEL       
|                  |       | • 3—DORMITORY            
|                  |       | • 4—BOARDING HOUSE       |
| STORAGE          | 8     | UNSPECIFIED STORAGE     |
| UTILITY-MISC     | 9     | 0—UNSPECIFIED UTILITY AND MISCELLANEOUS |
| VEHICULAR        | 10    | • 0—UNSPECIFIED VEHICULAR  
|                  |       | • 1—AUTOMOBILE OR TRUCK   
|                  |       | • 2—AIRPLANE              
|                  |       | • 3—BUS                  
|                  |       | • 4—FERRY                
|                  |       | • 5—SHIP OR BOAT         
|                  |       | • 6—TRAIN                
<p>|                  |       | • 7—MOTOR BIKE           |</p>
<table>
<thead>
<tr>
<th>Venue Group Name</th>
<th>Value</th>
<th>Venue Type for Group</th>
</tr>
</thead>
</table>
| OUTDOOR          | 11    | • 0—UNSPECIFIED OUTDOOR  
|                  |       | • 1—MUNI-MESH NETWORK  
|                  |       | • 2—CITY PARK          
|                  |       | • 3—REST AREA          
|                  |       | • 4—TRAFFIC CONTROL    
|                  |       | • 5—BUS STOP           
|                  |       | • 6—KIOSK              |
config ap wlan

To enable or disable wireless LAN override for a Cisco lightweight access point radio, use the `config ap wlan` command.

```plaintext
config ap wlan { enable | disable } { 802.11a | 802.11b } wlan_id cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the wireless LAN override on an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the wireless LAN override on an access point.</td>
</tr>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11b network.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Cisco wireless LAN controller ID assigned to a wireless LAN.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable wireless LAN override on the AP03 802.11a radio:

```
(Cisco Controller) > config ap wlan 802.11a AP03
```
config atf 802.11

Configure Cisco Air Time Fairness at the network level, at an AP group level, or at an AP radio level by using the `config atf 802.11` command.

```
config atf 802.11 { a | b } { mode { disable | monitor | enforce-policy } { [ap-group-name] | [ap-name] } | { optimization { enable | disable } } }
```

**Syntax Description**

- `a` Specifies the 802.11a network settings
- `b` Specifies the 802.11b/g network settings
- `mode` Configures the granularity of Cisco ATF enforcement
- `disable` Disables Cisco ATF
- `monitor` Configures Cisco ATF in monitor mode
- `enforce-policy` Configures Cisco ATF in enforcement mode
- `optimization` Configures airtime optimization
- `enable` Enables airtime optimization
- `disable` Disabled airtime optimization

**Command History**

```
Release Modification
8.1 This command was introduced
```

- To configure Cisco ATF in monitor mode on an 802.11a network, enter this command:
  
  `(Cisco Controller) >config atf 802.11a mode monitor`

- To enable airtime optimization on an 802.11a network, enter this command:
  
  `(Cisco Controller) >config atf 802.11a optimization enable`
### config atf policy

To configure Cisco Air Time Fairness (ATF) policies, use the `config atf policy` command.

```
config atf policy \{create policy-id policy-name policy-weight\} \{modify \{weight policy-weight policy-name\}\} \{client-sharing \{enable | disable\} policy-name\} \{delete policy-name\}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create</code></td>
<td>Creates an air time policy</td>
</tr>
<tr>
<td><code>modify</code></td>
<td>Modifies an air time policy</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes an air time policy</td>
</tr>
<tr>
<td>`client-sharing {enable</td>
<td>disable} policy-name`</td>
</tr>
<tr>
<td><code>policy-id</code></td>
<td>Policy ID between 1 and 511</td>
</tr>
<tr>
<td><code>policy-name</code></td>
<td>Name of the Cisco ATF policy</td>
</tr>
<tr>
<td><code>policy-weight</code></td>
<td>Policy weight between 5 and 100</td>
</tr>
</tbody>
</table>

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.122.0</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

| 8.2      | `client-sharing {enable | disable}` option was added. |

This example shows how to create a Cisco ATF policy:

(Cisco Controller) > `config atf policy create 2 test-policy 70`
**config auth-list add**

To create an authorized access point entry, use the **config auth-list add** command.

```
config auth-list add { mic | ssc } AP_MAC [AP_key]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mic</td>
<td>Specifies that the access point has a manufacture-installed certificate.</td>
</tr>
<tr>
<td>ssc</td>
<td>Specifies that the access point has a self-signed certificate.</td>
</tr>
<tr>
<td>AP_MAC</td>
<td>MAC address of a Cisco lightweight access point.</td>
</tr>
<tr>
<td>AP_key</td>
<td>(Optional) Key hash value that is equal to 20 bytes or 40 digits.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create an authorized access point entry with a manufacturer-installed certificate on MAC address 00:0b:85:02:0d:20:

```
(Cisco Controller) > config auth-list add 00:0b:85:02:0d:20
```

**Related Commands**

- config auth-list delete
- config auth-list ap-policy
config auth-list ap-policy

To configure an access point authorization policy, use the config auth-list ap-policy command.

```
config auth-list ap-policy { authorize-ap { enable | disable } | ssc { enable | disable } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorize-ap enable</td>
<td>Enables the authorization policy.</td>
</tr>
<tr>
<td>authorize-ap disable</td>
<td>Disables the AP authorization policy.</td>
</tr>
<tr>
<td>ssc enable</td>
<td>Allows the APs with self-signed certificates to connect.</td>
</tr>
<tr>
<td>ssc disable</td>
<td>Disallows the APs with self-signed certificates to connect.</td>
</tr>
</tbody>
</table>

| Command Default             | None                                              |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable an access point authorization policy:

```
(Cisco Controller) > config auth-list ap-policy authorize-ap enable
```

The following example shows how to enable an access point with a self-signed certificate to connect:

```
(Cisco Controller) > config auth-list ap-policy ssc disable
```

Related Commands

- config auth-list delete
- config auth-list add
**config auth-list delete**

To delete an access point entry, use the `config auth-list delete` command.

```
config auth-list delete AP_MAC
```

**Syntax Description**

| **AP_MAC** | MAC address of a Cisco lightweight access point. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an access point entry for MAC address 00:1f:ca:cf:b6:60:

```
(Cisco Controller) > config auth-list delete 00:1f:ca:cf:b6:60
```

**Related Commands**

- `config auth-list delete`
- `config auth-list add`
- `config auth-list ap-policy`
config auto-configure voice

To auto-configure voice deployment in WLANs, use the config auto-configure voice command.

`config auto-configure voice cisco wlan_id radio \{ 802.11a | 802.11b | all \}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco</td>
<td>Auto-configure WLAN for voice deployment of Cisco end points.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512 (inclusive).</td>
</tr>
<tr>
<td>radio</td>
<td>Auto-configures voice deployment for a radio in a WLAN.</td>
</tr>
<tr>
<td>802.11a</td>
<td>Auto-configures voice deployment for 802.11a in a WLAN.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Auto-configures voice deployment for 802.11b in a WLAN.</td>
</tr>
<tr>
<td>all</td>
<td>Auto-configures voice deployment for all radios in a WLAN.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you configure this command, all WLANs and radios are automatically disabled. After the completion of the configuration, the previous state of the WLANs and radios is restored.

The following example shows how to auto-configure voice deployment for all radios in a WLAN:

```
(Cisco Controller) >config auto-configure voice cisco 2 radio all
Warning! This command will automatically disable all WLAN's and Radio's.
It will be reverted to the previous state once configuration is complete.
Are you sure you want to continue? (y/N)y

Auto-Configuring these commands in WLAN for Voice..
wlan qos 2 platinum
 - Success
wlan call-snoop enable 2
 - Success
wlan wmm allow 2
 - Success
wlan session-timeout 2 86400
 - Success
wlan peer-blocking disable 2
 - Success
wlan security tkip hold-down 0 2
 - Success
wlan exclusionlist 2 disable
 - Success
wlan mac-filtering disable 2
 - Success
wlan dtim 802.11a 2 2
 - Success
wlan dtim 802.11b 2 2
 - Success
```
wlan ccx aironetIESupport enabled 2
  - Success
wlan channel-scan defer-priority 4 enable 2
  - Success
wlan channel-scan defer-priority 5 enable 2
  - Success
wlan channel-scan defer-priority 6 enable 2
  - Success
wlan channel-scan defer-time 100 2
  - Success
wlan load-balance allow disable 2
  - Success
wlan mfp client enable 2
  - Success
wlan security wpa akm cckm enable 2
  - Success
wlan security wpa akm cckm timestamp-tolerance 5000 2
  - Success
wlan band-select allow disable 2
  - Success
******************************************************************************

Auto-Configuring these commands for Voice - Radio 802.11a.

advanced 802.11a edca-parameter optimized-voice
  - Success
802.11a cac voice acm enable
  - Success
802.11a cac voice max-bandwidth 75
  - Success
802.11a cac voice roam-bandwidth 6
  - Success
802.11a cac voice cac-method load-based
  - Success
802.11a cac voice sip disable
  - Success
802.11a tsm enable
  - Success
802.11a exp-bwreq enable
  - Success
802.11a txPower global auto
  - Success
802.11a channel global auto
  - Success
advanced 802.11a channel dca interval 24
  - Success
advanced 802.11a channel dca anchor-time 0
  - Success
qos protocol-type platinum dot1p
  - Success
qos dot1p-tag platinum 6
  - Success
qos priority platinum voice voice besteffort
  - Success
802.11a beacon period 100
  - Success
802.11a dtpc enable
  - Success
802.11a Coverage Voice RSSI Threshold -70
  - Success
802.11a txPower global min 11
  - Success
advanced eap eapol-key-timeout 250
  - Success
advanced 802.11a voice-mac-optimization disable
- Success
802.11b channelswitch enable 1
- Success
Note: Data rate configurations are not changed.
It should be changed based on the recommended values after analysis.
***********************************************************************

Auto-Configuring these commands for Voice - Radio 802.11b.
advanced 802.11b edca-parameter optimized-voice
- Success
802.11b cac voice acm enable
- Success
802.11b cac voice max-bandwidth 75
- Success
802.11b cac voice roaming-bandwidth 6
- Success
802.11b cac voice cac-method load-based
- Success
802.11b cac voice sip disable
- Success
802.11b tsm enable
- Success
802.11b exp-bwreq enable
- Success
802.11b txPower global auto
- Success
802.11b channel global auto - Success
advanced 802.11b channel dca interval 24
- Success
advanced 802.11b channel dca anchor-time 0
- Success
802.11b beacon period 100
- Success
802.11b dtpc enable
- Success
802.11b Coverage Voice RSSI Threshold -70
- Success
802.11b preamble short
- Success
advanced 802.11a voice-mac-optimization disable
- Success
Note: Data rate configurations are not changed.
It should be changed based on the recommended values after analysis.
**config avc profile create**

To create a new Application Visibility and Control (AVC) profile, use the `config avc profile create` command.

```
config avc profile profile_name create
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>profile_name</code></td>
<td>Name of the AVC profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td><code>create</code></td>
<td>Creates a new AVC profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
Release Modification
7.4 This command was introduced.
```

**Usage Guidelines**

You can configure up to 16 AVC profiles on a controller and associate an AVC profile with multiple WLANs. You can configure only one AVC profile per WLAN and each AVC profile can have up to 32 rules. Each rule states a Mark or Drop action for an application, which allows you to configure up to 32 application actions per WLAN.

The following example shows how to create a new AVC profile:

```
(Cisco Controller) > config avc profile avcprofile1 create
```

**Related Commands**

- `config avc profile delete`
- `config avc profile rule`
- `config wlan avc`
- `show avc profile`
- `show avc applications`
- `show avc statistics`
- `debug avc error`
- `debug avc events`
To delete an Application Visibility and Control (AVC) profile, use the `config avc profile delete` command.

```
config avc profile profile_name delete
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>profile_name</code></td>
<td>Name of the AVC profile.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes an AVC profile.</td>
</tr>
</tbody>
</table>

**Command Default**

The AVC profile is not deleted.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an AVC profile:

```
(Cisco Controller) > config avc profile avcprofile1 delete
```

**Related Commands**

- `config avc profile create`
- `config avc profile rule`
- `config wlan avc`
- `show avc profile summary`
- `show avc profile detailed`
- `debug avc error`
- `debug avc events`
# config avc profile rule

To configure a rule for an Application Visibility and Control (AVC) profile, use the `config avc profile rule` command.

```
config avc profile profile_name rule { add | remove } application application_name { drop | mark dscp }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile_name</td>
<td>Name of the AVC profile.</td>
</tr>
<tr>
<td>rule</td>
<td>Configures a rule for the AVC profile.</td>
</tr>
<tr>
<td>add</td>
<td>Creates a rule for the AVC profile.</td>
</tr>
<tr>
<td>remove</td>
<td>Deletes a rule for the AVC profile.</td>
</tr>
<tr>
<td>application</td>
<td>Specifies the application that has to be dropped or marked.</td>
</tr>
<tr>
<td>application_name</td>
<td>Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td>drop</td>
<td>Drops the upstream and downstream packets that correspond to the chosen application.</td>
</tr>
<tr>
<td>mark</td>
<td>Marks the upstream and downstream packets that correspond to the chosen application with the Differentiated Services Code Point (DSCP) value that you specify in the drop-down list. The DSCP value helps you provide differentiated services based on the QoS levels.</td>
</tr>
<tr>
<td>dscp</td>
<td>Packet header code that is used to define the QoS across the Internet. The range is from 0 to 63.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a rule for an AVC profile:

```
(Cisco Controller) > config avc profile avcprofile1 rule add application gmail mark 10
```

## Related Commands

- `config avc profile delete`
- `config avc profile create`
- `config wlan avc`
- `show avc profile`
- `show avc applications`
- `show avc statistics`
debug avc error

ddebug avc events
config band-select cycle-count

To set the band select probe cycle count, use the `config band-select cycle-count` command.

```
config band-select cycle-count count
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td>Value for the cycle count between 1 to 10.</td>
</tr>
</tbody>
</table>

| Command Default          | None                                             |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the probe cycle count for band select to 8:

```
(Cisco Controller) > config band-select cycle-count 8
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>config band-select cycle-threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>config band-select expire</td>
</tr>
<tr>
<td></td>
<td>config band-select client-rssi</td>
</tr>
</tbody>
</table>
config band-select cycle-threshold

To set the time threshold for a new scanning cycle, use the config band-select cycle-threshold command.

config band-select cycle-threshold threshold

**Syntax Description**

<table>
<thead>
<tr>
<th>threshold</th>
<th>Value for the cycle threshold between 1 and 1000 milliseconds.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the time threshold for a new scanning cycle with threshold value of 700 milliseconds:

(Cisco Controller) > config band-select cycle-threshold 700

**Related Commands**

- config band-select cycle-count
- config band-select expire
- config band-select client-rssi
config band-select expire

To set the entry expire for band select, use the **config band-select expire** command.

```bash
config band-select expire {suppression | dual-band} seconds
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>suppression</td>
<td>Sets the suppression expire to the band select.</td>
<td></td>
</tr>
<tr>
<td>dual-band</td>
<td>Sets the dual band expire to the band select.</td>
<td></td>
</tr>
<tr>
<td>seconds</td>
<td>• Value for suppression between 10 to 200 seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Value for a dual-band between 10 to 300 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to set the suppression expire to 70 seconds:

```bash
(Cisco Controller) > config band-select expire suppression 70
```

**Related Commands**

- config band-select cycle-threshold
- config band-select client-rssi
- config band-select cycle-count
# config band-select client-rssi

To set the client received signal strength indicator (RSSI) threshold for band select, use the `config band-select client-rssi` command.

```plaintext
config band-select client-rssi \(rssi \)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rssi</code></td>
<td>Minimum dBM of a client RSSI to respond to probe between 20 and 90.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the RSSI threshold for band select to 70:

```
(Cisco Controller) > config band-select client-rssi 70
```

### Related Commands
- `config band-select cycle-threshold`
- `config band-select expire`
- `config band-select cycle-count`
config boot

To change a Cisco wireless LAN controller boot option, use the `config boot` command.

```markdown
config boot { primary | backup }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>Sets the primary image as active.</td>
</tr>
<tr>
<td>backup</td>
<td>Sets the backup image as active.</td>
</tr>
</tbody>
</table>

**Command Default**

The default boot option is `primary`.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Each Cisco wireless LAN controller can boot off the primary, last-loaded operating system image (OS) or boot off the backup, earlier-loaded OS image.

The following example shows how to set the primary image as active so that the LAN controller can boot off the primary, last loaded image:

```
(Cisco Controller) > config boot primary
```

The following example shows how to set the backup image as active so that the LAN controller can boot off the backup, earlier loaded OS image:

```
(Cisco Controller) > config boot backup
```
To configure the Cisco Discovery Protocol (CDP) on the controller, use the `config cdp` command.

```plaintext
config cdp { enable | disable | advertise-v2 { enable | disable } | timer seconds | holdtime holdtime_interval }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CDP on the controller.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables CDP on the controller.</td>
</tr>
<tr>
<td>advertise-v2</td>
<td>Configures CDP version 2 advertisements.</td>
</tr>
<tr>
<td>timer</td>
<td>Configures the interval at which CDP messages are to be generated.</td>
</tr>
<tr>
<td>seconds</td>
<td>Time interval at which CDP messages are to be generated. The range is from 5 to 254 seconds.</td>
</tr>
<tr>
<td>holdtime</td>
<td>Configures the amount of time to be advertised as the time-to-live value in generated CDP packets.</td>
</tr>
<tr>
<td>holdtime_interval</td>
<td>Maximum hold timer value. The range is from 10 to 255 seconds.</td>
</tr>
</tbody>
</table>

### Command Default

The default value for CDP timer is 60 seconds.
The default value for CDP holdtime is 180 seconds.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the CDP maximum hold timer to 150 seconds:

(Cisco Controller) > `config cdp timer 150`

### Related Commands

- `config ap cdp`
- `show cdp`
- `show ap cdp`
# config certificate lsc

To configure Locally Significant Certificate (LSC) certificates, use the `config certificate lsc` command.

```
config certificate lsc { enable | disable | ca-server http://url:port/path | ca-cert { add | delete } | subject-params country state city orgn dept email | other-params { keysize | ap-provision { auth-list { add | delete } | ap_mac | revert-cert retries }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Enables LSC certificates on the controller.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables LSC certificates on the controller.</td>
</tr>
<tr>
<td><strong>ca-server</strong></td>
<td>Specifies the Certificate Authority (CA) server settings.</td>
</tr>
<tr>
<td><strong><a href="http://url:port/path">http://url:port/path</a></strong></td>
<td>Domain name or IP address of the CA server.</td>
</tr>
<tr>
<td><strong>ca-cert</strong></td>
<td>Specifies CA certificate database settings.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Obtains a CA certificate from the CA server and adds it to the controller’s certificate database.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a CA certificate from the controller’s certificate database.</td>
</tr>
<tr>
<td><strong>subject-params</strong></td>
<td>Specifies the device certificate settings.</td>
</tr>
<tr>
<td><strong>country state city orgn dept email</strong></td>
<td>Country, state, city, organization, department, and email of the certificate authority.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The common name (CN) is generated automatically on the access point using the current MIC/SSC format <code>Cxxxx-MacAddr</code>, where <code>xxxx</code> is the product number.</td>
</tr>
<tr>
<td><strong>other-params</strong></td>
<td>Specifies the device certificate key size settings.</td>
</tr>
<tr>
<td><strong>keysize</strong></td>
<td>Value from 384 to 2048 (in bits); the default value is 2048.</td>
</tr>
<tr>
<td><strong>ap-provision</strong></td>
<td>Specifies the access point provision list settings.</td>
</tr>
<tr>
<td><strong>auth-list</strong></td>
<td>Specifies the provision list authorization settings.</td>
</tr>
<tr>
<td><strong>ap_mac</strong></td>
<td>MAC address of access point to be added or deleted from the provision list.</td>
</tr>
<tr>
<td><strong>revert-cert</strong></td>
<td>Specifies the number of times the access point attempts to join the controller using an LSC before reverting to the default certificate.</td>
</tr>
</tbody>
</table>
Value from 0 to 255; the default value is 3.

Note: If you set the number of retries to 0 and the access point fails to join the controller using an LSC, the access point does not attempt to join the controller using the default certificate. If you are configuring LSC for the first time, we recommend that you configure a nonzero value.

The default value of *keysize* is 2048 bits. The default value of *retries* is 3.

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
</tr>
<tr>
<td>7.6</td>
</tr>
</tbody>
</table>

Usage Guidelines:

You can configure only one CA server. To configure a different CA server, delete the configured CA server by using the `config certificate lsc ca-server delete` command, and then configure a different CA server.

If you configure an access point provision list, only the access points in the provision list are provisioned when you enable AP provisioning (in Step 8). If you do not configure an access point provision list, all access points with an MIC or SSC certificate that join the controller are LSC provisioned.

The following example shows how to enable the LSC settings:

(Cisco Controller) > `config certificate lsc enable`

This example shows how to enable the LSC settings for Certificate Authority (CA) server settings:

(Cisco Controller) > `config certificate lsc ca-server http://10.0.0.1:8080/caserver`

The following example shows how to add a CA certificate from the CA server and add it to the controller’s certificate database:

(Cisco Controller) > `config certificate lsc ca-cert add`

The following example shows how to configure an LSC certificate with the keysize of 2048 bits:

(Cisco Controller) > `config certificate lsc keysize 2048`
To configure Self Signed Certificates (SSC) certificates, use the **config certificate ssc** command.

```
config certificate ssc hash validation { enable | disable }
```

**Syntax Description**

- **hash** Configures the SSC hash key.
- **validation** Configures hash validation of the SSC certificate.
- **enable** Enables hash validation of the SSC certificate.
- **disable** Disables hash validation of the SSC certificate.

**Command Default**

The SSC certificate is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable the SSC hash validation, an AP validates the SSC certificate of the virtual controller. When an AP validates the SSC certificate, it checks if the hash key of the virtual controller matches the hash key stored in its flash. If a match is found, the validation passes and the AP moves to the Run state. If a match is not found, the validation fails and the AP disconnects from the controller and restarts the discovery process. By default, hash validation is enabled. Hence, an AP must have the virtual controller hash key in its flash before associating with the virtual controller. If you disable hash validation of the SSC certificate, the AP bypasses the hash validation and directly moves to the Run state.

APs can associate with a physical controller, download the hash keys and then associate with a virtual controller. If the AP is associated to a physical controller and if hash validation is disabled, it joins any virtual controller without hash validation.

The following example shows how to enable hash validation of the SSC certificate:

```
(Cisco Controller) > config certificate ssc hash validation enable
```

**Related Commands**

- show certificate ssc
- show mobility group member
- config mobility group member hash
- config certificate
- show certificate compatibility
- show certificate lsc
- show certificate summary
- show local-auth certificates
config certificate use-device-certificate webadmin

To use a device certificate for web administration, use the `config certificate use-device-certificate webadmin` command.

```
config certificate use-device-certificate webadmin
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to use a device certificate for web administration:

```
(Cisco Controller) > config certificate use-device-certificate webadmin
Use device certificate for web administration. Do you wish to continue? (y/n) y
Using device certificate for web administration.
Save configuration and restart controller to use new certificate.
```

**Related Commands**

- `config certificate`
- `show certificate compatibility`
- `show certificate lsc`
- `show certificate ssc`
- `show certificate summary`
- `show local-auth certificates`
config client ccx clear-reports

To clear the client reporting information, use the config client ccx clear-reports command.

config client ccx clear-reports client_mac_address

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>client_mac_address</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the reporting information of the client MAC address 00:1f:ca:cf:b6:60:

(Cisco Controller) > config client ccx clear-reports 00:1f:ca:cf:b6:60
# config client ccx clear-results

To clear the test results on the controller, use the `config client ccx clear-results` command.

```
config client ccx clear-results client_mac_address
```

## Syntax Description

| client_mac_address | MAC address of the client. |

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to clear the test results of the client MAC address 00:1f:ca:cf:b6:60:

```
(Cisco Controller) >config client ccx clear-results 00:1f:ca:cf:b6:60
```
config client ccx default-gw-ping

To send a request to the client to perform the default gateway ping test, use the `config client ccx default-gw-ping` command.

```
config client ccx default-gw-ping client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This test does not require the client to use the diagnostic channel.

The following example shows how to send a request to the client 00:0b:85:02:0d:20 to perform the default gateway ping test:

```
(Cisco Controller) >config client ccx default-gw-ping 00:0b:85:02:0d:20
```
**config client ccx dhcp-test**

To send a request to the client to perform the DHCP test, use the `config client ccx dhcp-test` command.

```
config client ccx dhcp-test client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This test does not require the client to use the diagnostic channel.

The following example shows how to send a request to the client 00:E0:77:31:A3:55 to perform the DHCP test:

```
(Cisco Controller) > config client ccx dhcp-test 00:E0:77:31:A3:55
```
config client ccx dns-ping

To send a request to the client to perform the Domain Name System (DNS) server IP address ping test, use the `config client ccx dns-ping` command.

`config client ccx dns-ping client_mac_address`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This test does not require the client to use the diagnostic channel.

The following example shows how to send a request to a client to perform the DNS server IP address ping test:

```
(Cisco Controller) > config client ccx dns-ping 00:E0:77:31:A3:55
```
**config client ccx dns-resolve**

To send a request to the client to perform the Domain Name System (DNS) resolution test to the specified hostname, use the `config client ccx dns-resolve` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td><code>host_name</code></td>
<td>Hostname of the client.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This test does not require the client to use the diagnostic channel.

The following example shows how to send a request to the client 00:E0:77:31:A3:55 to perform the DNS name resolution test to the specified hostname:

```
(Cisco Controller) > config client ccx dns-resolve 00:E0:77:31:A3:55 host_name
```
To send a request to the client to send its capability information, use the `config client ccx get-client-capability` command.

```plaintext
config client ccx get-client-capability client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client 172.19.28.40 to send its capability information:

```plaintext
(Cisco Controller) >config client ccx get-client-capability 172.19.28.40
```
### config client ccx get-manufacturer-info

To send a request to the client to send the manufacturer’s information, use the `config client ccx get-manufacturer-info` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client 172.19.28.40 to send the manufacturer’s information:

(Cisco Controller) > `config client ccx get-manufacturer-info 172.19.28.40`
config client ccx get-operating-parameters

To send a request to the client to send its current operating parameters, use the `config client ccx get-operating-parameters` command.

```bash
config client ccx get-operating-parameters client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client 172.19.28.40 to send its current operating parameters:

```bash
(Cisco Controller) > config client ccx get-operating-parameters 172.19.28.40
```
config client ccx get-profiles

To send a request to the client to send its profiles, use the config client ccx get-profiles command.

config client ccx get-profiles client_mac_address

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client 172.19.28.40 to send its profile details:

(Cisco Controller) > config client ccx get-profiles 172.19.28.40
**config client ccx log-request**

To configure a Cisco client eXtension (CCX) log request for a specified client device, use the `config client ccx log-request` command.

```
config client ccx log-request { roam | rsna | syslog } client_mac_address
```

**Syntax Description**

- **roam**
  - (Optional) Specifies the request to specify the client CCX roaming log.

- **rsna**
  - (Optional) Specifies the request to specify the client CCX RSNA log.

- **syslog**
  - (Optional) Specifies the request to specify the client CCX system log.

**client_mac_address**

MAC address of the client.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the request to specify the client CCS system log:

```
(Cisco Controller) > config client ccx log-request syslog 00:40:96:a8:f7:98
Tue Oct 05 13:05:21 2006
SysLog Response LogID=1: Status=Successful
Event Timestamp=121212121212
Client SysLog = 'This is a test syslog 2'
Event Timestamp=121212121212
Client SysLog = 'This is a test syslog 1'
Tue Oct 05 13:04:04 2006
SysLog Request LogID=1
```

The following example shows how to specify the client CCX roaming log:

```
(Cisco Controller) > config client ccx log-request roam 00:40:96:a8:f7:98
Roaming Response LogID=20: Status=Successful
Event Timestamp=121212121212
Source BSSID=00:40:96:a8:f7:98, Target BSSID=00:0b:85:23:26:70,
Transition Time=100(ms)
Transition Reason: Unspecified Transition Result: Success
Thu Jun 22 11:55:04 2006
Roaming Request LogID=19
Thu Jun 22 11:54:54 2006
Roaming Response LogID=19: Status=Successful
Event Timestamp=121212121212
Source BSSID=00:40:96:a8:f7:98, Target BSSID=00:0b:85:23:26:70,
Transition Time=100(ms)
Transition Reason: Unspecified Transition Result: Success
Thu Jun 22 11:54:33 2006 Roaming Request LogID=19
```
The following example shows how to specify the client CCX RSNA log:

```
(Cisco Controller) > config client ccx log-request rsna 00:40:96:a8:f7:98
Tue Oct 05 11:06:48 2006
RSNA Response LogID=2: Status=Successful
Event Timestamp=242424242424
Target BSSID=00:0b:85:23:26:70
RSNA Version=1
Group Cipher Suite=00-x0f-ac-01
Pairwise Cipher Suite Count = 2
Pairwise Cipher Suite 0 = 00-0f-ac-02
Pairwise Cipher Suite 1 = 00-0f-ac-04
ARM Suite Count = 2
KM Suite 0 = 00-0f-ac-01
KM Suite 1 = 00-0f-ac-02
SN Capability = 0x1
PMKID Count = 2
PMKID 0 = 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
PMKID 1 = 0a 0b 0c 0d 0e 0f 17 18 19 20 1a 1b 1c 1d 1e 1f
802.11i Auth Type: EAP_FAST
RSNA Result: Success
```
config client ccx send-message

To send a message to the client, use the config client ccx send-message command.

```
config client ccx send-message client_mac_address message_id
```

| Syntax Description | client_mac_address | MAC address of the client. |
config client ccx send-message

message_id
Message type that involves one of the following:

• 1—The SSID is invalid.
• 2—The network settings are invalid.
• 3—There is a WLAN credibility mismatch.
• 4—The user credentials are incorrect.
• 5—Please call support.
• 6—The problem is resolved.
• 7—The problem has not been resolved.
• 8—Please try again later.
• 9—Please correct the indicated problem.
• 10—Troubleshooting is refused by the network.
• 11—Retrieving client reports.
• 12—Retrieving client logs.
• 13—Retrieval complete.
• 14—Beginning association test.
• 15—Beginning DHCP test.
• 16—Beginning network connectivity test.
• 17—Beginning DNS ping test.
• 18—Beginning name resolution test.
• 19—Beginning 802.1X authentication test.
• 20—Redirecting client to a specific profile.
• 21—Test complete.
• 22—Test passed.
• 23—Test failed.
• 24—Cancel diagnostic channel operation or select a WLAN profile to resume normal operation.
• 25—Log retrieval refused by the client.
• 26—Client report retrieval refused by the client.
• 27—Test request refused by the client.
• 28—Invalid network (IP) setting.
• 29—There is a known outage or problem with the network.
• 30—Scheduled maintenance period.
  (continued on next page)

message_type (cont.)

• 31—The WLAN security method is not correct.
• 32—The WLAN encryption method is not correct.
• 33—The WLAN authentication method is not correct.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a message to the client MAC address 172.19.28.40 with the message user-action-required:

(Cisco Controller) >config client ccx send-message 172.19.28.40 user-action-required
**config client ccx stats-request**

To send a request for statistics, use the `config client ccx stats-request` command.

```plaintext
config client ccx stats-request measurement_duration {dot11 | security} client_mac_address
```

**Syntax Description**

- `measurement_duration`  
  Measurement duration in seconds.
- `dot11`  
  (Optional) Specifies dot11 counters.
- `security`  
  (Optional) Specifies security counters.
- `client_mac_address`  
  MAC address of the client.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify dot11 counter settings:

```
(Cisco Controller) > config client ccx stats-request 1 dot11 00:40:96:a8:f7:98
Measurement duration = 1
dot11TransmittedFragmentCount = 1
dot11MulticastTransmittedFrameCount = 2
dot11FailedCount = 3
dot11RetryCount = 4
dot11MultipleRetryCount = 5
dot11FrameDuplicateCount = 6
dot11RTSSuccessCount = 7
dot11RTSFailureCount = 8
dot11ACKFailureCount = 9
dot11ReceivedFragmentCount = 10
dot11MulticastReceivedFrameCount = 11
dot11FCSErrorCount = 12
dot11TransmittedFrameCount = 13
```
config client ccx test-abort

To send a request to the client to abort the current test, use the `config client ccx test-abort` command.

`config client ccx test-abort client_mac_address`

**Syntax Description**

<table>
<thead>
<tr>
<th><code>client_mac_address</code></th>
<th>MAC address of the client.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Only one test can be pending at a time.

The following example shows how to send a request to a client to abort the correct test settings:

```plaintext
(Cisco Controller) >config client ccx test-abort 11:11:11:11:11:11
```
config client ccx test-association

To send a request to the client to perform the association test, use the `config client ccx test-association` command.

```
config client ccx test-association client_mac_address ssid bssid 802.11 {a | b | g} channel
```

**Syntax Description**

- `client_mac_address`: MAC address of the client.
- `ssid`: Network name.
- `bssid`: Basic SSID.
- `802.11a`: Specifies the 802.11a network.
- `802.11b`: Specifies the 802.11b network.
- `802.11g`: Specifies the 802.11g network.
- `channel`: Channel number.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client MAC address 00:0E:77:31:A3:55 to perform the basic SSID association test:

```
(Cisco Controller) > config client ccx test-association 00:E0:77:31:A3:55 ssid bssid 802.11a
```
**config client ccx test-dot1x**

To send a request to the client to perform the 802.1x test, use the `config client ccx test-dot1x` command.

```plaintext
config client ccx test-dot1x client_mac_address profile_id bssid 802.11 \(a \mid b \mid g\) channel
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td><code>profile_id</code></td>
<td>Test profile name.</td>
</tr>
<tr>
<td><code>bssid</code></td>
<td>Basic SSID.</td>
</tr>
<tr>
<td><code>802.11a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>802.11b</code></td>
<td>Specifies the 802.11b network.</td>
</tr>
<tr>
<td><code>802.11g</code></td>
<td>Specifies the 802.11g network.</td>
</tr>
<tr>
<td><code>channel</code></td>
<td>Channel number.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client to perform the 802.11b test with the profile name profile_01:

```
(Cisco Controller) > config client ccx test-dot1x 172.19.28.40 profile_01 bssid 802.11b
```
config client ccx test-profile

To send a request to the client to perform the profile redirect test, use the `config client ccx test-profile` command.

```
config client ccx test-profile client_mac_address profile_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td><code>profile_id</code></td>
<td>Test profile name.</td>
</tr>
</tbody>
</table>

**Note** The `profile_id` should be from one of the client profiles for which client reporting is enabled.

**Command Default** None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send a request to the client to perform the profile redirect test with the profile name `profile_01`:

```
(Cisco Controller) >config client ccx test-profile 11:11:11:11:11 profile_01
```
config client deauthenticate

To disconnect a client, use the `config client deauthenticate` command.

`config client deauthenticate {MAC | IPv4/IPv6_address | user_name}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Client MAC address.</td>
</tr>
<tr>
<td>IPv4/IPv6_address</td>
<td>IPv4 or IPv6 address.</td>
</tr>
<tr>
<td>user_name</td>
<td>Client user name.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to deauthenticate a client using its MAC address:

```
(Cisco Controller) > config client deauthenticate 11:11:11:11:11
```
To configure link aggregation, use the `config client location-calibration` command.

```
config client location-calibration { enable mac_address interval | disable mac_address }
```

### Syntax Description

**enable**

(Optional) Specifies that client location calibration is enabled.

**mac_address**

MAC address of the client.

**interval**

Measurement interval in seconds.

**disable**

(Optional) Specifies that client location calibration is disabled.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the client location calibration for the client 37:15:85:2a with a measurement interval of 45 seconds:

```
(Cisco Controller) > config client location-calibration enable 37:15:86:2a:Bc:cf 45
```
config coredump

To enable or disable the controller to generate a core dump file following a crash, use the config coredump command.

```
config coredump {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the controller to generate a core dump file.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the controller to generate a core dump file.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the controller to generate a core dump file following a crash:

```
(Cisco Controller) > config coredump enable
```

**Related Commands**

- config coredump ftp
- config coredump username
- show coredump summary
**config coredump ftp**

To automatically upload a controller core dump file to an FTP server after experiencing a crash, use the `config coredump ftp` command.

`config coredump ftp server_ip_address filename`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_ip_address</td>
<td>IP address of the FTP server to which the controller sends its core dump file.</td>
</tr>
<tr>
<td>filename</td>
<td>Name given to the controller core dump file.</td>
</tr>
</tbody>
</table>

**Command Default** None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The controller must be able to reach the FTP server to use this command.

The following example shows how to configure the controller to upload a core dump file named `core_dump_controller` to an FTP server at network address `192.168.0.13`:

```
(Cisco Controller) > config coredump ftp 192.168.0.13 core_dump_controller
```

**Related Commands**

- `config coredump`
- `config coredump username`
- `show coredump summary`
config coredump username

To specify the FTP server username and password when uploading a controller core dump file after experiencing a crash, use the **config coredump username** command.

`config coredump username ftp_username password ftp_password`

**Syntax Description**

- `ftp_username` FTP server login username.
- `ftp_password` FTP server login password.

**Command Default**

None

**Command History**

- **Release** 7.6
- **Modification** This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

The controller must be able to reach the FTP server to use this command.

The following example shows how to specify a FTP server username of `admin` and password `adminpassword` for the core dump file upload:

```
(Cisco Controller) > config coredump username admin password adminpassword
```

**Related Commands**

- config coredump ftp
- config coredump
- show coredump summary
config country

To configure the controller’s country code, use the config country command.

config country country_code

**Syntax Description**

| country_code | Two-letter or three-letter country code. |

**Command Default**

us (country code of the United States of America).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Cisco WLCs must be installed by a network administrator or qualified IT professional and the installer must select the proper country code. Following installation, access to the unit should be password protected by the installer to maintain compliance with regulatory requirements and to ensure proper unit functionality. See the related product guide for the most recent country codes and regulatory domains.

You can use the show country command to display a list of supported countries.

The following example shows how to configure the controller’s country code to DE:

(Cisco Controller) >config country DE
# config cts sxp

To configure Cisco TrustSec SXP (CTS) connections on the controller, use the `config cts sxp` command.

```
config cts sxp { enable | disable | connection { delete | peer } | default password password | retry period time-in-seconds }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CTS connections on the controller.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables CTS connections on the controller.</td>
</tr>
<tr>
<td>connection</td>
<td>Configures CTS connection on the controller.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the CTS connection on the controller.</td>
</tr>
<tr>
<td>peer</td>
<td>Configures the next hop switch with which the controller is connected.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Only IPv4 address of the peer.</td>
</tr>
<tr>
<td>default password</td>
<td>Configures the default password for MD5 authentication of SXP messages.</td>
</tr>
<tr>
<td>password</td>
<td>Default password for MD5 Authentication of SXP messages. The password should contain a minimum of six characters.</td>
</tr>
<tr>
<td>retry period</td>
<td>Configures the SXP retry period.</td>
</tr>
<tr>
<td>time-in-seconds</td>
<td>Time after which a CTS connection should be again tried for after a failure to connect.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

For release 8.0, only IPv4 is supported for TrustSec SXP configuration.

The following example shows how to enable CTS on the controller:

```
(Cisco Controller) > config cts sxp enable
```

The following example shows how to configure a peer for a CTS connection:

```
> config cts sxp connection peer 209.165.200.224
```

## Related Commands

`debug cts sxp`
**config custom-web ext-webauth-mode**

To configure external URL web-based client authorization for the custom-web authentication page, use the `config custom-web ext-webauth-mode` command.

```
config custom-web ext-webauth-mode { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the external URL web-based client authorization.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the external URL web-based client authentication.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to enable the external URL web-based client authorization:

```
(Cisco Controller) > config custom-web ext-webauth-mode enable
```

**Related Commands**

- `config custom-web redirectUrl`
- `config custom-web weblogo`
- `config custom-web webmessage`
- `config custom-web webtitle`
- `config custom-web ext-webauth-url show custom-web`
config custom-web ext-webauth-url

To configure the complete external web authentication URL for the custom-web authentication page, use the `config custom-web ext-webauth-url` command.

```
config custom-web ext-webauth-url URL
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>URL</code></td>
<td>URL used for web-based client authorization.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td></td>
</tr>
<tr>
<td><code>Release</code></td>
<td><code>Modification</code></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the complete external web authentication URL `http://www.AuthorizationURL.com/` for the web-based client authorization:

```
(Cisco Controller) > config custom-web ext-webauth-url http://www.AuthorizationURL.com/
```

Related Commands

- `config custom-web redirectUrl`
- `config custom-web weblogo`
- `config custom-web webmessage`
- `config custom-web webtitle`
- `config custom-web ext-webauth-mode show custom-web`
To configure an external web server, use the `config custom-web ext-webserver` command.

```
config custom-web ext-webserver { add index IP_address | delete index }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds an external web server.</td>
</tr>
<tr>
<td><strong>index</strong></td>
<td>Index of the external web server in the list of external web server. The index must be a number between 1 and 20.</td>
</tr>
<tr>
<td><strong>IP_address</strong></td>
<td>IP address of the external web server.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes an external web server.</td>
</tr>
</tbody>
</table>

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to add the index of the external web server 2 to the IP address of the external web server 192.23.32.19:

```
(Cisco Controller) > config custom-web ext-webserver add 2 192.23.32.19
```

**Related Commands**
- `config custom-web redirectUrl`
- `config custom-web weblogo`
- `config custom-web webmessage`
- `config custom-web webtitle`
- `config custom-web ext-webauth-mode`
- `config custom-web ext-webauth-url`
- `show custom-web`
config custom-web logout-popup

To enable or disable the custom web authentication logout popup, use the `config custom-web logout-popup` command.

```
config custom-web logout-popup { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the custom web authentication logout popup. This page appears after a successful login or a redirect of the custom web authentication page.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the custom web authentication logout popup.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the custom web authentication logout popup:

```
(Cisco Controller) > config custom-web logout-popup disable
```

**Related Commands**

- config custom-web redirectUrl
- config custom-web weblogo
- config custom-web webmessage
- config custom-web webtitle
- config custom-web ext-webauth-url show custom-web
## config custom-web radiusauth

To configure the RADIUS web authentication method, use the `config custom-web radiusauth` command.

```plaintext
config custom-web radiusauth { chap | md5chap | pap }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chap</td>
<td>Configures the RADIUS web authentication method as Challenge Handshake Authentication Protocol (CHAP).</td>
</tr>
<tr>
<td>md5chap</td>
<td>Configures the RADIUS web authentication method as Message Digest 5 CHAP (MD5-CHAP).</td>
</tr>
<tr>
<td>pap</td>
<td>Configures the RADIUS web authentication method as Password Authentication Protocol (PAP).</td>
</tr>
</tbody>
</table>

| Command Default   | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the RADIUS web authentication method as MD5-CHAP:

```
(config Controller) > config custom-web radiusauth md5chap
```

## Related Commands
- `config custom-web redirectUrl`
- `config custom-web webmessage`
- `config custom-web webtitle`
- `config custom-web ext-webauth-mode`
- `config custom-web ext-webauth-url`
- `show custom-web`
config custom-web redirectUrl

To configure the redirect URL for the custom-web authentication page, use the `config custom-web redirectUrl` command.

```
config custom-web redirectUrl URL
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>URL that is redirected to the specified address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the URL that is redirected to abc.com:

```
(Cisco Controller) > config custom-web redirectUrl abc.com
```

**Related Commands**
- config custom-web weblogo
- config custom-web webmessage
- config custom-web webtitle
- config custom-web ext-webauth-mode
- config custom-web ext-webauth-url
- show custom-web
config custom-web sleep-client

To delete a web-authenticated sleeping client, use the `config custom-web sleep-client` command.

```
cfg custom-web sleep-client delete mac_address
```

**Syntax Description**
- **delete** Deletes a web-authenticated sleeping client with the help of the client MAC address.
- **mac_address** MAC address of the sleeping client.

**Command Default**
The web-authenticated sleeping client is not deleted.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a web-authenticated sleeping client:

```
(Cisco Controller) > config custom-web sleep-client delete 0:18:74:c7:c0:90
```
config custom-web webauth-type

To configure the type of web authentication, use the config custom-web webauth-type command.

```
config custom-web webauth-type { internal | customized | external }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal</td>
<td>Configures the web authentication type to internal.</td>
</tr>
<tr>
<td>customized</td>
<td>Configures the web authentication type to customized.</td>
</tr>
<tr>
<td>external</td>
<td>Configures the web authentication type to external.</td>
</tr>
</tbody>
</table>

**Command Default**

The default web authentication type is **internal**.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the type of the web authentication type to internal:

```
(Cisco Controller) > config custom-web webauth-type internal
```

**Related Commands**

- config custom-web redirectUrl
- config custom-web webmessage
- config custom-web webtitle
- config custom-web ext-webauth-mode
- config custom-web ext-webauth-url
- show custom-web
To configure the web authentication logo for the custom-web authentication page, use the `config custom-web weblogo` command.

```
config custom-web weblogo { enable | disable }
```

**Syntax Description**
- `enable` Enables the web authentication logo settings.
- `disable` Enable or disable the web authentication logo settings.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the web authentication logo:

```
(Cisco Controller) > config custom-web weblogo enable
```
**config custom-web webmessage**

To configure the custom web authentication message text for the custom-web authentication page, use the `config custom-web webmessage` command.

```
config custom-web webmessage message
```

**Syntax Description**

- `message`: Message text for web authentication.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the message text `Thisistheplace` for web authentication:

```
(Cisco Controller) > config custom-web webmessage Thisistheplace
```

**Related Commands**

- `config custom-web redirectUrl`
- `config custom-web weblogo`
- `config custom-web webtitle`
- `config custom-web ext-webauth-mode`
- `config custom-web ext-webauth-url`
- `show custom-web`
config custom-web webtitle

To configure the web authentication title text for the custom-web authentication page, use the `config custom-web webtitle` command.

```
config custom-web webtitle title
```

**Syntax Description**

| title | Custom title text for web authentication. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the custom title text Helpdesk for web authentication:

```
(Cisco Controller) > config custom-web webtitle Helpdesk
```

**Related Commands**

- `config custom-web redirectUrl`
- `config custom-web weblogo`
- `config custom-web webmessage`
- `config custom-web ext-webauth-mode`
- `config custom-web ext-webauth-url`
- `show custom-web`
config database size

To configure the local database, use the `config database size` command.

```
config database size count
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>count</th>
<th>Database size value between 512 and 2040</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show database` command to display local database configuration.

The following example shows how to configure the size of the local database:

```
(Cisco Controller) > config database size 1024
```

**Related Commands**

`show database`
**config dhcp**

To configure the internal DHCP, use the `config dhcp` command.

```plaintext
config dhcp | address-pool scope start end | create-scope scope | default-router scope router_1
[router_2] [router_3] | delete-scope scope | disable scope | dns-servers scope dns1 [dns2]
[dns3] | domain scope domain | enable scope | lease scope lease_duration | netbios-name-server
scope wins1 [wins2] [wins3] | network scope network netmask

config dhcpopt-82 remote-id { ap_mac | ap_mac:ssid | ap-ethmac | apname:ssid | ap-group-name
| flex-group-name | ap-location | apmac-vlan_id | apname-vlan_id | ap-ethmac-ssid }
```

### Syntax Description

- **address-pool scope start end**
  - Configures an address range to allocate. You must specify the scope name and the first and last addresses of the address range.

- **create-scope name**
  - Creates a new DHCP scope. You must specify the scope name.

- **default-router scope router_1 [router_2] [router_3]**
  - Configures the default routers for the specified scope and specify the IP address of a router. Optionally, you can specify the IP addresses of secondary and tertiary routers.

- **delete-scope scope**
  - Deletes the specified DHCP scope.

- **disable scope**
  - Disables the specified DHCP scope.

- **dns-servers scope dns1 [dns2] [dns3]**
  - Configures the name servers for the given scope. You must also specify at least one name server. Optionally, you can specify secondary and tertiary name servers.

- **domain scope domain**
  - Configures the DNS domain name. You must specify the scope and domain names.

- **enable scope**
  - Enables the specified dhcp scope.

- **lease scope lease_duration**
  - Configures the lease duration (in seconds) for the specified scope.

- **netbios-name-server scope wins1 [wins2] [wins3]**
  - Configures the netbios name servers. You must specify the scope name and the IP address of a name server. Optionally, you can specify the IP addresses of secondary and tertiary name servers.

- **network scope network netmask**
  - Configures the network and netmask. You must specify the scope name, the network address, and the network mask.
Configure the DHCP option 82 remote ID field format.

DHCP option 82 provides additional security when DHCP is used to allocate network addresses. The controller acts as a DHCP relay agent to prevent DHCP client requests from untrusted sources. The controller adds option 82 information to DHCP requests from clients before forwarding the requests to the DHCP server.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>opt-82 remote-id</td>
<td>Configures the DHCP option 82 remote ID field format.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of the access point to the DHCP option 82 payload.</td>
</tr>
<tr>
<td>ap_mac:ssid</td>
<td>MAC address and SSID of the access point to the DHCP option 82 payload.</td>
</tr>
<tr>
<td>ap-ethmac</td>
<td>Remote ID format as AP Ethernet MAC address.</td>
</tr>
<tr>
<td>apname:ssid</td>
<td>Remote ID format as AP name:SSID.</td>
</tr>
<tr>
<td>ap-group-name</td>
<td>Remote ID format as AP group name.</td>
</tr>
<tr>
<td>flex-group-name</td>
<td>Remote ID format as FlexConnect group name.</td>
</tr>
<tr>
<td>ap-location</td>
<td>Remote ID format as AP location.</td>
</tr>
<tr>
<td>apmac-vlan_id</td>
<td>Remote ID format as AP radio MAC address:VLAN_ID.</td>
</tr>
<tr>
<td>apname-vlan_id</td>
<td>Remote ID format as AP Name:VLAN_ID.</td>
</tr>
<tr>
<td>ap-ethmac-ssid</td>
<td>Remote ID format as AP Ethernet MAC:SSID address.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for ap-group-name is default-group, and for ap-location, the default value is default location. If ap-group-name and flex-group-name are null, the system MAC is sent as the remote ID field.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show dhcp` command to display the internal DHCP configuration.

The following example shows how to configure the DHCP lease for the scope 003:

(Cisco Controller) > `config dhcp lease 003`
config dhcp opt-82 format

To configure the DHCP option 82 format, use the `config dhcp opt-82 format` command.

```
config dhcp opt-82 format {binary | ascii}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binary</code></td>
<td>Specifies the DHCP option 82 format as binary.</td>
</tr>
<tr>
<td><code>ascii</code></td>
<td>Specifies the DHCP option 82 format as ASCII.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the format of DHCP option 82 payload:

```
(Cisco Controller) > config dhcp opt-82 format binary
```
config dhcp opt-82 remote-id

To configure the format of the DHCP option 82 payload, use the `config dhcp opt-82 remote-id` command.

```plaintext
config dhcp opt-82 remote-id { ap_mac | ap_mac:ssid | ap-ethmac | apname:ssid | ap-group-name |
flex-group-name | ap-location | apmac-vlan-id | apname-vlan-id | ap-ethmac-ssid }
```

**Syntax Description**

- `ap_mac` Specifies the radio MAC address of the access point to the DHCP option 82 payload.
- `ap_mac:ssid` Specifies the radio MAC address and SSID of the access point to the DHCP option 82 payload.
- `ap-ethmac` Specifies the Ethernet MAC address of the access point to the DHCP option 82 payload.
- `apname:ssid` Specifies the AP name and SSID of the access point to the DHCP option 82 payload.
- `ap-group-name` Specifies the AP group name to the DHCP option 82 payload.
- `flex-group-name` Specifies the FlexConnect group name to the DHCP option 82 payload.
- `ap-location` Specifies the AP location to the DHCP option 82 payload.
- `apmac-vlan-id` Specifies the radio MAC address of the access point and the VLAN ID to the DHCP option 82 payload.
- `apname-vlan-id` Specifies the AP name and its VLAN ID to the DHCP option 82 payload.
- `ap-ethmac-ssid` Specifies the Ethernet MAC address of the access point and the SSID to the DHCP option 82 payload.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the remote ID of DHCP option 82 payload:

```plaintext
(Cisco Controller) > config dhcp opt-82 remote-id apgroup1
```
config dhcp proxy

To specify the level at which DHCP packets are modified, use the `config dhcp proxy` command.

```
config dhcp proxy { enable | disable { bootp-broadcast [enable | disable] }}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Allows the controller to modify the DHCP packets without a limit.</td>
</tr>
<tr>
<td>disable</td>
<td>Reduces the DHCP packet modification to the level of a relay.</td>
</tr>
<tr>
<td>bootp-broadcast</td>
<td>Configures DHCP BootP broadcast option.</td>
</tr>
</tbody>
</table>

**Command Default**

DHCP is enabled.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

**Usage Guidelines**

Use the `show dhcp proxy` command to display the status of DHCP proxy handling.

To enable third-party WGB support, you must enable the passive-client feature on the wireless LAN by entering the `config wlan passive-client enable` command.

The following example shows how to disable the DHCP packet modification:

```
(Cisco Controller) >config dhcp proxy disable
```

The following example shows how to enable the DHCP BootP broadcast option:

```
(Cisco Controller) >config dhcp proxy disable bootp-broadcast enable
```
**config dhcp timeout**

To configure a DHCP timeout value, use the `config dhcp timeout` command. If you have configured a WLAN to be in DHCP required state, this timer controls how long the WLC will wait for a client to get a DHCP lease through DHCP.

`config dhcp timeout timeout-value`

**Syntax Description**

<table>
<thead>
<tr>
<th>timeout-value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Timeout value in the range of 5 to 120 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default timeout value is 120 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the DHCP timeout to 10 seconds:

(Cisco Controller) > `config dhcp timeout 10`
config exclusionlist

To create or delete an exclusion list entry, use the **config exclusionlist** command.

```
config exclusionlist { add MAC [description] | delete MAC | description MAC [description] }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config exclusionlist</td>
<td>Configures the exclusion list.</td>
</tr>
<tr>
<td>add</td>
<td>Creates a local exclusion-list entry.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a local exclusion-list entry.</td>
</tr>
<tr>
<td>description</td>
<td>Specifies the description for an exclusion-list entry.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the local Excluded entry.</td>
</tr>
<tr>
<td>description</td>
<td>(Optional) Description, up to 32 characters, for an excluded entry.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create a local exclusion list entry for the MAC address `xx:xx:xx:xx:xx:xx`:

```
(Cisco Controller) > config exclusionlist add xx:xx:xx:xx:xx:xx lab
```

The following example shows how to delete a local exclusion list entry for the MAC address `xx:xx:xx:xx:xx:xx`:

```
(Cisco Controller) > config exclusionlist delete xx:xx:xx:xx:xx:xx lab
```

### Related Commands

- `show exclusionlist`
config flexconnect [ipv6] acl

To apply access control lists that are configured on a FlexConnect access point, use the `config flexconnect [ipv6] acl` command. Use the `ipv6` keyword to configure IPv6 FlexConnect ACLs.

```
config flexconnect [ipv6] acl {apply | create | delete} acl_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6</td>
<td>Use this option to configure IPv6 FlexConnect ACLs. If you don't use this option, then IPv4 FlexConnect ACLs will be configured.</td>
</tr>
<tr>
<td>apply</td>
<td>Applies an ACL to the data path.</td>
</tr>
<tr>
<td>create</td>
<td>Creates an ACL.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an ACL.</td>
</tr>
<tr>
<td>acl_name</td>
<td>ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.8</td>
<td>IPv6 ACL option was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to apply the IPv4 ACL configured on a FlexConnect access point:

```
(Cisco Controller) > config flexconnect acl apply acl1
```
To configure access control list (ACL) rules on a FlexConnect access point, use the `config flexconnect [ipv6] acl rule` command.

```plaintext
config flexconnect [ipv6] acl rule { action rule_name rule_index { permit | deny } | add rule_name rule_index | change index rule_name old_index new_index | delete rule_name rule_index | destination address rule_name rule_index ip_address netmask | destination port range rule_name rule_index start_port end_port | direction rule_name rule_index { in | out | any } | dscp rule_name rule_index dscp | protocol rule_name rule_index protocol | source address rule_name rule_index ip_address netmask | source port range rule_name rule_index start_port end_port | swap index rule_name index_1 index_2 }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ipv6</strong></td>
<td>Use this option to configure IPv6 FlexConnect ACL rules. If you don't use this option, then IPv4 FlexConnect ACL rules will be configured.</td>
</tr>
<tr>
<td><strong>action</strong></td>
<td>Configures whether to permit or deny access.</td>
</tr>
<tr>
<td><strong>rule_name</strong></td>
<td>ACL name that contains up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>rule_index</strong></td>
<td>Rule index between 1 and 32.</td>
</tr>
<tr>
<td><strong>permit</strong></td>
<td>Permits the rule action.</td>
</tr>
<tr>
<td><strong>deny</strong></td>
<td>Denies the rule action.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Adds a new rule.</td>
</tr>
<tr>
<td><strong>change</strong></td>
<td>Changes a rule’s index.</td>
</tr>
<tr>
<td><strong>index</strong></td>
<td>Specifies a rule index.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a rule.</td>
</tr>
<tr>
<td><strong>destination address</strong></td>
<td>Configures a rule’s destination IP address and netmask.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td>IP address of the rule.</td>
</tr>
<tr>
<td><strong>netmask</strong></td>
<td>Netmask of the rule.</td>
</tr>
<tr>
<td><strong>start_port</strong></td>
<td>Start port number (between 0 and 65535).</td>
</tr>
<tr>
<td><strong>end_port</strong></td>
<td>End port number (between 0 and 65535).</td>
</tr>
<tr>
<td><strong>direction</strong></td>
<td>Configures a rule’s direction to in, out, or any.</td>
</tr>
<tr>
<td><strong>in</strong></td>
<td>Configures a rule’s direction to in.</td>
</tr>
<tr>
<td><strong>out</strong></td>
<td>Configures a rule’s direction to out.</td>
</tr>
<tr>
<td><strong>any</strong></td>
<td>Configures a rule’s direction to any.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td><code>dscp</code></td>
<td>Configures a rule’s DSCP.</td>
</tr>
<tr>
<td><code>dscp</code></td>
<td>Number between 0 and 63, or <strong>any</strong>.</td>
</tr>
<tr>
<td><code>protocol</code></td>
<td>Configures a rule’s DSCP.</td>
</tr>
<tr>
<td><code>protocol</code></td>
<td>Number between 0 and 255, or <strong>any</strong>.</td>
</tr>
<tr>
<td><code>source address</code></td>
<td>Configures a rule’s source IP address and netmask.</td>
</tr>
<tr>
<td><code>source port range</code></td>
<td>Configures a rule’s source port range.</td>
</tr>
<tr>
<td><code>swap</code></td>
<td>Swaps two rules’ indices.</td>
</tr>
<tr>
<td><code>index_1</code></td>
<td>The rule first index to swap.</td>
</tr>
<tr>
<td><code>index_2</code></td>
<td>The rule index to swap the first index with.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.8</td>
<td>IPv6 ACL option was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to configure an ACL to permit access:

```
(Cisco Controller) > config flexconnect acl rule action lab1 4 permit
```
config flexconnect [ipv6] acl url-domain

To configure a URL domain-based rule for a FlexConnect ACL, use the **config flexconnect acl [ipv6] url-domain** command.

```
config flexconnect [ipv6] acl url-domain
 action acl-name index action
 add acl-name index
 delete acl-name index
 url acl-name index url-name
```

**Syntax Description**

- **ipv6**: Use this option to configure URL domain-based rules for IPv6 FlexConnect ACLs. If you don't use this option, then IPv4 FlexConnect ACL rules will be configured.

- **action acl-name index action**: Configures the action for the FlexConnect ACL rule, whether to permit or deny access.

- **add acl-name index**: Adds URL domain to the FlexConnect ACL.

- **delete acl-name index**: Deletes the URL domain from the FlexConnect ACL.

- **url acl-name index url-name**: Configures the URL name in the FlexConnect ACL.

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.8</td>
<td>IPv6 ACL option was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to configure URL-based rule for an IPv6 FlexConnect ACL:

```
(Cisco Controller) > config flexconnect ipv6 acl url-domain action acls-to-allow 2 permit
```
config flexconnect arp-caching

To save an ARP entry for a client in the cache with locally switched WLAN on FlexConnect APs use **config flexconnect arp-caching** command.

```plaintext
config flexconnect arp-caching { enable | disable }
```

**Syntax Description**

- **arp-caching enable**  Instructs the access point to save the ARP entry for a client in the cache and reply on its behalf of the client for locally switched WLAN.

- **arp-caching disable**  Disables ARP caching.

**Command Default**  None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to apply the proxy ARP with locally switched WLAN on FlexConnect APs.

```plaintext
(Cisco Controller) > config flexconnect arp-caching enable
```
To configure a Flexconnect Application Visibility and Control (AVC) profile, use the `config flexconnect avc profile` command.

```plaintext
config flexconnect avc profile profile-name create | delete | apply | rule add application app-name \{ drop | \{ mark dscp-value \} \} | \{ remove application app-name \}
```

### Syntax Description

- **profile-name**: Name of the AVC profile. The range is from 0 to 32 alphanumeric characters.
- **create**: Creates an AVC profile.
- **delete**: Deletes an AVC profile.
- **apply**: Applies an AVC profile.
- **rule**: Configures a Rule for an AVC profile.
- **add application**: Adds a rule for an AVC profile.
- **app-name**: Name of the application. The range is from 0 to 32 alphanumeric characters.
- **drop**: Adds a rule to drop packets.
- **mark**: Adds a rule to mark packets with specific differentiated services code point (DSCP).
- **dscp-value**: DSCP value for marking packets. The range is from 0 to 63.
- **remove application**: Removes a rule for an AVC profile.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to create a FlexConnect profile:

```plaintext
(Cisco Controller) > config flexconnect avc profile profile1 create
```
config flexconnect fallback-radio-shut

To configure the radio interface of an access point when the Ethernet link is not operational, use the `config flexconnect fallback-radio-shut` command.

```
config flexconnect fallback-radio-shut (disable | enable delay delay-in-sec)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables the radio interface shutdown.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the radio interface shutdown.</td>
</tr>
<tr>
<td>delay</td>
<td>Specifies the delay for the interface after which the radio interface has to be shut down.</td>
</tr>
<tr>
<td>delay-in-sec</td>
<td>Delay duration, in seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The radio interface shutdown is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can specify the delay duration only if you enable the radio interface shutdown.

The following example shows how to enable the radio interface shutdown after a delay duration of 5 seconds:

```
(Cisco Controller) > config flexconnect fallback-radio-shut enable delay 5
```
To add, delete, or configure a FlexConnect group, use the `config flexconnect group` command.

```plaintext
config flexconnect group group_name {add | delete} ap {add | delete} ap-mac | radius {ap {authority {id hex_id | info auth_info} | disable | eap-fast {enable | disable} | enable | leap {enable | disable} | pac-timeout timeout | server-key {auto | key} | user {add {username password} | delete username}} | server auth {add | delete} {primary | secondary} server_index IP_address auth_port secret | predownload (disable | enable) | master ap_name | slave {retry-count max_count | ap-name cisco_ap} | start {primary backup abort} | local-split {wlan wlan_id acl acl_name {enable | disable} | multicast overridden-interface {enable | disable} | vlan {add vlan_id acl in-aclname out-aclname | delete vlan_id} | web-auth wlan wlan_id acl acl_name {enable | disable} | web-policy acl {add | delete} acl_name}
```

```plaintext
config flexconnect group group_name radius ap {eap-cert download | eap-tls {enable | disable} | peap {enable | disable}}
```

```plaintext
config flexconnect group group_name policy acl {add | delete} acl_name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>group_name</th>
<th>Group name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>ap</td>
<td>Adds or deletes an access point to a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>Adds an access point to a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an access point to a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of the access point.</td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td>Configures the RADIUS server for client authentication for a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>ap</td>
<td>Configures an access point based RADIUS server for client authentication for a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>authority</td>
<td>Configures the Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FAST) authority parameters.</td>
<td></td>
</tr>
<tr>
<td>id</td>
<td>Configures the authority identifier of the local EAP-FAST server.</td>
<td></td>
</tr>
<tr>
<td>hex_id</td>
<td>Authority identifier of the local EAP-FAST server in hexadecimal characters. You can enter up to 32 hexadecimal even number of characters.</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>info</td>
<td>Configures the authority identifier of the local EAP-FAST server in text format.</td>
<td></td>
</tr>
<tr>
<td>auth_info</td>
<td>Authority identifier of the local EAP-FAST server in text format.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables an AP based RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>eap-fast</td>
<td>Enables or disables Extensible Authentication Protocol-Flexible Authentication via Secure Tunneling (EAP-FAST) authentication.</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables EAP-FAST authentication.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables EAP-FAST authentication.</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables AP based RADIUS Server.</td>
<td></td>
</tr>
<tr>
<td>leap</td>
<td>Enables or disables Lightweight Extensible Authentication Protocol (LEAP) authentication.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables LEAP authentication.</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables LEAP authentication.</td>
<td></td>
</tr>
<tr>
<td>pac-timeout</td>
<td>Configures the EAP-FAST Protected Access Credential (PAC) timeout parameters.</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>PAC timeout in days. The range is from 2 to 4095. A value of 0 indicates that it is disabled.</td>
<td></td>
</tr>
<tr>
<td>server-key</td>
<td>Configures the EAP-FAST server key. The server key is used to encrypt and decrypt PACs.</td>
<td></td>
</tr>
<tr>
<td>auto</td>
<td>Automatically generates a random server key.</td>
<td></td>
</tr>
<tr>
<td>key</td>
<td>Key that disables efficient upgrade for a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>user</td>
<td>Manages the user list at the AP-based RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>Adds a user. You can configure a maximum of 100 users.</td>
<td></td>
</tr>
<tr>
<td>username</td>
<td>Username that is case-sensitive and alphanumeric and can be up to 24 characters.</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td>Password of the user.</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a user.</td>
<td></td>
</tr>
<tr>
<td>server</td>
<td>Configures an external RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>Adds an external RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an external RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>Configures an external primary RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>secondary</td>
<td>Configures an external secondary RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>server_index</td>
<td>Index of the RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>IP_address</td>
<td>IP address of the RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>auth_port</td>
<td>Port address of the RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>secret</td>
<td>Index of the RADIUS server.</td>
<td></td>
</tr>
<tr>
<td>predownload</td>
<td>Configures an efficient AP upgrade for the FlexConnect group. You can download an upgrade image to the access point from the controller without resetting the access point or losing network connectivity.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables an efficient upgrade for a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables an efficient upgrade for a FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>master</td>
<td>Manually designates an access point in the FlexConnect group as the master AP.</td>
<td></td>
</tr>
<tr>
<td>ap_name</td>
<td>Access point name.</td>
<td></td>
</tr>
<tr>
<td>slave</td>
<td>Manually designates an access point in the FlexConnect group as the slave AP.</td>
<td></td>
</tr>
<tr>
<td>retry-count</td>
<td>Configures the number of times the slave access point tries to predownload an image from the master.</td>
<td></td>
</tr>
<tr>
<td>max_count</td>
<td>Maximum number of times the slave access point tries to predownload an image from the master.</td>
<td></td>
</tr>
<tr>
<td>ap_name</td>
<td>Override the manually configured master.</td>
<td></td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the master access point.</td>
<td></td>
</tr>
<tr>
<td>start</td>
<td>Starts the predownload image upgrade for the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>Starts the predownload primary image upgrade for the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>backup</td>
<td>Starts the predownload backup image upgrade for the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>abort</td>
<td>Aborts the predownload image upgrade for the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><code>local-split</code></td>
<td>Configures a local-split ACL on a FlexConnect AP group per WLAN.</td>
<td></td>
</tr>
<tr>
<td><code>wlan</code></td>
<td>Configures a WLAN for a local split ACL on a FlexConnect AP group.</td>
<td></td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512 (inclusive).</td>
<td></td>
</tr>
<tr>
<td><code>acl</code></td>
<td>Configures a local split ACL on a FlexConnect AP group per WLAN.</td>
<td></td>
</tr>
<tr>
<td><code>acl_name</code></td>
<td>Name of the ACL.</td>
<td></td>
</tr>
<tr>
<td><code>multicast overridden-interface</code></td>
<td>Configures multicast across the Layer 2 broadcast domain on the overridden interface for locally switched clients.</td>
<td></td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>Configures a VLAN to the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds a VLAN to the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td><code>vlan_id</code></td>
<td>VLAN identifier.</td>
<td></td>
</tr>
<tr>
<td><code>in-acl</code></td>
<td>Inbound ACL name that contains up to 32 alphanumeric characters.</td>
<td></td>
</tr>
<tr>
<td><code>out-acl</code></td>
<td>Outbound ACL name that contains up to 32 alphanumeric characters.</td>
<td></td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a VLAN from the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td><code>web-auth</code></td>
<td>Configures a FlexConnect ACL for external web authentication.</td>
<td></td>
</tr>
<tr>
<td><code>wlan</code></td>
<td>Specifies the wireless LAN to be configured with a FlexConnect ACL.</td>
<td></td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512 (inclusive).</td>
<td></td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the FlexConnect access point.</td>
<td></td>
</tr>
<tr>
<td><code>acl</code></td>
<td>Configures a FlexConnect ACLs.</td>
<td></td>
</tr>
<tr>
<td><code>web-policy</code></td>
<td>Configures a web policy FlexConnect ACL.</td>
<td></td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds a web policy FlexConnect ACL to the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a web policy FlexConnect ACL from the FlexConnect group.</td>
<td></td>
</tr>
<tr>
<td><code>eap-cert download</code></td>
<td>Downloads the EAP root and device certificate.</td>
<td></td>
</tr>
</tbody>
</table>
Enables or disables EAP-Transport Layer Security (EAP-TLS) authentication.

**eap-tls**

Enables or disables Protected Extensible Authentication Protocol (PEAP) authentication.

**peap**

Configures policy ACL on the FlexConnect group.

**policy acl**

Configures http-proxy server.

**http-proxy ipaddress**

---

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can add up to 100 clients.

Beginning in Release 7.4 and later releases, the supported maximum number of RADIUS servers is 100.

The following example shows how to add a FlexConnect group for MAC address 192.12.1.2:

```
(Cisco Controller) >config flexconnect group 192.12.1.2 add
```

The following example shows how to add a RADIUS server as a primary server for a FlexConnect group with the server index number 1:

```
(Cisco Controller) >config flexconnect group 192.12.1.2 radius server add primary 1
```

The following example shows how to enable a local split ACL on a FlexConnect AP group for a WLAN:

```
(Cisco Controller) >config flexconnect group flexgroup1 local-split wlan 1 acl flexacl1 enable
```
config flexconnect group vlan

To configure VLAN for a FlexConnect group, use the `config flexconnect group vlan` command.

```
config flexconnect group group_name vlan {add vlan-id acl in-aclname out-aclname | delete vlan-id}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_name</td>
<td>FlexConnect group name.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a VLAN for the FlexConnect group.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>VLAN ID.</td>
</tr>
<tr>
<td>acl</td>
<td>Specifies an access control list.</td>
</tr>
<tr>
<td>in-aclname</td>
<td>In-bound ACL name.</td>
</tr>
<tr>
<td>out-aclname</td>
<td>Out-bound ACL name.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a VLAN from the FlexConnect group.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add VLAN ID 1 for the FlexConnect group myflexacl where the in-bound ACL name is in-acl and the out-bound ACL is out-acl:

```
(Cisco Controller) > config flexconnect group vlan myflexacl vlan add 1 acl in-acl out-acl
```
To enable or disable the DHCP overridden interface for a FlexConnect group, use the `config flexconnect group group-name dhcp overridden-interface` command.

```
config flexconnect group group-name dhcp overridden-interface {enable | disable}
```

**Syntax Description**

- `overridden-interface`: The DHCP overridden interface for FlexConnect group.
- `group-name`: Name of the FlexConnect group.
- `enable`: Instructs the access point to enable DHCP broadcast for locally switched clients.
- `disable`: Disables the feature.

**Command Default**

None

**Command History**

- **Release**: 8.0
  - This command was introduced.

**Example**

The following example shows how to enable DHCP broadcast for locally switched clients.

```
(Cisco Controller) > config flexconnect
 group flexgroup dhcp overridden-interface enable
```
**config flexconnect group web-auth**

To configure Web-Auth ACL for a FlexConnect group, use the `config flexconnect group web-auth` command.

```
config flexconnect group group_name web-auth wlan wlan-id acl acl-name { enable | disable }
```

**Syntax Description**

- `group_name` FlexConnect group name.
- `wlan-id` WLAN ID.
- `acl-name` ACL name.
- `enable` Enables the Web-Auth ACL for a FlexConnect group.
- `disable` Disables the Web-Auth ACL for a FlexConnect group.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable Web-Auth ACL webauthacl for the FlexConnect group myflexacl on WLAN ID 1:

```
(Cisco Controller) > config flexconnect group myflexacl web-auth wlan 1 acl webauthacl enable
```
config flexconnect group web-policy

To configure Web Policy ACL for a FlexConnect group, use the `config flexconnect group web-policy` command.

```
config flexconnect group group_name web-policy acl {add | delete} acl-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group_name</code></td>
<td>FlexConnect group name.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds the Web Policy ACL.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes the Web Policy ACL.</td>
</tr>
<tr>
<td><code>acl-name</code></td>
<td>Name of the Web Policy ACL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add the Web Policy ACL mywebpolicyacl to the FlexConnect group myflexacl:

```
(Cisco Controller) >config flexconnect group myflexacl web-policy acl add mywebpolicyacl
```
config flexconnect join min-latency

To enable or disable the access point to choose the controller with the least latency when joining, use the `config flexconnect join min-latency` command.

```
config flexconnect join min-latency { enable | disable } cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>enable</th>
<th>Enables the access point to choose the controller with the least latency when joining.</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables the access point to choose the controller with the least latency when joining.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The access point cannot choose the controller with the least latency when joining.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable this feature, the access point calculates the time between the discovery request and discovery response and joins the controller that responds first. This command is supported only on the following controller releases:

- Cisco 2500 Series Controller
- Cisco 5500 Series Controller
- Cisco Flex 7500 Series Controllers
- Cisco 8500 Series Controllers
- Cisco Wireless Services Module 2

This configuration overrides the HA setting on the controller, and is applicable only for OEAP access points.

The following example shows how to enable the access point to choose the controller with the least latency when joining:

```plaintext
(Cisco Controller) > config flexconnect join min-latency enable CISCO_AP
```
config flexconnect office-extend

To configure FlexConnect mode for an OfficeExtend access point, use the `config flexconnect office-extend` command.

```
cfg flexconnect office-extend { { enable | disable } cisco_ap | clear-personalssid-config cisco_ap }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the OfficeExtend mode for an access point.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the OfficeExtend mode for an access point.</td>
</tr>
<tr>
<td>clear-personalssid-config</td>
<td>Clears only the access point’s personal SSID.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

OfficeExtend mode is enabled automatically when you enable FlexConnect mode on the access point.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Currently, only Cisco Aironet 1130 series and 1140 series access points that are joined to a Cisco 5500 Series Controller with a WPlus license can be configured to operate as OfficeExtend access points.

Rogue detection is disabled automatically when you enable the OfficeExtend mode for an access point. OfficeExtend access points, which are deployed in a home environment, are likely to detect a large number of rogue devices. You can enable or disable rogue detection for a specific access point or for all access points by using the `config rogue detection` command.

DTLS data encryption is enabled automatically when you enable the OfficeExtend mode for an access point. However, you can enable or disable DTLS data encryption for a specific access point or for all access points by using the `config ap link-encryption` command.

Telnet and SSH access are disabled automatically when you enable the OfficeExtend mode for an access point. However, you can enable or disable Telnet or SSH access for a specific access point by using the `config ap telnet` or `config ap ssh` command.

Link latency is enabled automatically when you enable the OfficeExtend mode for an access point. However, you can enable or disable link latency for a specific access point or for all access points currently associated to the controller by using the `config ap link-latency` command.

The following example shows how to enable the office-extend mode for the access point Cisco_ap:

```
(Cisco Controller) > config flexconnect office-extend enable Cisco_ap
```

The following example shows how to clear only the access point’s personal SSID for the access point Cisco_ap:

```
(Cisco Controller) > config flexconnect office-extend clear-personalssid-config Cisco_ap
```
To configure a NetFlow Monitor and Exporter, use the `config flow` command.

```
config flow {add | delete} monitor monitor_name {exporter exporter_name | record {ipv4_client_app_flow_record | ipv4_client_src_dst_flow_record}}
```

**Syntax Description**

- **add**: Associates either a NetFlow monitor with an exporter, or a NetFlow record with a NetFlow monitor.
- **delete**: Dissociates either a NetFlow monitor from an exporter, or a NetFlow record from a NetFlow monitor.
- **monitor**: Configures a NetFlow monitor.
- **monitor_name**: Name of the NetFlow monitor. The monitor name can be up to 32 case-sensitive, alphanumeric characters. You cannot include spaces in a monitor name.
- **exporter**: Configures a NetFlow exporter.
- **exporter_name**: Name of the NetFlow exporter. The exporter name can be up to 32 case-sensitive, alphanumeric characters. You cannot include spaces in an exporter name.
- **record**: Associates a NetFlow record to the NetFlow monitor.
- **ipv4_client_app_flow_record**: Existing record template for better performance.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An exporter is a network entity that exports the template with IP traffic information. The Cisco WLC acts as an exporter. A NetFlow record in the Cisco WLC contains the information about the traffic in a given flow, such as client MAC address, client source IP address, WLAN ID, incoming and outgoing bytes of data, incoming and outgoing packets, and incoming and outgoing Differentiated Services Code Point (DSCP).

The following example shows how to configure a NetFlow monitor and exporter:

```
(Cisco Controller) > config flow add monitor monitor1 exporter exporter1
```
config guest-lan

To create, delete, enable or disable a wireless LAN, use the `config guest-lan` command.

```bash
config guest-lan { create | delete } guest_lan_id interface_name | { enable | disable } guest_lan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>create</td>
<td>Creates a wired LAN settings.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a wired LAN settings:</td>
</tr>
<tr>
<td>guest_lan_id</td>
<td>LAN identifier between 1 and 5 (inclusive).</td>
</tr>
<tr>
<td>interface_name</td>
<td>Interface name up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables a wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables a wireless LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a wireless LAN with the LAN ID 16:

```bash
(Cisco Controller) > config guest-lan enable 16
```

**Related Commands**

show wlan
**config guest-lan custom-web ext-webauth-url**

To redirect guest users to an external server before accessing the web login page, use the `config guest-lan custom-web ext-webauth-url` command.

```
config guest-lan custom-web ext-webauth-url ext_web_url guest_lan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ext_web_url</code></td>
<td>URL for the external server.</td>
</tr>
<tr>
<td><code>guest_lan_id</code></td>
<td>Guest LAN identifier between 1 and 5 (inclusive).</td>
</tr>
</tbody>
</table>

| Command Default    | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release  Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6  This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a wireless LAN with the LAN ID 16:

```
(Cisco Controller) > config guest-lan custom-web ext-webauth-url http://www.AuthorizationURL.com/ 1
```

**Related Commands**
- `config guest-lan`
- `config guest-lan create`
- `config guest-lan custom-web login_page`
To use a guest-LAN specific custom web configuration rather than a global custom web configuration, use the `config guest-lan custom-web global disable` command.

```
(config guest-lan custom-web global disable guest_lan_id)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest_lan_id</td>
<td>Guest LAN identifier between 1 and 5 (inclusive).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>If you enter the <code>config guest-lan custom-web global enable guest_lan_id</code> command, the custom web authentication configuration at the global level is used.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The following example shows how to disable the global web configuration for guest LAN ID 1:</td>
</tr>
<tr>
<td></td>
<td>(Cisco Controller) &gt; <code>config guest-lan custom-web global disable 1</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th><code>config guest-lan</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>config guest-lan create</code></td>
</tr>
<tr>
<td></td>
<td><code>config guest-lan custom-web ext-webauth-url</code></td>
</tr>
<tr>
<td></td>
<td><code>config guest-lan custom-web login_page</code></td>
</tr>
<tr>
<td></td>
<td><code>config guest-lan custom-web webauth-type</code></td>
</tr>
</tbody>
</table>
**config guest-lan custom-web login_page**

To enable wired guest users to log into a customized web login page, use the `config guest-lan custom-web login_page` command.

`config guest-lan custom-web login_page` **page_name** guest_lan_id

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>page_name</strong></td>
<td>Name of the customized web login page.</td>
</tr>
<tr>
<td><strong>guest_lan_id</strong></td>
<td>Guest LAN identifier between 1 and 5 (inclusive).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to customize a web login page custompage1 for guest LAN ID 1:

```
(Cisco Controller) > config guest-lan custom-web login_page custompage1 1
```

**Related Commands**

- `config guest-lan`
- `config guest-lan create`
- `config guest-lan custom-web ext-webauth-url`
config guest-lan custom-web webauth-type

To define the web login page for wired guest users, use the `config guest-lan custom-web webauth-type` command.

```
config guest-lan custom-web webauth-type {internal | customized | external} guest_lan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>internal</code></td>
<td>Displays the default web login page for the controller. This is the default value.</td>
</tr>
<tr>
<td><code>customized</code></td>
<td>Displays the custom web login page that was previously configured.</td>
</tr>
<tr>
<td><code>external</code></td>
<td>Redirects users to the URL that was previously configured.</td>
</tr>
<tr>
<td><code>guest_lan_id</code></td>
<td>Guest LAN identifier between 1 and 5 (inclusive).</td>
</tr>
</tbody>
</table>

**Command Default**
The default web login page for the controller is internal.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the guest LAN with the webauth-type as internal for guest LAN ID 1:

```
(Cisco Controller) > config guest-lan custom-web webauth-type internal 1
```

**Related Commands**

- `config guest-lan`
- `config guest-lan create`
- `config guest-lan custom-web ext-webauth-url`
To configure the wired guest VLAN’s ingress interface that provides a path between the wired guest client and the controller through the Layer 2 access switch, use the `config guest-lan ingress-interface` command.

```
config guest-lan ingress-interface guest_lan_id interface_name
```

**Syntax Description**

- **guest_lan_id**
  - Guest LAN identifier from 1 to 5 (inclusive).
- **interface_name**
  - Interface name.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to provide a path between the wired guest client and the controller with guest LAN ID 1 and the interface name guest01:

```
(Cisco Controller) > config guest-lan ingress-interface 1 guest01
```

**Related Commands**

- `config interface guest-lan`
- `config guest-lan create`
config guest-lan interface

To configure an egress interface to transmit wired guest traffic out of the controller, use the `config guest-lan interface` command.

`config guest-lan interface guest_lan_id interface_name`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>guest_lan_id</code></td>
<td>Guest LAN identifier between 1 and 5 (inclusive).</td>
</tr>
<tr>
<td><code>interface_name</code></td>
<td>Interface name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an egress interface to transmit guest traffic out of the controller for guest LAN ID 1 and interface name guest01:

```
(Cisco Controller) > config guest-lan interface 1 guest01
```

**Related Commands**

- `config ingress-interface guest-lan`
- `config guest-lan create`
config guest-lan mobility anchor

To add or delete mobility anchor, use the `config guest-lan mobility anchor` command.

```
config guest-lan mobility anchor { add | delete } Guest LAN Id IP addr
```

**Syntax Description**

- **add**
  Adds a mobility anchor to a WLAN.

- **delete**
  Deletes a mobility anchor from a WLAN.

- **Guest LAN Id**
  Guest LAN identifier between 1 and 5.

- **IP addr**
  Member switch IPv4 or IPv6 address to anchor WLAN.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a mobility anchor for WAN ID 4 and the anchor IP 192.168.0.14:

```
(Cisco Controller) > config guest-lan mobility anchor delete 4 192.168.0.14
```
config guest-lan nac

To enable or disable Network Admission Control (NAC) out-of-band support for a guest LAN, use the `config guest-lan nac` command:

```
config guest-lan nac { enable | disable } guest_lan_id
```

**Syntax Description**

- `enable`: Enables the NAC out-of-band support.
- `disable`: Disables the NAC out-of-band support.
- `guest_lan_id`: Guest LAN identifier between 1 and 5 (inclusive).

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable the NAC out-of-band support for guest LAN ID 3:

```
(Cisco Controller) > config guest-lan nac enable 3
```

**Related Commands**

- `show nac statistics`
- `show nac summary`
- `config wlan nac`
- `debug nac`
# config guest-lan security

To configure the security policy for the wired guest LAN, use the `config guest-lan security` command.

```
config guest-lan security { web-auth { enable | disable | acl | server-precedence } guest_lan_id | web-passthrough { acl | email-input | disable | enable } guest_lan_id }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-auth</td>
<td>Specifies web authentication.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the web authentication settings.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the web authentication settings.</td>
</tr>
<tr>
<td>acl</td>
<td>Configures an access control list.</td>
</tr>
<tr>
<td>server-precedence</td>
<td>Configures the authentication server precedence order for web authentication users.</td>
</tr>
<tr>
<td>guest_lan_id</td>
<td>LAN identifier between 1 and 5 (inclusive).</td>
</tr>
<tr>
<td>web-passthrough</td>
<td>Specifies the web captive portal with no authentication required.</td>
</tr>
<tr>
<td>email-input</td>
<td>Configures the web captive portal using an e-mail address.</td>
</tr>
</tbody>
</table>

## Command Default

The default security policy for the wired guest LAN is web authentication.

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the security web authentication policy for guest LAN ID 1:

(Cisco Controller) > `config guest-lan security web-auth enable 1`

## Related Commands

- `config ingress-interface guest-lan`
- `config guest-lan create`
- `config interface guest-lan`
To configure access control list of an interface, use the `config interface acl` command.

```
config interface acl {ap-manager | management | interface_name} {ACL | none}
```

**Syntax Description**

- **ap-manager**: Configures the access point manager interface.
- **management**: Configures the management interface.
- **interface_name**: Interface name.
- **ACL**: ACL name up to 32 alphanumeric characters.
- **none**: Specifies none.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN preauthentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to configure an access control list with a value None:

```
(Cisco Controller) > config interface acl management none
```
**config interface address**

To configure address information for an interface, use the `config interface address` command.

```
config interface address { ap-manager IP_address netmask gateway | management IP_address netmask gateway | service-port IP_address netmask | virtual IP_address | dynamic-interface IP_address dynamic_interface netmask gateway | redundancy-management IP_address peer-redundancy-management IP_address }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ap-manager</code></td>
<td>Specifies the access point manager interface.</td>
</tr>
<tr>
<td><code>IP_address</code></td>
<td>IP address—IPv4 only.</td>
</tr>
<tr>
<td><code>netmask</code></td>
<td>Network mask.</td>
</tr>
<tr>
<td><code>gateway</code></td>
<td>IP address of the gateway.</td>
</tr>
<tr>
<td><code>management</code></td>
<td>Specifies the management interface.</td>
</tr>
<tr>
<td><code>service-port</code></td>
<td>Specifies the out-of-band service port interface.</td>
</tr>
<tr>
<td><code>virtual</code></td>
<td>Specifies the virtual gateway interface.</td>
</tr>
<tr>
<td><code>interface-name</code></td>
<td>Specifies the interface identified by the <code>interface-name</code> parameter.</td>
</tr>
<tr>
<td><code>interface-name</code></td>
<td>Interface name.</td>
</tr>
<tr>
<td><code>redundancy-management</code></td>
<td>Configures redundancy management interface IP address.</td>
</tr>
<tr>
<td><code>peer-redundancy-management</code></td>
<td>Configures the peer redundancy management interface IP address.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For Cisco 5500 Series Controllers, you are not required to configure an AP-manager interface. The management interface acts like an AP-manager interface by default.

This command is applicable for IPv4 addresses only.

Ensure that the management interfaces of both controllers are in the same subnet. Ensure that the Redundant Management IP address for both controllers is the same. Likewise, ensure that the Peer Redundant Management IP address for both the controllers is the same.

The following example shows how to configure an access point manager interface with IP address 209.165.201.31, network mask 255.255.0.0, and gateway address 209.165.201.30:
The following examples show how to configure a redundancy management interface on the controller:

(Cisco Controller) > config interface address redundancy-management 209.4.120.5
peer-redundancy-management 209.4.120.6

The following example shows how to configure a virtual interface:

(Cisco Controller) > config interface address virtual 192.0.2.1

Related Commands

show interface
**config interface address redundancy-management**

To configure the management interface IP address, subnet and gateway of the controller, use the `config interface address redundancy-management` command.

```
config interface address redundancy-management IP_address netmask gateway
```

**Syntax Description**

- **IP_address**: Management interface IP address of the active controller.
- **netmask**: Network mask.
- **gateway**: IP address of the gateway.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can use this command to check the Active-Standby reachability when the keep-alive fails.

The following example shows how to configure the management IP addresses of the controller:

```
(Cisco Controller) > config interface address redundancy-management 209.165.201.31 255.255.0.0 209.165.201.30
```

**Related Commands**

- `config redundancy mobilitymac`
- `config redundancy interface address peer-service-port`
- `config redundancy peer-route`
- `config redundancy unit`
- `config redundancy timer`
- `show redundancy timers`
- `show redundancy summary`
- `debug rmgr`
- `debug rsyncmgr`

---

Cisco Wireless LAN Controller Command Reference, Release 8.0
config interface ap-manager

To enable or disable access point manager features on the management or dynamic interface, use the `config interface ap-manager` command.

```
config interface ap-manager { management | interface_name } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>Specifies the management interface.</td>
</tr>
<tr>
<td>interface_name</td>
<td>Dynamic interface name.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables access point manager features on a dynamic interface.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables access point manager features on a dynamic interface.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `management` option to enable or disable dynamic AP management for the management interface. For Cisco 5500 Series Controllers, the management interface acts like an AP-manager interface by default. If desired, you can disable the management interface as an AP-manager interface and create another dynamic interface as an AP manager.

When you enable this feature for a dynamic interface, the dynamic interface is configured as an AP-manager interface (only one AP-manager interface is allowed per physical port). A dynamic interface that is marked as an AP-manager interface cannot be used as a WLAN interface.

The following example shows how to disable an access point manager myinterface:

```
(Cisco Controller) > config interface ap-manager myinterface disable
```
config interface create

To create a dynamic interface (VLAN) for wired guest user access, use the `config interface create` command.

```
config interface create interface_name vlan-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>Interface name.</td>
</tr>
<tr>
<td><code>vlan-id</code></td>
<td>VLAN identifier.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create a dynamic interface with the interface named lab2 and VLAN ID 6:

```
(Cisco Controller) > config interface create lab2 6
```
config interface delete

To delete a dynamic interface, use the config interface delete command.

```
config interface delete interface-name
```

**Syntax Description**

- `interface-name`: Interface name.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a dynamic interface named VLAN501:

```
(Cisco Controller) > config interface delete VLAN501
```
**config interface dhcp management**

To configure DHCP options on a management interface, use the `config interface dhcp management` command.

```bash
config interface dhcp management { option-82 (bridge-mode-insertion (enable | disable) | enable | disable | linksel (enable | disable | relaysrc interface-name) | vpnsel (enable | disable | vpnid vpn-id | vrfname vrf-name)) | primary primary-dhcp_server [secondary secondary-dhcp_server] | proxy-mode { enable | disable | global } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>option-82</code></td>
<td>Configures DHCP Option 82 on the interface.</td>
</tr>
<tr>
<td><code>bridge-mode-insertion</code></td>
<td>Configures DHCP option 82 insertion in bridge mode.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the feature.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the feature.</td>
</tr>
<tr>
<td><code>linksel</code></td>
<td>Configures link select suboption 5 on a dynamic or management interface.</td>
</tr>
<tr>
<td><code>relaysrc</code></td>
<td>Configures Link select suboption 5 on relay source.</td>
</tr>
<tr>
<td><code>interface-name</code></td>
<td>Name of an existing WLC interface reachable from the DHCP server.</td>
</tr>
<tr>
<td><code>vpnid</code></td>
<td>Configures VPN select suboption 151 VPN Id.</td>
</tr>
<tr>
<td><code>vpn-id</code></td>
<td>VPN Id in oui:vpn-index format xxxxxx:xxxxxxxx.</td>
</tr>
<tr>
<td><code>vrfname</code></td>
<td>Configures VPN select suboption 151 VRF name.</td>
</tr>
<tr>
<td><code>vrf-name</code></td>
<td>VRF name as string of length 7.</td>
</tr>
<tr>
<td><code>primary</code></td>
<td>Specifies the primary DHCP server.</td>
</tr>
<tr>
<td><code>primary-dhcp-server</code></td>
<td>IP address of the server.</td>
</tr>
<tr>
<td><code>secondary</code></td>
<td>(Optional) Specifies the secondary DHCP server.</td>
</tr>
<tr>
<td><code>secondary-dhcp-server</code></td>
<td>IP address of the server.</td>
</tr>
<tr>
<td><code>proxy-mode</code></td>
<td>Configures the DHCP proxy mode on the interface.</td>
</tr>
<tr>
<td><code>global</code></td>
<td>Uses the global DHCP proxy mode on the interface.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>(Optional) Disables the DHCP proxy mode on the interface.</td>
</tr>
<tr>
<td><code>global</code></td>
<td>(Optional) Uses the global DHCP proxy mode on the interface.</td>
</tr>
</tbody>
</table>

### Command Default

None
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The new keywords <code>linksel</code> and <code>vpnsel</code> are added. This command supports IPv6 from this release.</td>
</tr>
</tbody>
</table>

Usage Guidelines

DHCP proxy is not supported for IPv6 and it works in disabled mode.

The following example shows how to configure option 82 on a management interface.

```
(Cisco Controller) > config interface dhcp management option-82 enable
```

Related Commands

- `config dhcp`
- `config dhcp proxy`
- `config interface dhcp`
- `config wlan dhcp_server`
- `debug dhcp`
- `debug dhcp service-port`
- `debug disable-all`
- `show dhcp`
- `show dhcp proxy`
- `show interface`
**config interface dhcp**

Configure DHCP Option 82 insertion in Bridge mode on either management interface or dynamic interface by entering the `config interface dhcp` command:

```
config interface dhcp {management | dynamic-interface dynamic-interface-name} option-82 bridge-mode-insertion {enable | disable}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>Management interface</td>
</tr>
<tr>
<td>dynamic-interface</td>
<td>Dynamic interface</td>
</tr>
<tr>
<td>dynamic-interface-name</td>
<td>Dynamic interface name</td>
</tr>
<tr>
<td>option-82</td>
<td>DHCP Option 82 on the interface</td>
</tr>
<tr>
<td>bridge-mode-insertion</td>
<td>To configure Bridge mode insertion</td>
</tr>
</tbody>
</table>

### Command Default

DHCP option 82 insertion in Bridge mode is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>The Bridge mode insertion parameter was introduced in this release.</td>
</tr>
</tbody>
</table>
config interface address

To configure interface addresses, use the config interface address command.

```
config interface address { dynamic-interface dynamic_interface netmask gateway | management | redundancy-management IP_address peer-redundancy-management | service-port netmask | virtual } IP_address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic-interface</td>
<td>Configures the dynamic interface of the controller.</td>
</tr>
<tr>
<td>dynamic_interface</td>
<td>Dynamic interface of the controller.</td>
</tr>
<tr>
<td>IP_address</td>
<td>IP address of the interface.</td>
</tr>
<tr>
<td>netmask</td>
<td>Netmask of the interface.</td>
</tr>
<tr>
<td>gateway</td>
<td>Gateway of the interface.</td>
</tr>
<tr>
<td>management</td>
<td>Configures the management interface IP address.</td>
</tr>
<tr>
<td>redundancy-management</td>
<td>Configures redundancy management interface IP address.</td>
</tr>
<tr>
<td>peer-redundancy-management</td>
<td>Configures the peer redundancy management interface IP address.</td>
</tr>
<tr>
<td>service-port</td>
<td>Configures the out-of-band service port.</td>
</tr>
<tr>
<td>virtual</td>
<td>Configures the virtual gateway interface.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Ensure that the management interfaces of both controllers are in the same subnet. Ensure that the redundant management IP address for both controllers is the same and that the peer redundant management IP address for both the controllers is the same.

The following example shows how to configure a redundancy management interface on the controller:

```
(Cisco Controller) > config interface address redundancy-management 209.4.120.5 peer-redundancy-management 209.4.120.6
```

The following example shows how to configure a virtual interface:

```
(Cisco Controller) > config interface address virtual 1.1.1.1
```
Related Commands

- show interface group summary
- show interface summary
config interface guest-lan

To enable or disable the guest LAN VLAN, use the config interface guest-lan command.

`config interface guest-lan interface_name { enable | disable }`

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface_name</code></td>
<td>Interface name.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the guest LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the guest LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the guest LAN feature on the interface named myinterface:

```
(Cisco Controller) > config interface guest-lan myinterface enable
```

**Related Commands**

`config guest-lan create`
config interface hostname

To configure the Domain Name System (DNS) hostname of the virtual gateway interface, use the `config interface hostname` command.

```plaintext
config interface hostname virtual DNS_host
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>virtual</code></td>
<td>Specifies the virtual gateway interface to use the specified virtual address of the fully qualified DNS name.</td>
</tr>
<tr>
<td><code>DNS_host</code></td>
<td>DNS hostname.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure virtual gateway interface to use the specified virtual address of the fully qualified DNS hostname `DNS_Host`:

```
(Cisco Controller) > config interface hostname virtual DNS_Host
```
To configure the Network Access Server identifier (NAS-ID) for the interface, use the `config interface nasid` command.

```plaintext
config interface nasid \{ NAS-ID | none \} interface_name
```

**Syntax Description**

- **NAS-ID**
  - Network Access Server identifier (NAS-ID) for the interface. The NAS-ID is sent to the RADIUS server by the controller (as a RADIUS client) using the authentication request, which is used to classify users to different groups. You can enter up to 32 alphanumerical characters.
  - Beginning in Release 7.4 and later releases, you can configure the NAS-ID on the interface, WLAN, or an access point group. The order of priority is AP group NAS-ID > WLAN NAS-ID > Interface NAS-ID.

- **none**
  - Configures the controller system name as the NAS-ID.

- **interface_name**
  - Interface name up to 32 alphanumerical characters.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The NAS-ID configured on the controller for AP group or WLAN or interface is used for authentication. The NAS-ID is not propagated across controllers.

The following example shows how to configure the NAS-ID for the interface:

```plaintext
(Cisco Controller) > config interface nasid
```

**Related Commands**

- `config wlan nasid`
- `config wlan apgroup`
config interface nat-address

To deploy your Cisco 5500 Series Controller behind a router or other gateway device that is using one-to-one mapping network address translation (NAT), use the `config interface nat-address` command.

```
config interface nat-address { management | dynamic-interface interface_name } { { enable | disable } | { set public_IP_address } }
```

**Syntax Description**

- `management` Specifies the management interface.
- `dynamic-interface interface_name` Specifies the dynamic interface name.
- `enable` Enables one-to-one mapping NAT on the interface.
- `disable` Disables one-to-one mapping NAT on the interface.
- `public_IP_address` External NAT IP address.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

These NAT commands can be used only on Cisco 5500 Series Controllers and only if the management interface is configured for dynamic AP management.

These commands are supported for use only with one-to-one-mapping NAT, where each private client has a direct and fixed mapping to a global address. They do not support one-to-many NAT, which uses source port mapping to enable a group of clients to be represented by a single IP address.

The following example shows how to enable one-to-one mapping NAT on the management interface:

```
(Cisco Controller) > config interface nat-address management enable
```

The following example shows how to set the external NAP IP address 10.10.10.10 on the management interface:

```
(Cisco Controller) > config interface nat-address management set 10.10.10.10
```
config interface port

To map a physical port to the interface (if a link aggregation trunk is not configured), use the config interface port command.

```plaintext
config interface port { management | interface_name | redundancy-management } primary_port
[secondary_port]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>Specifies the management interface.</td>
</tr>
<tr>
<td>interface_name</td>
<td>Interface name.</td>
</tr>
<tr>
<td>redundancy-management</td>
<td>Specifies the redundancy management interface.</td>
</tr>
<tr>
<td>primary_port</td>
<td>Primary physical port number.</td>
</tr>
<tr>
<td>secondary_port</td>
<td>(Optional) Secondary physical port number.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can use the management option for all controllers except the Cisco 5500 Series Controllers.

The following example shows how to configure the primary port number of the LAB02 interface to 3:

```
(Cisco Controller) > config interface port lab02 3
```
**config interface quarantine vlan**

To configure a quarantine VLAN on any dynamic interface, use the `config interface quarantine vlan` command.

```
config interface quarantine vlan interface-name vlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-name</code></td>
<td>Interface’s name.</td>
</tr>
<tr>
<td><code>vlan_id</code></td>
<td>VLAN identifier.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Enter 0 to disable quarantine processing.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a quarantine VLAN on the quarantine interface with the VLAN ID 10:

```
(Cisco Controller) > config interface quarantine vlan quarantine 10
```
To configure an interface VLAN identifier, use the `config interface vlan` command.

```
config interface vlan (ap-manager | management | interface-name | redundancy-management)
```

### Syntax Description

- **ap-manager**: Configures the access point manager interface.
- **management**: Configures the management interface.
- **interface-name**: Interface name.
- **vlan**: VLAN identifier.
- **redundancy-management**: Specifies the redundancy management interface.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You cannot change the redundancy management VLAN when the system redundancy management interface is mapped to the redundancy port. You must configure the redundancy management port first.

The following example shows how to configure VLAN ID 10 on the management interface:

```
(Cisco Controller) > config interface vlan management 10
```
config interface group mdns-profile

To configure an mDNS (multicast DNS) profile for an interface group, use the `config interface group mdns-profile` command.

```
config interface group mdns-profile { all | interface-group-name } { profile-name | none }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures an mDNS profile for all interface groups.</td>
</tr>
<tr>
<td>interface-group-name</td>
<td>Name of the interface group to which the mDNS profile has to be associated. The interface group name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td>profile-name</td>
<td>Name of the mDNS profile.</td>
</tr>
<tr>
<td>none</td>
<td>Removes all existing mDNS profiles from the interface group. You cannot configure mDNS profiles on the interface group.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the mDNS profile is associated to a WLAN, an error appears.

The following example shows how to configure an mDNS profile for an interface group floor1:

```
(Cisco Controller) > config interface group mdns-profile floor1 profile1
```
config interface mdns-profile

To configure an mDNS (multicast DNS) profile for an interface, use the **config interface mdns-profile** command.

```
config interface mdns-profile {management | all interface-name} {profile-name | none}
```

**Syntax Description**

- **management**  
  Configures an mDNS profile for the management interface.

- **all**  
  Configures an mDNS profile for all interfaces.

- **interface-name**  
  Name of the interface on which the mDNS profile has to be configured. The interface name can be up to 32 case-sensitive, alphanumeric characters.

- **profile-name**  
  Name of the mDNS profile.

- **none**  
  Removes all existing mDNS profiles from the interface. You cannot configure mDNS profiles on the interface.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the mDNS profile is associated to a WLAN, an error appears.

The following example shows how to configure an mDNS profile for an interface lab1:

```
(Cisco Controller) > config interface mdns-profile lab1 profile1
```

**Related Commands**

- config mdns query interval
- config mdns service
- config mdns snooping
- config mdns profile
- config interface group mdns-profile
- config wlan mdns
- show mdns profile
- show mdns service
- clear mdns service-database
- debug mdns all
- debug mdns error
- debug mdns detail
debug mdns message
config ipv6 disable

To disable IPv6 globally on the Cisco WLC, use the **config ipv6 disable** command.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
When you use this command, the controller drops all IPv6 packets and the clients will not receive any IPv6 address.

The following example shows how to disable IPv6 on the controller:

(Cisco Controller) > **config ipv6 disable**
To enable IPv6 globally on the Cisco WLC, use the **config ipv6 enable** command.

**config ipv6 enable**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable IPv6 on the Cisco WLC:

(Cisco Controller) >`config ipv6 enable`
### config ipv6 acl

To create or delete an IPv6 ACL on the Cisco wireless LAN controller, apply ACL to data path, and configure rules in the IPv6 ACL, use the `config ipv6 acl` command.

```plaintext
config ipv6 acl [apply | cpu | create | delete | rule]
config ipv6 acl apply name
config ipv6 acl cpu {name | none}
config ipv6 acl create name
config ipv6 acl delete name
config ipv6 acl rule [action | add | change | delete | destination | direction | dscp | protocol | source | swap]
config ipv6 acl rule action name index {permit | deny}
config ipv6 acl rule add name index
config ipv6 acl rule change index name old_index new_index
config ipv6 acl rule delete name index
config ipv6 acl rule destination {address name index ip_addr prefix-len | port range name index}
config ipv6 acl rule direction name index {in | out | any}
config ipv6 acl rule dscp name dscp
config ipv6 acl rule protocol name index protocol
config ipv6 acl rule source {address name index ip_addr prefix-len | port range name index start_port end_port}
config ipv6 acl rule swap index name index_1 index_2
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>apply</strong> name</td>
<td>Applies an IPv6 ACL. An IPv6 ACL can contain up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>cpu</strong> name</td>
<td>Applies the IPv6 ACL to the CPU.</td>
</tr>
<tr>
<td><strong>cpu</strong> none</td>
<td>Configure none if you wish not to have a IPv6 ACL.</td>
</tr>
<tr>
<td><strong>create</strong></td>
<td>Creates an IPv6 ACL.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes an IPv6 ACL.</td>
</tr>
<tr>
<td><strong>rule</strong> (action)</td>
<td>Configures rules in the IPv6 ACL to either permit or deny access. IPv6 ACL name can contain up to 32 alphanumeric characters and IPv6 ACL rule index can be between 1 and 32.</td>
</tr>
<tr>
<td>(name) (index)</td>
<td></td>
</tr>
<tr>
<td>**{ permit</td>
<td>deny }**</td>
</tr>
<tr>
<td><strong>add</strong> name index</td>
<td>Adds a new rule and rule index.</td>
</tr>
<tr>
<td><strong>change</strong> name old_index new_index</td>
<td>Changes a rule’s index.</td>
</tr>
<tr>
<td><strong>delete</strong> name index</td>
<td>Deletes a rule and rule index.</td>
</tr>
<tr>
<td><strong>destination</strong> address name index ip_addr prefix-len</td>
<td>Configures a rule’s destination IP address and prefix length (between 0 and 128).</td>
</tr>
</tbody>
</table>
**destination port name index** Configure a rule's destination port range. Enter IPv6 ACL name and set an rule index for it.

**direction name index** Configures a rule’s direction to in, out, or any.

`{ in | out | any }`

**dscp name index dscp** Configures a rule’s DSCP. For rule index of DSCP, select a number between 0 and 63, or any.

**protocol name index protocol** Configures a rule’s protocol. Enter a name and set an index between 0 and 255 or any.

**source address name index ip_address prefix-len** Configures a rule’s source IP address and netmask.

**source port range name index start_port end_port** Configures a rule’s source port range.

**swap index name index_1 index_2** Swap’s two rules’ indices.

### Command Default
After adding an ACL, the `config ipv6 acl cpu` is by default configured as **enabled**.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6..</td>
</tr>
<tr>
<td>8.0</td>
<td>This command was updated by adding <code>cpu</code> and <code>none</code> keywords and the <code>ipv6_acl_name</code> variable.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
For a Cisco 2100 Series Wireless LAN Controller, you must configure a preauthentication ACL on the wireless LAN for the external web server. This ACL should then be set as a wireless LAN preauthentication ACL under Web Policy. However, you do not need to configure any preauthentication ACL for Cisco 4400 Series Wireless LAN Controllers.

The following example shows how to configure an IPv6 ACL to permit access:

(Cisco Controller) > config ipv6 acl rule action lab1 4 permit

The following example shows how to configure an interface ACL:

(Cisco Controller) > config ipv6 interface acl management IPv6-Acl

### Related Commands
- `show ipv6 acl detailed`
- `show ipv6 acl cpu`
**config ipv6 capwap**

To enable or disable an IPv6 CAPWAP UDPLite for CAPWAP AP on the Cisco Wireless LAN Controller, use the **config ipv6 capwap** command.

```
config ipv6 capwap udplite {enable | disable} [all | <Cisco AP>]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>udplite</td>
<td>Configure IPv6 for CAPWAP UDPLite.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables IPv6 CAPWAP UDPLite.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables IPv6 CAPWAP UDPLite.</td>
</tr>
<tr>
<td>all</td>
<td>Enables or disables IPv6 CAPWAP UDPLite on all Cisco APs.</td>
</tr>
<tr>
<td>&lt;Cisco AP&gt;</td>
<td>Enables or disables IPv6 CAPWAP UDPLite on the user defined Cisco AP.</td>
</tr>
</tbody>
</table>

### Command Default

The **config ipv6 capwap udplite** command is by default configured as **enabled**.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in Release 8.0</td>
</tr>
</tbody>
</table>

### Usage Guidelines

- IPv6 CAPWAP UDPLite configuration applies only to APs that are connected to controller using IPv6 tunnel.
- For APs connected to WLC using IPv4 Tunnel, IPv6 CAPWAP UDPLite command will not apply on either global configuration or on Per AP.
- IPv6 mandates complete payload checksum for UDP and this will have performance implications. To minimize the impact, UDPLite (mandates only header checksum) will be used for data traffic and UDP for control traffic.
- Usage UDPLite will have an impact on the firewall. Intermediate firewall must be configured to allow UDP Lite protocol (protocol ID of 136) packets.
- Turning off UDP Lite will cause performance issues on packet handling.
- Changing from UDP to UDPLite or vice-versa will enforce the AP to dis-join and re-join.

The following example shows how to configure an IPv6 CAPWAP UDPLite on All Cisco APs or on a particular Cisco AP:

```
(Cisco Controller) >config ipv6 capwap udplite enable all
Changing AP's IPv6 Capwap UDP Lite mode will cause the AP to rejoin.
Are you sure you want to continue? (y/n)
```
**config ipv6 interface**

To configure IPv6 system interfaces, use the `config ipv6 interface` command.

```
config ipv6 interface { acl | address | slaac }
```

```
config ipv6 interface acl management acl_name
```

```
config ipv6 interface address { management primary ipv6_address prefix_length ipv6_gateway_address | service-port ipv6_address prefix-length }
```

```
config ipv6 interface slaac service-port [enable | disable]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl</td>
<td>Configures IPv6 on an interface's Access Control List.</td>
</tr>
<tr>
<td>management</td>
<td>Configures the management interface.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Enter IPv6 ACL name for the management ACL. It supports up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>address</td>
<td>Configures IPv6 on an interface's address information.</td>
</tr>
<tr>
<td>management</td>
<td>Configures the management interface.</td>
</tr>
<tr>
<td>primary</td>
<td>Configures the primary IPv6 Address for an interface</td>
</tr>
<tr>
<td>ipv6_address</td>
<td>Configures an interface with IPv6 address information.</td>
</tr>
<tr>
<td>prefix_length</td>
<td>Configures IPv6 Prefix length. The range for prefix length is 1 to 127.</td>
</tr>
<tr>
<td>ipv6_gateway_address</td>
<td>Configures the Link Layer IPv6 gateway Address.</td>
</tr>
<tr>
<td>service-port</td>
<td>Configures IPv6 on the out-of-band service Port.</td>
</tr>
<tr>
<td>ipv6_address</td>
<td>Configures an interface with IPv6 address information.</td>
</tr>
<tr>
<td>prefix_length</td>
<td>Configures IPv6 Prefix length. The range for prefix length is 1 to 127.</td>
</tr>
<tr>
<td>slaac</td>
<td>Configures SLAAC options on an interface.</td>
</tr>
<tr>
<td>service-port</td>
<td>Configures IPv6 on the out-of-band service Port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables SLAAC Option</td>
</tr>
<tr>
<td>disable</td>
<td>Disables SLAAC Option</td>
</tr>
</tbody>
</table>

### Command Default

None.
The following example shows how to configure an IPv6 ACL management interface:

(Cisco Controller) > config ipv6 interface acl management Test_ACL

The following example shows how to configure an IPv6 address and primary interface:

(Cisco Controller) > config ipv6 interface address management primary 2001:9:10:56::44 64 fe80::aea0:16ff:fe4f:2244

Related Commands

show interface detailed management
show ipv6 interface summary
**config ipv6 multicast**

To configure IPv6 multicast, use the `config ipv6 multicast` command.

```
config ipv6 multicast mode { unicast | multicast ipv6_address }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>Configure the controller to AP Multicast or Broadcast IPv6 traffic forwarding mode.</td>
</tr>
<tr>
<td>unicast</td>
<td>Multicast/Broadcasted IPv6 packets are encapsulated in unicast CAPWAP tunnel to AP.</td>
</tr>
<tr>
<td>multicast</td>
<td>Multicast/Broadcasted IPv6 packets are encapsulated in multicast CAPWAP tunnel to AP.</td>
</tr>
<tr>
<td>ipv6_address</td>
<td>Configures IPv6 multicast address.</td>
</tr>
</tbody>
</table>

**Command Default**

- By default, multicast is enabled on Cisco WLC 8500 and Cisco WLC 2500.
- By default, unicast is enabled on Cisco WLC 5500.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in Release 8.0.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

none...

The following example shows how to configure an IPv6 multicast on Cisco WLC, to permit access:

```
(Cisco Controller) > config ipv6 multicast 2001:DB8:0000:0000:0000:0000:0000:0001
```

The following example shows how to configure an IPv6 unicast on Cisco WLC, to permit access:

```
(Cisco Controller) > config ipv6 multicast mode unicast
```

**Related Commands**

- `show network summary`
**config ipv6 neighbor-binding**

To configure the Neighbor Binding table on the Cisco wireless LAN controller, use the `config ipv6 neighbor-binding` command.

```plaintext
config ipv6 neighbor-binding { timers { down-lifetime down_time | reachable-lifetime reachable_time | stale-lifetime stale_time } | { ra-throttle { allow at-least at_least_value } | enable | disable | interval-option { ignore | passthrough | throttle } | max-through { no_mcast_RA | no-limit | throttle-period throttle_period } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timers</td>
<td>Configures the neighbor binding table timeout timers.</td>
</tr>
<tr>
<td>down-lifetime</td>
<td>Configures the down lifetime.</td>
</tr>
<tr>
<td>down_time</td>
<td>Down lifetime in seconds. The range is from 0 to 86400. The default is 30 seconds.</td>
</tr>
<tr>
<td>reachable-lifetime</td>
<td>Configures the reachable lifetime.</td>
</tr>
<tr>
<td>reachable_time</td>
<td>Reachable lifetime in seconds. The range is from 0 to 86400. The default is 300 seconds.</td>
</tr>
<tr>
<td>stale-lifetime</td>
<td>Configures the stale lifetime.</td>
</tr>
<tr>
<td>stale_time</td>
<td>Stale lifetime in seconds. The range is from 0 to 86400. The default is 86400 seconds.</td>
</tr>
<tr>
<td>ra-throttle</td>
<td>Configures IPv6 RA throttling options.</td>
</tr>
<tr>
<td>allow</td>
<td>Specifies the number of multicast RAs per router per throttle period.</td>
</tr>
<tr>
<td>at_least_value</td>
<td>Number of multicast RAs from router before throttling. The range is from 0 to 32. The default is 1.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables IPv6 RA throttling.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables IPv6 RA throttling.</td>
</tr>
<tr>
<td>interval-option</td>
<td>Adjusts the behavior on RA with RFC3775 interval option.</td>
</tr>
<tr>
<td>ignore</td>
<td>Indicates interval option has no influence on throttling.</td>
</tr>
<tr>
<td>passthrough</td>
<td>Indicates all RAs with RFC3775 interval option will be forwarded (default).</td>
</tr>
<tr>
<td>throttle</td>
<td>Indicates all RAs with RFC3775 interval option will be throttled.</td>
</tr>
<tr>
<td>max-through</td>
<td>Specifies unthrottled multicast RAs per VLAN per throttle period.</td>
</tr>
</tbody>
</table>
**no_mcast_RA**
Number of multicast RAs on VLAN by which throttling is enforced. The default multicast RAs on vlan is 10.

**no-limit**
Configures no upper bound at the VLAN level.

**throttle-period**
Configures the throttle period.

**throttle_period**
Duration of the throttle period in seconds. The range is from 10 to 86400 seconds. The default is 600 seconds.

---

**Command Default**
This command is disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the Neighbor Binding table:

(Cisco Controller) > config ipv6 neighbor-binding ra-throttle enable

**Related Commands**

show ipv6 neighbor-binding
config ipv6 na-mcast-fwd

To configure the Neighbor Advertisement multicast forwarding, use the `config ipv6 na-mcast-fwd` command.

```
config ipv6 na-mcast-fwd { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables Neighbor Advertisement multicast forwarding.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables Neighbor Advertisement multicast forwarding.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you enable Neighbor Advertisement multicast forwarding, all the unsolicited multicast Neighbor Advertisement from wired or wireless is not forwarded to wireless.

If you disable Neighbor Advertisement multicast forwarding, IPv6 Duplicate Address Detection (DAD) of the controller is affected.

The following example shows how to configure an Neighbor Advertisement multicast forwarding:

```
(Cisco Controller) > config ipv6 na-mcast-fwd enable
```
**config ipv6 ns-mcast-fwd**

To configure the nonstop multicast cache miss forwarding, use the `config ipv6 ns-mcast-fwd` command.

```
config ipv6 ns-mcast-fwd { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables nonstop multicast forwarding on a cache miss.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables nonstop multicast forwarding on a cache miss.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an nonstop multicast forwarding:

```
(Cisco Controller) > config ipv6 ns-mcast-fwd enable
```
**config ipv6 ra-guard**

To configure the filter for Router Advertisement (RA) packets that originate from a client on an AP, use the `config ipv6 ra-guard` command.

```
config ipv6 ra-guard ap { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RA guard on an AP.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RA guard on an AP.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable IPv6 RA guard:

```
(Cisco Controller) > config ipv6 ra-guard enable
```

**Related Commands**

- `show ipv6 ra-guard`
**config ipv6 route**

To add or delete an IPv6 network route, use the `config ipv6 route` command.

```
config ipv6 route { add network_ipv6_addr prefix-len ipv6_gw_addr | delete network_ipv6_addr }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds an IPv6 network route.</td>
</tr>
<tr>
<td><code>network_ipv6_addr</code></td>
<td>Enter the networks IPv6 address.</td>
</tr>
<tr>
<td><code>prefix-len</code></td>
<td>Enter the prefix length for the network.</td>
</tr>
<tr>
<td><code>ipv6_gw_addr</code></td>
<td>Configures the system interfaces.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes an IPv6 network route.</td>
</tr>
<tr>
<td><code>network_ipv6_addr</code></td>
<td>Enter the networks IPv6 address.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in Release 8.0.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- This command is used to add and delete an IPv6 network route to access service interface over IPv6 from different network.
- While adding IPv6 route, IPv6 Gateway Address must be a link local scope (FE80::/64).

The following example shows how to add an IPv6 route:

```
```

The following example shows how to delete an IPv6 route:

```
(Cisco Controller) > config ipv6 route delete 2001:9:5:90::115
```

**Related Commands**

- `show ipv6 route summary`
Config Commands: j to q

- config known ap, on page 500
- config lag, on page 501
- config ldap, on page 502
- config local-auth active-timeout, on page 504
- config local-auth cipher-option, on page 505
- config local-auth eap-profile, on page 506
- config local-auth method fast, on page 508
- config local-auth user-credentials, on page 510
- config lync-sdn, on page 511
- config license boot, on page 512
- config load-balancing, on page 513
- config location, on page 515
- config location info rogue, on page 518
- config logging buffered, on page 519
- config logging console, on page 520
- config logging debug, on page 521
- config logging fileinfo, on page 522
- config logging procinfo, on page 523
- config logging traceinfo, on page 524
- config logging syslog host, on page 525
- config logging syslog facility, on page 528
- config logging syslog facility client, on page 531
- config logging syslog facility ap, on page 532
- config logging syslog level, on page 533
- config loginsession close, on page 534
- config macfilter , on page 535
- config macfilter description, on page 536
- config macfilter interface, on page 537
- config macfilter ip-address, on page 538
- config macfilter mac-delimiter, on page 539
- config macfilter radius-compat, on page 540
- config macfilter wlan-id, on page 541
- config mdns ap, on page 542
• config mdns profile, on page 543
• config mdns query interval, on page 545
• config mdns service , on page 546
• config mdns snooping , on page 548
• config mdns policy enable , on page 549
• config mdns policy service-group, on page 550
• config mdns policy service-group parameters, on page 551
• config mdns policy service-group user-name, on page 552
• config mdns policy service-group user-role, on page 553
• config media-stream multicast-direct, on page 554
• config media-stream message, on page 555
• config media-stream add, on page 556
• config media-stream admit, on page 558
• config media-stream deny, on page 559
• config media-stream delete, on page 560
• config memory monitor errors, on page 561
• config memory monitor leaks, on page 562
• config mesh alarm, on page 564
• config mesh astools, on page 565
• config mesh backhaul rate-adapt, on page 566
• config mesh backhaul slot, on page 567
• config mesh battery-state, on page 568
• config mesh client-access, on page 569
• config mesh convergence, on page 570
• config mesh ethernet-bridging allow-bpdu, on page 571
• config mesh ethernet-bridging vlan-transparent, on page 572
• config mesh full-sector-dfs, on page 573
• config mesh linkdata, on page 574
• config mesh linktest, on page 576
• config mesh lsc, on page 579
• config mesh lsc advanced, on page 580
• config mesh lsc advanced ap-provision, on page 581
• config mesh multicast, on page 582
• config mesh parent preferred, on page 584
• config mesh public-safety, on page 585
• config mesh radius-server, on page 586
• config mesh range, on page 587
• config mesh secondary-backhaul, on page 588
• config mesh security, on page 589
• config mesh slot-bias, on page 591
• config mgmtuser add, on page 592
• config mgmtuser delete, on page 593
• config mgmtuser description, on page 594
• config mgmtuser password, on page 595
• config mgmtuser telnet, on page 596
• config mobility dscp, on page 597
Config Commands

- config mobility group anchor, on page 598
- config mobility group domain, on page 599
- config mobility group keepalive count, on page 600
- config mobility group keepalive interval, on page 601
- config mobility group member, on page 602
- config mobility group multicast-address, on page 604
- config mobility multicast-mode, on page 605
- config mobility new-architecture, on page 606
- config mobility oracle, on page 607
- config mobility switchPeerGroup, on page 608
- config mobility secure-mode, on page 609
- config mobility statistics reset, on page 610
- config netuser add, on page 611
- config netuser delete, on page 613
- config netuser description, on page 614
- config netuser guest-lan-id, on page 615
- config netuser guest-role apply, on page 616
- config netuser guest-role create, on page 617
- config netuser guest-role delete, on page 618
- config netuser guest-role qos data-rate average-data-rate, on page 619
- config netuser guest-role qos data-rate average-realtime-rate, on page 620
- config netuser guest-role qos data-rate burst-data-rate, on page 621
- config netuser guest-role qos data-rate burst-realtime-rate, on page 622
- config netuser lifetime, on page 623
- config netuser maxUserLogin, on page 624
- config netuser password, on page 625
- config netuser wlan-id, on page 626
- config network bridging-shared-secret, on page 627
- config network web-auth captive-bypass, on page 628
- config network web-auth port, on page 629
- config network web-auth proxy-redirect, on page 630
- config network web-auth secureweb, on page 631
- config network webmode, on page 632
- config network web-auth, on page 633
- config network 802.3-bridging, on page 634
- config network allow-old-bridge-aps, on page 635
- config network ap-discovery, on page 636
- config network ap-fallback, on page 637
- config network ap-priority, on page 638
- config network apple-talk, on page 639
- config network arptimeout, on page 640
- config assisted-roaming, on page 641
- config network bridging-shared-secret, on page 642
- config network broadcast, on page 643
- config network fast-ssid-change, on page 644
- config network ip-mac-binding, on page 645
• config network link local bridging, on page 646
• config network master-base, on page 647
• config network mgmt-via-wireless, on page 648
• config network multicast global, on page 649
• config network multicast igmp query interval, on page 650
• config network multicast igmp snooping, on page 651
• config network multicast igmp timeout, on page 652
• config network multicast l2mcast, on page 653
• config network multicast mld, on page 654
• config network multicast mode multicast, on page 655
• config network multicast mode unicast, on page 656
• config network oeap-600 dual-rlan-ports, on page 657
• config network oeap-600 local-network, on page 658
• config network otap-mode, on page 659
• config pmipv6 domain, on page 660
• config pmipv6 add profile, on page 661
• config pmipv6 delete, on page 662
• config pmipv6 mag apn, on page 663
• config pmipv6 mag binding init-retx-time, on page 664
• config pmipv6 mag binding lifetime, on page 665
• config pmipv6 mag binding max-retx-time, on page 666
• config pmipv6 mag binding maximum, on page 667
• config pmipv6 mag binding refresh-time, on page 668
• config pmipv6 mag bri delay, on page 669
• config pmipv6 mag bri retries, on page 670
• config pmipv6 mag lma, on page 671
• config pmipv6 mag replay-protection, on page 672
• config port power, on page 673
• config network rf-network-name, on page 674
• config network secureweb, on page 675
• config network secureweb cipher-option, on page 676
• config network ssh, on page 678
• config network telnet, on page 679
• config network usertimeout, on page 680
• config network web-auth captive-bypass, on page 681
• config network web-auth cmcc-support, on page 682
• config network web-auth port, on page 683
• config network web-auth proxy-redirect, on page 684
• config network web-auth secureweb, on page 685
• config network web-auth https-redirect, on page 686
• config network webcolor, on page 687
• config network webmode, on page 688
• config network web-auth, on page 689
• config network zero-config, on page 690
• config network allow-old-bridge-aps, on page 691
• config network ap-discovery, on page 692
• config network ap-fallback, on page 693
• config network ap-priority, on page 694
• config network apple-talk, on page 695
• config network bridging-shared-secret, on page 696
• config network master-base, on page 697
• config network oeap-600 dual-rlan-ports, on page 698
• config network oeap-600 local-network, on page 699
• config network otap-mode, on page 700
• config network zero-config, on page 701
• config nmsp notify-interval measurement, on page 702
• config paging, on page 703
• config passwd-cleartext, on page 704
• config policy, on page 705
• config port adminmode, on page 707
• config port autoneg, on page 708
• config port linktrap, on page 709
• config port multicast appliance, on page 710
• config prompt, on page 711
• config qos average-data-rate, on page 712
• config qos average-realtime-rate, on page 713
• config qos burst-data-rate, on page 715
• config qos burst-realtime-rate, on page 716
• config qos description, on page 718
• config qos max-rf-usage, on page 719
• config qos dot1p-tag, on page 720
• config qos priority, on page 721
• config qos protocol-type, on page 723
• config qos queue_length, on page 724
config known ap

To configure a known Cisco lightweight access point, use the **config known ap** command.

```
config known ap { add | alert | delete } MAC
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a new known access point entry.</td>
</tr>
<tr>
<td>alert</td>
<td>Generates a trap upon detection of the access point.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an existing known access point entry.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the known Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new access point entry `ac:10:02:72:2f:bf` on a known access point:

```
(Cisco Controller) >config known ap add ac:10:02:72:2f:bf 12
```
**config lag**

To enable or disable link aggregation (LAG), use the `config lag` command.

```
config lag {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the link aggregation (LAG) settings.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the link aggregation (LAG) settings.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable LAG settings:

```
(Cisco Controller) > config lag enable
Enabling LAG will map your current interfaces setting to LAG interface,
All dynamic AP Manager interfaces and Untagged interfaces will be deleted
All WLANs will be disabled and mapped to Mgmt interface
Are you sure you want to continue? (y/n)
You must now reboot for the settings to take effect.
```

The following example shows how to disable LAG settings:

```
(Cisco Controller) > config lag disable
Disabling LAG will map all existing interfaces to port 1.
Are you sure you want to continue? (y/n)
You must now reboot for the settings to take effect.
```
config ldap

To configure the Lightweight Directory Access Protocol (LDAP) server settings, use the `config ldap` command.

```
config ldap { add | delete | enable | disable | retransmit-timeout | retry | user |
security-mode | simple-bind } index
```

```
config ldap add index server_ip_address port user_base user_attr user_type [secure]
```

```
config ldap retransmit-timeout index retransmit-timeout
```

```
config ldap retry attempts
```

```
config ldap user { attr index user-attr | base index user-base | type index user-type }
```

```
config ldap security-mode { enable | disable } index
```

```
config ldap simple-bind { anonymous index | authenticated index username password }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Specifies that an LDAP server is being added.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Specifies that an LDAP server is being deleted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Specifies that an LDAP server is enabled.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Specifies that an LDAP server is disabled.</td>
</tr>
<tr>
<td><code>retransmit-timeout</code></td>
<td>Changes the default retransmit timeout for an LDAP server.</td>
</tr>
<tr>
<td><code>retry</code></td>
<td>Configures the retry attempts for an LDAP server.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>Configures the user search parameters.</td>
</tr>
<tr>
<td><code>security-mode</code></td>
<td>Configures the security mode.</td>
</tr>
<tr>
<td><code>simple-bind</code></td>
<td>Configures the local authentication bind method.</td>
</tr>
<tr>
<td><code>anonymous</code></td>
<td>Allows anonymous access to the LDAP server.</td>
</tr>
<tr>
<td><code>authenticated</code></td>
<td>Specifies that a username and password be entered to secure access to the LDAP server.</td>
</tr>
<tr>
<td><code>index</code></td>
<td>LDAP server index. The range is from 1 to 17.</td>
</tr>
<tr>
<td><code>server_ip_address</code></td>
<td>IP address of the LDAP server.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>Port number.</td>
</tr>
<tr>
<td><code>user_base</code></td>
<td>Distinguished name for the subtree that contains all of the users.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>user_attr</td>
<td>Attribute that contains the username.</td>
</tr>
<tr>
<td>user_type</td>
<td>ObjectType that identifies the user.</td>
</tr>
<tr>
<td>secure</td>
<td>(Optional) Specifies that Transport Layer Security (TLS) is used.</td>
</tr>
<tr>
<td>retransmit-timeout</td>
<td>Retransmit timeout for an LDAP server. The range is from 2 to 30.</td>
</tr>
<tr>
<td>attempts</td>
<td>Number of attempts that each LDAP server is retried.</td>
</tr>
<tr>
<td>attr</td>
<td>Configures the attribute that contains the username.</td>
</tr>
<tr>
<td>base</td>
<td>Configures the distinguished name of the subtree that contains all the users.</td>
</tr>
<tr>
<td>type</td>
<td>Configures the user type.</td>
</tr>
<tr>
<td>username</td>
<td>Username for the authenticated bind method.</td>
</tr>
<tr>
<td>password</td>
<td>Password for the authenticated bind method.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>7.6</td>
<td>The secure keyword was added to support secure LDAP.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable secure LDAP, the controller does not validate the server certificate.

The following example shows how to enable LDAP server index 10:

(Cisco Controller) > config ldap enable 10

**Related Commands**

- config ldap add
- config ldap simple-bind
- show ldap summary
**config local-auth active-timeout**

To specify the amount of time in which the controller attempts to authenticate wireless clients using local Extensible Authentication Protocol (EAP) after any pair of configured RADIUS servers fails, use the `config local-auth active-timeout` command.

```
config local-auth active-timeout timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>timeout</th>
<th>Timeout measured in seconds. The range is from 1 to 3600.</th>
</tr>
</thead>
</table>

**Command Default**

The default timeout value is 100 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the active timeout to authenticate wireless clients using EAP to 500 seconds:

```
(Cisco Controller) > config local-auth active-timeout 500
```

**Related Commands**

- `clear stats local-auth`
- `config local-auth eap-profile`
- `config local-auth method fast`
- `config local-auth user-credentials`
- `debug aaa local-auth`
- `show local-auth certificates`
- `show local-auth config`
- `show local-auth statistics`
**config local-auth cipher-option**

To configure the 3des-rc4 cipher option, use the `config local-auth cipher-option` command.

```
config local-auth cipher-option { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>cipher-option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Allows the 3des-rc4 cipher to be enabled.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Disables the 3des-rc4 cipher.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the cipher-option on the WLC:

```
(Cisco Controller) > config local-auth cipher-option 3des-rc4 disable
```
config local-auth eap-profile

To configure local Extensible Authentication Protocol (EAP) authentication profiles, use the `config local-auth eap-profile` command.

```
config local-auth eap-profile { [add | delete] profile_name | cert-issuer { cisco | vendor } | method method local-cert { enable | disable } profile_name | method method client-cert { enable | disable } profile_name | method method peer-verify ca-issuer { enable | disable } | method method peer-verify cn-verify { enable | disable } | method method peer-verify date-valid { enable | disable } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>(Optional) Specifies that an EAP profile or method is being added.</td>
</tr>
<tr>
<td>delete</td>
<td>(Optional) Specifies that an EAP profile or method is being deleted.</td>
</tr>
<tr>
<td>profile_name</td>
<td>EAP profile name (up to 63 alphanumeric characters). Do not include spaces within a profile name.</td>
</tr>
<tr>
<td>cert-issuer</td>
<td>(For use with EAP-TLS, PEAP, or EAP-FAST with certificates) Specifies the issuer of the certificates that will be sent to the client. The supported certificate issuers are Cisco or a third-party vendor.</td>
</tr>
<tr>
<td>cisco</td>
<td>Specifies the Cisco certificate issuer.</td>
</tr>
<tr>
<td>vendor</td>
<td>Specifies the third-party vendor.</td>
</tr>
<tr>
<td>method</td>
<td>Configures an EAP profile method.</td>
</tr>
<tr>
<td>method</td>
<td>EAP profile method name. The supported methods are leap, fast, tls, and peap.</td>
</tr>
<tr>
<td>local-cert</td>
<td>(For use with EAP-FAST) Specifies whether the device certificate on the controller is required for authentication.</td>
</tr>
<tr>
<td>enable</td>
<td>Specifies that the parameter is enabled.</td>
</tr>
<tr>
<td>disable</td>
<td>Specifies that the parameter is disabled.</td>
</tr>
<tr>
<td>client-cert</td>
<td>(For use with EAP-FAST) Specifies whether wireless clients are required to send their device certificates to the controller in order to authenticate.</td>
</tr>
<tr>
<td>peer-verify</td>
<td>Configures the peer certificate verification options.</td>
</tr>
<tr>
<td>ca-issuer</td>
<td>(For use with EAP-TLS or EAP-FAST with certificates) Specifies whether the incoming certificate from the client is to be validated against the Certificate Authority (CA) certificates on the controller.</td>
</tr>
</tbody>
</table>
cn-verify

(For use with EAP-TLS or EAP-FAST with certificates) Specifies whether the common name (CN) in the incoming certificate is to be validated against the CA certificates’ CN on the controller.

date-valid

(For use with EAP-TLS or EAP-FAST with certificates) Specifies whether the controller is to verify that the incoming device certificate is still valid and has not expired.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create a local EAP profile named FAST01:

(Cisco Controller) > config local-auth eap-profile add FAST01

The following example shows how to add the EAP-FAST method to a local EAP profile:

(Cisco Controller) > config local-auth eap-profile method add fast FAST01

The following example shows how to specify Cisco as the issuer of the certificates that will be sent to the client for an EAP-FAST profile:

(Cisco Controller) > config local-auth eap-profile method fast cert-issuer cisco

The following example shows how to specify that the incoming certificate from the client be validated against the CA certificates on the controller:

(Cisco Controller) > config local-auth eap-profile method fast peer-verify ca-issuer enable

Related Commands

- config local-auth active-timeout
- config local-auth method fast
- config local-auth user-credentials
- debug aaa local-auth
- show local-auth certificates
- show local-auth config
- show local-auth statistics
config local-auth method fast

To configure an EAP-FAST profile, use the `config local-auth method fast` command.

```
config local-auth method fast { anon-prov [enable | disable] | authority-id auth_id pac-ttl days |
server-key key_value }
```

**Syntax Description**

- **anon-prov**
  - Configures the controller to allow anonymous provisioning, which allows PACs to be sent automatically to clients that do not have one during Protected Access Credentials (PAC) provisioning.

- **enable**
  - (Optional) Specifies that the parameter is enabled.

- **disable**
  - (Optional) Specifies that the parameter is disabled.

- **authority-id**
  - Configures the authority identifier of the local EAP-FAST server.

- **auth_id**
  - Authority identifier of the local EAP-FAST server (2 to 32 hexadecimal digits).

- **pac-ttl**
  - Configures the number of days for the Protected Access Credentials (PAC) to remain viable (also known as the time-to-live [TTL] value).

- **days**
  - Time-to-live value (TTL) value (1 to 1000 days).

- **server-key**
  - Configures the server key to encrypt or decrypt PACs.

- **key_value**
  - Encryption key value (2 to 32 hexadecimal digits).

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the controller to allows anonymous provisioning:

```
(Cisco Controller) > config local-auth method fast anon-prov disable
```

The following example shows how to configure the authority identifier 0125631177 of the local EAP-FAST server:

```
(Cisco Controller) > config local-auth method fast authority-id 0125631177
```

The following example shows how to configure the number of days to 10 for the PAC to remain viable:

```
(Cisco Controller) > config local-auth method fast pac-ttl 10
```
Related Commands

- clear stats local-auth
- config local-auth eap-profile
- config local-auth active-timeout
- config local-auth user-credentials
- debug aaa local-auth
- show local-auth certificates
- show local-auth config
- show local-auth statistics
config local-auth user-credentials

To configure the local Extensible Authentication Protocol (EAP) authentication database search order for user credentials, use the config local-auth user credentials command.

```
config local-auth user-credentials { local [ldap] | ldap [local] }
```

**Syntax Description**

- `local` (Optional) Specifies that the local database is searched for the user credentials.
- `ldap` (Optional) Specifies that the Lightweight Directory Access Protocol (LDAP) database is searched for the user credentials.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The order of the specified database parameters indicate the database search order.

The following example shows how to specify the order in which the local EAP authentication database is searched:

```
(Cisco Controller) > config local-auth user credentials local ldap
```

In the above example, the local database is searched first and then the LDAP database.

**Related Commands**

- clear stats local-auth
- config local-auth eap-profile
- config local-auth method fast
- config local-auth active-timeout
- debug aaa local-auth
- show local-auth certificates
- show local-auth config
- show local-auth statistics
config lync-sdn

To configure the Lync service, use the **config lync-sdn** command.

```
config lync-sdn {port port-number} | {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>port</strong></td>
<td>Configures the Lync server port number.</td>
</tr>
<tr>
<td><strong>port-number</strong></td>
<td>Port number of the server.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables Lync service globally.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables Lync service globally.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable Lync service globally:

```
(Cisco Controller) >config lync-sdn enable
```
**config license boot**

To specify the license level to be used on the next reboot of the Cisco 5500 Series Controller, use the `config license boot` command.

```
config license boot (base | wplus | auto)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>Specifies the base boot level.</td>
</tr>
<tr>
<td>wplus</td>
<td>Specifies the wplus boot level.</td>
</tr>
<tr>
<td>auto</td>
<td>Specifies the auto boot level.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you enter `auto`, the licensing software automatically chooses the license level to use on the next reboot. It generally chooses permanent licenses over evaluation licenses and wplus licenses over base licenses.

**Note**

If you are considering upgrading from a base license to a wplus license, you can try an evaluation wplus license before upgrading to a permanent wplus license. To activate the evaluation license, you need to set the image level to wplus in order for the controller to use the wplus evaluation license instead of the base permanent license.

**Note**

To prevent disruptions in operation, the controller does not switch licenses when an evaluation license expires. You must reboot the controller in order to return to a permanent license. Following a reboot, the controller defaults to the same feature set level as the expired evaluation license. If no permanent license at the same feature set level is installed, the controller uses a permanent license at another level or an unexpired evaluation license.

The following example shows how to set the license boot settings to wplus:

```
(Cisco Controller) > config license boot wplus
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>license install</td>
</tr>
<tr>
<td>show license in-use</td>
</tr>
<tr>
<td>license modify priority</td>
</tr>
</tbody>
</table>
config load-balancing

To globally configure aggressive load balancing on the controller, use the `config load-balancing` command.

```
config load-balancing { window client_count | status { enable | disable } | denial denial_count }
config load-balancing uplink-threshold traffic_threshold
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>window</td>
<td>Specifies the aggressive load balancing client window.</td>
</tr>
<tr>
<td>client_count</td>
<td>Aggressive load balancing client window with the number of clients from 1 to 20.</td>
</tr>
<tr>
<td>status</td>
<td>Sets the load balancing status.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables load balancing feature.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables load balancing feature.</td>
</tr>
<tr>
<td>denial</td>
<td>Specifies the number of association denials during load balancing.</td>
</tr>
<tr>
<td>denial_count</td>
<td>Maximum number of association denials during load balancing. from 0 to 10.</td>
</tr>
<tr>
<td>uplink-threshold</td>
<td>Specifies the threshold traffic for an access point to deny new associations.</td>
</tr>
<tr>
<td>traffic_threshold</td>
<td>Threshold traffic for an access point to deny new associations. This value is a percentage of the WAN utilization measured over a 90 second interval. For example, the default threshold value of 50 triggers the load balancing upon detecting an utilization of 50% or more on an access point WAN interface.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the aggressive load balancing is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Load-balancing-enabled WLANs do not support time-sensitive applications like voice and video because of roaming delays.

When you use Cisco 7921 and 7920 Wireless IP Phones with controllers, make sure that aggressive load balancing is disabled on the voice WLANs for each controller. Otherwise, the initial roam attempt by the phone might fail, causing a disruption in the audio path.

Clients can only be load balanced across access points joined to the same controller. The WAN utilization is calculated as a percentage using the following formula: \( \frac{\text{Transmitted Data Rate (per second)} + \text{Received Data Rate (per second)}}{1000\text{Mbps TX} + 1000\text{Mbps RX}} \times 100 \)
The following example shows how to enable the aggressive load-balancing settings:

(Cisco Controller) > config load-balancing aggressive enable

Related Commands

show load-balancing
config wlan load-balance
## config location

To configure a location-based system, use the `config location` command.

```
config location { algorithm { simple | rssi-average } | { rssi-half-life | expiry } [client | calibrating-client | tags | rogue-aps] seconds | notify-threshold [client | tags | rogue-aps] threshold | interface-mapping { add | delete } location wlan_id interface_name | plm { client { enable | disable } burst_interval | calibrating { enable | disable } { uniband | multiband } } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>algorithm</strong></td>
<td>Configures the algorithm used to average RSSI and SNR values.</td>
<td>We recommend that you do not use or modify the <code>config location algorithm</code> command. It is set to optimal default values.</td>
</tr>
<tr>
<td><strong>simple</strong></td>
<td>Specifies a faster algorithm that requires low CPU overhead but provides less accuracy.</td>
<td></td>
</tr>
<tr>
<td><strong>rssi-average</strong></td>
<td>Specifies a more accurate algorithm but requires more CPU overhead.</td>
<td></td>
</tr>
<tr>
<td><strong>rssi-half-life</strong></td>
<td>Configures the half-life when averaging two RSSI readings.</td>
<td>We recommend that you do not use or modify the <code>config location rssi-half-life</code> command. It is set to optimal default values.</td>
</tr>
<tr>
<td><strong>expiry</strong></td>
<td>Configures the timeout for RSSI values.</td>
<td>We recommend that you do not use or modify the <code>config location expiry</code> command. It is set to optimal default values.</td>
</tr>
<tr>
<td><strong>client</strong></td>
<td>(Optional) Specifies the parameter applies to client devices.</td>
<td></td>
</tr>
<tr>
<td><strong>calibrating-client</strong></td>
<td>(Optional) Specifies the parameter is used for calibrating client devices.</td>
<td></td>
</tr>
<tr>
<td><strong>tags</strong></td>
<td>(Optional) Specifies the parameter applies to radio frequency identification (RFID) tags.</td>
<td></td>
</tr>
<tr>
<td><strong>rogue-aps</strong></td>
<td>(Optional) Specifies the parameter applies to rogue access points.</td>
<td></td>
</tr>
</tbody>
</table>
**seconds**
Time value (0, 1, 2, 5, 10, 20, 30, 60, 90, 120, 180, 300 seconds).

**notify-threshold**
Note: We recommend that you do not use or modify the `config location notify-threshold` command. It is set to optimal default values.

Specifies the NMSP notification threshold for RSSI measurements.

**threshold**
Threshold parameter. The range is 0 to 10 dB, and the default value is 0 dB.

**interface-mapping**
Adds or deletes a new location, wireless LAN, or interface mapping element.

**wlan_id**
WLAN identification name.

**interface_name**
Name of interface to which mapping element applies.

**plm**
Specifies the path loss measurement (S60) request for normal clients or calibrating clients.

**client**
Specifies normal, noncalibrating clients.

**burst_interval**
Burst interval. The range is from 1 to 3600 seconds, and the default value is 60 seconds.

**calibrating**
Specifies calibrating clients.

**uniband**
Specifies the associated 802.11a or 802.11b/g radio (uniband).

**multiband**
Specifies the associated 802.11a/b/g radio (multiband).

---

**Command Default**
See the “Syntax Description” section for default values of individual arguments and keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the simple algorithm for averaging RSSI and SNR values on a location-based controller:

```
(Cisco Controller) > config location algorithm simple
```

**Related Commands**

- `config location info rogue`
- `clear location rfid`
- `clear location statistics rfid`
show location
show location statistics rfid
config location info rogue

To configure info-notification for rogue service, use the config location info rogue command.

```
config location info rogue { basic | extended }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>basic</th>
<th>extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configures basic rogue parameters such as mode, class, containment level, num clients, first time, last time, ssid, and so on, for rogue info-notification service.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Configure the basic parameters if the version of Cisco MSE is older than the version of the Cisco WLC.</td>
<td></td>
</tr>
<tr>
<td>Configures extended rogue parameters, which is basic parameters plus security type, detecting LRAD type, and so on, for rogue info-notification service.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
config logging buffered

To set the severity level for logging messages to the controller buffer, use the `config logging buffered` command.

`config logging buffered security_level`

**Syntax Description**

<table>
<thead>
<tr>
<th>security_level</th>
<th>Security level. Choose one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• emergencies—Severity level 0</td>
</tr>
<tr>
<td></td>
<td>• alerts—Severity level 1</td>
</tr>
<tr>
<td></td>
<td>• critical—Severity level 2</td>
</tr>
<tr>
<td></td>
<td>• errors—Severity level 3</td>
</tr>
<tr>
<td></td>
<td>• warnings—Severity level 4</td>
</tr>
<tr>
<td></td>
<td>• notifications—Severity level 5</td>
</tr>
<tr>
<td></td>
<td>• informational—Severity level 6</td>
</tr>
<tr>
<td></td>
<td>• debugging—Severity level 7</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the controller buffer severity level for logging messages to 4:

```
(Cisco Controller) > config logging buffered 4
```

**Related Commands**

- `config logging syslog facility`
- `config logging syslog level`
- `show logging`
config logging console

To set the severity level for logging messages to the controller console, use the `config logging console` command.

```
config logging console security_level
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>security_level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Severity level. Choose one of the following:</td>
</tr>
<tr>
<td></td>
<td>• emergencies—Severity level 0</td>
</tr>
<tr>
<td></td>
<td>• alerts—Severity level 1</td>
</tr>
<tr>
<td></td>
<td>• critical—Severity level 2</td>
</tr>
<tr>
<td></td>
<td>• errors—Severity level 3</td>
</tr>
<tr>
<td></td>
<td>• warnings—Severity level 4</td>
</tr>
<tr>
<td></td>
<td>• notifications—Severity level 5</td>
</tr>
<tr>
<td></td>
<td>• informational—Severity level 6</td>
</tr>
<tr>
<td></td>
<td>• debugging—Severity level 7</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the controller console severity level for logging messages to 3:

```
(Cisco Controller) > config logging console 3
```
**config logging debug**

To save debug messages to the controller buffer, the controller console, or a syslog server, use the `config logging debug` command.

```
config logging debug {buffered | console | syslog} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffered</td>
<td>Saves debug messages to the controller buffer.</td>
</tr>
<tr>
<td>console</td>
<td>Saves debug messages to the controller console.</td>
</tr>
<tr>
<td>syslog</td>
<td>Saves debug messages to the syslog server.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables logging of debug messages.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables logging of debug messages.</td>
</tr>
</tbody>
</table>

**Command Default**

The `console` command is enabled and the `buffered` and `syslog` commands are disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to save the debug messages to the controller console:

```
(Cisco Controller) > config logging debug console enable
```

**Related Commands**

- `show logging`
**config logging fileinfo**

To cause the controller to include information about the source file in the message logs or to prevent the controller from displaying this information, use the `config logging fileinfo` command.

```
config logging fileinfo { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Includes information about the source file in the message logs.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Prevents the controller from displaying information about the source file in the message logs.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the controller to include information about the source file in the message logs:

```
(Cisco Controller) > config logging fileinfo enable
```

**Related Commands**

- `show logging`
**config logging procinfo**

To cause the controller to include process information in the message logs or to prevent the controller from displaying this information, use the `config logging procinfo` command.

```
config logging procinfo { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Includes process information in the message logs.</td>
</tr>
<tr>
<td>disable</td>
<td>Prevents the controller from displaying process information in the message logs.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the controller to include the process information in the message logs:

```
(Cisco Controller) > config logging procinfo enable
```

### Related Commands

- `show logging`
config logging traceinfo

To cause the controller to include traceback information in the message logs or to prevent the controller from displaying this information, use the `config logging traceinfo` command.

```
config logging traceinfo {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes traceback information in the message logs.</td>
<td>Prevents the controller from displaying traceback information in the message logs.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the controller to include the traceback information in the message logs:

```
(Cisco Controller) > config logging traceinfo disable
```
**config logging syslog host**

To configure a remote host for sending syslog messages, use the `config logging syslog host` command.

```
config logging syslog host ip_addr
```

**Syntax Description**

```
ip_addr
```

IP address for the remote host.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- To configure a remote host for sending syslog messages, use the `config logging syslog host ip_addr` command.
- To remove a remote host that was configured for sending syslog messages, use the `config logging syslog host ip_addr delete` command.
- To display the configured syslog servers on the controller, use the `show logging` command.

The following example shows how to configure two remote hosts 10.92.125.52 and 2001:9:6:40::623 for sending the syslog messages and displaying the configured syslog servers on the controller:

```
(Cisco Controller) > config logging syslog host 10.92.125.52
System logs will be sent to 10.92.125.52 from now on

(Cisco Controller) > config logging syslog host 2001:9:6:40::623
System logs will be sent to 2001:9:6:40:623 from now on

(Cisco Controller) > show logging
Logging to buffer :
- Logging filter level......................... errors
- Number of system messages logged........... 1316
- Number of system messages dropped.......... 6892
- Logging of debug messages to buffer Disabled
- Number of debug messages logged............ 0
- Number of debug messages dropped........... 0
- Cache of logging Disabled
- Cache of logging time(mins) 10080
- Number of over cache time log dropped 0
- Logging to console :
- Logging of system messages to console :
 - Logging filter level..................... disabled
 - Number of system messages logged........ 0
 - Number of system messages dropped....... 8243
- Logging of debug messages to console Enabled
 - Number of debug messages logged......... 0
 - Number of debug messages dropped....... 0
Logging to syslog :
```
- Syslog facility................................. local0
- Logging of system messages to console:
  - Logging filter level...................... disabled
  - Number of system messages logged........ 0
  - Number of system messages dropped....... 8208
- Logging of debug messages to console.... Enabled
  - Number of debug messages logged.......... 0
  - Number of debug messages dropped......... 0
- Logging of system messages to syslog:
  - Logging filter level...................... errors
  - Number of system messages logged.......... 1316
  - Number of system messages dropped........ 6892
- Logging of debug messages to syslog...... Disabled
  - Number of debug messages logged.......... 0
  - Number of debug messages dropped......... 0
- Number of remote syslog hosts............ 2
- syslog over tls................................ Disabled
  - Host 0...................................... 10.92.125.52
  - Host 1...................................... 2001:9:6:40::623
  - Host 2.....................................
- Logging of RFC 5424.......................... Disabled
- Logging of Debug messages to file:
  - Logging of Debug messages to file........ Disabled
  - Number of debug messages logged.......... 0
  - Number of debug messages dropped......... 0
- Logging of traceback........................ Enabled

The following examples show how to remove two remote hosts 10.92.125.52 and 2001:9:6:40::623 that were configured for sending syslog messages and displaying that the configured syslog servers were removed from the controller:

(Cisco Controller) > config logging syslog host 10.92.125.52 delete
System logs will not be sent to 10.92.125.52 anymore

(Cisco Controller) > config logging syslog host 2001:9:6:40::623 delete
System logs will not be sent to 2001:9:6:40::623 anymore

(Cisco Controller) > show logging
Logging to buffer:
- Logging of system messages to buffer:
  - Logging filter level...................... errors
  - Number of system messages logged........ 1316
  - Number of system messages dropped....... 6892
- Logging of debug messages to buffer........ Disabled
  - Number of debug messages logged.......... 0
  - Number of debug messages dropped......... 0
- Cache of logging ............................ Disabled
- Cache of logging time(mins).................. 10080
- Number of over cache time log dropped..... 0
Logging to console:
- Logging of system messages to console:
  - Logging filter level...................... disabled
  - Number of system messages logged......... 0
  - Number of system messages dropped........ 8211
- Logging of debug messages to console....... Enabled
  - Number of debug messages logged.......... 0
  - Number of debug messages dropped......... 0
Logging to syslog:
- Syslog facility......................... local0
- Logging of system messages to syslog:
  - Logging filter level...................... errors
  - Number of system messages logged........ 1316
- Number of system messages dropped............. 6895
- Logging of debug messages to syslog .......... Disabled
- Number of debug messages logged............. 0
- Number of debug messages dropped............. 0
- Number of remote syslog hosts................... 0
- syslog over tls................................ Disabled
  - Host 0.......................................
  - Host 1.....................................
  - Host 2.....................................
Logging of RFC 5424.............................. Disabled
Logging of Debug messages to file :
- Logging of Debug messages to file.............. Disabled
- Number of debug messages logged............. 0
- Number of debug messages dropped............. 0
- Logging of traceback............................ Enabled
  - Traceback logging level...................... errors
Logging of source file informational............ Enabled
Timestamping of messages.........................
- Timestamping of system messages............... Enabled
- Timestamp format............................... Date and Time
config logging syslog facility

To set the facility for outgoing syslog messages to the remote host, use the config logging syslog facility command.

config logging syslog facility facility_code
Syntax Description

\[ \text{facility\_code} \]

Facility code. Choose one of the following:

- daemon—System daemons. Facility level—3.
- kern—Kernel. Facility level—0.
- local0—Local use. Facility level—16.
- local1—Local use. Facility level—17.
- local2—Local use. Facility level—18.
- local3—Local use. Facility level—19.
- local4—Local use. Facility level—20.
- local5—Local use. Facility level—21.
- local6—Local use. Facility level—22.
- local7—Local use. Facility level—23.
- mail—Mail system. Facility level—2.
- sys12—System use. Facility level—12.
- sys15—System use. Facility level—15.
- syslog—the syslog itself. Facility level—5.
- user—User process. Facility level—1.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
The following example shows how to set the facility for outgoing syslog messages to authorization:

(Cisco Controller) > config logging syslog facility authorization

**Related Commands**

- `config logging syslog host`
- `config logging syslog level`
- `show logging`
To configure the syslog facility to AP, use the `config logging syslog facility client` command. This command allows you to configure various logging functions for clients, including association and disassociation failures, authentication, and deauthentication events.

### Syntax Description

**Command Default**

None

**Command History**

- **Release 7.5**
  - This command was introduced in a release earlier than Release 7.5.

The following example shows how to set the facility syslog facility for client:

```plaintext
Cisco controller config logging syslog facility client
```

**Related Commands**

- `show logging flags client`
config logging syslog facility ap

To configure the syslog facility to AP, use the `config logging syslog facility ap { associate | disassociate } { enable | disable }` command.

```
config logging syslog facility AP
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Facility AP. Has the following functions:</td>
</tr>
<tr>
<td></td>
<td>• associate—Association syslog for AP</td>
</tr>
<tr>
<td></td>
<td>• disassociate—Disassociation syslog for AP</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced in a release earlier than Release 7.5.</td>
</tr>
</tbody>
</table>

The following example shows how to configure syslog facility for AP:

```
cisco controller config logging syslog facility ap
```

Related Commands

show logging flags ap
config logging syslog level

To set the severity level for filtering syslog messages to the remote host, use the `config logging syslog level` command.

`config logging syslog level severity_level`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th><code>severity_level</code></th>
<th>Severity level. Choose one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• emergencies—Severity level 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• alerts—Severity level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• critical—Severity level 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• errors—Severity level 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• warnings—Severity level 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• notifications—Severity level 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• informational—Severity level 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• debugging—Severity level 7</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the severity level for syslog messages to 3:

```plaintext
(Cisco Controller) > config logging syslog level 3
```

**Related Commands**

- config logging syslog host
- config logging syslog facility
- show logging
### config loginsession close

To close all active Telnet sessions, use the **config loginsession close** command.

**config loginsession close**  `{session_id | all}`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>session_id</td>
<td>ID of the session to close.</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Closes all Telnet sessions.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to close all active Telnet sessions:

(Cisco Controller) > **config loginsession close all**

**Related Commands**

* show loginsession*
config macfilter

To create or delete a MAC filter entry on the Cisco wireless LAN controller, use the config macfilter { add | delete } command.

```
config macfilter { add client_MAC wlan_id [interface_name] [description] [macfilter_IP] | delete client_MAC }
```

**Syntax Description**

- **add**
  Adds a MAC filter entry on the controller.

- **delete**
  Deletes a MAC filter entry on the controller.

- **MAC_addr**
  Client MAC address.

- **wlan_id**
  Wireless LAN identifier with which the MAC filter entry should associate. A zero value associates the entry with any wireless LAN.

- **interface_name**
  (Optional) Name of the interface. Enter 0 to specify no interface.

- **description**
  (Optional) Short description of the interface (up to 32 characters) in double quotes.

  **Note** A description is mandatory if macfilterIP is specified.

- **IP Address**
  (Optional) IPv4 address of the local MAC filter database.

**Command Default**

None

**Command History**

- **Release**
  - **7.6**
  
  This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

Use the config macfilter add command to add a client locally to a wireless LAN on the Cisco wireless LAN controller. This filter bypasses the RADIUS authentication process.

As on release 7.6, the optional macfilter_IP supports only IPv4 address.

The following example shows how to add a MAC filter entry 00:E0:77:31:A3:55 with the wireless LAN ID 1, interface name labconnect, and MAC filter IP 10.92.125.51 on the controller:

```
(Cisco Controller) > config macfilter add 00:E0:77:31:A3:55 lab02 "labconnect" 10.92.125.51
```

**Related Commands**

- show macfilter
- config macfilter ip-address
config macfilter description

To add a description to a MAC filter, use the config macfilter description command.

**Syntax Description**

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>Client MAC address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>(Optional) Description within double quotes (up to 32 characters).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the description MAC filter 01 to MAC address 11:11:11:11:11:

(Cisco Controller) > config macfilter description 11:11:11:11:11 “MAC Filter 01”

**Related Commands**

show macfilter
**config macfilter interface**

To create a MAC filter client interface, use the **config macfilter interface** command.

`config macfilter interface MAC_addr interface`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MAC_addr</code></td>
<td>Client MAC address.</td>
</tr>
<tr>
<td><code>interface</code></td>
<td>Interface name. A value of zero is equivalent to no name.</td>
</tr>
</tbody>
</table>

| Command Default    | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a MAC filter interface Lab01 on client 11:11:11:11:11:

```
(Cisco Controller) > config macfilter interface 11:11:11:11:11 Lab01
```

**Related Commands**

`show macfilter`
**config macfilter ip-address**

To enter passive client IP address, use the `config macfilter ip-address` command.

```
config macfilter ip-address MAC_addr IP Address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC_addr</td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Adds an IP address for passive clients.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4.</td>
</tr>
</tbody>
</table>

The following example shows how to add an IP address for a passive client:

```
(Cisco Controller) > config macfilter ip-address aa-bb-cc-dd-ee-ff 10.92.125.51
```

**Related Commands**

`show macfilter`
config macfilter mac-delimiter

To set the MAC delimiter (colon, hyphen, none, and single-hyphen) for MAC addresses sent to RADIUS servers, use the **config macfilter mac-delimiter** command.

```
cfg-macfilter> mac-filter mac-delimiter { none | colon | hyphen | single-hyphen }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Disables the delimiters (for example, xxxxxxxx).</td>
</tr>
<tr>
<td>colon</td>
<td>Sets the delimiter to a colon (for example, xx:xx:xx:xx:xx:xx).</td>
</tr>
<tr>
<td>hyphen</td>
<td>Sets the delimiter to a hyphen (for example, xx-xx-xx-xx-xx-xx).</td>
</tr>
<tr>
<td>single-hyphen</td>
<td>Sets the delimiter to a single hyphen (for example, xxxxxx-xxxxxx).</td>
</tr>
</tbody>
</table>

### Command Default

The default delimiter is hyphen.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to have the operating system send MAC addresses to the RADIUS server in the form aa:bb:cc:dd:ee:ff:

(Cisco Controller) > config macfilter mac-delimiter colon

The following example shows how to have the operating system send MAC addresses to the RADIUS server in the form aa-bb-cc-dd-ee-ff:

(Cisco Controller) > config macfilter mac-delimiter hyphen

The following example shows how to have the operating system send MAC addresses to the RADIUS server in the form aabbccddee:

(Cisco Controller) > config macfilter mac-delimiter none

### Related Commands

- `show macfilter`
config macfilter radius-compat

To configure the Cisco wireless LAN controller for compatibility with selected RADIUS servers, use the config macfilter radius-compat command.

```
config macfilter radius-compat { cisco | free | other }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco</td>
<td>Configures the Cisco ACS compatibility mode (password is the MAC address of the server).</td>
</tr>
<tr>
<td>free</td>
<td>Configures the Free RADIUS server compatibility mode (password is secret).</td>
</tr>
<tr>
<td>other</td>
<td>Configures for other server behaviors (no password is necessary).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Other</th>
</tr>
</thead>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the Cisco ACS compatibility mode to “other”:

```
(Cisco Controller) > config macfilter radius-compat other
```

**Related Commands**

- show macfilter
config macfilter wlan-id

To modify a wireless LAN ID for a MAC filter, use the `config macfilter wlan-id` command.

`config macfilter wlan-id MAC_addr WLAN_id`

**Syntax Description**

<table>
<thead>
<tr>
<th>MAC_addr</th>
<th>Client MAC address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN_id</td>
<td>Wireless LAN identifier to associate with. A value of zero is not allowed.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to modify client wireless LAN ID 2 for a MAC filter 11:11:11:11:11:

```
(Cisco Controller) > config macfilter wlan-id 11:11:11:11:11 2
```

**Related Commands**

- `show macfilter`
- `show wlan`
config mdns ap

To configure multicast Domain Name System (mDNS) snooping on an access point, use the `config mdns ap` command.

```
config mdns ap {enable (ap_name | all) [vlan vlan_id] | disable (ap_name | all) | vlan {add | delete} vlan ap_name}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables mDNS snooping on an access point.</td>
</tr>
<tr>
<td><code>ap_name</code></td>
<td>Name of the access point on which mDNS snooping has to be configured.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Configures mDNS snooping on all access points.</td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>(Optional) Configures the VLAN on which the access point snoops and forwards the mDNS packets.</td>
</tr>
<tr>
<td><code>vlan_id</code></td>
<td>VLAN identifier.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables mDNS snooping on an access point.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds a VLAN from which the access point snoops and forwards the mDNS packets to the Cisco Wireless LAN Controller (WLC). You can configure up to 10 VLANs for an mDNS access point.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a VLAN from which the access point snoops and forwards the mDNS packets to the Cisco WLC.</td>
</tr>
</tbody>
</table>

**Command Default**
The mDNS-enabled access point snoops the access or native VLANs by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Enabling mDNS snooping on access points allows the access points to snoop the wired services on VLANs that are invisible to the Cisco WLC. mDNS snooping is supported only on local-mode and monitor-mode access points. The access point must be in the access mode or trunk mode. If the access point is in the trunk mode, you must configure the VLAN on the Cisco WLC on which the access point snoops and forwards the mDNS packets. You must also configure the native VLAN from the Cisco WLC for the access point to snoop and send mDNS queries on. The access point also tags the packets with the native VLAN.

Global mDNS snooping overrides mDNS access point snooping.

The following example shows how to enable mDNS snooping on an access point and the VLAN on which it must snoop for mDNS packets:

```
(Cisco Controller) > config mdns ap enable vlan 1
```
config mdns profile

To configure a multicast DNS (mDNS) profile and associate a service with the profile, use the `config mdns profile` command.

```
config mdns profile { create | delete | service { add | delete } service_name profile_name
```

**Syntax Description**

- **create**: Creates an mDNS profile.
- **delete**: Deletes an mDNS profile. If the profile is associated to an interface group, an interface, or a WLAN, an error appears.
- **service**: Configures an mDNS service.
- **add**: Adds an mDNS service to an mDNS profile.
- **delete**: Deletes an mDNS service from an mDNS profile.
- **service-name**: Name of the mDNS service.
- **profile_name**: Name of the mDNS profile. You can create a maximum of 16 profiles.

**Command Default**

By default, the controller has an mDNS profile, default-mdns-profile. You cannot delete this default profile.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After creating a new profile, you must map the profile to an interface group, an interface, or a WLAN. Clients receive service advertisements only for the services associated with the profile. The controller gives the highest priority to the profiles associated to interface groups, followed by the interface profiles, and then the WLAN profiles. Each client is mapped to a profile based on the order of priority.

By default, the controller has an mDNS profile, default-mdns-profile. You cannot delete this default profile.

The following example shows how to add the Apple TV mDNS service to the mDNS profile1.

```
(Cisco Controller) > config mdns profile create profile1 Apple TV
```

**Related Commands**

- `config mdns query interval`
- `config mdns service`
- `config mdns snooping`
- `config interface mdns-profile`
- `config interface group mdns-profile`
- `config wlan mdns`
- `show mdns profile`
show mdns service
clear mdns service-database
debug mdns all
debug mdns error
debug mdns detail
debug mdns message
config mdns query interval

To configure the query interval for multicast DNS (mDNS) services, use the config mdns query interval command.

```
config mdns query interval interval_value
```

**Syntax Description**

```
interval_value mDNS query interval, in minutes, that you can set. The query interval is the frequency at which the controller sends periodic queries to all the services defined in the Master Services database. The range is from 10 to 120.
```

**Command Default**

The default query interval for an mDNS service is 15 minutes.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The controller snoops and learns about the mDNS service advertisements only if the service is available in the Master Services database. mDNS uses the multicast IP address 224.0.0.251 as the destination address and 5353 as UDP destination port.

The following example shows how to configure the query interval for mDNS services as 20 minutes.

```
(Cisco Controller) > config mdns query interval 20
```

**Related Commands**

- config mdns profile
- config mdns service
- config mdns snooping
- config interface mdns-profile
- config interface group mdns-profile
- config wlan mdns
- show mdns profile
- show mnds service
- clear mdns service-database
- debug mdns all
- debug mdns error
- debug mdns detail
- debug mdns message
config mdns service

To configure multicast DNS (mDNS) services in the master services database, use the `config mdns service` command.

The following command is valid in Release 7.5 and later releases:

```
config mdns service { create service_name service_string origin { Wireless | Wired | All } lss { enable | disable } { query { enable | disable } } | lss { enable | disable } { service_name | all } | priority-mac { add | delete } priority-mac service_name [ap-group ap-group-name] | origin { Wireless | Wired | All } { service_name | all } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>create</strong></td>
<td>Adds a new mDNS service to the Master Services database.</td>
</tr>
<tr>
<td><strong>service_name</strong></td>
<td>Name of the mDNS service, for example, AirTunes, iTunes Music Sharing, FTP, Apple File Sharing Protocol (AFP).</td>
</tr>
<tr>
<td><strong>service_string</strong></td>
<td>Unique string associated to an mDNS service, for example, _airplay._tcp.local. is the service string associated with Apple TV.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes an mDNS service from the Master Services database. Before deleting the service, the controller checks if any profile is using the service. <strong>Note</strong> You must delete the service from all profiles before deleting it.</td>
</tr>
<tr>
<td><strong>query</strong></td>
<td>Configures the query status for the mDNS service.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables periodic query for an mDNS service by the controller.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables periodic query for an mDNS service by the controller.</td>
</tr>
<tr>
<td><strong>origin</strong></td>
<td>Configures the origin of the mDNS service. You can restrict the origin of the service as wired or wireless.</td>
</tr>
<tr>
<td><strong>Wireless</strong></td>
<td>Configures the origin of the mDNS service as wireless.</td>
</tr>
<tr>
<td><strong>Wired</strong></td>
<td>Configures the origin of the mDNS service as wired.</td>
</tr>
<tr>
<td><strong>All</strong></td>
<td>Configures the origin of the mDNS service as wireless or wired.</td>
</tr>
<tr>
<td><strong>lss</strong></td>
<td>Configures Location Specific Services (LSS) for a service or all mDNS services. LSS is not applicable for registered service providers. The registered service providers are always included if the querying client corresponds to the user. You cannot configure LSS on the services configured as only wired.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Configures LSS for all mDNS services.</td>
</tr>
<tr>
<td><strong>priority-mac</strong></td>
<td>Configures the MAC address of a service provider device. This device gets a priority even if the service provider database is full.</td>
</tr>
<tr>
<td><strong>add</strong></td>
<td>Adds the MAC address of a service provider device for priority. You can configure up to 50 MAC addresses for a service.</td>
</tr>
</tbody>
</table>
DeletestheMACaddressofaserviceproviderdevicefromthepriority list.

**priority-mac**
MAC address of a service provider device that needs priority. The MAC address must be unique for each service.

**ap-group**
Configures the access point group for wired service providers. These service providers get priority over others. When a client mNDS query originates from this AP group, the wired entries with priority MAC addresses and access point groups are listed first in the aggregated response.

**ap-group-name**
Name of the access point group to which the service provider belongs.

**Command Default**
By default, LSS is disabled, but it is enabled for all the discovered services.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>7.5</td>
<td>This command was modified. The <strong>origin</strong>, <strong>Wireless</strong>, <strong>Wired</strong>, <strong>All</strong>, <strong>lss</strong>, <strong>priority-mac</strong>, <strong>add</strong>, <strong>delete</strong>, <strong>ap-group</strong> keywords and <strong>priority-mac ap-group-name</strong> arguments were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
In Release 7.5 and later releases, the maximum number of service providers for different controller models are as follows:

- Cisco 5500 Series Controller and Cisco 2500 Series Controller—6400
- Cisco Wireless Services Module 2—6400
- Cisco 8500 Series Controller and Cisco 7500 Series Controller—16000

You cannot change the services with the origin set to Wireless to Wired if LSS is enabled for the service.

The following example shows how to add the HTTP mDNS service to the Master Services database, configure the origin as wireless, and enable LSS for the service:

(Cisco Controller) > config mdns service create http _http._tcp.local. origin wireless lss enable

The following example shows how to add a priority MAC address of a HTTP service provider device:

(Cisco Controller) >config mdns service priority-mac add 44:03:a7:a3:04:45 http
**config mdns snooping**

To enable or disable global multicast DNS (mDNS) snooping on the Cisco WLC, use the `config mdns snooping` command.

```
config mdns snooping { enable | disable }
```

**Syntax Description**

- **enable**: Enables mDNS snooping on the Cisco WLC.
- **disable**: Disables mDNS snooping on the Cisco WLC.

**Command Default**

By default, mDNS snooping is enabled on the Cisco WLC.

**Command History**

- **Release**: 7.4
- **Modification**: This command was introduced.

**Usage Guidelines**

mDNS service discovery provides a way to announce and discover services on the local network. mDNS perform DNS queries over IP multicast. mDNS supports zero configuration IP networking.

The following example shows how to enable mDNS snooping:

```
(Cisco Controller) > config mdns snooping enable
```

**Related Commands**

- config mdns query interval
- config mdns service
- config mdns profile
- config interface mdns-profile
- config interface group mdns-profile
- config wlan mdns
- show mdns profile
- show mdns service
- clear mdns service-database
- debug mdns all
- debug mdns error
- debug mdns detail
- debug mdns message
**config mdns policy enable**

To configure the mDNS policy use the `config mdns policy enable | disable` command.

```
config mdnspolicyenable | disable
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy</td>
<td>Name of the mDNS policy.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the policy for an mDNS service by the controller.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the policy for an mDNS service by the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is valid for 8.0 release onwards.

**Example**

The following example show how to configure the mDNS policy.

```
(Cisco Controller) >config mdns
 policy enable
```
**config mdns policy service-group**

To create or delete mDNS policy service group use the `config mdns policy service-group` command.

```plaintext
config mdns policy service-group { create | delete } service-group-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>create</td>
<td>Creates the mDNS service group.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the mDNS service group.</td>
</tr>
<tr>
<td>service-group-name</td>
<td>Name of the service group.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to delete a mDNS service group.

(Cisco Controller) > `config mdns policy service-group create <service-group-name>´
To configure the parameters of a service group, use the `config mdns policy service-group` command.

```
config mdns policy service-group device-mac add service-group-name mac-addr device name location-type [AP_LOCATION | AP_NAME | AP_GROUP] device-location [location string | any | same]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>device-mac</code></td>
<td>Configures MAC address of a service provider device.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds the service group name of the service provider device.</td>
</tr>
<tr>
<td><code>service-group-name</code></td>
<td>Name of a mDNS service group.</td>
</tr>
<tr>
<td><code>device-name</code></td>
<td>Name of a device to which the service provider belongs.</td>
</tr>
<tr>
<td><code>location type</code></td>
<td>Configures a location type of a service provider device.</td>
</tr>
<tr>
<td>`[AP_LOCATION</td>
<td>AP_NAME</td>
</tr>
<tr>
<td><code>device-location</code></td>
<td>Configures location of a device to which the service provider belongs.</td>
</tr>
<tr>
<td>`[location string</td>
<td>any</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure a location type of a service provider device.

```
(Cisco Controller) > config mdns policy service-group location type [AP_LOCATION | AP_NAME | AP_GROUP]
```
config mdns policy service-group user-name

To configure a user role for a mDNS service group, use the `config mdns policy service-group user-name add | delete <service-group-name> <user-role-name>` command

```
config mdns policy service-group user-name add | delete service-group-name user-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>user-name</strong></td>
<td>Configures name of a user for mDNS service group.</td>
</tr>
<tr>
<td><strong>service-group-name</strong></td>
<td>Name of a mDNS service group</td>
</tr>
<tr>
<td><strong>user-name</strong></td>
<td>Name of the user role for mDNS service group</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

The following example show how to add user name for a mDNS service group

```plaintext
(Cisco Controller) > config mdns policy service-group user-name add <service-group-name> <user-role-name>
```
To configure a user role for an mDNS service group, use the `config mdns policy service-group user-role add` | `delete <service-group-name> <user-role-name>` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-role</td>
<td>Configures a user role for mDNS service group.</td>
</tr>
<tr>
<td>service-group-name</td>
<td>Name of a mDNS service group</td>
</tr>
<tr>
<td>user-role-name</td>
<td>Name of the user role for mDNS service group</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to add user role details for a mDNS service group:

```
(Cisco Controller) >config mdns policy service-group user-role add <service-group-name> <user-role-name>
```
config media-stream multicast-direct

To configure the media-stream multicast direct, use the config media-stream multicast direct command.

```
cfgi media-stream multicast-direct { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables a media stream.</td>
<td>Disables a media stream.</td>
</tr>
</tbody>
</table>

| Command Default | None. |

| Usage Guidelines | Media-stream multicast-direct requires load based Call Admission Control (CAC) to run. |

This example shows how to enable media-stream multicast-direct settings:

```
> config media-stream multicast-direct enable
```

This example shows how to disable media-stream multicast-direct settings:

```
> config media-stream multicast-direct disable
```

| Related Commands | config 802.11 media-stream video-redirect
|                  | show 802.11a media-stream name
|                  | show media-stream group summary
|                  | show media-stream group detail |
config media-stream message

To configure various parameters of message configuration, use the `config media-stream message` command.

```
config media-stream message { state [enable | disable] | url url | email email | phone phone_number | note note }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>Specifies the media stream message state.</td>
</tr>
<tr>
<td>enable</td>
<td>(Optional) Enables the session announcement message state.</td>
</tr>
<tr>
<td>disable</td>
<td>(Optional) Disables the session announcement message state.</td>
</tr>
<tr>
<td>url</td>
<td>Configures the URL.</td>
</tr>
<tr>
<td>email</td>
<td>Configures the email ID.</td>
</tr>
<tr>
<td>phone</td>
<td>Configures the phone number.</td>
</tr>
<tr>
<td>phone_number</td>
<td>Session announcement phone number.</td>
</tr>
<tr>
<td>note</td>
<td>Configures the notes.</td>
</tr>
<tr>
<td>note</td>
<td>Session announcement notes.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Usage Guidelines**

Media-stream multicast-direct requires load-based Call Admission Control (CAC) to run.

This example shows how to enable the session announcement message state:

```plaintext
> config media-stream message state enable
```

This example shows how to configure the session announcement e-mail address:

```plaintext
> config media-stream message mail abc@co.com
```

**Related Commands**

- `config media-stream`
- `show 802.11a media-stream name`
- `show media-stream group summary`
- `show media-stream group detail`
# config media-stream add

To configure the various global media-stream configurations, use the `config media-stream add` command.

```
config media-stream add multicast-direct media_stream_name start-IP end-IP [template { very coarse | coarse | ordinary | low-resolution | med-resolution | high-resolution } | detail { bandwidth packet-size { periodic | initial } qos priority { drop | fallback }]
```

## Syntax Description

<table>
<thead>
<tr>
<th><strong>multicast-direct</strong></th>
<th>Specifies the media stream for the multicast-direct setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>media_stream_name</strong></td>
<td>Media-stream name.</td>
</tr>
<tr>
<td><strong>start-IP</strong></td>
<td>IP multicast destination start address.</td>
</tr>
<tr>
<td><strong>end-IP</strong></td>
<td>IP multicast destination end address.</td>
</tr>
<tr>
<td><strong>template</strong></td>
<td>(Optional) Configures the media stream from templates.</td>
</tr>
<tr>
<td><strong>very coarse</strong></td>
<td>Applies a very-coarse template.</td>
</tr>
<tr>
<td><strong>coarse</strong></td>
<td>Applies a coarse template.</td>
</tr>
<tr>
<td><strong>ordinary</strong></td>
<td>Applies an ordinary template.</td>
</tr>
<tr>
<td><strong>low-resolution</strong></td>
<td>Applies a low-resolution template.</td>
</tr>
<tr>
<td><strong>med-resolution</strong></td>
<td>Applies a medium-resolution template.</td>
</tr>
<tr>
<td><strong>high-resolution</strong></td>
<td>Applies a high-resolution template.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>Configures the media stream with specific parameters.</td>
</tr>
<tr>
<td><strong>bandwidth</strong></td>
<td>Maximum expected stream bandwidth.</td>
</tr>
<tr>
<td><strong>packet-size</strong></td>
<td>Average packet size.</td>
</tr>
<tr>
<td><strong>periodic</strong></td>
<td>Specifies the periodic admission evaluation.</td>
</tr>
<tr>
<td><strong>initial</strong></td>
<td>Specifies the Initial admission evaluation.</td>
</tr>
<tr>
<td><strong>qos</strong></td>
<td>AIR QoS class (video only).</td>
</tr>
<tr>
<td><strong>priority</strong></td>
<td>Media-stream priority.</td>
</tr>
<tr>
<td><strong>drop</strong></td>
<td>Specifies that the stream is dropped on a periodic reevaluation.</td>
</tr>
<tr>
<td><strong>fallback</strong></td>
<td>Specifies if the stream is demoted to the best-effort class on a periodic reevaluation.</td>
</tr>
</tbody>
</table>
Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Media-stream multicast-direct requires load-based Call Admission Control (CAC) to run.

This example shows how to configure a new media stream:

```
> config media-stream add multicast-direct abc 227.8.8 227.9.9.9 detail 2 150 periodic video 1 drop
```

Related Commands

- show 802.11a media-stream name
- show media-stream group summary
- show media-stream group detail
config media-stream admit

To allow traffic for a media stream group, use the `config media-stream admit` command.

```
config media-stream admit media_stream_name
```

**Syntax Description**

| media_stream_name | Media-stream group name. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you try to allow traffic for the media stream group, you will be prompted that IGMP snooping will be disabled and enabled again, and all clients might observe a glitch on the multicast traffic.

This example shows how to allow traffic for a media stream group:

```
(Cisco Controller) > config media-stream admit MymediaStream
```

**Related Commands**

- show 802.11a media-stream name
- show media-stream group summary
- show media-stream group detail
**config media-stream deny**

To block traffic for a media stream group, use the `config media-stream deny` command.

**Syntax Description**

| media_stream_name | Media-stream group name. |

`config media-stream deny media_stream_name`

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you try to block traffic for the media stream group, you will be prompted that IGMP snooping will be disabled and enabled again, and all clients might observe a glitch on the multicast traffic.

This example shows how to block traffic for a media stream group:

```
(Cisco Controller) > config media-stream deny MymediaStream
```

**Related Commands**

- `show 802.11a media-stream name`
- `show media-stream group summary`
- `show media-stream group detail`
config media-stream delete

To configure the various global media-stream configurations, use the config media-stream delete command.

```
config media-stream delete media_stream_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>media_stream_name</td>
<td>Media-stream name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Media-stream multicast-direct requires load-based Call Admission Control (CAC) to run.

This example shows how to delete the media stream named abc:

```
(Cisco Controller) > config media-stream delete abc
```

**Related Commands**

- show 802.11a media-stream name
- show media-stream group summary
- show media-stream group detail
config memory monitor errors

To enable or disable monitoring for memory errors and leaks, use the config memory monitor errors command.

```
config memory monitor errors { enable | disable }
```

⚠️ **Caution**

The `config memory monitor` commands can be disruptive to your system and should be run only when you are advised to do so by the Cisco TAC.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the monitoring for memory settings.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the monitoring for memory settings.</td>
</tr>
</tbody>
</table>

**Command Default**

Monitoring for memory errors and leaks is disabled by default.

**Command History**

- **Release Modification**
  - 7.6: This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

Be cautious about changing the defaults for the `config memory monitor` command unless you know what you are doing, you have detected a problem, or you are collecting troubleshooting information.

The following example shows how to enable monitoring for memory errors and leaks for a controller:

```
(Cisco Controller) > config memory monitor errors enable
```

**Related Commands**

- `config memory monitor leaks`
- `debug memory`
- `show memory monitor`
config memory monitor leaks

To configure the controller to perform an auto-leak analysis between two memory thresholds, use the `config memory monitor leaks` command.

```plaintext
config memory monitor leaks low_thresh high_thresh
```

⚠️ **Caution**

The `config memory monitor` commands can be disruptive to your system and should be run only when you are advised to do so by the Cisco TAC.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>low_thresh</code></td>
<td>Value below which free memory cannot fall without crashing. This value cannot be set lower than 10000 KB.</td>
</tr>
<tr>
<td><code>high_thresh</code></td>
<td>Value below which the controller enters auto-leak-analysis mode. See the “Usage Guidelines” section.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for `low_thresh` is 10000 KB; the default value for `high_thresh` is 30000 KB.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Be cautious about changing the defaults for the `config memory monitor` command unless you know what you are doing, you have detected a problem, or you are collecting troubleshooting information.

Use this command if you suspect that a memory leak has occurred.

If the free memory is lower than the `low_thresh` threshold, the system crashes, generating a crash file. The default value for this parameter is 10000 KB, and you cannot set it below this value.

Set the `high_thresh` threshold to the current free memory level or higher so that the system enters auto-leak-analysis mode. After the free memory reaches a level lower than the specified `high_thresh` threshold, the process of tracking and freeing memory allocation begins. As a result, the `debug memory events enable` command shows all allocations and frees, and the `show memory monitor detail` command starts to detect any suspected memory leaks.

The following example shows how to set the threshold values for auto-leak-analysis mode to 12000 KB for the low threshold and 35000 KB for the high threshold:

```plaintext
(Cisco Controller) > config memory monitor leaks 12000 35000
```
Related Commands

- config memory monitor leaks
- debug memory
- show memory monitor
config mesh alarm

To configure alarm settings for outdoor mesh access points, use the `config mesh alarm` command.

```plaintext
config mesh alarm (max-hop | max-children | low-snr | high-snr | association | parent-change count) value
```

**Syntax Description**

- **max-hop**: Sets the maximum number of hops before triggering an alarm for traffic over the mesh network. The valid values are 1 to 16 (inclusive).
- **max-children**: Sets the maximum number of mesh access points (MAPs) that can be assigned to a mesh router access point (RAP) before triggering an alarm. The valid values are 1 to 16 (inclusive).
- **low-snr**: Sets the low-end signal-to-noise ratio (SNR) value before triggering an alarm. The valid values are 1 to 30 (inclusive).
- **high-snr**: Sets the high-end SNR value before triggering an alarm. The valid values are 1 to 30 (inclusive).
- **association**: Sets the mesh alarm association count value before triggering an alarm. The valid values are 1 to 30 (inclusive).
- **parent-change count**: Sets the number of times a MAP can change its RAP association before triggering an alarm. The valid values are 1 to 30 (inclusive).
- **value**: Value above or below which an alarm is generated. The valid values vary for each command.

**Command Default**

See the “Syntax Description” section for command and argument value ranges.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the maximum hops threshold to 8:

```
(Cisco Controller) > config mesh alarm max-hop 8
```

The following example shows how to set the upper SNR threshold to 25:

```
(Cisco Controller) > config mesh alarm high-snr 25
```
**config mesh astools**

To globally enable or disable the anti-stranding feature for outdoor mesh access points, use the `config mesh astools` command.

```
config mesh astools { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables this feature for all outdoor mesh access points.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Disables this feature for all outdoor mesh access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable anti-stranding on all outdoor mesh access points:

(Cisco Controller) > `config mesh astools enable`
config mesh backhaul rate-adapt

To globally configure the backhaul Tx rate adaptation (universal access) settings for indoor and outdoor mesh access points, use the `config mesh backhaul rate-adapt` command.

```
config mesh backhaul rate-adapt [all | bronze | silver | gold | platinum] { enable | disable }
```

**Syntax Description**

- **all**
  (Optional) Grants universal access privileges on mesh access points.

- **bronze**
  (Optional) Grants background-level client access privileges on mesh access points.

- **silver**
  (Optional) Grants best effort-level client access privileges on mesh access points.

- **gold**
  (Optional) Grants video-level client access privileges on mesh access points.

- **platinum**
  (Optional) Grants voice-level client access privileges on mesh access points.

- **enable**
  Enables this backhaul access level for mesh access points.

- **disable**
  Disables this backhaul access level for mesh access points.

**Command Default**

Backhaul access level for mesh access points is disabled.

**Command History**

- **Release**
  - 7.6

  **Modification**
  - This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

To use this command, mesh backhaul with client access must be enabled by using the `config mesh client-access` command.

**Note**

After this feature is enabled, all mesh access points reboot.

The following example shows how to set the backhaul client access to the best-effort level:

```
(Cisco Controller) > config mesh backhaul rate-adapt silver
```
config mesh backhaul slot

To configure the slot radio as a downlink backhaul, use the config mesh backhaul slot command.

```
config mesh backhaul slot slot_id (enable | disable) cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>slot_id</code></td>
<td>Slot number between 0 and 2.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the entered slot radio as a downlink backhaul.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the entered slot radio as a downlink backhaul.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Root AP of the sector on which the backhaul needs to be enabled or disabled.</td>
</tr>
</tbody>
</table>

**Command Default**

The entered slot radio as a downlink backhaul is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For 2.4 GHz, only slot 0 and 1 are valid. If slot 0 is enabled, slot 1 is automatically be disabled. If slot 0 is disabled, slot 1 is automatically enabled.

The following example shows how to enable slot 1 as the preferred backhaul for the root AP myrootap1:

```
(Cisco Controller) >config mesh backhaul slot 1 enable myrootap1
```
To configure the battery state for Cisco Aironet 1520 Series mesh access points, use the `config mesh battery-state` command.

```
config mesh battery-state { enable | disable } { all | cisco_ap }
```

### Syntax Description

- **enable**
  - Enables the battery-state for 1520 series mesh access points.

- **disable**
  - Disables the battery-state for 1520 series mesh access points.

- **all**
  - Applies this command to all mesh access points.

- **cisco_ap**
  - Specific mesh access point.

### Command Default

Battery state is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the backhaul client access to the best-effort level:

```
(Cisco Controller) > config mesh battery-state enable all
```
**config mesh client-access**

To enable or disable client access to the mesh backhaul on indoor and outdoor mesh access points, use the `config mesh client-access` command.

```
config mesh client-access { enable [extended] | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Allows wireless client association over the mesh access point backhaul 802.11a radio.</td>
</tr>
<tr>
<td><code>extended</code></td>
<td>(Optional) Enables client access over both the backhaul radios for backhaul access points.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Restricts the 802.11a radio to backhaul traffic, and allows client association only over the 802.11b/g radio.</td>
</tr>
</tbody>
</table>

**Command Default**

Client access is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Backhaul interfaces (802.11a radios) act as primary Ethernet interfaces. Backhauls function as trunks in the network and carry all VLAN traffic between the wireless and wired network. No configuration of primary Ethernet interfaces is required.

When this feature is enabled, the mesh access points allow wireless client association over the 802.11a radio, which implies that a mesh access point can carry both backhaul traffic and 802.11a client traffic over the same 802.11a radio.

When this feature is disabled, the mesh access points carry backhaul traffic over the 802.11a radio and allows client association only over the 802.11b/g radio.

The following example shows how to enable client access extended to allow a wireless client association over the 802.11a radio:

```
(Cisco Controller) >config mesh client-access enable extended
Enabling client access on both backhaul slots
Same BSSIDs will be used on both slots
All Mesh AP will be rebooted
Are you sure you want to start? (y/N) Y
```

The following example shows how to restrict a wireless client association to the 802.11b/g radio:

```
(Cisco Controller) >config mesh client-access disable
All Mesh AP will be rebooted
Are you sure you want to start? (Y/N) Y
Backhaul with client access is canceled.
```
config mesh convergence

To configure mesh convergence method on all mesh access points, use the **config mesh convergence** command.

```
config mesh convergence {fast [standard] | very-fast} all
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast</td>
<td>Sets the fast convergence method.</td>
</tr>
<tr>
<td>standard</td>
<td>Sets the standard convergence method.</td>
</tr>
<tr>
<td>very-fast</td>
<td>Set very-fast convergence method.</td>
</tr>
<tr>
<td>all</td>
<td>Sets the selected mesh convergence method on all the mesh access points.</td>
</tr>
</tbody>
</table>

**Command Default**

The default mesh convergence method is standard.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The standard convergence method is available on Release 7.6 onwards. The fast and very fast convergence methods are available from Release 8.0.

This table lists the different convergence methods.

<table>
<thead>
<tr>
<th>Convergence method</th>
<th>Parent loss Timer (seconds)</th>
<th>Seek per channel Timer (seconds)</th>
<th>Parent, neighbor keep alive Timer (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>21</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Fast</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Very Fast</td>
<td>4</td>
<td>2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The following example shows how to set mesh convergence to standard:

```
(Cisco Controller) > config mesh convergence standard all
```
To configure STP BPDUs towards wired mesh uplink, use the `config mesh ethernet-bridging allow-bpdu` command.

```
config mesh ethernet-bridging allow-bpdu { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables STP BPDUs towards wired mesh uplink.</td>
<td>Disables STP BPDUs towards wired mesh uplink.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.0.110.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Cisco WLC does not allow you to use this command if VLAN transparency is enabled.
To configure how a mesh access point handles VLAN tags for Ethernet bridged traffic, use the `config mesh ethernet-bridging vlan-transparent` command.

```
config mesh ethernet-bridging vlan-transparent { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Bridges packets as if they are untagged.</td>
</tr>
<tr>
<td>disable</td>
<td>Drops all tagged packets.</td>
</tr>
</tbody>
</table>

**Command Default**
Bridges packets as if they are untagged.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure Ethernet packets as untagged:

```
(Cisco Controller) > config mesh ethernet-bridging vlan-transparent enable
```

The following example shows how to drop tagged Ethernet packets:

```
(Cisco Controller) > config mesh ethernet-bridging vlan-transparent disable
```
config mesh full-sector-dfs

To globally enable or disable full-sector Dynamic Frequency Selection (DFS) on mesh access points, use the `config mesh full-sector-dfs` command.

```
config mesh full-sector-dfs { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables DFS for mesh access points.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables DFS for mesh access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command instructs the mesh sector to make a coordinated channel change on the detection of a radar signal. For example, if a mesh access point (MAP) detects a radar signal, the MAP will notify the root access point (RAP), and the RAP will initiate a sector change.

All MAPs and the RAP that belong to that sector go to a new channel, which lowers the probability of MAPs stranding when radar is detected on the current backhaul channel, and no other valid parent is available as backup.

Each sector change causes the network to be silent for 60 seconds (as dictated by the DFS standard).

It is expected that after a half hour, the RAP will go back to the previously configured channel, which means that if radar is frequently observed on a RAP's channel, it is important that you configure a different channel for that RAP to exclude the radar affected channel at the controller.

This example shows to enable full-sector DFS on mesh access points:

```
(Cisco Controller) > config mesh full-sector-dfs enable
```
config mesh linkdata

To enable external MAC filtering of access points, use the `config mesh linkdata` command.

`config mesh linkdata destination_ap_name`

**Syntax Description**

| `destination_ap_name` | Destination access point name for MAC address filtering. |

**Command Default**

External MAC filtering is disabled.

**Usage Guidelines**

The `config mesh linktest` and `config mesh linkdata` commands are designed to be used together to verify information between a source and a destination access point. To get this information, first execute the `config mesh linktest` command with the access point that you want link data from in the `dest_ap` argument. When the command completes, enter the `config mesh linkdata` command and list the same destination access point, to display the link data will display (see example).

MAC filtering uses the local MAC filter on the controller by default.

When external MAC filter authorization is enabled, if the MAC address is not found in the local MAC filter, then the MAC address in the external RADIUS server is used.

MAC filtering protects your network against rogue mesh access points by preventing access points that are not defined on the external server from joining.

Before employing external authentication within the mesh network, the following configuration is required:

- The RADIUS server to be used as an AAA server must be configured on the controller.
- The controller must also be configured on the RADIUS server.
- The mesh access point configured for external authorization and authentication must be added to the user list of the RADIUS server.

The following example shows how to enable external MAC address filtering on access point AP001d.710d.e300:

```
(Cisco Controller) >config mesh linkdata MAP2-1-1522.7400 AP001d.710d.e300 18 100 1000 30
LinkTest started on source AP, test ID: 0
[00:1D:71:0E:74:00]->[00:1D:71:0D:E3:0F]
Test config: 1000 byte packets at 100 pps for 30 seconds, a-link rate 18 Mb/s
In progress: | | LinkTest complete
Results

 txPkts: 2977
 txBuffAllocErr: 0
 txQFullErrs: 0
 Total rx pkts heard at destination: 2977
 rx pkts decoded correctly: 2977
 err pkts: Total 0 (PHY 0 + CRC 0 + Unknown 0), TooBig 0, TooSmall 0
```
This example shows how to enable external MAC filtering on access point AP001d.71d.e300:

(Cisco Controller) > config mesh linkdata AP001d.710d.e300

The document contains a table and some text explaining network statistics and a command to enable external MAC filtering.
**config mesh linktest**

To verify client access between mesh access points, use the `config mesh linktest` command.

```
config mesh linktest source_ap {dest_ap | MACaddr} datarate packet_rate packet_size duration
```

**Syntax Description**

- **source_ap**
  - Source access point.

- **dest_ap**
  - Destination access point.

- **MACaddr**
  - MAC address.

- **datarate**
  - Data rate for 802.11a radios. Valid values are 6, 9, 11, 12, 18, 24, 36, 48 and 54 Mbps.  
  - Data rate for 802.11b radios. Valid values are 6, 12, 18, 24, 36, 54, or 100 Mbps.  
  - Data rate for 802.11n radios. Valid values are MCS rates between m0 to m15.

- **packet_rate**
  - Number of packets per second. Valid range is 1 through 3000, but the recommended default is 100.

- **packet_size**
  - (Optional) Packet size in bytes. If not specified, packet size defaults to 1500 bytes.

- **duration**
  - (Optional) Duration of the test in seconds. Valid values are 10-300 seconds, inclusive. If not specified, duration defaults to 30 seconds.

**Command Default**

100 packets per second, 1500 bytes, 30-second duration.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `config mesh linktest` and `config mesh linkdata` commands are designed to be used together to verify information between a source and a destination access point. To get this information, first enter the `config mesh linktest` command with the access point that you want link data from in the `dest_ap` argument. When the command completes, enter the `config mesh linkdata` command and list the same destination access point, to display the link data.

The following warning message appears when you run a linktest that might oversubscribe the link:

Warning! Data Rate (100 Mbps) is not enough to perform this link test on packet size (2000bytes) and (1000) packets per second. This may cause AP to disconnect or reboot. Are you sure you want to continue?

The following example shows how to verify client access between mesh access points `SB_MAP1` and `SB_RAP2` at 36 Mbps, 20 fps, 100 frame size, and 15-second duration:
The following table lists the output flags displayed for the `config mesh linktest` command.

**Table 6: Output Flags for the Config Mesh Linktest Command**

<table>
<thead>
<tr>
<th>Output Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>txPkts</td>
<td>Number of packets sent by the source.</td>
</tr>
<tr>
<td>txBuffAllocErr</td>
<td>Number of linktest buffer allocation errors at the source (expected to be zero).</td>
</tr>
<tr>
<td>txQFullErrs</td>
<td>Number of linktest queue full errors at the source (expected to be zero).</td>
</tr>
<tr>
<td>Total rx pkts heard at destination</td>
<td>Number of linktest packets received at the destination (expected to be same as or close to the txPkts).</td>
</tr>
<tr>
<td>Output Flag</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>rx pkts decoded correctly</td>
<td>Number of linktest packets received and decoded correctly at the destination (expected to be same as close to txPkts).</td>
</tr>
<tr>
<td>err pkts: Total</td>
<td>Packet error statistics for linktest packets with errors.</td>
</tr>
<tr>
<td>rx lost packets</td>
<td>Total number of linktest packets not received at the destination.</td>
</tr>
<tr>
<td>rx dup pkts</td>
<td>Total number of duplicate linktest packets received at the destination.</td>
</tr>
<tr>
<td>rx out of order</td>
<td>Total number of linktest packets received out of order at the destination.</td>
</tr>
<tr>
<td>avgNF</td>
<td>Average noise floor.</td>
</tr>
<tr>
<td>Noise Floor profile</td>
<td>Noise floor profile in dB and are negative numbers.</td>
</tr>
<tr>
<td>avgSNR</td>
<td>Average SNR values.</td>
</tr>
<tr>
<td>SNR profile [odb...60dB]</td>
<td>Histogram samples received between 0 to 60 dB. The different columns in the SNR profile is the number of packets falling under the bucket 0-3, 3-6, 6-9, up to 57-60.</td>
</tr>
<tr>
<td>avgRSSI</td>
<td>Average RSSI values. The average high and low RSSI values are positive numbers.</td>
</tr>
<tr>
<td>RSSI profile [-100dB...-40dB]</td>
<td>The RSSI profile in dB and are negative numbers.</td>
</tr>
</tbody>
</table>
To configure a locally significant certificate (LSC) on mesh access points, use the `config mesh lsc` command.

```
config mesh lsc { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables an LSC on mesh access points.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables an LSC on mesh access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable LSC on mesh access points:

```
(Cisco Controller) >config mesh lsc enable
```
config mesh lsc advanced

To configure an advanced locally significant certificate (LSC) when a wildcard is used in an external authentication, authorization, and accounting (AAA) server for a mesh Access Point (AP), use the `config mesh lsc advanced` command.

```
config mesh lsc advanced { enable | disable }
```

**Syntax Description**

- **enable**: Enables advanced LSC for a mesh AP.
- **disable**: Disables advanced LSC for a mesh AP.

**Command Default**

None

**Command History**

```
Release Modification
8.0 This command was introduced.
```

The following example shows how to enable advanced LSC for a mesh AP:

(Cisco Controller) > config mesh lsc advanced enable
config mesh lsc advanced ap-provision

To configure advanced mesh locally significant certificate (LSC) Access Point (AP) provision if a wildcard is used in an external authentication, authorization, and accounting (AAA) server for a mesh AP, use the `config mesh lsc advanced ap-provision` command.

```
config mesh lsc advanced ap-provision { enable | disable | open-window { enable | disable } | provision-controller { enable | disable }}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables advanced mesh LSC AP provision if a wildcard is used in an external AAA server for a mesh AP.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables advanced mesh LSC AP provision if a wildcard is used in an external AAA server for a mesh AP.</td>
</tr>
<tr>
<td>open-window</td>
<td>Configures mesh LSC provision for all mesh APs without MAC validation.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables AP provision for all mesh APs without MAC validation.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables AP provision for all mesh APs without MAC validation.</td>
</tr>
<tr>
<td>provision-controller</td>
<td>Configures the provision controller details for mesh APs to get an LSC.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the provision controller option to get an LSC.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the provision controller option to get an LSC.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the advanced AP provision method:

(Cisco Controller) > config mesh lsc advanced ap-provision enable
# config mesh multicast

To configure multicast mode settings to manage multicast transmissions within the mesh network, use the `config mesh multicast` command.

```
config mesh multicast { regular | in | in-out }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>regular</strong></td>
<td>Multicasts the video across the entire mesh network and all its segments by bridging-enabled root access points (RAPs) and mesh access points (MAPs).</td>
</tr>
<tr>
<td><strong>in</strong></td>
<td>Forwards the multicast video received from the Ethernet by a MAP to the RAP’s Ethernet network. No additional forwarding occurs, which ensures that non-LWAPP multicasts received by the RAP are not sent back to the MAP Ethernet networks within the mesh network (their point of origin), and MAP-to-MAP multicasts do not occur because they are filtered out.</td>
</tr>
<tr>
<td><strong>in-out</strong></td>
<td>Configures the RAP and MAP to multicast, but each in a different manner: If multicast packets are received at a MAP over Ethernet, they are sent to the RAP; however, they are not sent to other MAP Ethernets, and the MAP-to-MAP packets are filtered out of the multicast. If multicast packets are received at a RAP over Ethernet, they are sent to all the MAPs and their respective Ethernet networks. See the Usage Guidelines section for more information.</td>
</tr>
</tbody>
</table>

## Command Default

- In-out mode

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

Multicast for mesh networks cannot be enabled using the controller GUI.

Mesh multicast modes determine how bridging-enabled access points mesh access points (MAPs) and root access points (RAPs) send multicasts among Ethernet LANs within a mesh network. Mesh multicast modes manage non-LWAPP multicast traffic only. LWAPP multicast traffic is governed by a different mechanism.

You can use the controller CLI to configure three mesh multicast modes to manage video camera broadcasts on all mesh access points. When enabled, these modes reduce unnecessary multicast transmissions within the mesh network and conserve backhaul bandwidth.

When using in-out mode, it is important to properly partition your network to ensure that a multicast sent by one RAP is not received by another RAP on the same Ethernet segment and then sent back into the network.
If 802.11b clients need to receive CAPWAP multicasts, then multicast must be enabled globally on the controller as well as on the mesh network (by using the `config network multicast global` command). If multicast does not need to extend to 802.11b clients beyond the mesh network, you should disable the global multicast parameter.

The following example shows how to multicast video across the entire mesh network and all its segments by bridging-enabled RAPs and MAPs:

(Cisco Controller) > `config mesh multicast regular`
config mesh parent preferred

To configure a preferred parent for a mesh access point, use the `config mesh parent preferred` command.

```
config mesh parent preferred cisco_ap {mac_address | none}
```

**Syntax Description**

- `cisco_ap`: Name of the child access point.
- `mac_address`: MAC address of the preferred parent.
- `none`: Clears the configured parent.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A child AP selects the preferred parent based on the following conditions:

- The preferred parent is the best parent.
- The preferred parent has a link SNR of at least 20 dB (other parents, however good, are ignored).
- The preferred parent has a link SNR in the range of 12 dB and 20 dB, but no other parent is significantly better (that is, the SNR is more than 20 percent better). For an SNR lower than 12 dB, the configuration is ignored.
- The preferred parent is not blacklisted.
- The preferred parent is not in silent mode because of dynamic frequency selection (DFS).
- The preferred parent is in the same bridge group name (BGN). If the configured preferred parent is not in the same BGN and no other parent is available, the child joins the parent AP using the default BGN.

The following example shows how to configure a preferred parent with the MAC address 00:21:1b:ea:36:60 for a mesh access point `myap1`:

```
(Cisco Controller) >config mesh parent preferred myap1 00:21:1b:ea:36:60
```

The following example shows how to clear a preferred parent with the MAC address 00:21:1b:ea:36:60 for a mesh access point `myap1`, by using the keyword `none`:

```
(Cisco Controller) >config mesh parent preferred myap1 00:21:1b:ea:36:60 none
```
**config mesh public-safety**

To enable or disable the 4.9-GHz public safety band for mesh access points, use the `config mesh public-safety` command.

```
config mesh public-safety {enable | disable} {all | cisco_ap}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the 4.9-GHz public safety band.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 4.9-GHz public safety band.</td>
</tr>
<tr>
<td>all</td>
<td>Applies the command to all mesh access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Specific mesh access point.</td>
</tr>
</tbody>
</table>

**Command Default**

The 4.9-GHz public safety band is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

4.9 GHz is a licensed frequency band restricted to public-safety personnel.

The following example shows how to enable the 4.9-GHz public safety band for all mesh access points:

```
(Cisco Controller) > config mesh public-safety enable all
4.9GHz is a licensed frequency band in -A domain for public-safety usage
Are you sure you want to continue? (y/N) y
```
config mesh radius-server

To enable or disable external authentication for mesh access points, use the `config mesh radius-server` command.

```
config mesh radius-server index { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS authentication method. Options are as follows:</td>
</tr>
<tr>
<td></td>
<td>- Enter <code>eap</code> to designate Extensible Authentication Protocol (EAP) for the mesh RADIUS server setting.</td>
</tr>
<tr>
<td></td>
<td>- Enter <code>psk</code> to designate Preshared Keys (PSKs) for the mesh RADIUS server setting.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the external authentication for mesh access points.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the external authentication for mesh access points.</td>
</tr>
</tbody>
</table>

**Command Default**

EAP is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable external authentication for mesh access points:

```
(Cisco Controller) > config mesh radius-server eap enable
```
**config mesh range**

To globally set the maximum range between outdoor root access points (RAPs) and mesh access points (MAPs), use the `config mesh range` command.

```
config mesh range [distance]
```

**Syntax Description**

- `distance` (Optional) Maximum operating range (150 to 132000 ft) of the mesh access point.

**Command Default**

12,000 feet.

**Command History**

- **Release** 7.6
  - *Modification* This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

After this command is enabled, all outdoor mesh access points reboot. This command does not affect indoor access points.

The following example shows how to set the range between an outdoor mesh RAP and a MAP:

```
(Cisco Controller) >config mesh range 300
Command not applicable for indoor mesh. All outdoor Mesh APs will be rebooted
Are you sure you want to start? (y/N) y
```
config mesh secondary-backhaul

To configure a secondary backhaul on the mesh network, use the `config mesh secondary-backhaul` command.

```
config mesh secondary-backhaul { enable [force-same-secondary-channel] | disable [rll-retransmit | rll-transmit] }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the secondary backhaul configuration.</td>
</tr>
<tr>
<td><code>force-same-secondary-channel</code></td>
<td>(Optional) Enables secondary-backhaul mesh capability. Forces all access points rooted at the first hop node to have the same secondary channel and ignores the automatic or manual channel assignments for the mesh access points (MAPs) at the second hop and beyond.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Specifies the secondary backhaul configuration is disabled.</td>
</tr>
<tr>
<td><code>rll-transmit</code></td>
<td>(Optional) Uses reliable link layer (RLL) at the second hop and beyond.</td>
</tr>
<tr>
<td><code>rll-retransmit</code></td>
<td>(Optional) Extends the number of RLL retry attempts in an effort to improve reliability.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command uses a secondary backhaul radio as a temporary path for traffic that cannot be sent on the primary backhaul due to intermittent interference.

The following example shows how to enable a secondary backhaul radio and force all access points rooted at the first hop node to have the same secondary channel:

```
(Cisco Controller) > config mesh secondary-backhaul enable force-same-secondary-channel
```
**config mesh security**

To configure the security settings for mesh networks, use the `config mesh security` command.

```
config mesh security { { rad-mac-filter | force-ext-auth } { enable | disable } } { { eap | psk provisioning | provisioning window } { enable | disable } } { delete_psk | key }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rad-mac-filter</td>
<td>Enables a Remote Authentication Dial-In User Service (RADIUS) MAC address filter for the mesh security setting.</td>
</tr>
<tr>
<td>force-ext-auth</td>
<td>Disables forced external authentication for the mesh security setting.</td>
</tr>
<tr>
<td>lsc-only-auth</td>
<td>Enables Locally Significant Certificate only authentication for the mesh security setting.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the mesh security setting.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the mesh security setting.</td>
</tr>
<tr>
<td>eap</td>
<td>Designates the Extensible Authentication Protocol (EAP) for the mesh security setting by default.</td>
</tr>
<tr>
<td>psk</td>
<td>Designates a preshared key (PSK) for the mesh security setting.</td>
</tr>
<tr>
<td>provisioning</td>
<td>Encrypts provisioning for the PSK in Cisco Wireless Controller (WLC).</td>
</tr>
<tr>
<td>provisioning window</td>
<td>Encrypts provisioning window for the PSK in Cisco WLC.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables provisioning of the PSK.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables provisioning of the PSK.</td>
</tr>
<tr>
<td>key</td>
<td>Specifies the key for the PSK.</td>
</tr>
</tbody>
</table>

**Command Default**

The EAP is designated as default for the mesh security.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.2</td>
<td>This command was modified, the psk provisioning and psk provisioning keywords are added.</td>
</tr>
</tbody>
</table>

The following example shows how to configure EAP as the security option for all mesh access points:

(Cisco Controller) `config mesh security eap`

The following example shows how to configure PSK as the security option for all mesh access points:
(Cisco Controller) config mesh security psk

The following example shows how to enable PSK provisioning as the security option for all mesh access points:

(Cisco Controller)> config mesh security psk provisioning enable

The following example shows how to configure a PSK provisioning key as the security option for all mesh access points:

(Cisco Controller)> config mesh security psk provisioning key 5

The following example shows how to enable a PSK provisioning window as the security option for all mesh access points:

(Cisco Controller)> config mesh security psk provisioning window enable

The following example shows how to delete the PSK provisioning for Cisco WLC:

(Cisco Controller)> config mesh security psk provisioning delete_psk wlc

The following example shows how to delete the PSK provisioning for all mesh access points:

(Cisco Controller)> config mesh security psk provisioning delete_psk ap

The following example shows how to delete PSK provisioning for all configurations in Cisco WLC:

(Cisco Controller)> config mesh security psk provisioning delete_psk wlc all
**config mesh slot-bias**

To enable or disable slot bias for serial backhaul mesh access points, use the `config mesh slot-bias` command.

`config mesh slot-bias  (enable | disable)`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables slot bias for serial backhaul mesh APs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Disables slot bias for serial backhaul mesh APs.</td>
</tr>
</tbody>
</table>

| Command Default | By default, slot bias is in enabled state. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Follow these guidelines when using this command:

- The `config mesh slot-bias` command is a global command and therefore applicable to all 1524SB APs associated with the same controller.

- Slot bias is applicable only when both slot 1 and slot 2 are available. If a slot radio does not have a channel that is available because of dynamic frequency selection (DFS), the other slot takes up both the uplink and downlink roles.

- If slot 2 is not available because of hardware issues, slot bias functions normally. Corrective action should be taken by disabling the slot bias or fixing the antenna.

The following example shows how to disable slot bias for serial backhaul mesh APs:

(Cisco Controller) > `config mesh slot-bias disable`
**config mgmtuser add**

To add a local management user to the controller, use the `config mgmtuser add` command.

```
config mgmtuser add username password {lobby-admin | read-write | read-only} [description]
```

**Syntax Description**

- **username**
  - Account username. The username can be up to 24 alphanumeric characters.

- **password**
  - Account password. The password can be up to 24 alphanumeric characters.

- **read-write**
  - Creates a management user with read-write access.

- **read-only**
  - Creates a management user with read-only access.

- **description**
  - (Optional) Description of the account. The description can be up to 32 alphanumeric characters within double quotes.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create a management user account with read-write access.

```
(Cisco Controller) > config mgmtuser add admin admin read-write "Main account"
```

**Related Commands**

- `show mgmtuser`
config mgmtuser delete

To delete a management user from the controller, use the `config mgmtuser delete` command.

```
config mgmtuser delete username
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Account username. The username can be up to 24 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

The management user is not deleted by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a management user account admin from the controller.

```
(Cisco Controller) > config mgmtuser delete admin
Deleted user admin
```

**Related Commands**

- `show mgmtuser`
**config mgmtuser description**

To add a description to an existing management user login to the controller, use the **config mgmtuser description** command.

```
config mgmtuser description username description
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Account username. The username can be up to 24 alphanumeric characters.</td>
</tr>
<tr>
<td><code>description</code></td>
<td>Description of the account. The description can be up to 32 alphanumeric characters within double quotes.</td>
</tr>
</tbody>
</table>

**Command Default**

No description is added to the management user.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a description “master-user” to the management user “admin”:

```
(Cisco Controller) > config mgmtuser description admin "master user"
```

**Related Commands**

- `config mgmtuser add`
- `config mgmtuser delete`
- `config mgmtuser password`
- `show mgmtuser`
config mgmtuser password

To configure a management user password, use the `config mgmtuser password` command.

`config mgmtuser password username password`

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Account username. The username can be up to 24 alphanumeric characters.</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Account password. The password can be up to 24 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to change the password of the management user “admin” with the new password 5rTfm:

```plaintext
(Cisco Controller) > config mgmtuser password admin 5rTfm
```

**Related Commands**

- `show mgmtuser`
To enable local management users to use Telnet to connect to the Cisco Wireless LAN Controller, use the `config mgmtuser telnet` command.

```
config mgmtuser telnet user_name { enable | disable }
```

**Syntax Description**

- **user_name**: Username of a local management user.
- **enable**: Enables a local management user to use Telnet to connect to the Cisco WLC. You can enter up to 24 alphanumeric characters.
- **disable**: Disables a local management user from using Telnet to connect to the Cisco WLC.

**Command Default**

Local management users can use Telnet to connect to the Cisco WLC.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must enable global Telnet to enable this command. Secure Shell (SSH) connection is not affected when you enable this option.

The following example shows how to enable a local management user to use Telnet to connect to the Cisco WLC:

```
(Cisco Controller) > config mgmtuser telnet admin1 enable
```
**config mobility dscp**

To configure the mobility intercontroller DSCP value, use the `config mobility dscp` command.

```
config mobility dscp dscp_value
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp_value</td>
<td>DSCP value ranging from 0 to 63.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the mobility intercontroller DSCP value to 40:

```
(Cisco Controller) >config mobility dscp 40
```
config mobility group anchor

To create a new mobility anchor for the WLAN or wired guest LAN, enter, use the `config mobility group anchor` command.

```
config mobility group anchor { add | delete } { wlan wlan_id | guest-lan guest_lan_id } anchor_ip
```

**Syntax Description**
- **add**: Adds or changes a mobility anchor to a wireless LAN.
- **delete**: Deletes a mobility anchor from a wireless LAN.
- **wlan**: Specifies the wireless LAN anchor settings.
- **wlan_id**: Wireless LAN identifier between 1 and 512 (inclusive).
- **guest-lan**: Specifies the guest LAN anchor settings.
- **guest_lan_id**: Guest LAN identifier between 1 and 5 (inclusive).
- **anchor_ip**: IP address of the anchor controller.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `wlan_id` or `guest_lan_id` must exist and be disabled.

Auto-anchor mobility is enabled for the WLAN or wired guest LAN when you configure the first mobility anchor. Deleting the last anchor disables the auto-anchor mobility feature and resumes normal mobility for new associations.

The following example shows how to add a mobility anchor with the IP address 192.12.1.5 to a wireless LAN ID 2:

```
(Cisco Controller) >config mobility group anchor add wlan 2 192.12.1.5
```

The following example shows how to delete a mobility anchor with the IP address 193.13.1.15 from a wireless LAN:

```
(Cisco Controller) >config mobility group anchor delete wlan 5 193.13.1.15
```
The following example shows how to configure a mobility domain name lab1:

(Cisco Controller) > config mobility group domain lab1
To configure the Cisco WLC to detect failed mobility group members (including anchor Cisco WLCs), use the `config mobility group keepalive count` command.

### Syntax Description

`count`  
Number of times that a ping request is sent to a mobility group member before the member is considered unreachable. The range is from 3 to 20. The default is 3.

### Command Default

The default number of times that a ping request is sent to a mobility group member is 3.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the number of times a ping request is sent to a mobility group member before the member is considered unreachable to three counts:

```
(Cisco Controller) > config mobility group keepalive count 3
```
**config mobility group keepalive interval**

To configure the controller to detect failed mobility group members (including anchor controllers), use the `config mobility group keepalive` command.

```
config mobility group keepalive interval
```

**Syntax Description**

| interval     | Interval of time between each ping request sent to a mobility group member. The range is from 1 to 30 seconds. The default value is 10 seconds. |

**Command Default**

The default interval of time between each ping request is 10 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the amount of time between each ping request sent to a mobility group member to 10 seconds:

```
(Cisco Controller) >config mobility group keepalive 10
```
config mobility group member

To add or delete users from the mobility group member list, use the `config mobility group member` command.

```
config mobility group member { add MAC-addr IP-addr [group_name] | delete MAC-addr | hash IP-addr { key | none } }
```

**Syntax Description**

- **add**
  - Adds or changes a mobility group member to the list.
  - `MAC-addr` Member switch MAC address.
  - `IP-addr` Member switch IP address.
  - `group_name` (Optional) Member switch group name (if different from the default group name).

- **delete**
  - (Optional) Deletes a mobility group member from the list.

- **hash**
  - Configures the hash key for authorization. You can configure the hash key only if the member is a virtual controller in the same domain.
  - `key` Hash key of the virtual controller. For example, a819d479dcefeb3e0974421b6e8335582263d9169
  - `none` Clears the previous hash key of the virtual controller.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to add a mobility group member with an IPv4 address to the list:

```
(Cisco Controller) > config mobility group member add 11:11:11:11:11:11 209.165.200.225
```

The following example shows how to add a mobility group member with an IPv6 address to the list:

```
(Cisco Controller) > config mobility group member add 11:11:11:11:11:11 2001:DB8::1
```

The following example shows how to configure the hash key of a virtual controller in the same domain:
Note

The IP address in this example can be in either IPv4 or IPv6 format.

(Cisco Controller) > config mobility group member hash 209.165.201.1 a819d479dceb3e0974421b6e8335582263d9169
config mobility group multicast-address

To configure the multicast group IP address for nonlocal groups within the mobility list, use the `config mobility group multicast-address` command.

```
config mobility group multicast-address group_name ip_address
```

**Syntax Description**

- **group_name**: Member switch group name (if different from the default group name).
- **ip_address**: Member switch IP address.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the multicast group IP address 10.10.10.1 for a group named test:

```
(Cisco Controller) >config mobility group multicast-address test 10.10.10.1
```

The following example shows how to configure the multicast group IP address 2001:DB8::1 for a group named test:

```
(Cisco Controller) >config mobility group multicast-address test 2001:DB8::1
```
**config mobility multicast-mode**

To enable or disable mobility multicast mode, use the `config mobility multicast-mode` command.

```
config mobility multicast-mode {enable | disable} local_group_multicast_address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Enables the multicast mode; the controller uses multicast mode to send Mobile Announce messages to the local group.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables the multicast mode; the controller uses unicast mode to send the Mobile Announce messages to the local group.</td>
</tr>
<tr>
<td><strong>local_group_multicast_address</strong></td>
<td>IP address for the local mobility group.</td>
</tr>
</tbody>
</table>

**Command Default**

The mobility multicast mode is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the multicast mobility mode for the local mobility group IP address 157.168.20.0:

```
(Cisco Controller) > config mobility multicast-mode enable 157.168.20.0
```
To enable new mobility on the Cisco Wireless LAN Controller (WLC), use the **config mobility new-architecture** command.

```
config mobility new-architecture { enable | disable }
```

**Syntax Description**
- `enable` Configures the Cisco WLC to switch to the new mobility architecture.
- `disable` Configures the Cisco WLC to switch to the old flat mobility architecture.

**Command Default**
By default, new mobility is disabled.

**Command History**
- **Release** 7.3.112.0  This command was introduced.

**Usage Guidelines**
New mobility is supported only on Cisco WiSM2, Cisco 2500 Series Wireless Controllers, Cisco 5500 Series Wireless Controllers, and Cisco 8500 Series Wireless Controllers. New mobility enables the Cisco WLC to be compatible with Converged Access controllers with Wireless Control Module (WCM), such as Cisco Catalyst 3850 Series and the Cisco 5760 Wireless LAN Controllers.

The following example shows how to enable new mobility on the Cisco WLC:

```
(Cisco Controller) > config mobility new-architecture enable
```
**config mobility oracle**

To configure the Mobility Oracle (MO), use the `config mobility oracle` command.

```
config mobility oracle (enable | disable | ip ip_address)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the MO on startup.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the MO on startup.</td>
</tr>
<tr>
<td>ip</td>
<td>Specifies the IP address of the MO.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of the MO.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.112.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The MO maintains the client database under one complete mobility domain. It consists of a station database, an interface to the mobility Cisco WLC, and an NTP server. There can be only one MO in the entire mobility domain.

The IPv6 address format for this command is not supported.

The following example shows how to configure the MO IP address:

```
(Cisco Controller) >config mobility oracle ip 27.0.0.1
```
To configure a switch peer group (SPG) on the controller, use the `config mobility switchPeerGroup` command.

```plaintext
config mobility switchPeerGroup { bridge-domain-id peer-group-name bridge domain id | create peer-group-name | delete peer-group-name | member { add | delete } IP_address [public_IP_address] peer-group-name | multicast-address peer-group-name multicast_IP_address}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge-domain-id</td>
<td>Configures the bridge domain ID of the SPG.</td>
</tr>
<tr>
<td>peer-group-name</td>
<td>Name of the SPG.</td>
</tr>
<tr>
<td>bridge domain id</td>
<td>Bridge domain ID of the SPG.</td>
</tr>
<tr>
<td>create</td>
<td>Creates an SPG.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an SPG.</td>
</tr>
<tr>
<td>member</td>
<td>Configures a member switch for an SPG.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a member switch into an SPG.</td>
</tr>
<tr>
<td>IP_address</td>
<td>IP address of the member switch.</td>
</tr>
<tr>
<td>public_IP_address</td>
<td>(Optional) Public IP address of the SPG member.</td>
</tr>
<tr>
<td>multicast-address</td>
<td>Configures the multicast address of the SPG.</td>
</tr>
<tr>
<td>multicast_IP_address</td>
<td>Multicast address of the SPG.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.112.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The IPv6 address format for this command is not supported.

The following example shows how to create an SPG.

(Cisco Controller) >config mobility switchPeerGroup create SPG1
To configure the secure mode for mobility messages between Cisco WLCs, use the `config mobility secure-mode` command.

```plaintext
config mobility secure-mode {enable | disable}
```

**Syntax Description**
- **enable**
  - Enables the mobility group message security.
- **disable**
  - Disables mobility group message security.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the secure mode for mobility messages:

```plaintext
(Cisco Controller) > config mobility secure-mode enable
```
To reset the mobility statistics, use the `config mobility statistics reset` command.

```
config mobility statistics reset
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to reset the mobility group statistics:

```
(Cisco Controller) > config mobility statistics reset
```
config netuser add

To add a guest user on a WLAN or wired guest LAN to the local user database on the controller, use the `config netuser add` command.

```
config netuser add username password { wlan wlan_id | guestlan guestlan_id } userType guest lifetime
lifetime description description
```

**Syntax Description**

- **username**: Guest username. The username can be up to 50 alphanumeric characters.
- **password**: User password. The password can be up to 24 alphanumeric characters.
- **wlan**: Specifies the wireless LAN identifier to associate with or zero for any wireless LAN.
- **wlan_id**: Wireless LAN identifier assigned to the user. A zero value associates the user with any wireless LAN.
- **guestlan**: Specifies the guest LAN identifier to associate with or zero for any wireless LAN.
- **guestlan_id**: Guest LAN ID.
- **userType**: Specifies the user type.
- **guest**: Specifies the guest for the guest user.
- **lifetime**: Specifies the lifetime.
- **lifetime**: Lifetime value (60 to 259200 or 0) in seconds for the guest user.
- **description**: Short description of user. The description can be up to 32 characters enclosed in double-quotes.

**Note**
A value of 0 indicates an unlimited lifetime.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Local network usernames must be unique because they are stored in the same database.

The following example shows how to add a permanent username Jane to the wireless network for 1 hour:
The following example shows how to add a guest username George to the wireless network for 1 hour:

(Cisco Controller) > config netuser add george able1 guestlan 1 3600
config netuser delete

To delete an existing user from the local network, use the `config netuser delete` command.

```
config netuser delete { username username | wlan-id wlan-id }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td></td>
<td>Network username. The username can be up to 24 alphanumeric characters.</td>
</tr>
<tr>
<td><code>wlan-id</code></td>
<td></td>
<td>WLAN identification number.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
<td></td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Local network usernames must be unique because they are stored in the same database.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>When a WLAN associated with network users is deleted, the system prompts to delete all network users associated with the WLAN first. After deleting the network users, you can delete the WLAN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to delete an existing username named able1 from the network:

```
(Cisco Controller) > config netuser delete able1
Deleted user able1
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show netuser</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
config netuser description

To add a description to an existing net user, use the **config netuser description** command.

```
config netuser description username description
```

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>username</strong></td>
<td>Network username. The username can contain up to 24 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>description</strong></td>
<td>(Optional) User description. The description can be up to 32 alphanumeric characters enclosed in double quotes.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a user description “HQ1 Contact” to an existing network user named able1:

```
(Cisco Controller) > config netuser description able1 “HQ1 Contact”
```

**Related Commands**

`show netuser`
config netuser guest-lan-id

To configure a wired guest LAN ID for a network user, use the `config netuser guest-lan-id` command.

`config netuser guest-lan-id username lan_id`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Network username. The username can be 24 alphanumeric characters.</td>
</tr>
<tr>
<td>lan_id</td>
<td>Wired guest LAN identifier to associate with the user. A zero value associates the user with any wired LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a wired LAN ID 2 to associate with the user named aire1:

```
(Cisco Controller) > config netuser guest-lan-id aire1 2
```

**Related Commands**

- `show netuser`
- `show wlan summary`
config netuser guest-role apply

To apply a quality of service (QoS) role to a guest user, use the `config netuser guest-role apply` command.

```
config netuser guest-role apply username role_name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Name of the user.</td>
</tr>
<tr>
<td>role_name</td>
<td>QoS guest role name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not assign a QoS role to a guest user, the Role field in the User Details shows the role as default. The bandwidth contracts for this user are defined in the QoS profile for the WLAN.

If you want to unassign a QoS role from a guest user, use the `config netuser guest-role apply username default`. This user now uses the bandwidth contracts defined in the QoS profile for the WLAN.

The following example shows how to apply a QoS role to a guest user jsmith with the QoS guest role named Contractor:

```
(Cisco Controller) > config netuser guest-role apply jsmith Contractor
```

**Related Commands**

- `config netuser guest-role create`
- `config netuser guest-role delete`
config netuser guest-role create

To create a quality of service (QoS) role for a guest user, use the `config netuser guest-role create` command.

`config netuser guest-role create role_name`

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>role name</td>
<td>QoS guest role name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To delete a QoS role, use the `config netuser guest-role delete role-name`.

The following example shows how to create a QoS role for the guest user named guestuser1:

```
(Cisco Controller) > config netuser guest-role create guestuser1
```

**Related Commands**

`config netuser guest-role delete`
config netuser guest-role delete

To delete a quality of service (QoS) role for a guest user, use the `config netuser guest-role delete` command.

```
config netuser guest-role delete role_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>role_name</td>
<td>Quality of service (QoS) guest role name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a quality of service (QoS) role for guestuser1:

```
(Cisco Controller) > config netuser guest-role delete guestuser1
```

**Related Commands**

- `config netuser guest-role create`
config netuser guest-role qos data-rate average-data-rate

To configure the average data rate for TCP traffic on a per user basis, use the `config netuser guest-role qos data-rate average-data-rate` command.

```
config netuser guest-role qos data-rate average-data-rate role_name rate
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>role_name</code></td>
</tr>
<tr>
<td>Quality of service (QoS) guest role name.</td>
</tr>
<tr>
<td><code>rate</code></td>
</tr>
<tr>
<td>Rate for TCP traffic on a per user basis.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Usage Guidelines**

For the `role_name` parameter in each of these commands, enter a name for the new QoS role. The name uniquely identifies the role of the QoS user (such as contractor, vendor, and so on.). For the `rate` parameter, you can enter a value between 0 and 60,000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS role.

The following example shows how to configure an average rate for the QoS guest named guestuser1:

```
(Cisco Controller) > config netuser guest-role qos data-rate average-data-rate guestuser1 0
```

**Related Commands**

- `config netuser guest-role create`
- `config netuser guest-role delete`
- `config netuser guest-role qos data-rate burst-data-rate`
To configure the average data rate for TCP traffic on a per user basis, use the `config netuser guest-role qos data-rate average-realtime-rate` command.

```plaintext
(config netuser guest-role qos data-rate average-realtime-rate role_name rate)
```

**Syntax Description**

| role_name | Quality of service (QoS) guest role name. |
| rate      | Rate for TCP traffic on a per user basis. |

**Command Default**

None

**Usage Guidelines**

For the `role_name` parameter in each of these commands, enter a name for the new QoS role. The name uniquely identifies the role of the QoS user (such as contractor, vendor, and so on.). For the `rate` parameter, you can enter a value between 0 and 60,000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS role.

The following example shows how to configure an average data rate for the QoS guest user named `guestuser1` with the rate for TCP traffic of 0 Kbps:

```plaintext
(Cisco Controller) > config netuser guest-role qos data-rate average-realtime-rate guestuser1 0
```

**Related Commands**

- `config netuser guest-role`
- `config netuser guest-role qos data-rate average-data-rate`
config netuser guest-role qos data-rate burst-data-rate

To configure the peak data rate for TCP traffic on a per user basis, use the `config netuser guest-role qos data-rate burst-data-rate` command.

```
config netuser guest-role qos data-rate burst-data-rate role_name rate
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>role_name</td>
<td>Quality of service (QoS) guest role name.</td>
</tr>
<tr>
<td>rate</td>
<td>Rate for TCP traffic on a per user basis.</td>
</tr>
</tbody>
</table>

| Command Default    | None                                             |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

| Usage Guidelines   | The burst data rate should be greater than or equal to the average data rate. Otherwise, the QoS policy may block traffic to and from the wireless client. |

For the `role_name` parameter in each of these commands, enter a name for the new QoS role. The name uniquely identifies the role of the QoS user (such as contractor, vendor, and so on.). For the `rate` parameter, you can enter a value between 0 and 60,000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS role.

The following example shows how to configure the peak data rate for the QoS guest named guestuser1 with the rate for TCP traffic of 0 Kbps:

```
(Cisco Controller) > config netuser guest-role qos data-rate burst-data-rate guestuser1 0
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th><code>config netuser guest-role create</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>config netuser guest-role delete</code></td>
</tr>
<tr>
<td></td>
<td><code>config netuser guest-role qos data-rate average-data-rate</code></td>
</tr>
</tbody>
</table>
config netuser guest-role qos data-rate burst-realtime-rate

To configure the burst real-time data rate for UDP traffic on a per user basis, use the `config netuser guest-role qos data-rate burst-realtime-rate` command.

`config netuser guest-role qos data-rate burst-realtime-rate role_name rate`

**Syntax Description**

<table>
<thead>
<tr>
<th>role_name</th>
<th>Quality of service (QoS) guest role name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Rate for TCP traffic on a per user basis.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The burst real-time rate should be greater than or equal to the average real-time rate. Otherwise, the quality of service (QoS) policy may block traffic to and from the wireless client.

For the `role_name` parameter in each of these commands, enter a name for the new QoS role. The name uniquely identifies the role of the QoS user (such as contractor, vendor, and so on.). For the `rate` parameter, you can enter a value between 0 and 60,000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS role.

The following example shows how to configure a burst real-time rate for the QoS guest user named `guestuser1` with the rate for TCP traffic of 0 Kbps:

```
(Cisco Controller) > config netuser guest-role qos data-rate burst-realtime-rate guestuser1 0
```

**Related Commands**

- `config netuser guest-role`
- `config netuser guest-role qos data-rate average-data-rate`
- `config netuser guest-role qos data-rate burst-data-rate`
**config netuser lifetime**

To configure the lifetime for a guest network user, use the `config netuser lifetime` command.

```
config netuser lifetime username time
```

**Syntax Description**

- **username**: Network username. The username can be up to 50 alphanumeric characters.
- **time**: Lifetime between 60 to 31536000 seconds or 0 for no limit.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure lifetime for a guest network user:

```
(Cisco Controller) > config netuser lifetime guestuser1 22450
```

**Related Commands**

- `show netuser`
- `show wlan summary`
**config netuser maxUserLogin**

To configure the maximum number of login sessions allowed for a network user, use the `config netuser maxUserLogin` command.

```
config netuser maxUserLogin count
```

**Syntax Description**

| count | Maximum number of login sessions for a single user. The allowed values are from 0 (unlimited) to 8. |

**Command Default**

By default, the maximum number of login sessions for a single user is 0 (unlimited).

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the maximum number of login sessions for a single user to 8:

```
(Cisco Controller) > config netuser maxUserLogin 8
```

**Related Commands**

- `show netuser`
**config netuser password**

To change a local network user password, use the `config netuser password` command.

```
config netuser password username password
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Network username. The username can be up to 24 alphanumeric characters.</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Network user password. The password can contain up to 24 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to change the network user password from aire1 to aire2:

```
(Cisco Controller) > config netuser password aire1 aire2
```

**Related Commands**

`show netuser`
**config netuser wlan-id**

To configure a wireless LAN ID for a network user, use the `config netuser wlan-id` command.

```
config netuser wlan-id username wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Network username. The username can be 24 alphanumeric characters.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier to associate with the user. A zero value associates the user with any wireless LAN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure a wireless LAN ID 2 to associate with the user named aire1:

```
(Cisco Controller) > config netuser wlan-id aire1 2
```

**Related Commands**

- `show netuser`
- `show wlan summary`
config network bridging-shared-secret

To configure the bridging shared secret, use the `config network bridging-shared-secret` command.

```
config network bridging-shared-secret shared_secret
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>shared_secret</code></td>
<td>Bridging shared secret string. The string can contain up to 10 bytes.</td>
</tr>
</tbody>
</table>

**Command Default**

The bridging shared secret is enabled by default.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

**Usage Guidelines**

This command creates a secret that encrypts backhaul user data for the mesh access points that connect to the switch.

The zero-touch configuration must be enabled for this command to work.

The following example shows how to configure the bridging shared secret string “shhh1”:

```
(Cisco Controller) > config network bridging-shared-secret shhh1
```

**Related Commands**

- `show network summary`
To configure the controller to support bypass of captive portals at the network level, use the `config network web-auth captive-bypass` command.

```
config network web-auth captive-bypass { enable | disable }
```

**Syntax Description**

- `enable`  
  Allows the controller to support bypass of captive portals.
- `disable`  
  Disallows the controller to support bypass of captive portals.

**Command Default**

None

The following example shows how to configure the controller to support bypass of captive portals:

```
(Cisco Controller) > config network web-auth captive-bypass enable
```

**Related Commands**

- `show network summary`
- `config network web-auth cmcc-support`
**config network web-auth port**

To configure an additional port to be redirected for web authentication at the network level, use the `config network web-auth port` command.

```
config network web-auth port port
```

**Syntax Description**

- **port**
  - Port number. The valid range is from 0 to 65535.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an additional port number 1200 to be redirected for web authentication:

```
(Cisco Controller) > config network web-auth port 1200
```

**Related Commands**

- `show network summary`
config network web-auth proxy-redirect

To configure proxy redirect support for web authentication clients, use the `config network web-auth proxy-redirect` command.

```
config network web-auth proxy-redirect { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Allows proxy redirect support for web authentication clients.</td>
</tr>
<tr>
<td>disable</td>
<td>Disallows proxy redirect support for web authentication clients.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable proxy redirect support for web authentication clients:

```
(Cisco Controller) > config network web-auth proxy-redirect enable
```

**Related Commands**

- `show network summary`
config network web-auth secureweb

To configure the secure web (https) authentication for clients, use the config network web-auth secureweb command.

```
config network web-auth secureweb { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Allows secure web (https) authentication for clients.</td>
</tr>
<tr>
<td>disable</td>
<td>Disallows secure web (https) authentication for clients.</td>
</tr>
<tr>
<td></td>
<td>Enables http web authentication for clients.</td>
</tr>
</tbody>
</table>

**Command Default**
The default secure web (https) authentication for clients is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you configure the secure web (https) authentication for clients using the config network web-auth secureweb disable command, then you must reboot the Cisco WLC to implement the change.

The following example shows how to enable the secure web (https) authentication for clients:

```
(Cisco Controller) > config network web-auth secureweb enable
```

**Related Commands**

show network summary
**config network webmode**

To enable or disable the web mode, use the `config network webmode` command.

```
config network webmode { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the web interface.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the web interface.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for the web mode is `enable`.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the web interface mode:

```
(Cisco Controller) > config network webmode disable
```

**Related Commands**

- `show network summary`
config network web-auth

To configure the network-level web authentication options, use the `config network web-auth` command.

```
cfg network web-auth { port port-number } | { proxy-redirect { enable | disable } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>Configures additional ports for web authentication redirection.</td>
</tr>
<tr>
<td><code>port-number</code></td>
<td>Port number (between 0 and 65535).</td>
</tr>
<tr>
<td><code>proxy-redirect</code></td>
<td>Configures proxy redirect support for web authentication clients.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables proxy redirect support for web authentication clients.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables proxy redirect support for web authentication clients.</td>
</tr>
</tbody>
</table>

**Note**

Web-auth proxy redirection will be enabled for ports 80, 8080, and 3128, along with user defined port 345.

### Command Default

The default network-level web authentication value is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You must reset the system for the configuration to take effect.

The following example shows how to enable proxy redirect support for web authentication clients:

```
(Cisco Controller) > config network web-auth proxy-redirect enable
```

### Related Commands

- `show network summary`
- `show run-config`
- `config qos protocol-type`
config network 802.3-bridging

To enable or disable 802.3 bridging on a controller, use the config network 802.3-bridging command.

```
config network 802.3-bridging { enable | disable }
```

**Syntax Description**
- **enable** Enables the 802.3 bridging.
- **disable** Disables the 802.3 bridging.

**Command Default**
By default, 802.3 bridging on the controller is disabled.

**Command History**
- **Release 7.6**
  - This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**
In controller software release 5.2, the software-based forwarding architecture for Cisco 2100 Series Controllers is being replaced with a new forwarding plane architecture. As a result, Cisco 2100 Series Controllers and the Cisco wireless LAN controller Network Module for Cisco Integrated Services Routers bridge 802.3 packets by default. Therefore, 802.3 bridging can now be disabled only on Cisco 4400 Series Controllers, the Cisco WiSM, and the Catalyst 3750G Wireless LAN Controller Switch.

To determine the status of 802.3 bridging, enter the `show netuser guest-roles` command.

The following example shows how to enable the 802.3 bridging:

```
(Cisco Controller) > config network 802.3-bridging enable
```

**Related Commands**
- `show netuser guest-roles`
- `show network`
config network allow-old-bridge-aps

To configure an old bridge access point’s ability to associate with a switch, use the config network allow-old-bridge-aps command.

config network allow-old-bridge-aps { enable | disable }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the switch association.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the switch association.</td>
</tr>
</tbody>
</table>

Command Default
Switch association is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an old bridge access point to associate with the switch:

(Cisco Controller) > config network allow-old-bridge-aps enable
**config network ap-discovery**

To enable or disable NAT IP in an AP discovery response, use the `config network ap-discovery` command.

```
config network ap-discovery nat-ip-only {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables use of NAT IP only in discovery response.</td>
</tr>
<tr>
<td>disable</td>
<td>Enables use of both NAT IP and non NAT IP in discovery response.</td>
</tr>
</tbody>
</table>

**Command Default**
The use of NAT IP only in discovery response is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `config interface nat-address management` command is set, this command controls which address(es) are sent in the CAPWAP discovery responses.

If all APs are on the outside of the NAT gateway of the controller, enter the `config network ap-discovery nat-ip-only enable` command, and only the management NAT address is sent.

If the controller has both APs on the outside and the inside of its NAT gateway, enter the `config network ap-discovery nat-ip-only disable` command, and both the management NAT address and the management inside address are sent. Ensure that you have entered the `config ap link-latency disable all` command to avoid stranding APs.

The following example shows how to enable NAT IP in an AP discovery response:

```
(Cisco Controller) > config network ap-discovery nat-ip-only enable
```
config network ap-fallback

To configure Cisco lightweight access point fallback, use the `config network ap-fallback` command.

```plaintext
config network ap-fallback { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables the Cisco lightweight access point fallback.</td>
<td>Disables the Cisco lightweight access point fallback.</td>
</tr>
</tbody>
</table>

| Command Default | The Cisco lightweight access point fallback is enabled. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the Cisco lightweight access point fallback:

```plaintext
(Cisco Controller) > config network ap-fallback enable
```
**config network ap-priority**

To enable or disable the option to prioritize lightweight access points so that after a controller failure they reauthenticate by priority rather than on a first-come-until-full basis, use the `config network ap-priority` command.

```
config network ap-priority { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the lightweight access point priority reauthentication.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the lightweight access point priority reauthentication.</td>
</tr>
</tbody>
</table>

**Command Default**
The lightweight access point priority reauthentication is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the lightweight access point priority reauthorization:

```
(Cisco Controller) > config network ap-priority enable
```
config network apple-talk

To configure AppleTalk bridging, use the `config network apple-talk` command.

```
config network apple-talk (enable | disable)
```

**Syntax Description**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the AppleTalk bridging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the AppleTalk bridging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure AppleTalk bridging:

```
(Cisco Controller) > config network apple-talk enable
```
config network arptimeout

To set the Address Resolution Protocol (ARP) entry timeout value, use the `config network arptimeout` command.

```
config network arptimeout seconds
```

**Syntax Description**

| seconds | Timeout in seconds. The minimum value is 10 seconds. The default value is 300 seconds. |

**Command Default**

The default ARP entry timeout value is 300 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to set the ARP entry timeout value to 240 seconds:

```
(Cisco Controller) > config network arptimeout 240
```

**Related Commands**

`show network summary`
**config assisted-roaming**

To configure assisted roaming parameters on the controller, use the `config assisted-roaming` command.

```
config assisted-roaming (denial-maximum count | floor-bias RSSI | prediction-minimum number_of_APs)
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>denial-maximum</strong></td>
<td>Configures the maximum number of counts for association denial.</td>
</tr>
<tr>
<td><strong>count</strong></td>
<td>Maximum number of times that a client is denied for association when the association request that was sent to an access point does not match any access point on the prediction list. The range is from 1 to 10.</td>
</tr>
<tr>
<td><strong>floor-bias</strong></td>
<td>Configures the RSSI bias for access points on the same floor.</td>
</tr>
<tr>
<td><strong>RSSI</strong></td>
<td>RSSI bias for access points on the same floor. The range is from 5 to 25. Access points on the same floor have more preference.</td>
</tr>
<tr>
<td><strong>prediction-minimum</strong></td>
<td>Configures the minimum number of optimized access points for the assisted roaming feature.</td>
</tr>
<tr>
<td><strong>number_of_APs</strong></td>
<td>Minimum number of optimized access points for the assisted roaming feature. The range is from 1 to 6. If the number of access points in the prediction assigned to the client is smaller than this number, the assisted roaming feature does not work.</td>
</tr>
</tbody>
</table>

### Command Default

The default RSSI bias for access points on the same floor is 15 dBm.

### Usage Guidelines

802.11k allows a client to request a neighbor report that contains information about known neighbor access points, which can be used for a service set transition. The neighbor list reduces the need for active and passive scanning.

This example shows how to configure the minimum number of optimized access points for the assisted roaming feature:

```
(Cisco Controller) > config assisted-roaming prediction-minimum 4
```
config network bridging-shared-secret

To configure the bridging shared secret, use the `config network bridging-shared-secret` command.

```
config network bridging-shared-secret shared_secret
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shared_secret</td>
<td>Bridging shared secret string. The string can contain up to 10 bytes.</td>
</tr>
</tbody>
</table>

**Command Default**

The bridging shared secret is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command creates a secret that encrypts backhaul user data for the mesh access points that connect to the switch.

The zero-touch configuration must be enabled for this command to work.

The following example shows how to configure the bridging shared secret string “shhh1”:

```
(Cisco Controller) > config network bridging-shared-secret shhh1
```

**Related Commands**

- `show network summary`
config network broadcast

To enable or disable broadcast packet forwarding, use the config network broadcast command.

```
config network broadcast {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the broadcast packet forwarding.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the broadcast packet forwarding.</td>
</tr>
</tbody>
</table>

| Command Default    | The broadcast packet forwarding is disabled by default. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release    Modification</td>
</tr>
<tr>
<td></td>
<td>7.6        This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command allows you to enable or disable broadcasting. You must enable multicast mode before enabling broadcast forwarding. Use the config network multicast mode command to configure multicast mode on the controller.

**Note**

The default multicast mode is unicast in case of all controllers except for Cisco 2106 Controllers. The broadcast packets and multicast packets can be independently controlled. If multicast is off and broadcast is on, broadcast packets still reach the access points, based on the configured multicast mode.

The following example shows how to enable broadcast packet forwarding:

```
(Cisco Controller) > config network broadcast enable
```

**Related Commands**

- show network summary
- config network multicast global
- config network multicast mode
To enable or disable fast Service Set Identifier (SSID) changing for mobile stations, use the `config network fast-ssid-change` command.

```
config network fast-ssid-change {enable | disable}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the fast SSID changing for mobile stations.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the fast SSID changing for mobile stations.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When you enable the Fast SSID Change feature, the controller allows clients to move between SSIDs. When the client sends a new association for a different SSID, the client entry in the controller connection table is cleared before the client is added to the new SSID.

When you disable the Fast SSID Change feature, the controller enforces a delay before clients are allowed to move to a new SSID.

The following example shows how to enable the fast SSID changing for mobile stations:

```
(Cisco Controller) > config network fast-ssid-change enable
```

### Related Commands

- `show network summary`
**config network ip-mac-binding**

To validate the source IP address and MAC address binding within client packets, use the `config network ip-mac-binding` command.

```
config network ip-mac-binding {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Disables the validation of the source IP address to MAC address binding in clients packets.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Enables the validation of the source IP address to MAC address binding in clients packets.</td>
</tr>
</tbody>
</table>

**Command Default**

The validation of the source IP address to MAC address binding in clients packets is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In controller software release 5.2, the controller enforces strict IP address-to-MAC address binding in client packets. The controller checks the IP address and MAC address in a packet, compares them to the addresses that are registered with the controller, and forwards the packet only if they both match. In previous releases, the controller checks only the MAC address of the client and ignores the IP address.

**Note**

You might want to disable this binding check if you have a routed network behind a workgroup bridge (WGB).

The following example shows how to validate the source IP and MAC address within client packets:

```
(Cisco Controller) > config network ip-mac-binding enable
```
To configure bridging of link local traffic at the local site, use the `config network link-local-bridging` command.

```
config network link-local-bridging { enable | disable }
```

**Syntax Description**
- `enable` Enables bridging of link local traffic at the local site
- `disable` Disables bridging of link local traffic at the local site

**Command Default**
Disabled

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>
**config network master-base**

To enable or disable the Cisco wireless LAN controller as an access point default master, use the `config network master-base` command.

```plaintext
config network master-base { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Cisco wireless LAN controller acting as a Cisco lightweight access point default master.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Cisco wireless LAN controller acting as a Cisco lightweight access point default master.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

**Usage Guidelines**

This setting is only used upon network installation and should be disabled after the initial network configuration. Because the Master Cisco wireless LAN controller is normally not used in a deployed network, the Master Cisco wireless LAN controller setting can be saved from 6.0.199.0 or later releases.

The following example shows how to enable the Cisco wireless LAN controller as a default master:

```
(Cisco Controller) > config network master-base enable
```
# config network mgmt-via-wireless

To enable Cisco wireless LAN controller management from an associated wireless client, use the **config network mgmt-via-wireless** command.

```
config network mgmt-via-wireless { enable | disable }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables the switch management from a wireless interface.</td>
<td>Disables the switch management from a wireless interface.</td>
</tr>
</tbody>
</table>

## Command Default

The switch management from a wireless interface is disabled by default.

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

This feature allows wireless clients to manage only the Cisco wireless LAN controller associated with the client and the associated Cisco lightweight access point. That is, clients cannot manage another Cisco wireless LAN controller with which they are not associated.

This example shows how to configure switch management from a wireless interface:

```
(Cisco Controller) > config network mgmt-via-wireless enable
```

## Related Commands

- **show network summary**
**config network multicast global**

To enable or disable multicasting on the controller, use the **config network multicast global** command.

```
config network multicast global { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the multicast global support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the multicast global support.</td>
</tr>
</tbody>
</table>

**Command Default**

Multicasting on the controller is disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **config network broadcast { enable | disable }** command allows you to enable or disable broadcasting without enabling or disabling multicasting as well. This command uses the multicast mode configured on the controller (by using the **config network multicast mode** command) to operate.

The following example shows how to enable the global multicast support:

```
(Cisco Controller) > config network multicast global enable
```

**Related Commands**

- **show network summary**
- **config network broadcast**
- **config network multicast mode**
To configure the IGMP query interval, use the `config network multicast igmp query interval` command.

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Frequency at which controller sends IGMP query messages. The range is from 15 to 2400 seconds.</td>
</tr>
</tbody>
</table>

### Command Default

The default IGMP query interval is 20 seconds.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

To configure IGMP query interval, ensure that you do the following:

- Enable the global multicast by entering the `config network multicast global enable` command.
- Enable IGMP snooping by entering the `config network multicast igmp snooping enable` command.

The following example shows how to configure the IGMP query interval at 20 seconds:

```
(Cisco Controller) > config network multicast igmp query interval 20
```
**config network multicast igmp snooping**

To enable or disable IGMP snooping, use the `config network multicast igmp snooping` command.

```
config network multicast igmp snooping {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables IGMP snooping.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables IGMP snooping.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable internet IGMP snooping settings:

```
(Cisco Controller) > config network multicast igmp snooping enable
```

**Related Commands**

- `config network multicast global`
- `config network multicast igmp query interval`
- `config network multicast igmp timeout`
config network multicast igmp timeout

To set the IGMP timeout value, use the `config network multicast igmp timeout` command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>Timeout range from 30 to 7200 seconds.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can enter a timeout value between 30 and 7200 seconds. The controller sends three queries in one timeout value at an interval of timeout/3 to see if any clients exist for a particular multicast group. If the controller does not receive a response through an IGMP report from the client, the controller times out the client entry from the MGID table. When no clients are left for a particular multicast group, the controller waits for the IGMP timeout value to expire and then deletes the MGID entry from the controller. The controller always generates a general IGMP query (to destination address 224.0.0.1) and sends it on all WLANs with an MGID value of 1.

The following example shows how to configure the timeout value 50 for IGMP network settings:

```
(Cisco Controller) > config network multicast igmp timeout 50
```

Related Commands

- `config network multicast global`
- `config network igmp snooping`
- `config network multicast igmp query interval`
config network multicast l2mcast

To configure the Layer 2 multicast on an interface or all interfaces, use the `config network multicast l2mcast` command.

```
config network multicast l2mcast { enable | disable { all | interface-name } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables Layer 2 multicast.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables Layer 2 multicast.</td>
</tr>
<tr>
<td>all</td>
<td>Applies to all interfaces.</td>
</tr>
<tr>
<td>interface-name</td>
<td>Interface name for which the Layer 2 multicast is to enabled or disabled.</td>
</tr>
</tbody>
</table>

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable Layer 2 multicast for all interfaces:

```
(Cisco Controller) > config network multicast l2mcast enable all
```

**Related Commands**
- `config network multicast global`
- `config network multicast igmp snooping`
- `config network multicast igmp query interval`
- `config network multicast mld`
config network multicast mld

To configure the Multicast Listener Discovery (MLD) parameters, use the `config network multicast mld` command.

```
config network multicast mld { query interval interval-value | snooping { enable | disable } | timeout timeout-value }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>query interval</td>
<td>Configures query interval to send MLD query messages.</td>
</tr>
<tr>
<td>interval-value</td>
<td>Query interval in seconds. The range is from 15 to 2400 seconds.</td>
</tr>
<tr>
<td>snooping</td>
<td>Configures MLD snooping.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables MLD snooping.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables MLD snooping.</td>
</tr>
<tr>
<td>timeout</td>
<td>Configures MLD timeout.</td>
</tr>
<tr>
<td>timeout-value</td>
<td>Timeout value in seconds. The range is from 30 seconds to 7200 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set a query interval of 20 seconds for MLD query messages:

```
(Cisco Controller) > config network multicast mld query interval 20
```

**Related Commands**

- `config network multicast global`
- `config network multicast igmp snooping`
- `config network multicast igmp query interval`
- `config network multicast l2mcast`
config network multicast mode multicast

To configure the controller to use the multicast method to send broadcast or multicast packets to an access point, use the config network multicast mode multicast command.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History
Release 7.6 This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure the multicast mode to send a single copy of data to multiple receivers:

(Cisco Controller) > config network multicast mode multicast

Related Commands
config network multicast global
config network broadcast
config network multicast mode unicast
config network multicast mode unicast

To configure the controller to use the unicast method to send broadcast or multicast packets to an access point, use the `config network multicast mode unicast` command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the controller to use the unicast mode:

```
(Cisco Controller) > config network multicast mode unicast
```

### Related Commands

- `config network multicast global`
- `config network broadcast`
- `config network multicast mode multicast`
**config network oeap-600 dual-rlan-ports**

To configure the Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port in addition to port 4, use the `config network oeap-600 dual-rlan-ports` command.

```
config network oeap-600 dual-rlan-ports { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port in addition to port 4.</td>
</tr>
<tr>
<td>disable</td>
<td>Resets the Ethernet port 3 Cisco OfficeExtend 600 Series access points to function as a local LAN port.</td>
</tr>
</tbody>
</table>

**Command Default**

The Ethernet port 3 Cisco 600 Series OEAP is reset.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port:

```
(Cisco Controller) > config network oeap-600 dual-rlan-ports enable
```
To configure access to the local network for the Cisco 600 Series OfficeExtend access points, use the `config network oeap-600 local-network` command.

```
config network oeap-600 local-network { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables access to the local network for the Cisco 600 Series OfficeExtend access points.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables access to the local network for the Cisco 600 Series OfficeExtend access points.</td>
</tr>
</tbody>
</table>

**Command Default**

Access to the local network for the Cisco 600 Series OEAPs is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable access to the local network for the Cisco 600 Series OfficeExtend access points:

```
(Cisco Controller) > config network oeap-600 local-network enable
```
config network otap-mode

To enable or disable over-the-air provisioning (OTAP) of Cisco lightweight access points, use the `config network otap-mode` command.

```
config network otap-mode {enable | disable}
```

**Syntax Description**
- `enable` Enables the OTAP provisioning.
- `disable` Disables the OTAP provisioning.

**Command Default**
The OTAP provisioning is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the OTAP provisioning:

```
(Cisco Controller) >config network otap-mode disable
```
To configure PMIPv6 and to enable Mobile Access Gateway (MAG) functionality on Cisco WLC, use the `config pmipv6 domain` command.

```
config pmipv6 domain domain_name
```

**Syntax Description**
- `domain_name`: Name of the PMIPv6 domain. The domain name can be up to 127 case-sensitive, alphanumeric characters.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a domain name for a PMIPv6 WLAN:

```
(Cisco Controller) > config pmipv6 domain floor1
```
**config pmipv6 add profile**

To create a Proxy Mobility IPv6 (PMIPv6) profile for the WLAN, use the `config pmipv6 add profile` command. You can configure PMIPv6 profiles based on a realm or a service set identifier (SSID).

```
config pmipv6 add profile profile_name nai {user@realm | @realm | *} lma lma_name apn apn_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>profile_name</code></td>
<td>Name of the profile. The profile name is case sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
<tr>
<td><code>nai</code></td>
<td>Specifies the Network Access Identifier of the client.</td>
</tr>
<tr>
<td><code>user@realm</code></td>
<td>Network Access Identifier of the client in the format <code>user@realm</code>. The NAI name is case sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
<tr>
<td><code>@realm</code></td>
<td>Network Access Identifier of the client in the format <code>@realm</code>.</td>
</tr>
<tr>
<td><code>*</code></td>
<td>All Network Access Identifiers. You can have profiles based on an SSID for all users.</td>
</tr>
<tr>
<td><code>lma</code></td>
<td>Specifies the Local Mobility Anchor (LMA).</td>
</tr>
<tr>
<td><code>lma_name</code></td>
<td>Name of LMA. The LMA name is case sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
<tr>
<td><code>apn</code></td>
<td>Specifies the access point.</td>
</tr>
<tr>
<td><code>apn_name</code></td>
<td>Name of the access point. The access point name is case sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is a prerequisite for using PMIPv6 configuration commands if the controller uses open authentication.

The following example shows how to create a PMIPv6 profile:

```
(Cisco Controller) > config pmipv6 add profile profile1 nai @vodfone.com lma vodfonelma apn vodafoneapn
```
**config pmipv6 delete**

To delete a Proxy Mobility IPv6 (PMIPv6) profile, domain, or Local Mobility Anchor (LMA), use the `config pmipv6 delete` command.

```plaintext
config pmipv6 delete { profile profile_name nai { nai_id | all } | domain domain_name | lma lma_name }
```

### Syntax Description

- **profile**
  Specifies the PMIPv6 profile.

- **profile_name**
  Name of the PMIPv6 profile. The profile name is case sensitive and can be up to 127 alphanumeric characters.

- **nai**
  Specifies the Network Access Identifier (NAI) of a mobile client.

- **nai_id**
  Network Access Identifier of a mobile client. The NAI is case sensitive and can be up to 127 alphanumeric characters.

- **all**
  Specifies all NAIs. When you delete all NAIs, the profile is deleted.

- **domain**
  Specifies the PMIPv6 domain.

- **domain_name**
  Name of the PMIPv6 domain. The domain name is case sensitive and can be up to 127 alphanumeric characters.

- **lma**
  Specifies the LMA.

- **lma_name**
  Name of the LMA. The LMA name is case sensitive and can be up to 127 alphanumeric characters.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a domain:

```plaintext
(Cisco Controller) > config pmipv6 delete lab1
```
To configure an Access Point Name (APN) for a mobile access gateway (MAG), use the `config pmipv6 mag apn` command.

### Syntax Description
```
config pmipv6 mag apn apn-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>apn-name</th>
<th>Access point name for the MAG.</th>
</tr>
</thead>
</table>

| Command Default     | None     |                                |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>By default, the MAG role is WLAN. However, for the lightweight access points, MAG role should be configured as 3GPP. If the MAG role is 3GPP, it is mandatory to specify an APN for the MAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To delete an APN for a MAG, use the <code>config pmipv6 delete mag apn apn-name</code> command.</td>
</tr>
</tbody>
</table>

The following example shows how to add an APN for a MAG:

(Cisco Controller) > `config pmipv6 mag apn myCiscoAP`
config pmipv6 mag binding init-retx-time

To configure the initial timeout between the proxy binding updates (PBUs) when the Mobile Access Gateway (MAG) does not receive the proxy binding acknowledgements (PBAs), use the \texttt{config pmipv6 mag binding init-retx-time} command.

\texttt{config pmipv6 mag binding init-retx-time units}

**Syntax Description**

\begin{itemize}
\item \textit{units} Initial timeout between the PBUs when the MAG does not receive the PBAs. The range is from 100 to 65535 seconds.
\end{itemize}

**Command Default**

The default initial timeout is 1000 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the initial timeout between the PBUs when the MAG does not receive the PBAs:

\texttt{(Cisco Controller) \textgreater config pmipv6 mag binding init-retx-time 500}
**config pmipv6 mag binding lifetime**

To configure the lifetime of the binding entries in the Mobile Access Gateway (MAG), use the `config pmipv6 mag binding lifetime` command.

`config pmipv6 mag binding lifetime units`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>units</strong></td>
<td>Lifetime of the binding entries in the MAG. The binding lifetime must be a multiple of 4 seconds. The range is from 10 to 65535 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default lifetime of the binding entries is 65535 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must configure a Proxy Mobility IPv6 (PMIPv6) domain before you configure the lifetime of the binding entries in the controller.

The following example shows how to configure the lifetime of the binding entries in the controller:

```
(Cisco Controller) > config pmipv6 mag binding lifetime 5000
```
To configure the maximum timeout between the proxy binding updates (PBU) when the Mobility Access Gateway (MAG) does not receive the proxy binding acknowledgments (PBA), use the `config pmipv6 mag binding max-retx-time` command.

```
config pmipv6 mag binding max-retx-time units
```

**Syntax Description**

| units | Maximum timeout between the PBUs when the MAG does not receive the PBAs. The range is from 100 to 65535 seconds. |

**Command Default**

The default maximum timeout is 32000 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the maximum timeout between the PBUs when the MAG does not receive the PBAs:

```
(Cisco Controller) > config pmipv6 mag binding max-retx-time 50
```
config pmipv6 mag binding maximum

To configure the maximum number of binding entries in the Mobile Access Gateway (MAG), use the `config pmipv6 mag binding maximum` command.

```
config pmipv6 mag binding maximum units
```

**Syntax Description**

`units` Maximum number of binding entries in the MAG. This number indicates the maximum number of users connected to the MAG. The range is from 0 to 40000.

**Command Default**

The default maximum number of binding entries in the MAG is 10000.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must configure a Proxy Mobility IPv6 (PMIPv6) domain before you configure the maximum number of binding entries in the MAG.

The following example shows how to configure the maximum number of binding entries in the MAG:

```
(Cisco Controller) >config pmipv6 mag binding maximum 20000
```
**config pmipv6 mag binding refresh-time**

To configure the refresh time of the binding entries in the MAG, use the `config pmipv6 mag binding refresh-time` command.

```plaintext
config pmipv6 mag binding refresh-time units
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>units</code></td>
<td>Refresh time of the binding entries in the MAG. The binding refresh time must be a multiple of 4. The range is from 4 to 65535 seconds.</td>
</tr>
</tbody>
</table>

| Command Default    | The default refresh time of the binding entries in the MAG is 300 seconds. |

| Usage Guidelines   | You must configure a PMIPv6 domain before you configure the refresh time of the binding entries in the MAG. |

The following example shows how to configure the refresh time of the binding entries in the MAG:

```
(Cisco Controller) > config pmipv6 mag binding refresh-time 500
```
config pmipv6 mag bri delay

To configure the maximum or minimum amount of time that the MAG waits before retransmitting a Binding Revocation Indication (BRI) message, use the config pmipv6 mag bri delay command.

config pmipv6 mag bri delay {min | max} time

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Specifies the minimum amount of time that the MAG waits before retransmitting a BRI message.</td>
</tr>
<tr>
<td>max</td>
<td>Specifies the maximum amount of time that the MAG waits before retransmitting a BRI message.</td>
</tr>
<tr>
<td>time</td>
<td>Maximum or minimum amount of time that the Cisco WLC waits before retransmitting a BRI message. The range is from 500 to 65535 milliseconds.</td>
</tr>
</tbody>
</table>

Command Default

The default value of the maximum amount of time that the MAG waits before retransmitting a BRI message is 2 seconds.

The default value of the minimum amount of time that the MAG waits before retransmitting a BRI message is 1 second.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the minimum amount of time that the MAG waits before retransmitting a BRI message:

(Cisco Controller) >config pmipv6 mag bri delay min 500
config pmipv6 mag bri retries

To configure the maximum number of times that the MAG retransmits the Binding Revocation Indication (BRI) message before receiving the Binding Revocation Acknowledgment (BRA) message, use the `config pmipv6 mag bri retries` command.

```
config pmipv6 mag bri retries retries
```

**Syntax Description**
- `retries` Maximum number of times that the MAG retransmits the BRI message before receiving the BRA message. The range is from 1 to 10 retries.

**Command Default**
The default is 1 retry.

The following example shows how to configure the maximum number of times that the MAG retries:

```
(Cisco Controller) > config pmipv6 mag bri retries 5
```
To configure a local mobility anchor (LMA) with the mobile access gateway (MAG), use the `config pmipv6 mag lma` command.

```
config pmipv6 mag lma lma_name ipv4-address address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lma_name</code></td>
<td>Name of the LMA. The LMA name can be a NAI or a string that uniquely identifies the LMA.</td>
</tr>
<tr>
<td><code>ipv4-address</code></td>
<td>Specifies the IP address of the LMA.</td>
</tr>
<tr>
<td><code>address</code></td>
<td>IP address of the LMA.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is a prerequisite to configure PMIPv6 parameters on the MAG.

The following example shows how to configure an LMA with the MAG:

```
(Cisco Controller) >config pmipv6 mag lma vodafonelma ipv4-address 209.165.200.254
```
**config pmipv6 mag replay-protection**

To configure the maximum amount of time difference between the timestamp in the received proxy binding acknowledgment (PBA) and the current time of the day for replay protection, use the `config pmipv6 mag replay-protection` command.

```bash
config pmipv6 mag replay-protection { timestamp window time | sequence-no sequence | mobile-node-timestamp mobile_node_timestamp }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>timestamp</strong></td>
<td>Specifies the time stamp of the PBA message.</td>
</tr>
<tr>
<td><strong>window</strong></td>
<td>Specifies the maximum time difference between the time stamp in the received PBA message and the current time of day.</td>
</tr>
<tr>
<td><strong>time</strong></td>
<td>Maximum time difference between the time stamp in the received PBA message and the current time of day. The range is from 1 to 300 milliseconds.</td>
</tr>
<tr>
<td><strong>sequence-no</strong></td>
<td>(Optional) Specifies the sequence number in a Proxy Binding Update message.</td>
</tr>
<tr>
<td><strong>sequence</strong></td>
<td>(Optional) Sequence number in the Proxy Binding Update message.</td>
</tr>
<tr>
<td><strong>mobile_node_timestamp</strong></td>
<td>(Optional) Specifies the time stamp of the mobile node.</td>
</tr>
<tr>
<td><strong>mobile_node_timestamp</strong></td>
<td>(Optional) Time stamp of the mobile node.</td>
</tr>
</tbody>
</table>

**Command Default**

The default maximum time difference is 300 milliseconds.

**Usage Guidelines**

Only the timestamp option is supported.

The following example shows how to configure the maximum amount of time difference in milliseconds between the time stamp in the received PBA message and the current time of day:

```
(Cisco Controller) > config pmipv6 mag replay-protection timestamp window 200
```
To enable or disable Power over Ethernet (PoE) for a specific controller port or for all ports, use the `config port power` command.

```bash
config port power { all | port } { enable | disable }
```

**Syntax Description**

- `all` Configures all ports.
- `port` Port number.
- `enable` Enables the specified ports.
- `disable` Disables the specified ports.

**Command Default**

Enabled

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable PoE on all ports:

```
(Cisco Controller) > config port power all enable
```

The following example shows how to disable PoE on port 8:

```
(Cisco Controller) > config port power 8 disable
```
**config network rf-network-name**

To set the RF-Network name, use the `config network rf-network-name` command.

```
config network rf-network-name name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>name</strong></td>
<td></td>
<td>RF-Network name. The name can contain up to 19 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
<td><strong>Modification</strong></td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to set the RF-network name to travelers:

```
(Cisco Controller) > config network rf-network-name travelers
```

**Related Commands**

- `show network summary`
**config network secureweb**

To change the state of the secure web (https is http and SSL) interface for management users, use the **config network secureweb** command.

```
config network secureweb { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the secure web interface for management users.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the secure web interface for management users.</td>
</tr>
</tbody>
</table>

**Command Default**
The secure web interface for management users is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This command allows management users to access the controller GUI using an http://ip-address. Web mode is not a secure connection.

The following example shows how to enable the secure web interface settings for management users:

```
(Cisco Controller) > config network secureweb enable
You must reboot for the change to take effect.
```

**Related Commands**
- **config network secureweb cipher-option**
- **show network summary**
**config network secureweb cipher-option**

To enable or disable secure web mode with increased security, or to enable or disable Secure Sockets Layer (SSL v2) for web administration and web authentication, use the `config network secureweb cipher-option` command.

```
config network secureweb cipher-option { high | sslv2 | rc4-preference } { enable | disable }
```

**Syntax Description**

- `high` Configures whether or not 128-bit ciphers are required for web administration and web authentication.
- `sslv2` Configures SSLv2 for both web administration and web authentication.
- `rc4-preference` Configures preference for RC4-SHA (Rivest Cipher 4-Secure Hash Algorithm) cipher suites (over CBC cipher suites) for web authentication and web administration.
- `enable` Enables the secure web interface.
- `disable` Disables the secure web interface.

**Command Default**

The default is `disable` for secure web mode with increased security and `enable` for SSL v2.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

The `config network secureweb cipher-option` command allows users to access the controller GUI using an http://ip-address but only from browsers that support 128-bit (or larger) ciphers.

When cipher-option sslv2 is disabled, users cannot connect using a browser configured with SSLv2 only. They must use a browser that is configured to use a more secure protocol such as SSLv3 or later.

In RC4-SHA based cipher suites, RC4 is used for encryption and SHA is used for message authentication.

The following example shows how to enable secure web mode with increased security:

```
(Cisco Controller) > config network secureweb cipher-option
```

The following example shows how to disable SSL v2:

```
(Cisco Controller) > config network secureweb cipher-option sslv2 disable
```
Related Commands

- config network secureweb
- show network summary
**config network ssh**

To allow or disallow new Secure Shell (SSH) sessions, use the `config network ssh` command.

```
config network ssh { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Allows the new SSH sessions.</td>
</tr>
<tr>
<td>disable</td>
<td>Disallows the new SSH sessions.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for the new SSH session is `disable`.

The following example shows how to enable the new SSH session:

```
(Cisco Controller) > config network ssh enable
```

**Related Commands**

`show network summary`
config network telnet

To allow or disallow new Telnet sessions, use the `config network telnet` command.

`config network telnet {enable | disable}`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Allows new Telnet sessions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Disallows new Telnet sessions.</td>
</tr>
</tbody>
</table>

| Command Default    | By default, the new Telnet session is disallowed and the value is `disable`. |

| Usage Guidelines   | Telnet is not supported on Cisco Aironet 1830 and 1850 Series Access Points. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the new Telnet sessions:

```
(Cisco Controller) > config network telnet enable
```

**Related Commands**

- `config ap telnet`
- `show network summary`
config network usertimeout

To change the timeout for idle client sessions, use the `config network usertimeout` command.

```
config network usertimeout seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>seconds</th>
<th>Timeout duration in seconds. The minimum value is 90 seconds. The default value is 300 seconds.</th>
</tr>
</thead>
</table>

**Command Default**

The default timeout value for idle client session is 300 seconds.

**Usage Guidelines**

Use this command to set the idle client session duration on the Cisco wireless LAN controller. The minimum duration is 90 seconds.

The following example shows how to configure the idle session timeout to 1200 seconds:

```
(Cisco Controller) > config network usertimeout 1200
```

**Related Commands**

- `show network summary`
config network web-auth captive-bypass

To configure the controller to support bypass of captive portals at the network level, use the `config network web-auth captive-bypass` command.

```
config network web-auth captive-bypass { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Allows the controller to support bypass of captive portals.</td>
</tr>
<tr>
<td>disable</td>
<td>Disallows the controller to support bypass of captive portals.</td>
</tr>
</tbody>
</table>

Command Default

None

The following example shows how to configure the controller to support bypass of captive portals:

```
(Cisco Controller) > config network web-auth captive-bypass enable
```

Related Commands

- `show network summary`
- `config network web-auth cmcc-support`
config network web-auth cmcc-support

To configure eWalk on the controller, use the `config network web-auth cmcc-support` command.

```
config network web-auth cmcc-support {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables eWalk on the controller.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables eWalk on the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

The following example shows how to enable eWalk on the controller:

```
(Cisco Controller) > config network web-auth cmcc-support enable
```

**Related Commands**

- `show network summary`
- `config network web-auth captive-bypass`
config network web-auth port

To configure an additional port to be redirected for web authentication at the network level, use the `config network web-auth port` command.

```
config network web-auth port port
```

**Syntax Description**
- `port` Port number. The valid range is from 0 to 65535.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an additional port number 1200 to be redirected for web authentication:

```
(Cisco Controller) > config network web-auth port 1200
```

**Related Commands**
- `show network summary`
To configure proxy redirect support for web authentication clients, use the `config network web-auth proxy-redirect` command.

```plaintext
config network web-auth proxy-redirect { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allows proxy redirect support for web authentication clients.</td>
<td>Disallows proxy redirect support for web authentication clients.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable proxy redirect support for web authentication clients:

(Cisco Controller) > config network web-auth proxy-redirect enable

**Related Commands**

- `show network summary`
**config network web-auth secureweb**

To configure the secure web (https) authentication for clients, use the `config network web-auth secureweb` command.

```plaintext
config network web-auth secureweb { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>enable</th>
<th>Allows secure web (https) authentication for clients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disallows secure web (https) authentication for clients. Enables http web authentication for clients.</td>
</tr>
</tbody>
</table>

**Command Default**
The default secure web (https) authentication for clients is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you configure the secure web (https) authentication for clients using the `config network web-auth secureweb disable` command, then you must reboot the Cisco WLC to implement the change.

The following example shows how to enable the secure web (https) authentication for clients:

```
(Cisco Controller) > config network web-auth secureweb enable
```

**Related Commands**

- `show network summary`
To configure https redirect support for web authentication clients, use the `config network web-auth https-redirect` command.

```plaintext
config network web-auth https-redirect { enable | disable }
```

**Syntax Description**
- **enable**: Enables the secure redirection(https) for web-authentication clients.
- **disable**: Disables the secure redirection(https) for web-authentication clients.

**Command Default**
This command is by default disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in Release 8.0</td>
</tr>
</tbody>
</table>

The following example shows how to enable proxy redirect support for web authentication clients:

```plaintext
(Cisco Controller) > config network web-auth https-redirect enable
```

**Related Commands**
- `show network summary`
config network webcolor

To configure the web color theme for the controller GUI, use the `config network webcolor` command.

```bash
config network webcolor { default | red }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default</code></td>
<td>Specifies the default web color theme for the controller GUI.</td>
</tr>
<tr>
<td><code>red</code></td>
<td>Specifies the web color theme as red for the controller GUI.</td>
</tr>
</tbody>
</table>

### Command Default

Default

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If you are changing the web color theme from the controller CLI, you need to reload the controller GUI to apply your changes.

The following example shows how to configure the web interface color as red for the controller GUI:

```bash
(Cisco Controller) > config network webcolor red
```
config network webmode

To enable or disable the web mode, use the config network webmode command.

```
config network webmode { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the web interface.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the web interface.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for the web mode is `enable`.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to disable the web interface mode:

```
(Cisco Controller) > config network webmode disable
```

**Related Commands**

- `show network summary`
config network web-auth

To configure the network-level web authentication options, use the config network web-auth command.

```
config network web-auth { port port-number } | { proxy-redirect { enable | disable } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>Configures additional ports for web authentication redirection.</td>
</tr>
<tr>
<td>port-number</td>
<td>Port number (between 0 and 65535).</td>
</tr>
<tr>
<td>proxy-redirect</td>
<td>Configures proxy redirect support for web authentication clients.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables proxy redirect support for web authentication clients.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables proxy redirect support for web authentication clients.</td>
</tr>
</tbody>
</table>

**Note**

Web-auth proxy redirection will be enabled for ports 80, 8080, and 3128, along with user defined port 345.

### Command Default

The default network-level web authentication value is disabled.

### Command History

**Release**	**Modification**
7.6         | This command was introduced in a release earlier than Release 7.6.

### Usage Guidelines

You must reset the system for the configuration to take effect.

The following example shows how to enable proxy redirect support for web authentication clients:

```
(Cisco Controller) > config network web-auth proxy-redirect enable
```

### Related Commands

- show network summary
- show run-config
- config qos protocol-type
config network zero-config

To configure bridge access point ZeroConfig support, use the `config network zero-config` command.

```
config network zero-config (enable | disable)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the bridge access point ZeroConfig support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the bridge access point ZeroConfig support.</td>
</tr>
</tbody>
</table>

**Command Default**

The bridge access point ZeroConfig support is enabled.

**Command History**

```
Release | Modification |
--------------|---|
7.6 | This command was introduced in a release earlier than Release 7.6. |
```

The following example shows how to enable the bridge access point ZeroConfig support:

```
(Cisco Controller) >config network zero-config enable
```
**config network allow-old-bridge-aps**

To configure an old bridge access point’s ability to associate with a switch, use the `config network allow-old-bridge-aps` command.

```
config network allow-old-bridge-aps { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the switch association.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the switch association.</td>
</tr>
</tbody>
</table>

**Command Default**

Switch association is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an old bridge access point to associate with the switch:

```
(Cisco Controller) > config network allow-old-bridge-aps enable
```
config network ap-discovery

To enable or disable NAT IP in an AP discovery response, use the `config network ap-discovery` command.

```
config network ap-discovery nat-ip-only {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enables use of NAT IP only in discovery response.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enables use of both NAT IP and non NAT IP in discovery response.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**
The use of NAT IP only in discovery response is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `config interface nat-address management` command is set, this command controls which address(es) are sent in the CAPWAP discovery responses.

If all APs are on the outside of the NAT gateway of the controller, enter the `config network ap-discovery nat-ip-only enable` command, and only the management NAT address is sent.

If the controller has both APs on the outside and the inside of its NAT gateway, enter the `config network ap-discovery nat-ip-only disable` command, and both the management NAT address and the management inside address are sent. Ensure that you have entered the `config ap link-latency disable all` command to avoid stranding APs.

The following example shows how to enable NAT IP in an AP discovery response:

```
(Cisco Controller) > config network ap-discovery nat-ip-only enable
```
**config network ap-fallback**

To configure Cisco lightweight access point fallback, use the `config network ap-fallback` command.

```
config network ap-fallback (enable | disable)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Cisco lightweight access point fallback.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Cisco lightweight access point fallback.</td>
</tr>
</tbody>
</table>

**Command Default**
The Cisco lightweight access point fallback is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the Cisco lightweight access point fallback:

```
(Cisco Controller) > config network ap-fallback enable
```
config network ap-priority

To enable or disable the option to prioritize lightweight access points so that after a controller failure they reauthenticate by priority rather than on a first-come-until-full basis, use the `config network ap-priority` command.

```plaintext
config network ap-priority { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the lightweight access point priority reauthentication.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the lightweight access point priority reauthentication.</td>
</tr>
</tbody>
</table>

**Command Default**

The lightweight access point priority reauthentication is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the lightweight access point priority reauthorization:

```
(Cisco Controller) > config network ap-priority enable
```
config network apple-talk

To configure AppleTalk bridging, use the `config network apple-talk` command.

```plaintext
config network apple-talk (enable | disable)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the AppleTalk bridging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the AppleTalk bridging.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure AppleTalk bridging:

```plaintext
(Cisco Controller) > config network apple-talk enable
```
config network bridging-shared-secret

To configure the bridging shared secret, use the `config network bridging-shared-secret` command.

```
config network bridging-shared-secret shared_secret
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>shared_secret</code></td>
<td>Bridging shared secret string. The string can contain up to 10 bytes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The bridging shared secret is enabled by default.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>This command creates a secret that encrypts backhaul user data for the mesh access points that connect to the switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The zero-touch configuration must be enabled for this command to work.</td>
</tr>
</tbody>
</table>
|                     | The following example shows how to configure the bridging secret string “shhh1”:

```
(Cisco Controller) > config network bridging-shared-secret shhh1
```

| Related Commands    | `show network summary` |
config network master-base

To enable or disable the Cisco wireless LAN controller as an access point default master, use the **config network master-base** command.

```
config network master-base {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>disable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables the Cisco wireless LAN controller acting as a Cisco lightweight access point default master.</td>
<td>Disables the Cisco wireless LAN controller acting as a Cisco lightweight access point default master.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This setting is only used upon network installation and should be disabled after the initial network configuration. Because the Master Cisco wireless LAN controller is normally not used in a deployed network, the Master Cisco wireless LAN controller setting can be saved from 6.0.199.0 or later releases.

The following example shows how to enable the Cisco wireless LAN controller as a default master:

```
(Cisco Controller) > config network master-base enable
```
config network oeap-600 dual-rlan-ports

To configure the Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port in addition to port 4, use the **config network oeap-600 dual-rlan-ports** command.

```plaintext
config network oeap-600 dual-rlan-ports { enable | disable }
```

### Syntax Description

- **enable**
  
  Enables Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port in addition to port 4.

- **disable**
  
  Resets the Ethernet port 3 Cisco OfficeExtend 600 Series access points to function as a local LAN port.

### Command Default

The Ethernet port 3 Cisco 600 Series OEAP is reset.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the Ethernet port 3 of Cisco OfficeExtend 600 Series access points to operate as a remote LAN port:

```plaintext
(Cisco Controller) > config network oeap-600 dual-rlan-ports enable
```
config network oeap-600 local-network

To configure access to the local network for the Cisco 600 Series OfficeExtend access points, use the `config network oeap-600 local-network` command.

```
config network oeap-600 local-network { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>enable</th>
<th>Enables access to the local network for the Cisco 600 Series OfficeExtend access points.</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables access to the local network for the Cisco 600 Series OfficeExtend access points.</td>
</tr>
</tbody>
</table>

**Command Default**

Access to the local network for the Cisco 600 Series OEAPs is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable access to the local network for the Cisco 600 Series OfficeExtend access points:

```
(Cisco Controller) > config network oeap-600 local-network enable
```
config network otap-mode

To enable or disable over-the-air provisioning (OTAP) of Cisco lightweight access points, use the `config network otap-mode` command.

```
config network otap-mode { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the OTAP provisioning.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the OTAP provisioning.</td>
</tr>
</tbody>
</table>

**Command Default**

The OTAP provisioning is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the OTAP provisioning:

```
(Cisco Controller) > config network otap-mode disable
```
**config network zero-config**

To configure bridge access point ZeroConfig support, use the `config network zero-config` command.

`config network zero-config {enable | disable}`

**Syntax Description**

<table>
<thead>
<tr>
<th>enable</th>
<th>Enables the bridge access point ZeroConfig support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables the bridge access point ZeroConfig support.</td>
</tr>
</tbody>
</table>

**Command Default**

The bridge access point ZeroConfig support is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the bridge access point ZeroConfig support:

```
(Cisco Controller) > config network zero-config enable
```
config nmsp notify-interval measurement

To modify the Network Mobility Services Protocol (NMSP) notification interval value on the controller to address latency in the network, use the **config nmsp notify-interval measurement** command.

```plaintext
config nmsp notify-interval measurement { client | rfid | rogue } interval
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client</td>
<td>Modifies the interval for clients.</td>
</tr>
<tr>
<td>rfid</td>
<td>Modifies the interval for active radio frequency identification (RFID) tags.</td>
</tr>
<tr>
<td>rogue</td>
<td>Modifies the interval for rogue access points and rogue clients.</td>
</tr>
<tr>
<td>interval</td>
<td>Time interval. The range is from 1 to 30 seconds.</td>
</tr>
</tbody>
</table>

### Command Default
None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The TCP port (16113) that the controller and location appliance communicate over must be open (not blocked) on any firewall that exists between the controller and the location appliance for NMSP to function.

The following example shows how to modify the NMSP notification interval for the active RFID tags to 25 seconds:

```plaintext
(Cisco Controller) > config nmsp notify-interval measurement rfid 25
```

### Related Commands
- clear locp statistics
- clear nmsp statistics
- show nmsp notify-interval summary
- show nmsp statistics
- show nmsp status
config paging

To enable or disable scrolling of the page, use the `config paging` command.

```
config paging { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the scrolling of the page.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the scrolling of the page.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, scrolling of the page is enabled.

**Usage Guidelines**

Commands that produce a huge number of lines of output with the scrolling of the page disabled might result in the termination of SSH/Telnet connection or user session on the console.

The following example shows how to enable scrolling of the page:

```
(Cisco Controller) > config paging enable
```

**Related Commands**

- `show run-config`
config passwd-cleartext

To enable or disable temporary display of passwords in plain text, use the `config passwd-cleartext` command.

`config passwd-cleartext  { enable | disable }`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the display of passwords in plain text.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the display of passwords in plain text.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, temporary display of passwords in plain text is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be enabled if you want to see user-assigned passwords displayed in clear text when using the `show run-config` command.

To execute this command, you must enter an admin password. This command is valid only for this particular session. It is not saved following a reboot.

The following example shows how to enable display of passwords in plain text:

```
(Cisco Controller) > config passwd-cleartext enable
The way you see your passwds will be changed
You are being warned.
Enter admin password:
```

**Related Commands**

- `show run-config`
config policy

To configure a native profiling policy on the Cisco Wireless LAN Controller (WLC), use the `config policy` command.

```
config policy policy_name { action { acl { enable | disable } acl_name | { average-data-rate | average-realtime-rate | burst-data-rate | burst-realtime-rate | qos | session-timeout | sleeping-client-timeout | avc-profile-name { enable acl_profile_name | disable } | vlan { enable | disable } } } | active { add hours start_time end_time days day | delete days day } | create | delete | match { device-type { add | delete } device-type | eap-type { add | delete } eap-type | role { role_name | none } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy_name</code></td>
<td>Name of a profiling policy.</td>
</tr>
<tr>
<td><code>action</code></td>
<td>Configures an action for the policy.</td>
</tr>
<tr>
<td><code>acl</code></td>
<td>Configures an ACL for the policy.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables an action for the policy.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables an action for the policy.</td>
</tr>
<tr>
<td><code>acl_name</code></td>
<td>Name of an ACL.</td>
</tr>
<tr>
<td><code>average-data-rate</code></td>
<td>Configures the QoS average data rate.</td>
</tr>
<tr>
<td><code>average-realtime-rate</code></td>
<td>Configures the QoS average real-time rate.</td>
</tr>
<tr>
<td><code>burst-data-rate</code></td>
<td>Configures the QoS burst data rate.</td>
</tr>
<tr>
<td><code>burst-realtime-rate</code></td>
<td>Configures the QoS burst real-time rate.</td>
</tr>
<tr>
<td><code>qos</code></td>
<td>Configures a QoS action for the policy.</td>
</tr>
<tr>
<td><code>session-timeout</code></td>
<td>Configures a session timeout action for the policy.</td>
</tr>
<tr>
<td><code>sleeping-client-timeout</code></td>
<td>Configures a sleeping client timeout for the policy.</td>
</tr>
<tr>
<td><code>avc-profile-name</code></td>
<td>Configures AVC profile on a policy.</td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>Configures a VLAN action for the policy.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Configures the active hours and days for the policy.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds active hours and days.</td>
</tr>
<tr>
<td><code>hours</code></td>
<td>Configures active hours for the policy.</td>
</tr>
<tr>
<td><code>start_time</code></td>
<td>Start time for the policy.</td>
</tr>
<tr>
<td><code>end_time</code></td>
<td>End time for the policy.</td>
</tr>
<tr>
<td><code>days</code></td>
<td>Configures the day on the policy must work.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>day</strong></td>
<td>Day of the week, such as mon, tue, wed, thu, fri, sat, sun. You can also specify daily or weekdays for the policy to occur daily or on all weekdays.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes active hours and days.</td>
</tr>
<tr>
<td><strong>create</strong></td>
<td>Creates a policy.</td>
</tr>
<tr>
<td><strong>match</strong></td>
<td>Configures a match criteria for the policy.</td>
</tr>
<tr>
<td><strong>device-type</strong></td>
<td>Configures a device type match.</td>
</tr>
<tr>
<td><strong>device-type</strong></td>
<td>Device type on which the policy must be applied. You can configure up to 16 devices types for a policy.</td>
</tr>
<tr>
<td><strong>eap-type</strong></td>
<td>Configures the Extensible Authentication Protocol (EAP) type as a match criteria.</td>
</tr>
<tr>
<td><strong>eap-fast</strong></td>
<td>Configures the EAP type as EAP Flexible Authentication via Secure Tunneling (FAST).</td>
</tr>
<tr>
<td><strong>eap-tls</strong></td>
<td>Configures the EAP type as EAP Transport Layer Security (TLS).</td>
</tr>
<tr>
<td><strong>leap</strong></td>
<td>Configures the EAP type as Lightweight EAP (LEAP).</td>
</tr>
<tr>
<td><strong>peap</strong></td>
<td>Configures the EAP type as Protected EAP (PEAP).</td>
</tr>
<tr>
<td><strong>role</strong></td>
<td>Configures the user type or user group for the user.</td>
</tr>
<tr>
<td><strong>role_name</strong></td>
<td>User type or user group of the user, for example, student, employee. You can configure only one role per policy.</td>
</tr>
<tr>
<td><strong>none</strong></td>
<td>Configures no user type or user group for the user.</td>
</tr>
</tbody>
</table>

**Command Default**

There is no native profiling policy on the Cisco WLC.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The maximum number of policies that you can configure is 64.

The following example shows how to configure a role for a policy:

```
(Cisco Controller) > config policy student_policy role student
```
To enable or disable the administrative mode for a specific controller port or for all ports, use the **config port adminmode** command.

```
config port adminmode { all | port } { enable | disable }
```

### Syntax Description

- **all**: Configures all ports.
- **port**: Number of the port.
- **enable**: Enables the specified ports.
- **disable**: Disables the specified ports.

### Command Default

Enabled

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable port 8:

```
(Cisco Controller) > config port adminmode 8 disable
```

The following example shows how to enable all ports:

```
(Cisco Controller) > config port adminmode all enable
```
config port autoneg

To configure 10/100BASE-T Ethernet ports for physical port autonegotiation, use the config port autoneg command.

```
config port autoneg {all | port} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures all ports.</td>
</tr>
<tr>
<td>port</td>
<td>Number of the port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified ports.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the specified ports.</td>
</tr>
</tbody>
</table>

**Command Default**

The default for all ports is that auto-negotiation is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must disable port auto-configuration before you make physical mode manual settings by using the config port physicalmode command. The config port autoneg command overrides settings that you made using the config port physicalmode command.

The following example shows how to turn on physical port autonegotiation for all front-panel Ethernet ports:

```
(Cisco Controller) > config port autoneg all enable
```

The following example shows how to disable physical port autonegotiation for front-panel Ethernet port 19:

```
(Cisco Controller) > config port autoneg 19 disable
```
config port linktrap

To enable or disable the up and down link traps for a specific controller port or for all ports, use the `config port linktrap` command.

```
config port linktrap { all | port } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures all ports.</td>
</tr>
<tr>
<td>port</td>
<td>Number of the port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified ports.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the specified ports.</td>
</tr>
</tbody>
</table>

**Command Default**

The default value for down link traps for a specific controller port or for all ports is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable port 8 traps:

```
(Cisco Controller) > config port linktrap 8 disable
```

The following example shows how to enable all port traps:

```
(Cisco Controller) > config port linktrap all enable
```
To enable or disable the multicast appliance service for a specific controller port or for all ports, use the `config port multicast appliance` commands.

```
config port multicast appliance { all | port } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures all ports.</td>
</tr>
<tr>
<td>port</td>
<td>Number of the port.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified ports.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the specified ports.</td>
</tr>
</tbody>
</table>

**Command Default**

The default multicast appliance service for a specific controller port or for all ports is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable multicast appliance service on all ports:

```plaintext
(Cisco Controller) > config port multicast appliance all enable
```

The following example shows how to disable multicast appliance service on port 8:

```plaintext
(Cisco Controller) > config port multicast appliance 8 disable
```
config prompt

To change the CLI system prompt, use the `config prompt` command.

```
config prompt prompt
```

**Syntax Description**

- `prompt`  
  New CLI system prompt enclosed in double quotes. The prompt can be up to 31 alphanumeric characters and is case sensitive.

**Command Default**

The system prompt is configured using the startup wizard.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Because the system prompt is a user-defined variable, it is omitted from the rest of this documentation.

The following example shows how to change the CLI system prompt to Cisco 4400:

```
(Cisco Controller) > config prompt "Cisco 4400"
```
config qos average-data-rate

To define the average data rate in Kbps for TCP traffic per user or per service set identifier (SSID), use the `config qos average-data-rate` command.

```
config qos average-data-rate {bronze | silver | gold | platinum} {per-ssid | per-client} {downstream | upstream} rate
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies the average data rate for the queue bronze.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the average data rate for the queue silver.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the average data rate for the queue gold.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the average data rate for the queue platinum.</td>
</tr>
<tr>
<td>per-ssid</td>
<td>Configures the rate limit for an SSID per radio. The combined traffic of all clients will not exceed this limit.</td>
</tr>
<tr>
<td>per-client</td>
<td>Configures the rate limit for each client associated with the SSID.</td>
</tr>
<tr>
<td>downstream</td>
<td>Configures the rate limit for downstream traffic.</td>
</tr>
<tr>
<td>upstream</td>
<td>Configures the rate limit for upstream traffic.</td>
</tr>
<tr>
<td>rate</td>
<td>Average data rate for TCP traffic per user. A value between 0 and 51,200 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the average data rate 0 Kbps for the queue gold per SSID:

```
(Cisco Controller) > config qos average-data-rate gold per ssid downstream 0
```

**Related Commands**

- `config qos burst-data-rate`
- `config qos average-realtime-rate`
- `config qos burst-realtime-rate`
- `config wlan override-rate-limit`
**config qos average-realtime-rate**

To define the average real-time data rate in Kbps for UDP traffic per user or per service set identifier (SSID), use the **config qos average-realtime-rate** command.

```
config qos average-realtime-rate { bronze | silver | gold | platinum } { per-ssid | per-client } { downstream | upstream } rate
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies the average real-time data rate for the queue bronze.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the average real-time data rate for the queue silver.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the average real-time data rate for the queue gold.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the average real-time data rate for the queue platinum.</td>
</tr>
<tr>
<td>per-ssid</td>
<td>Configures the rate limit for an SSID per radio. The combined traffic of all clients will not exceed this limit.</td>
</tr>
<tr>
<td>per-client</td>
<td>Configures the rate limit for each client associated with the SSID.</td>
</tr>
<tr>
<td>downstream</td>
<td>Configures the rate limit for downstream traffic.</td>
</tr>
<tr>
<td>upstream</td>
<td>Configures the rate limit for upstream traffic.</td>
</tr>
<tr>
<td>rate</td>
<td>Average real-time data rate for UDP traffic per user. A value between 0 and 51,2000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the average real-time actual rate for queue gold:

```
(Cisco Controller) > config qos average-realtime-rate gold per ssid downstream 10
```

**Related Commands**

- `config qos average-data-rate`
- `config qos burst-data-rate`
config qos average-realtime-rate
config qos burst-realtime-rate
config wlan override-rate-limit
**config qos burst-data-rate**

To define the peak data rate in Kbps for TCP traffic per user or per service set identifier (SSID), use the `config qos burst-data-rate` command.

```
config qos burst-data-rate {bronze | silver | gold | platinum} {per-ssid | per-client} {downstream | upstream} rate
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies the peak data rate for the queue bronze.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the peak data rate for the queue silver.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the peak data rate for the queue gold.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the peak data rate for the queue platinum.</td>
</tr>
<tr>
<td>per-ssid</td>
<td>Configures the rate limit for an SSID per radio. The combined traffic of all clients will not exceed this limit.</td>
</tr>
<tr>
<td>per-client</td>
<td>Configures the rate limit for each client associated with the SSID.</td>
</tr>
<tr>
<td>downstream</td>
<td>Configures the rate limit for downstream traffic.</td>
</tr>
<tr>
<td>upstream</td>
<td>Configures the rate limit for upstream traffic.</td>
</tr>
<tr>
<td>rate</td>
<td>Peak data rate for TCP traffic per user. A value between 0 and 51,2000 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the peak rate 30000 Kbps for the queue gold:

```
(Cisco Controller) > config qos burst-data-rate gold per ssid downstream 30000
```

**Related Commands**

- `config qos average-data-rate`
- `config qos average-realtime-rate`
- `config qos burst-realtime-rate`
- `config wlan override-rate-limit`
config qos burst-realtime-rate

To define the burst real-time data rate in Kbps for UDP traffic per user or per service set identifier (SSID), use the `config qos burst-realtime-rate` command.

```
config qos burst-realtime-rate {bronze | silver | gold | platinum} {per-ssid | per-client} {downstream | upstream} rate
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bronze</code></td>
<td>Specifies the burst real-time data rate for the queue bronze.</td>
</tr>
<tr>
<td><code>silver</code></td>
<td>Specifies the burst real-time data rate for the queue silver.</td>
</tr>
<tr>
<td><code>gold</code></td>
<td>Specifies the burst real-time data rate for the queue gold.</td>
</tr>
<tr>
<td><code>platinum</code></td>
<td>Specifies the burst real-time data rate for the queue platinum.</td>
</tr>
<tr>
<td><code>per-ssid</code></td>
<td>Configures the rate limit for an SSID per radio. The combined traffic of all clients will not exceed this limit.</td>
</tr>
<tr>
<td><code>per-client</code></td>
<td>Configures the rate limit for each client associated with the SSID.</td>
</tr>
<tr>
<td><code>downstream</code></td>
<td>Configures the rate limit for downstream traffic.</td>
</tr>
<tr>
<td><code>upstream</code></td>
<td>Configures the rate limit for upstream traffic.</td>
</tr>
<tr>
<td><code>rate</code></td>
<td>Burst real-time data rate for UDP traffic per user. A value between 0 and 51,200 Kbps (inclusive). A value of 0 imposes no bandwidth restriction on the QoS profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the burst real-time actual rate 2000 Kbps for the queue gold:

```
(Cisco Controller) > config qos burst-realtime-rate gold per ssid downstream 2000
```

**Related Commands**

- `config qos average-data-rate`
- `config qos burst-data-rate`
config qos average-realtime-rate
config wlan override-rate-limit
**config qos description**

To change the profile description, use the `config qos description` command.

```
config qos description { bronze | silver | gold | platinum } description
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>bronze</th>
<th>Specifies the QoS profile description for the queue bronze.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>silver</td>
<td>Specifies the QoS profile description for the queue silver.</td>
</tr>
<tr>
<td></td>
<td>gold</td>
<td>Specifies the QoS profile description for the queue gold.</td>
</tr>
<tr>
<td></td>
<td>platinum</td>
<td>Specifies the QoS profile description for the queue platinum.</td>
</tr>
<tr>
<td>description</td>
<td>QoS profile description.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

Release 7.6 This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure the QoS profile description “description” for the queue gold:

```
(Cisco Controller) > config qos description gold abc
```

**Related Commands**

- `show qos average-data-rate`
- `config qos burst-data-rate`
- `config qos average-realtime-rate`
- `config qos burst-realtime-rate`
- `config qos max-rf-usage`
config qos max-rf-usage

To specify the maximum percentage of RF usage per access point, use the config qos max-rf-usage command.

config qos max-rf-usage (bronze | silver | gold | platinum) usage_percentage

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies the maximum percentage of RF usage for the queue bronze.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the maximum percentage of RF usage for the queue silver.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the maximum percentage of RF usage for the queue gold.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the maximum percentage of RF usage for the queue platinum.</td>
</tr>
<tr>
<td>usage-percentage</td>
<td>Maximum percentage of RF usage.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

Release	Modification
7.6      | This command was introduced in a release earlier than Release 7.6.

The following example shows how to specify the maximum percentage of RF usage for the queue gold:

(Cisco Controller) > config qos max-rf-usage gold 20

Related Commands

show qos description
config qos average-data-rate
config qos burst-data-rate
config qos average-realtime-rate
config qos burst-realtime-rate
config qos dot1p-tag

To define the maximum value (0 to 7) for the priority tag associated with packets that fall within the profile, use the `config qos dot1p-tag` command.

```
config qos dot1p-tag { bronze | silver | gold | platinum } dot1p_tag
```

**Syntax Description**
- **bronze**: Specifies the QoS 802.1p tag for the queue bronze.
- **silver**: Specifies the QoS 802.1p tag for the queue silver.
- **gold**: Specifies the QoS 802.1p tag for the queue gold.
- **platinum**: Specifies the QoS 802.1p tag for the queue platinum.
- **dot1p_tag**: Dot1p tag value between 1 and 7.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a QoS 802.1p tag for the queue gold with the dot1p tag value of 5:

```
(Cisco Controller) > config qos dot1p-tag gold 5
```

**Related Commands**
- `show qos queue_length all`
- `config qos protocol-type`
**config qos priority**

To define the maximum and default QoS levels for unicast and multicast traffic when you assign a QoS profile to a WLAN, use the `config qos priority` command.

```
config qos priority {bronze | silver | gold | platinum} {maximum-priority | default-unicast-priority | default-multicast-priority}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies a Bronze profile of the WLAN.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies a Silver profile of the WLAN.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies a Gold profile of the WLAN.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies a Platinum profile of the WLAN.</td>
</tr>
<tr>
<td>maximum-priority</td>
<td>Maximum QoS priority as one of the following:</td>
</tr>
<tr>
<td></td>
<td>• besteffort</td>
</tr>
<tr>
<td></td>
<td>• background</td>
</tr>
<tr>
<td></td>
<td>• video</td>
</tr>
<tr>
<td></td>
<td>• voice</td>
</tr>
<tr>
<td>default-unicast-priority</td>
<td>Default unicast priority as one of the following:</td>
</tr>
<tr>
<td></td>
<td>• besteffort</td>
</tr>
<tr>
<td></td>
<td>• background</td>
</tr>
<tr>
<td></td>
<td>• video</td>
</tr>
<tr>
<td></td>
<td>• voice</td>
</tr>
<tr>
<td>default-multicast-priority</td>
<td>Default multicast priority as one of the following:</td>
</tr>
<tr>
<td></td>
<td>• besteffort</td>
</tr>
<tr>
<td></td>
<td>• background</td>
</tr>
<tr>
<td></td>
<td>• video</td>
</tr>
<tr>
<td></td>
<td>• voice</td>
</tr>
</tbody>
</table>

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The maximum priority level should not be lower than the default unicast and multicast priority levels.
The following example shows how to configure the QoS priority for a gold profile of the WLAN with voice as the maximum priority, video as the default unicast priority, and besteffort as the default multicast priority.

(Cisco Controller) > config qos priority gold voice video besteffort

Related Commands

config qos protocol-type
**config qos protocol-type**

To define the maximum value (0 to 7) for the priority tag associated with packets that fall within the profile, use the **config qos protocol-type** command.

```
config qos protocol-type { bronze | silver | gold | platinum } { none | dot1p }
```

**Syntax Description**

- **bronze**: Specifies the QoS 802.1p tag for the queue bronze.
- **silver**: Specifies the QoS 802.1p tag for the queue silver.
- **gold**: Specifies the QoS 802.1p tag for the queue gold.
- **platinum**: Specifies the QoS 802.1p tag for the queue platinum.
- **none**: Specifies when no specific protocol is assigned.
- **dot1p**: Specifies when dot1p type protocol is assigned.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the QoS protocol type silver:

```
(Cisco Controller) > config qos protocol-type silver dot1p
```

**Related Commands**

- `show qos queue_length all`
- `config qos dot1p-tag`
config qos queue_length

To specify the maximum number of packets that access points keep in their queues, use the `config qos queue_length` command.

```
config qos queue_length {bronze | silver | gold | platinum} queue_length
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bronze</td>
<td>Specifies the QoS length for the queue bronze.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the QoS length for the queue silver.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the QoS length for the queue gold.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the QoS length for the queue platinum.</td>
</tr>
<tr>
<td>queue_length</td>
<td>Maximum queue length values (10 to 255).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the QoS length for the queue “gold” with the maximum queue length value as 12:

```
(Cisco Controller) > config qos queue_length gold 12
```
Config Commands: r to z

- config radius acct, on page 733
- config radius acct ipsec authentication, on page 736
- config radius acct ipsec disable, on page 737
- config radius acct ipsec enable, on page 738
- config radius acct ipsec encryption, on page 739
- config radius acct ipsec ike, on page 740
- config radius acct mac-delimiter, on page 741
- config radius acct network, on page 742
- config radius acct realm, on page 743
- config radius acct retransmit-timeout, on page 744
- config radius auth, on page 745
- config radius auth callStationIdType, on page 747
- config radius auth framed-mtu, on page 749
- config radius auth IPsec authentication, on page 750
- config radius auth ipsec disable, on page 751
- config radius auth ipsec encryption, on page 752
- config radius auth ipsec ike, on page 753
- config radius auth keywrap, on page 755
- config radius auth mac-delimiter, on page 756
- config radius auth management, on page 757
- config radius auth mgmt-retransmit-timeout, on page 758
- config radius auth network, on page 759
- config radius auth realm, on page 760
- config radius auth retransmit-timeout, on page 761
- config radius auth rfc3576, on page 762
- config radius auth retransmit-timeout, on page 763
- config radius aggressive-failover disabled, on page 764
- config radius backward compatibility, on page 765
- config radius callStationIdCase, on page 766
- config radius callStationIdType, on page 767
- config radius dns, on page 769
- config radius fallback-test, on page 770
- config radius acct retransmit-timeout, on page 772
• config radius auth mgmt-retransmit-timeout, on page 773
• config radius auth retransmit-timeout, on page 774
• config radius auth retransmit-timeout, on page 775
• config redundancy interface address peer-service-port, on page 776
• config redundancy mobilitymac, on page 777
• config redundancy mode, on page 778
• config redundancy peer-route, on page 779
• config redundancy timer keep-alive-timer, on page 780
• config redundancy timer peer-search-timer, on page 781
• config redundancy unit, on page 782
• config remote-lan, on page 783
• config remote-lan aaa-override, on page 784
• config remote-lan acl, on page 785
• config remote-lan create, on page 786
• config remote-lan custom-web, on page 787
• config remote-lan delete, on page 789
• config remote-lan dhcp_server, on page 790
• config remote-lan exclusionlist, on page 791
• config remote-lan interface, on page 792
• config remote-lan ldap, on page 793
• config remote-lan mac-filtering, on page 794
• config remote-lan mab, on page 795
• config remote-lan max-associated-clients, on page 796
• config remote-lan radius_server, on page 797
• config remote-lan security, on page 799
• config remote-lan session-timeout, on page 800
• config remote-lan webauth-exclude, on page 801
• config rf-profile band-select, on page 802
• config rf-profile channel, on page 804
• config rf-profile client-trap-threshold, on page 805
• config rf-profile create, on page 806
• config rf-profile fra client-aware, on page 807
• config rf-profile data-rates, on page 808
• config rf-profile delete, on page 809
• config rf-profile description, on page 810
• config rf-profile load-balancing, on page 811
• config rf-profile max-clients, on page 812
• config rf-profile multicast data-rate, on page 813
• config rf-profile out-of-box, on page 814
• config rf-profile rx-sop threshold, on page 815
• config rf-profile trap-threshold, on page 816
• config rf-profile tx-power-control-thresh-v1, on page 817
• config rf-profile tx-power-control-thresh-v2, on page 818
• config rf-profile tx-power-max, on page 819
• config rf-profile tx-power-min, on page 820
• config rogue ap timeout, on page 821
• config rogue adhoc, on page 822
• config rogue ap classify, on page 825
• config rogue ap friendly, on page 827
• config rogue ap rldp, on page 829
• config rogue ap ssid, on page 831
• config rogue ap timeout, on page 833
• config rogue auto-contain level, on page 834
• config rogue ap valid-client, on page 836
• config rogue client, on page 838
• config rogue containment, on page 840
• config rogue detection, on page 841
• config rogue detection client-threshold, on page 842
• config rogue detection min-rssi, on page 843
• config rogue detection monitor-ap, on page 844
• config rogue detection report-interval, on page 846
• config rogue detection security-level, on page 847
• config rogue detection transient-rogue-interval, on page 848
• config rogue rule, on page 849
• config rogue rule condition ap, on page 853
• config remote-lan session-timeout, on page 855
• config rfid auto-timeout, on page 856
• config rfid status, on page 857
• config rfid timeout, on page 858
• config rogue ap timeout, on page 859
• config route add, on page 860
• config route delete, on page 861
• config serial baudrate, on page 862
• config serial timeout, on page 863
• config service timestamps, on page 864
• config sessions maxsessions, on page 865
• config sessions timeout, on page 866
• config slot, on page 867
• config switchconfig boot-break, on page 868
• config switchconfig fips-prerequisite, on page 869
• config switchconfig ucapl, on page 870
• config switchconfig wlancc, on page 871
• config switchconfig strong-pwd, on page 872
• config switchconfig flowcontrol, on page 875
• config switchconfig mode, on page 876
• config switchconfig secret-obfuscation, on page 877
• config sysname, on page 878
• config snmp community accessmode, on page 879
• config snmp community create, on page 880
• config snmp community delete, on page 881
• config snmp community ipaddr, on page 882
• config snmp community mode, on page 883
• config snmp engineID, on page 884
• config snmp syscontact, on page 885
• config snmp syslocation, on page 886
• config snmp trapreceiver create, on page 887
• config snmp trapreceiver delete, on page 888
• config snmp trapreceiver mode, on page 889
• config snmp v3user create, on page 890
• config snmp v3user delete, on page 892
• config snmp version, on page 893
• config tacacs acct, on page 894
• config tacacs athr, on page 896
• config tacacs athr mgmt-server-timeout, on page 898
• config tacacs auth, on page 899
• config tacacs auth mgmt-server-timeout, on page 901
• config tacacs dns, on page 902
• config time manual, on page 903
• config time ntp, on page 904
• config time timezone, on page 907
• config time timezone location, on page 908
• config trapflags 802.11-Security, on page 912
• config trapflags aaa, on page 913
• config trapflags adjchannel-rogueap, on page 914
• config trapflags ap, on page 915
• config trapflags authentication, on page 916
• config trapflags client, on page 917
• config trapflags client max-warning-threshold, on page 918
• config trapflags configsave, on page 919
• config trapflags IPsec, on page 920
• config trapflags linkmode, on page 921
• config trapflags mesh, on page 922
• config trapflags multiusers, on page 923
• config trapflags rfid, on page 924
• config trapflags rogueap, on page 926
• config trapflags rrm-params, on page 927
• config trapflags rrm-profile, on page 928
• config trapflags stpmode, on page 929
• config trapflags strong-pwdcheck, on page 930
• config trapflags wps, on page 931
• config watchlist add, on page 932
• config watchlist delete, on page 933
• config watchlist disable, on page 934
• config watchlist enable, on page 935
• config wgb vlan, on page 936
• config wlan, on page 937
• config wlan 7920-support, on page 938
• config wlan 802.11e, on page 939
• config wlan aaa-override, on page 940
• config wlan acl, on page 941
• config wlan apgroup, on page 942
• config wlan apgroup atf 802.11, on page 949
• config wlan apgroup atf 802.11 policy, on page 950
• config wlan apgroup qinq, on page 951
• config wlan assisted-roaming, on page 952
• config wlan atf, on page 953
• config wlan avc, on page 954
• config wlan band-select allow, on page 955
• config wlan broadcast-ssid, on page 956
• config wlan call-snoop, on page 957
• config wlan chd, on page 958
• config wlan ccx aironet-ie, on page 959
• config wlan channel-scan defer-priority, on page 960
• config wlan channel-scan defer-time, on page 961
• config wlan custom-web, on page 962
• config wlan dhcp_server, on page 964
• config wlan diag-channel, on page 965
• config wlan dtim, on page 966
• config wlan exclusionlist, on page 967
• config wlan fabric, on page 968
• config wlan flexconnect ap-auth, on page 969
• config wlan flexconnect central-assoc, on page 970
• config wlan flexconnect learn-ipaddr, on page 971
• config wlan flexconnect local-switching, on page 972
• config wlan flexconnect vlan-central-switching, on page 974
• config wlan flow, on page 975
• config wlan hotspot, on page 976
• config wlan hotspot dot11u, on page 977
• config wlan hotspot dot11u 3gpp-info, on page 978
• config wlan hotspot dot11u auth-type, on page 979
• config wlan hotspot dot11u disable, on page 980
• config wlan hotspot dot11u domain, on page 981
• config wlan hotspot dot11u enable, on page 982
• config wlan hotspot dot11u hessid, on page 983
• config wlan hotspot dot11u ipaddr-type, on page 984
• config wlan hotspot dot11u nai-realm, on page 985
• config wlan hotspot dot11u network-type, on page 988
• config wlan hotspot dot11u roam-oi, on page 989
• config wlan hotspot hs2, on page 990
• config wlan hotspot msap, on page 993
• config wlan interface, on page 994
• config wlan ipv6 acl, on page 995
• config wlan kts-cac, on page 996
• config wlan layer2 acl, on page 997
• config wlan ldap, on page 998
• config wlan learn-ipaddr-cswlan, on page 999
• config wlan load-balance, on page 1000
• config wlan mac-filtering, on page 1001
• config wlan max-associated-clients, on page 1002
• config wlan max-radio-clients, on page 1003
• config wlan mdns, on page 1004
• config wlan media-stream, on page 1005
• config wlan mfp, on page 1006
• config wlan mobility anchor, on page 1007
• config wlan mobility foreign-map, on page 1008
• config wlan multicast buffer, on page 1009
• config wlan multicast interface, on page 1010
• config wlan nac, on page 1011
• config wlan override-rate-limit, on page 1012
• config wlan passive-client, on page 1014
• config wlan peer-blocking, on page 1015
• config wlan pmipv6 default-realm, on page 1016
• config wlan pmipv6 mobility-type, on page 1017
• config wlan pmipv6 profile_name, on page 1018
• config wlan policy, on page 1019
• config wlan profile, on page 1020
• config wlan profiling, on page 1021
• config wlan qos, on page 1022
• config wlan radio, on page 1023
• config wlan radius_server acct, on page 1024
• config wlan radius_server acct interim-update, on page 1025
• config wlan radius_server auth, on page 1026
• config wlan radius_server overwrite-interface, on page 1027
• config wlan radius_server realm, on page 1028
• config wlan roamed-voice-client re-anchor, on page 1029
• config wlan security 802.1X, on page 1030
• config wlan security ckip, on page 1032
• config wlan security cond-web-redir, on page 1033
• config wlan security eap-params, on page 1034
• config wlan security eap-passthru, on page 1036
• config wlan security ft, on page 1037
• config wlan security ft over-the-ds, on page 1038
• config wlan security IPsec disable, on page 1039
• config wlan security IPsec enable, on page 1040
• config wlan security IPsec authentication, on page 1041
• config wlan security IPsec encryption, on page 1042
• config wlan security IPsec config, on page 1043
• config wlan security IPsec ike authentication, on page 1044
• config wlan security IPsec ike dh-group, on page 1045
• config wlan security IPsec ike lifetime, on page 1046
- config wlan security IPSec ike phase1, on page 1047
- config wlan security IPSec ike contivity, on page 1048
- config wlan security wpa akm ft, on page 1049
- config wlan security ft, on page 1050
- config wlan security passthru, on page 1051
- config wlan security pmf, on page 1052
- config wlan security splash-page-web-redir, on page 1054
- config wlan security static-wep-key authentication, on page 1055
- config wlan security static-wep-key disable, on page 1056
- config wlan security static-wep-key enable, on page 1057
- config wlan security static-wep-key encryption, on page 1058
- config wlan security tkip, on page 1059
- config wlan usertimeout, on page 1060
- config wlan security web-auth, on page 1061
- config wlan security web-passthrough acl, on page 1063
- config wlan security web-passthrough disable, on page 1064
- config wlan security web-passthrough email-input, on page 1065
- config wlan security web-passthrough enable, on page 1066
- config wlan security wpa akm 802.1x, on page 1067
- config wlan security wpa akm cckm, on page 1068
- config wlan security wpa akm ft, on page 1069
- config wlan security wpa akm pmf, on page 1070
- config wlan security wpa akm psk, on page 1071
- config wlan security wpa disable, on page 1072
- config wlan security wpa enable, on page 1073
- config wlan security wpa ciphers, on page 1074
- config wlan security wpa gtk-random, on page 1075
- config wlan security wpa1 disable, on page 1076
- config wlan security wpa1 enable, on page 1077
- config wlan security wpa2 disable, on page 1078
- config wlan security wpa2 enable, on page 1079
- config wlan security wpa2 cache, on page 1080
- config wlan security wpa2 cache sticky, on page 1081
- config wlan security wpa wpa2 ciphers, on page 1082
- config wlan session-timeout, on page 1083
- config wlan sip-cac disassoc-client, on page 1084
- config wlan sip-cac send-486busy, on page 1085
- config wlan ssid, on page 1086
- config wlan static-ip tunneling, on page 1087
- config wlan uapsd compliant client enable, on page 1088
- config wlan uapsd compliant-client disable, on page 1089
- config wlan user-idle-threshold, on page 1090
- config wlan usertimeout, on page 1091
- config wlan webauth-exclude, on page 1092
- config wlan wifidirect, on page 1093
- config wlan wmm, on page 1094
• config wps ap-authentication, on page 1095
• config wps auto-immune, on page 1096
• config wps cids-sensor, on page 1097
• config wps client-exclusion, on page 1099
• config wps mfp, on page 1100
• config wps shun-list re-sync, on page 1101
• config wps signature, on page 1102
• config wps signature frequency, on page 1104
• config wps signature interval, on page 1105
• config wps signature mac-frequency, on page 1106
• config wps signature quiet-time, on page 1107
• config wps signature reset, on page 1108
### config radius acct

To configure settings for a RADIUS accounting server for the Cisco wireless LAN controller, use the `config radius acct` command.

```plaintext
config radius acct {
 add index IP addr port {ascii | hex} secret | delete index | disable index
 enable index | ipsec {authentication {hmac-md5 index | hmac-sha1 index} | disable index
 enable index | encryption {256-aes | 3des | aes | des} index | ike {auth-mode {pre-shared-key index type shared_secret_key | certificate index} | dh-group {2048bit-group-14 | group-1 | group-2 | group-5} index | lifetime seconds index | phase1 {aggressive | main} index} | {mac-delimiter {colon | hyphen | none | single-hyphen}} | {network index (disable | enable)} | {region {group | none | provincial}} | retransmit-timeout index seconds | realm {add | delete} index realm-string }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds a RADIUS accounting server (IPv4 or IPv6).</td>
</tr>
<tr>
<td><code>index</code></td>
<td>RADIUS server index (1 to 17).</td>
</tr>
<tr>
<td><code>IP addr</code></td>
<td>RADIUS server IP address (IPv4 or IPv6).</td>
</tr>
<tr>
<td><code>port</code></td>
<td>RADIUS server’s UDP port number for the interface protocols.</td>
</tr>
<tr>
<td><code>ascii</code></td>
<td>Specifies the RADIUS server’s secret type: <code>ascii</code>.</td>
</tr>
<tr>
<td><code>hex</code></td>
<td>Specifies the RADIUS server’s secret type: <code>hex</code>.</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>RADIUS server’s secret.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables a RADIUS accounting server.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables a RADIUS accounting server.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a RADIUS accounting server.</td>
</tr>
<tr>
<td><code>ipsec</code></td>
<td>Enables or disables IPSec support for an accounting server.</td>
</tr>
<tr>
<td><code>authentication</code></td>
<td>Configures IPSec Authentication.</td>
</tr>
<tr>
<td><code>hmac-md5</code></td>
<td>Enables IPSec HMAC-MD5 authentication.</td>
</tr>
<tr>
<td><code>hmac-sha1</code></td>
<td>Enables IPSec HMAC-SHA1 authentication.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables IPSec support for an accounting server.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables IPSec support for an accounting server.</td>
</tr>
<tr>
<td><code>encryption</code></td>
<td>Configures IPSec encryption.</td>
</tr>
<tr>
<td><code>256-aes</code></td>
<td>Enables IPSec AES-256 encryption.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>3des</td>
<td>Enables IPSec 3DES encryption.</td>
</tr>
<tr>
<td>aes</td>
<td>Enables IPSec AES-128 encryption.</td>
</tr>
<tr>
<td>des</td>
<td>Enables IPSec DES encryption.</td>
</tr>
<tr>
<td>ike</td>
<td>Configures Internet Key Exchange (IKE).</td>
</tr>
<tr>
<td>auth-mode</td>
<td>Configures IKE authentication method.</td>
</tr>
<tr>
<td>pre-shared-key</td>
<td>Pre-shared key for authentication.</td>
</tr>
<tr>
<td>certificate</td>
<td>Certificate used for authentication.</td>
</tr>
<tr>
<td>dh-group</td>
<td>Configures IKE Diffie-Hellman group.</td>
</tr>
<tr>
<td>2048bit-group-14</td>
<td>Configures DH group 14 (2048 bits).</td>
</tr>
<tr>
<td>group-1</td>
<td>Configures DH group 1 (768 bits).</td>
</tr>
<tr>
<td>group-2</td>
<td>Configures DH group 2 (1024 bits).</td>
</tr>
<tr>
<td>group-5</td>
<td>Configures DH group 5 (1536 bits).</td>
</tr>
<tr>
<td>lifetime seconds</td>
<td>Configures IKE lifetime in seconds. The range is from 1800 to 57600 seconds and the default is 28800.</td>
</tr>
<tr>
<td>phase1</td>
<td>Configures IKE phase1 mode.</td>
</tr>
<tr>
<td>aggressive</td>
<td>Enables IKE aggressive mode.</td>
</tr>
<tr>
<td>main</td>
<td>Enables IKE main mode.</td>
</tr>
<tr>
<td>mac-delimiter</td>
<td>Configures MAC delimiter for caller station ID and calling station ID.</td>
</tr>
<tr>
<td>colon</td>
<td>Sets the delimiter to colon (For example: xx:xx:xx:xx:xx:xx).</td>
</tr>
<tr>
<td>hyphen</td>
<td>Sets the delimiter to hyphen (For example: xx-xx-xx-xx-xx-xx).</td>
</tr>
<tr>
<td>none</td>
<td>Disables delimiters (For example: xxxxxxxxxx).</td>
</tr>
<tr>
<td>single-hyphen</td>
<td>Sets the delimiters to single hyphen (For example: xxxxxx-xxxxxx).</td>
</tr>
<tr>
<td>network</td>
<td>Configures a default RADIUS server for network users.</td>
</tr>
<tr>
<td>group</td>
<td>Specifies RADIUS server type group.</td>
</tr>
<tr>
<td>none</td>
<td>Specifies RADIUS server type none.</td>
</tr>
<tr>
<td>provincial</td>
<td>Specifies RADIUS server type provincial.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>retransmit-timeout</td>
<td>Changes the default retransmit timeout for the server.</td>
</tr>
<tr>
<td>seconds</td>
<td>The number of seconds between retransmissions.</td>
</tr>
<tr>
<td>realm</td>
<td>Specifies radius acct realm.</td>
</tr>
<tr>
<td>add</td>
<td>Adds radius acct realm.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes radius acct realm.</td>
</tr>
</tbody>
</table>

**Command Default**

When adding a RADIUS server, the port number defaults to 1813 and the state is **enabled**.

**Usage Guidelines**

IPSec is not supported for IPv6.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a priority 1 RADIUS accounting server at 10.10.10.10 using port 1813 with a login password of **admin**:

(Cisco Controller) > config radius acct add 1 10.10.10.10 1813 ascii admin

The following example shows how to configure a priority 1 RADIUS accounting server at 2001:9:6:40::623 using port 1813 with a login password of **admin**:

(Cisco Controller) > config radius acct add 1 2001:9:6:40::623 1813 ascii admin
To configure IPsec authentication for the Cisco wireless LAN controller, use the `config radius acct ipsec authentication` command.

```
config radius acct ipsec authentication { hmac-md5 | hmac-sha1 } index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hmac-md5</td>
<td>Enables IPsec HMAC-MD5 authentication.</td>
</tr>
<tr>
<td>hmac-sha1</td>
<td>Enables IPsec HMAC-SHA1 authentication.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec hmac-md5 authentication service on the RADIUS accounting server index 1:

```
(Cisco Controller) > config radius acct ipsec authentication hmac-md5 1
```

**Related Commands**

- `show radius acct statistics`
config radius acct ipsec disable

To disable IPsec support for an accounting server for the Cisco wireless LAN controller, use the `config radius acct ipsec disable` command.

```
config radius acct ipsec disable index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the IPsec support for RADIUS accounting server index 1:

```
(Cisco Controller) > config radius acct ipsec disable 1
```

**Related Commands**

- `show radius acct statistics`
config radius acct ipsec enable

To enable IPsec support for an accounting server for the Cisco wireless LAN controller, use the config radius acct ipsec enable command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>RADIUS server index.</th>
</tr>
</thead>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable the IPsec support for RADIUS accounting server index 1:

(Cisco Controller) > config radius acct ipsec enable 1

Related Commands

show radius acct statistics
config radius acct ipsec encryption

To configure IPsec encryption for an accounting server for the Cisco wireless LAN controller, use the `config radius acct ipsec encryption` command.

```
config radius acct ipsec encryption { 3des | aes | des } index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>256-aes</td>
<td>Enables IPsec AES-256 encryption.</td>
</tr>
<tr>
<td>3des</td>
<td>Enables IPsec 3DES encryption.</td>
</tr>
<tr>
<td>aes</td>
<td>Enables IPsec AES encryption.</td>
</tr>
<tr>
<td>des</td>
<td>Enables IPsec DES encryption.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index value of between 1 and 17.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec 3DES encryption for RADIUS server index value 3:

```
(Cisco Controller) > config radius acct ipsec encryption 3des 3
```
config radius acct ipsec ike

To configure Internet Key Exchange (IKE) for the Cisco WLC, use the `config radius acct ipsec ike` command.

```
config radius acct ipsec ike dh-group {group-1 | group-2 | group-5 | group-14} lifetime seconds | phase1 {aggressive | main} index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dh-group</td>
<td>Specifies the Dixie-Hellman (DH) group.</td>
</tr>
<tr>
<td>group-1</td>
<td>Configures the DH Group 1 (768 bits).</td>
</tr>
<tr>
<td>group-2</td>
<td>Configures the DH Group 2 (1024 bits).</td>
</tr>
<tr>
<td>group-5</td>
<td>Configures the DH Group 5 (1024 bits).</td>
</tr>
<tr>
<td>group-14</td>
<td>Configures the DH Group 14 (2048 bits).</td>
</tr>
<tr>
<td>lifetime</td>
<td>Configures the IKE lifetime.</td>
</tr>
<tr>
<td>seconds</td>
<td>IKE lifetime in seconds.</td>
</tr>
<tr>
<td>phase1</td>
<td>Configures the IKE phase 1 node.</td>
</tr>
<tr>
<td>aggressive</td>
<td>Enables the aggressive mode.</td>
</tr>
<tr>
<td>main</td>
<td>Enables the main mode.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an IKE lifetime of 23 seconds for RADIUS server index 1:

```
(Cisco Controller) > config radius acct ipsec ike lifetime 23 1
```

**Related Commands**

- `show radius acct statistics`
**config radius acct mac-delimiter**

To specify the delimiter to be used in the MAC addresses that are sent to the RADIUS accounting server, use the `config radius acct mac-delimiter` command.

```
config radius acct mac-delimiter { colon | hyphen | single-hyphen | none }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colon</td>
<td>Sets the delimiter to a colon (for example, xx:xx:xx:xx:xx:xx).</td>
</tr>
<tr>
<td>hyphen</td>
<td>Sets the delimiter to a hyphen (for example, xx-xx-xx-xx-xx-xx).</td>
</tr>
<tr>
<td>single-hyphen</td>
<td>Sets the delimiter to a single hyphen (for example, xxxxxx-xxxxxx).</td>
</tr>
<tr>
<td>none</td>
<td>Disables the delimiter (for example, xxxxxxxxxxxx).</td>
</tr>
</tbody>
</table>

**Command Default**
The default delimiter is a hyphen.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the delimiter hyphen to be used in the MAC addresses that are sent to the RADIUS accounting server for the network users:

```
(Cisco Controller) > config radius acct mac-delimiter hyphen
```

**Related Commands**
- `show radius acct statistics`
config radius acct network

To configure a default RADIUS server for network users, use the config radius acct network command.

```
config radius acct network index { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the server as a network user’s default RADIUS server.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the server as a network user’s default RADIUS server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default RADIUS accounting server for the network users with RADIUS server index 1:

```
(Cisco Controller) > config radius acct network 1 enable
```

**Related Commands**

show radius acct statistics
**config radius acct realm**

To configure realm on RADIUS accounting server, use the `config radius acct realm` command.

```
config radius acct realm {add | delete} radius_index realm_string
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius_server</code></td>
<td>Radius server index. The range is from 1 to 17.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Add realm to RADIUS accounting server.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Delete realm from RADIUS accounting server.</td>
</tr>
<tr>
<td><code>realm_string</code></td>
<td>Unique string associated to RADIUS accounting realm.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how add realm to the RADIUS accounting server:

```
(Cisco Controller) > config radius acct realm add 3 test
```
config radius acct retransmit-timeout

To change the default transmission timeout for a RADIUS accounting server for the Cisco wireless LAN controller, use the `config radius acct retransmit-timeout` command.

**config radius acct retransmit-timeout index timeout**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Number of seconds (from 2 to 30) between retransmissions.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure retransmission timeout value 5 seconds between the retransmission:

```
(Cisco Controller) > config radius acct retransmit-timeout 5
```

**Related Commands**

`show radius acct statistics`
# config radius auth

To configure settings for a RADIUS authentication server for the Cisco wireless LAN controller, use the `config radius auth` command.

```
config radius auth { add index IP addr port ascii/hex secret } | delete index | disable index | enable index | framed-mtu mtu | ipsec | hmac-md5 index | hmac-sha1 index | auth-mode { pre-shared-key index ascii/hex shared_secret } | certificate index | dh-group { 2048bit-group-14 | group-1 | group-2 | group-5 } index | lifetime seconds index | phase1 { aggressive | main } index | keywrap { add ascii/hex kek mack index } | delete index | disable | enable | mac-delimiter { colon | hyphen | none | single-hyphen } | management index { enable | disable } | mgmt-retransmit-timeout index Retransmit Timeout | network index { enable | disable } | realm { add | delete } radius-index realm-string | retransmit-timeout index Retransmit Timeout | rfc3576 { enable | disable } index
```

## Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables a RADIUS authentication server.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables a RADIUS authentication server.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a RADIUS authentication server.</td>
</tr>
<tr>
<td><code>index</code></td>
<td>RADIUS server index. The controller begins the search with 1. The server index range is from 1 to 17.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Adds a RADIUS authentication server. See the “Defaults” section.</td>
</tr>
<tr>
<td><code>IP addr</code></td>
<td>IP address (IPv4 or IPv6) of the RADIUS server.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>RADIUS server’s UDP port number for the interface protocols.</td>
</tr>
<tr>
<td><code>ascii/hex</code></td>
<td>Specifies RADIUS server’s secret type: ascii or hex.</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>RADIUS server’s secret.</td>
</tr>
<tr>
<td><code>callStationIdType</code></td>
<td>Configures Called Station Id information sent in RADIUS authentication messages.</td>
</tr>
<tr>
<td><code>framed-mtu</code></td>
<td>Configures the Framed-MTU for all the RADIUS servers. The framed-mtu range is from 64 to 1300 bytes.</td>
</tr>
<tr>
<td><code>ipsec</code></td>
<td>Enables or disables IPSEC support for an authentication server.</td>
</tr>
</tbody>
</table>

**Note** IPSec is not supported for IPv6.

| `keywrap`             | Configures RADIUS keywrap.                                                 |
**Command Default**

When adding a RADIUS server, the port number defaults to 1812 and the state is enabled.

**IPSec is not supported for IPv6.**

**Usage Guidelines**

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a priority 3 RADIUS authentication server at 10.10.10.10 using port 1812 with a login password of admin:

(Cisco Controller) > config radius auth add 3 10.10.10.10 1812 ascii admin

The following example shows how to configure a priority 3 RADIUS authentication server at 2001:9:6:40::623 using port 1812 with a login password of admin:

(Cisco Controller) > config radius auth add 3 2001:9:6:40::623 1812 ascii admin
config radius auth callStationIdType

To configure the RADIUS authentication server, use the `config radius auth callStationIdType` command.

```
config radius auth callStationIdType { ap-ethmac-only | ap-ethmac-ssid | ap-group-name | ap-label-address | ap-label-address-ssid | ap-location | ap-macaddr-only | ap-macaddr-ssid | ap-name | ap-name-ssid | flex-group-name | ipaddr | macaddr | vlan-id }
```

### Syntax Description

- **ipaddr**
  - Configures the Call Station ID type to use the IP address (only Layer 3).

- **macaddr**
  - Configures the Call Station ID type to use the system’s MAC address (Layers 2 and 3).

- **ap-macaddr-only**
  - Configures the Call Station ID type to use the access point’s MAC address (Layers 2 and 3).

- **ap-macaddr-ssid**
  - Configures the Call Station ID type to use the access point’s MAC address (Layers 2 and 3) in the format `AP MAC address:SSID`.

- **ap-ethmac-only**
  - Configures the Called Station ID type to use the access point’s Ethernet MAC address.

- **ap-ethmac-ssid**
  - Configures the Called Station ID type to use the access point’s Ethernet MAC address in the format `AP Ethernet MAC address:SSID`.

- **ap-group-name**
  - Configures the Call Station ID type to use the AP group name. If the AP is not part of any AP group, default-group is taken as the AP group name.

- **flex-group-name**
  - Configures the Call Station ID type to use the FlexConnect group name. If the FlexConnect AP is not part of any FlexConnect group, the system MAC address is taken as the Call Station ID.

- **ap-name**
  - Configures the Call Station ID type to use the access point’s name.

- **ap-name-ssid**
  - Configures the Call Station ID type to use the access point’s name in the format `AP name:SSID`.

- **ap-location**
  - Configures the Call Station ID type to use the access point’s location.

- **vlan-id**
  - Configures the Call Station ID type to use the system’s VLAN-ID.

- **ap-label-address**
  - Configures the Call Station ID type to the AP MAC address that is printed on the AP label, for the accounting messages.
**Command Default**

The MAC address of the system.

**Usage Guidelines**

The controller sends the Called Station ID attribute to the RADIUS server in all authentication and accounting packets. The Called Station ID attribute can be used to classify users to different groups based on the attribute value. The command is applicable only for the Called Station and not for the Calling Station.

You cannot send only the SSID as the Called-Station-ID, you can only combine the SSID with either the access point MAC address or the access point name.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>7.6</td>
<td>The <code>ap-ethmac-only</code> and <code>ap-ethmac-ssid</code> keywords were added to support the access point’s Ethernet MAC address. The <code>ap-label-address</code> and <code>ap-label-address-ssid</code> keywords were added.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the call station ID type to use the IP address:

```
(Cisco Controller) > config radius auth callStationIdType ipAddr
```

The following example shows how to configure the call station ID type to use the system’s MAC address:

```
(Cisco Controller) > config radius auth callStationIdType macAddr
```

The following example shows how to configure the call station ID type to use the access point’s MAC address:

```
(Cisco Controller) > config radius auth callStationIdType ap-macAddr
```
# config radius auth framed-mtu

To configure the framed-mtu value for all RADIUS servers, use the `config radius auth framed-mtu` command.

`config radius auth framed-mtu mtu`  

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mtu</code></td>
<td>Framed-MTU value range between 64 and 1300 bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
</tr>
<tr>
<td>7.6</td>
</tr>
</tbody>
</table>

The following example shows how to set the framed-mtu value for a RADIUS authentication server:

```
(Cisco Controller) > config radius auth framed-mtu 500
```
To configure IPsec support for an authentication server for the Cisco wireless LAN controller, use the `config radius auth IPsec authentication` command.

```
config radius auth IPsec authentication { hmac-md5 | hmac-sha1 } index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hmac-md5</td>
<td>Enables IPsec HMAC-MD5 authentication.</td>
</tr>
<tr>
<td>hmac-sha1</td>
<td>Enables IPsec HMAC-SHA1 authentication.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec hmac-md5 support for RADIUS authentication server index 1:

```
(Cisco Controller) > config radius auth IPsec authentication hmac-md5 1
```

**Related Commands**

- `show radius acct statistics`
config radius auth ipsec disable

To disable IPsec support for an authentication server for the Cisco wireless LAN controller, use the **config radius auth IPsec disable** command.

```
config radius auth ipsec {enable | disable} index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Enable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the IPsec support for an authentication server.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the IPsec support for an authentication server.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to enable the IPsec support for RADIUS authentication server index 1:

```
(Cisco Controller) > config radius auth ipsec enable 1
```

This example shows how to disable the IPsec support for RADIUS authentication server index 1:

```
(Cisco Controller) > config radius auth ipsec disable 1
```

**Related Commands**

- `show radius acct statistics`
**config radius auth ipsec encryption**

To configure IPsec encryption support for an authentication server for the Cisco wireless LAN controller, use the `config radius auth ipsec encryption` command.

```
config radius auth IPsec encryption
{256-aes | 3des | aes | des}
index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>256-aes</td>
<td>Enables the IPsec 256 AES encryption.</td>
</tr>
<tr>
<td>3des</td>
<td>Enables the IPsec 3DES encryption.</td>
</tr>
<tr>
<td>aes</td>
<td>Enables the IPsec AES encryption.</td>
</tr>
<tr>
<td>des</td>
<td>Enables the IPsec DES encryption.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The keyword 256-aes was added.</td>
</tr>
</tbody>
</table>

The following example shows how to configure IPsec 3des encryption RADIUS authentication server index 3:

```
(Cisco Controller) > config radius auth ipsec encryption 3des 3
```

**Related Commands**

- `show radius acct statistics`
config radius auth ipsec ike

To configure Internet Key Exchange (IKE) for the Cisco wireless LAN controller, use the config radius auth IPsec ike command.

```plaintext
cfg radius auth ipsec ike
 auth-mode
 pre-shared-key
 index
 ascii | hex
 shared-secret
 certificate
 index
 dh-group
 2048bit-group-14 | group-1 | group-2 | group-5
 lifetime
 seconds
 phase1
 aggressive | main
 index
```

**Syntax Description**

- **auth-mode**: Configures the IKE authentication method.
- **pre-shared-key**: Configures the preshared key for IKE authentication method.
- **index**: RADIUS server index between 1 and 17.
- **ascii**: Configures RADIUS IPsec IKE secret in an ASCII format.
- **hex**: Configures RADIUS IPsec IKE secret in a hexadecimal format.
- **shared-secret**: Configures the shared RADIUS IPsec secret.
- **certificate**: Configures the certificate for IKE authentication.
- **dh-group**: Configures the IKE Diffe-Hellman group.
- **2048bit-group-14**: Configures the DH Group14 (2048 bits).
- **group-1**: Configures the DH Group 1 (768 bits).
- **group-2**: Configures the DH Group 2 (1024 bits).
- **group-5**: Configures the DH Group 2 (1024 bits).
- **lifetime**: Configures the IKE lifetime.
- **seconds**: IKE lifetime in seconds. The range is from 1800 to 57600 seconds.
- **phase1**: Configures the IKE phase1 mode.
- **aggressive**: Enables the aggressive mode.
- **main**: Enables the main mode.
- **index**: RADIUS server index.

**Command Default**

By default, preshared key is used for IPsec sessions and IKE lifetime is 28800 seconds.
This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure IKE lifetime of 23 seconds for RADIUS authentication server index 1:

(Cisco Controller) > config radius auth ipsec ike lifetime 23 1

**Related Commands**

- show radius acct statistics
config radius auth keywrap

To enable and configure Advanced Encryption Standard (AES) key wrap, which makes the shared secret between the controller and the RADIUS server more secure, use the `config radius auth keywrap` command.

```
config radius auth keywrap { enable | disable | add { ascii | hex } kek mack | delete } index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables AES key wrap.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables AES key wrap.</td>
</tr>
<tr>
<td><code>add</code></td>
<td>Configures AES key wrap attributes.</td>
</tr>
<tr>
<td><code>ascii</code></td>
<td>Configures key wrap in an ASCII format.</td>
</tr>
<tr>
<td><code>hex</code></td>
<td>Configures key wrap in a hexadecimal format.</td>
</tr>
<tr>
<td><code>kek</code></td>
<td>16-byte Key Encryption Key (KEK).</td>
</tr>
<tr>
<td><code>mack</code></td>
<td>20-byte Message Authentication Code Key (MACK).</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes AES key wrap attributes.</td>
</tr>
<tr>
<td><code>index</code></td>
<td>Index of the RADIUS authentication server on which to configure the AES key wrap.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the AES key wrap for a RADIUS authentication server:

```
(Cisco Controller) > config radius auth keywrap enable
```

**Related Commands**

- `show radius auth statistics`
**config radius auth mac-delimiter**

To specify a delimiter to be used in the MAC addresses that are sent to the RADIUS authentication server, use the `config radius auth mac-delimiter` command.

```
config radius auth mac-delimiter { colon | hyphen | single-hyphen | none }
```

**Syntax Description**

- **colon**
  - Sets a delimiter to a colon (for example, `xx:xx:xx:xx:xx:xx`).
- **hyphen**
  - Sets a delimiter to a hyphen (for example, `xx-xx-xx-xx-xx-xx`).
- **single-hyphen**
  - Sets a delimiter to a single hyphen (for example, `xxxxxx-xxxxxx`).
- **none**
  - Disables the delimiter (for example, `xxxxxxxxxxxx`).

**Command Default**

The default delimiter is a hyphen.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify a delimiter hyphen to be used for a RADIUS authentication server:

```
(Cisco Controller) > config radius auth mac-delimiter hyphen
```

**Related Commands**

- show radius auth statistics
config radius auth management

To configure a default RADIUS server for management users, use the `config radius auth management` command.

```
config radius auth management index { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the server as a management user’s default RADIUS server.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the server as a management user’s default RADIUS server.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a RADIUS server for management users:

```
(Cisco Controller) > config radius auth management 1 enable
```

**Related Commands**

- `show radius acct statistics`
- `config radius acct network`
- `config radius auth mgmt-retransmit-timeout`
**config radius auth mgmt-retransmit-timeout**

To configure a default RADIUS server retransmission timeout for management users, use the `config radius auth mgmt-retransmit-timeout` command.

```
config radius auth mgmt-retransmit-timeout index retransmit-timeout
```

**Syntax Description**

- **index**
  - RADIUS server index.

- **retransmit-timeout**
  - Timeout value. The range is from 1 to 30 seconds.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default RADIUS server retransmission timeout for management users:

```
(Cisco Controller) > config radius auth mgmt-retransmit-timeout 1 10
```

**Related Commands**

- `config radius auth management`
config radius auth network

To configure a default RADIUS server for network users, use the `config radius auth network` command.

`config radius auth network index (enable | disable)`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the server as a network user default RADIUS server.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the server as a network user default RADIUS server.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default RADIUS server for network users:

```plaintext
(Cisco Controller) > config radius auth network 1 enable
```

**Related Commands**

- `show radius acct statistics`
- `config radius acct network`
config radius auth realm

To configure realm on RADIUS authentication server, use the config radius auth realm command.

```
config radius auth realm {add | delete} radius_index realm_string
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius_server</td>
<td>Radius server index. The range is from 1 to 17.</td>
</tr>
<tr>
<td>add</td>
<td>Add realm to RADIUS authentication server.</td>
</tr>
<tr>
<td>delete</td>
<td>Delete realm from RADIUS authentication server.</td>
</tr>
<tr>
<td>realm_string</td>
<td>Unique string associated to RADIUS authentication realm.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how add realm to the RADIUS authentication server:

```
(Cisco Controller) > config radius auth realm add 3 test
```
config radius auth retransmit-timeout

To change a default transmission timeout for a RADIUS authentication server for the Cisco wireless LAN controller, use the `config radius auth retransmit-timeout` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Number of seconds (from 2 to 30) between retransmissions.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a retransmission timeout of 5 seconds for a RADIUS authentication server:

(Cisco Controller) > `config radius auth retransmit-timeout 5`

**Related Commands**

- `show radius auth statistics`
To configure RADIUS RFC-3576 support for the authentication server for the Cisco WLC, use the `config radius auth rfc3576` command.

```
config radius auth rfc3576 { enable | disable } index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RFC-3576 support for an authentication server.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RFC-3576 support for an authentication server.</td>
</tr>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

RFC 3576, which is an extension to the RADIUS protocol, allows dynamic changes to a user session. RFC 3576 includes support for disconnecting users and changing authorizations applicable to a user session. Disconnect messages cause a user session to be terminated immediately; CoA messages modify session authorization attributes such as data filters.

The following example shows how to enable the RADIUS RFC-3576 support for a RADIUS authentication server:

```
(Cisco Controller) > config radius auth rfc3576 enable 2
```

**Related Commands**

- `show radius auth statistics`
- `show radius summary`
- `show radius rfc3576`
config radius auth retransmit-timeout

To configure a retransmission timeout value for a RADIUS accounting server, use the `config radius auth server-timeout` command.

```
config radius auth retransmit-timeout [index] timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>timeout</td>
<td>Timeout value. The range is from 2 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default timeout is 2 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a server timeout value of 2 seconds for RADIUS authentication server index 10:

```
(Cisco Controller) > config radius auth retransmit-timeout 2 10
```

**Related Commands**

- `show radius auth statistics`
- `show radius summary`
config radius aggressive-failover disabled

To configure the controller to mark a RADIUS server as down (not responding) after the server does not reply to three consecutive clients, use the **config radius aggressive-failover disabled** command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the controller to mark a RADIUS server as down:

```
(Cisco Controller) > config radius aggressive-failover disabled
```

### Related Commands

- `show radius summary`
config radius backward compatibility

To configure RADIUS backward compatibility for the Cisco wireless LAN controller, use the `config radius backward compatibility` command.

```
config radius backward compatibility (enable | disable)
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RADIUS vendor ID backward compatibility.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS vendor ID backward compatibility.</td>
</tr>
</tbody>
</table>

### Command Default

Enabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the RADIUS backward compatibility settings:

```
(Cisco Controller) > config radius backward compatibility disable
```

### Related Commands

- `show radius summary`
config radius callStationIdCase

To configure callStationIdCase information sent in RADIUS messages for the Cisco WLC, use the `config radius callStationIdCase` command.

```
config radius callStationIdCase {legacy | lower | upper}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>legacy</td>
<td>Configures Call Station IDs for Layer 2 authentication to RADIUS in uppercase.</td>
</tr>
<tr>
<td>lower</td>
<td>Configures all Call Station IDs to RADIUS in lowercase.</td>
</tr>
<tr>
<td>upper</td>
<td>Configures all Call Station IDs to RADIUS in uppercase.</td>
</tr>
</tbody>
</table>

**Command Default**

Enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to send the call station ID in lowercase:

```
(Cisco Controller) > config radius callStationIdCase lower
```

**Related Commands**

- `show radius summary`
config radius callStationIdType

To configure the Called Station ID type information sent in RADIUS accounting messages for the Cisco wireless LAN controller, use the **config radius callStationIdType** command.

```
config radius callStationIdType { ap-ethmac-only | ap-ethmac-ssid | ap-group-name | ap-label-address | ap-label-address-ssid | ap-location | ap-macaddr-only | ap-macaddr-ssid | ap-name | ap-name-ssid | flex-group-name | ipaddr | macaddr | vlan-id }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>Configures the Call Station ID type to use the IP address (only Layer 3).</td>
</tr>
<tr>
<td>macaddr</td>
<td>Configures the Call Station ID type to use the system’s MAC address (Layers 2 and 3).</td>
</tr>
<tr>
<td>ap-macaddr-only</td>
<td>Configures the Call Station ID type to use the access point’s MAC address (Layers 2 and 3).</td>
</tr>
<tr>
<td>ap-macaddr-ssid</td>
<td>Configures the Call Station ID type to use the access point’s MAC address (Layers 2 and 3) in the format <code>AP MAC address:SSID</code>.</td>
</tr>
<tr>
<td>ap-ethmac-only</td>
<td>Configures the Called Station ID type to use the access point’s Ethernet MAC address.</td>
</tr>
<tr>
<td>ap-ethmac-ssid</td>
<td>Configures the Called Station ID type to use the access point’s Ethernet MAC address in the format <code>AP Ethernet MAC address:SSID</code>.</td>
</tr>
<tr>
<td>ap-group-name</td>
<td>Configures the Call Station ID type to use the AP group name. If the AP is not part of any AP group, default-group is taken as the AP group name.</td>
</tr>
<tr>
<td>flex-group-name</td>
<td>Configures the Call Station ID type to use the FlexConnect group name. If the FlexConnect AP is not part of any FlexConnect group, the system MAC address is taken as the Call Station ID.</td>
</tr>
<tr>
<td>ap-name</td>
<td>Configures the Call Station ID type to use the access point’s name.</td>
</tr>
<tr>
<td>ap-name-ssid</td>
<td>Configures the Call Station ID type to use the access point’s name in the format <code>AP name:SSID</code>.</td>
</tr>
<tr>
<td>ap-location</td>
<td>Configures the Call Station ID type to use the access point’s location.</td>
</tr>
<tr>
<td>ap-mac-ssid-ap-group</td>
<td>Sets Called Station ID type to the format <code>&lt;AP MAC address&gt;:&lt;SSID&gt;:&lt;AP Group&gt;</code>.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>Configures the Call Station ID type to use the system’s VLAN-ID.</td>
</tr>
</tbody>
</table>
Configure the Call Station ID type to the AP MAC address that is printed on the AP label, for the accounting messages.

**ap-label-address**

Configures the Call Station ID type to the AP MAC address: SSID format.

**ap-label-address-ssid**

---

**Command Default**

The IP address of the system.

**Usage Guidelines**

The controller sends the Called Station ID attribute to the RADIUS server in all authentication and accounting packets. The Called Station ID attribute can be used to classify users to different groups based on the attribute value. The command is applicable only for the Called Station and not for the Calling Station.

You cannot send only the SSID as the Called-Station-ID, you can only combine the SSID with either the access point MAC address or the access point name.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>7.6</td>
<td>The <code>ap-ethmac-only</code> and <code>ap-ethmac-ssid</code> keywords were added to support the access point’s Ethernet MAC address.</td>
</tr>
<tr>
<td></td>
<td>The <code>ap-label-address</code> and <code>ap-label-address-ssid</code> keywords were added.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the call station ID type to use the IP address:

(Cisco Controller) > config radius callStationIdType ipaddr

The following example shows how to configure the call station ID type to use the system’s MAC address:

(Cisco Controller) > config radius callStationIdType macaddr

The following example shows how to configure the call station ID type to use the access point’s MAC address:

(Cisco Controller) > config radius callStationIdType ap-macaddr-only
config radius dns

To retrieve the RADIUS IP information from a DNS server, use the `config radius dns` command.

```
config radius dns { global port { ascii | hex } secret | query url timeout | serverip ip_address | disable | enable }
```

**Syntax Description**

- **global**
  - Configures the global port and secret to retrieve the RADIUS IP information from a DNS server.

- **port**
  - Port number for authentication. The range is from 1 to 65535. All the DNS servers should use the same authentication port.

- **ascii**
  - Format of the shared secret that you should set to ASCII.

- **hex**
  - Format of the shared secret that you should set to hexadecimal.

- **secret**
  - RADIUS server login secret.

- **query**
  - Configures the fully qualified domain name (FQDN) of the RADIUS server and DNS timeout.

- **url**
  - FQDN of the RADIUS server. The FQDN can be up to 63 case-sensitive, alphanumeric characters.

- **timeout**
  - Maximum time that the Cisco WLC waits for, in days, before timing out the request and resending it. The range is from 1 to 180.

- **serverip**
  - Configures the DNS server IP address.

- **ip_address**
  - DNS server IP address.

- **disable**
  - Disables the RADIUS DNS feature. By default, this feature is disabled.

- **enable**
  - Enables the Cisco WLC to retrieve the RADIUS IP information from a DNS server.

  When you enable a DNS query, the static configurations are overridden, that is, the DNS list overrides the static AAA list.

**Command Default**

You cannot configure the global port and secret to retrieve the RADIUS IP information.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- The accounting port is derived from the authentication port. All the DNS servers should use the same secret.

The following example shows how to enable the RADIUS DNS feature on the Cisco WLC:

```
(Cisco Controller) > config radius dns enable
```
config radius fallback-test

To configure the RADIUS server fallback behavior, use the `config radius fallback-test` command.

```
config radius fallback-test mode { off | passive | active } | username username } | { interval interval
```

**Syntax Description**

- `mode` Specifies the mode.
- `off` Disables RADIUS server fallback.
- `passive` Causes the controller to revert to a preferable server (with a lower server index) from the available backup servers without using extraneous probe messages. The controller ignores all inactive servers for a time period and retries later when a RADIUS message needs to be sent.
- `active` Causes the controller to revert to a preferable server (with a lower server index) from the available backup servers by using RADIUS probe messages to proactively determine whether a server that has been marked inactive is back online. The controller ignores all inactive servers for all active RADIUS requests.
- `username` Specifies the username.
- `username` Username. The username can be up to 16 alphanumeric characters.
- `interval` Specifies the probe interval value.
- `interval` Probe interval. The range is 180 to 3600.

**Command Default**

The default probe interval is 300.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to disable the RADIUS accounting server fallback behavior:

```
(Cisco Controller) > config radius fallback-test mode off
```

The following example shows how to configure the controller to revert to a preferable server from the available backup servers without using the extraneous probe messages:

```
(Cisco Controller) > config radius fallback-test mode passive
```
The following example shows how to configure the controller to revert to a preferable server from the available backup servers by using RADIUS probe messages:

(Cisco Controller) > config radius fallback-test mode active

**Related Commands**
- config advanced probe filter
- config advanced probe limit
- show advanced probe
- show radius acct statistics
config radius acct retransmit-timeout

To change the default transmission timeout for a RADIUS accounting server for the Cisco wireless LAN controller, use the **config radius acct retransmit-timeout** command.

```
config radius acct retransmit-timeout index timeout
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>timeout</td>
<td>Number of seconds (from 2 to 30) between retransmissions.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure retransmission timeout value 5 seconds between the retransmission:

```
(Cisco Controller) > config radius acct retransmit-timeout 5
```

### Related Commands

- `show radius acct statistics`
To configure a default RADIUS server retransmission timeout for management users, use the `config radius auth mgmt-retransmit-timeout` command.

```
config radius auth mgmt-retransmit-timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>retransmit-timeout</td>
<td>Timeout value. The range is from 1 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default RADIUS server retransmission timeout for management users:

```
(Cisco Controller) > config radius auth mgmt-retransmit-timeout 1 10
```

**Related Commands**

- config radius auth management
config radius auth retransmit-timeout

To change a default transmission timeout for a RADIUS authentication server for the Cisco wireless LAN controller, use the `config radius auth retransmit-timeout` command.

`config radius auth retransmit-timeout index timeout`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Number of seconds (from 2 to 30) between retransmissions.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a retransmission timeout of 5 seconds for a RADIUS authentication server:

```
(Cisco Controller) > config radius auth retransmit-timeout 5
```

**Related Commands**

`show radius auth statistics`
config radius auth retransmit-timeout

To configure a retransmission timeout value for a RADIUS accounting server, use the `config radius auth server-timeout` command.

```
config radius auth retransmit-timeout index timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Timeout value. The range is from 2 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default timeout is 2 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a server timeout value of 2 seconds for RADIUS authentication server index 10:

```
(Cisco Controller) > config radius auth retransmit-timeout 2 10
```

**Related Commands**

- `show radius auth statistics`
- `show radius summary`
To configure the service port IP and netmask of the peer or standby controller, use the `config redundancy interface address peer-service-port` command.

`config redundancy interface address peer-service-port ip_address netmask`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>IP address of the peer service port.</td>
</tr>
<tr>
<td><code>netmask</code></td>
<td>Netmask of the peer service port.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can configure this command only from the Active controller. For the HA feature, the service port configurations are made per controller. You will lose these configurations if you change the mode from HA to non-HA and vice-versa.

The following example shows how to configure the service port IP and netmask of the peer or standby controller:

```
(Cisco Controller) > config redundancy interface address peer-service-port 11.22.44.55
```
config redundancy mobilitymac

To configure the HA mobility MAC address to be used as an identifier, use the **config redundancy mobilitymac** command.

```
config redundancy mobilitymac mac_address
```

**Syntax Description**

- `mac_address` MAC address that is an identifier for the active and standby controller pair.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you upgrade from Release 8.0.110.0 to a later release, the command's setting is removed. You must manually reconfigure the mobility MAC address after the upgrade.

The following example shows how to configure the HA mobility MAC address:

```
(Cisco Controller) >config redundancy mobilitymac ff:ff:ff:ff:ff:ff
```
**config redundancy mode**

To enable or disable redundancy or High Availability (HA), use the `config redundancy mode` command.

```
config redundancy mode {sso | none}
```

**Syntax Description**

- **sso**: Enables a stateful switch over (SSO) or hot standby redundancy mode.
- **none**: Disables redundancy mode.

**Command Default**

None

**Command History**

- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

You must configure local and peer redundancy management IP addresses before you configure redundancy.

The following example shows how to enable redundancy:

```
(Cisco Controller) > config redundancy mode sso
```
config redundancy peer-route

To configure the route configurations of the peer or standby controller, use the **config redundancy peer-route** command.

```
config redundancy peer-route { add | delete } network_ip_address netmask gateway
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a network route.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a network route specific to standby controller.</td>
</tr>
<tr>
<td>network_ip_address</td>
<td>Network IP address.</td>
</tr>
<tr>
<td>netmask</td>
<td>Subnet mask of the network.</td>
</tr>
<tr>
<td>gateway</td>
<td>IP address of the gateway for the route network.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can configure this command only from the Active controller. For the HA feature, the service port configurations are made per controller. You will lose these configurations if you change the mode from HA to non-HA and vice-versa.

The following example shows how to configure route configurations of a peer or standby controller.

```
(Cisco Controller) > config redundancy peer-route add 10.1.1.0 255.255.255.0 10.1.1.1
```
config redundancy timer keep-alive-timer

To configure the keep-alive timeout value, use the config redundancy timer keep-alive-timer command.

config redundancy timer keep-alive-timer milliseconds

Syntax Description

milliseconds  Keep-alive timeout value in milliseconds. The range is from 100 to 400 milliseconds.

Command Default

The default keep-alive timeout value is 100 milliseconds.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the keep-alive timeout value:

(Cisco Controller) >config redundancy timer keep-alive-timer 200
config redundancy timer peer-search-timer

To configure the peer search timer, use the `config redundancy timer peer-search-timer` command.

```
config redundancy timer peer-search-timer seconds
```

**Syntax Description**

`seconds` Value of the peer search timer in seconds. The range is from 60 to 180 secs.

**Command Default**

The default value of the peer search timer is 120 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can use this command to configure the boot up role negotiation timeout value in seconds.

The following example shows how to configure the redundancy peer search timer:

```
(Cisco Controller) >config redundancy timer peer-search-timer 100
```
config redundancy unit

To configure a Cisco WLC as a primary or secondary WLC, use the config redundancy unit command.

```
config redundancy unit {primary | secondary}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>primary</th>
<th>secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configures the Cisco WLC as the primary WLC.</td>
<td>Configures the Cisco WLC as the secondary WLC.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The default state is as the primary WLC.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>When you configure a Cisco WLC as the secondary WLC, it becomes the HA Stakable Unit (SKU) without any valid AP licenses.</th>
</tr>
</thead>
</table>

The following example shows how to configure a Cisco WLC as the primary WLC:

```
(Cisco Controller) > config redundancy unit primary
```
## config remote-lan

To configure a remote LAN, use the `config remote-lan` command.

```bash
config remote-lan { enable | disable } {remote-lan-id | all}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables a remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables a remote LAN.</td>
</tr>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td>all</td>
<td>Configures all wireless LANs.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a remote LAN with ID 2:

```bash
(Cisco Controller) > config remote-lan enable 2
```
To configure user policy override through AAA on a remote LAN, use the `config remote-lan aaa-override` command.

```
config remote-lan aaa-override { enable | disable } remote-lan-id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables user policy override through AAA on a remote LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables user policy override through AAA on a remote LAN.</td>
</tr>
<tr>
<td><code>remote-lan-id</code></td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable user policy override through AAA on a remote LAN where the remote LAN ID is 2:

```
(Cisco Controller) > config remote-lan aaa-override enable 2
```
config remote-lan acl

To specify an access control list (ACL) for a remote LAN, use the config remote-lan acl command.

**config remote-lan acl remote-lan-id acl_name**

**Syntax Description**

| remote-lan-id | Remote LAN identifier. Valid values are between 1 and 512. |
| acl_name      | ACL name.       |

*Note* Use the show acl summary command to know the ACLs available.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify ACL1 for a remote LAN whose ID is 2:

(Cisco Controller) >config remote-lan acl 2 ACL1
config remote-lan create

To configure a new remote LAN connection, use the config remote-lan create command.

config remote-lan create remote-lan-id name

Syntax Description

| Syntax Description | | 
|--------------------|------------------|------------------| 
| remote-lan-id      | Remote LAN identifier. Valid values are between 1 and 512. |
| name               | Remote LAN name. Valid values are up to 32 alphanumeric characters. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a new remote LAN, MyRemoteLAN, with the LAN ID as 3:

(Cisco Controller) > config remote-lan create 3 MyRemoteLAN
To configure web authentication for a remote LAN, use the `config remote-lan custom-web` command.

```
config remote-lan custom-web { ext-webauth-url URL } | global { enable | disable } | login-page page-name | loginfailure-page { page-name | none } | logout-page { page-name | none } | webauth-type { internal | customized | external } } remote-lan-id
```

Syntax Description

- **ext-webauth-url**
  - Configures an external web authentication URL.

- **URL**
  - Web authentication URL for the Login page.

- **global**
  - Configures the global status for the remote LAN.

- **enable**
  - Enables the global status for the remote LAN.

- **disable**
  - Disables the global status for the remote LAN.

- **login-page**
  - Configures a login page.

- **page-name**
  - Login page name.

- **none**
  - Configures no login page.

- **logout-page**
  - Configures a logout page.

- **none**
  - Configures no logout page.

- **webauth-type**
  - Configures the web authentication type for the remote LAN.

- **internal**
  - Displays the default login page.

- **customized**
  - Displays a downloaded login page.

- **external**
  - Displays a login page that is on an external server.

- **name**
  - Remote LAN name. Valid values are up to 32 alphanumeric characters.

- **remote-lan-id**
  - Remote LAN identifier. Valid values are from 1 to 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Follow these guidelines when you use the `config remote-lan custom-web` command:

- When you configure the external Web-Auth URL, do the following:
• Ensure that Web-Auth or Web-Passthrough Security is in enabled state. To enable Web-Auth, use the `config remote-lan security web-auth enable` command. To enable Web-Passthrough, use the `config remote-lan security web-passthrough enable` command.

• Ensure that the global status of the remote LAN is in disabled state. To enable the global status of the remote LAN, use the `config remote-lan custom-web global disable` command.

• Ensure that the remote LAN is in disabled state. To disable a remote LAN, use the `config remote-lan disable` command.

• When you configure the Web-Auth type for the remote LAN, do the following:
  • When you configure a customized login page, ensure that you have a login page configured. To configure a login page, use the `config remote-lan custom-web login-page` command.
  • When you configure an external login page, ensure that you have configured preauthentication ACL for external web authentication to function.

The following example shows how to configure an external web authentication URL for a remote LAN with ID 3:

(Cisco Controller) >config remote-lan custom-web ext-webauth-url
http://www.AuthorizationURL.com/ 3

The following example shows how to enable the global status of a remote LAN with ID 3:

(Cisco Controller) >config remote-lan custom-web global enable 3

The following example shows how to configure the login page for a remote LAN with ID 3:

(Cisco Controller) >config remote-lan custom-web login-page custompage1 3

The following example shows how to configure a web authentication type with the default login page for a remote LAN with ID 3:

(Cisco Controller) >config remote-lan custom-web webauth-type internal 3
**config remote-lan delete**

To delete a remote LAN connection, use the `config remote-lan delete` command.

```
config remote-lan delete remote-lan-id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a remote LAN with ID 3:

```
(Cisco Controller) > config remote-lan delete 3
```
config remote-lan dhcp_server

To configure a dynamic host configuration protocol (DHCP) server for a remote LAN, use the `config remote-lan dhcp_server` command.

```
config remote-lan dhcp_server remote-lan-id ip_address
```

**Syntax Description**

- `remote-lan-id`: Remote LAN identifier. Valid values are between 1 and 512.
- `ip_addr`: IPv4 address of the override DHCP server.

**Command Default**

0.0.0.0 is set as the default interface value.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a DHCP server for a remote LAN with ID 3:

```
(Cisco Controller) > config remote-lan dhcp_server 3 209.165.200.225
```

**Related Commands**

- `show remote-lan`
config remote-lan exclusionlist

To configure the exclusion list timeout on a remote LAN, use the config remote-lan exclusionlist command.

```
config remote-lan exclusionlist remote-lan-id {seconds | disabled | enabled}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>remote-lan-id</strong></td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td><strong>seconds</strong></td>
<td>Exclusion list timeout in seconds. A value of 0 requires an administrator override.</td>
</tr>
<tr>
<td><strong>disabled</strong></td>
<td>Disables exclusion listing.</td>
</tr>
<tr>
<td><strong>enabled</strong></td>
<td>Enables exclusion listing.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the exclusion list timeout to 20 seconds on a remote LAN with ID 3:

```
(Cisco Controller) >config remote-lan exclusionlist 3 20
```
config remote-lan interface

To configure an interface for a remote LAN, use the `config remote-lan interface` command.

```
config remote-lan interface remote-lan-id interface_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td>interface_name</td>
<td>Interface name.</td>
</tr>
</tbody>
</table>

**Note** Interface name should not be in upper case characters.

**Command Default** None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an interface `myinterface` for a remote LAN with ID 3:

```
(Cisco Controller) > config remote-lan interface 3 myinterface
```
config remote-lan ldap

To configure a remote LAN’s LDAP servers, use the **config remote-lan ldap** command.

```
config remote-lan ldap { add | delete } remote-lan-id index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>add</th>
<th>delete</th>
<th>remote-lan-id</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a link to a configured LDAP server (maximum of three).</td>
<td>Deletes a link to a configured LDAP server.</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
<td>LDAP server index.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add an LDAP server with the index number 10 for a remote LAN with ID 3:

```
(Cisco Controller) > config remote-lan ldap add 3 10
```
config remote-lan mac-filtering

To configure MAC filtering on a remote LAN, use the config remote-lan mac-filtering command.

```
config remote-lan mac-filtering { enable | disable } remote-lan-id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables MAC filtering on a remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables MAC filtering on a remote LAN.</td>
</tr>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

MAC filtering on a remote LAN is enabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable MAC filtering on a remote LAN with ID 3:

```
(Cisco Controller) >config remote-lan mac-filtering disable 3
```
config remote-lan mab

To configure MAC Authentication Bypass (MAB) authentication support for AP Port LAN clients, use the `config remote-lan mab` command.

```
config remote-lan mab { enable | disable } remote-lan-id
```

**Syntax Description**

- **enable**: Enables MAB authentication support.
- **disable**: Disables MAB authentication support.
- **remote-lan-id**: WLAN Identifier. The valid range is between 1 and 512.

**Command Default**

None

**Command Modes**

Controller Configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 8.4     | This command was introduced.

**Example**

The following example shows how to enable MAB authentication support for AP Port LAN clients:

```
(Cisco Controller) >config remote-lan mab enable 8
```
config remote-lan max-associated-clients

To configure the maximum number of client connections on a remote LAN, use the `config remote-lan max-associated-clients` command.

```
config remote-lan max-associated-clients remote-lan-id max-clients
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>remote-lan-id</code></td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td><code>max-clients</code></td>
<td>Configures the maximum number of client connections on a remote LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure 10 client connections on a remote LAN with ID 3:

```
(Cisco Controller) > config remote-lan max-associated-clients 3 10
```
config remote-lan radius_server

To configure the RADIUS servers on a remote LAN, use the `config remote-lan radius_server` command.

```
config remote-lan radius_server { acct \{ add | delete \} server-index \{ enable | disable \} |
interim-update \{ interval | enable | disable \} \} | auth \{ add | delete \} server-index \{ enable |
disable \} | overwrite-interface \{ enable | disable \} \} remote-lan-id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acct</td>
<td>Configures a RADIUS accounting server.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a link to a configured RADIUS server.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a link to a configured RADIUS server.</td>
</tr>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td>server-index</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables RADIUS accounting for this remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS accounting for this remote LAN.</td>
</tr>
<tr>
<td>interim-update</td>
<td>Enables RADIUS accounting for this remote LAN.</td>
</tr>
<tr>
<td>interval</td>
<td>Accounting interim interval. The range is from 180 to 3600 seconds.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables accounting interim update.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables accounting interim update.</td>
</tr>
<tr>
<td>auth</td>
<td>Configures a RADIUS authentication server.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables RADIUS authentication for this remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS authentication for this remote LAN.</td>
</tr>
<tr>
<td>overwrite-interface</td>
<td>Configures a RADIUS dynamic interface for the remote LAN.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables a RADIUS dynamic interface for the remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables a RADIUS dynamic interface for the remote LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

The interim update interval is set to 600 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
The following example shows how to enable RADIUS accounting for a remote LAN with ID 3:

(Cisco Controller) > `config remote-lan radius_server acct enable 3`
**config remote-lan security**

To configure security policy for a remote LAN, use the `config remote-lan security` command.

```
config remote-lan security { { web-auth { enable | disable | acl | server-precedence } remote-lan-id } | { web-passthrough { enable | disable | acl | email-input } remote-lan-id } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>web-auth</td>
<td>Specifies web authentication.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the web authentication settings.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the web authentication settings.</td>
</tr>
<tr>
<td>acl</td>
<td>Configures an access control list.</td>
</tr>
<tr>
<td>server-precedence</td>
<td>Configures the authentication server precedence order for web authentication users.</td>
</tr>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td>email-input</td>
<td>Configures the web captive portal using an e-mail address.</td>
</tr>
<tr>
<td>web-passthrough</td>
<td>Specifies the web captive portal with no authentication required.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.4</td>
<td>The 802.1X keyword was added.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the security web authentication policy for remote LAN ID 1:

(Cisco Controller) > `config remote-lan security web-auth enable 1`
config remote-lan session-timeout

To configure client session timeout, use the config remote-lan session-timeout command.

**config remote-lan session-timeout remote-lan-id seconds**

**Syntax Description**

<table>
<thead>
<tr>
<th>remote-lan-id</th>
<th>Remote LAN identifier. Valid values are between 1 and 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Timeout or session duration in seconds. A value of zero is equivalent to no timeout.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the client session timeout to 6000 seconds for a remote LAN with ID 1:

(Cisco Controller) > config remote-lan session-timeout 1 6000
**config remote-lan webauth-exclude**

To configure web authentication exclusion on a remote LAN, use the `config remote-lan webauth-exclude` command.

```
config remote-lan webauth-exclude remote-lan-id { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier. Valid values are between 1 and 512.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables web authentication exclusion on the remote LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables web authentication exclusion on the remote LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable web authentication exclusion on a remote LAN with ID 1:

```
(Cisco Controller) > config remote-lan webauth-exclude 1 enable
```
# config rf-profile band-select

To configure the RF profile band selection parameters, use the `config rf-profile band-select` command.

```plaintext
config rf-profile band-select { client-rssi rssi | cycle-count cycles | cycle-threshold value | expire
dual-band value | suppression value | probe-response (enable | disable) } profile_name
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-rssi</td>
<td>Configures the client Received Signal Strength Indicator (RSSI) threshold for the RF profile.</td>
</tr>
<tr>
<td>rssi</td>
<td>Minimum RSSI for a client to respond to a probe. The range is from -20 to -90 dBm.</td>
</tr>
<tr>
<td>cycle-count</td>
<td>Configures the probe cycle count for the RF profile. The cycle count sets the number of suppression cycles for a new client.</td>
</tr>
<tr>
<td>cycles</td>
<td>Value of the cycle count. The range is from 1 to 10.</td>
</tr>
<tr>
<td>cycle-threshold</td>
<td>Configures the time threshold for a new scanning RF Profile band select cycle period. This setting determines the time threshold during which new probe requests from a client come in a new scanning cycle.</td>
</tr>
<tr>
<td>value</td>
<td>Value of the cycle threshold for the RF profile. The range is from 1 to 1000 milliseconds.</td>
</tr>
<tr>
<td>expire</td>
<td>Configures the expiration time of clients for band select.</td>
</tr>
<tr>
<td>dual-band</td>
<td>Configures the expiration time for pruning previously known dual-band clients. After this time elapses, clients become new and are subject to probe response suppression.</td>
</tr>
<tr>
<td>value</td>
<td>Value for a dual band. The range is from 10 to 300 seconds.</td>
</tr>
<tr>
<td>suppression</td>
<td>Configures the expiration time for pruning previously known 802.11b/g clients. After this time elapses, clients become new and are subject to probe response suppression.</td>
</tr>
<tr>
<td>value</td>
<td>Value for suppression. The range is from 10 to 200 seconds.</td>
</tr>
<tr>
<td>probe-response</td>
<td>Configures the probe response for a RF profile.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables probe response suppression on clients operating in the 2.4-GHz band for a RF profile.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables probe response suppression on clients operating in the 2.4-GHz band for a RF profile.</td>
</tr>
<tr>
<td>profile_name</td>
<td>Name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
</tbody>
</table>

### Command Default

- The default value for client RSSI is –80 dBm.
- The default cycle count is 2.
- The default cycle threshold is 200 milliseconds.
- The default value for dual-band expiration is 60 seconds.
The default value for suppression expiration is 20 seconds.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When you enable band select on a WLAN, the access point suppresses client probes on 2.4-GHz and moves the dual band clients to the 5-GHz spectrum. The band-selection algorithm directs dual-band clients only from the 2.4-GHz radio to the 5-GHz radio of the same access point, and it only runs on an access point when both the 2.4-GHz and 5-GHz radios are up and running. Band selection can be used only with Cisco Aironet 1040, 1140, and 1250 Series and the 3500 series access points.

The following example shows how to configure the client RSSI:

```
(Cisco Controller) >config rf-profile band-select client-rssi -70
```
To configure the RF profile DCA settings, use the `config rf-profile channel` command.

```plaintext
config rf-profile channel { add chan profile name | delete chan profile name | foreign { enable | disable } profile name | chan-width { 20 | 40 | 80 } profile name }
```

**Syntax Description**

- **add**: Adds channel to the RF profile DCA channel list.
- **delete**: Removes channel from the RF profile DCA channel list.
- **foreign**: Configures the RF profile DCA foreign AP contribution.
- **chan-width**: Configures the RF profile DCA channel width.
- **chan**: Specifies channel number.
- **profile name**: Specifies the name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.
- **enable**: Enables foreign AP interference.
- **disable**: Disables foreign AP interference.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to add a channel to the RF profile DCA channel list:

```
(Cisco Controller) > config rf-profile channel add 40 admin1
```

The following example shows how to configure the RF profile DCA channel width:

```
(Cisco Controller) > config rf-profile channel chan-width 40 admin1
```
config rf-profile client-trap-threshold

To configure the threshold value of the number of clients that associate with an access point, after which an SNMP trap is sent to the controller, use the `config rf-profile client-trap-threshold` command.

```
config rf-profile client-trap-threshold 150
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>threshold</code></td>
<td>Threshold value of the number of clients that associate with an access point, after which an SNMP trap is sent to the controller. The range is from 0 to 200. Traps are disabled if the threshold value is configured as zero.</td>
</tr>
<tr>
<td><code>profile_name</code></td>
<td>Name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold value of the number of clients that associate with an access point:

(Cisco Controller) > `config rf-profile client-trap-threshold 150`
config rf-profile create

To create a RF profile, use the **config rf-profile create** command.

```
config rf-profile create { 802.11a | 802.11b/g } profile-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Configures the RF profile for the 2.4GHz band.</td>
</tr>
<tr>
<td>802.11b/g</td>
<td>Configures the RF profile for the 5GHz band.</td>
</tr>
<tr>
<td>profile-name</td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to create a new RF profile:

```
(Cisco Controller) > config rf-profile create 802.11a RFtestgroup1
```
config rf-profile fra client-aware

To configure the RF profile client-aware FRA feature, use the `config rf-profile fra client-aware` command.

```
config rf-profile fra client-aware { client-reset percent rf-profile-name | client-select percent rf-profile-name | disable rf-profile-name | enable rf-profile-name }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-reset</td>
<td>Configures the RF profile AP utilization threshold for radio to switch back to Monitor mode.</td>
</tr>
<tr>
<td>percent</td>
<td>Utilization percentage value ranges from 0 to 100. The default is 5%.</td>
</tr>
<tr>
<td>rf-profile-name</td>
<td>Name of the RF Profile.</td>
</tr>
<tr>
<td>client-select</td>
<td>Configures the RF profile utilization threshold for radio to switch to 5GHz.</td>
</tr>
<tr>
<td>percent</td>
<td>Utilization percentage value ranges from 0 to 100. The default is 50%.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the RF profile client-aware FRA feature.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the RF profile client-aware FRA feature.</td>
</tr>
</tbody>
</table>

### Command Default

The default percent value for client-select and client-reset is 50% and 5% respectively.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the RF profile utilization threshold for redundant dual-band radios to switch back from 5GHz client-serving role to Monitor mode:

```
(Cisco Controller) >config rf-profile fra client-aware client-reset 15 profile1
```

The following example shows how to configure the RF profile utilization threshold for redundant dual-band radios to switch from Monitor mode to 5GHz client-serving role:

```
(Cisco Controller) >config rf-profile fra client-aware client-select 20 profile1
```

The following example shows how to disable the RF profile client-aware FRA feature:

```
(Cisco Controller) >config rf-profile fra client-aware disable profile1
```

The following example shows how to enable the RF profile client-aware FRA feature:

```
(Cisco Controller) >config rf-profile fra client-aware enable profile1
```
config rf-profile data-rates

To configure the data rate on a RF profile, use the `config rf-profile data-rates` command.

```
config rf-profile data-rates {802.11a | 802.11b} {disabled | mandatory | supported} data-rate profile-name
```

**Syntax Description**

- **802.11a**
  - Specifies 802.11a as the radio policy of the RF profile.

- **802.11b**
  - Specifies 802.11b as the radio policy of the RF profile.

- **disabled**
  - Disables a rate.

- **mandatory**
  - Sets a rate to mandatory.

- **supported**
  - Sets a rate to supported.

- **data-rate**
  - 802.11 operational rates, which are 1*, 2*, 5.5*, 6, 9, 11*, 12, 18, 24, 36, 48 and 54, where * denotes 802.11b only rates.

- **profile-name**
  - Name of the RF profile.

**Command Default**

Default data rates for RF profiles are derived from the controller system defaults, the global data rate configurations. For example, if the RF profile's radio policy is mapped to 802.11a then the global 802.11a data rates are copied into the RF profiles at the time of creation.

The data rates set with this command are negotiated between the client and the Cisco wireless LAN controller. If the data rate is set to mandatory, the client must support it in order to use the network. If a data rate is set as supported by the Cisco wireless LAN controller, any associated client that also supports that rate may communicate with the Cisco lightweight access point using that rate. It is not required that a client is able to use all the rates marked supported in order to associate.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to set the 802.11b transmission of an RF profile at a mandatory rate at 12 Mbps:

```
(Cisco Controller) >config rf-profile 802.11b data-rates mandatory 12 RFGroup1
```
**config rf-profile delete**

To delete a RF profile, use the `config rf-profile delete` command.

```
config rf-profile delete profile-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile-name</td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a RF profile:

```
(Cisco Controller) >config rf-profile delete RFGroup1
```
# config rf-profile description

To provide a description to a RF profile, use the `config rf-profile description` command.

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>description</code></td>
<td>Description of the RF profile.</td>
</tr>
<tr>
<td><code>profile-name</code></td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a description to a RF profile:

```
(Cisco Controller) > config rf-profile description This is a demo desciption RFGroup1
```
config rf-profile load-balancing

To configure load balancing on an RF profile, use the config rf-profile load-balancing command.

```
config rf-profile load-balancing { window clients | denial value } profile_name
```

**Syntax Description**

- **window**
  
  Configures the client window for load balancing of an RF profile.

- **clients**
  
  Client window size that limits the number of client associations with an access point. The range is from 0 to 20. The default value is 5.

  The window size is part of the algorithm that determines whether an access point is too heavily loaded to accept more client associations:

  \[
  \text{load-balancing window} + \text{client associations on AP with lightest load} = \text{load-balancing threshold}
  \]

  Access points with more client associations than this threshold are considered busy, and clients can associate only to access points with client counts lower than the threshold. This window also helps to disassociate sticky clients.

- **denial**
  
  Configures the client denial count for load balancing of an RF profile.

- **value**
  
  Maximum number of association denials during load balancing. The range is from 1 to 10. The default value is 3.

  When a client tries to associate on a wireless network, it sends an association request to the access point. If the access point is overloaded and load balancing is enabled on the controller, the access point sends a denial to the association request. If there are no other access points in the range of the client, the client tries to associate the same access point again. After the maximum denial count is reached, the client is able to associate. Association attempts on an access point from any client before associating any AP is called a sequence of association. The default is 3.

- **profile_name**
  
  Name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the client window size for an RF profile:

```
(Cisco Controller) > config rf-profile load-balancing window 15
```
**config rf-profile max-clients**

To configure the maximum number of client connections per access point of an RF profile, use the `config rf-profile max-clients` commands.

```
config rf-profile max-clients clients
```

**Syntax Description**

- `clients` Maximum number of client connections per access point of an RF profile. The range is from 1 to 200.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can use this command to configure the maximum number of clients on access points that are in client dense areas, or serving high bandwidth video or mission critical voice applications.

The following example shows how to set the maximum number of clients at 50:

```
(Cisco Controller) >config rf-profile max-clients 50
```
**config rf-profile multicast data-rate**

To configure the minimum RF profile multicast data rate, use the `config rf-profile multicast data-rate` command.

```
config rf-profile multicast data-rate value profile_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Minimum RF profile multicast data rate. The options are 6, 9, 12, 18, 24, 36, 48, 54. Enter 0 to specify that access points will dynamically adjust the data rate.</td>
</tr>
<tr>
<td>profile_name</td>
<td>Name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**
The minimum RF profile multicast data rate is 0.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the multicast data rate for an RF profile:

```
(Cisco Controller) > config rf-profile multicast data-rate 24
```
To create an out-of-box AP group consisting of newly installed access points, use the `config rf-profile out-of-box` command.

```
config rf-profile out-of-box { enable | disable }
```

**Syntax Description**

- `enable`: Enables the creation of an out-of-box AP group. When you enable this command, the following occurs:
  - Newly installed access points that are part of the default AP group will be part of the out-of-box AP group and their radios will be switched off, which eliminates any RF instability caused by the new access points.
  - All access points that do not have a group name become part of the out-of-box AP group.
  - Special RF profiles are created per 802.11 band. These RF profiles have default-settings for all the existing RF parameters and additional new configurations.

- `disable`: Disables the out-of-box AP group. When you disable this feature, only the subscription of new APs to the out-of-box AP group stops. All APs that are subscribed to the out-of-box AP group remain in this AP group. You can move APs to the default group or a custom AP group upon network convergence.

**Command Default**

None

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

**Usage Guidelines**

When an out-of-box AP associates with the controller for the first time, it will be redirected to a special AP group and the RF profiles applicable to this AP Group will control the radio admin state configuration of the AP. You can move APs to the default group or a custom group upon network convergence.

The following example shows how to enable the creation of an out-of-box AP group:

```
(Cisco Controller) >config rf-profile out-of-box enable
```
### config rf-profile rx-sop threshold

To configure high, medium or low Rx SOP threshold values for each 802.11 band, use the `config rf-profile rx-sop threshold` command.

```plaintext
config rf-profile rx-sop threshold { high | medium | low | auto } profile_name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>Configures the high Rx SOP threshold value for an RF profile.</td>
</tr>
<tr>
<td>medium</td>
<td>Configures the medium Rx SOP threshold value for an RF profile.</td>
</tr>
<tr>
<td>low</td>
<td>Configures the low Rx SOP threshold value for an RF profile.</td>
</tr>
<tr>
<td>auto</td>
<td>Configures an auto Rx SOP threshold value for an RF profile. When you choose auto, the access point determines the best Rx SOP threshold value.</td>
</tr>
</tbody>
</table>

- **profile_name**: RF profile on which the Rx SOP threshold value will be configured.

**Command Default**

The default Rx SOP threshold option is auto.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the high Rx SOP threshold value on an RF profile:

(Cisco Controller) > `config 802.11 rx-sop threshold high T1a`
**config rf-profile trap-threshold**

To configure the RF profile trap threshold, use the `config rf-profile trap-threshold` command.

```
config rf-profile trap-threshold { clients clients profile name | interference percent profile name | noise dBm profile name | utilization percent profile name }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clients</code></td>
<td>Configures the RF profile trap threshold for clients.</td>
</tr>
<tr>
<td><code>clients</code></td>
<td>The number of clients on an access point's radio for the trap is between 1 and 200. The default is 12 clients.</td>
</tr>
<tr>
<td><code>profile name</code></td>
<td>Specifies the name of the RF profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td><code>interference</code></td>
<td>Configures the RF profile trap threshold for interference.</td>
</tr>
<tr>
<td><code>percent</code></td>
<td>The percentage of interference threshold for the trap is from 0 to 100%. The default is 10%.</td>
</tr>
<tr>
<td><code>noise</code></td>
<td>Configures the RF profile trap threshold for noise.</td>
</tr>
<tr>
<td><code>dBm</code></td>
<td>The level of noise threshold for the trap is from -127 to 0 dBm. The default is -17 dBm.</td>
</tr>
<tr>
<td><code>utilization</code></td>
<td>Configures the RF profile trap threshold for utilization.</td>
</tr>
<tr>
<td><code>percent</code></td>
<td>The percentage of bandwidth being used by an access point threshold for the trap is from 0 to 100%. The default is 80%.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the RF profile trap threshold for clients:

```
(Cisco Controller) > config rf-profile trap-threshold clients 50 admin1
```
To configure Transmit Power Control version 1 (TPCv1) to an RF profile, use the `config rf-profile tx-power-control-thresh-v1` command.

```
config rf-profile tx-power-control-thresh-v1
tpc-threshold profile_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpc-threshold</td>
<td>TPC threshold.</td>
</tr>
<tr>
<td>profile-name</td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure TPCv1 on an RF profile:

```
(Cisco Controller) >config rf-profile tx-power-control-thresh-v1 RFGroup1
```
To configure Transmit Power Control version 2 (TPCv2) to an RF profile, use the `config rf-profile tx-power-control-thresh-v2` command.

```plaintext
config rf-profile tx-power-control-thresh-v2
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tpc-threshold</code></td>
<td>TPC threshold.</td>
</tr>
<tr>
<td><code>profile-name</code></td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure TPCv2 on an RF profile:

(Cisco Controller) > `config rf-profile tx-power-control-thresh-v2 RFGroup1`
**config rf-profile tx-power-max**

To configure maximum auto-rf to an RF profile, use the `config rf-profile tx-power-max` command.

`config rf-profile tx-power-max profile-name`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tx-power-max</code></td>
<td>Maximum auto-rf tx power.</td>
</tr>
<tr>
<td><code>profile-name</code></td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure tx-power-max on an RF profile:

(Cisco Controller) > `config rf-profile tx-power-max RFGroup1`
config rf-profile tx-power-min

To configure minimum auto-rf to an RF profile, use the `config rf-profile tx-power-min` command.

```
config rf-profile tx-power-min tx-power-min profile-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx-power-min</td>
<td>Minimum auto-rf tx power.</td>
</tr>
<tr>
<td>profile-name</td>
<td>Name of the RF profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure tx-power-min on an RF profile:

```
(Cisco Controller) >config rf-profile tx-power-min RFGroup1
```
config rogue ap timeout

To specify the number of seconds after which the rogue access point and client entries expire and are removed from the list, use the `config rogue ap timeout` command.

```plaintext
config rogue ap timeout seconds
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>Value of 240 to 3600 seconds (inclusive), with a default value of 1200 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

The default number of seconds after which the rogue access point and client entries expire is 1200 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set an expiration time for entries in the rogue access point and client list to 2400 seconds:

```plaintext
(Cisco Controller) > config rogue ap timeout 2400
```

**Related Commands**

- `config rogue ap classify`
- `config rogue ap friendly`
- `config rogue ap rldp`
- `config rogue ap ssid`
- `config rogue rule`
- `config trapflags rogueap`
- `show rogue ap clients`
- `show rogue ap detailed`
- `show rogue ap summary`
- `show rogue ap friendly summary`
- `show rogue ap malicious summary`
- `show rogue ap unclassified summary`
- `show rogue ignore-list`
- `show rogue rule detailed`
- `show rogue rule summary`
config rogue adhoc

To globally or individually configure the status of an Independent Basic Service Set (IBSS or ad-hoc) rogue access point, use the `config rogue adhoc` command.

```plaintext
config rogue adhoc { enable | disable | external rogue_MAC | alert { rogue_MAC | all } | auto-contain [monitor_ap] | contain rogue_MAC 1234_aps | }
```

```plaintext
config rogue adhoc { delete { all | mac-address mac-address } | classify { friendly state { external | internal } mac-address | malicious state { alert | contain } mac-address | unclassified state { alert | contain } mac-address }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Globally enables detection and reporting of ad-hoc rogues.</td>
</tr>
<tr>
<td>disable</td>
<td>Globally disables detection and reporting of ad-hoc rogues.</td>
</tr>
<tr>
<td>external</td>
<td>Configure external state on the rogue access point that is outside the network and poses no threat to WLAN security. The controller acknowledges the presence of this rogue access point.</td>
</tr>
<tr>
<td>rogue_MAC</td>
<td>MAC address of the ad-hoc rogue access point.</td>
</tr>
<tr>
<td>alert</td>
<td>Generates an SMNP trap upon detection of the ad-hoc rogue, and generates an immediate alert to the system administrator for further action.</td>
</tr>
<tr>
<td>all</td>
<td>Enables alerts for all ad-hoc rogue access points.</td>
</tr>
<tr>
<td>auto-contain</td>
<td>Contains all wired ad-hoc rogues detected by the controller.</td>
</tr>
<tr>
<td>monitor_ap</td>
<td>(Optional) IP address of the ad-hoc rogue access point.</td>
</tr>
<tr>
<td>contain</td>
<td>Contains the offending device so that its signals no longer interfere with authorized clients.</td>
</tr>
<tr>
<td>1234_aps</td>
<td>Maximum number of Cisco access points assigned to actively contain the ad-hoc rogue access point (1 through 4, inclusive).</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes ad-hoc rogue access points.</td>
</tr>
<tr>
<td>all</td>
<td>Deletes all ad-hoc rogue access points.</td>
</tr>
<tr>
<td>mac-address</td>
<td>Deletes ad-hoc rogue access point with the specified MAC address.</td>
</tr>
<tr>
<td>mac-address</td>
<td>MAC address of the ad-hoc rogue access point.</td>
</tr>
</tbody>
</table>
Configures ad-hoc rogue access point classification.

classify

Classifies ad-hoc rogue access points as friendly.

friendly state

Configures alert state on rogue access point that is inside the network and poses no threat to WLAN security. The controller trusts this rogue access point.

internal

Classifies ad-hoc rogue access points as malicious.

malicious state

Configures alert state on the rogue access point that is not in the neighbor list or in the user configured friendly MAC list. The controller forwards an immediate alert to the system administrator for further action.

alert

Configures contain state on the rogue access point. Controller contains the offending device so that its signals no longer interfere with authorized clients.

contain

Classifies ad-hoc rogue access points as unclassified.

unclassified state

The default for this command is enabled and is set to alert. The default for auto-containment is disabled.

Command Default

Command History

Release	Modification
7.6 | This command was introduced in a release earlier than Release 7.6.

Usage Guidelines

The controller continuously monitors all nearby access points and automatically discovers and collects information on rogue access points and clients. When the controller discovers a rogue access point, it uses RLDP to determine if the rogue is attached to your wired network.

RLDP is not supported for use with Cisco autonomous rogue access points. These access points drop the DHCP Discover request sent by the RLDP client. Also, RLDP is not supported if the rogue access point channel requires dynamic frequency selection (DFS).

When you enter any of the containment commands, the following warning appears:

Using this feature may have legal consequences. Do you want to continue? (y/n) :

The 2.4- and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

Enter the auto-contain command with the monitor_ap argument to monitor the rogue access point without containing it. Enter the auto-contain command without the optional monitor_ap to automatically contain all wired ad-hoc rogues detected by the controller.

The following example shows how to enable the detection and reporting of ad-hoc rogues:
(Cisco Controller) > config rogue adhoc enable

The following example shows how to enable alerts for all ad-hoc rogue access points:

(Cisco Controller) > config rogue adhoc alert all

The following example shows how to classify an ad-hoc rogue access point as friendly and configure external state on it:

(Cisco Controller) > config rogue adhoc classify friendly state internal 11:11:11:11:11:11

Related Commands

config rogue auto-contain level
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
To classify the status of a rogue access point, use the `config rogue ap classify` command.

```plaintext
config rogue ap classify {
 friendly state { internal | external } ap_mac
}
config rogue ap classify { malicious | unclassified } state { alert | contain } ap_mac
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>friendly</td>
<td>Classifies a rogue access point as friendly.</td>
</tr>
<tr>
<td>state</td>
<td>Specifies a response to classification.</td>
</tr>
<tr>
<td>internal</td>
<td>Configures the controller to trust this rogue access point.</td>
</tr>
<tr>
<td>external</td>
<td>Configures the controller to acknowledge the presence of this access point.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of the rogue access point.</td>
</tr>
<tr>
<td>malicious</td>
<td>Classifies a rogue access point as potentially malicious.</td>
</tr>
<tr>
<td>unclassified</td>
<td>Classifies a rogue access point as unknown.</td>
</tr>
<tr>
<td>alert</td>
<td>Configures the controller to forward an immediate alert to the system administrator for further action.</td>
</tr>
<tr>
<td>contain</td>
<td>Configures the controller to contain the offending device so that its signals no longer interfere with authorized clients.</td>
</tr>
</tbody>
</table>

### Command Default

These commands are disabled by default. Therefore, all unknown access points are categorized as `unclassified` by default.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

A rogue access point cannot be moved to the unclassified class if its current state is contain.

When you enter any of the containment commands, the following warning appears: “Using this feature may have legal consequences. Do you want to continue?” The 2.4- and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

The following example shows how to classify a rogue access point as friendly and can be trusted:

```
(Cisco Controller) > config rogue ap classify friendly state internal 11:11:11:11:11:11
```
The following example shows how to classify a rogue access point as malicious and to send an alert:

(Cisco Controller) > config rogue ap classify malicious state alert 11:11:11:11:11:11

The following example shows how to classify a rogue access point as unclassified and to contain it:

(Cisco Controller) > config rogue ap classify unclassified state contain 11:11:11:11:11:11

Related Commands

- config rogue adhoc
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap ssid
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
- show rogue ignore-list
- show rogue rule detailed
- show rogue rule summary
config rogue ap friendly

To add a new friendly access point entry to the friendly MAC address list, or delete an existing friendly access point entry from the list, use the `config rogue ap friendly` command.

```
config rogue ap friendly { add | delete } ap_mac
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds this rogue access point from the friendly MAC address list.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes this rogue access point from the friendly MAC address list.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of the rogue access point that you want to add or delete.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new friendly access point with MAC address 11:11:11:11:11:11 to the friendly MAC address list.

```
(Cisco Controller) > config rogue ap friendly add 11:11:11:11:11:11
```

**Related Commands**

- config rogue adhoc
- config rogue ap classify
- config rogue ap rldp
- config rogue ap ssid
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
show rogue client detailed
show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
config rogue ap rldp

To enable, disable, or initiate the Rogue Location Discovery Protocol (RLDP), use the `config rogue ap rldp` command.

```
config rogue ap rldp enable { alarm-only | auto-contain } [monitor_ap_only]
config rogue ap rldp initiate rogue_mac_address
config rogue ap rldp disable
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>alarm-only</strong></td>
<td>When entered without the optional argument <code>monitor_ap_only</code>, enables RLDP on all access points.</td>
</tr>
<tr>
<td><strong>auto-contain</strong></td>
<td>When entered without the optional argument <code>monitor_ap_only</code>, automatically contains all rogue access points.</td>
</tr>
<tr>
<td><strong>monitor_ap_only</strong></td>
<td>(Optional) RLDP is enabled (when used with <code>alarm-only</code> keyword), or automatically contained (when used with <code>auto-contain</code> keyword) is enabled only on the designated monitor access point.</td>
</tr>
<tr>
<td><strong>initiate</strong></td>
<td>Initiates RLDP on a specific rogue access point.</td>
</tr>
<tr>
<td><strong>rogue_mac_address</strong></td>
<td>MAC address of specific rogue access point.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables RLDP on all access points.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When you enter any of the containment commands, the following warning appears: “Using this feature may have legal consequences. Do you want to continue?” The 2.4- and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

The following example shows how to enable RLDP on all access points:

```
(Cisco Controller) > config rogue ap rldp enable alarm-only
```

The following example shows how to enable RLDP on monitor-mode access point ap_1:

```
(Cisco Controller) > config rogue ap rldp enable alarm-only ap_1
```
The following example shows how to start RLDP on the rogue access point with MAC address 123.456.789.000:

(Cisco Controller) > config rogue ap rldp initiate 123.456.789.000

The following example shows how to disable RLDP on all access points:

(Cisco Controller) > config rogue ap rldp disable

Related Commands

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap ssid
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
- show rogue ignore-list
- show rogue rule detailed
- show rogue rule summary
config rogue ap ssid

To generate an alarm only, or to automatically contain a rogue access point that is advertising your network’s service set identifier (SSID), use the `config rogue ap ssid` command.

```
config rogue ap ssid \{ alarm \| auto-contain \}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>Generates only an alarm when a rogue access point is discovered to be advertising your network’s SSID.</td>
</tr>
<tr>
<td>auto-contain</td>
<td>Automatically contains the rogue access point that is advertising your network’s SSID.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enter any of the containment commands, the following warning appears: “Using this feature may have legal consequences. Do you want to continue?” The 2.4- and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

The following example shows how to automatically contain a rogue access point that is advertising your network’s SSID:

```
(Cisco Controller) > config rogue ap ssid auto-contain
```

**Related Commands**

- `config rogue adhoc`
- `config rogue ap classify`
- `config rogue ap friendly`
- `config rogue ap rldp`
- `config rogue ap timeout`
- `config rogue ap valid-client`
- `config rogue client`
- `config trapflags rogueap`
- `show rogue ap clients`
- `show rogue ap detailed`
- `show rogue ap summary`
- `show rogue ap friendly summary`
show rogue ap malicious summary
show rogue ap unclassified summary
show rogue client detailed
show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
config rogue ap timeout

To specify the number of seconds after which the rogue access point and client entries expire and are removed from the list, use the `config rogue ap timeout` command.

`config rogue ap timeout seconds`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Value of 240 to 3600 seconds (inclusive), with a default value of 1200 seconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default number of seconds after which the rogue access point and client entries expire is 1200 seconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set an expiration time for entries in the rogue access point and client list to 2400 seconds:

```
(Cisco Controller) > config rogue ap timeout 2400
```

**Related Commands**
- `config rogue ap classify`
- `config rogue ap friendly`
- `config rogue ap rldp`
- `config rogue ap ssid`
- `config rogue rule`
- `config trapflags rogueap`
- `show rogue ap clients`
- `show rogue ap detailed`
- `show rogue ap summary`
- `show rogue ap friendly summary`
- `show rogue ap malicious summary`
- `show rogue ap unclassified summary`
- `show rogue ignore-list`
- `show rogue rule detailed`
- `show rogue rule summary`
config rogue auto-contain level

To configure rogue the auto-containment level, use the `config rogue auto-contain level` command.

```
config rogue auto-contain level level [monitor_ap_only]
```

**Syntax Description**

- `level` 
  
  Rogue auto-containment level in the range of 1 to 4. You can enter a value of 0 to enable the Cisco WLC to automatically select the number of APs used for auto containment. The controller chooses the required number of APs based on the RSSI for effective containment.

- `monitor_ap_only` 
  
  (Optional) Configures auto-containment using only monitor AP mode.

**Command Default**

The default auto-containment level is 1.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The controller continuously monitors all nearby access points and automatically discovers and collects information on rogue access points and clients. When the controller discovers a rogue access point, it uses any of the configured auto-containment policies to start autocontainment. The policies for initiating autocontainment are rogue on wire (detected through RLDP or rogue detector AP), rogue using managed SSID, Valid client on Rogue AP, and AdHoc Rogue.

This table lists the RSSI value associated with each containment level.

<table>
<thead>
<tr>
<th>Auto-containment Level</th>
<th>RSSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 to −55 dBm</td>
</tr>
<tr>
<td>2</td>
<td>−75 to −55 dBm</td>
</tr>
<tr>
<td>3</td>
<td>−85 to −75 dBm</td>
</tr>
<tr>
<td>4</td>
<td>Less than −85 dBm</td>
</tr>
</tbody>
</table>
RLDP is not supported for use with Cisco autonomous rogue access points. These access points drop the DHCP Discover request sent by the RLDP client. Also, RLDP is not supported if the rogue access point channel requires dynamic frequency selection (DFS).

When you enter any of the containment commands, the following warning appears:

Using this feature may have legal consequences. Do you want to continue? (y/n) :

The 2.4-GHz and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

The following example shows how to configure the auto-contain level to 3:

(Cisco Controller) > config rogue auto-contain level 3

**Related Commands**

- `config rogue adhoc`
- `show rogue adhoc summary`
- `show rogue client summary`
- `show rogue ignore-list`
- `show rogue rule summary`
config rogue ap valid-client

To generate an alarm only, or to automatically contain a rogue access point to which a trusted client is associated, use the `config rogue ap valid-client` command.

```
config rogue ap valid-client { alarm | auto-contain }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>Generates only an alarm when a rogue access point is discovered to be associated with a valid client.</td>
</tr>
<tr>
<td>auto-contain</td>
<td>Automatically contains a rogue access point to which a trusted client is associated.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enter any of the containment commands, the following warning appears: “Using this feature may have legal consequences. Do you want to continue?” The 2.4- and 5-GHz frequencies in the Industrial, Scientific, and Medical (ISM) band are open to the public and can be used without a license. As such, containing devices on another party’s network could have legal consequences.

The following example shows how to automatically contain a rogue access point that is associated with a valid client:

```
(Cisco Controller) > config rogue ap valid-client auto-contain
```

**Related Commands**

- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap ssid
- config rogue rule
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
show rogue ap unclassified summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
config rogue client

To configure rogue clients, use the `config rogue client` command.

```
config rogue client { aaa { enable | disable } | alert ap_mac | contain client_mac | delete { state { alert | any | contained | contained-pending } | all | mac-address client_mac } | mse { enable | disable } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa</code></td>
<td>Configures AAA server or local database to validate whether rogue clients are valid clients. The default is disabled.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the AAA server or local database to check rogue client MAC addresses for validity.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the AAA server or local database to check rogue client MAC addresses for validity.</td>
</tr>
<tr>
<td><code>alert</code></td>
<td>Configures the controller to forward an immediate alert to the system administrator for further action.</td>
</tr>
<tr>
<td><code>ap_mac</code></td>
<td>Access point MAC address.</td>
</tr>
<tr>
<td><code>contain</code></td>
<td>Configures the controller to contain the offending device so that its signals no longer interfere with authorized clients.</td>
</tr>
<tr>
<td><code>client_mac</code></td>
<td>MAC address of the rogue client.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes the rogue client.</td>
</tr>
<tr>
<td><code>state</code></td>
<td>Deletes the rogue clients according to their state.</td>
</tr>
<tr>
<td><code>alert</code></td>
<td>Deletes the rogue clients in alert state.</td>
</tr>
<tr>
<td><code>any</code></td>
<td>Deletes the rogue clients in any state.</td>
</tr>
<tr>
<td><code>contained</code></td>
<td>Deletes all rogue clients that are in contained state.</td>
</tr>
<tr>
<td><code>contained-pending</code></td>
<td>Deletes all rogue clients that are in contained pending state.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Deletes all rogue clients.</td>
</tr>
<tr>
<td><code>mac-address</code></td>
<td>Deletes a rogue client with the configured MAC address.</td>
</tr>
<tr>
<td><code>mse</code></td>
<td>Validates if the rogue clients are valid clients using MSE. The default is disabled.</td>
</tr>
</tbody>
</table>

**Command Default**

None
This command was introduced in a release earlier than Release 7.6.

You cannot validate rogue clients against MSE and AAA at the same time.

The following example shows how to enable the AAA server or local database to check MAC addresses:

(Cisco Controller) > config rogue client aaa enable

The following example shows how to disable the AAA server or local database from checking MAC addresses:

(Cisco Controller) > config rogue client aaa disable

- config rogue rule
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue client summary
- show rogue ignore-list
- show rogue rule detailed
- show rogue rule summary
config rogue containment

To configure rogue containment, use the config rogue containment command.

```
config rogue containment { flexconnect | auto-rate } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexconnect</td>
<td>Configures rogue containment for standalone FlexConnect APs.</td>
</tr>
<tr>
<td>auto-rate</td>
<td>Configures automatic rate selection for rogue containment.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the rogue containment.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the rogue containment.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The following table lists the rogue containment automatic rate selection details.

<table>
<thead>
<tr>
<th>RSSI (dBm)</th>
<th>802.11b/g Tx Rate (Mbps)</th>
<th>802.11a Tx Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−74</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>−70</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>−55</td>
<td>5.5</td>
<td>12</td>
</tr>
<tr>
<td>&lt; −40</td>
<td>5.5</td>
<td>18</td>
</tr>
</tbody>
</table>

The following example shows how to enable automatic rate selection for rogue containment:

```
(Cisco Controller) > config rogue containment auto-rate enable
```
**config rogue detection**

To enable or disable rogue detection, use the `config rogue detection` command.

**Note**

If an AP itself is configured with the keyword *all*, the **all access points** case takes precedence over the AP that is with the keyword *all*.

```
cfg rogue detection {enable | disable} {cisco_ap | all}
```

**Syntax Description**

- **enable** Enables rogue detection on this access point.
- **disable** Disables rogue detection on this access point.
- **cisco_ap** Cisco access point.
- **all** Specifies all access points.

**Command Default**

The default rogue detection value is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Rogue detection is enabled by default for all access points joined to the controller except for OfficeExtend access points. OfficeExtend access points are deployed in a home environment and are likely to detect a large number of rogue devices.

The following example shows how to enable rogue detection on the access point Cisco_AP:

```
(Cisco Controller) > config rogue detection enable Cisco_AP
```

**Related Commands**

- `config rogue rule`
- `config trapflags rogueap`
- `show rogue client detailed`
- `show rogue client summary`
- `show rogue ignore-list`
- `show rogue rule detailed`
- `show rogue rule summary`
config rogue detection client-threshold

To configure the rogue client threshold for access points, use the **config rogue detection client-threshold** command.

**config rogue detection client-threshold** *value*

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>Threshold rogue client count on an access point after which a trap is sent from the Cisco Wireless LAN Controller (WLC). The range is from 1 to 256. Enter 0 to disable the feature.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>The default rogue client threshold is 0.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the rogue client threshold:

(Cisco Controller) > config rogue detection client-threshold 200
**config rogue detection min-rssi**

To configure the minimum Received Signal Strength Indicator (RSSI) value at which APs can detect rogues and create a rogue entry in the controller, use the `config rogue detection min-rssi` command.

```
cfg rog det min-rssi rssi-in-dBm
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>rssi-in-dBm</th>
<th>Minimum RSSI value. The valid range is from –70 dBm to –128 dBm, and the default value is –128 dBm.</th>
</tr>
</thead>
</table>

**Command Default**
The default RSSI value to detect rogues in APs is -128 dBm.

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
This feature is applicable to all the AP modes.

There can be many rogues with very weak RSSI values that do not provide any valuable information in rogue analysis. Therefore, you can use this option to filter rogues by specifying the minimum RSSI value at which APs should detect rogues.

The following example shows how to configure the minimum RSSI value:

```
(Cisco Controller) > config rogue detection min-rssi -80
```

**Related Commands**
- `config rogue detection`
- `show rogue ap clients`
- `config rogue rule`
- `config trapflags rogueap`
- `show rogue client detailed`
- `show rogue client summary`
- `show rogue ignore-list`
- `show rogue rule detailed`
- `show rogue rule summary`
**config rogue detection monitor-ap**

To configure the rogue report interval for all monitor mode Cisco APs, use the `config rogue detection monitor-ap` command.

```
config rogue detection monitor-ap { report-interval | transient-rogue-interval } time-in-seconds
```

**Syntax Description**

- **report-interval**: Specifies the interval at which rogue reports are sent.
- **transient-rogue-interval**: Specifies the interval at which rogues are consistently scanned for by APs after the first time the rogues are scanned.
- **time-in-seconds**: Time in seconds. The valid range is as follows:
  - 10 to 300 for `report-interval`
  - 120 to 1800 for `transient-rogue-interval`

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This feature is applicable to APs that are in monitor mode only.

Using the transient interval values, you can control the time interval at which APs should scan for rogues. APs can also filter the rogues based on their transient interval values.

This feature has the following advantages:

- Rogue reports from APs to the controller are shorter.
- Transient rogue entries are avoided in the controller.
- Unnecessary memory allocation for transient rogues are avoided.

The following example shows how to configure the rogue report interval to 60 seconds:

```
(Cisco Controller) > config rogue detection monitor-ap report-interval 60
```

The following example shows how to configure the transient rogue interval to 300 seconds:

```
(Cisco Controller) > config rogue detection monitor-ap transient-rogue-interval 300
```

**Related Commands**

- `config rogue detection`
- `config rogue detection min-rssi`
- `config rogue rule`
- `config trapflags rogueap`
show rogue ap clients
show rogue client detailed
show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
config rogue detection report-interval

To configure the rogue detection report interval, use the `config rogue detection report-interval` command.

```
config rogue detection report-interval time
```

**Syntax Description**

<table>
<thead>
<tr>
<th>time</th>
<th>Time interval, in seconds, at which the access points send the rogue detection report to the controller. The range is from 10 to 300.</th>
</tr>
</thead>
</table>

**Command Default**

The default rogue detection report interval is 10 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This feature is applicable only to the access points that are in the monitor mode.

The following example shows how to configure the rogue detection report interval:

```
(Cisco Controller) > config rogue detection report-interval 60
```
# config rogue detection security-level

To configure the rogue detection security level, use the `config rogue detection security-level` command.

```
config rogue detection security-level {critical | custom | high | low}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>Configures the rogue detection security level to critical.</td>
</tr>
<tr>
<td>custom</td>
<td>Configures the rogue detection security level to custom, and allows you to configure the rogue policy parameters.</td>
</tr>
<tr>
<td>high</td>
<td>Configures the rogue detection security level to high. This security level configures basic rogue detection and auto containment for medium-scale or less critical deployments. The Rogue Location Discovery Protocol (RLDP) is disabled for this security level.</td>
</tr>
<tr>
<td>low</td>
<td>Configures the rogue detection security level to low. This security level configures basic rogue detection for small-scale deployments. Auto containment is not supported for this security level.</td>
</tr>
</tbody>
</table>

**Command Default**

The default rogue detection security level is custom.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the rogue detection security level to high:

```
(Cisco Controller) > config rogue detection security-level high
```
config rogue detection transient-rogue-interval

To configure the rogue-detection transient interval, use the config rogue detection transient-rogue-interval command.

```bash
config rogue detection transient-rogue-interval time
```

### Syntax Description

| time | Time interval, in seconds, at which a rogue should be consistently scanned by the access point after the rogue is scanned for the first time. The range is from 120 to 1800. |

### Command Default

The default rogue-detection transient interval for each security level is as follows:

- **Low**—120 seconds
- **High**—300 seconds
- **Critical**—600 seconds

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This feature applies only to the access points that are in the monitor mode.

After the rogue is scanned consistently, updates are sent periodically to the Cisco Wireless LAN Controller (WLC). The access points filter the active transient rogues for a very short period and are then silent.

The following example shows how to configure the rogue detection transient interval:

```bash
(Cisco Controller) > config rogue detection transient-rogue-interval 200
```
To add and configure rogue classification rules, use the `config rogue rule` command.

```
config rogue rule { add ap priority priority classify { custom severity-score classification-name | friendly | malicious } notify { all | global | none | local } state { alert | contain | delete | internal | external } rule_name | classify { custom severity-score classification-name | friendly | malicious } rule_name | condition ap { set | delete } condition_type condition_value rule_name | { enable | delete | disable } { all | rule_name } | match { all | any } | priority priority | notify { all | global | none | local } rule_name | state { alert | contain | internal | external } rule_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add ap priority</strong></td>
<td>Adds a rule with match any criteria and the priority that you specify.</td>
</tr>
<tr>
<td><strong>priority</strong></td>
<td>Priority of this rule within the list of rules.</td>
</tr>
<tr>
<td><strong>classify</strong></td>
<td>Specifies the classification of a rule.</td>
</tr>
<tr>
<td><strong>custom</strong></td>
<td>Classifies devices matching the rule as custom.</td>
</tr>
<tr>
<td><strong>severity-score</strong></td>
<td>Custom classification severity score of the rule. The range is from 1 to 100.</td>
</tr>
<tr>
<td><strong>classification-name</strong></td>
<td>Custom classification name. The name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td><strong>friendly</strong></td>
<td>Classifies a rule as friendly.</td>
</tr>
<tr>
<td><strong>malicious</strong></td>
<td>Classifies a rule as malicious.</td>
</tr>
<tr>
<td><strong>notify</strong></td>
<td>Configures type of notification upon rule match.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Notifies the controller and a trap receiver such as Cisco Prime Infrastructure.</td>
</tr>
<tr>
<td><strong>global</strong></td>
<td>Notifies only a trap receiver such as Cisco Prime Infrastructure.</td>
</tr>
<tr>
<td><strong>local</strong></td>
<td>Notifies only the controller.</td>
</tr>
<tr>
<td><strong>none</strong></td>
<td>Notifies neither the controller nor a trap receiver such as Cisco Prime Infrastructure.</td>
</tr>
<tr>
<td><strong>state</strong></td>
<td>Configures state of the rogue access point after a rule match.</td>
</tr>
<tr>
<td><strong>alert</strong></td>
<td>Configures alert state on the rogue access point that is not in the neighbor list or in the user configured friendly MAC list. The controller forwards an immediate alert to the system administrator for further action.</td>
</tr>
<tr>
<td>contain</td>
<td>Configures contain state on the rogue access point. Controller contains the offending device so that its signals no longer interfere with authorized clients.</td>
</tr>
<tr>
<td>delete</td>
<td>Configures delete state on the rogue access point.</td>
</tr>
<tr>
<td>external</td>
<td>Configures external state on the rogue access point that is outside the network and poses no threat to WLAN security. The controller acknowledges the presence of this rogue access point.</td>
</tr>
<tr>
<td>internal</td>
<td>Configures alert state on rogue access point that is inside the network and poses no threat to WLAN security. The controller trusts this rogue access point.</td>
</tr>
<tr>
<td>rule_name</td>
<td>Rule to which the command applies, or the name of a new rule.</td>
</tr>
<tr>
<td>condition ap</td>
<td>Specifies the conditions for a rule that the rogue access point must meet.</td>
</tr>
<tr>
<td>set</td>
<td>Adds conditions to a rule that the rogue access point must meet.</td>
</tr>
<tr>
<td>delete</td>
<td>Removes conditions to a rule that the rogue access point must meet.</td>
</tr>
<tr>
<td>condition_type</td>
<td>Type of the condition to be configured. The condition types are listed below:</td>
</tr>
</tbody>
</table>

- **client-count**—Requires that a minimum number of clients be associated to a rogue access point. The valid range is 1 to 10 (inclusive).
- **duration**—Requires that a rogue access point be detected for a minimum period of time. The valid range is 0 to 3600 seconds (inclusive).
- **managed-ssid**—Requires that a rogue access point’s SSID be known to the controller.
- **no-encryption**—Requires that a rogue access point’s advertised WLAN does not have encryption enabled.
- **rssi**—Requires that a rogue access point have a minimum RSSI value. The range is from –95 to –50 dBm (inclusive).
- **ssid**—Requires that a rogue access point have a specific SSID.
- **substring-ssid**—Requires that a rogue access point have a substring of a user-configured SSID.
Value of the condition. This value is dependent upon the condition_type. For instance, if the condition type is ssid, then the condition value is either the SSID name or all.

enable	Enables all rules or a single specific rule.
delete	Deletes all rules or a single specific rule.
disable	Deletes all rules or a single specific rule.
match	Specifies whether a detected rogue access point must meet all or any of the conditions specified by the rule in order for the rule to be matched and the rogue access point to adopt the classification type of the rule.
all	Specifies all rules defined.
any	Specifies any rule meeting certain criteria.
priority	Changes the priority of a specific rule and shifts others in the list accordingly.

Command Default
No rogue rules are configured.

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines
For your changes to be effective, you must enable the rule. You can configure up to 64 rules.

Reclassification of rogue APs according to the RSSI condition of the rogue rule occurs only when the RSSI changes more than +/- 2 dBm of the configured RSSI value. Manual and automatic classification override custom rogue rules. Rules are applied to manually changed rogues if their class type changes to unclassified and state changes to alert. Adhoc rogues are classified and do not go to the pending state. You can have up to 50 classification types.

The following example shows how to create a rule called rule_1 with a priority of 1 and a classification as friendly.

(Cisco Controller) > config rogue rule add ap priority 1 classify friendly rule_1

The following example shows how to enable rule_1.

(Cisco Controller) > config rogue rule enable rule_1

The following example shows how to change the priority of the last command.
(Cisco Controller) > config rogue rule priority 2 rule_1

The following example shows how to change the classification of the last command.

(Cisco Controller) > config rogue rule classify malicious rule_1

The following example shows how to disable the last command.

(Cisco Controller) > config rogue rule disable rule_1

The following example shows how to delete SSID_2 from the user-configured SSID list in rule-5.

(Cisco Controller) > config rogue rule condition ap delete ssid ssid_2 rule-5

The following example shows how to create a custom rogue rule.

(Cisco Controller) > config rogue rule classify custom 1 VeryMalicious rule6
To configure a condition of a rogue rule for rogue access points, use the `config rogue rule condition ap` command.

**Syntax**

```plaintext
config rogue rule condition ap { set { client-count count | duration time | managed-ssid | no-encryption | rssi rssi | ssid ssid | substring-ssid substring-ssid } | delete { all | client-count | duration | managed-ssid | no-encryption | rssi | ssid | substring-ssid } rule_name
```

**Syntax Description**

- **set**: Configures conditions to a rule that the rogue access point must meet.
- **client-count**: Enables a minimum number of clients to be associated to the rogue access point.
  - **count**: Minimum number of clients to be associated to the rogue access point. The range is from 1 to 10 (inclusive). For example, if the number of clients associated to a rogue access point is greater than or equal to the configured value, the access point is classified as malicious.
- **duration**: Enables a rogue access point to be detected for a minimum period of time.
  - **time**: Minimum time period, in seconds, to detect the rogue access point. The range is from 0 to 3600.
- **managed-ssid**: Enables a rogue access point’s SSID to be known to the controller.
- **no-encryption**: Enables a rogue access point’s advertised WLAN to not have encryption enabled. If a rogue access point has encryption disabled, it is likely that more clients will try to associate to it.
- **rssi**: Enables a rogue access point to have a minimum Received Signal Strength Indicator (RSSI) value.
  - **rssi**: Minimum RSSI value, in dBm, required for the access point. The range is from −95 to −50 (inclusive). For example, if the rogue access point has an RSSI that is greater than the configured value, the access point is classified as malicious.
- **ssid**: Enables a rogue access point have a specific SSID.
  - **ssid**: SSID of the rogue access point.
- **substring-ssid**: Enables a rogue access point to have a substring of a user-configured SSID.
  - **substring-ssid**: Substring of a user-configured SSID. For example, if you have an SSID as ABCDE, you can specify the substring as ABCD or ABC. You can classify multiple SSIDs with matching patterns.
- **delete**: Removes the conditions to a rule that a rogue access point must comply with.
  - **all**: Deletes all the rogue rule conditions.
  - **rule_name**: Rogue rule to which the command applies.

**Command Default**

The default value for RSSI is 0 dBm.
The default value for duration is 0 seconds.
The default value for client count is 0.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can configure up to 25 SSIDs per rogue rule. You can configure up to 25 SSID substrings per rogue rule.

The following example shows how to configure the RSSI rogue rule condition:

```
(Cisco Controller) > config rogue rule condition ap set rssi -50
```
config remote-lan session-timeout

To configure client session timeout, use the `config remote-lan session-timeout` command.

```
config remote-lan session-timeout remote-lan-id seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>remote-lan-id</th>
<th>Remote LAN identifier. Valid values are between 1 and 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>Timeout or session duration in seconds. A value of zero is equivalent to no timeout.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the client session timeout to 6000 seconds for a remote LAN with ID 1:

```
(Cisco Controller) >config remote-lan session-timeout 1 6000
```
To configure an automatic timeout of radio frequency identification (RFID) tags, use the `config rfid auto-timeout` command.

```
config rfid auto-timeout { enable | disable }
```

**Syntx Description**
- `enable`: Enables an automatic timeout.
- `disable`: Disables an automatic timeout.

**Command Default**
None

**Command History**
- **Release** 7.6  Modification
  - This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable an automatic timeout of RFID tags:

```
(Cisco Controller) > config rfid auto-timeout enable
```

**Related Commands**
- `show rfid summary`
- `config rfid status`
- `config rfid timeout`
**config rfid status**

To configure radio frequency identification (RFID) tag data tracking, use the **config rfid status** command.

```
cfg rfid status {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables RFID tag tracking.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Enables RFID tag tracking.</td>
</tr>
</tbody>
</table>

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure RFID tag tracking settings:

```
(Cisco Controller) > config rfid status enable
```

**Related Commands**

- show rfid summary
- config rfid auto-timeout
- config rfid timeout
config rfid timeout

To configure a static radio frequency identification (RFID) tag data timeout, use the **config rfid timeout** command.

```
config rfid timeout seconds
```

**Syntax Description**

| seconds | Timeout in seconds (from 60 to 7200). |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a static RFID tag data timeout of 60 seconds:

```
(Cisco Controller) > config rfid timeout 60
```

**Related Commands**

- `show rfid summary`
- `config rfid statistics`
config rogue ap timeout

To specify the number of seconds after which the rogue access point and client entries expire and are removed from the list, use the config rogue ap timeout command.

`config rogue ap timeout seconds`

**Syntax Description**

- **seconds**: Value of 240 to 3600 seconds (inclusive), with a default value of 1200 seconds.

**Command Default**

The default number of seconds after which the rogue access point and client entries expire is 1200 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set an expiration time for entries in the rogue access point and client list to 2400 seconds:

```
(Cisco Controller) > config rogue ap timeout 2400
```

**Related Commands**

- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap ssid
- config rogue rule
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue ignore-list
- show rogue rule detailed
- show rogue rule summary
config route add

To configure a network route from the service port to a dedicated workstation IP address range, use the `config route add` command.

```
config route add ip_address netmask gateway
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip_address</code></td>
<td>Network IP address.</td>
</tr>
<tr>
<td><code>netmask</code></td>
<td>Subnet mask for the network.</td>
</tr>
<tr>
<td><code>gateway</code></td>
<td>IP address of the gateway for the route network.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

As on release 7.6, `ip_address` supports only IPv4 addresses.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td></td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a network route to a dedicated workstation IP address 10.1.1.0, subnet mask 255.255.255.0, and gateway 10.1.1.1:

```
(Cisco Controller) > config route add 10.1.1.0 255.255.255.0 10.1.1.1
```
config route delete

To remove a network route from the service port, use the `config route delete` command.

**config route delete ip_address**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>Network IP address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>As on release 7.6, <code>IP_address</code> supports only IPv4 addresses.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>This command supports only IPv6 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a route from the network IP address 10.1.1.0:

(Cisco Controller) > `config route delete 10.1.1.0`
# config serial baudrate

To set the serial port baud rate, use the `config serial baudrate` command.

```
config serial baudrate { 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>Specifies the supported connection speeds to 1200.</td>
</tr>
<tr>
<td>2400</td>
<td>Specifies the supported connection speeds to 2400.</td>
</tr>
<tr>
<td>4800</td>
<td>Specifies the supported connection speeds to 4800.</td>
</tr>
<tr>
<td>9600</td>
<td>Specifies the supported connection speeds to 9600.</td>
</tr>
<tr>
<td>19200</td>
<td>Specifies the supported connection speeds to 19200.</td>
</tr>
<tr>
<td>38400</td>
<td>Specifies the supported connection speeds to 38400.</td>
</tr>
<tr>
<td>57600</td>
<td>Specifies the supported connection speeds to 57600.</td>
</tr>
</tbody>
</table>

**Command Default**

The default serial port baud rate is 9600.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a serial baud rate with the default connection speed of 9600:

```
(Cisco Controller) > config serial baudrate 9600
```
**config serial timeout**

To set the timeout of a serial port session, use the `config serial timeout` command.

**config serial timeout minutes**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>minutes</th>
<th>Timeout in minutes from 0 to 160. A value of 0 indicates no timeout.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>0 (no timeout)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to set the timeout for a serial connection to the front of the Cisco wireless LAN controller from 0 to 160 minutes where 0 is no timeout.

The following example shows how to configure the timeout of a serial port session to 10 minutes:

```
(Cisco Controller) > config serial timeout 10
```
config service timestamps

To enable or disable time stamps in message logs, use the `config service timestamps` command.

```
config service timestamps { debug | log } { datetime | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug</td>
<td>Configures time stamps in debug messages.</td>
</tr>
<tr>
<td>log</td>
<td>Configures time stamps in log messages.</td>
</tr>
<tr>
<td>datetime</td>
<td>Specifies to time-stamp message logs with the standard date and time.</td>
</tr>
<tr>
<td>disable</td>
<td>Specifies to prevent message logs being time-stamped.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the time stamps in message logs are disabled.

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to configure time-stamp message logs with the standard date and time:

```
(Cisco Controller) > config service timestamps log datetime
```

The following example shows how to prevent message logs being time-stamped:

```
(Cisco Controller) > config service timestamps debug disable
```

**Related Commands**

- `show logging`
config sessions maxsessions

To configure the number of Telnet CLI sessions allowed by the Cisco wireless LAN controller, use the `config sessions maxsessions` command.

```
config sessions maxsessions session_num
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session_num</td>
<td>Number of sessions from 0 to 5.</td>
</tr>
</tbody>
</table>

**Command Default**

The default number of Telnet CLI sessions allowed by the Cisco WLC is 5.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Up to five sessions are possible while a setting of zero prohibits any Telnet CLI sessions.

The following example shows how to configure the number of allowed CLI sessions to 2:

```
(Cisco Controller) > config sessions maxsessions 2
```

**Related Commands**

- `show sessions`
**config sessions timeout**

To configure the inactivity timeout for Telnet CLI sessions, use the `config sessions timeout` command.

```
config sessions timeout timeout
```

**Syntax Description**

| timeout | Timeout of Telnet session in minutes (from 0 to 160). A value of 0 indicates no timeout. |

**Command Default**

The default inactivity timeout for Telnet CLI sessions is 5 minutes.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the inactivity timeout for Telnet sessions to 20 minutes:

```
(Cisco Controller) > config sessions timeout 20
```

**Related Commands**

- `show sessions`
**config slot**

To configure various slot parameters, use the `config slot` command.

```
config slot slot_id { enable | disable | channel ap | chan_width | txpower ap | antenna extAntGain antenna_gain | rts } cisco_ap
```

**Syntax Description**

- **slot_id**
  - Slot downlink radio to which the channel is assigned. Beginning in Release 7.5 and later releases, you can configure 802.11a on slot 1 and 802.11ac on slot 2.

- **enable**
  - Enables the slot.

- **disable**
  - Disables the slot.

- **channel**
  - Configures the channel for the slot.

- **ap**
  - Configures one 802.11a Cisco access point.

- **chan_width**
  - Configures channel width for the slot.

- **txpower**
  - Configures Tx power for the slot.

- **antenna**
  - Configures the 802.11a antenna.

- **extAntGain**
  - Configures the 802.11a external antenna gain.

- **antenna_gain**
  - External antenna gain value in .5 dBi units (such as 2.5 dBi = 5).

- **rts**
  - Configures RTS/CTS for an access point.

- **cisco_ap**
  - Name of the Cisco access point on which the channel is configured.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable slot 3 for the access point abc:

```
(Cisco Controller) >config slot 3 enable abc
```

The following example shows how to configure RTS for the access point abc:

```
(Cisco Controller) >config slot 2 rts abc
```
## config switchconfig boot-break

To enable or disable the breaking into boot prompt by pressing the Esc key at system startup, use the `config switchconfig boot-break` command.

```
config switchconfig boot-break { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the breaking into boot prompt by pressing the Esc key at system startup.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the breaking into boot prompt by pressing the Esc key at system startup.</td>
</tr>
</tbody>
</table>

### Command Default

By default, the breaking into boot prompt by pressing the Esc key at system startup is disabled.

### Usage Guidelines

You must enable the features that are prerequisites for the Federal Information Processing Standard (FIPS) mode before enabling or disabling the breaking into boot prompt.

The following example shows how to enable the breaking into boot prompt by pressing the Esc key at system startup:

```
(Cisco Controller) > config switchconfig boot-break enable
```

### Related Commands

- `show switchconfig`
- `config switchconfig flowcontrol`
- `config switchconfig mode`
- `config switchconfig secret-obfuscation`
- `config switchconfig fips-prerequisite`
- `config switchconfig strong-pwd`
config switchconfig fips-prerequisite

To enable or disable the features that are prerequisites for the Federal Information Processing Standard (FIPS) mode, use the `config switchconfig fips-prerequisite` command.

```
config switchconfig fips-prerequisite { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the features that are prerequisites for the FIPS mode.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the features that are prerequisites for the FIPS mode.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the features that are prerequisites for the FIPS mode are disabled.

**Usage Guidelines**

You must configure the FIPS authorization secret before you can enable or disable the FIPS prerequisite features.

The following example shows how to enable the features that are prerequisites for the FIPS mode:

```
(Cisco Controller) > config switchconfig fips-prerequisite enable
```

**Related Commands**

- `show switchconfig`
- `config switchconfig flowcontrol`
- `config switchconfig mode`
- `config switchconfig secret-obfuscation`
- `config switchconfig boot-break`
- `config switchconfig strong-pwd`
To configure US Department of Defense (DoD) Unified Capabilities Approved Product List (APL) certification on the controller, use the `config switchconfig wlancc` command.

```plaintext
config switchconfig ucapl { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables UCAPL on the controller.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables UCAPL on the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable UCAPL on the controller:

```plaintext
(Cisco Controller) > config switchconfig ucapl enable
```
To configure WLAN Common Criteria (CC) on the controller, use the `config switchconfig wlancc` command.

`config switchconfig wlancc { enable | disable }`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables WLAN CC on the controller.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables WLAN CC on the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WLAN CC on the controller:

(Cisco Controller) > `config switchconfig wlancc enable`
config switchconfig strong-pwd

To enable or disable your controller to check the strength of newly created passwords, use the `config switchconfig strong-pwd` command.

```
config switchconfig strong-pwd { case-check | consecutive-check | default-check | username-check
 | position-check | case-digit-check | minimum { upper-case | lower-case | digits |
 special-chars } no_of_characters | min-length | password_length | lockout { mgmtuser |
 snmpv3user | time | attempts } | lifetime { mgmtuser | snmpv3user } lifetime | all-checks
 { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>case-check</td>
<td>Checks at least three combinations: lowercase characters, uppercase characters, digits, or special characters.</td>
</tr>
<tr>
<td>consecutive-check</td>
<td>Checks the occurrence of the same character three times.</td>
</tr>
<tr>
<td>default-check</td>
<td>Checks for default values or use of their variants.</td>
</tr>
<tr>
<td>username-check</td>
<td>Checks whether the username is specified or not.</td>
</tr>
<tr>
<td>position-check</td>
<td>Checks whether the password has a four-character change from the old password.</td>
</tr>
<tr>
<td>case-digit-check</td>
<td>Checks whether the password has all the four combinations: lower, upper, digits, or special characters.</td>
</tr>
<tr>
<td>minimum</td>
<td>Checks whether the password has a minimum number of upper case and lower case characters, digits, or special characters.</td>
</tr>
<tr>
<td>upper-case</td>
<td>Checks whether the password has a minimum number of upper case characters.</td>
</tr>
<tr>
<td>lower-case</td>
<td>Checks whether the password has a minimum number of lower case characters.</td>
</tr>
<tr>
<td>digits</td>
<td>Checks whether the password has a minimum number of digits.</td>
</tr>
<tr>
<td>special-chars</td>
<td>Checks whether the password has a minimum number of special characters.</td>
</tr>
<tr>
<td>min-length</td>
<td>Configures the minimum length for the password.</td>
</tr>
<tr>
<td>password_length</td>
<td>Minimum length for the password. The range is from 3 to 24 case-sensitive characters.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>lockout</strong></td>
<td>Configures the lockout feature for a management user or Simple Network Management Protocol version 3 (SNMPv3) user.</td>
</tr>
<tr>
<td><strong>mgmtuser</strong></td>
<td>Locks out a management user when the number of successive failed attempts exceed the management user lockout attempts.</td>
</tr>
<tr>
<td><strong>snmpv3user</strong></td>
<td>Locks out a SNMPv3 user when the number of successive failed attempts exceeds the SNMPv3 user lockout attempts.</td>
</tr>
<tr>
<td><strong>time</strong></td>
<td>Configures the time duration after the lockout attempts when the management user or SNMPv3 user is locked.</td>
</tr>
<tr>
<td><strong>attempts</strong></td>
<td>Configures the number of successive incorrect password attempts after which the management user or SNMPv3 user is locked.</td>
</tr>
<tr>
<td><strong>lifetime</strong></td>
<td>Configures the number of days before the management user or SNMPv3 user requires a change of password due to the age of the password.</td>
</tr>
<tr>
<td><strong>mgmtuser</strong></td>
<td>Configures the number of days before the management user requires a change of password due to the password age.</td>
</tr>
<tr>
<td><strong>snmpv3user</strong></td>
<td>Configures the number of days before the SNMPv3 user requires a change of password due to the age of the password.</td>
</tr>
<tr>
<td><strong>lifetime</strong></td>
<td>Number of days before the management user or SNMPv3 user requires a change of password due to the age of the password.</td>
</tr>
<tr>
<td><strong>all-checks</strong></td>
<td>Checks all the cases.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables a strong password check for the access point and Cisco WLC.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables a strong password check for the access point and Cisco WLC.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

**Release**	**Modification**
7.6 | This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable the Strong Password Check feature:

(Cisco Controller) > config switchconfig strong-pwd case-check enable
Related Commands

- show switchconfig
- config switchconfig flowcontrol
- config switchconfig mode
- config switchconfig secret-obfuscation
- config switchconfig fips-prerequisite
- config switchconfig boot-break
config switchconfig flowcontrol

To enable or disable 802.3x flow control, use the config switchconfig flowcontrol command.

config switchconfig flowcontrol (enable | disable)

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables 802.3x flow control.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.3x flow control.</td>
</tr>
</tbody>
</table>

Command Default

By default, 802.3x flow control is disabled.

The following example shows how to enable 802.3x flow control on Cisco wireless LAN controller parameters:

(Cisco Controller) > config switchconfig flowcontrol enable

Related Commands

show switchconfig
config switchconfig mode

To configure Lightweight Access Port Protocol (LWAPP) transport mode for Layer 2 or Layer 3, use the `config switchconfig mode` command.

```
config switchconfig mode {L2 | L3}
```

**Syntax Description**
- **L2**: Specifies Layer 2 as the transport mode.
- **L3**: Specifies Layer 3 as the transport mode.

**Command Default**
The default transport mode is L3.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure LWAPP transport mode to Layer 3:

```
(Cisco Controller) > config switchconfig mode L3
```

**Related Commands**
- `show switchconfig`
**config switchconfig secret-obfuscation**

To enable or disable secret obfuscation, use the `config switchconfig secret-obfuscation` command.

```
config switchconfig secret-obfuscation { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables secret obfuscation.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables secret obfuscation.</td>
</tr>
</tbody>
</table>

**Command Default**

Secrets and user passwords are obfuscated in the exported XML configuration file.

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

**Usage Guidelines**

To keep the secret contents of your configuration file secure, do not disable secret obfuscation. To further enhance the security of the configuration file, enable configuration file encryption.

The following example shows how to enable secret obfuscation:

```
(Cisco Controller) > config switchconfig secret-obfuscation enable
```

**Related Commands**

`show switchconfig`
config sysname

To set the Cisco wireless LAN controller system name, use the `config sysname` command.

```
config sysname name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>System name. The name can contain up to 31 alphanumeric characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the system named Ent_01:

```
(Cisco Controller) > config sysname Ent_01
```

**Related Commands**

- `show sysinfo`
To modify the access mode (read only or read/write) of an SNMP community, use the `config snmp community accessmode` command.

```
config snmp community accessmode {ro | rw} name
```

### Syntax Description
- **ro**: Specifies a read-only mode.
- **rw**: Specifies a read/write mode.
- **name**: SNMP community name.

### Command Default
Two communities are provided by default with the following settings:

<table>
<thead>
<tr>
<th>SNMP Community Name</th>
<th>Client IP Address</th>
<th>Client IP Mask</th>
<th>Access Mode</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>Read Only</td>
<td>Enable</td>
</tr>
<tr>
<td>private</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>Read/Write</td>
<td>Enable</td>
</tr>
</tbody>
</table>

### Command History
- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure read/write access mode for SNMP community:

```
(Cisco Controller) > config snmp community accessmode rw private
```

### Related Commands
- `show snmp community`
- `config snmp community mode`
- `config snmp community create`
- `config snmp community delete`
- `config snmp community ipaddr`
**config snmp community create**

To create a new SNMP community, use the `config snmp community create` command.

`config snmp community create name`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>SNMP community name of up to 16 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release  Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6 This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to create a new community with the default configuration.

The following example shows how to create a new SNMP community named test:

```
(Cisco Controller) > config snmp community create test
```

**Related Commands**

- `show snmp community`
- `config snmp community mode`
- `config snmp community accessmode`
- `config snmp community delete`
- `config snmp community ipaddr`
**config snmp community delete**

To delete an SNMP community, use the `config snmp community delete` command.

```
config snmp community delete name
```

### Syntax Description

<table>
<thead>
<tr>
<th>name</th>
<th>SNMP community name.</th>
</tr>
</thead>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an SNMP community named test:

```
(Cisco Controller) > config snmp community delete test
```

### Related Commands

- `show snmp community`
- `config snmp community mode`
- `config snmp community accessmode`
- `config snmp community create`
- `config snmp community ipaddr`
**config snmp community ipaddr**

To configure the IPv4 or IPv6 address of an SNMP community, use the `config snmp community ipaddr` command.

`config snmp community ipaddr IP addr IPv4 mask/IPv6 Prefix lengthname`

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>IP addr</strong></td>
<td>SNMP community IPv4 or IPv6 address.</td>
</tr>
<tr>
<td><strong>IPv4 mask/IPv6 Prefix length</strong></td>
<td>SNMP community IP mask (IPv4 mask or IPv6 Prefix length). The IPv6 prefix length is from 0 to 128.</td>
</tr>
<tr>
<td><strong>name</strong></td>
<td>SNMP community name.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

- This command is applicable for both IPv4 and IPv6 addresses.
- This command is not applicable for default SNMP community (public, private).

The following example shows how to configure an SNMP community with the IPv4 address 10.10.10.10, IPv4 mask 255.255.255.0, and SNMP community named comaccess:

```
(Cisco Controller) > config snmp community ipaddr 10.10.10.10 255.255.255.0 comaccess
```

The following example shows how to configure an SNMP community with the IPv6 address 2001:9:2:16::1, IPv6 prefix length 64, and SNMP community named comaccess:

```
(Cisco Controller) > config snmp community ipaddr 2001:9:2:16::1 64 comaccess
```
**config snmp community mode**

To enable or disable an SNMP community, use the `config snmp community mode` command.

```
config snmp community mode {enable | disable} name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the community.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the community.</td>
</tr>
<tr>
<td><code>name</code></td>
<td>SNMP community name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to enable the SNMP community named public:

```
(Cisco Controller) > config snmp community mode disable public
```

**Related Commands**

- `show snmp community`
- `config snmp community delete`
- `config snmp community accessmode`
- `config snmp community create`
- `config snmp community ipaddr`
config snmp engineID

To configure the SNMP engine ID, use the `config snmp engineID` command.

```
config snmp engineID {engine_id | default}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>engine_id</code></td>
<td>Engine ID in hexadecimal characters (a minimum of 10 and a maximum of 24 characters are allowed).</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Restores the default engine ID.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
Modification Release
--------------- -----------
This command was introduced in a release earlier than Release 7.6. 7.6
```

**Usage Guidelines**

The SNMP engine ID is a unique string used to identify the device for administration purposes. You do need to specify an engine ID for the device because a default string is automatically generated using Cisco’s enterprise number and the MAC address of the first interface on the device.

If you change the engine ID, then a reboot is required for the change to take effect.

Caution: If you change the value of the SNMP engine ID, then the password of the user entered on the command line is converted to an MD5 (Message-Digest algorithm 5) or SHA (Secure Hash Algorithm) security digest. This digest is based on both the password and the local engine ID. The command line password is then deleted. Because of this deletion, if the local value of the engine ID changes, the security digests of the SNMP users will become invalid, and the users will have to be reconfigured.

The following example shows how to configure the SNMP engine ID with the value ffffffff:

```
(Cisco Controller) > config snmp engineID ffffffff
```

**Related Commands**

- `show snmpengineID`
**config snmp syscontact**

To set the SNMP system contact name, use the `config snmp syscontact` command.

```
config snmp syscontact contact
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>contact</th>
<th>SNMP system contact name. Valid value can be up to 255 printable characters.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the SNMP system contact named Cisco WLAN Solution_administrator:

```
(Cisco Controller) > config snmp syscontact Cisco WLAN Solution_administrator
```
config snmp syslocation

To configure the SNMP system location name, use the `config snmp syslocation` command.

```
config snmp syslocation location
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>SNMP system location name. Valid value can be up to 255 printable characters.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the SNMP system location name to Building_2a:

```
(Cisco Controller) > config snmp syslocation Building_2a
```
**config snmp trapreceiver create**

To configure a server to receive SNMP traps, use the `config snmp trapreceiver create` command.

```plaintext
config snmp trapreceiver create name IP addr
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>SNMP community name. The name contain up to 31 characters.</td>
</tr>
<tr>
<td>IP addr</td>
<td>Configure the IPv4 or IPv6 address of where to send SNMP traps.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The IPv4 or IPv6 address must be valid for the command to add the new server.

The following example shows how to add a new SNMP trap receiver with the SNMP trap receiver named test and IP address `10.1.1.1`:

```
(Cisco Controller) > config snmp trapreceiver create test 10.1.1.1
```

The following example shows how to add a new SNMP trap receiver with the SNMP trap receiver named test and IP address `2001:10:1:1::1`:

```
(Cisco Controller) > config snmp trapreceiver create test 2001:10:1:1::1
```
config snmp trapreceiver delete

To delete a server from the trap receiver list, use the `config snmp trapreceiver delete` command.

```plaintext
config snmp trapreceiver delete name
```

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>SNMP community name. The name can contain up to 16 characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a server named test from the SNMP trap receiver list:

```plaintext
(Cisco Controller) > config snmp trapreceiver delete test
```

**Related Commands**

- `show snmp trap`
config snmp trapreceiver mode

To send or disable sending traps to a selected server, use the `config snmp trapreceiver mode` command.

```
config snmp trapreceiver mode {enable | disable} name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables an SNMP trap receiver.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables an SNMP trap receiver.</td>
</tr>
<tr>
<td>name</td>
<td>SNMP community name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command enables or disables the Cisco wireless LAN controller from sending the traps to the selected server.

The following example shows how to disable an SNMP trap receiver from sending traps to a server named server1:

```
(Cisco Controller) > config snmp trapreceiver mode disable server1
```

**Related Commands**

- `show snmp trap`
config snmp v3user create

To create a version 3 SNMP user, use the **config snmp v3user create** command.

```
config snmp v3user create username { ro | rw } { none | hmacmd5 | hmacsha } { none | des | aescfb128 } [auth_key] [encrypt_key]
```

**Syntax Description**

- **username**
  - Version 3 SNMP username.
- **ro**
  - Specifies a read-only user privilege.
- **rw**
  - Specifies a read-write user privilege.
- **none**
  - Specifies if no authentication is required.
- **hmacmd5**
  - Specifies Hashed Message Authentication Coding Message Digest 5 (HMAC-MD5) for authentication.
- **hmacsha**
  - Specifies Hashed Message Authentication Coding-Secure Hashing Algorithm (HMAC-SHA) for authentication.
- **none**
  - Specifies if no encryption is required.
- **des**
  - Specifies to use Cipher Block Chaining-Digital Encryption Standard (CBC-DES) encryption.
- **aescfb128**
- **auth_key**
  - (Optional) Authentication key for the HMAC-MD5 or HMAC-SHA authentication protocol.
- **encrypt_key**
  - (Optional) Encryption key for the CBC-DES or CFB-AES-128 encryption protocol.

**Command Default**

<table>
<thead>
<tr>
<th>SNMP v3 username AccessMode</th>
<th>Authentication Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Read/Write</td>
</tr>
<tr>
<td>default</td>
<td>HMAC-SHA</td>
</tr>
<tr>
<td>default</td>
<td>CFB-AES</td>
</tr>
</tbody>
</table>

**Command History**

Release	Modification
7.6 | This command was introduced in a release earlier than Release 7.6.

The following example shows how to add an SNMP username named test with read-only privileges and no encryption or authentication:

```
(Cisco Controller) > config snmp v3user create test ro none none
```
Related Commands

show snmpv3user
config snmp v3user delete

To delete a version 3 SNMP user, use the **config snmp v3user delete** command.

**config snmp v3user delete username**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Username to delete.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to remove an SNMP user named test:

(Cisco Controller) > **config snmp v3user delete test**

**Related Commands**

- show snmp v3user
config snmp version

To enable or disable selected SNMP versions, use the `config snmp version` command.

```
config snmp version { v1 | v2 | v3 } { enable | disable }
```

### Syntax Description

- **v1**: Specifies an SNMP version to enable or disable.
- **v2**: Specifies an SNMP version to enable or disable.
- **v3**: Specifies an SNMP version to enable or disable.
- **enable**: Enables a specified version.
- **disable**: Disables a specified version.

### Command Default

By default, all the SNMP versions are enabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable SNMP version v1:

```
(Cisco Controller) > config snmp version v1 enable
```

### Related Commands

`show snmpversion`
**config tacacs acct**

To configure TACACS+ accounting server settings, use the `config tacacs acct` command.

```
config tacacs acct { add 1-3 IP addr port ascii/hex secret | delete 1-3 | disable 1-3 | enable 1-3 | server-timeout 1-3 seconds }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a new TACACS+ accounting server.</td>
</tr>
<tr>
<td>1-3</td>
<td>Specifies TACACS+ accounting server index from 1 to 3.</td>
</tr>
<tr>
<td>IP addr</td>
<td>Specifies IPv4 or IPv6 address of the TACACS+ accounting server.</td>
</tr>
<tr>
<td>port</td>
<td>Specifies TACACS+ Server's TCP port.</td>
</tr>
<tr>
<td>ascii/hex</td>
<td>Specifies type of TACACS+ server's secret being used (ASCII or HEX).</td>
</tr>
<tr>
<td>secret</td>
<td>Specifies secret key in ASCII or hexadecimal characters.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a TACACS+ server.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables a TACACS+ server.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables a TACACS+ server.</td>
</tr>
<tr>
<td>server-timeout</td>
<td>Changes the default server timeout for the TACACS+ server.</td>
</tr>
<tr>
<td>seconds</td>
<td>Specifies the number of seconds before the TACACS+ server times out. The server timeout range is from 5 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new TACACS+ accounting server index 1 with the IPv4 address 10.0.0.0, port number 49, and secret key 12345678 in ASCII:

```
(Cisco Controller) > config tacacs acct add 1 10.0.0.0 10 ascii 12345678
```
The following example shows how to add a new TACACS+ accounting server index 1 with the IPv6 address 2001:9:6:40::623, port number 49, and secret key 12345678 in ASCII:

(Cisco Controller) > config tacacs acct add 1 2001:9:6:40::623 10 ascii 12345678

The following example shows how to configure the server timeout of 5 seconds for the TACACS+ accounting server:

(Cisco Controller) > config tacacs acct server-timeout 1 5
config tacacs athr

To configure TACACS+ authorization server settings, use the `config tacacs athr` command.

```
config tacacs athr { add 1-3 IP addr port ascii/hex secret | delete 1-3 | disable 1-3 | enable 1-3 |
mgmt-server-timeout 1-3 seconds | server-timeout 1-3 seconds }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds a new TACACS+ authorization server (IPv4 or IPv6).</td>
</tr>
<tr>
<td><code>1-3</code></td>
<td>TACACS+ server index from 1 to 3.</td>
</tr>
<tr>
<td><code>IP addr</code></td>
<td>TACACS+ authorization server IP address (IPv4 or IPv6).</td>
</tr>
<tr>
<td><code>port</code></td>
<td>TACACS+ server TCP port.</td>
</tr>
<tr>
<td><code>ascii/hex</code></td>
<td>Type of secret key being used (ASCII or HEX).</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>Secret key in ASCII or hexadecimal characters.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a TACACS+ server.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables a TACACS+ server.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables a TACACS+ server.</td>
</tr>
<tr>
<td><code>mgmt-server-timeout 1-3 seconds</code></td>
<td>Changes the default management login server timeout for the server. The number of seconds before server times out is from 1 to 30 seconds.</td>
</tr>
<tr>
<td><code>server-timeout 1-3 seconds</code></td>
<td>Changes the default network login server timeout for the server. The number of seconds before server times out is from 5 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new TACACS+ authorization server index 1 with the IPv4 address 10.0.0.0, port number 49, and secret key 12345678 in ASCII:

```
(Cisco Controller) > config tacacs athr add 1 10.0.0.0 49 ascii 12345678
```
The following example shows how to add a new TACACS+ authorization server index 1 with the IPv6 address 2001:9:6:40::623, port number 49, and secret key 12345678 in ASCII:

(Cisco Controller) > `config tacacs athr add 1 2001:9:6:40::623 49 ascii 12345678`

The following example shows how to configure the retransmit timeout of 5 seconds for the TACACS+ authorization server:

(Cisco Controller) > `config tacacs athr server-timeout 1 5`
config tacacs athr mgmt-server-timeout

To configure a default TACACS+ authorization server timeout for management users, use the config tacacs athr mgmt-server-timeout command.

```
config tacacs athr mgmt-server-timeout index timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>TACACS+ authorization server index.</td>
</tr>
<tr>
<td>timeout</td>
<td>Timeout value. The range is 1 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default TACACS+ authorization server timeout for management users:

```
(Cisco Controller) > config tacacs athr mgmt-server-timeout 1 10
```
**config tacacs auth**

To configure TACACS+ authentication server settings, use the `config tacacs auth` command.

```
config tacacs auth { add 1-3 IP addr port ascii/hex secret | delete 1-3 | disable 1-3 | enable 1-3 | mgmt-server-timeout 1-3 seconds | server-timeout 1-3 seconds }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds a new TACACS+ accounting server.</td>
</tr>
<tr>
<td><code>1-3</code></td>
<td>TACACS+ accounting server index from 1 to 3.</td>
</tr>
<tr>
<td><code>IP addr</code></td>
<td>IP address for the TACACS+ accounting server.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>Controller port used for the TACACS+ accounting server.</td>
</tr>
<tr>
<td><code>ascii/hex</code></td>
<td>Type of secret key being used (ASCII or HEX).</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>Secret key in ASCII or hexadecimal characters.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a TACACS+ server.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables a TACACS+ server.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables a TACACS+ server.</td>
</tr>
<tr>
<td><code>mgmt-server-timeout 1-3 seconds</code></td>
<td>Changes the default management login server timeout for the server. The number of seconds before server times out is from 1 to 30 seconds.</td>
</tr>
<tr>
<td><code>server-timeout 1-3 seconds</code></td>
<td>Changes the default network login server timeout for the server. The number of seconds before server times out is from 5 to 30 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to add a new TACACS+ authentication server index 1 with the IPv4 address 10.0.0.3, port number 49, and secret key 12345678 in ASCII:

```
(Cisco Controller) > config tacacs auth add 1 10.0.0.3 49 ascii 12345678
```

The following example shows how to add a new TACACS+ authentication server index 1 with the IPv6 address 2001:9:6:40::623, port number 49, and secret key 12345678 in ASCII:
The following examples show how to configure the server timeout for TACACS+ authentication server:

(Cisco Controller) > **config tacacs auth server-timeout 1 5**
To configure a default TACACS+ authentication server timeout for management users, use the `config tacacs auth mgmt-server-timeout` command.

```
(config tacacs auth mgmt-server-timeout index timeout)
```

**Syntax Description**
- `index`  
  TACACS+ authentication server index.
- `timeout`  
  Timeout value. The range is 1 to 30 seconds.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure a default TACACS+ authentication server timeout for management users:

```
(Cisco Controller) > config tacacs auth mgmt-server-timeout 1 10
```

**Related Commands**
- `config tacacs auth`
To retrieve the TACACS IP information from a DNS server, use the `config radius dns` command.

```
config radius dns { global port { ascii | hex } secret | query url timeout | serverip ip_address | disable | enable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>global</code></td>
<td>Configures the global port and secret to retrieve the TACACS IP information from a DNS server.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>Port number for authentication. The range is from 1 to 65535. All the DNS servers should use the same authentication port.</td>
</tr>
<tr>
<td><code>ascii</code></td>
<td>Format of the shared secret that you should set to ASCII.</td>
</tr>
<tr>
<td><code>hex</code></td>
<td>Format of the shared secret that you should set to hexadecimal.</td>
</tr>
<tr>
<td><code>secret</code></td>
<td>TACACS server login secret.</td>
</tr>
<tr>
<td><code>query</code></td>
<td>Configures the fully qualified domain name (FQDN) of the TACACS server and DNS timeout.</td>
</tr>
<tr>
<td><code>url</code></td>
<td>FQDN of the TACACS server. The FQDN can be up to 63 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Maximum time that the Cisco Wireless LAN Controller (WLC) waits for, in days, before timing out a request and resending it. The range is from 1 to 180.</td>
</tr>
<tr>
<td><code>serverip</code></td>
<td>Configures the DNS server IP address.</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>DNS server IP address.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the TACACS DNS feature. The default is disabled.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the Cisco WLC to retrieve the TACACS IP information from a DNS server.</td>
</tr>
</tbody>
</table>

### Command Default

You cannot retrieve the TACACS IP information from a DNS server.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The accounting port is derived from the authentication port. All the DNS servers should use the same secret. When you enable a DNS query, the static configurations will be overridden. The DNS list overrides the static AAA list.

The following example shows how to enable the TACACS DNS feature on the Cisco WLC:

```
(Cisco Controller) > config tacacs dns enable
```
config time manual

To set the system time, use the `config time manual` command.

`config time manual MM | DD | YY:HH:MM:SS`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MM/DD/YY</code></td>
</tr>
<tr>
<td><code>HH:MM:SS</code></td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the system date to 04/04/2010 and time to 15:29:00:

```
(Cisco Controller) > config time manual 04/04/2010 15:29:00
```

**Related Commands**

`show time`
config time ntp

To set the Network Time Protocol (NTP), use the `config time ntp` command.

```
config time ntp { auth { enable server-index key-index | disable server-index } | interval interval }
key-auth { add key-index md5 { ascii | hex } key | delete key-index } | server index IPAddress }
```

**Syntax Description**

- **auth**
  - Configures the NTP authentication.
- **enable**
  - Enables the NTP authentication.
- **server-index**
  - NTP server index.
- **key-index**
  - Key index between 1 and 4294967295.
- **disable**
  - Disables the NTP authentication.
- **interval**
  - Configures the NTP version 3 polling interval.
- **interval**
  - NTP polling interval in seconds. The range is from 3600 and 604800 seconds.
- **key-auth**
  - Configures the NTP authentication key.
- **add**
  - Adds an NTP authentication key.
- **md5**
  - Specifies the authentication protocol.
- **ascii**
  - Specifies the ASCII key type.
- **hex**
  - Specifies the hexadecimal key type.
- **key**
  - Specifies the ASCII key format with a maximum of 16 characters or the hexadecimal key format with a maximum of 32 digits.
- **delete**
  - Deletes an NTP server.
- **server**
  - Configures the NTP servers.
- **IPAddress**
  - NTP server's IP address. Use 0.0.0.0 or :: to delete entry.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- To add the NTP server to the controller, use the `config time ntp server index IPAddress` command.
• To delete the NTP server (IPv4) from the controller, use the `config time ntp server index 0.0.0.0` command.

To delete the NTP server (IPv6) from the controller, use the `config time ntp server index ::` command.

• To display configured NTP server on the controller, use the `show time` command.

The following example shows how to configure the NTP polling interval to 7000 seconds:

(Cisco Controller) > config time ntp interval 7000

The following example shows how to enable NTP authentication where the server index is 4 and the key index is 1:

(Cisco Controller) > config time ntp auth enable 4 1

The following example shows how to add an NTP authentication key of value ff where the key format is in hexadecimal characters and the key index is 1:

(Cisco Controller) > config time ntp key-auth add 1 md5 hex ff

The following example shows how to add an NTP authentication key of value ff where the key format is in ASCII characters and the key index is 1:

(Cisco Controller) > config time ntp key-auth add 1 md5 ascii ciscokey

The following example shows how to add NTP servers and display the servers configured to controllers:

(Cisco Controller) > config time ntp server 1 10.92.125.52
(Cisco Controller) > config time ntp server 2 2001:9:6:40::623
(Cisco Controller) > show time
Time............................................. Fri May 23 12:04:18 2014
Timezone delta................................... 0:0
Timezone location.............................. (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata
NTP Servers
NTP Polling Interval............................ 3600
Index NTP Key Index NTP Server NTP Msg Auth Status
------- ------------------------------- -------------------------------
1 1 10.92.125.52 AUTH SUCCESS
2 1 2001:9:6:40::623 AUTH SUCCESS

The following example shows how to delete NTP servers and verify that the servers are deleted removed from the NTP server list:

(Cisco Controller) > config time ntp server 1 0.0.0.0
(Cisco Controller) > config time ntp server 2 ::
(Cisco Controller) > show time
Time............................................. Fri May 23 12:04:18 2014
Timezone delta................................. 0:0
Timezone location............................ (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata

NTP Servers
NTP Polling Interval......................... 3600

<table>
<thead>
<tr>
<th>Index</th>
<th>NTP Key Index</th>
<th>NTP Server</th>
<th>NTP</th>
<th>Msg Auth Status</th>
</tr>
</thead>
</table>
config time timezone

To configure the system time zone, use the **config time timezone** command.

```
config time timezone { enable | disable } delta_hours delta_mins
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables daylight saving time.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables daylight saving time.</td>
</tr>
<tr>
<td>delta_hours</td>
<td>Local hour difference from the Universal Coordinated Time (UCT).</td>
</tr>
<tr>
<td>delta_mins</td>
<td>Local minute difference from UCT.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the daylight saving time:

```
(Cisco Controller) > config time timezone enable 2 0
```
**config time timezone location**

To set the location of the time zone in order to have daylight saving time set automatically when it occurs, use the `config time timezone location` command.

```
config time timezone location location_index
```
Syntax Description

location_index
Number representing the time zone required. The time zones are as follows:

- (GMT-12:00) International Date Line West
- (GMT-11:00) Samoa
- (GMT-10:00) Hawaii
- (GMT-9:00) Alaska
- (GMT-8:00) Pacific Time (US and Canada)
- (GMT-7:00) Mountain Time (US and Canada)
- (GMT-6:00) Central Time (US and Canada)
- (GMT-5:00) Eastern Time (US and Canada)
- (GMT-4:00) Atlantic Time (Canada)
- (GMT-3:00) Buenos Aires (Argentina)
- (GMT-2:00) Mid-Atlantic
- (GMT-1:00) Azores
- (GMT) London, Lisbon, Dublin, Edinburgh (default value)
- (GMT +1:00) Amsterdam, Berlin, Rome, Vienna
- (GMT +2:00) Jerusalem
- (GMT +3:00) Baghdad
- (GMT +4:00) Muscat, Abu Dhabi
- (GMT +4:30) Kabul
- (GMT +5:00) Karachi, Islamabad, Tashkent
- (GMT +5:30) Colombo, Kolkata, Mumbai, New Delhi
- (GMT +5:45) Katmandu
- (GMT +6:00) Almaty, Novosibirsk
- (GMT +6:30) Rangoon
- (GMT +7:00) Saigon, Hanoi, Bangkok, Jakarta
- (GMT +8:00) Hong Kong, Beijing, Chongqing
- (GMT +9:00) Tokyo, Osaka, Sapporo
- (GMT +9:30) Darwin
- (GMT+10:00) Sydney, Melbourne, Canberra
- (GMT+11:00) Magadan, Solomon Is., New
Caledonia
• (GMT+12:00) Kamchatka, Marshall Is., Fiji
• (GMT+12:00) Auckland (New Zealand)

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the location of the time zone in order to set the daylight saving time to location index 10 automatically:

(Cisco Controller) > config time timezone location 10

Related Commands
show time
config trapflags 802.11-Security

To enable or disable sending 802.11 security-related traps, use the `config trapflags 802.11-Security` command.

```
config trapflags 802.11-Security wepDecryptError {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables sending 802.11 security-related traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables sending 802.11 security-related traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, sending the 802.11 security-related traps is enabled.

**Command History**

```
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to disable the 802.11 security related traps:

```
(Cisco Controller) > config trapflags 802.11-Security wepDecryptError disable
```

**Related Commands**

- `show trapflags`
**config trapflags aaa**

To enable or disable the sending of AAA server-related traps, use the `config trapflags aaa` command.

```
config trapflags aaa { auth | servers } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Enables trap sending when an AAA authentication failure occurs for management user, net user, or MAC filter.</td>
</tr>
<tr>
<td>servers</td>
<td>Enables trap sending when no RADIUS servers are responding.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the sending of AAA server-related traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the sending of AAA server-related traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of AAA server-related traps is enabled.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to enable the sending of AAA server-related traps:

```
(Cisco Controller) > config trapflags aaa auth enable
```

**Related Commands**

- `show watchlist`
To configure trap notifications when a rogue access point is detected at the adjacent channel, use the `config trapflags adjchannel-rogueap` command.

```
cfg(0) # config trapflags adjchannel-rogueap {enable | disable}
```

**Syntax Description**

- **enable**  Enables trap notifications when a rogue access point is detected at the adjacent channel.
- **disable** Disables trap notifications when a rogue access point is detected at the adjacent channel.

**Command Default**

None

**Command History**

- **7.6**  This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable trap notifications when a rogue access point is detected at the adjacent channel:

```
(Cisco Controller) > config trapflags adjchannel-rogueap enable
```

**Related Commands**

- config trapflags 802.11-Security
- config trapflags aaa
- config trapflags ap
- config trapflags authentication
- config trapflags client
- config trapflags confisave
- config trapflags IPsec
- config trapflags linkmode
- config trapflags multiusers
- config trapflags mesh
- config trapflags strong-pwdcheck
- config trapflags rfid
- config trapflags rogueap
- show trapflags
**config trapflags ap**

To enable or disable the sending of Cisco lightweight access point traps, use the `config trapflags ap` command.

```plaintext
config trapflags ap {register | interfaceUp} {enable | disable}
```

**Syntax Description**

- **register**: Enables sending a trap when a Cisco lightweight access point registers with Cisco switch.
- **interfaceUp**: Enables sending a trap when a Cisco lightweight access point interface (A or B) comes up.
- **enable**: Enables sending access point-related traps.
- **disable**: Disables sending access point-related traps.

**Command Default**

By default, the sending of Cisco lightweight access point traps is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to prevent traps from sending access point-related traps:

```plaintext
(Cisco Controller) > config trapflags ap register disable
```

**Related Commands**

- `show trapflags`
**config trapflags authentication**

To enable or disable sending traps with invalid SNMP access, use the `config trapflags authentication` command.

```
config trapflags authentication { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables sending traps with invalid SNMP access.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables sending traps with invalid SNMP access.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending traps with invalid SNMP access is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to prevent sending traps on invalid SNMP access:

```
(Cisco Controller) > config trapflags authentication disable
```

**Related Commands**

- `show trapflags`
**config trapflags client**

To enable or disable the sending of client-related DOT11 traps, use the `config trapflags client` command.

```
config trapflags client (802.11-associate 802.11-disassociate | 802.11-deauthenticate | 802.11-authfail | 802.11-assocfail | authentication | excluded) (enable | disable)
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11-associate</td>
<td>Enables the sending of Dot11 association traps to clients.</td>
</tr>
<tr>
<td>802.11-disassociate</td>
<td>Enables the sending of Dot11 disassociation traps to clients.</td>
</tr>
<tr>
<td>802.11-deauthenticate</td>
<td>Enables the sending of Dot11 deauthentication traps to clients.</td>
</tr>
<tr>
<td>802.11-authfail</td>
<td>Enables the sending of Dot11 authentication fail traps to clients.</td>
</tr>
<tr>
<td>802.11-assocfail</td>
<td>Enables the sending of Dot11 association fail traps to clients.</td>
</tr>
<tr>
<td>authentication</td>
<td>Enables the sending of authentication success traps to clients.</td>
</tr>
<tr>
<td>excluded</td>
<td>Enables the sending of excluded trap to clients.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables sending of client-related DOT11 traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables sending of client-related DOT11 traps.</td>
</tr>
</tbody>
</table>

### Command Default

By default, the sending of client-related DOT11 traps is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the sending of Dot11 disassociation trap to clients:

```
(Cisco Controller) > config trapflags client 802.11-disassociate enable
```

### Related Commands

- `show trapflags`
config trapflags client max-warning-threshold

To configure the threshold value of the number of clients that associate with the controller, after which an SNMP trap and a syslog message is sent to the controller, use the `config trapflags client max-warning-threshold` command.

```
config trapflags client max-warning-threshold { threshold | enable | disable }
```

**Syntax Description**

- **threshold**: Configures the threshold percentage value of the number of clients that associate with the controller, after which an SNMP trap and a syslog message is sent to the controller. The range is from 80 to 100.
  
  The minimum interval between two warnings is 10 mins. You cannot configure this interval.

- **enable**: Enables the generation of the traps and syslog messages.

- **disable**: Disables the generation of the traps and syslog messages.

**Command Default**

The default threshold value of the number of clients that associate with the controller is 90%.

**Command History**

- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

This table lists the maximum number of clients for different controllers.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Maximum Number of Supported Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 5500 Series Controllers</td>
<td>7000</td>
</tr>
<tr>
<td>Cisco 2500 Series Controllers</td>
<td>500</td>
</tr>
<tr>
<td>Cisco Wireless Services Module 2</td>
<td>15000</td>
</tr>
<tr>
<td>Cisco Flex 7500 Series Controllers</td>
<td>64000</td>
</tr>
<tr>
<td>Cisco 8500 Series Controllers</td>
<td>64000</td>
</tr>
<tr>
<td>Cisco Virtual Wireless LAN Controllers</td>
<td>30000</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold value of the number of clients that associate with the controller:

```
(Cisco Controller) > config trapflags client max-warning-threshold 80
```

**Related Commands**

- `show trapflags`
- `config trapflags client`
**config trapflags configsave**

To enable or disable the sending of configuration-saved traps, use the `config trapflags configsave` command.

```
config trapflags configsave { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables sending of configuration-saved traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the sending of configuration-saved traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of configuration-saved traps is enabled.

**Command History**

- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable the sending of configuration-saved traps:

```
(Cisco Controller) > config trapflags configsave enable
```

**Related Commands**

- show trapflags
config trapflags IPsec

To enable or disable the sending of IPsec traps, use the `config trapflags IPsec` command.

```
config trapflags IPsec { esp-auth | esp-reply | invalidSPI | ike-neg | suite-neg | invalid-cookie } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>esp-auth</td>
</tr>
<tr>
<td>esp-reply</td>
</tr>
<tr>
<td>invalidSPI</td>
</tr>
<tr>
<td>ike-neg</td>
</tr>
<tr>
<td>suite-neg</td>
</tr>
<tr>
<td>invalid-cookie</td>
</tr>
<tr>
<td>enable</td>
</tr>
<tr>
<td>disable</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of IPsec traps is enabled.

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to enable the sending of IPsec traps when ESP authentication failure occurs:

```
(Cisco Controller) > config trapflags IPsec esp-auth enable
```
To enable or disable Cisco wireless LAN controller level link up/down trap flags, use the `config trapflags linkmode` command.

```plaintext
config trapflags linkmode {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables Cisco wireless LAN controller level link up/down trap flags.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables Cisco wireless LAN controller level link up/down trap flags.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the Cisco WLC level link up/down trap flags are enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the Cisco wireless LAN controller level link up/down trap:

```
(Cisco Controller) > config trapflags linkmode enable
```

**Related Commands**

- `show trapflags`
config trapflags mesh

To configure trap notifications when a mesh access point is detected, use the `config trapflags mesh` command.

```
config trapflags mesh (enable | disable)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables trap notifications when a mesh access point is detected.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables trap notifications when a mesh access point is detected.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable trap notifications when a mesh access point is detected:

```
(Cisco Controller) > config trapflags mesh enable
```

**Related Commands**

<table>
<thead>
<tr>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>config trapflags 802.11-Security</td>
</tr>
<tr>
<td>config trapflags aaa</td>
</tr>
<tr>
<td>config trapflags ap</td>
</tr>
<tr>
<td>config trapflags adjchannel-rogueap</td>
</tr>
<tr>
<td>config trapflags authentication</td>
</tr>
<tr>
<td>config trapflags client</td>
</tr>
<tr>
<td>config trapflags configsave</td>
</tr>
<tr>
<td>config trapflags IPsec</td>
</tr>
<tr>
<td>config trapflags linkmode</td>
</tr>
<tr>
<td>config trapflags multiusers</td>
</tr>
<tr>
<td>config trapflags strong-pwdcheck</td>
</tr>
<tr>
<td>config trapflags rfid</td>
</tr>
<tr>
<td>config trapflags rogueap</td>
</tr>
<tr>
<td>show trapflags</td>
</tr>
</tbody>
</table>
config trapflags multiusers

To enable or disable the sending of traps when multiple logins are active, use the `config trapflags multiusers` command.

```
config trapflags multiusers {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the sending of traps when multiple logins are active.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the sending of traps when multiple logins are active.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of traps when multiple logins are active is enabled.

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to disable the sending of traps when multiple logins are active:

```
(Cisco Controller) > config trapflags multiusers disable
```

**Related Commands**

- `show trapflags`
config trapflags rfid

To configure the threshold value of the maximum number of radio frequency identification (RFID) tags, after which an SNMP trap and a syslog message is sent to the controller, use the config trapflags rfid command.

```
config trapflags rfid { threshold | enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold</td>
<td>Configures the threshold percentage value of the maximum number of RFID tags, after which an SNMP trap and a syslog message is sent to the controller. The range is from 80 to 100. The traps and syslog messages are generated every 10 minutes. You cannot configure this interval.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the generation of the traps and syslog messages.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the generation of the traps and syslog messages.</td>
</tr>
</tbody>
</table>

**Command Default**
The default threshold value of the maximum number of RFID tags is 90%.

**Command History**

```
7.6 This command was introduced in a release earlier than Release 7.6.
```

**Usage Guidelines**
The following table shows the maximum number of RFID tags supported on different controllers:

<table>
<thead>
<tr>
<th>Controller</th>
<th>Maximum Number of Supported Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 5500 Series Controllers</td>
<td>5000</td>
</tr>
<tr>
<td>Cisco 2500 Series Controllers</td>
<td>500</td>
</tr>
<tr>
<td>Cisco Wireless Services Module 2</td>
<td>10000</td>
</tr>
<tr>
<td>Cisco Flex 7500 Series Controllers</td>
<td>50000</td>
</tr>
<tr>
<td>Cisco 8500 Series Controllers</td>
<td>50000</td>
</tr>
<tr>
<td>Cisco Virtual Wireless LAN Controllers</td>
<td>3000</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold value of the maximum number of RFID tags:

(Cisco Controller) > config trapflags rfid 80

**Related Commands**

- config trapflags 802.11-Security
- config trapflags aaa
- config trapflags ap
- config trapflags adjchannel-rogueap
config trapflags authentication
config trapflags client
config trapflags configsave
config trapflags IPsec
config trapflags linkmode
config trapflags multiusers
config trapflags mesh
config trapflags strong-pwdcheck
config trapflags rogueap
config trapflags mesh
show trapflags
To enable or disable sending rogue access point detection traps, use the `config trapflags rogueap` command.

```
config trapflags rogueap { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the sending of rogue access point detection traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the sending of rogue access point detection traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of rogue access point detection traps is enabled.

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to disable the sending of rogue access point detection traps:

```
(Cisco Controller) > config trapflags rogueap disable
```

**Related Commands**

- `config rogue ap classify`
- `config rogue ap friendly`
- `config rogue ap rldp`
- `config rogue ap ssid`
- `config rogue ap timeout`
- `config rogue ap valid-client`
- `show rogue ap clients`
- `show rogue ap detailed`
- `show rogue ap summary`
- `show rogue ap friendly summary`
- `show rogue ap malicious summary`
- `show rogue ap unclassified summary`
- `show trapflags`
config trapflags rrm-params

To enable or disable the sending of Radio Resource Management (RRM) parameters traps, use the config trapflags rrm-params command.

```
config trapflags rrm-params { tx-power | channel | antenna } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tx-power</td>
<td>Enables trap sending when the RF manager automatically changes the tx-power level for the Cisco lightweight access point interface.</td>
</tr>
<tr>
<td>channel</td>
<td>Enables trap sending when the RF manager automatically changes the channel for the Cisco lightweight access point interface.</td>
</tr>
<tr>
<td>antenna</td>
<td>Enables trap sending when the RF manager automatically changes the antenna for the Cisco lightweight access point interface.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the sending of RRM parameter-related traps.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the sending of RRM parameter-related traps.</td>
</tr>
</tbody>
</table>

**Command Default**
By default, the sending of RRM parameters traps is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the sending of RRM parameter-related traps:

```
(Cisco Controller) > config trapflags rrm-params tx-power enable
```

**Related Commands**

show trapflags
config trapflags rrm-profile

To enable or disable the sending of Radio Resource Management (RRM) profile-related traps, use the config trapflags rrm-profile command.

```
config trapflags rrm-profile { load | noise | interference | coverage } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>load</code></td>
<td>Enables trap sending when the load profile maintained by the RF manager fails.</td>
</tr>
<tr>
<td><code>noise</code></td>
<td>Enables trap sending when the noise profile maintained by the RF manager fails.</td>
</tr>
<tr>
<td><code>interference</code></td>
<td>Enables trap sending when the interference profile maintained by the RF manager fails.</td>
</tr>
<tr>
<td><code>coverage</code></td>
<td>Enables trap sending when the coverage profile maintained by the RF manager fails.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the sending of RRM profile-related traps.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the sending of RRM profile-related traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of RRM profile-related traps is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the sending of RRM profile-related traps:

```
(Cisco Controller) > config trapflags rrm-profile load disable
```

**Related Commands**

- show trapflags
config trapflags stp mode

To enable or disable the sending of spanning tree traps, use the `config trapflags stp mode` command.

`config trapflags stp mode { enable | disable }`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables the sending of spanning tree traps.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Disables the sending of spanning tree traps.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the sending of spanning tree traps is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the sending of spanning tree traps:

```
(Cisco Controller) > config trapflags stp mode disable
```

**Related Commands**

show trapflags
**config trapflags strong-pwdcheck**

To configure trap notifications for strong password checks, use the `config trapflags strong-pwdcheck` command.

```
config trapflags strong-pwdcheck { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables trap notifications for strong password checks.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables trap notifications for strong password checks.</td>
</tr>
</tbody>
</table>

**Command History**

Release	Modification
7.6      | This command was introduced in a release earlier than Release 7.6. |

The following example shows how to enable trap notifications for strong password checks:

```
(Cisco Controller) > config trapflags strong-pwdcheck enable
```

**Related Commands**

- config trapflags 802.11-Security
- config trapflags aaa
- config trapflags ap
- config trapflags adjchannel-rogueap
- config trapflags authentication
- config trapflags client
- config trapflags configsave
- config trapflags IPsec
- config trapflags linkmode
- config trapflags multiusers
- config trapflags mesh
- config trapflags rfid
- config trapflags rogueap
- show trapflags
config trapflags wps

To enable or disable Wireless Protection System (WPS) trap sending, use the `config trapflags wps` command.

```
config trapflags wps { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables WPS trap sending.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables WPS trap sending.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the WPS trap sending is enabled.

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to disable the WPS traps sending:

```
(Cisco Controller) > config trapflags wps disable
```

**Related Commands**

- `show trapflags`
config watchlist add

To add a watchlist entry for a wireless LAN, use the config watchlist add command.

```
config watchlist add { mac MAC | username username }
```

**Syntax Description**

- **mac MAC**
  - Specifies the MAC address of the wireless LAN.
- **username username**
  - Specifies the name of the user to watch.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a watchlist entry for the MAC address a5:6b:ac:10:01:6b:

(Cisco Controller) >config watchlist add mac a5:6b:ac:10:01:6b
config watchlist delete

To delete a watchlist entry for a wireless LAN, use the config watchlist delete command.

config watchlist delete  { mac MAC  |  username username }

**Syntax Description**

- **mac MAC**: Specifies the MAC address of the wireless LAN to delete from the list.
- **username username**: Specifies the name of the user to delete from the list.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete a watchlist entry for the MAC address a5:6b:ac:10:01:6b:

(Cisco Controller) >config watchlist delete mac a5:6b:ac:10:01:6b
config watchlist disable

To disable the client watchlist, use the `config watchlist disable` command.

**config watchlist disable**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the client watchlist:

```
(Cisco Controller) >config watchlist disable
```
**config watchlist enable**

To enable a watchlist entry for a wireless LAN, use the `config watchlist enable` command.

`config watchlist enable`

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a watchlist entry:

```
(Cisco Controller) >config watchlist enable
```
config wgb vlan

To configure the Workgroup Bridge (WGB) VLAN client support, use the **config wgb vlan** command.

```
config wgb vlan { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables wired clients behind a WGB to connect to an anchor controller in a Data Management Zone (DMZ).</td>
</tr>
<tr>
<td>disable</td>
<td>Disables wired clients behind a WGB from connecting to an anchor controller in a DMZ.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WGB VLAN client support:

```
(Cisco Controller) > config wgb vlan enable
```
config wlan

To create, delete, enable, or disable a wireless LAN, use the **config wlan** command.

```
config wlan { enable | disable | create | delete } wlan_id [name | foreignAp name ssid | all]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Enables a wireless LAN.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables a wireless LAN.</td>
</tr>
<tr>
<td><strong>create</strong></td>
<td>Creates a wireless LAN.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a wireless LAN.</td>
</tr>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><strong>name</strong></td>
<td>(Optional) WLAN profile name up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>foreignAp</strong></td>
<td>(Optional) Specifies the third-party access point settings.</td>
</tr>
<tr>
<td><strong>ssid</strong></td>
<td>SSID (network name) up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>(Optional) Specifies all wireless LANs.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you create a new WLAN using the **config wlan create** command, it is created in disabled mode. Leave it disabled until you have finished configuring it.

If you do not specify an SSID, the profile **name** parameter is used for both the profile name and the SSID.

If the management and AP-manager interfaces are mapped to the same port and are members of the same VLAN, you must disable the WLAN before making a port-mapping change to either interface. If the management and AP-manager interfaces are assigned to different VLANs, you do not need to disable the WLAN.

An error message appears if you try to delete a WLAN that is assigned to an access point group. If you proceed, the WLAN is removed from the access point group and from the access point’s radio.

The following example shows how to enable wireless LAN identifier 16:

```
(Cisco Controller) >config wlan enable 16
```
config wlan 7920-support

To configure support for phones, use the **config wlan 7920-support** command.

```
config wlan 7920-support { client-cac-limit | ap-cac-limit } { enable | disable } wlan_id
```

**Syntax Description**

- **ap-cac-limit**: Supports phones that require client-controlled Call Admission Control (CAC) that expect the Cisco vendor-specific information element (IE).
- **client-cac-limit**: Supports phones that require access point-controlled CAC that expect the IEEE 802.11e Draft 6 QBSS-load.
- **enable**: Enables phone support.
- **disable**: Disables phone support.
- **wlan_id**: Wireless LAN identifier between 1 and 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You cannot enable both WMM mode and client-controlled CAC mode on the same WLAN.

The following example shows how to enable the phone support that requires client-controlled CAC with wireless LAN ID 8:

```
(Cisco Controller) >config wlan 7920-support ap-cac-limit enable 8
```
### config wlan 802.11e

To configure 802.11e support on a wireless LAN, use the **config wlan 802.11e** command.

```plaintext
config wlan 802.11e { allow | disable | require } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td></td>
<td>Allows 802.11e-enabled clients on the wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td></td>
<td>Disables 802.11e on the wireless LAN.</td>
</tr>
<tr>
<td>require</td>
<td></td>
<td>Requires 802.11e-enabled clients on the wireless LAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

| Command Default   |   | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td></td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11e provides quality of service (QoS) support for LAN applications, which are critical for delay sensitive applications such as Voice over Wireless IP (VoWIP).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11e enhances the 802.11 Media Access Control layer (MAC layer) with a coordinated time division multiple access (TDMA) construct, and adds error-correcting mechanisms for delay sensitive applications such as voice and video. The 802.11e specification provides seamless interoperability and is especially well suited for use in networks that include a multimedia capability.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to allow 802.11e on the wireless LAN with LAN ID 1:

```plaintext
(Cisco Controller) > config wlan 802.11e allow 1
```
To configure a user policy override via AAA on a wireless LAN, use the `config wlan aaa-override` command.

```
config wlan aaa-override { enable | disable } { wlan_id | foreignAp }
```

**Syntax Description**

- **enable**: Enables a policy override.
- **disable**: Disables a policy override.
- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **foreignAp**: Specifies third-party access points.

**Command Default**

AAA is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When AAA override is enabled and a client has conflicting AAA and Cisco wireless LAN controller wireless LAN authentication parameters, client authentication is performed by the AAA server. As part of this authentication, the operating system will move clients from the default Cisco wireless LAN VLAN to a VLAN returned by the AAA server and predefined in the controller interface configuration (only when configured for MAC filtering, 802.1X, and/or WPA operation). In all cases, the operating system will also use QoS, DSCP, 802.1p priority tag values, and ACLs provided by the AAA server, as long as they are predefined in the controller interface configuration. (This VLAN switching by AAA override is also referred to as Identity Networking.)

If the corporate wireless LAN uses a management interface assigned to VLAN 2, and if AAA override returns a redirect to VLAN 100, the operating system redirects all client transmissions to VLAN 100, regardless of the physical port to which VLAN 100 is assigned.

When AAA override is disabled, all client authentication defaults to the controller authentication parameter settings, and authentication is performed by the AAA server if the controller wireless LAN does not contain any client-specific authentication parameters.

The AAA override values might come from a RADIUS server.

The following example shows how to configure user policy override via AAA on WLAN ID 1:

```
(Cisco Controller) >config wlan aaa-override enable 1
```
config wlan acl

To configure a wireless LAN access control list (ACL), use the `config wlan acl` command.

```
config wlan acl [acl_name | none]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier (1 to 512).</td>
</tr>
<tr>
<td>acl_name</td>
<td>(Optional) ACL name.</td>
</tr>
<tr>
<td>none</td>
<td>(Optional) Clears the ACL settings for the specified wireless LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a WLAN access control list with WLAN ID 1 and ACL named office_1:

```
(Cisco Controller) > config wlan acl 1 office_1
```
To manage access point group VLAN features, use the `config wlan apgroup` command.

**Syntax**

```
config wlan apgroup { add apgroup_name [description] | delete apgroup_name | description
apgroup_name description | interface-mapping { add | delete } apgroup_name wlan_id interface_name
| nac-snmp { enable | disable } apgroup_name wlan_id | nasid NAS-ID apgroup_name |
profile-mapping { add | delete } apgroup_name profile_name | wlan-radio-policy apgroup_name
wlan-id { 802.11a-only | 802.11bg | 802.11g-only | all } | hotspot { venue { type apgroup_name
group_codetype_code | name apgroup_name language_codevenue_name } | operating-class { add |
delete } apgroup_name operating_class_value) }
```

**Syntax Description**

- **add**
  - `apgroup_name` Access point group name.
  - `wlan_id` Wireless LAN identifier from 1 to 512.

- **delete**
  - Removes a wireless LAN from an AP group.

- **description**
  - Describes an AP group.

- **interface-mapping**
  - (Optional) Assigns or removes a Wireless LAN from an AP group.

- **interface_name**
  - (Optional) Interface to which you want to map an AP group.

- **nac-snmp**
  - Configures NAC SNMP functionality on given AP group. Enables or disables Network Admission Control (NAC) out-of-band support on an access point group.

- **enable**
  - Enables NAC out-of-band support on an AP group.

- **disable**
  - Disables NAC out-of-band support on an AP group.

- **NAS-ID**
  - Network Access Server identifier (NAS-ID) for the AP group. The NAS-ID is sent to the RADIUS server by the controller (as a RADIUS client) using the authentication request, which is used to classify users to different groups. You can enter up to 32 alphanumeric characters. Beginning in Release 7.4 and later releases, you can configure the NAS-ID on the interface, WLAN, or an access point group. The order of priority is AP group NAS-ID > WLAN NAS-ID > Interface NAS-ID.

- **none**
  - Configures the controller system name as the NAS-ID.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>profile-mapping</strong></td>
<td>Configures RF profile mapping on an AP group.</td>
</tr>
<tr>
<td><strong>profile_name</strong></td>
<td>RF profile name for a specified AP group.</td>
</tr>
<tr>
<td><strong>wlan-radio-policy</strong></td>
<td>Configures WLAN radio policy on an AP group.</td>
</tr>
<tr>
<td><strong>802.11a-only</strong></td>
<td>Configures WLAN radio policy on an AP group.</td>
</tr>
<tr>
<td><strong>802.11bg</strong></td>
<td>Configures WLAN radio policy on an AP group.</td>
</tr>
<tr>
<td><strong>802.11g-only</strong></td>
<td>Configures WLAN radio policy on an AP group.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Configures WLAN radio policy on an AP group.</td>
</tr>
<tr>
<td><strong>hotspot</strong></td>
<td>Configures a HotSpot on an AP group.</td>
</tr>
<tr>
<td><strong>venue</strong></td>
<td>Configures venue information for an AP group.</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>Configures the type of venue for an AP group.</td>
</tr>
</tbody>
</table>

**group_code**	Venue group information for an AP group.
	The following options are available:
	• 0 : UNSPECIFIED
	• 1 : ASSEMBLY
	• 2 : BUSINESS
	• 3 : EDUCATIONAL
	• 4 : FACTORY-INDUSTRIAL
	• 5 : INSTITUTIONAL
	• 6 : MERCANTILE
	• 7 : RESIDENTIAL
	• 8 : STORAGE
	• 9 : UTILITY-MISC
	• 10 : VEHICULAR
	• 11 : OUTDOOR
config wlan apgroup

type_code
Venue type information for an AP group.

For venue group 1 (ASSEMBLY), the following options are available:

- 0: UNSPECIFIED ASSEMBLY
- 1: ARENA
- 2: STADIUM
- 3: PASSENGER TERMINAL
- 4: AMPHITHEATER
- 5: AMUSEMENT PARK
- 6: PLACE OF WORSHIP
- 7: CONVENTION CENTER
- 8: LIBRARY
- 9: MUSEUM
- 10: RESTAURANT
- 11: THEATER
- 12: BAR
- 13: COFFEE SHOP
- 14: ZOO OR AQUARIUM
- 15: EMERGENCY COORDINATION CENTER

For venue group 2 (BUSINESS), the following options are available:

- 0: UNSPECIFIED BUSINESS
- 1: DOCTOR OR DENTIST OFFICE
- 2: BANK
- 3: FIRE STATION
- 4: POLICE STATION
- 5: POST OFFICE
- 7: PROFESSIONAL OFFICE
- 8: RESEARCH AND DEVELOPMENT FACILITY
- 9: ATTORNEY OFFICE

For venue group 3 (EDUCATIONAL), the following
options are available:

• 0 : UNSPECIFIED EDUCATIONAL
• 1 : PRIMARY SCHOOL
• 2 : SECONDARY SCHOOL
• 3 : UNIVERSITY OR COLLEGE

For venue group 4 (FACTORY-INDUSTRIAL), the following options are available:

• 0 : UNSPECIFIED FACTORY AND INDUSTRIAL
• 1 : FACTORY

For venue group 5 (INSTITUTIONAL), the following options are available:

• 0 : UNSPECIFIED INSTITUTIONAL
• 1 : HOSPITAL
• 2 : LONG-TERM CARE FACILITY
• 3 : ALCOHOL AND DRUG RE-HABILITATION CENTER
• 4 : GROUP HOME
• 5 : PRISON OR JAIL

For venue group 6 (MERCANTILE), the following options are available:

• 0 : UNSPECIFIED MERCANTILE
• 1 : RETAIL STORE
• 2 : GROCERY MARKET
• 3 : AUTOMOTIVE SERVICE STATION
• 4 : SHOPPING MALL
• 5 : GAS STATION
For venue group 7 (RESIDENTIAL), the following options are available:

- 0 : UNSPECIFIED RESIDENTIAL
- 1 : PRIVATE RESIDENCE
- 2 : HOTEL OR MOTEL
- 3 : DORMITORY
- 4 : BOARDING HOUSE

For venue group 8 (STORAGE), the following options are available:

- 0 : UNSPECIFIED STORAGE

For venue group 9 (UTILITY-MISC), the following options are available:

- 0 : UNSPECIFIED UTILITY AND MISCELLANEOUS

For venue group 10 (VEHICULAR), the following options are available:

- 0 : UNSPECIFIED VEHICULAR
- 1 : AUTOMOBILE OR TRUCK
- 2 : AIRPLANE
- 3 : BUS
- 4 : FERRY
- 5 : SHIP OR BOAT
- 6 : TRAIN
- 7 : MOTOR BIKE

For venue group 11 (OUTDOOR), the following options are available:

- 0 : UNSPECIFIED OUTDOOR
- 1 : MINI-MESH NETWORK
- 2 : CITY PARK
- 3 : REST AREA
- 4 : TRAFFIC CONTROL
- 5 : BUS STOP
- 6 : KIOSK
**name**

Configures the name of venue for an AP group.

**language_code**

An ISO-639 encoded string defining the language used at the venue. This string is a three character language code. For example, you can enter ENG for English.

**venue_name**

Venue name for this AP group. This name is associated with the basic service set (BSS) and is used in cases where the SSID does not provide enough information about the venue. The venue name is case-sensitive and can be up to 252 alphanumeric characters.

**add**

Adds an operating class for an AP group.

**delete**

Deletes an operating class for an AP group.

**operating_class_value**

Operating class for an AP group. The available operating classes are 81, 83, 84, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127.

**Command Default**

AP Group VLAN is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An error message appears if you try to delete an access point group that is used by at least one access point. Before you can delete an AP group in controller software release 6.0, move all APs in this group to another group. The access points are not moved to the default-group access point group as in previous releases. To see the APs, enter the `show wlan apgroups` command. To move APs, enter the `config ap group-name groupname cisco_ap` command.

The NAS-ID configured on the controller for AP group or WLAN or interface is used for authentication. The NAS-ID is not propagated across controllers.

The following example shows how to enable the NAC out-of-band support on access point group 4:

(Cisco Controller) > `config wlan apgroup nac enable apgroup 4`
config wlan apgroup atf 802.11

Configure Cisco Airtime Fairness at an AP group level by using the `config wlan apgroup atf 802.11` command.

```
config wlan apgroups atf 802.11 {a | b} {mode {disable | monitor | enforce-policy} ap-group-name} | {optimization {enable | disable}}
```

**Syntax Description**

- **a**: Specifies the 802.11a network settings
- **b**: Specifies the 802.11b/g network settings
- **mode**: Configures the granularity of Cisco ATF enforcement
- **disable**: Disables Cisco ATF
- **monitor**: Configures Cisco ATF in monitor mode
- **enforce-policy**: Configures Cisco ATF in enforcement mode
- **ap-group-name**: AP group name that you must specify
- **optimization**: Configures airtime optimization
- **enable**: Enables airtime optimization
- **disable**: Disabled airtime optimization

**Command History**

```
Release Modification
8.1 This command was introduced
```

To configure Cisco ATF in enforcement mode on an 802.11a network, for an AP group `my-ap-group`, enter the following command:

```
(Cisco Controller) > config wlan apgroup atf 802.11a mode enforce-policy my-ap-group
```
config wlan apgroup atf 802.11 policy

To configure AP group-level override for Cisco ATF policy on a WLAN by using this command:

```bash
config wlan apgroup atf 802.11 { a | b } policy ap-group-name wlan-id policy-name override { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network settings</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b network settings</td>
</tr>
<tr>
<td><code>policy</code></td>
<td>Specifies the Cisco ATF policy</td>
</tr>
<tr>
<td><code>ap-group-name</code></td>
<td>Name of the AP group that you must specify</td>
</tr>
<tr>
<td><code>wlan-id</code></td>
<td>WLAN ID or Remote LAN ID that you must specify</td>
</tr>
<tr>
<td><code>policy-name</code></td>
<td>Cisco ATF policy name that you must specify</td>
</tr>
<tr>
<td><code>override</code></td>
<td>Configures ATF policy override for a WLAN in the AP group</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables ATF policy override for a WLAN in the AP group</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables ATF policy override for a WLAN in the AP group</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>
# config wlan apgroup qinq

To configure 802.1Q-in-Q VLAN tagging of traffic for an AP group, use the `config wlan apgroup qinq` command.

```
config wlan apgroup qinq {tagging {client-traffic | dhcp-v4 | eap-sim-aka} apgroup_name {enable | disable} | service-vlan apgroup_name vlan_id}
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagging</td>
<td>Configures 802.1Q-in-Q VLAN tagging of traffic.</td>
</tr>
<tr>
<td>client-traffic</td>
<td>Configures 802.1Q-in-Q tagging of client traffic for an AP group.</td>
</tr>
<tr>
<td>dhcp-v4</td>
<td>Configures 802.1Q-in-Q tagging of DHCPv4 traffic for an AP group.</td>
</tr>
<tr>
<td>eap-sim-aka</td>
<td>Configures 802.1Q-in-Q tagging of Extensible Authentication Protocol for Authentication and Key Agreement (EAP-AKA) and EAP for Global System for Mobile Communications Subscriber Identity Module (EAP-SIM) traffic for an AP group.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables 802.1Q-in-Q tagging of traffic.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.1Q-in-Q tagging of traffic.</td>
</tr>
<tr>
<td>service-vlan</td>
<td>Configures service VLAN for an AP group.</td>
</tr>
<tr>
<td>apgroup_name</td>
<td>Name of the access point group.</td>
</tr>
<tr>
<td>vlan_id</td>
<td>VLAN identifier.</td>
</tr>
</tbody>
</table>

## Command Default

By default, 802.1Q-in-Q tagging of client and DHCPv4 traffic for an AP group is disabled.

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

**Note**

You must enable 802.1Q-in-Q tagging of client traffic before you enable 802.1Q-in-Q tagging of DHCPv4 traffic.

When you enable 802.1Q-in-Q tagging of client traffic, the 802.1Q-in-Q tagging of EAP-AKA and EAP-SIM traffic is also enabled.

The following example shows how to enable 802.1Q-in-Q tagging of client traffic for an AP group:

(Cisco Controller) > config wlan apgroup qinq tagging client-traffic APg1 enable

The following example shows how to configure the service VLAN for an AP group:

(Cisco Controller) > config wlan apgroup qinq service-vlan APg1 10

---

Cisco Wireless LAN Controller Command Reference, Release 8.0
config wlan assisted-roaming

To configure assisted roaming on a WLAN, use the `config wlan assisted-roaming` command.

```
cfg wlan assisted-roaming { neighbor-list | dual-list | prediction } { enable | disable } wlan_id
```

**Syntax Description**

- **neighbor-list** Configures an 802.11k neighbor list for a WLAN.
- **dual-list** Configures a dual band 802.11k neighbor list for a WLAN. The default is the band that the client is currently associated with.
- **prediction** Configures an assisted roaming optimization prediction for a WLAN.
- **enable** Enables the configuration on the WLAN.
- **disable** Disables the configuration on the WLAN.
- **wlan_id** Wireless LAN identifier between 1 and 512 (inclusive).

**Command Default**

The 802.11k neighbor list is enabled for all WLANs.

By default, dual band list is enabled if the neighbor list feature is enabled for the WLAN.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable the assisted roaming prediction list, a warning appears and load balancing is disabled for the WLAN, if load balancing is already enabled on the WLAN.

The following example shows how to enable an 802.11k neighbor list for a WLAN:

```
(Cisco Controller) >config wlan assisted-roaming neighbor-list enable 1
```
config wlan atf

Map a WLAN to a Cisco ATF policy using the `config wlan atf` command.

```
config wlan atf wlan-id policy policy-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan-id</td>
<td>WLAN ID that you must specify to which the Cisco ATF policy has to be mapped.</td>
</tr>
<tr>
<td>policy</td>
<td>Specifies the Cisco ATF policy</td>
</tr>
<tr>
<td>policy-id</td>
<td>Cisco ATF policy ID that you must specify</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>
**config wlan avc**

To configure Application Visibility and Control (AVC) on a WLAN, use the `config wlan avc` command.

```
config wlan avc wlan_id {profile profile_name | visibility} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>profile</td>
<td>Associates or removes an AVC profile from a WLAN.</td>
</tr>
<tr>
<td>profile_name</td>
<td>Name of the AVC profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
<tr>
<td>visibility</td>
<td>Configures application visibility on a WLAN.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables application visibility on a WLAN. You can view the classification of applications based on the Network Based Application Recognition (NBAR) deep packet inspection technology. Use the <code>show avc statistics client</code> command to view the client AVC statistics.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables application visibility on a WLAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can configure only one AVC profile per WLAN and each AVC profile can have up to 32 rules. Each rule states a Mark or Drop action for an application, which allows you to configure up to 32 application actions per WLAN. You can configure up to 16 AVC profiles on a controller and associate an AVC profile with multiple WLANs.

The following example shows how to associate an AVC profile with a WLAN:

```
(Cisco Controller) >config wlan avc 5 profile profile1 enable
```
config wlan band-select allow

To configure band selection on a WLAN, use the `config wlan band-select allow` command.

```
config wlan band-select allow {enable | disable} wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables band selection on a WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables band selection on a WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable band select on a WLAN, the access point suppresses client probes on 2.4-GHz and moves the dual band clients to the 5-GHz spectrum. The band-selection algorithm directs dual-band clients only from the 2.4-GHz radio to the 5-GHz radio of the same access point, and it only runs on an access point when both the 2.4-GHz and 5-GHz radios are up and running. Band selection can be used only with Cisco Aironet 1040, 1140, and 1250 Series and the 3500 series access points.

The following example shows how to enable band selection on a WLAN:

(Cisco Controller) > `config wlan band-select allow enable 6`
config wlan broadcast-ssid

To configure an Service Set Identifier (SSID) broadcast on a wireless LAN, use the config wlan broadcast-ssid command.

```
config wlan broadcast-ssid { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables SSID broadcasts on a wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables SSID broadcasts on a wireless LAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

Broadcasting of SSID is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an SSID broadcast on wireless LAN ID 1:

```
(Cisco Controller) > config wlan broadcast-ssid enable 1
```
**config wlan call-snoop**

To enable or disable Voice-over-IP (VoIP) snooping for a particular WLAN, use the `config wlan call-snoop` command.

```
config wlan call-snoop { enable | disable } wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables VoIP snooping on a wireless LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables VoIP snooping on a wireless LAN.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

WLAN should be with Platinum QoS and it needs to be disabled while invoking this CLI

The following example shows how to enable VoIP snooping for WLAN 3:

(Cisco Controller) > `config wlan call-snoop 3 enable`
To enable or disable Coverage Hole Detection (CHD) for a wireless LAN, use the `config wlan chd` command.

```
config wlan chd wlan_id {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables SSID broadcasts on a wireless LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables SSID broadcasts on a wireless LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable CHD for WLAN 3:

```
(Cisco Controller) >config wlan chd 3 enable
```
**config wlan ccx aironet-ie**

To enable or disable Aironet information elements (IEs) for a WLAN, use the `config wlan ccx aironet-ie` command.

```
config wlan ccx aironet-ie {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the Aironet information elements.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Aironet information elements.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable Aironet information elements for a WLAN:

```
(Cisco Controller) > config wlan ccx aironet-ie enable
```
config wlan channel-scan defer-priority

To configure the controller to defer priority markings for packets that can defer off channel scanning, use the `config wlan channel-scan defer-priority` command.

```
config wlan channel-scan defer-priority priority [enable | disable] wlan_id
```

**Syntax Description**

- **priority**
  
  User priority value (0 to 7).

- **enable**
  
  (Optional) Enables packet at given priority to defer off channel scanning.

- **disable**
  
  (Optional) Disables packet at given priority to defer off channel scanning.

- **wlan_id**
  
  Wireless LAN identifier (1 to 512).

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The priority value should be set to 6 on the client and on the WLAN.

The following example shows how to enable the controller to defer priority markings that can defer off channel scanning with user priority value 6 and WLAN id 30:

```
(Cisco Controller) > config wlan channel-scan defer-priority 6 enable 30
```
config wlan channel-scan defer-time

To assign the channel scan defer time in milliseconds, use the `config wlan channel-scan defer-time` command.

```
config wlan channel-scan defer-time msecs wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>msecs</code></td>
<td>Deferral time in milliseconds (0 to 60000 milliseconds).</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The time value in milliseconds should match the requirements of the equipment on your WLAN.

The following example shows how to assign the scan defer time to 40 milliseconds for WLAN with ID 50:

```
(Cisco Controller) >config wlan channel-scan defer-time 40 50
```
# config wlan custom-web

To configure the web authentication page for a WLAN, use the `config wlan custom-web` command.

```
cfg wlan custom-web { {ext-webauth-url ext-webauth-url wlan_id} | {global {enable | disable}} | {login-page page-name} | {loginfailure-page {page-name | none}} | {logout-page {page-name | none}} | {sleep-client {enable | disable} wlan_id timeout duration} | {webauth-type {internal | customized | external} wlan_id} }
```

## Syntax Description

**ext-webauth-url**  
Configures an external web authentication URL.

**ext-webauth-url**  
External web authentication URL.

**wlan_id**  
WLAN identifier. Default range is from 1 to 512.

**global**  
Configures the global status for a WLAN.

**enable**  
Enables the global status for a WLAN.

**disable**  
Disables the global status for a WLAN.

**login-page**  
Configures the name of the login page for an external web authentication URL.

**page-name**  
Login page name for an external web authentication URL.

**loginfailure-page**  
Configures the name of the login failure page for an external web authentication URL.

**none**  
Does not configure a login failure page for an external web authentication URL.

**logout-page**  
Configures the name of the logout page for an external web authentication URL.

**sleep-client**  
Configures the sleep client feature on the WLAN.

**timeout**  
Configures the sleep client timeout on the WLAN.

**duration**  
Maximum amount of time after the idle timeout, in hours, before a sleeping client is forced to reauthenticate. The range is from 1 to 720. The default is 12. When the sleep client feature is enabled, the clients need not provide the login credentials when they move from one Cisco WLC to another (if the Cisco WLCs are in the same mobility group) between the sleep and wake-up times.

**webauth-type**  
Configures the type of web authentication for the WLAN.

**internal**  
Displays the default login page.

**customized**  
Displays a customized login page.

**external**  
Displays a login page on an external web server.

## Command Default

None
This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure web authentication type in the WLAN.

Cisco Controller `config wlan custom-web webauth-type external`
To configure the internal DHCP server for a wireless LAN, use the `config wlan dhcp_server` command.

```
config wlan dhcp_server {wlan_id | foreignAp} ip_address [required]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of the internal DHCP server (this parameter is required).</td>
</tr>
<tr>
<td>required</td>
<td>(Optional) Specifies whether DHCP address assignment is required.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The preferred method for configuring DHCP is to use the primary DHCP address assigned to a particular interface instead of the DHCP server override. If you enable the override, you can use the `show wlan` command to verify that the DHCP server has been assigned to the WLAN.

The following example shows how to configure an IP address 10.10.2.1 of the internal DHCP server for wireless LAN ID 16:

```
(Cisco Controller) >config wlan dhcp_server 16 10.10.2.1
```
**config wlan diag-channel**

To enable the diagnostic channel troubleshooting on a particular WLAN, use the `config wlan diag-channel` command.

```
config wlan diag-channel [enable | disable] wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables the wireless LAN diagnostic channel.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>(Optional) Disables the wireless LAN diagnostic channel.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier (1 to 512).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the wireless LAN diagnostic channel for WLAN ID 1:

```
(Cisco Controller) > config wlan diag-channel enable 1
```
**config wlan dtim**

To configure a Delivery Traffic Indicator Message (DTIM) for 802.11 radio network `config wlan dtim` command.

```
config wlan dtim (802.11a | 802.11b) dtim wlan_id
```

**Syntax Description**

- **802.11a**: Configures DTIM for the 802.11a radio network.
- **802.11b**: Configures DTIM for the 802.11b radio network.
- **dtim**: Value for DTIM (between 1 to 255 inclusive).
- **wlan_id**: Number of the WLAN to be configured.

**Command Default**

The default is DTIM 1.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure DTIM for 802.11a radio network with DTIM value 128 and WLAN ID 1:

```
(Cisco Controller) >config wlan dtim 802.11a 128 1
```
config wlan exclusionlist

To configure the wireless LAN exclusion list, use the config wlan exclusionlist command.

```
config wlan exclusionlist { wlan_id [enabled | disabled | time] | foreignAp [enabled | disabled | time] }
```

**Syntax Description**

- `wlan_id` Wireless LAN identifier (1 to 512).
- `enabled` (Optional) Enables the exclusion list for the specified wireless LAN or foreign access point.
- `disabled` (Optional) Disables the exclusion list for the specified wireless LAN or a foreign access point.
- `time` (Optional) Exclusion list timeout in seconds. A value of zero (0) specifies infinite time.
- `foreignAp` Specifies a third-party access point.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command replaces the config wlan blacklist command.

The following example shows how to enable the exclusion list for WLAN ID 1:

(Cisco Controller) > config wlan exclusionlist 1 enabled
config wlan fabric

To enable or disable fabric on a WLAN, use the config wlan fabric command.

```
config wlan fabric { enable | disable } wlan-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables fabric on a WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables fabric on a WLAN.</td>
</tr>
<tr>
<td>wlan-id</td>
<td>WLAN identifier.</td>
</tr>
</tbody>
</table>

**Command Default**

Non-fabric APs are not configured with fabric WLAN.

**Command Modes**

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Example**

The following example shows how to enable fabric on a WLAN:

```
config wlan fabric enable wlan1
```
**config wlan flexconnect ap-auth**

To configure local authentication of clients associated with FlexConnect on a locally switched WLAN, use the `config wlan flexconnect ap-auth` command.

```
config wlan flexconnect ap-auth wlan_id { enable | disable }
```

**Syntax Description**

- **ap-auth**: Configures local authentication of clients associated with a FlexConnect on a locally switched WLAN.
- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **enable**: Enables AP authentication on a WLAN.
- **disable**: Disables AP authentication on a WLAN.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Local switching must be enabled on the WLAN where you want to configure local authentication of clients associated with FlexConnect.

The following example shows how to enable authentication of clients associated with FlexConnect on a specified WLAN:

```
(Cisco Controller) > config wlan flexconnect ap-auth 6 enable
```
**config wlan flexconnect central-assoc**

To configure client reassociation and security key caching on the Cisco WLC, use the `config wlan flexconnect central-assoc` command.

```
config wlan flexconnect central-assoc wlan-id {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan-id</td>
<td>ID of the WLAN</td>
</tr>
<tr>
<td>enable</td>
<td>Enables client reassociation and security key caching on the Cisco WLC</td>
</tr>
<tr>
<td>disable</td>
<td>Disables client reassociation and security key caching on the Cisco WLC</td>
</tr>
</tbody>
</table>

**Command Default**

Client reassociation and security key caching on the Cisco WLC is in disabled state.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A use case for this configuration is a large-scale deployment with fast roaming.

Configuration of central association with local authentication is not supported for the WLAN. After the PMIPv6 tunnel is set up, all data traffic from the PMIPv6 clients are forwarded from the Cisco AP to the local mobility anchor (LMA) in the Generic Routing Encapsulation (GRE) tunnel. If the connectivity between the Cisco AP and the Cisco WLC is lost, the data traffic for the existing PMIPv6 clients continue to flow until the connectivity between the Cisco AP and the client is lost. When the AP is in stand-alone mode, no new client associations are accepted on the PMIPv6 enabled WLAN.

The following example shows how to enable client reassociation and security key caching on the Cisco WLC for a WLAN whose ID is 2:

```
(Cisco Controller) > config wlan flexconnect central-assoc 2 enable
```
**config wlan flexconnect learn-ipaddr**

To enable or disable client IP address learning for the Cisco WLAN controller, use the `config wlan flexconnect learn-ipaddr` command.

```
config wlan flexconnect learn-ipaddr wlan_id {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables client IPv4 address learning on a wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables client IPv4 address learning on a wireless LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled when the `config wlan flexconnect local-switching` command is disabled. Enabled when the `config wlan flexconnect local-switching` command is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the client is configured with Layer 2 encryption, the controller cannot learn the client IP address, and the controller will periodically drop the client. Disable this option to keep the client connection without waiting to learn the client IP address.

**Note**

This command is valid only for IPv4.

**Note**

The ability to disable IP address learning is not supported with FlexConnect central switching.

The following example shows how to disable client IP address learning for WLAN 6:

```
(Cisco Controller) > config wlan flexconnect learn-ipaddr disable 6
```

**Related Commands**

- `show wlan`
config wlan flexconnect local-switching

To configure local switching, central DHCP, NAT-PAT, or the override DNS option on a FlexConnect WLAN, use the `config wlan flexconnect local-switching` command.

```
config wlan flexconnect local-switching wlan_id { enable | disable } { { central-dhcp { enable | disable } | nat-pat { enable | disable } } | { override option dns { enable | disable } } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables local switching on a FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables local switching on a FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>central-dhcp</code></td>
<td>Configures central switching of DHCP packets on the local switching FlexConnect WLAN. When you enable this feature, the DHCP packets received from the AP are centrally switched to the controller and forwarded to the corresponding VLAN based on the AP and the SSID.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables central DHCP on a FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables central DHCP on a FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>nat-pat</code></td>
<td>Configures Network Address Translation (NAT) and Port Address Translation (PAT) on the local switching FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables NAT-PAT on the FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables NAT-PAT on the FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>override</code></td>
<td>Specifies the DHCP override options on the FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>option dns</code></td>
<td>Specifies the override DNS option on the FlexConnect WLAN. When you override this option, the clients get their DNS server IP address from the AP, not from the controller.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the override DNS option on the FlexConnect WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the override DNS option on the FlexConnect WLAN.</td>
</tr>
</tbody>
</table>

### Command Default

This feature is disabled.
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enable the `config wlan flexconnect local-switching` command, the `config wlan flexconnect learn-ipaddr` command is enabled by default.

Note

This command is valid only for IPv4.

Note

The ability to disable IP address learning is not supported with FlexConnect central switching.

The following example shows how to enable WLAN 6 for local switching and enable central DHCP and NAT-PAT:

(Cisco Controller) > config wlan flexconnect local-switching 6 enable central-dhcp enable nat-pat enable

The following example shows how to enable the override DNS option on WLAN 6:

(Cisco Controller) > config wlan flexconnect local-switching 6 override option dns enable
To configure central switching on a locally switched WLAN, use the `config wlan flexconnect vlan-central-switching` command.

```
config wlan flexconnect vlan-central-switching wlan_id { enable | disable }
```

**Syntax Description**
- `wlan_id` Wireless LAN identifier between 1 and 512.
- `enable` Enables central switching on a locally switched wireless LAN.
- `disable` Disables central switching on a locally switched wireless LAN.

**Command Default**
Central switching is disabled.

**Command History**
- **Release** 7.6
  - **Modification** This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**
You must enable FlexConnect local switching to enable VLAN central switching. When you enable WLAN central switching, the access point bridges the traffic locally if the WLAN is configured on the local IEEE 802.1Q link. If the VLAN is not configured on the access point, the AP tunnels the traffic back to the controller and the controller bridges the traffic to the corresponding VLAN.

WLAN central switching does not support:
- FlexConnect local authentication.
- Layer 3 roaming of local switching client.

The following example shows how to enable WLAN 6 for central switching:

```
(Cisco Controller) > config wlan flexconnect vlan-central-switching 6 enable
```
To associate a NetFlow monitor with a WLAN, use the `config wlan flow` command.

```
config wlan flow wlan_id monitor monitor_name { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512 (inclusive).</td>
</tr>
<tr>
<td><code>monitor</code></td>
<td>Configures a NetFlow monitor.</td>
</tr>
<tr>
<td><code>monitor_name</code></td>
<td>Name of the NetFlow monitor. The monitor name can be up to 32 case-sensitive, alphanumeric characters. You cannot include spaces for a monitor name.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Associates a NetFlow monitor with a WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Dissociates a NetFlow monitor from a WLAN.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can use the `config flow` command to create a new NetFlow monitor.

The following example shows how to associate a NetFlow monitor with a WLAN:

(Cisco Controller) > `config wlan flow 5 monitor monitor1 enable`
config wlan hotspot

To configure a HotSpot on a WLAN, use the `config wlan hotspot` command.

```
config wlan hotspot { clear-all wlan_id | dot11u | hs2 | msap }
```

**Syntax Description**

- **clear-all**  Clears the HotSpot configurations on a WLAN.
- **wlan_id**  Wireless LAN identifier from 1 to 512.
- **dot11u**  Configures an 802.11u HotSpot on a WLAN.
- **hs2**  Configures HotSpot2 on a WLAN.
- **msap**  Configures the Mobility Services Advertisement Protocol (MSAP) on a WLAN.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can configure up to 32 HotSpot WLANs.

The following example shows how to configure HotSpot2 for a WLAN:

```
(Cisco Controller) > config wlan hotspot hs2 enable 2
```
config wlan hotspot dot11u

To configure an 802.11u HotSpot on a WLAN, use the `config wlan hotspot dot11u` command.

```
config wlan hotspot dot11u {3gpp-info | auth-type | enable | disable | domain | hessid | ipaddr-type | nai-realm | network-type | roam-oi}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3gpp-info</td>
<td>Configures 3GPP cellular network information.</td>
</tr>
<tr>
<td>auth-type</td>
<td>Configures the network authentication type.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11u on the HotSpot profile.</td>
</tr>
<tr>
<td>domain</td>
<td>Configures a domain.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables 802.11u on the HotSpot profile. IEEE 802.11u enables automatic WLAN offload for 802.1X devices at the HotSpot of mobile or roaming partners.</td>
</tr>
<tr>
<td>hessid</td>
<td>Configures the Homogenous Extended Service Set Identifier (HESSID). The HESSID is a 6-octet MAC address that uniquely identifies the network.</td>
</tr>
<tr>
<td>ipaddr-type</td>
<td>Configures the IPv4 address availability type.</td>
</tr>
<tr>
<td>nai-realm</td>
<td>Configures a realm for 802.11u enabled WLANs.</td>
</tr>
<tr>
<td>network-type</td>
<td>Configures the 802.11u network type and Internet access.</td>
</tr>
<tr>
<td>roam-oi</td>
<td>Configures the roaming consortium Organizational Identifier (OI) list.</td>
</tr>
</tbody>
</table>

**Command Default**

None.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.11u on a HotSpot profile:

```
(Cisco Controller) >config wlan hotspot dot11u enable 6
```
config wlan hotspot dot11u 3gpp-info

To configure 3GPP cellular network information on an 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u 3gpp-info` command.

```plaintext
config wlan hotspot dot11u 3gpp-info {add | delete} index country_code network_code wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds mobile cellular network information.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes mobile cellular network information.</td>
</tr>
<tr>
<td><strong>index</strong></td>
<td>Cellular index. The range is from 1 to 32.</td>
</tr>
<tr>
<td><strong>country_code</strong></td>
<td>Mobile Country Code (MCC) in Binary Coded Decimal (BCD) format. The country code can be up to 3 characters. For example, the MCC for USA is 310.</td>
</tr>
<tr>
<td><strong>network_code</strong></td>
<td>Mobile Network Code (MNC) in BCD format. An MNC is used in combination with a Mobile Country Code (MCC) to uniquely identify a mobile phone operator or carrier. The network code can be up to 3 characters. For example, the MNC for T-Mobile is 026.</td>
</tr>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Number of mobile network codes supported is 32 per WLAN.

The following example shows how to configure 3GPP cellular network information on a WLAN:

```plaintext
(Cisco Controller) > config wlan hotspot dot11u 3gpp-info add
```
**config wlan hotspot dot11u auth-type**

To configure the network authentication type on an 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u auth-type` command.

`config wlan hotspot dot11u auth-type network-auth wlan_id`

**Syntax Description**

<table>
<thead>
<tr>
<th>network-auth</th>
<th>Network authentication that you would like to configure on the WLAN. The available values are as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Acceptance of terms and conditions</td>
</tr>
<tr>
<td>1</td>
<td>On-line enrollment</td>
</tr>
<tr>
<td>2</td>
<td>HTTP/HTTPS redirection</td>
</tr>
<tr>
<td>3</td>
<td>DNS Redirection</td>
</tr>
<tr>
<td>4</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

| wlan_id      | Wireless LAN identifier between 1 and 512.                                                         |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The DNS redirection option is not supported in Release 7.3.

The following example shows how to configure HTTP/HTTPS redirection as the network authentication type on an 802.11u HotSpot WLAN:

(Cisco Controller) > `config wlan hotspot dot11u auth-type 2 1`
**config wlan hotspot dot11u disable**

To disable an 802.11u HotSpot on a WLAN, use the `config wlan hotspot dot11u disable` command.

```
config wlan hotspot dot11u disable wlan_id
```

**Syntax Description**

| wlan_id | Wireless LAN identifier between 1 and 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable an 802.11u HotSpot on a WLAN:

```
(Cisco Controller) > config wlan hotspot dot11u disable 6
```
**config wlan hotspot dot11u domain**

To configure a domain operating in the 802.11 access network, use the `config wlan hotspot dot11u domain` command.

```plaintext
config wlan hotspot dot11u domain { add wlan_id domain-index domain_name | delete wlan_id domain-index | modify wlan_id domain-index domain_name }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a domain.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>domain-index</td>
<td>Domain index in the range 1 to 32.</td>
</tr>
<tr>
<td>domain_name</td>
<td>Domain name. The domain name is case sensitive and can be up to 255 alphanumeric characters.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a domain.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies a domain.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a domain in the 802.11 access network:

(Cisco Controller) > config wlan hotspot dot11u domain add 6 30 domain1
config wlan hotspot dot11u enable

To enable an 802.11u HotSpot on a WLAN, use the config wlan hotspot dot11u enable command.

```
config wlan hotspot dot11u enable wlan_id
```

**Syntax Description**

- `wlan_id` Wireless LAN identifier between 1 and 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable an 802.11u HotSpot on a WLAN:

```
(Cisco Controller) >config wlan hotspot dot11u enable 6
```
**config wlan hotspot dot11u hessid**

To configure a Homogenous Extended Service Set Identifier (HESSID) on an 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u hessid` command.

```
config wlan hotspot dot11u hessid hessid wlan_id
```

**Syntax Description**

- `hessid` MAC address that can be configured as an HESSID. The HESSID is a 6-octet MAC address that uniquely identifies the network. For example, Basic Service Set Identification (BSSID) of the WLAN can be used as the HESSID.

- `wlan_id` Wireless LAN identifier between 1 and 512.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an HESSID on an 802.11u HotSpot WLAN:

```
(Cisco Controller) > config wlan hotspot dot11u hessid 00:21:1b:ea:36:60 6
```
**config wlan hotspot dot11u ipaddr-type**

To configure the type of IP address available on an 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u ipaddr-type` command.

```
config wlan hotspot dot11u ipaddr-type IPv4Type {0 - 7} IPv6Type {0 - 2} wlan_id
```

**Syntax Description**

- **IPv4Type**
  - IPv4 type address. Enter one of the following values:
    - 0—IPv4 address not available.
    - 1—Public IPv4 address available.
    - 2—Port restricted IPv4 address available.
    - 3—Single NAT enabled private IPv4 address available.
    - 4—Double NAT enabled private IPv4 address available.
    - 5—Port restricted IPv4 address and single NAT enabled IPv4 address available.
    - 6—Port restricted IPv4 address and double NAT enabled IPv4 address available.
    - 7—Availability of the IPv4 address is not known.

- **IPv6Type**
  - IPv6 type address. Enter one of the following values:
    - 0—IPv6 address not available.
    - 1—IPv6 address available.
    - 2—Availability of the IPv6 address is not known.

- **wlan_id**
  - Wireless LAN identifier between 1 and 512.

**Command Default**

The default values for IPv4 type address is 1.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IP address availability type on an 802.11u HotSpot WLAN:

```
(Cisco Controller) >config wlan hotspot dot11u ipaddr-type 6 2 6
```

**Related Commands**

`show wlan`
**config wlan hotspot dot11u nai-realm**

To configure realms for an 802.11u HotSpot WLANs, use the `config wlan hotspot dot11u nai-realm` command.

```
config wlan hotspot dot11u nai-realm { add | delete | modify } { auth-method wlan_id realm-index eap-index auth-index auth-method auth-parameter | eap-method wlan_id realm-index eap-index eap-method | realm-name wlan_id realm-index realm }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds a realm.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a realm.</td>
</tr>
<tr>
<td><strong>modify</strong></td>
<td>Modifies a realm.</td>
</tr>
<tr>
<td><strong>auth-method</strong></td>
<td>Specifies the authentication method used.</td>
</tr>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><strong>realm-index</strong></td>
<td>Realm index. The range is from 1 to 32.</td>
</tr>
<tr>
<td><strong>eap-index</strong></td>
<td>EAP index. The range is from 1 to 4.</td>
</tr>
<tr>
<td><strong>auth-index</strong></td>
<td>Authentication index value. The range is from 1 to 10.</td>
</tr>
<tr>
<td><strong>auth-method</strong></td>
<td>Authentication method to be used. The range is from 1 to 4. The following options are available:</td>
</tr>
<tr>
<td></td>
<td>• 1—Non-EAP Inner Auth Method</td>
</tr>
<tr>
<td></td>
<td>• 2—Inner Auth Type</td>
</tr>
<tr>
<td></td>
<td>• 3—Credential Type</td>
</tr>
<tr>
<td></td>
<td>• 4—Tunneled EAP Method Credential Type</td>
</tr>
<tr>
<td><strong>auth-parameter</strong></td>
<td>Authentication parameter to use. This value depends on the authentication method used. See the following table for more details.</td>
</tr>
<tr>
<td><strong>eap-method</strong></td>
<td>Specifies the Extensible Authentication Protocol (EAP) method used.</td>
</tr>
</tbody>
</table>
**eap-method**

EAP Method. The range is from 0 to 7. The following options are available:

- 0—Not Applicable
- 1—Lightweight Extensible Authentication Protocol (LEAP)
- 2—Protected EAP (PEAP)
- 3—EAP-Transport Layer Security (EAP-TLS)
- 4—EAP-FAST (Flexible Authentication via Secure Tunneling)
- 5—EAP for GSM Subscriber Identity Module (EAP-SIM)
- 6—EAP-Tunneled Transport Layer Security (EAP-TTLS)
- 7—EAP for UMTS Authentication and Key Agreement (EAP-AKA)

**realm-name**

Specifies the name of the realm.

**realm**

Name of the realm. The realm name should be RFC 4282 compliant. For example, Cisco. The realm name is case-sensitive and can be up to 255 alphanumeric characters.

---

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This table lists the authentication parameters.

**Table 11: Authentication Parameters**

<table>
<thead>
<tr>
<th>Non-EAP Inner Method(1)</th>
<th>Inner Authentication EAP Method Type(2)</th>
<th>Credential Type(3)/Tunneled EAP Credential Type(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0—Reserved</td>
<td>1—LEAP</td>
<td>1—SIM</td>
</tr>
<tr>
<td>1—Password authentication protocol (PAP)</td>
<td>2—PEAP</td>
<td>2—USIM</td>
</tr>
<tr>
<td>2—Challenge-Handshake Authentication Protocol (CHAP)</td>
<td>3—EAP-TLS</td>
<td>3—NFC Secure Element</td>
</tr>
<tr>
<td>3—Microsoft Challenge Handshake Authentication Protocol (MS-ChAP)</td>
<td>4—EAP-FAST</td>
<td>4—Hardware Token</td>
</tr>
<tr>
<td>4—MSCHAPV2</td>
<td>5—EAP-SIM</td>
<td>5—Soft Token</td>
</tr>
<tr>
<td></td>
<td>6—EAP-TTLS</td>
<td>6—Certificate</td>
</tr>
<tr>
<td></td>
<td>7—EAP-AKA</td>
<td>7—Username/Password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8—Reserver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9—Anonymous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10—Vendor Specific</td>
</tr>
</tbody>
</table>

The following example shows how to add the Tunneled EAP Method Credential authentication method on WLAN 4:
(Cisco Controller) >config wlan hotspot dot11u nai-realm add auth-method 4 10 3 5 4 6
config wlan hotspot dot11u network-type

To configure the network type and internet availability on an 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u network-type` command.

```
config wlan hotspot dot11u network-type wlan_id network-type internet-access
```

**Syntax Description**

- **wlan_id**: Wireless LAN identifier from 1 to 512.
- **network-type**: Network type. The available options are as follows:
  - 0—Private Network
  - 1—Private Network with Guest Access
  - 2—Chargeable Public Network
  - 3—Free Public Network
  - 4—Personal Device Network
  - 5—Emergency Services Only Network
  - 14—Test or Experimental
  - 15—Wildcard
- **internet-access**: Internet availability status. A value of zero indicates no Internet availability and 1 indicates Internet availability.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the network type and Internet availability on an 802.11u HotSpot WLAN:

```
(Cisco Controller) >config wlan hotspot dot11u network-type 2 1
```
config wlan hotspot dot11u roam-oi

To configure a roaming consortium Organizational Identifier (OI) list on a 802.11u HotSpot WLAN, use the `config wlan hotspot dot11u roam-oi` command.

```
config wlan hotspot dot11u roam-oi { add wlan_id oi-index oi is-beacon | modify wlan_id oi-index oi is-beacon | delete wlan_id oi-index }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds an OI.</td>
</tr>
<tr>
<td><code>wlan-id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>oi-index</code></td>
<td>Index in the range 1 to 32.</td>
</tr>
<tr>
<td><code>oi</code></td>
<td>Number that must be a valid 6 digit hexadecimal number and 6 bytes in length. For example, 004096 or AABBDF.</td>
</tr>
<tr>
<td><code>is-beacon</code></td>
<td>Beacon flag used to add an OI to the beacon. 0 indicates disable and 1 indicates enable. You can add a maximum of 3 OIs for a WLAN with this flag set.</td>
</tr>
<tr>
<td><code>modify</code></td>
<td>Modifies an OI.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes an OI.</td>
</tr>
</tbody>
</table>

### Command Default

None.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the roaming consortium OI list:

```
(Cisco Controller) > config wlan hotspot dot11u roam-oi add 4 10 004096 1
```
To configure the HotSpot2 parameters, use the `config wlan hotspot hs2` command.

```
cfg wlan hotspot hs2 { disable wlan_id | enable wlan_id | operator-name { add wlan_id index operator_name language-code | delete wlan_id index | modify wlan_id index operator-name language-code } | port-config { add wlan_id port-config_index ip-protocol port-number status | delete wlan_id port-config-index | modify wlan_id port-config-index ip-protocol port-number status } | wan-metrics wlan_id link-status symet-link downlink-speed uplink-speed }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable wlan_id</td>
<td>Disables HotSpot2.</td>
</tr>
<tr>
<td>enable wlan_id</td>
<td>Enables HotSpot2.</td>
</tr>
<tr>
<td>operator-name</td>
<td>Specifies the name of the 802.11 operator.</td>
</tr>
<tr>
<td>add</td>
<td>Adds the operator name, port configuration, or WAN metrics parameters to the WLAN configuration.</td>
</tr>
<tr>
<td>index</td>
<td>Index of the operator. The range is from 1 to 32.</td>
</tr>
<tr>
<td>operator-name</td>
<td>Name of the operator.</td>
</tr>
<tr>
<td>language-code</td>
<td>Language used. An ISO-14962-1997 encoded string that defines the language. This string is a three character language code. Enter the first three letters of the language in English. For example, eng for English.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the operator name, port configuration, or WAN metrics parameters from the WLAN.</td>
</tr>
<tr>
<td>modify</td>
<td>Modifies the operator name, port configuration, or WAN metrics parameters of the WLAN.</td>
</tr>
<tr>
<td>port-config</td>
<td>Configures the port configuration values.</td>
</tr>
<tr>
<td>port-config_index</td>
<td>Port configuration index. The range is from 1 to 32. The default value is 1.</td>
</tr>
<tr>
<td>ip-protocol</td>
<td>Protocol to use. This parameter provides information on the connection status of the most commonly used communication protocols and ports. The following options are available:</td>
</tr>
</tbody>
</table>

1—ICMP
6—FTP/SSH/TLS/PPTP-VPN/VoIP
17—IKEv2 (IPSec-VPN/VP/ESP)
50—ESP (IPSec-VPN)
<table>
<thead>
<tr>
<th><strong>port-number</strong></th>
<th>Port number. The following options are available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0—ICMP/ESP (IPSec-VPN)</td>
</tr>
<tr>
<td></td>
<td>20—FTP</td>
</tr>
<tr>
<td></td>
<td>22—SSH</td>
</tr>
<tr>
<td></td>
<td>443—TLS-VPN</td>
</tr>
<tr>
<td></td>
<td>500—IKEv2</td>
</tr>
<tr>
<td></td>
<td>1723—PPTP-VPN</td>
</tr>
<tr>
<td></td>
<td>4500—IKEv2</td>
</tr>
<tr>
<td></td>
<td>5060—VoIP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>status</strong></th>
<th>Status of the IP port. The following options are available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0—Closed</td>
</tr>
<tr>
<td></td>
<td>1—Open</td>
</tr>
<tr>
<td></td>
<td>2—Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>wan-metrics</strong></th>
<th>Configures the WAN metrics.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>link-status</strong></th>
<th>Link status. The following options are available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 0—Unknown</td>
</tr>
<tr>
<td></td>
<td>• 1—Link up</td>
</tr>
<tr>
<td></td>
<td>• 2—Link down</td>
</tr>
<tr>
<td></td>
<td>• 3—Link in test state</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>symet-link</strong></th>
<th>Symmetric link status. The following options are available:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 0—Link speed is different for uplink and downlink. For example: ADSL</td>
</tr>
<tr>
<td></td>
<td>• 1—Link speed is the same for uplink and downlink. For example: DS1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>downlink-speed</strong></th>
<th>Downlink speed of the WAN backhaul link in kbps. Maximum value is 4,194,304 kbps.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>uplink-speed</strong></th>
<th>Uplink speed of the WAN backhaul link in kbps. The maximum value is 4,194,304 kbps.</th>
</tr>
</thead>
</table>

| **Command Default** | None |

<table>
<thead>
<tr>
<th><strong>Command History</strong></th>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
The following example shows how to configure the WAN metrics parameters:

(Cisco Controller) > `config wlan hotspot hs2 wan-metrics add 345 1 0 3333`
To configure the Mobility Service Advertisement Protocol (MSAP) parameters on a WLAN, use the `config wlan hotspot msap` command.

```
config wlan hotspot msap { enable | disable | server-id server_id} wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables MSAP on the WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables MSAP on the WLAN.</td>
</tr>
<tr>
<td><code>server-id</code></td>
<td>Specifies the MSAP server id.</td>
</tr>
<tr>
<td><code>server_id</code></td>
<td>MSAP server ID. The range is from 1 to 10.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable MSAP on a WLAN:

```
(Cisco Controller) >config wlan hotspot msap enable 4
```
To configure a wireless LAN interface or an interface group, use the `config wlan interface` command.

```
config wlan interface { wlan_id | foreignAp } { interface-name | interface-group-name }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>(Optional) Wireless LAN identifier (1 to 512).</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td>interface-name</td>
<td>Interface name.</td>
</tr>
<tr>
<td>interface-group-name</td>
<td>Interface group name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an interface named VLAN901:

```
(Cisco Controller) > config wlan interface 16 VLAN901
```
**config wlan ipv6 acl**

To configure IPv6 access control list (ACL) on a wireless LAN, use the **config wlan ipv6 acl** command.

```
config wlan ipv6 acl wlan_id acl_name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><strong>acl_name</strong></td>
<td>IPv6 ACL name.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure an IPv6 ACL for local switching:

```
(Cisco Controller) > config wlan ipv6 acl 22 acl_sample
```
To configure the Key Telephone System-based CAC policy for a WLAN, use the `config wlan kts-cac` command.

```
config wlan kts-cac { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the KTS-based CAC policy.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the KTS-based CAC policy.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To enable the KTS-based CAC policy for a WLAN, ensure that you do the following:

- Configure the QoS profile for the WLAN to Platinum by entering the following command:
  
  ```
 config wlan qos wlan-id platinum
  ```

- Disable the WLAN by entering the following command:
  
  ```
 config wlan disable wlan-id
  ```

- Disable FlexConnect local switching for the WLAN by entering the following command:
  
  ```
 config wlan flexconnect local-switching wlan-id disable
  ```

The following example shows how to enable the KTS-based CAC policy for a WLAN with the ID 4:

```
(Cisco Controller) > config wlan kts-cac enable 4
```
config wlan layer2 acl

To configure a Layer 2 access control list (ACL) on a centrally switched WLAN, use the config wlan acl layer2 command.

```
config wlan layer2 acl wlan_id { acl_name | none }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier. The range is from 1 to 512.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Layer2 ACL name. The name can be up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>none</td>
<td>Clears any Layer2 ACL mapped to the WLAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can create a maximum of 16 rules for a Layer 2 ACL.

You can create a maximum of 64 Layer 2 ACLs on a Cisco WLC.

A maximum of 16 Layer 2 ACLs are supported per access point because an access point supports a maximum of 16 WLANs.

Ensure that the Layer 2 ACL names do not conflict with the FlexConnect ACL names because an access point does not support the same Layer 2 and Layer 3 ACL names.

The following example shows how to apply a Layer 2 ACL on a WLAN:

(Cisco Controller) >config wlan layer2 acl 1 acl_12_1
config wlan ldap

To add or delete a link to a configured Lightweight Directory Access Protocol (LDAP) server, use the `config wlan ldap` command.

```
config wlan ldap { add wlan_id server_id | delete wlan_id { all | server_id } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds a link to a configured LDAP server.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>server_id</td>
<td>LDAP server index.</td>
</tr>
<tr>
<td>delete</td>
<td>Removes the link to a configured LDAP server.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all LDAP servers.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to specify the LDAP server priority for the WLAN.

To specify the LDAP server priority, one of the following must be configured and enabled:

- 802.1X authentication and Local EAP
- Web authentication and LDAP

**Note**

Local EAP was introduced in controller software release 4.1; LDAP support on Web authentication was introduced in controller software release 4.2.

The following example shows how to add a link to a configured LDAP server with the WLAN ID 100 and server ID 4:

```
(Cisco Controller) >config wlan ldap add 100 4
```
### config wlan learn-ipaddr-cswlan

To configure client IP address learning on a centrally switched WLAN, use the `config wlan learn-ipaddr-cswlan` command.

```
config wlan learn-ipaddr-cswlan wlan_id {enable | disable}
```

#### Syntax Description

<table>
<thead>
<tr>
<th><code>wlan_id</code></th>
<th>Wireless LAN identifier from 1 to 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables client IPv4 address learning on the centrally switched WLAN</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables client IPv4 address learning on the centrally switched WLAN</td>
</tr>
</tbody>
</table>

#### Command Default

None

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

#### Usage Guidelines

If the client is configured with Layer 2 encryption, the Cisco WLC cannot learn the client IP address and will periodically drop the client. Disable this option so that the Cisco WLC maintains the client connection without waiting to learn the client IP address.

The following example shows how to enable client IP address learning on a centrally switched WLAN:

```
(Cisco Controller) > config wlan learn-ipaddr-cswlan 2 enable
```

#### Related Commands

`show wlan`
config wlan load-balance

To override the global load balance configuration and enable or disable load balancing on a particular WLAN, use the `config wlan load-balance` command.

```
config wlan load-balance allow { enable | disable } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables band selection on a wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables band selection on a wireless LAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**: Load balancing is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable band selection on a wireless LAN with WLAN ID 3:

```
(Cisco Controller) > config wlan load-balance allow enable 3
```
**config wlan mac-filtering**

To change the state of MAC filtering on a wireless LAN, use the `config wlan mac-filtering` command.

```plaintext
config wlan mac-filtering { enable | disable } { wlan_id | foreignAp }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables MAC filtering on a wireless LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables MAC filtering on a wireless LAN.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>foreignAp</code></td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the MAC filtering on WLAN ID 1:

```
(Cisco Controller) > config wlan mac-filtering enable 1
```
config wlan max-associated-clients

To configure the maximum number of client connections on a wireless LAN, guest LAN, or remote LAN, use the `config wlan max-associated-clients` command.

```
config wlan max-associated-clients max_clients wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max_clients</code></td>
<td>Maximum number of client connections to be accepted.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the maximum number of client connections on WLAN ID 2:

```
(Cisco Controller) > config wlan max-associated-clients 25 2
```
config wlan max-radio-clients

To configure the maximum number of WLAN client per access point, use the `config wlan max-radio-clients` command.

```
config wlan max-radio-clients max_radio_clients wlan_id
```

**Syntax Description**

- `max_radio_clients`: Maximum number of client connections to be accepted per access point radio. The valid range is from 1 to 200.
- `wlan_id`: Wireless LAN identifier between 1 and 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify the maximum number of client connections per access point radio on WLAN ID 2:

```
(Cisco Controller) > config wlan max-radio-clients 25 2
```
To configure an multicast DNS (mDNS) profile for a WLAN, use the `config wlan mdns` command.

```
config wlan mdns { enable | disable | profile { profile-name | none } } { wlan_id | all }
```

### Syntax Description
- **enable**: Enables mDNS snooping on a WLAN.
- **disable**: Disables mDNS snooping on a WLAN.
- **profile**: Configures an mDNS profile for a WLAN.
- **profile-name**: Name of the mDNS profile to be associated with a WLAN.
- **none**: Removes all existing mDNS profiles from the WLAN. You cannot configure mDNS profiles on the WLAN.
- **wlan_id**: Wireless LAN identifier from 1 to 512.
- **all**: Configures the mDNS profile for all WLANs.

### Command Default
By default, mDNS snooping is enabled on WLANs.

### Command History
- **7.4**: This command was introduced.

### Usage Guidelines
You must disable the WLAN before you use this command. Clients receive service advertisements only for the services associated with the profile. The controller gives the highest priority to the profiles associated to interface groups, followed by the interface profiles, and then the WLAN profiles. Each client is mapped to a profile based on the order of priority.

The following example shows how to configure an mDNS profile for a WLAN.

```
(Cisco Controller) > config wlan mdns profile profile1 1
```
config wlan media-stream

To configure multicast-direct for a wireless LAN media stream, use the `config wlan media-stream` command.

```plaintext
config wlan media-stream multicast-direct {wlan_id | all} {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast-direct</td>
<td>Configures multicast-direct for a wireless LAN media stream.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>all</td>
<td>Configures the wireless LAN on all media streams.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables global multicast to unicast conversion.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables global multicast to unicast conversion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Media stream multicast-direct requires load based Call Admission Control (CAC) to run. WLAN quality of service (QoS) needs to be set to either gold or platinum.

The following example shows how to enable the global multicast-direct media stream with WLAN ID 2:

```plaintext
(Cisco Controller) >config wlan media-stream multicast-direct 2 enable
```
config wlan mfp

To configure management frame protection (MFP) options for the wireless LAN, use the `config wlan mfp` command.

```
config wlan mfp { client [enable | disable] wlan_id | infrastructure protection [enable | disable] wlan_id }
```

**Syntax Description**

- `client` (Optional) Configures client MFP for the wireless LAN.
- `enable` (Optional) Enables the feature.
- `disable` (Optional) Disables the feature.
- `wlan_id` Wireless LAN identifier (1 to 512).
- `infrastructure protection` (Optional) Configures the infrastructure MFP for the wireless LAN.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure client management frame protection for WLAN ID 1:

```
(Cisco Controller) > config wlan mfp client enable 1
```
# config wlan mobility anchor

To change the state of MAC filtering on a wireless LAN, use the `config wlan mobility anchor` command.

```
config wlan mobility anchor { add | delete } wlan_id ip_addr priority priority-number
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Enables MAC filtering on a wireless LAN.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Disables MAC filtering on a wireless LAN.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>ip_addr</code></td>
<td>Member switch IPv4 address for anchoring the wireless LAN.</td>
</tr>
<tr>
<td><code>priority</code></td>
<td>Sets priority to the anchored wireless LAN IP address.</td>
</tr>
<tr>
<td><code>priority-number</code></td>
<td>Range between 1 to 3.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
<tr>
<td>8.1</td>
<td><code>priority</code> parameter introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to configure and set priority to the mobility wireless LAN anchor list with WLAN ID 4 and IPv4 address 192.168.0.14:

(Cisco Controller) > `config wlan mobility anchor add 4 192.168.0.14 priority 1`

## Related Commands

- `show wlan`
config wlan mobility foreign-map

To configure interfaces or interface groups for foreign Cisco WLCs, use the **config wlan mobility foreign-map** command.

```
config wlan mobility foreign-map { add | delete } wlan_id foreign_mac_address { interface_name | interface_group_name }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds an interface or interface group to the map of foreign controllers.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes an interface or interface group from the map of foreign controllers.</td>
</tr>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><strong>foreign_mac_address</strong></td>
<td>Foreign switch MAC address on a WLAN.</td>
</tr>
<tr>
<td><strong>interface_name</strong></td>
<td>Interface name up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>interface_group_name</strong></td>
<td>Interface group name up to 32 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add an interface group for foreign Cisco WLCs with WLAN ID 4 and a foreign switch MAC address on WLAN 00:21:1b:ea:36:60:

```
(Cisco Controller) >config wlan mobility foreign-map add 4 00:21:1b:ea:36:60 mygroup1
```
**config wlan multicast buffer**

To configure the radio multicast packet buffer size, use the `config wlan multicast buffer` command.

```
config wlan multicast buffer { enable | disable } buffer-size
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the multicast interface feature for a wireless LAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the multicast interface feature on a wireless LAN.</td>
</tr>
<tr>
<td><code>buffer-size</code></td>
<td>Radio multicast packet buffer size. The range is from 30 to 60. Enter 0 to indicate APs will dynamically adjust the number of buffers allocated for multicast.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

The default buffer size is 30

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure radio multicast buffer settings:

```
(Cisco Controller) > config wlan multicast buffer enable 45 222
```
config wlan multicast interface

To configure a multicast interface for a wireless LAN, use the **config wlan multicast interface** command.

```plaintext
config wlan multicast interface wlan_id {enable | disable} interface_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables multicast interface feature for a wireless LAN.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Disables multicast interface feature on a wireless LAN.</td>
</tr>
<tr>
<td><strong>interface_name</strong></td>
<td>Interface name.</td>
</tr>
</tbody>
</table>

**Note**

The interface name can only be specified in lower case characters.

**Command Default**

Multicast is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the multicast interface feature for a wireless LAN with WLAN ID 4 and interface name myinterface1:

```plaintext
(Cisco Controller) >config wlan multicast interface 4 enable myinterface1
```
**config wlan nac**

To enable or disable Network Admission Control (NAC) out-of-band support for a WLAN, use the `config wlan nac` command.

```
config wlan nac {snmp | radius} {enable | disable} wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>Configures SNMP NAC support.</td>
</tr>
<tr>
<td>radius</td>
<td>Configures RADIUS NAC support.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables NAC for the WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables NAC for the WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>WLAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should enable AAA override before you enable the RADIUS NAC state. You also should disable FlexConnect local switching before you enable the RADIUS NAC state.

The following example shows how to configure SNMP NAC support for WLAN 13:

```
(Cisco Controller) > config wlan nac snmp enable 13
```

The following example shows how to configure RADIUS NAC support for WLAN 34:

```
(Cisco Controller) > config wlan nac radius enable 20
```
config wlan override-rate-limit

To override the bandwidth limits for upstream and downstream traffic per user and per service set identifier (SSID) defined in the QoS profile, use the `config wlan override-rate-limit` command.

```
config wlan override-rate-limit wlan_id { average-data-rate | average-realtime-rate | burst-data-rate | burst-realtime-rate } { per-ssid | per-client } { downstream | upstream } rate
```

**Syntax Description**

- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **average-data-rate**: Specifies the average data rate for TCP traffic per user or per SSID. The range is from 0 to 51,200 Kbps.
- **average-realtime-rate**: Specifies the average real-time data rate for UDP traffic per user or per SSID. The range is from 0 to 51,200 Kbps.
- **burst-data-rate**: Specifies the peak data rate for TCP traffic per user or per SSID. The range is from 0 to 51,200 Kbps.
- **burst-realtime-rate**: Specifies the peak real-time data rate for UDP traffic per user or per SSID. The range is from 0 to 51,200 Kbps.
- **per-ssid**: Configures the rate limit for an SSID per radio. The combined traffic of all clients will not exceed this limit.
- **per-client**: Configures the rate limit for each client associated with the SSID.
- **downstream**: Configures the rate limit for downstream traffic.
- **upstream**: Configures the rate limit for upstream traffic.
- **rate**: Data rate for TCP or UDP traffic per user or per SSID. The range is from 0 to 51,200 Kbps. A value of 0 imposes no bandwidth restriction on the QoS profile.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The rate limits are enforced by the controller and the AP. For central switching, the controller handles the downstream enforcement of per-client rate limit and the AP handles the enforcement of the upstream traffic and per-SSID rate limit for downstream traffic. When the AP enters standalone mode it handles the downstream enforcement of per-client rate limits too.

In FlexConnect local switching and standalone modes, per-client and per-SSID rate limiting is done by the AP for downstream and upstream traffic. However, in FlexConnect standalone mode, the configuration is not saved on the AP, so when the AP reloads, the configuration is lost and rate limiting does not happen after reboot.
For roaming clients, if the client roams between the APs on the same controller, same rate limit parameters are applied on the client. However, if the client roams from an anchor to a foreign controller, the per-client downstream rate limiting uses the parameters configured on the anchor controller while upstream rate limiting uses the parameters of the foreign controller.

The following example shows how to configure the burst real-time actual rate 2000 Kbps for the upstream traffic per SSID:

(Cisco Controller) > config wlan override-rate-limit 2 burst-realtime-rate per-ssid upstream 2000
config wlan passive-client

To configure passive-client feature on a wireless LAN, use the `config wlan passive-client` command.

```bash
config wlan passive-client { enable | disable } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the passive-client feature on a WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the passive-client feature on a WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>WLAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You need to enable the global multicast mode and multicast-multicast mode by using the `config network multicast global` and `config network multicast mode` commands before entering this command.

**Note**

You should configure the multicast in multicast-multicast mode only not in unicast mode. The passive client feature does not work with multicast-unicast mode in this release.

The following example shows how to configure the passive client on wireless LAN ID 2:

```bash
(Cisco Controller) >config wlan passive-client enable 2
```
config wlan peer-blocking

To configure peer-to-peer blocking on a WLAN, use the `config wlan peer-blocking` command.

```
config wlan peer-blocking {disable | drop | forward-upstream} wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables peer-to-peer blocking and bridge traffic locally within the controller whenever possible.</td>
</tr>
<tr>
<td>drop</td>
<td>Causes the controller to discard the packets.</td>
</tr>
<tr>
<td>forward-upstream</td>
<td>Causes the packets to be forwarded on the upstream VLAN. The device above the controller decides what action to take regarding the packets.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the peer-to-peer blocking for WLAN ID 1:

```
(Cisco Controller) > config wlan peer-blocking disable 1
```
config wlan pmipv6 default-realm

To configure a default realm for a PMIPv6 WLAN, use the `config wlan pmipv6 default-realm` command.

```
config wlan pmipv6 default-realm { default-realm-name | none } wlan_id
```

**Syntax Description**
- `default-realm-name`  Default realm name for the WLAN.
- `none`  Clears the realm name for the WLAN.
- `wlan_id`  Wireless LAN identifier between 1 and 512.

**Command Default**
None.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a default realm name on a PMIPv6 WLAN:

```
(Cisco Controller) > config wlan pmipv6 default-realm XYZ 6
```
**config wlan pmipv6 mobility-type**

To configure the mobility type on a WLAN, use the `config wlan pmipv6 mobility-type` command.

```
config wlan pmipv6 mobility-type { none | pmipv6 } { wlan_id | all }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Configures a WLAN with Simple IP mobility.</td>
</tr>
<tr>
<td>pmipv6</td>
<td>Configures a WLAN with PMIPv6 mobility.</td>
</tr>
<tr>
<td>all</td>
<td>Enables the specified type of mobility for all WLANs.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>WLAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must disable the WLAN when you configure the mobility type.

The following example shows how to configure the mobility type as PMIPv6 on a WLAN:

```
(Cisco Controller) > config wlan pmipv6 mobility-type pmipv6 16
```
config wlan pmipv6 profile_name

To configure a profile name for the PMIPv6 WLAN, use the config wlan pmipv6 profile_name command.

config wlan pmipv6 profile_name profile_name wlan_id

Syntax Description

<table>
<thead>
<tr>
<th>profile_name</th>
<th>Profile name for the PMIPv6 WLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command binds a profile name to the PMIPv6 WLAN or SSID. Each time that a mobile node associates with the controller, it uses the profile name and NAI in the trigger to the PMIPv6 module. The PMIPv6 module extracts all the profile specific parameters such as LMA IP, APN, and NAI and sends the PBU to the ASR5K.

The following example shows how to create a profile named ABC01 on a PMIPv6 WLAN:

(Cisco Controller) > config wlan pmipv6 profile_name ABC01 16
config wlan policy

To configure a policy on a WLAN, use the `config wlan policy` command.

```
config wlan policy (add | delete) priority-index wlan-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Adds a policy on a WLAN.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes an existing policy from a WLAN.</td>
</tr>
<tr>
<td><code>priority-index</code></td>
<td>Priority index of the policy to be configured on the WLAN. The policies are applied to the clients according to the priority index. The range is from 1 to 16.</td>
</tr>
<tr>
<td><code>policy_name</code></td>
<td>Name of the profiling policy.</td>
</tr>
<tr>
<td><code>wlan-id</code></td>
<td>WLAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

There is no WLAN policy.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can apply up to 16 policies on a WLAN.

The following example shows how to configure a policy on a WLAN:

```
(Cisco Controller) >config wlan policy add 1 teacher_policy 1
```
**config wlan profile**

To edit a profile associated to a WLAN, use the `config wlan profile` command.

```
config wlan profile wlan_id profile-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>WLAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>profile-name</code></td>
<td>Name of the WLAN profile.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to edit a profile associated to a WLAN:

(Cisco Controller) > config wlan disable 1
(Cisco Controller) > config wlan profile 1 new_sample
(Cisco Controller) > show wlan summary

Number of WLANs................................. 1

<table>
<thead>
<tr>
<th>WLAN ID</th>
<th>WLAN Profile Name / SSID</th>
<th>Status</th>
<th>Interface Name</th>
<th>PMIPv6 Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>new_sample / new_samp</td>
<td>Disabled</td>
<td>management</td>
<td>none</td>
</tr>
</tbody>
</table>
config wlan profiling

To configure client profiling on a WLAN, use the **config wlan profiling** command.

```
config wlan profiling {local | radius} {all | dhcp | http} {enable | disable} wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Configures client profiling in Local mode for a WLAN.</td>
</tr>
<tr>
<td>radius</td>
<td>Configures client profiling in RADIUS mode on a WLAN.</td>
</tr>
<tr>
<td>all</td>
<td>Configures DHCP and HTTP client profiling in a WLAN.</td>
</tr>
<tr>
<td>dhcp</td>
<td>Configures DHCP client profiling alone in a WLAN.</td>
</tr>
<tr>
<td>http</td>
<td>Configures HTTP client profiling in a WLAN.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specific type of client profiling in a WLAN. When you enable HTTP profiling, the Cisco WLC collects the HTTP attributes of clients for profiling. When you enable DHCP profiling, the Cisco WLC collects the DHCP attributes of clients for profiling.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the specific type of client profiling in a WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Ensure that you have disabled the WLAN before configuring client profiling on the WLAN.

Client profiling is disabled.

### Command Default

Client profiling is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Only clients connected to port 80 for HTTP can be profiled. IPv6 only clients are not profiled.

If a session timeout is configured for a WLAN, clients must send the HTTP traffic before the configured timeout to get profiled.

This feature is not supported on the following:

- FlexConnect Standalone mode
- FlexConnect Local Authentication

The following example shows how to enable both DHCP and HTTP profiling on a WLAN:

```
(Cisco Controller) >config wlan profiling radius all enable 6
HTTP Profiling successfully enabled.
DHCP Profiling successfully enabled.
```
config wlan qos

To change the quality of service (QoS) for a wireless LAN, use the `config wlan qos` command.

```
config wlan qos wlan_id {bronze | silver | gold | platinum}
config wlan qos foreignAp {bronze | silver | gold | platinum}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>bronze</td>
<td>Specifies the bronze QoS policy.</td>
</tr>
<tr>
<td>silver</td>
<td>Specifies the silver QoS policy.</td>
</tr>
<tr>
<td>gold</td>
<td>Specifies the gold QoS policy.</td>
</tr>
<tr>
<td>platinum</td>
<td>Specifies the platinum QoS policy.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**
The default QoS policy is silver.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the highest level of service on wireless LAN 1:

```
(Cisco Controller) > config wlan qos 1 gold
```
config wlan radio

To set the Cisco radio policy on a wireless LAN, use the `config wlan radio` command.

```
config wlan radio wlan_id { all | 802.11a | 802.11bg | 802.11g | 802.11ag }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Configures the wireless LAN on all radio bands.</td>
</tr>
<tr>
<td><code>802.11a</code></td>
<td>Configures the wireless LAN on only 802.11a.</td>
</tr>
<tr>
<td><code>802.11bg</code></td>
<td>Configures the wireless LAN on only 802.11b/g (only 802.11b if 802.11g is disabled).</td>
</tr>
<tr>
<td><code>802.11g</code></td>
<td>Configures the wireless LAN on 802.11g only.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the wireless LAN on all radio bands:

```
(Cisco Controller) >config wlan radio 1 all
```
To configure RADIUS accounting servers of a WLAN, use the `config wlan radius_server acct` command.

```
cfg wlan radius_server acct { enable | disable } wlan_id | add wlan_id server_id | delete wlan_id { all | server_id } | framed-ipv6 { address | both | prefix } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables RADIUS accounting for the WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS accounting for the WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a link to a configured RADIUS accounting server.</td>
</tr>
<tr>
<td>server_id</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a link to a configured RADIUS accounting server.</td>
</tr>
<tr>
<td>address</td>
<td>Configures an accounting framed IPv6 attribute to an IPv6 address.</td>
</tr>
<tr>
<td>both</td>
<td>Configures the accounting framed IPv6 attribute to an IPv6 address and prefix.</td>
</tr>
<tr>
<td>prefix</td>
<td>Configures the accounting framed IPv6 attribute to an IPv6 prefix.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable RADIUS accounting for the WLAN 2:

```
(Cisco Controller) > config wlan radius_server acct enable 2
```

The following example shows how to add a link to a configured RADIUS accounting server:

```
(Cisco Controller) > config wlan radius_server acct add 2 5
```
config wlan radius_server acct interim-update

To configure the interim update of a RADIUS accounting server of a WLAN, use the `config wlan radius_server acct interim-update` command.

```
config wlan radius_server acct interim-update (enable | disable | interval) wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interim-update</td>
<td>Configures the interim update of the RADIUS accounting server.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables interim update of the RADIUS accounting server for the WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables interim update of the RADIUS accounting server for the WLAN.</td>
</tr>
<tr>
<td>interval</td>
<td>Interim update interval that you specify. The valid range is 180 seconds to 3600 seconds.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

Interim update of a RADIUS accounting server is set at 600 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify an interim update of 200 seconds to a RADIUS accounting server of WLAN 2:

```
(Cisco Controller) > config wlan radius_server acct interim-update 200 2
```
To configure RADIUS authentication servers of a WLAN, use the `config wlan radius_server auth` command.

```
config wlan radius_server auth { enable wlan_id | disable wlan_id } { add wlan_id server_id | delete wlan_id { all | server_id } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Configures a RADIUS authentication</td>
</tr>
<tr>
<td>enable</td>
<td>Enables RADIUS authentication for this WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS authentication for this WLAN.</td>
</tr>
<tr>
<td>add</td>
<td>Adds a link to a configured RADIUS server.</td>
</tr>
<tr>
<td>server_id</td>
<td>RADIUS server index.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a link to a configured RADIUS server.</td>
</tr>
<tr>
<td>all</td>
<td>Deletes all links to configured RADIUS servers.</td>
</tr>
</tbody>
</table>

| Command Default             | None                                             |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a link to a configured RADIUS authentication server with WLAN ID 1 and Server ID 1:

```
(Cisco Controller) > config wlan radius_server auth add 1 1
```
config wlan radius_server overwrite-interface

To configure a wireless LAN’s RADIUS dynamic interface, use the config wlan radius_server overwrite-interface command.

```
config wlan radius_server overwrite-interface { apgroup | enable | disable | wlan} wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apgroup</td>
<td>Enables AP group’s interface for all RADIUS traffic on the WLAN.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables RADIUS dynamic interface for this WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables RADIUS dynamic interface for this WLAN.</td>
</tr>
<tr>
<td>wlan</td>
<td>Enables WLAN’s interface for all RADIUS traffic on the WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The controller uses the management interface as identity. If the RADIUS server is on a directly connected dynamic interface, the traffic is sourced from the dynamic interface. Otherwise, the management IP address is used.

If the feature is enabled, controller uses the interface specified on the WLAN configuration as identity and source for all RADIUS related traffic on the WLAN.

The following example shows how to enable RADIUS dynamic interface for a WLAN with an ID 1:

```
(Cisco Controller) >config wlan radius_server overwrite-interface enable 1
```
**config wlan radius_server realm**

To configure realm on a WLAN, use the `config wlan radius_server realm` command.

```
config wlan radius_server realm {enable | disable} wlan-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>radius_server</code></td>
<td>Radius server index. The range is from 1 to 17.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enable realm on a WLAN.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disable realm on a WLAN.</td>
</tr>
<tr>
<td><code>wlan-id</code></td>
<td>WLAN ID. The range is from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable realm on a WLAN:

```
(Cisco Controller) > config wlan 2 realm enable 50
```
**config wlan roamed-voice-client re-anchor**

To configure a roamed voice client’s reanchor policy, use the `config wlan roamed-voice-client re-anchor` command.

```
config wlan roamed-voice-client re-anchor {enable | disable} wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td></td>
<td>Enables the roamed client’s reanchor policy.</td>
</tr>
<tr>
<td>disable</td>
<td></td>
<td>Disables the roamed client’s reanchor policy.</td>
</tr>
<tr>
<td>wlan_id</td>
<td></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

The roamed client reanchor policy is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a roamed voice client’s reanchor policy where WLAN ID is 1:

```
(Cisco Controller) >config wlan roamed-voice-client re-anchor enable 1
```
### config wlan security 802.1X

To change the state of 802.1X security on the wireless LAN Cisco radios, use the `config wlan security 802.1X` command.

```
config wlan security 802.1X { enable { wlan_id | foreignAp } | disable { wlan_id | foreignAp } | encryption { wlan_id | foreignAp } { 0 | 40 | 104 } | on-macfilter-failure { enable | disable } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the 802.1X settings.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>foreignAp</code></td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the 802.1X settings.</td>
</tr>
<tr>
<td><code>encryption</code></td>
<td>Specifies the static WEP keys and indexes.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies a WEP key size of 0 (no encryption) bits. The default value is 104. <strong>Note</strong> All keys within a wireless LAN must be the same size.</td>
</tr>
<tr>
<td><code>40</code></td>
<td>Specifies a WEP key size of 40 bits. The default value is 104. <strong>Note</strong> All keys within a wireless LAN must be the same size.</td>
</tr>
<tr>
<td><code>104</code></td>
<td>Specifies a WEP key size of 104 bits. The default value is 104. <strong>Note</strong> All keys within a wireless LAN must be the same size.</td>
</tr>
<tr>
<td><code>on-macfilter-failure</code></td>
<td>Configures 802.1X on MAC filter failure.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables 802.1X authentication on MAC filter failure.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables 802.1X authentication on MAC filter failure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td><strong>Release</strong></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
</tr>
</tbody>
</table>

### Usage Guidelines

To change the encryption level of 802.1X security on the wireless LAN Cisco radios, use the following key sizes:
• 0—no 802.1X encryption.
• 40—40/64-bit encryption.
• 104—104/128-bit encryption. (This is the default encryption setting.)

The following example shows how to configure 802.1X security on WLAN ID 16.

(Cisco Controller) > config wlan security 802.1X enable 16
To configure Cisco Key Integrity Protocol (CKIP) security options for the wireless LAN, use the `config wlan security ckip` command.

```
config wlan security ckip { enable | disable } wlan_id [akm psk set-key { hex | ascii } { 40 | 104 }]
key key_index wlan_id | mmh-mic { enable | disable } wlan_id |
kp { enable | disable } wlan_id]
```

**Syntax Description**

- `enable` Enables CKIP security.
- `disable` Disables CKIP security.
- `wlan_id` Wireless LAN identifier from 1 to 512.
- `akm psk set-key` (Optional) Configures encryption key management for the CKIP wireless LAN.
  - `hex` Specifies a hexadecimal encryption key.
  - `ascii` Specifies an ASCII encryption key.
- `40` Sets the static encryption key length to 40 bits for the CKIP WLAN. 40-bit keys must contain 5 ASCII text characters or 10 hexadecimal characters.
- `104` Sets the static encryption key length to 104 bits for the CKIP WLAN. 104-bit keys must contain 13 ASCII text characters or 26 hexadecimal characters.
- `key` Specifies the CKIP WLAN key settings.
  - `key_index` Configured PSK key index.
- `mmh-mic` (Optional) Configures multi-modular hash message integrity check (MMH MIC) validation for the CKIP wireless LAN.
- `kp` (Optional) Configures key-permutation for the CKIP wireless LAN.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a CKIP WLAN encryption key of 104 bits (26 hexadecimal characters) for PSK key index 2 on WLAN 03:

```
(Cisco Controller) > config wlan security ckip akm psk set-key hex 104 key 2 03
```
### config wlan security cond-web-redir

To enable or disable conditional web redirect, use the `config wlan security cond-web-redir` command.

```
config wlan security cond-web-redir {enable | disable} wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables conditional web redirect.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables conditional web redirect.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

| Command Default             | None                                 |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the conditional web direct on WLAN ID 2:

```
(Cisco Controller) >config wlan security cond-web-redir enable 2
```
To configure local EAP timers on a WLAN, use the `config wlan security eap-params` command.

```plaintext
config wlan security eap-params { enable | disable } | eapol-key-timeout timeout | eap-key-retries retries | identity-request-timeout timeout | identity-request-retries retries | request-timeout timeout | request-retries retries' wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{ enable</td>
<td>disable }`</td>
</tr>
<tr>
<td>eapol-key-timeout timeout</td>
<td>Specifies the amount of time (200 to 5000 milliseconds) that the controller attempts to send an EAP key over the WLAN to wireless clients using local EAP. The valid range is 200 to 5000 milliseconds. The default value is 1000 milliseconds.</td>
</tr>
<tr>
<td>eap-key-retries retries</td>
<td>Specifies the maximum number of times (0 to 4 retries) that the controller attempts to send an EAP key over the WLAN to wireless clients using local EAP. The default value is 2.</td>
</tr>
<tr>
<td>identity-request-timeout timeout</td>
<td>Specifies the amount of time (1 to 120 seconds) that the controller attempts to send an EAP identity request to wireless clients within WLAN using local EAP. The default value is 30 seconds.</td>
</tr>
<tr>
<td>identity-request-retries retries</td>
<td>Specifies the maximum number of times (0 to 4 retries) that the controller attempts to retransmit the EAP identity request to wireless clients within WLAN using local EAP. The default value is 2.</td>
</tr>
<tr>
<td>request-timeout</td>
<td>Specifies the amount of time (1 to 120 seconds) in which the controller attempts to send an EAP parameter request to wireless clients within WLAN using local EAP. The default value is 30 seconds.</td>
</tr>
<tr>
<td>request-retries retries</td>
<td>Specifies the maximum number of times (0 to 20 retries) that the controller attempts to retransmit the EAP parameter request to wireless clients within WLAN using local EAP. The default value is 2.</td>
</tr>
<tr>
<td>wlan-id</td>
<td>WLAN identification number.</td>
</tr>
</tbody>
</table>
The default EAPOL key timeout is 1000 milliseconds.
The default for EAPOL key retries is 2.
The default identity request timeout is 30 seconds.
The default identity request retries is 2.
The default request timeout is 30 seconds.
The default request retries is 2.

The following example shows how to enable SSID specific EAP parameters on a WLAN:

(Cisco Controller) > config wlan security eap-params enable 4

The following example shows how to set EAPOL key timeout parameter on a WLAN:

(Cisco Controller) > config wlan security eap-params eapol-key-retries 4

The following example shows how to set EAPOL key retries on a WLAN:

(Cisco Controller) > config wlan security eap-params eapol-key-retries 4
To configure the 802.1X frames pass through on to the external authenticator, use the `config wlan security eap-passthru` command.

```
config wlan security eap-passthru {enable | disable} wlan_id
```

**Syntax Description**
- **enable**: Enables 802.1X frames pass through to external authenticator.
- **disable**: Disables 802.1X frames pass through to external authenticator.
- **wlan_id**: Wireless LAN identifier between 1 and 512.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the 802.1X frames pass through to external authenticator on WLAN ID 2:

```
(Cisco Controller) > config wlan security eap-passthru enable 2
```
## config wlan security ft

To configure 802.11r Fast Transition Roaming parameters, use the `config wlan security ft` command.

```
config wlan security ft { enable | disable | reassociation-timeout timeout-in-seconds } wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables 802.11r Fast Transition Roaming support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11r Fast Transition Roaming support.</td>
</tr>
<tr>
<td>reassociation-timeout</td>
<td>Configures reassociation deadline interval.</td>
</tr>
<tr>
<td>timeout-in-seconds</td>
<td>Reassociation timeout value, in seconds. The valid range is 1 to 100 seconds.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Ensure that you have disabled the WLAN before you proceed.

The following example shows how to enable 802.11r Fast Transition Roaming support on WLAN 2:

```
(Cisco Controller) >config wlan security ft enable 2
```

The following example shows how to set a reassociation timeout value of 20 seconds for 802.11r Fast Transition Roaming support on WLAN 2:

```
(Cisco Controller) >config wlan security ft reassociation-timeout 20 2
```
To configure 802.11r fast transition parameters over a distributed system, use the `config wlan security ft over-the-ds` command.

```
config wlan security ft over-the-ds { enable | disable } wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables 802.11r fast transition roaming support over a distributed system.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11r fast transition roaming support over a distributed system.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

Enabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Ensure that you have disabled the WLAN before you proceed.

Ensure that 802.11r fast transition is enabled on the WLAN.

The following example shows how to enable 802.11r fast transition roaming support over a distributed system on WLAN ID 2:

```
(Cisco Controller) >config wlan security ft over-the-ds enable 2
```
### config wlan security IPsec disable

To disable IPsec security, use the `config wlan security IPsec disable` command.

```
config wlan security IPsec disable (wlan_id | foreignAp)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

| Command Default    | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the IPsec for WLAN ID 16:

```
(Cisco Controller) > config wlan security IPsec disable 16
```
config wlan security IPsec enable

To enable IPsec security, use the config wlan security IPsec enable command.

```
config wlan security IPsec enable { wlan_id | foreignAp }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>wlan_id</th>
<th>Wireless LAN identifier between 1 and 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the IPsec for WLAN ID 16:

```
(Cisco Controller) > config wlan security IPsec enable 16
```
config wlan security IPsec authentication

To modify the IPsec security authentication protocol used on the wireless LAN, use the `config wlan security IPsec authentication` command.

```
config wlan security IPsec authentication { hmac-md5 | hmac-sha-1 } { wlan_id | foreignAp }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hmac-md5</td>
<td>Specifies the IPsec HMAC-MD5 authentication protocol.</td>
</tr>
<tr>
<td>hmac-sha-1</td>
<td>Specifies the IPsec HMAC-SHA-1 authentication protocol.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec HMAC-SHA-1 security authentication parameter for WLAN ID 1:

```
(Cisco Controller) > config wlan security IPsec authentication hmac-sha-1 1
```
config wlan security IPsec encryption

To modify the IPsec security encryption protocol used on the wireless LAN, use the `config wlan security IPsec encryption` command.

```
cfg-wlan-security-encryption {3des | aes | des} {wlan_id | foreignAp}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3des</td>
<td>Enables IPsec 3DES encryption.</td>
</tr>
<tr>
<td>aes</td>
<td>Enables IPsec AES 128-bit encryption.</td>
</tr>
<tr>
<td>des</td>
<td>Enables IPsec DES encryption.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec AES encryption:

```
(Cisco Controller) > config wlan security IPsec encryption aes 1
```
**config wlan security IPsec config**

To configure the proprietary Internet Key Exchange (IKE) CFG-Mode parameters used on the wireless LAN, use the `config wlan security IPsec config` command.

**config wlan security IPsec config qotd ip_address {wlan_id | foreignAp}**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qotd</td>
<td>Configures the quote-of-the-day server IP for cfg-mode.</td>
</tr>
<tr>
<td>ip_address</td>
<td>Quote-of-the-day server IP for cfg-mode.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

IKE is used as a method of distributing the session keys (encryption and authentication), as well as providing a way for the VPN endpoints to agree on how the data should be protected. IKE keeps track of connections by assigning a bundle of Security Associations (SAs), to each connection.

The following example shows how to configure the quote-of-the-day server IP 44.55.66.77 for cfg-mode for WLAN 1:

```
(Cisco Controller) > config wlan security IPsec config qotd 44.55.66.77 1
```
To modify the IPsec Internet Key Exchange (IKE) authentication protocol used on the wireless LAN, use the `config wlan security IPsec ike authentication` command.

```
config wlan security IPsec ike authentication { certificates { wlan_id | foreignAp } | pre-share-key { wlan_id | foreignAp } key | xauth-psk { wlan_id | foreignAp } key }
```

**Syntax Description**

- **certificates**: Enables the IKE certificate mode.
- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **foreignAp**: Specifies third-party access points.
- **pre-share-key**: Enables the IKE Xauth with preshared keys.
- **xauth-psk**: Enables the IKE preshared key.
- **key**: Key required for preshare and xauth-psk.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IKE certification mode:

```
(Cisco Controller) > config wlan security IPsec ike authentication certificates 16
```
config wlan security IPsec ike dh-group

To modify the IPsec Internet Key Exchange (IKE) Diffie Hellman group used on the wireless LAN, use the `config wlan security IPsec ike dh-group` command.

```
config wlan security IPsec ike dh-group { wlan_id | foreignAp } { group-1 | group-2 | group-5 }
```

**Syntax Description**

- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **foreignAp**: Specifies third-party access points.
- **group-1**: Specifies DH group 1 (768 bits).
- **group-2**: Specifies DH group 2 (1024 bits).
- **group-5**: Specifies DH group 5 (1536 bits).

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the Diffie Hellman group parameter for group-1:

```
(Cisco Controller) > config wlan security IPsec ike dh-group 1 group-1
```
config wlan security IPsec ike lifetime

To modify the IPsec Internet Key Exchange (IKE) lifetime used on the wireless LAN, use the `config wlan security IPsec ike lifetime` command.

```
config wlan security IPsec ike lifetime \(wlan_id \mid foreignAp \) seconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>foreignAp</code></td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>IKE lifetime in seconds, between 1800 and 345600.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPsec IKE lifetime use on the wireless LAN:

```
(Cisco Controller) > config wlan security IPsec ike lifetime 1 1900
```
config wlan security IPsec ike phase1

To modify IPsec Internet Key Exchange (IKE) Phase 1 used on the wireless LAN, use the config wlan security IPsec ike phase1 command.

```
config wlan security IPsec ike phase1 { aggressive | main } { wlan_id | foreignAp }
```

**Syntax Description**

- **aggressive**: Enables the IKE aggressive mode.
- **main**: Enables the IKE main mode.
- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **foreignAp**: Specifies third-party access points.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to modify IPsec IKE Phase 1:

```
(Cisco Controller) >config wlan security IPsec ike phase1 aggressive 16
```
config wlan security IPsec ike contivity

To modify Nortel’s Contivity VPN client support on the wireless LAN, use the `config wlan security IPsec ike contivity` command.

```
config wlan security IPsec ike contivity { enable | disable } { wlan_id | foreignAp }
```

**Syntax Description**

- **enable**
  - Enables contivity support for this WLAN.
- **disable**
  - Disables contivity support for this WLAN.
- **wlan_id**
  - Wireless LAN identifier between 1 and 512.
- **foreignAp**
  - Specifies third-party access points.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to modify Contivity VPN client support:

```
(Cisco Controller) > config wlan security IPsec ike contivity enable 14
```
config wlan security wpa akm ft

To configure authentication key-management using 802.11r fast transition 802.1X, use the `config wlan security wpa akm ft` command.

```
config wlan security wpa akm ft [over-the-air | over-the-ds | psk | [reassociation-timeout seconds]] {enable | disable} wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>over-the-air</td>
<td>(Optional) Configures 802.11r fast transition roaming over-the-air support.</td>
</tr>
<tr>
<td>over-the-ds</td>
<td>(Optional) Configures 802.11r fast transition roaming DS support.</td>
</tr>
<tr>
<td>psk</td>
<td>(Optional) Configures 802.11r fast transition PSK support.</td>
</tr>
<tr>
<td>reassociation-timeout</td>
<td>(Optional) Configures the reassociation deadline interval. The valid range is between 1 to 100 seconds. The default value is 20 seconds.</td>
</tr>
<tr>
<td>seconds</td>
<td>Reassociation deadline interval in seconds.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables 802.11r fast transition 802.1X support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11r fast transition 802.1X support.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure authentication key-management using 802.11r fast transition:

```
(Cisco Controller) >config wlan security wpa akm ft reassociation-timeout 25 1
```
config wlan security ft

To configure 802.11r Fast Transition Roaming parameters, use the `config wlan security ft` command.

```
config wlan security ft { enable | disable | reassociation-timeout timeout-in-seconds } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables 802.11r Fast Transition Roaming support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11r Fast Transition Roaming support.</td>
</tr>
<tr>
<td>reassociation-timeout</td>
<td>Configures reassociation deadline interval.</td>
</tr>
<tr>
<td>timeout-in-seconds</td>
<td>Reassociation timeout value, in seconds. The valid range is 1 to 100 seconds.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Ensure that you have disabled the WLAN before you proceed.

The following example shows how to enable 802.11r Fast Transition Roaming support on WLAN 2:

```
(Cisco Controller) > config wlan security ft enable 2
```

The following example shows how to set a reassociation timeout value of 20 seconds for 802.11r Fast Transition Roaming support on WLAN 2:

```
(Cisco Controller) > config wlan security ft reassociation-timeout 20 2
```
config wlan security passthru

To modify the IPsec pass-through used on the wireless LAN, use the config wlan security passthru command.

**config wlan security passthru** (enable | disable) (wlan_id | foreignAp) [ip_address]

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables IPsec pass-through.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables IPsec pass-through.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td>ip_address</td>
<td>(Optional) IP address of the IPsec gateway (router) that is terminating the VPN tunnel.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to modify IPsec pass-through used on the wireless LAN:

(Cisco Controller) >config wlan security passthru enable 3 192.12.1.1
**config wlan security pmf**

To configure 802.11w Management Frame Protection (MFP) on a WLAN, use the `config wlan security pmf` command.

```
config wlan security pmf {disable | optional | required | association-comeback
association-comeback_timeout | saquery-retrytimeout saquery-retry_timeout} wlan_id
```

**Syntax Description**

- `disable` Disables 802.11w MFP protection on a WLAN.
- `optional` Enables 802.11w MFP protection on a WLAN.
- `required` Requires clients to negotiate 802.11w MFP protection on a WLAN.
- `association-comeback` Configures the 802.11w association comeback time.
- `association-comeback_timeout` Association comeback interval in seconds. Time interval that an associated client must wait before the association is tried again after it is denied with a status code 30. The status code 30 message is "Association request rejected temporarily; Try again later". The range is from 1 to 20 seconds.
- `saquery-retrytimeout` Configures the 802.11w Security Association (SA) query retry timeout.
- `saquery-retry_timeout` Time interval identified in the association response to an already associated client before the association can be tried again. This time interval checks if the client is a real client and not a rogue client during the association comeback time. If the client does not respond within this time, the client association is deleted from the controller. The range is from 100 to 500 ms.
- `wlan_id` Wireless LAN identifier from 1 to 512.

**Command Default**

- Default SA query retry timeout is 200 milliseconds.
- Default association comeback timeout is 1 second.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

802.11w introduces an Integrity Group Temporal Key (IGTK) that is used to protect broadcast or multicast robust management frames. IGTK is a random value, assigned by the authenticator station (controller) used to protect MAC management protocol data units (MMPDUs) from the source STA. The 802.11w IGTK key is derived using the four way handshake and is used only on WLANs that are configured with WPA or WPA2 security at Layer 2.

The following example shows how to enable 802.11w MFP protection on a WLAN:

```
(Cisco Controller) > config wlan security pmf optional 1
```
The following example shows how to configure the SA query retry timeout on a WLAN:

(Cisco Controller) > `config wlan security pmf saquery-retrytimeout 300 1`
config wlan security splash-page-web-redir

To enable or disable splash page web redirect, use the `config wlan security splash-page-web-redir` command.

```
config wlan security splash-page-web-redir { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables splash page web redirect.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables splash page web redirect.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

Splash page web redirect is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable splash page web redirect:

```
(Cisco Controller) > config wlan security splash-page-web-redir enable 2
```
**config wlan security static-wep-key authentication**

To configure static Wired Equivalent Privacy (WEP) key 802.11 authentication on a wireless LAN, use the `config wlan security static-wep-key authentication` command.

```
config wlan security static-wep-key authentication { shared-key | open } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shared-key</td>
<td>Enables shared key authentication.</td>
</tr>
<tr>
<td>open</td>
<td>Enables open system authentication.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the static WEP shared key authentication for WLAN ID 1:

```
(Cisco Controller) >config wlan security static-wep-key authentication shared-key 1
```
To disable the use of static Wired Equivalent Privacy (WEP) keys, use the `config wlan security static-wep-key disable` command.

```
config wlan security static-wep-key disable wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>wlan_id</th>
<th>Wireless LAN identifier between 1 and 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release Modification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable the static WEP keys for WLAN ID 1:

```
(Cisco Controller) > config wlan security static-wep-key disable 1
```
config wlan security static-wep-key enable

To enable the use of static Wired Equivalent Privacy (WEP) keys, use the `config wlan security static-wep-key enable` command.

`config wlan security static-wep-key enable wlan_id`

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the use of static WEK keys for WLAN ID 1:

(Cisco Controller) > `config wlan security static-wep-key enable 1`
**config wlan security static-wep-key encryption**

To configure the static Wired Equivalent Privacy (WEP) keys and indexes, use the `config wlan security static-wep-key encryption` command.

```
config wlan security static-wep-key encryption wlan_id {40 | 104} {hex | ascii} key key-index
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>40</td>
<td>Specifies the encryption level of 40.</td>
</tr>
<tr>
<td>104</td>
<td>Specifies the encryption level of 104.</td>
</tr>
<tr>
<td>hex</td>
<td>Specifies to use hexadecimal characters to enter key.</td>
</tr>
<tr>
<td>ascii</td>
<td>Specifies whether to use ASCII characters to enter key.</td>
</tr>
<tr>
<td>key</td>
<td>WEP key in ASCII.</td>
</tr>
<tr>
<td>key-index</td>
<td>Key index (1 to 4).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

One unique WEP key index can be applied to each wireless LAN. Because there are only four WEP key indexes, only four wireless LANs can be configured for static WEP Layer 2 encryption.

Make sure to disable 802.1X before using this command.

The following example shows how to configure the static WEP keys for WLAN ID 1 that uses hexadecimal character 0201702001 and key index 2:

```
(Cisco Controller) > config wlan security static-wep-key encryption 1 40 hex 0201702001 2
```
config wlan security tkip

To configure the Temporal Key Integrity Protocol (TKIP) Message Integrity Check (MIC) countermeasure hold-down timer, use the config wlan security tkip command.

config wlan security tkip hold-down time wlan_id

Syntax Description

hold-down	Configures the TKIP MIC countermeasure hold-down timer.
time	TKIP MIC countermeasure hold-down time in seconds. The range is from 0 to 60 seconds.
wlan_id	Wireless LAN identifier from 1 to 512.

Command Default

The default TKIP countermeasure is set to 60 seconds.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

TKIP countermeasure mode can occur if the access point receives 2 MIC errors within a 60 second period. When this situation occurs, the access point deauthenticate all TKIP clients that are associated to that 802.11 radio and holds off any clients for the countermeasure holdoff time.

The following example shows how to configure the TKIP MIC countermeasure hold-down timer:

(Cisco Controller) > config wlan security tkip
**config wlan usertimeout**

To configure the timeout for idle client sessions for a WLAN, use the `config wlan usertimeout` command.

```
config wlan usertimeout timeout wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout</code></td>
<td>Timeout for idle client sessions for a WLAN. If the client sends traffic less than the threshold, the client is removed on timeout. The range is from 15 to 100000 seconds.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The default client session idle timeout is 300 seconds.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The timeout value that you configure here overrides the global timeout that you define using the command <code>config network usertimeout</code>.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to configure the idle client sessions for a WLAN:

```
(Cisco Controller) >config wlan usertimeout 100 1
```
config wlan security web-auth

To change the status of web authentication used on a wireless LAN, use the `config wlan security web-auth` command.

```plaintext
config wlan security web-auth { { acl | enable | disable} {wlan_id | foreignAp} { acl_name | none} } | (on-macfilter-failure wlan_id) | (server-precedence wlan_id | local | ldap | radius) | (flexacl wlan_id { ipv4_acl_name | none}) | (server-precendence wlan_id | local | ldap | radius) | (mac-auth-server { ip_address wlan_id }) | (timeout { value_in_seconds wlan_id }) | (web-portal-server { ip_address wlan_id })
```

**Syntax Description**

- `acl` Configures the access control list.
- `enable` Enables web authentication.
- `disable` Disables web authentication.
- `wlan_id` Wireless LAN identifier from 1 to 512.
- `foreignAp` Specifies third-party access points.
- `acl_name` (Optional) ACL name (up to 32 alphanumeric characters).
- `none` (Optional) Specifies no ACL name.
- `on-macfilter-failure` Enables web authentication on MAC filter failure.
- `server-precedence` Configures the authentication server precedence order for Web-Auth users.
- `local` Specifies the server type.
- `ldap` Specifies the server type.
- `radius` Specifies the server type.
- `flexacl` Configures Flexconnect Access Control List.
- `ipv4_acl_name` (Optional) IPv4 ACL name. You can enter up to 32 alphanumeric characters.
- `ipv6_acl_name` (Optional) IPv6 ACL name. You can enter up to 32 alphanumeric characters.
- `ipv6` Configures IPv6 related parameters.
- `mac-auth-server` Configures MAC authentication server for the WLAN.
- `timeout` Configures Web authentication Timeout.
- `value_in_seconds` Timeout value in seconds; valid range is between 300 and 14400 seconds.
### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the security policy for WLAN ID 1 and an ACL named ACL03:

```
(Cisco Controller) > config wlan security web-auth acl 1 ACL03
```
config wlan security web-passthrough acl

To add an access control list (ACL) to the wireless LAN definition, use the `config wlan security web-passthrough acl` command.

```
config wlan security web-passthrough acl {wlan_id | foreignAp} {acl_name | none}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>foreignAp</code></td>
<td>Specifies third-party access points.</td>
</tr>
<tr>
<td><code>acl_name</code></td>
<td>ACL name (up to 32 alphanumeric characters).</td>
</tr>
<tr>
<td><code>none</code></td>
<td>Specifies that there is no ACL.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add an ACL to the wireless LAN definition:

```
(Cisco Controller) >config wlan security web-passthrough acl 1 ACL03
```
To disable a web captive portal with no authentication required on a wireless LAN, use the `config wlan security web-passthrough disable` command.

```
config wlan security web-passthrough disable { wlan_id | foreignAp }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td><code>foreignAp</code></td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable a web captive portal with no authentication required on wireless LAN ID 1:

```
(Cisco Controller) > config wlan security web-passthrough disable 1
```
To configure a web captive portal using an e-mail address, use the `config wlan security web-passthrough email-input` command.

```
config wlan security web-passthrough email-input { enable | disable } { wlan_id | foreignAp }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>email-input</td>
<td>Configures a web captive portal using an e-mail address.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables a web captive portal using an e-mail address.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables a web captive portal using an e-mail address.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure a web captive portal using an e-mail address:

```
(Cisco Controller) > config wlan security web-passthrough email-input enable 1
```
config wlan security web-passthrough enable

To enable a web captive portal with no authentication required on the wireless LAN, use the config wlan security web-passthrough enable command.

config wlan security web-passthrough enable { wlan_id | foreignAp }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Specifies third-party access points.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a web captive portal with no authentication required on wireless LAN ID 1:

(Cisco Controller) > config wlan security web-passthrough enable 1
To configure authentication key-management (AKM) using 802.1X, use the `config wlan security wpa akm 802.1x` command.

```plaintext
config wlan security wpa akm 802.1x {enable | disable} wlan_id
```

### Syntax Description

- **enable**: Enables the 802.1X support.
- **disable**: Disables the 802.1X support.
- **wlan_id**: Wireless LAN identifier from 1 to 512.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure authentication using 802.1X.

(Cisco Controller) > `config wlan security wpa akm 802.1x enable 1`
To configure authentication key-management using Cisco Centralized Key Management (CCKM), use the 
\texttt{config wlan security wpa akm cckm} command.

\texttt{config wlan security wpa akm cckm} \{enable wlan_id | disable wlan_id | timestamp-tolerance \}

\textbf{Syntax Description}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CCKM support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables CCKM support.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
<tr>
<td>timestamp-tolerance</td>
<td>CCKM IE time-stamp tolerance. The range is between 1000 to 5000 milliseconds; the default is 1000 milliseconds.</td>
</tr>
</tbody>
</table>

\textbf{Command Default}

None

\textbf{Command History}

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure authentication key-management using CCKM.

\texttt{(Cisco Controller) \#config wlan security wpa akm cckm 1500}
config wlan security wpa akm ft

To configure authentication key-management using 802.11r fast transition 802.1X, use the `config wlan security wpa akm ft` command.

```
config wlan security wpa akm ft [over-the-air | over-the-ds | psk | [reassociation-timeout seconds]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>over-the-air</td>
<td>(Optional) Configures 802.11r fast transition roaming over-the-air support.</td>
</tr>
<tr>
<td>over-the-ds</td>
<td>(Optional) Configures 802.11r fast transition roaming DS support.</td>
</tr>
<tr>
<td>psk</td>
<td>(Optional) Configures 802.11r fast transition PSK support.</td>
</tr>
<tr>
<td>reassociation-timeout</td>
<td>(Optional) Configures the reassociation deadline interval. The valid range is between 1 to 100 seconds. The default value is 20 seconds.</td>
</tr>
<tr>
<td>seconds</td>
<td>Reassociation deadline interval in seconds.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables 802.11r fast transition 802.1X support.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables 802.11r fast transition 802.1X support.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure authentication key-management using 802.11r fast transition:

```
(Cisco Controller) >config wlan security wpa akm ft reassociation-timeout 25 1
```
config wlan security wpa akm pmf

To configure Authenticated Key Management (AKM) of management frames, use the `config wlan security wpa akm pmf` command.

```
config wlan security wpa akm pmf {802.1x | psk} {enable | disable} wlan_id
```

**Syntax Description**

- **802.1x**: Configures 802.1X authentication for protection of management frames (PMF).
- **psk**: Configures preshared keys (PSK) for PMF.
- **enable**: Enables 802.1X authentication or PSK for PMF.
- **disable**: Disables 802.1X authentication or PSK for PMF.
- **wlan_id**: Wireless LAN identifier from 1 to 512.

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

802.11w has two new AKM suites: 00-0F-AC:5 or 00-0F-AC:6. You must enable WPA and then disable the WLAN to configure PMF on the WLAN.

The following example shows how to enable 802.1X authentication for PMF in a WLAN:

```
(Cisco Controller) >config wlan security wpa akm pmf 802.1x enable 1
```
config wlan security wpa akm psk

To configure the Wi-Fi protected access (WPA) preshared key mode, use the config wlan security wpa akm psk command.

```
config wlan security wpa akm psk { enable | disable | set-key key-format key } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables WPA-PSK.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables WPA-PSK.</td>
</tr>
<tr>
<td>set-key</td>
<td>Configures a preshared key.</td>
</tr>
<tr>
<td>key-format</td>
<td>Specifies key format. Either ASCII or hexadecimal.</td>
</tr>
<tr>
<td>key</td>
<td>WPA preshared key.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the WPA preshared key mode:

```
(Cisco Controller) >config wlan security wpa akm psk disable 1
```
config wlan security wpa disable

To disable WPA1, use the `config wlan security wpa disable` command.

```
config wlan security wpa disable wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable WPA:

```
(Cisco Controller) >config wlan security wpa disable 1
```
config wlan security wpa enable

To enable WPA, use the `config wlan security wpa enable` command.

`config wlan security wpa enable wlan_id`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the WPA on WLAN ID 1:

```
(Cisco Controller) > config wlan security wpa enable 1
```
config wlan security wpa ciphers

To configure the Wi-Fi protected authentication (WPA1) or Wi-Fi protected authentication (WPA2), use the `config wlan security wpa ciphers` command.

```
config wlan security wpa {wpa1 | wpa2} ciphers {aes | tkip} {enable | disable} wlan_id
```

**Syntax Description**

- **wpa1**
  - Configures WPA1 support.
- **wpa2**
  - Configures WPA2 support.
- **ciphers**
  - Configures WPA ciphers.
- **aes**
  - Configures AES encryption support.
- **tkip**
  - Configures TKIP encryption support.
- **enable**
  - Enables WPA AES/TKIP mode.
- **disable**
  - Disables WPA AES/TKIP mode.
- **wlan_id**
  - Wireless LAN identifier between 1 and 512.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you are not specifying the WPA versions, it implies the following:

- If the cipher enabled is AES, you are configuring WPA2/AES.
- If the ciphers enabled is AES+TKIP, you are configuring WPA/TKIP, WPA2/AES, or WPA/TKIP.
- If the cipher enabled is TKIP, you are configuring WPA/TKIP or WPA2/TKIP.

From Release 8.0, you cannot configure TKIP as a standalone encryption method. TKIP can be used only with the AES encryption method.

The following example shows how to encrypt the WPA:

```
(Cisco Controller) > config wlan security wpa wpa1 ciphers aes enable 1
```
config wlan security wpa gtk-random

To enable the randomization of group temporal keys (GTK) between access points and clients on a WLAN, use the `config wlan security wpa gtk-random` command.

```
config wlan security wpa gtk-random { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the randomization of GTK keys between the access point and clients.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the randomization of GTK keys between the access point and clients.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>WLAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enable this command, the clients in the Basic Service Set (BSS) get a unique GTK key. The clients do not receive multicast or broadcast traffic.

The following example shows how to enable the GTK randomization for each client associated on a WLAN:

```
(Cisco Controller) > config wlan security wpa gtk-random enable 3
```
config wlan security wpa wpa1 disable

To disable WPA1, use the **config wlan security wpa wpa1 disable** command.

```
config wlan security wpa wpa1 disable wlan_id
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>wlan_id</strong></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable WPA1:

(Cisco Controller) > **config wlan security wpa wpa1 disable 1**
# config wlan security wpa wpa1 enable

To enable WPA1, use the `config wlan security wpa wpa1 enable` command.

```plaintext
config wlan security wpa wpa1 enable wlan_id
```

## Syntax Description

<table>
<thead>
<tr>
<th><code>wlan_id</code></th>
<th>Wireless LAN identifier between 1 and 512.</th>
</tr>
</thead>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WPA1:

```
(Cisco Controller) > config wlan security wpa wpa1 enable 1
```
config wlan security wpa wpa2 disable

To disable WPA2, use the `config wlan security wpa wpa2 disable` command.

`config wlan security wpa wpa2 disable wlan_id`  

**Syntax Description**

| `wlan_id` | Wireless LAN identifier between 1 and 512. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable WPA2:

```
(Cisco Controller) > config wlan security wpa wpa2 disable 1
```
**config wlan security wpa wpa2 enable**

To enable WPA2, use the `config wlan security wpa wpa2 enable` command.

```
config wlan security wpa wpa2 enable wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>wlan_id</th>
<th>Wireless LAN identifier between 1 and 512.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WPA2:

```
(Cisco Controller) > config wlan security wpa wpa2 enable 1
```
config wlan security wpa wpa2 cache

To configure caching methods on a WLAN, use the `config wlan security wpa wpa2 cache` command.

```
cfg wlan security wpa wpa2 cache sticky { enable | disable } vlan_id
```

**Syntax Description**

- `sticky` Configures Sticky Key Caching (SKC) roaming support on the WLAN.
- `enable` Enables SKC roaming support on the WLAN.
- `disable` Disables SKC roaming support on the WLAN.
- `vlan_id` Wireless LAN identifier between 1 and 512.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In SKC (Sticky Key caching) also known as PKC (Pro Active Key caching), the client stores each Pairwise Master Key (PMK) ID (PMKID) against a Pairwise Master Key Security Association (PMKSA). When a client finds an AP for which it has a PMKSA, it sends the PMKID in the association request to the AP. If the PMKSA is alive in the AP, the AP provides support for fast roaming. In SKC, full authentication is done on each new AP to which the client associates and the client must keep the PMKSA associated with all APs.

The following example shows how to enable SKC roaming support on a WLAN:

```
(Cisco Controller) >config wlan security wpa wpa2 cache sticky enable 1
```
config wlan security wpa wpa2 cache sticky

To configure Sticky PMKID Caching (SKC) on a WLAN, use the `config wlan security wpa wpa2 cache sticky` command.

```
config wlan security wpa wpa2 cache sticky { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables SKC on a WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables SKC on a WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512 (inclusive).</td>
</tr>
</tbody>
</table>

**Command Default**

Sticky PMKID Caching is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Beginning in Release 7.2 and later releases, the controller supports Sticky PMKID Caching (SKC). With sticky PMKID caching, the client receives and stores a different PMKID for every AP it associates with. The APs also maintain a database of the PMKID issued to the client. In SKC also known as PKC (Pro Active Key caching), the client stores each Pairwise Master Key (PMK) ID (PMKID) against a Pairwise Master Key Security Association (PMKSA). When a client finds an AP for which it has the PMKSA, it sends the PMKID in the association request to the AP. If the PMKSA is alive in the AP, the AP provides support for fast roaming. In SKC, full authentication is done on each new AP to which the client associates and the client must keep the PMKSA associated with all APs. For SKC, PMKSA is a per AP cache that the client stores and PMKSA is precalculated based on the BSSID of the new AP.

- You cannot use SKC for large scale deployments as the controller supports SKC only up to eight APs.
- SKC does not work across controllers in a mobility group.
- SKC works only on WPA2-enabled WLANs.
- SKC works only on local mode APs.

The following example shows how to enable Sticky PMKID Caching on WLAN 5:

```
(Cisco Controller) > config wlan security wpa wpa2 cache sticky enable 5
```
**config wlan security wpa wpa2 ciphers**

To configure WPA2 ciphers and enable or disable Advanced Encryption Standard (AES) or Temporal Key Integrity Protocol (TKIP) data encryption for WPA2, use the `config wlan security wpa wpa2 ciphers` command.

```
config wlan security wpa wpa2 ciphers {aes | tkip} {enable | disable} wlan_id
```

**Syntax Description**

- `aes` Configures AES data encryption for WPA2.
- `tkip` Configures TKIP data encryption for WPA2.
- `enable` Enables AES or TKIP data encryption for WPA2.
- `disable` Disables AES or TKIP data encryption for WPA2.
- `wlan_id` Wireless LAN identifier between 1 and 512.

**Command Default**

AES is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable AES data encryption for WPA2:

```
(Cisco Controller) > config wlan security wpa wpa2 ciphers aes enable 1
```
**config wlan session-timeout**

To change the timeout of wireless LAN clients, use the `config wlan session-timeout` command.

```
cfg wlan session-timeout {wlan_id | foreignAp} seconds
```

**Syntax Description**

- **wlan_id**: Wireless LAN identifier between 1 and 512.
- **foreignAp**: Specifies third-party access points.
- **seconds**: Timeout or session duration in seconds. A value of zero is equivalent to no timeout.

**Note**

The range of session timeout depends on the security type:

- Open system: 0-65535 (sec)
- 802.1x: 300-86400 (sec)
- static wep: 0-65535 (sec)
- cranite: 0-65535 (sec)
- fortress: 0-65535 (sec)
- CKIP: 0-65535 (sec)
- open+web auth: 0-65535 (sec)
- web pass-thru: 0-65535 (sec)
- wpa-psk: 0-65535 (sec)
- disable: To disable reauth/session-timeout timers.

**Command Default**

None

**Usage Guidelines**

For 802.1X client security type, which creates the PMK cache, the maximum session timeout that can be set is 86400 seconds when the session timeout is disabled. For other client security such as open, WebAuth, and PSK for which the PMK cache is not created, the session timeout value is shown as infinite when session timeout is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the client timeout to 6000 seconds for WLAN ID 1:

```
(Cisco Controller) >config wlan session-timeout 1 6000
```
config wlan sip-cac disassoc-client

To enable client disassociation in case of session initiation protocol (SIP) call admission control (CAC) failure, use the `config wlan sip-cac disassoc-client` command.

```
config wlan sip-cac disassoc-client { enable | disable } wlan_id
```

### Syntax Description

- **enable**: Enables a client disassociation on a SIP CAC failure.
- **disable**: Disables a client disassociation on a SIP CAC failure.
- **wlan_id**: Wireless LAN identifier between 1 and 512.

### Command Default

Client disassociation for SIP CAC is disabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a client disassociation on a SIP CAC failure where the WLAN ID is 1:

```
(Cisco Controller) > config wlan sip-cac disassoc-client enable 1
```
config wlan sip-cac send-486busy

To configure sending session initiation protocol (SIP) 486 busy message if a SIP call admission control (CAC) failure occurs, use the config wlan sip-cac send-486busy command:

```
config wlan sip-cac send-486busy { enable | disable } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables sending a SIP 486 busy message upon a SIP CAC failure.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables sending a SIP 486 busy message upon a SIP CAC failure.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

Command Default

Session initiation protocol is enabled by default.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable sending a SIP 486 busy message upon a SIP CAC failure where the WLAN ID is 1:

(Cisco Controller) \> config wlan sip-cac send-busy486 enable 1
config wlan ssid

To edit an SSID associated to a WLAN, use the `config wlan ssid` command.

```
config wlan ssid wlan_id ssid
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wlan_id</code></td>
<td>WLAN identifier from 1 to 512.</td>
</tr>
<tr>
<td><code>ssid</code></td>
<td>Service Set Identifier (SSID) associated to a WLAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to edit an SSID associated to a WLAN:

```
(Cisco Controller) >config wlan disable 1
(Cisco Controller) >config wlan ssid 1 new_samp
(Cisco Controller) >show wlan summary
Number of WLANs.................................. 1

<table>
<thead>
<tr>
<th>WLAN ID</th>
<th>WLAN Profile Name / SSID</th>
<th>Status</th>
<th>Interface Name</th>
<th>PMIPv6 Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sample / new_samp</td>
<td>Disabled</td>
<td>management</td>
<td>none</td>
</tr>
</tbody>
</table>
```
config wlan static-ip tunneling

To configure static IP client tunneling support on a WLAN, use the `config wlan static-ip tunneling` command. 

```
config wlan static-ip tunneling { enable | disable } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunneling</td>
<td>Configures static IP client tunneling support on a WLAN.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables static IP client tunneling support on a WLAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables static IP client tunneling support on a WLAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable static IP client tunneling support for WLAN ID 3:

```
(Cisco Controller) > config wlan static-ip tunneling enable 34
```
config wlan uapsd compliant client enable

To enable WPA1, use the **config wlan uapsd compliant-client enable** command.

**Note**

This was introduced for Ascom non-wmm capable phones and is not applicable for Cisco 792x/9971 IP phones.

`config wlan uapsd compliant-client enable wlan-id`

**Syntax Description**

| wlan_id                  | Wireless LAN identifier between 1 and 512. |

**Command Default**

None

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WPA1:

`(Cisco Controller) > config wlan uapsd compliant-client enable 1`
**config wlan uapsd compliant-client disable**

To disable WPA1, use the `config wlan uapsd compliant-client disable` command.

---

**Note**

This was introduced for Ascom non-wmm capable phones and is not applicable for Cisco 792x/9971 IP phones.

---

`config wlan uapsd compliant-client disable wlan-id`

**Syntax Description**

- `wlan-id`  Wireless LAN identifier between 1 and 512.

**Command Default**

None

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable WPA1:

(Cisco Controller) >`config wlan uapsd compliant-client disable 1`
config wlan user-idle-threshold

To configure the threshold data sent by the client during the idle timeout for client sessions for a WLAN, use the `config wlan user-idle-threshold` command.

```
config wlan user-idle-threshold bytes wlan_id
```

**Syntax Description**
- `bytes`  Threshold data sent by the client during the idle timeout for the client session for a WLAN. If the client send traffic less than the defined threshold, the client is removed on timeout. The range is from 0 to 10000000 bytes.
- `wlan_id`  Wireless LAN identifier between 1 and 512.

**Command Default**
The default timeout for threshold data sent by client during the idle timeout is 0 bytes.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the threshold data sent by the client during the idle timeout for client sessions for a WLAN:

```
(Cisco Controller) >config wlan user-idle-threshold 100 1
```
**config wlan usertimeout**

To configure the timeout for idle client sessions for a WLAN, use the `config wlan usertimeout` command.

```
config wlan usertimeout timeout wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout</code></td>
<td>Timeout for idle client sessions for a WLAN. If the client sends traffic less than the threshold, the client is removed on timeout. The range is from 15 to 100000 seconds.</td>
</tr>
<tr>
<td><code>wlan_id</code></td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

**Command Default**

The default client session idle timeout is 300 seconds.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The timeout value that you configure here overrides the global timeout that you define using the command `config network usertimeout`.

The following example shows how to configure the idle client sessions for a WLAN:

```
(Cisco Controller) >config wlan usertimeout 100 1
```
To release the guest user IP address when the web authentication policy time expires and exclude the guest user from acquiring an IP address for three minutes, use the `config wlan webauth-exclude` command.

```plaintext
config wlan webauth-exclude wlan_id {enable | disable}
```

**Syntax Description**
- `wlan_id`: Wireless LAN identifier (1 to 512).
- `enable`: Enables web authentication exclusion.
- `disable`: Disables web authentication exclusion.

**Command Default**
Disabled.

**Command History**
- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**
You can use this command for guest WLANs that are configured with web authentication.

This command is applicable when you configure the internal DHCP scope on the controller.

By default, when the web authentication timer expires for a guest user, the guest user can immediately reassociate with the same IP address before another guest user can acquire the IP address. If there are many guest users or limited IP address in the DHCP pool, some guest users might not be able to acquire an IP address.

When you enable this feature on the guest WLAN, the guest user’s IP address is released when the web authentication policy time expires and the guest user is excluded from acquiring an IP address for three minutes. The IP address is available for another guest user to use. After three minutes, the excluded guest user can reassociate and acquire an IP address, if available.

The following example shows how to enable the web authentication exclusion for WLAN ID 5:

```
(Cisco Controller) > config wlan webauth-exclude 5 enable
```
## config wlan wifidirect

To configure Wi-Fi Direct Client Policy on a WLAN, use the `config wlan wifidirect` command.

```plaintext
config wlan wifidirect { allow | disable | not-allow | xconnect-not-allow } wlan_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>Allows Wi-Fi Direct clients to associate with the WLAN</td>
</tr>
<tr>
<td>disable</td>
<td>Ignores the Wi-Fi Direct status of clients thereby allowing Wi-Fi Direct clients to associate</td>
</tr>
<tr>
<td>not-allow</td>
<td>Disallows the Wi-Fi Direct clients from associating with the WLAN</td>
</tr>
<tr>
<td>xconnect-not-allow</td>
<td>Enables AP to allow a client with the Wi-Fi Direct option enabled to associate, but the client (if it works according to the Wi-Fi standards) will refrain from setting up a peer-to-peer connection</td>
</tr>
</tbody>
</table>

| wlan_id            | Wireless LAN identifier (1 to 16). |

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to allow Wi-Fi Direct Client Policy on WLAN ID 1:

(Cisco Controller) > config wlan wifidirect allow 1
config wlan wmm

To configure Wi-Fi Multimedia (WMM) mode on a wireless LAN, use the `config wlan wmm` command.

```
config wlan wmm { allow | disable | require } wlan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>Allows WMM on the wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables WMM on the wireless LAN.</td>
</tr>
<tr>
<td>require</td>
<td>Specifies that clients use WMM on the specified wireless LAN.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier (1 to 512).</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the controller is in Layer 2 mode and WMM is enabled, you must put the access points on a trunk port in order to allow them to join the controller.

The following example shows how to configure wireless LAN ID 1 to allow WMM:

```
(Cisco Controller) >config wlan wmm allow 1
```

The following example shows how to configure wireless LAN ID 1 to specify that clients use WMM:

```
(Cisco Controller) >config wlan wmm require 1
```
config wps ap-authentication

To configure access point neighbor authentication, use the config wps ap-authentication command.

config wps ap-authentication [ enable | disable threshold threshold_value]

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>(Optional) Enables WMM on the wireless LAN.</td>
</tr>
<tr>
<td>disable</td>
<td>(Optional) Disables WMM on the wireless LAN.</td>
</tr>
<tr>
<td>threshold</td>
<td>(Optional) Specifies that WMM-enabled clients are on the wireless LAN.</td>
</tr>
<tr>
<td>threshold_value</td>
<td>Threshold value (1 to 255).</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the access point neighbor authentication:

(Cisco Controller) > config wps ap-authentication threshold 25

Related Commands

show wps ap-authentication summary
config wps auto-immune

To enable or disable protection from Denial of Service (DoS) attacks, use the `config wps auto-immune` command.

```plaintext
config wps auto-immune { enable | disable | stop }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the auto-immune feature.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the auto-immune feature.</td>
</tr>
<tr>
<td>stop</td>
<td>Stops dynamic auto-immune feature.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A potential attacker can use specially crafted packets to mislead the Intrusion Detection System (IDS) into treating a legitimate client as an attacker. It causes the controller to disconnect this legitimate client and launch a DoS attack. The auto-immune feature, when enabled, is designed to protect against such attacks. However, conversations using Cisco 792x phones might be interrupted intermittently when the auto-immune feature is enabled. If you experience frequent disruptions when using 792x phones, you might want to disable this feature.

The following example shows how to configure the auto-immune mode:

```plaintext
(Cisco Controller) > config wps auto-immune enable
```

The following example shows how to stop the auto-immune mode:

```plaintext
(Cisco Controller) > config wps auto-immune stop
Dynamic Auto Immune by WIPS is stopped
```

**Related Commands**

- `show wps summary`
config wps cids-sensor

To configure Intrusion Detection System (IDS) sensors for the Wireless Protection System (WPS), use the `config wps cids-sensor` command.

```
config wps cids-sensor { [add index ip_address username password] | [delete index] | [enable index] | [disable index] | [port index port] | [interval index query_interval] | [fingerprint sha1 fingerprint] }
```

### Syntax Description

**add**
(Optional) Configures a new IDS sensor.

**index**
IDS sensor internal index.

**ip_address**
IDS sensor IP address.

**username**
IDS sensor username.

**password**
IDS sensor password.

**delete**
(Optional) Deletes an IDS sensor.

**enable**
(Optional) Enables an IDS sensor.

**disable**
(Optional) Disables an IDS sensor.

**port**
(Optional) Configures the IDS sensor’s port number.

**port**
Port number.

**interval**
(Optional) Specifies the IDS sensor’s query interval.

**query_interval**
Query interval setting.

**fingerprint**
(Optional) Specifies the IDS sensor’s TLS fingerprint.

**sha1**
(Optional) Specifies the TLS fingerprint.

**fingerprint**
TLS fingerprint.

### Command Default

Command defaults are listed below as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Port</strong></td>
<td>443</td>
</tr>
<tr>
<td><strong>Query interval</strong></td>
<td>60</td>
</tr>
<tr>
<td><strong>Certification fingerprint</strong></td>
<td>00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00</td>
</tr>
<tr>
<td><strong>Query state</strong></td>
<td>Disabled</td>
</tr>
</tbody>
</table>
This command was introduced in a release earlier than Release 7.6.

The following example shows how to configure the intrusion detection system with the IDS index 1, IDS sensor IP address 10.0.0.51, IDS username Sensor_user0doc1, and IDS password passowrd01:

(Cisco Controller) > config wps cids-sensor add 1 10.0.0.51 Sensor_user0doc1 password01

Related Commands

show wps cids-sensor detail
config wps client-exclusion

To configure client exclusion policies, use the `config wps client-exclusion` command.

```
config wps client-exclusion { 802.11-assoc | 802.11-auth | 802.11x-auth | ip-theft | web-auth | all} { enable | disable }
```

### Syntax Description

- **802.11-assoc**
  - Specifies that the controller excludes clients on the sixth 802.11 association attempt, after five consecutive failures.

- **802.11-auth**
  - Specifies that the controller excludes clients on the sixth 802.11 authentication attempt, after five consecutive failures.

- **802.1x-auth**
  - Specifies that the controller excludes clients on the sixth 802.11X authentication attempt, after five consecutive failures.

- **ip-theft**
  - Specifies that the controller excludes clients if the IP address is already assigned to another device.

- **web-auth**
  - Specifies that the controller excludes clients on the fourth web authentication attempt, after three consecutive failures.

- **all**
  - Specifies that the controller excludes clients for all of the above reasons.

- **enable**
  - Enables client exclusion policies.

- **disable**
  - Disables client exclusion policies.

### Command Default

All policies are enabled.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable clients on the 802.11 association attempt after five consecutive failures:

```
(Cisco Controller) > config wps client-exclusion 802.11-assoc disable
```

### Related Commands

- `show wps summary`
config wps mfp

To configure Management Frame Protection (MFP), use the `config wps mfp` command.

```
config wps mfp {infrastructure | ap-impersonation} {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>infrastructure</td>
<td>Configures the MFP infrastructure.</td>
</tr>
<tr>
<td>ap-impersonation</td>
<td>Configures ap impersonation detection by MFP.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the MFP feature.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the MFP feature.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the infrastructure MFP:

```
(Cisco Controller) > config wps mfp infrastructure enable
```

**Related Commands**

- `show wps mfp`
**config wps shun-list re-sync**

To force the controller to synchronization with other controllers in the mobility group for the shun list, use the `config wps shun-list re-sync` command.

```plaintext
config wps shun-list re-sync
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the controller to synchronize with other controllers for the shun list:

```plaintext
(Cisco Controller) > config wps shun-list re-sync
```

**Related Commands**

- `show wps shun-list`
config wps signature

To enable or disable Intrusion Detection System (IDS) signature processing, or to enable or disable a specific IDS signature, use the **config wps signature** command.

```
config wps signature {standard | custom} state signature_id {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>standard</code></td>
<td>Configures a standard IDS signature.</td>
</tr>
<tr>
<td><code>custom</code></td>
<td>Configures a standard IDS signature.</td>
</tr>
<tr>
<td><code>state</code></td>
<td>Specifies the state of the IDS signature.</td>
</tr>
<tr>
<td><code>signature_id</code></td>
<td>Identifier for the signature to be enabled or disabled.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the IDS signature processing or a specific IDS signature.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables IDS signature processing or a specific IDS signature.</td>
</tr>
</tbody>
</table>

**Command Default**

IDS signature processing is enabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.

The following example shows how to enable IDS signature processing, which enables the processing of all IDS signatures:

```
(Cisco Controller) > config wps signature enable
```

The following example shows how to disable a standard individual IDS signature:

```
(Cisco Controller) > config wps signature standard state 15 disable
```

**Related Commands**

- config wps signature frequency
- config wps signature interval
- config wps signature mac-frequency
- config wps signature quiet-time
- config wps signature reset
- show wps signature events
show wps signature summary
show wps summary
config wps signature frequency

To specify the number of matching packets per interval that must be identified at the individual access point level before an attack is detected, use the `config wps signature frequency` command.

`config wps signature frequency signature_id frequency`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature_id</td>
<td>Identifier for the signature to be configured.</td>
</tr>
<tr>
<td>frequency</td>
<td>Number of matching packets per interval that must be at the individual access point level before an attack is detected. The range is 1 to 32,000 packets per interval.</td>
</tr>
</tbody>
</table>

**Command Default**

The `frequency` default value varies per signature.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.

The following example shows how to set the number of matching packets per interval per access point before an attack is detected to 1800 for signature ID 4:

```
(Cisco Controller) > config wps signature frequency 4 1800
```

**Related Commands**

- `config wps signature frequency`
- `config wps signature interval`
- `config wps signature quiet-time`
- `config wps signature reset`
- `show wps signature events`
- `show wps signature summary`
- `show wps summary`
**config wps signature interval**

To specify the number of seconds that must elapse before the signature frequency threshold is reached within the configured interval, use the `config wps signature interval` command.

```
config wps signature interval signature_id interval
```

### Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature_id</td>
<td>Identifier for the signature to be configured.</td>
</tr>
<tr>
<td>interval</td>
<td>Number of seconds that must elapse before the signature frequency threshold is reached. The range is 1 to 3,600 seconds.</td>
</tr>
</tbody>
</table>

### Command Default

The default value of `interval` varies per signature.

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.

The following example shows how to set the number of seconds to elapse before reaching the signature frequency threshold to 200 for signature ID 1:

```
(Cisco Controller) > config wps signature interval 1 200
```

### Related Commands

- `config wps signature frequency`
- `config wps signature`
- `config wps signature mac-frequency`
- `config wps signature quiet-time`
- `config wps signature reset`
- `show wps signature events`
- `show wps signature summary`
- `show wps summary`
config wps signature mac-frequency

To specify the number of matching packets per interval that must be identified per client per access point before an attack is detected, use the `config wps signature mac-frequency` command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>signature_id</code></td>
<td>Identifier for the signature to be configured.</td>
</tr>
<tr>
<td><code>mac_frequency</code></td>
<td>Number of matching packets per interval that must be identified per client per access point before an attack is detected. The range is 1 to 32,000 packets per interval.</td>
</tr>
</tbody>
</table>

Command Default

The `mac_frequency` default value varies per signature.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.

The following example shows how to set the number of matching packets per interval per client before an attack is detected to 50 for signature ID 3:

```
(Cisco Controller) > config wps signature mac-frequency 3 50
```
**config wps signature quiet-time**

To specify the length of time after which no attacks have been detected at the individual access point level and the alarm can stop, use the `config wps signature quiet-time` command.

```
config wps signature quiet-time signature_id quiet_time
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature_id</td>
<td>Identifier for the signature to be configured.</td>
</tr>
<tr>
<td>quiet_time</td>
<td>Length of time after which no attacks have been detected at the individual access point level and the alarm can stop. The range is 60 to 32,000 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**
The default value of `quiet_time` varies per signature.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.

The following example shows how to set the number of seconds after which no attacks have been detected per access point to 60 for signature ID 1:

```
(Cisco Controller) > config wps signature quiet-time 1 60
```

**Related Commands**
- `config wps signature`
- `config wps signature frequency`
- `config wps signature interval`
- `config wps signature mac-frequency`
- `config wps signature reset`
- `show wps signature events`
- `show wps signature summary`
### config wps signature reset

To reset a specific Intrusion Detection System (IDS) signature or all IDS signatures to default values, use the `config wps signature reset` command.

```plaintext
cfg wps signature reset {signature_id | all}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>signature_id</code></td>
<td>Identifier for the specific IDS signature to be reset.</td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Resets all IDS signatures.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
<td><strong>Modification</strong></td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If IDS signature processing is disabled, all signatures are disabled, regardless of the state configured for individual signatures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following example shows how to reset the IDS signature 1 to default values:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Cisco Controller) &gt; config wps signature reset 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config wps signature</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>config wps signature frequency</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>config wps signature interval</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>config wps signature mac-frequency</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>config wps signature quiet-time</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>show wps signature events</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>show wps signature summary</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>show wps summary</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART IV

Debug Commands

• Debug Commands: 802.11, on page 1111
• Debug Commands: a to i, on page 1119
• Debug Commands: j to q, on page 1179
• Debug Commands: r to z, on page 1205
Debug Commands: 802.11

- debug 11k, on page 1112
- debug 11w-pmf, on page 1113
- debug 11v all, on page 1114
- debug 11v detail, on page 1115
- debug 11v error, on page 1116
- debug 11w-pmf, on page 1117
debug 11k

To configure the debugging of 802.11k settings, use the debug 11k command.

```
debug 11k { all | detail | errors | events | history | optimization | simulation } { enable | disable }
```

### Syntax Description

- **all**: Configures the debugging of all 802.11k messages.
- **detail**: Configures the debugging of 802.11k details.
- **errors**: Configures the debugging of 802.11k errors.
- **events**: Configures the debugging of all 802.11k events.
- **history**: Configures the debugging of all 802.11k history. The Cisco WLC collects roam history of the client.
- **optimization**: Configures the debugging of 802.11k optimizations. You can view optimization steps of neighbor lists.
- **simulation**: Configures the debugging of 802.11k simulation data. You can view details of client roaming parameters and import them for offline simulation.
- **enable**: Enables the 802.1k debugging.
- **disable**: Disables the 802.1k debugging.

### Command Default

None.

This example shows how to enable the debugging of 802.11k simulation data:

```
(Cisco Controller) > debug 11k simulation enable
```

### Related Commands

- `config assisted-roaming`
- `config wlan assisted-roaming`
- `show assisted-roaming`
debug 11w-pmf

To configure the debugging of 802.11w, use the `debug 11w-pmf` command.

```plaintext
debug 11w-pmf {all | events | keys} {enable | disable}
```

**Syntax Description**

- `all`: Configures the debugging of all 802.11w messages.
- `keys`: Configures the debugging of 802.11w keys.
- `events`: Configures the debugging of 802.11w events.
- `enable`: Enables the debugging of 802.1w options.
- `disable`: Disables the debugging of 802.1w options.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of 802.11w keys:

```
(Cisco Controller) >debug 11w-pmf keys enable
```
debug 11v all

To configure the 802.11v debug options, use the **debug 11v all** command.

```
ddebug 11v all { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>enable</strong></td>
<td>Enables all the debug.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables all the debug.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable all the debug:

```
(cisco controller) > debug 11v all enable
```
**debug 11v detail**

To configure the 802.11v debug details, use the `debug 11v detail` command.

```
d debug 11v detail { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables debug details.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables debug details.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.11v debug details:

```
(Cisco Controller) > debug 11v detail enable
```
debug 11v error

To configure the 802.11v error debug options, use the `debug 11v errors` command.

```
debug 11v errors {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables error debug.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables error debug.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

```
Release Modification
8.1 This command was introduced.
```

The following example shows how to enable 802.11v error debug:

```
(Cisco Controller) >debug 11v error enable
```
debug 11w-pmf

To configure the debugging of 802.11w, use the `debug 11w-pmf` command.

```
debug 11w-pmf { all | events | keys } { enable | disable }
```

**Syntax Description**

- `all`  Configures the debugging of all 802.11w messages.
- `keys` Configures the debugging of 802.11w keys.
- `events` Configures the debugging of 802.11w events.
- `enable` Enables the debugging of 802.1w options.
- `disable` Disables the debugging of 802.1w options.

**Command Default**

None

**Command History**

```
 Release Modification
 ---- ----------------
 7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to enable the debugging of 802.11w keys:

```
(Cisco Controller) >debug 11w-pmf keys enable
```
debug 11w-pmf
Debug Commands: a to i

- debug aaa, on page 1121
- debug aaa events, on page 1122
- debug aaa local-auth, on page 1123
- debug airewave-director, on page 1125
- debug ap, on page 1127
- debug ap enable, on page 1129
- debug ap packet-dump, on page 1131
- debug ap show stats, on page 1132
- debug ap show stats video, on page 1134
- debug arp, on page 1135
- debug avc, on page 1136
- debug bcast, on page 1137
- debug call-control, on page 1138
- debug capwap, on page 1139
- debug capwap reap, on page 1140
- debug ccxdiag, on page 1141
- debug ccxrm, on page 1142
- debug ccxs69, on page 1143
- debug cckm, on page 1144
- debug client, on page 1145
- debug cts sxp, on page 1146
- debug cac, on page 1147
- debug cdp, on page 1148
- debug crypto, on page 1149
- debug dhcp, on page 1150
- debug dhcp service-port, on page 1151
- debug disable-all, on page 1152
- debug dns, on page 1153
- debug dot11, on page 1154
- debug dot11, on page 1155
- debug dot11 mgmt interface, on page 1156
- debug dot11 mgmt msg, on page 1157
- debug dot11 mgmt ssid, on page 1158
* debug dot11 mgmt state-machine, on page 1159
* debug dot11 mgmt station, on page 1160
* debug dot1x, on page 1161
* debug dtls, on page 1162
* debug fastpath, on page 1163
* debug flexconnect avc, on page 1168
* debug flexconnect aaa, on page 1169
* debug flexconnect acl, on page 1170
* debug flexconnect cckm, on page 1171
* debug group, on page 1172
* debug fmchs, on page 1173
* debug flexconnect group, on page 1174
* debug ft, on page 1175
* debug hotspot, on page 1176
* debug ipv6, on page 1177
debug aaa

To configure the debugging of AAA settings, use the debug aaa command.

ddebug aaa { [ all | avp-xml | detail | events | packet | ldap | local-auth | tacacs ] [ enable | disable ] }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>(Optional) Configures the debugging of all AAA messages.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avp-xml</td>
<td>(Optional) Configures debug of AAA Avp xml events.</td>
</tr>
<tr>
<td></td>
<td>detail</td>
<td>(Optional) Configures the debugging of AAA errors.</td>
</tr>
<tr>
<td></td>
<td>events</td>
<td>(Optional) Configures the debugging of AAA events.</td>
</tr>
<tr>
<td></td>
<td>packet</td>
<td>(Optional) Configures the debugging of AAA packets.</td>
</tr>
<tr>
<td></td>
<td>ldap</td>
<td>(Optional) Configures the debugging of the AAA Lightweight Directory Access Protocol (LDAP) events.</td>
</tr>
<tr>
<td></td>
<td>local-auth</td>
<td>(Optional) Configures the debugging of the AAA local Extensible Authentication Protocol (EAP) events.</td>
</tr>
<tr>
<td></td>
<td>tacacs</td>
<td>(Optional) Configures the debugging of the AAA TACACS+ events.</td>
</tr>
<tr>
<td></td>
<td>enable</td>
<td>(Optional) Enables the debugging.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>(Optional) Disables the debugging.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of AAA LDAP events:

(Cisco Controller) > debug aaa ldap enable

d debug aaa local-auth eap

d show running-config
To configure the debugging related to DNS-based ACLs, use the `debug aaa events enable` command.

```
debug aaa events enable
```

**Syntax Description**

```
events Configures the debugging of DNS-based ACLs.
```

**Command History**

```
Release Modification
7.6 This command is introduced.
```

The following example shows how to enable the debugging for DNS-based ACLs:

```
(Cisco Controller) > debug aaa events enable
```
# debug aaa local-auth

To configure the debugging of AAA local authentication on the Cisco WLC, use the `debug aaa local-auth` command.

```
debug aaa local-auth {db | shim | eap {framework | method} {all | errors | events | packets | sm} | {enable | disable}
```

## Syntax Description

- **db**
  - Configures the debugging of the AAA local authentication back-end messages and events.

- **shim**
  - Configures the debugging of the AAA local authentication shim layer events.

- **eap**
  - Configures the debugging of the AAA local Extensible Authentication Protocol (EAP) authentication.

- **framework**
  - Configures the debugging of the local EAP framework.

- **method**
  - Configures the debugging of local EAP methods.

- **all**
  - Configures the debugging of local EAP messages.

- **errors**
  - Configures the debugging of local EAP errors.

- **events**
  - Configures the debugging of local EAP events.

- **packets**
  - Configures the debugging of local EAP packets.

- **sm**
  - Configures the debugging of the local EAP state machine.

- **enable**
  - Starts the debugging.

- **disable**
  - Stops the debugging.

## Command Default

- None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of the AAA local EAP authentication:

```
(Cisco Controller) > debug aaa local-auth eap method all enable
```

## Related Commands

- `clear stats local-auth`
- `config local-auth active-timeout`
config local-auth eap-profile
config local-auth method fast
config local-auth user-credentials
show local-auth certificates
show local-auth config
show local-auth statistics
To configure the debugging of Airewave Director software, use the `debug airewave-director` command.

```
depug airewave-director (all | channel | detail | error | group | manager | message | packet | power | profile | radar | rf-change) {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all Airewave Director logs.</td>
</tr>
<tr>
<td>channel</td>
<td>Configures the debugging of the Airewave Director channel assignment protocol.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures the debugging of the Airewave Director detail logs.</td>
</tr>
<tr>
<td>error</td>
<td>Configures the debugging of the Airewave Director error logs.</td>
</tr>
<tr>
<td>group</td>
<td>Configures the debugging of the Airewave Director grouping protocol.</td>
</tr>
<tr>
<td>manager</td>
<td>Configures the debugging of the Airewave Director manager.</td>
</tr>
<tr>
<td>message</td>
<td>Configures the debugging of the Airewave Director messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures the debugging of the Airewave Director packets.</td>
</tr>
<tr>
<td>power</td>
<td>Configures the debugging of the Airewave Director power assignment protocol and coverage hole detection.</td>
</tr>
<tr>
<td>profile</td>
<td>Configures the debugging of the Airewave Director profile events.</td>
</tr>
<tr>
<td>radar</td>
<td>Configures the debugging of the Airewave Director radar detection/avoidance protocol.</td>
</tr>
<tr>
<td>rf-change</td>
<td>Configures the debugging of the Airewave Director rf changes.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the Airewave Director debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the Airewave Director debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None
The following example shows how to enable the debugging of Airewave Director profile events:

(Cisco Controller) > debug airewave-director profile enable
debug ap

To configure the remote debugging of Cisco lightweight access points or to remotely execute a command on a lightweight access point, use the `debug ap` command.

```
debug ap {enable | disable | command cmd} cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| enable             | Enables the debugging on a lightweight access point.  
|                   | **Note** The debugging information is displayed only to the controller console and does not send output to a controller Telnet/SSH CLI session. |
| disable            | Disables the debugging on a lightweight access point.  
|                   | **Note** The debugging information is displayed only to the controller console and does not send output to a controller Telnet/SSH CLI session. |
| command            | Specifies that a CLI command is to be executed on the access point. |
| cmd                | Command to be executed.  
|                   | **Note** The command to be executed must be enclosed in double quotes, such as `debug ap command “led flash 30” AP03`. The output of the command displays only to the controller console and does not send output to a controller Telnet/SSH CLI session. |
| cisco_ap           | Name of a Cisco lightweight access point. |

**Command Default**

The remote debugging of Cisco lightweight access points is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the remote debugging on access point AP01:

```
(Cisco Controller) >debug ap enable AP01
```

The following example shows how to execute the `config ap location` command on access point AP02:
The following example shows how to execute the flash LED command on access point AP03:

(Cisco Controller) >debug ap command "led flash 30" AP03
debug ap enable

To configure the remote debugging of Cisco lightweight access points or to remotely execute a command on a lightweight access point, use the debug ap enable command.

**Syntax**

debug ap {enable | disable | command cmd} cisco_ap

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the remote debugging.</td>
</tr>
<tr>
<td>Note</td>
<td>The debugging information is displayed only to the controller console and does not send output to a controller Telnet/SSH CLI session.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the remote debugging.</td>
</tr>
<tr>
<td>command</td>
<td>Specifies that a CLI command is to be executed on the access point.</td>
</tr>
<tr>
<td>cmd</td>
<td>Command to be executed.</td>
</tr>
<tr>
<td>Note</td>
<td>The command to be executed must be enclosed in double quotes, such as debug ap command “led flash 30” AP03. The output of the command displays only to the controller console and does not send output to a controller Telnet/SSH CLI session.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the remote debugging on access point AP01:

(Cisco Controller) >debug ap enable AP01

The following example shows how to disable the remote debugging on access point AP02:

(Cisco Controller) >debug ap disable AP02

The following example shows how to execute the flash LED command on access point AP03:
debug ap enable

(Cisco Controller) >debug ap command "led flash 30" AP03
**debug ap packet-dump**

To configure the debugging of Packet Capture, use the `debug ap packet-dump` command.

```
depug ap packet-dump { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of Packet Capture of an access point.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of Packet Capture of an access point.</td>
</tr>
</tbody>
</table>

**Command Default**

Debugging of Packet Capture is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Packet Capture does not work during inter-Cisco WLC roaming.

The Cisco WLC does not capture packets created in the radio firmware and sent out of the access point, such as beacon or probe response. Only packets that flow through the radio driver in the Tx path will be captured.

The following example shows how to enable the debugging of Packet Capture from an access point:

```
(Cisco Controller) > debug ap packet-dump enable
```
**debug ap show stats**

To debug video messages and statistics of Cisco lightweight access points, use the `debug ap show stats` command.

```
debug ap show stats (802.11a | 802.11b) cisco_ap {tx-queue | packet | load | multicast | client {client_MAC | video | all} | video metrics}

debug ap show stats video cisco_ap {multicast mgid mgid_database_number | admission | bandwidth}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
<tr>
<td>tx-queue</td>
<td>Displays the transmit queue traffic statistics of the AP.</td>
</tr>
<tr>
<td>packet</td>
<td>Displays the packet statistics of the AP.</td>
</tr>
<tr>
<td>load</td>
<td>Displays the QoS Basic Service Set (QBSS) and other statistics of the AP.</td>
</tr>
<tr>
<td>multicast</td>
<td>Displays the multicast supported rate statistics of the AP.</td>
</tr>
<tr>
<td>client</td>
<td>Displays the specified client metric statistics.</td>
</tr>
<tr>
<td>client_MAC</td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td>video</td>
<td>Displays video statistics of all clients on the AP.</td>
</tr>
<tr>
<td>all</td>
<td>Displays statistics of all clients on the AP.</td>
</tr>
<tr>
<td>video metrics</td>
<td>Displays the video metric statistics.</td>
</tr>
<tr>
<td>mgid</td>
<td>Displays detailed multicast information for a single multicast group ID (MGID).</td>
</tr>
<tr>
<td>mgid_database_number</td>
<td>Layer 2 MGID database number.</td>
</tr>
<tr>
<td>admission</td>
<td>Displays video admission control on the AP.</td>
</tr>
<tr>
<td>bandwidth</td>
<td>Displays video bandwidth on the AP.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
The following example shows how to troubleshoot the access point AP01’s transmit queue traffic on an 802.11a network:

(Cisco Controller) >debug ap show stats 802.11a AP01 tx-queue

The following example shows how to troubleshoot the access point AP02’s multicast supported rates on an 802.11b/g network:

(Cisco Controller) >debug ap show stats 802.11b AP02 multicast

The following example shows how to troubleshoot the metrics of a client identified by its MAC address, associated with the access point AP01 on an 802.11a network:

(Cisco Controller) >debug ap show stats 802.11a AP01 client 00:40:96:a8:f7:98

The following example shows how to troubleshoot the metrics of all clients associated with the access point AP01 on an 802.11a network:

(Cisco Controller) >debug ap show stats 802.11a AP01 client all
debug ap show stats video

To configure the debugging of video messages and statistics of Cisco lightweight access points, use the `debug ap show stats video` command.

```
depag show stats video cisco_ap { multicast mgid mgid_value | admission | bandwidth }
```

**Syntax Description**

- **cisco_ap**: Cisco lightweight access point name.
- **multicast mgid**: Displays multicast database related information for the specified MGID of an access point.
- **mgid_value**: Layer 2 MGID database number from 1 to 4095.
- **admission**: Displays the video admission control.
- **bandwidth**: Displays the video bandwidth.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of an access point AP01’s multicast group that is identified by the group’s Layer 2 MGID database number:

```
(Cisco Controller) > debug ap show stats video AP01 multicast mgid 50
```

This example shows how to configure the debugging of an access point AP01’s video bandwidth:

```
(Cisco Controller) > debug ap show stats video AP01 bandwidth
```
debug arp

To configure the debugging of Address Resolution Protocol (ARP) options, use the debug arp command.

debug arp {all | detail | events | message} {enable | disable}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all ARP logs.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures the debugging of ARP detail messages.</td>
</tr>
<tr>
<td>error</td>
<td>Configures the debugging of ARP errors.</td>
</tr>
<tr>
<td>message</td>
<td>Configures the debugging of ARP messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the ARP debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the ARP debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable ARP debug settings:

(Cisco Controller) > debug arp error enable

The following example shows how to disable ARP debug settings:

(Cisco Controller) > debug arp error disable

**Related Commands**

d debug disable-all

show sysinfo
### debug avc

To configure the debugging of Application Visibility and Control (AVC) options, use the `debug avc error` command.

```
debug avc { events | error } { enable | disable }
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Configures the debugging of AVC events.</td>
</tr>
<tr>
<td>error</td>
<td>Configures the debugging of AVC errors.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the debugging of AVC events or errors.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of AVC events or errors.</td>
</tr>
</tbody>
</table>

#### Command Default

By default, the debugging of AVC options is disabled.

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of AVC errors:

```
(Cisco Controller) > debug avc error enable
```

#### Related Commands

- `config avc profile delete`
- `config avc profile rule`
- `config wlan avc`
- `show avc profile`
- `show avc applications`
- `show avc statistics`
debug bcast

To configure the debugging of broadcast options, use the **debug bcast** command.

```
debug bcast { all | error | message | igmp | detail } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all broadcast logs.</td>
</tr>
<tr>
<td>error</td>
<td>Configures the debugging of broadcast errors.</td>
</tr>
<tr>
<td>message</td>
<td>Configures the debugging of broadcast messages.</td>
</tr>
<tr>
<td>igmp</td>
<td>Configures the debugging of broadcast IGMP messages.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures the debugging of broadcast detailed messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the broadcast debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the broadcast debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of broadcast messages:

```
(Cisco Controller) > debug bcast message enable
```

The following example shows how to disable the debugging of broadcast messages:

```
(Cisco Controller) > debug bcast message disable
```

**Related Commands**

- `debug disable-all`
- `show sysinfo`
debug call-control

To configure the debugging of the SIP call control settings, use the `debug call-control` command.

```
debug call-control (all | event) (enable | disable)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Configures the debugging options for all SIP call control messages.</td>
</tr>
<tr>
<td><code>event</code></td>
<td>Configures the debugging options for SIP call control events.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of SIP call control messages or events.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of SIP call control messages or events.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of all SIP call control messages:

```
(Cisco Controller) > debug call-control all enable
```
**debug capwap**

To configure the debugging of Control and Provisioning of Wireless Access Points (CAPWAP) settings, use the `debug capwap` command.

```
details { detail | dtls-keepalive | errors | events | hexdump | info | packet | payload | mfp } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Configures the debugging for CAPWAP detail settings.</td>
</tr>
<tr>
<td><code>dtls-keepalive</code></td>
<td>Configures the debugging for CAPWAP DTLS data keepalive packets settings.</td>
</tr>
<tr>
<td><code>errors</code></td>
<td>Configures the debugging for CAPWAP error settings.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Configures the debugging for CAPWAP events settings.</td>
</tr>
<tr>
<td><code>hexdump</code></td>
<td>Configures the debugging for CAPWAP hexadecimal dump settings.</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Configures the debugging for CAPWAP info settings.</td>
</tr>
<tr>
<td><code>packet</code></td>
<td>Configures the debugging for CAPWAP packet settings.</td>
</tr>
<tr>
<td><code>payload</code></td>
<td>Configures the debugging for CAPWAP payload settings.</td>
</tr>
<tr>
<td><code>mfp</code></td>
<td>Configures the debugging for CAPWAP mfp settings.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of the CAPWAP command.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of the CAPWAP command.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of CAPWAP details:

```
(Cisco Controller) > debug capwap detail enable
```
To configure the debugging of Control and Provisioning of Wireless Access Points (CAPWAP) settings on a FlexConnect access point, use the `debug capwap reap` command.

```
ddebug capwap reap [mgmt | load]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mgmt</th>
<th>(Optional) Configures the debugging for client authentication and association messages.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>load</td>
<td>(Optional) Configures the debugging for payload activities, which is useful when the FlexConnect access point boots up in standalone mode.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of FlexConnect client authentication and association messages:

```
(Cisco Controller) >debug capwap reap mgmt
```
debug ccxdiag

To configure debugging of Cisco Compatible Extensions (CCX) diagnostic options, use the `debug ccxdiag` command.

```
default ccxdiag { all | error | event | packet } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Configures debugging of all the CCX S69 messages.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>Configures debugging of the CCX S69 errors.</td>
</tr>
<tr>
<td><code>event</code></td>
<td>Configures debugging of the CCX S69 events.</td>
</tr>
<tr>
<td><code>packet</code></td>
<td>Configures debugging of the CCX S69 packets.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables debugging of the CCX S69 options.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables debugging of the CCX S69 options.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable CCX S69 packets debugging:

(Cisco Controller) `debug ccxdiag packets enable`
To configure debugging of the CCX Cisco Client eXtension (CCX) Radio Management (RM), use the `debug ccxrm` command.

```plaintext
d debug ccxrm { all | detail | error | location-calibration | message | packet | warning } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures debugging of all CCX RM messages.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures detailed debugging of CCX RM.</td>
</tr>
<tr>
<td>error</td>
<td>Configures debugging of the CCX RM errors.</td>
</tr>
<tr>
<td>location-calibration</td>
<td>Configures debugging of the CCX RM location calibration.</td>
</tr>
<tr>
<td>message</td>
<td>Configures debugging of CCX RM messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures debugging of the CCX RM packets.</td>
</tr>
<tr>
<td>warning</td>
<td>Configures debugging of the CCX RM warnings.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of the CCX RM options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the CCX RM options.</td>
</tr>
</tbody>
</table>

### Command Default
None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable CCX RM debugging:

```
(Cisco Controller) > debug ccxrm all enable
```
debug ccxs69

To configure debugging of CCX S69 tasks, use the `debug ccxs69` command.

```
ddebug ccxs69 { all | error | event } { enable | disable }
```

**Syntax Description**

- **all**: Configures debugging of all the CCX S69 messages.
- **error**: Configures debugging of the CCX S69 errors.
- **event**: Configures debugging of the CCX S69 events.
- **enable**: Enables debugging of the CCX S69 options.
- **disable**: Disables debugging of the CCX S69 options.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable CCX S69 debugging:

```
(Cisco Controller) >debug ccxs69 all enable
```
To configure the debugging of the Cisco Centralized Key Management options, use the **debug cckm**

```plaintext
debug cckm {client | detailed} {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>client</td>
<td>None</td>
<td>Release 7.6</td>
</tr>
<tr>
<td>detailed</td>
<td>Configures debugging of the Cisco Centralized Key Management of clients.</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of Cisco Centralized Key Management.</td>
<td></td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of Cisco Centralized Key Management.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to enable detailed debugging of Cisco Centralized Key Management:

(Cisco Controller) > **debug cckm detailed enable**
debug client

To configure the debugging for a specific client, use the debug client command.

d debug client  mac_address

Syntax Description

| mac_address | MAC address of the client. |

Command Default

None

Usage Guidelines

After entering the debug client  mac_address command, if you enter the debug aaa events enable command, then the AAA events logs are displayed for that particular client MAC address.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to debug a specific client:

(Cisco Controller) > debug client 01:35:6x:yy:21:00
To configure debugging of Cisco TrustSec SXP options, use the `debug cts sxp` command.

```
debug cts sxp { all | errors | events | framework | message } { enable | disable }
```

### Syntax Description

- **all**: Configures debugging of all the CTS SXP options
- **errors**: Configures debugging of the CTS SXP errors
- **events**: Configures debugging of the CTS SXP events
- **framework**: Configures debugging of the CTS SXP framework
- **message**: Configures debugging of the CTS SXP messages
- **enable**: Enables debugging
- **disable**: Disables debugging

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
debug cac

To configure the debugging of Call Admission Control (CAC) options, use the `debug cac` command.

```
ddebug cac {all | event | packet} {enable | disable}
```

**Syntax Description**

- **all**: Configures the debugging options for all CAC messages.
- **event**: Configures the debugging options for CAC events.
- **packet**: Configures the debugging options for selected CAC packets.
- **kts**: Configures the debugging options for KTS-based CAC messages.
- **enable**: Enables the debugging of CAC settings.
- **disable**: Disables the debugging of CAC settings.

**Command Default**

By default, the debugging of CAC options is disabled.

**Command History**

- **Release Modification**
  - **7.6**  This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable debugging of CAC settings:

```
(Cisco Controller) > debug cac event enable
(Cisco Controller) > debug cac packet enable
```

**Related Commands**

- `config 802.11 cac video acm`
- `config 802.11 cac video max-bandwidth`
- `config 802.11 video roam-bandwidth`
- `config 802.11 cac video tspec-inactivity-timeout`
- `config 802.11 cac voice load-based`
- `config 802.11 cac voice roam-bandwidth`
- `config 802.11 cac voice stream-size`
- `config 802.11cac voice tspec-inactivity-timeout`
debug cdp

To configure debugging of CDP, use the `debug cdp` command.

```
debug cdp { events | packets } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Configures debugging of the CDP events.</td>
</tr>
<tr>
<td>packets</td>
<td>Configures debugging of the CDP packets.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of the CDP options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the CDP options.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable CDP event debugging in a Cisco controller:

```
(Cisco Controller) > debug cdp
```
debug crypto

To configure the debugging of the hardware cryptographic options, use the `debug crypto` command.

```
debug crypto { all | sessions | trace | warning } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Configures the debugging of all hardware crypto messages.</td>
</tr>
<tr>
<td><code>sessions</code></td>
<td>Configures the debugging of hardware crypto sessions.</td>
</tr>
<tr>
<td><code>trace</code></td>
<td>Configures the debugging of hardware crypto sessions.</td>
</tr>
<tr>
<td><code>warning</code></td>
<td>Configures the debugging of hardware crypto sessions.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of hardware cryptographic sessions.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of hardware cryptographic sessions.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of hardware crypto sessions:

```
(Cisco Controller) > debug crypto sessions enable
```
debug dhcp

To configure the debugging of DHCP, use the `debug dhcp` command.

```
ddebug dhcp { message | packet } { enable | disable }
```

**Syntax Description**

- **message**: Configures the debugging of DHCP error messages.
- **packet**: Configures the debugging of DHCP packets.
- **enable**: Enables the debugging DHCP messages or packets.
- **disable**: Disables the debugging of DHCP messages or packets.

**Command Default**

None

The following example shows how to enable the debugging of DHCP messages:

```
(Cisco Controller) > debug dhcp message enable
```
debug dhcp service-port

To enable or disable debugging of the Dynamic Host Configuration Protocol (DHCP) packets on the service port, use the `debug dhcp service-port` command.

```
display dhcp service-port {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of DHCP packets on the service port.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of DHCP packets on the service port.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of DHCP packets on a service port:

```
(Cisco Controller) >debug dhcp service-port enable
```
debug disable-all

To disable all debug messages, use the debug disable-all command.

d.debug disable-all

Syntax Description
This command has no arguments or keywords.

Command Default
Disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to disable all debug messages:

(Cisco Controller) > debug disable-all
debug dns

To configure debugging of Domain Name System (DNS) options, use the `debug dns` command.

```
d debug dns {all | detail | error | message} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures debugging of all the DNS options.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures debugging of the DNS details.</td>
</tr>
<tr>
<td>error</td>
<td>Configures debugging of the DNS errors.</td>
</tr>
<tr>
<td>message</td>
<td>Configures debugging of the DNS messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of the DNS options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the DNS options.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable DNS error debugging:

```
(Cisco Controller) > debug dns error enable
```
To configure the debugging of 802.11 events, use the `debug dot11` command.

```
debug dot11 { all | load-balancing | management | mobile | nmsp | probe | rldp | rogue
| state } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all 802.11 messages.</td>
</tr>
<tr>
<td>load-balancing</td>
<td>Configures the debugging of 802.11 load balancing events.</td>
</tr>
<tr>
<td>management</td>
<td>Configures the debugging of 802.11 MAC management messages.</td>
</tr>
<tr>
<td>mobile</td>
<td>Configures the debugging of 802.11 mobile events.</td>
</tr>
<tr>
<td>nmsp</td>
<td>Configures the debugging of the 802.11 NMSP interface events.</td>
</tr>
<tr>
<td>probe</td>
<td>Configures the debugging of probe.</td>
</tr>
<tr>
<td>rldp</td>
<td>Configures the debugging of 802.11 Rogue Location Discovery.</td>
</tr>
<tr>
<td>rogue</td>
<td>Configures the debugging of 802.11 rogue events.</td>
</tr>
<tr>
<td>state</td>
<td>Configures the debugging of 802.11 mobile state transitions.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 802.11 debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11 debugging.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of 802.11 settings:

(Cisco Controller) > `debug dot11 state enable`
(Cisco Controller) > `debug dot11 mobile enable`
### debug dot11

To configure the debugging of 802.11 events, use the **debug dot11** command.

```plaintext
debug dot11 { all | load-balancing | management | mobile | nmsp | probe | rldp | rogue |
 state } { enable | disable }
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all 802.11 messages.</td>
</tr>
<tr>
<td>load-balancing</td>
<td>Configures the debugging of 802.11 load balancing events.</td>
</tr>
<tr>
<td>management</td>
<td>Configures the debugging of 802.11 MAC management messages.</td>
</tr>
<tr>
<td>mobile</td>
<td>Configures the debugging of 802.11 mobile events.</td>
</tr>
<tr>
<td>nmsp</td>
<td>Configures the debugging of the 802.11 NMSP interface events.</td>
</tr>
<tr>
<td>probe</td>
<td>Configures the debugging of probe.</td>
</tr>
<tr>
<td>rldp</td>
<td>Configures the debugging of 802.11 Rogue Location Discovery.</td>
</tr>
<tr>
<td>rogue</td>
<td>Configures the debugging of 802.11 rogue events.</td>
</tr>
<tr>
<td>state</td>
<td>Configures the debugging of 802.11 mobile state transitions.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the 802.11 debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the 802.11 debugging.</td>
</tr>
</tbody>
</table>

#### Command Default

None

#### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of 802.11 settings:

(Cisco Controller) > debug dot11 state enable
(Cisco Controller) > debug dot11 mobile enable
**debug dot11 mgmt interface**

To configure debugging of 802.11 management interface events, use the `debug dot11 mgmt interface` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to debug 802.11 management interface events:

(Cisco Controller) > `debug dot11 mgmt interface`
**debug dot11 mgmt msg**

To configure debugging of 802.11 management messages, use the `debug dot11 mgmt msg` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to debug dot11 management messages:

```
(Cisco Controller) > debug dot11 mgmt msg
```
**debug dot11 mgmt ssid**

To configure debugging of 802.11 SSID management events, use the `debug dot11 mgmt ssid` command.

```
debug dot11 mgmt ssid
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of 802.11 SSID management events:

```
(Cisco Controller) > debug dot11 mgmt ssid
```
debug dot11 mgmt state-machine

To configure debugging of the 802.11 state machine, use the **debug dot11 mgmt state-machine** command.

**debug dot11 mgmt state-machine**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of 802.11 state machine:

(Cisco Controller) > debug dot11 mgmt state-machine
debug dot11 mgmt station

To configure the debugging of the management station settings, use the debug dot11 mgmt station command.

**debug dot11 mgmt station**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of the management station settings:

(Cisco Controller) > debug dot11 mgmt station
debug dot1x

To configure debugging of the 802.1X options, use the `debug dot1x` command.

```
depot dot1x { aaa | all | events | packets | states } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>Configures debugging of the 802.1X AAA interactions.</td>
</tr>
<tr>
<td>all</td>
<td>Configures debugging of all the 802.1X messages.</td>
</tr>
<tr>
<td>events</td>
<td>Configures debugging of the 802.1X events.</td>
</tr>
<tr>
<td>packets</td>
<td>Configures debugging of the 802.1X packets.</td>
</tr>
<tr>
<td>states</td>
<td>Configures debugging of the 802.1X state transitions.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of the 802.1X options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the 802.1X options.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.1X state transitions debugging:

```
(Cisco Controller) > debug dot1x states enable
```
debug dtls

To configure debugging of the Datagram Transport Layer Security (DTLS) options, use the debug dtls command.

`debug dtls { all | event | packet | trace } { enable | disable }

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures debugging of all the DTLS messages.</td>
</tr>
<tr>
<td>event</td>
<td>Configures debugging of the DTLS events.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures debugging of the DTLS packets.</td>
</tr>
<tr>
<td>trace</td>
<td>Configures debugging of the DTLS trace messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of the DTLS options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the DTLS options.</td>
</tr>
</tbody>
</table>

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

Usage Guidelines

The debug actions described here are used in conjunction with CAPWAP troubleshooting.

The following example shows how to enable DTLS packet debugging:

(Cisco Controller) > debug dtls packet enable
debug fastpath

To debug the issues in the 10-Gigabit Ethernet interface of the controller and to view details of all the management and control features of the controller, use the **debug fastpath** command.

```plaintext
debug fastpath [{disable|enable|errors|events|warning|log|status|dump|audit|clear}]
debug fastpath log [{error events show}]
debug fastpath dump [{stats DP_number} | {fpapool DP_number} | {ownerdb} | {portdb} | {tun4db index DP_number} | {scdbd index DP_number} | {cfgtool -- dump sfp} | {urlacldb start-acl-id start-rule-index} | {vlan db} | {dpcp-stats} | {clear stats} | {systemdb} | {debug|{wlanappstats wlan_id}} | {appqosdb}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Enables debug of fastpath messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Disables debug of fastpath messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Displays the debug messages related to the fastpath errors.</td>
</tr>
<tr>
<td>events</td>
<td>Displays the debug messages related to the fastpath events.</td>
</tr>
<tr>
<td>warnings</td>
<td>Displays the debug messages related to the fastpath warnings.</td>
</tr>
<tr>
<td>log</td>
<td>Configures debug of log messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Configures debug of fastpath errors.</td>
</tr>
<tr>
<td>events</td>
<td>Configures debug of fastpath events.</td>
</tr>
<tr>
<td>show</td>
<td>Displays log of most recent events related to fastpath.</td>
</tr>
<tr>
<td>status</td>
<td>Displays status of fastpath configuration.</td>
</tr>
<tr>
<td>dump</td>
<td>Displays the CLI dump commands.</td>
</tr>
<tr>
<td>stats</td>
<td>Displays the debug statistics from the data plane.</td>
</tr>
<tr>
<td>DP_number</td>
<td>Displays the statistic counters at data plane based on selected data plane number. Values include 0, 1, and All. The default option is All. You must select:</td>
</tr>
<tr>
<td></td>
<td>• The index 0 for the Cisco Wireless LAN Controller 2504 Series, Cisco Wireless LAN Controller 5508 Series, Cisco Wireless LAN Controller 7500 Series, Cisco Wireless LAN Controller 8500 Series.</td>
</tr>
<tr>
<td></td>
<td>• The index 0 and/or 1 respectively for the two data planes in WiSM2 to view statistics of individual data plane or from both.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>f papool</td>
<td>Displays statistics of packet buffer in data plane.</td>
</tr>
<tr>
<td>DP_number</td>
<td>Displays statistics of packet buffer based on data plane number. Values include 0, 1, and All. The default option is All. You must select:</td>
</tr>
<tr>
<td></td>
<td>• The index 0 for the Cisco Wireless LAN Controller 2504 Series, Cisco Wireless LAN Controller 5508 Series, Cisco Wireless LAN Controller 7500 Series, Cisco Wireless LAN Controller 8500 Series.</td>
</tr>
<tr>
<td></td>
<td>• The index 0 and/or 1 respectively for the two data planes in WiSM2 to view statistics of individual data plane or from both.</td>
</tr>
<tr>
<td>ownerdb</td>
<td>Displays the data plane owner information.</td>
</tr>
<tr>
<td>portdb</td>
<td>Displays the port database at data plane.</td>
</tr>
<tr>
<td>tun4db</td>
<td>Dumps the first 20 tunnels from the data plane.</td>
</tr>
<tr>
<td>index</td>
<td>Dumps 20 tunnel entries from index provided. You must use data plane number 0/1 to denote WISM2 data plane processor.</td>
</tr>
<tr>
<td>DP_number</td>
<td>Dumps the first twenty client entries from the data plane. Values include 0, 1, and All. The default option is All. You must select:</td>
</tr>
<tr>
<td></td>
<td>• The index 0 for the Cisco Wireless LAN Controller 2504 Series, Cisco Wireless LAN Controller 5508 Series, Cisco Wireless LAN Controller 7500 Series, Cisco Wireless LAN Controller 8500 Series.</td>
</tr>
<tr>
<td></td>
<td>• The index 0 and/or 1 respectively for the two data planes in WiSM2 to view statistics of individual data plane or from both.</td>
</tr>
<tr>
<td>scb.db</td>
<td>Dumps 20 client entries starting from index provided. You must use data plane number 0/1 to denote WISM2 data plane processor.</td>
</tr>
<tr>
<td>index</td>
<td>Dumps client information for the selected MAC address.</td>
</tr>
</tbody>
</table>
### DP_number

Dumps the first twenty client entries from the data plane. Values include 0, 1, and All. The default option is All. You must select:

- The index 0 for the Cisco Wireless LAN Controller 2504 Series, Cisco Wireless LAN Controller 5508 Series, Cisco Wireless LAN Controller 7500 Series, Cisco Wireless LAN Controller 8500 Series.
- The index 0 and/or 1 respectively for the two data planes in WiSM2 to view statistics of individual data plane or from both.

### cfgtool -- dump.sfp

Displays the model/type of SX/LC/T small form-factor plug-in (SFP) modules with the OUI Partnumber.

### urlacldb start-acl-id start-rule-index

Dumps the URL ACL database.

### vlanldb

Dumps the VLAN database in the dataplane.

### dpccp-stats

Displays the dataplane to controlplane message statistics.

### clear stats

Clears the data plane statistic counters.

### systemdb

Displays the global data plane configuration.

### debug

Displays the few latest messages of the data plane to enable troubleshooting.

### wlanappstats

Displays Application Visibility and Control (AVC) statistics of a WLAN.

### wlan_id

The WLAN identifier of the WLAN you need identify the AVC statistics.

### appqosdb

Displays Application Visibility and Control (AVC) database statistics of the data plane.

### clear

Clear command.

---

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.3</td>
<td>This command was enhanced in this release. The new keyword added is urlacldb</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

None

**Examples**
The following is an example of the SX/LC/T small form-factor plug-in (SFP) modules model/type with the respective OUI Partnumber.

(Cisco Controller) >

<table>
<thead>
<tr>
<th>Pr Type</th>
<th>STP Admin</th>
<th>Physical</th>
<th>Physical</th>
<th>Link</th>
<th>Link</th>
<th>POE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pr Type</td>
<td>Stat</td>
<td>Mode</td>
<td>Mode</td>
<td>Status</td>
<td>Status</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>Forw</td>
<td>Enable</td>
<td>Auto</td>
<td>1000</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>1000BaseTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Normal</td>
<td>Forw</td>
<td>Enable</td>
<td>Auto</td>
<td>1000</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>1000BaseTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following is an example of the fastpath status displayed while you execute the status command.

(Cisco Controller) >

FP0.03: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.00: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.06: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.05: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.06: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.03: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.06: (119115) Received command: FP_CMD_ACL_COUNTER_GET
FP0.07: (119125) Received command: FP_CMD_ACL_COUNTER_GET
FP0.04: (119125) Received command: FP_CMD_ACL_COUNTER_GET
FP0.03: (119125) Received command: FP_CMD_ACL_COUNTER_GET

The following is an example of the fastpath errors displayed while you execute the debug fastpath log errors command.

(Cisco Controller) >

FP0.04: (873365) [fp_ingress_capwap:429] Discarding Control/Data Plane DTLS-Application packets after Lookup Failed
FP0.02: (873418) Change logDebugLevel from: 0x1e to 0x9

The following is an example of the fastpath events displayed while you execute the debug fastpath log events command.

(Cisco Controller) >

FP0.09: (873796) [fp_ingress_capwap:429] Discarding Control/Data Plane DTLS-Application packets after Lookup Failed
FP0.06: (873921) Change logDebugLevel from: 0x9 to 0x1e

The following is an example displayed while you execute the debug fastpath log show command.

(Cisco Controller) >

FP0.07: (874033) Change logDebugLevel from: 0x1e to 0x9
Fastpath CPU0.02: FAST CACHE DISABLED
Fastpath CPU0.02: FAST CACHE ENABLED
Fastpath CPU0.00: Received command: FP_CMD_ADD_AP
Fastpath CPU0.05: Received command: FP_CMD_DEL_TUN4 ifTun=1113
Fastpath CPU0.03: Received command: FP_CMD_DEL_TUN4 ifTun=3161
Fastpath CPU0.03: Received command: FP_CMD_DEL_AP
FP0.02:[cmdDelMcastRgTun:6733]failed to delete mcast rg tun 0 ifTun=3161
FP0.07:[fp_ingress_capwap:429]Discarding Control/Data Plane
DTLS-Application packets after Lookup Failed
FP0.01:[fp_ingress_capwap:429]Discarding Control/Data Plane
DTLS-Application packets after Lookup Failed
Fastpath CPU0.01: Received command: FP_CMD_ADD_TUN4 type=CAPWAP ifTun=1114
dstIP
=9.4.110.100 dstMac=2037.06e2.5ec4 dstIPv6=
0000:0000:0000:0000:0000:0000:0000:0000
Fastpath CPU0.01: Tunnel 1114 srcip=9041820 dstip=9046e64 xor=0x7644(30276)
LAG Offset=0,0,0,1,0,1,4
Fastpath CPU0.09: Received command: FP_CMD_ADD_TUN4 type=CAPWAP ifTun=3162
dstIP
=9.4.110.100 dstMac=2037.06e2.5ec4 dstIPv6=
0000:0000:0000:0000:0000:0000:0000:0000
Fastpath CPU0.09: Tunnel 3162 srcip=9041820 dstip=9046e64 xor=0x7644(30276)
LAG Offset=0,0,0,1,0,1,4
Fastpath CPU0.00: Received command: FP_CMD_SET_INTERFACE_MTU
Fastpath CPU0.00: FAST CACHE DISABLED
Fastpath CPU0.00: FAST CACHE ENABLED
Fastpath CPU0.00: Received command: FP_CMD_ADD_AP
Fastpath CPU0.03: Received command: FP_CMD_UPDATE_EOIP for index=5122
Fastpath CPU0.02: Received command: FP_CMD_UPDATE_EOIP for index=5122
Fastpath CPU0.00: Received command: FP_CMD_DEL_TUN4 ifTun=1114
Fastpath CPU0.03: Received command: FP_CMD_DEL_TUN4 ifTun=3162
Fastpath CPU0.03: Received command: FP_CMD_DEL_AP
FP0.04:[cmdDelMcastRgTun:6733]failed to delete mcast rg tun 0 ifTun=3162
debug flexconnect avc

To debug a Flexconnect Application Visibility and Control (AVC) event, use the **debug flexconnect avc** command.

```
debug flexconnect avc {event | error | detail} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>event</strong></td>
<td>Debugs a FlexConnect AVC event.</td>
</tr>
<tr>
<td><strong>error</strong></td>
<td>Debugs a FlexConnect AVC error.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>Debugs a FlexConnect AVC details.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables debug.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables debug.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable a debug action for an event:

```
(Cisco Controller) >debug flexconnect avc event enable
```
**debug flexconnect aaa**

To configure debugging of FlexConnect backup RADIUS server events or errors, use the `debug flexconnect aaa` command.

```
debug flexconnect aaa { event | error } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>event</code></td>
<td>Configures the debugging for FlexConnect RADIUS server events.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>Configures the debugging for FlexConnect RADIUS server errors.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of FlexConnect RADIUS server settings.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of FlexConnect RADIUS server settings.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of FlexConnect RADIUS server events:

```
(Cisco Controller) >debug flexconnect aaa event enable
```
**debug flexconnect acl**

Configures debugging of FlexConnect access control lists (ACLs), use the **debug flexconnect acl** command.

```
debug flexconnect acl { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of FlexConnect ACLs.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of FlexConnect ACLs.</td>
</tr>
</tbody>
</table>

| Command Default     | None                                             |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of FlexConnect ACLs:

```
(Cisco Controller) >debug flexconnect acl enable
```
**debug flexconnect cckm**

Configure debugging of FlexConnect Cisco Centralized Key Management (CCKM) fast roaming, use the `debug flexconnect cckm` command.

**Syntax**

```
debug flexconnect cckm { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of FlexConnect CCKM fast roaming settings.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of FlexConnect CCKM fast roaming settings.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of FlexConnect CCKM fast roaming events:

```
(Cisco Controller) >debug flexconnect cckm event enable
```
**debug group**

To configure the debugging of access point groups, use the **debug group** command.

```
debug group { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of access point groups.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of access point groups.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of access point groups:

```
(Cisco Controller) > debug group enable
```
debug fmchs

To configure debugging of Fixed Mobile Convergence Handover Service (FMCHS) of the controller, use the `debug fmchs` command.

```
debug fmchs { all | error | event | nmsp | packet } { enable | disable }
```

**Syntax Description**

- **all**: Configures debugging of all FMCHS messages.
- **error**: Configures debugging of the FMCHS errors.
- **event**: Configures debugging of the FMCHS events.
- **nmsp**: Configures debugging of the FMCHS NMSP events.
- **packet**: Configures debugging of the FMCHS packets.
- **enable**: Enables debugging of the FMCHS options.
- **disable**: Disables debugging of the FMCHS options.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable FMCHS event debugging:

```plaintext
(Cisco Controller) > debug fmchs event enable
```
debug flexconnect group

To configure debugging of FlexConnect access point groups, use the debug flexconnect group command.

debug flexconnect group {enable | disable}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of FlexConnect access point groups.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of FlexConnect access point groups.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of FlexConnect access point groups:

(Cisco Controller) > debug flexconnect group enable
debug ft

To configure debugging of 802.11r, use the debug ft command.

**debug ft {events | keys} {enable | disable}**

**Syntax Description**

- **events**: Configures debugging of the 802.11r events.
- **keys**: Configures debugging of the 802.11r keys.
- **enable**: Enables debugging of the 802.11r options.
- **disable**: Disables debugging of the 802.11r options.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.11r debugging:

(Cisco Controller) >**debug ft events enable**
To configure debugging of HotSpot events or packets, use the `debug hotspot` command.

```
debug hotspot {events | packets} {enable | disable} {enable | disable}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Configures debugging of HotSpot events.</td>
</tr>
<tr>
<td>packets</td>
<td>Configures debugging of HotSpot packets.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the debugging of HotSpot options.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of HotSpot options.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable debugging of hotspot events:

```
(Cisco Controller) >debug hotspot events enable
```
**debug ipv6**

To configure debugging of IPv6 options, use the **debug ipv6** command.

```
dump ipv6 \{ all | bt | classifier | errors | events | filter | fsm | gleaner | hwapi | memory | ndsupress | parser | policy | ra_throttler | switcher \} \{ enable | disable \}
```

**Syntax Description**

- **all**: Configures debugging of all the IPv6 information.
- **bt**: Configures debugging of the IPv6 neighbor binding table.
- **classifier**: Configures debugging of the IPv6 packet classifiers.
- **errors**: Configures debugging of the IPv6 errors.
- **events**: Configures debugging of the IPv6 events.
- **filter**: Configures filters for the IPv6 debugs.
- **fsm**: Configures debugging of the IPv6 finite state machine (FSM).
- **gleaner**: Configures debugging of the IPv6 gleaner. Learning of entries is called gleaning.
- **hwapi**: Configures debugging of the IPv6 hardware APIs.
- **memory**: Configures debugging of the IPv6 binding table memory usage.
- **ndsupress**: Configures debugging of the suppressed IPv6 neighbor discoveries.
- **parser**: Configures debugging of the IPv6 parser.
- **policy**: Configures debugging of the IPv6 policies.
- **ra_throttler**: Configures debugging of the IPv6 router advertising throttler.
- **switcher**: Configures debugging of the IPv6 switcher.
- **enable**: Enables debugging of the IPv6 options.
- **disable**: Disables debugging of the IPv6 options.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of IPv6 policies:

```
(Cisco Controller) > debug ipv6 policy enable
```
debug ipv6
Debug Commands: j to q

- debug l2age, on page 1180
- debug mac, on page 1181
- debug mdns all, on page 1182
- debug mdns detail, on page 1183
- debug mdns error, on page 1184
- debug mdns message, on page 1185
- debug mdns ha, on page 1186
- debug memory, on page 1187
- debug mesh security, on page 1188
- debug mesh convergence, on page 1189
- debug mobility, on page 1190
- debug nac, on page 1192
- debug nmsp, on page 1193
- debug ntp, on page 1194
- debug packet error, on page 1195
- debug packet logging, on page 1196
- debug pem, on page 1199
- debug pm, on page 1200
- debug poe, on page 1202
- debug policy, on page 1203
- debug profiling, on page 1204
**debug l2age**

To configure the debugging of Layer 2 age timeout messages, use the `debug l2age` command.

```
default l2age { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of Layer 2 age settings.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging Layer 2 age settings.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of Layer 2 age settings:

```
(Cisco Controller) > debug l2age enable
```

**Related Commands**

- `debug disable-all`
debug mac

To configure the debugging of the client MAC address, use the debug mac command.

```
debug mac {disable | addr MAC}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables the debugging of the client using the MAC address.</td>
</tr>
<tr>
<td>addr</td>
<td>Configures the debugging of the client using the MAC address.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the client.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of the client using the MAC address:

```
(Cisco Controller) > debug mac addr 00.0c.41.07.33.a6
```

**Related Commands**

d debug disable-all
**debug mdns all**

To debug all multicast DNS (mDNS) messages, details, and errors, use the `debug mdns all` command.

```
debug mdns all { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of all mDNS messages, details, and errors.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of all mDNS messages, details, and errors.</td>
</tr>
</tbody>
</table>

**Command Default**

By default, the debugging of all mDNS messages, details, and errors is disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable debugging of all mDNS messages, details, and errors:

```
(Cisco Controller) > debug mdns all enable
```
**debug mdns detail**

To debug multicast DNS (mDNS) details, use the `debug mdns detail` command.

```
debug mdns detail { enable | disable }
```

**Syntax Description**

- `enable` Enables the debugging of mDNS details.
- `disable` Disables the debugging of mDNS details.

**Command Default**

This command is disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of mDNS details:

```
(Cisco Controller) > debug mdns detail enable
```

**Related Commands**

- `config mdns profile`
- `config mdns query interval`
- `config mdns service`
- `config mdns snooping`
- `config interface mdns-profile`
- `config interface group mdns-profile`
- `config wlan mdns`
- `show mdns profile`
- `show mdns service`
- `clear mdns service-database`
- `debug mdns all`
- `debug mdns error`
debug mdns error

To debug multicast DNS (mDNS) errors, use the **debug mdns error** command.

```
debug mdns error (enable | disable)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of mDNS errors.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of mDNS errors.</td>
</tr>
</tbody>
</table>

**Command Default**

This command is disabled by default.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of mDNS errors.

```
(Cisco Controller) > debug mdns error enable
```

**Related Commands**

- config mdns profile
- config mdns query interval
- config mdns service
- config mdns snooping
- config interface mdns-profile
- config interface group mdns-profile
- config wlan mdns
- show mdns profile
- show mnds service
- clear mdns service-database
- debug mdns all
- debug mdns detail
- debug mdns message
debug mdns message

To debug multicast DNS (mDNS) messages, use the `debug mdns message` command.

```
debug mdns message { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of mDNS messages.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of mDNS messages.</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of mDNS messages:

```
(Cisco Controller) > debug mdns message enable
```
To debug all the multicast Domain Name System (mDNS) High Availability (HA) messages, use the `debug mdns ha` command.

```
download mdns ha { enable | disable }
```

**Syntax Description**
- `enable` Enables debugging of all the mDNS HA messages.
- `disable` Disables debugging of all the mDNS HA messages.

**Command Default**
This command is disabled by default.

**Command History**
- **Release** Modification
  - 7.5 This command was introduced.

**Usage Guidelines**
This command is automatically enabled when the `debug mdns all` command is enabled.

The following example shows how to enable debugging of all the mDNS HA messages:

```
(Cisco Controller) > debug mdns ha enable
```
To enable or disable the debugging of errors or events during the memory allocation of the Cisco WLC, use the `debug memory` command.

```
debug memory {errors | events} {enable | disable}
```

**Syntax Description**
- `errors`: Configures the debugging of memory leak errors.
- `events`: Configures debugging of memory leak events.
- `enable`: Enables the debugging of memory leak events.
- `disable`: Disables the debugging of memory leak events.

**Command Default**
By default, the debugging of errors or events during the memory allocation of the Cisco WLC is disabled.

**Command History**
- Release 7.6: This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable the debugging of memory leak events:

```
(Cisco Controller) > debug memory events enable
```

**Related Commands**
- `config memory monitor errors`
- `show memory monitor`
- `config memory monitor leaks`
debug mesh security

To configure the debugging of mesh security issues, use the `debug mesh security` command.

```
debug mesh security { all | events | errors } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all mesh security messages.</td>
</tr>
<tr>
<td>events</td>
<td>Configures the debugging of mesh security event messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Configures the debugging of mesh security error messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the debugging of mesh security error messages.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of mesh security error messages.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of mesh security error messages:

```
(Cisco Controller) >debug mesh security errors enable
```
**debug mesh convergence**

To configure the debugging of mesh convergence issues, use the `debug mesh convergence` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of mesh convergence error messages:

```
(Cisco Controller) >debug mesh convergence
mesh convergence debugging is on
```
### debug mobility

To configure the debugging of wireless mobility, use the `debug mobility` command.

```
dependent mobility (ap-list | config | directory | dtls | handoff | keep-alive | multicast | oracle | packet | peer-ip IP-address | pmk | pmtu-discovery | redha) (enable | disable)
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ap-list</code></td>
<td>Configures the debugging of wireless mobility access point list.</td>
</tr>
<tr>
<td><code>config</code></td>
<td>Configures the debugging of wireless mobility configuration.</td>
</tr>
<tr>
<td><code>directory</code></td>
<td>Configures the debugging of wireless mobility error messages.</td>
</tr>
<tr>
<td><code>dtls</code></td>
<td>Configures the debugging of wireless mobility Datagram Transport Layer Security (DTLS) options.</td>
</tr>
<tr>
<td><code>handoff</code></td>
<td>Configures the debugging of wireless mobility handoff messages.</td>
</tr>
<tr>
<td><code>keep-alive</code></td>
<td>Configures the debugging of wireless mobility CAPWAP data DTLS keep-alive packets.</td>
</tr>
<tr>
<td><code>multicast</code></td>
<td>Configures the debugging of multicast mobility packets.</td>
</tr>
<tr>
<td><code>oracle</code></td>
<td>Starts the debugging of wireless mobility oracle options.</td>
</tr>
<tr>
<td><code>packet</code></td>
<td>Configures the debugging of wireless mobility packets.</td>
</tr>
<tr>
<td><code>peer-ip IP-address</code></td>
<td>Configures IP address of the mobility peer for which incoming and outgoing mobility messages should be displayed.</td>
</tr>
<tr>
<td><code>pmk</code></td>
<td>Configures the debugging of wireless mobility pairwise master key (PMK).</td>
</tr>
<tr>
<td><code>pmtu-discovery</code></td>
<td>Configures the debugging of the wireless mobility path MTU discovery.</td>
</tr>
<tr>
<td><code>redha</code></td>
<td>Configures the debugging of the multicast mobility high availability.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of the wireless mobility feature.</td>
</tr>
</tbody>
</table>
disable

Disables the debugging of the wireless mobility feature.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of wireless mobility packets.

(Cisco Controller) >debug mobility handoff enable
debug nac

To configure the debugging of Network Access Control (NAC), use the **debug nac** command.

```
debug nac {events | packet} {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Configures the debugging of NAC events.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures the debugging of NAC packets.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the NAC debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the NAC debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of NAC settings:

```
(Cisco Controller) > debug nac events enable
```

**Related Commands**

- show nac statistics
- show nac summary
- config guest-lan nac
- config wlan nac
debug nmsp

To configure the debugging of the Network Mobility Services Protocol (NMSP), use the `debug nmsp` command.

```
debug nmsp { all | connection | detail | error | event | message | packet }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>all</strong></td>
<td>Configures the debugging for all NMSP messages.</td>
</tr>
<tr>
<td><strong>connection</strong></td>
<td>Configures the debugging for NMSP connection events.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>Configures the debugging for NMSP events in detail.</td>
</tr>
<tr>
<td><strong>error</strong></td>
<td>Configures the debugging for NMSP error messages.</td>
</tr>
<tr>
<td><strong>event</strong></td>
<td>Configures the debugging for NMSP events.</td>
</tr>
<tr>
<td><strong>message</strong></td>
<td>Configures the debugging for NMSP transmit and receive messages.</td>
</tr>
<tr>
<td><strong>packet</strong></td>
<td>Configures the debugging for NMSP packet events.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of NMSP connection events:

```
(Cisco Controller) > debug nmsp connection
```

**Related Commands**

- `clear nmsp statistics`
- `debug disable-all`
- `config nmsp notify-interval measurement`
To configure the debugging of the Network Time Protocol (NTP), use the `debug ntp` command.

```plaintext
debug ntp {detail | low | packet} {enable | disable}
```

**Syntax Description**

- `detail`: Configures the debugging of detailed NTP messages.
- `low`: Configures the debugging of NTP messages.
- `packet`: Configures the debugging of NTP packets.
- `enable`: Enables the NTP debugging.
- `disable`: Disables the NTP debugging.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of NTP settings:

```
(Cisco Controller) > debug ntp packet enable
```

**Related Commands**

- `debug disable-all`
**debug packet error**

To configure debugging of the packets sent to the Cisco Wireless LAN Controller (WLC) CPU, use the `debug packet error` command.

```
debug packet error { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables debugging of the packets sent to the Cisco WLC CPU.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of the packets sent to the Cisco WLC CPU.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of the packets sent to the Cisco WLC CPU:

```
(Cisco Controller) > debug packet error enable
```
debug packet logging

To configure logging of the packets sent to the Cisco Wireless LAN Controller CPU, use the `debug packet logging` command.

```
dump packet logging { acl | disable | enable { rx | tx | all } packet_count display_size | format { hex2pcap | text2pcap } }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl</td>
<td>Filters the displayed packets according to a rule.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables logging of all the packets.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables logging of all the packets.</td>
</tr>
<tr>
<td>rx</td>
<td>Displays all the received packets.</td>
</tr>
<tr>
<td>tx</td>
<td>Displays all the transmitted packets.</td>
</tr>
<tr>
<td>all</td>
<td>Displays both the transmitted and the received packets.</td>
</tr>
<tr>
<td>packet_count</td>
<td>Maximum number of packets to be logged. The range is from 1 to 65535. The default value is 25.</td>
</tr>
<tr>
<td>display_size</td>
<td>Number of bytes to be displayed when printing a packet. By default, the entire packet is displayed.</td>
</tr>
<tr>
<td>format</td>
<td>Configures the format of the debug output.</td>
</tr>
<tr>
<td>hex2pcap</td>
<td>Configures the output format to be compatible with the hex2pcap format. The standard format used by Cisco IOS supports the use of hex2pcap and can be decoded using an HTML front end.</td>
</tr>
<tr>
<td>text2pcap</td>
<td>Configures the output format to be compatible with the text2pcap format. In this format, the sequence of packets can be decoded from the same console log file.</td>
</tr>
<tr>
<td>clear-all</td>
<td>Clears all the existing rules pertaining to the packets.</td>
</tr>
<tr>
<td>driver</td>
<td>Filters the packets based on an incoming port or a Network Processing Unit (NPU) encapsulation type.</td>
</tr>
<tr>
<td>rule_index</td>
<td>Index of the rule that is a value between 1 and 6 (inclusive).</td>
</tr>
<tr>
<td>action</td>
<td>Action for the rule, which can be <code>permit</code>, <code>deny</code>, or <code>disable</code>.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>npu_encap</td>
<td>NPU encapsulation type that determines how the packets are filtered. The possible values are dhcp, dot11-mgmt, dot11-probe, dot1x, eoip-ping, iapp, ip, lwapp, multicast, orphan-from-sta, orphan-to-sta, rbcp, wired-guest, or any.</td>
</tr>
<tr>
<td>port</td>
<td>Physical port for packet transmission or reception.</td>
</tr>
<tr>
<td>eoip-eth</td>
<td>Filters packets based on the Ethernet II header in the Ethernet over IP (EoIP) payload.</td>
</tr>
<tr>
<td>dst</td>
<td>Destination MAC address.</td>
</tr>
<tr>
<td>src</td>
<td>Source MAC address.</td>
</tr>
<tr>
<td>type</td>
<td>Two-byte type code, such as 0x800 for IP, 0x806 for Address Resolution Protocol (ARP). You can also enter a few common string values such as ip (for 0x800) or arp (for 0x806).</td>
</tr>
<tr>
<td>vlan</td>
<td>Two-byte VLAN identifier.</td>
</tr>
<tr>
<td>eoip-ip</td>
<td>Filters packets based on the IP header in the EoIP payload.</td>
</tr>
<tr>
<td>proto</td>
<td>Protocol. Valid values are: ip, icmp, igmp, ggp, ipencap, st, tcp, egp, pup, udp, hmp, xns-idp, rlp, iso-ip4, xtp, ddp, idpr-cmtp, rsvp, vmtip, ospf, ipip, and encap.</td>
</tr>
<tr>
<td>src_port</td>
<td>User Datagram Protocol or Transmission Control Protocol (UDP or TCP) two-byte source port, such as telnet, 23, or any. The Cisco WLC supports the following strings: tcpmux, echo, discard, systat, daytime, netstat, qotd, msp, chargen, ftp-data, ftp, fsp, ssh, telnet, smtp, time, rlp, nameserver, whois, re-mail-ck, domain, mtp, bootps, bootpc, tfip, gopher, rje, finger, www, link, kerberos, supdup, hostnames, iso-tpap, csnet-ns, 3com-tpmux, r telnet, pop-2, pop-3, sunrpc, auth, sftp, uucp-path, nntp, ntp, netbios-ns, netbios-dgm, netbios-ssn, imap2, smtp, smtp-trap, cmip-man, cmip-agent, xdmcp, nextstep, bgp, prospero, irc, smux, at-rmt, at-nb, at-echo, at-zis, qtnp, z3950, ipx, imap3, ulistserv, https, snmp, saft, nmp-local, nmp-gui, and hmmp-ind.</td>
</tr>
<tr>
<td>dst_port</td>
<td>UDP or TCP two-byte destination port, such as telnet, 23, or any. The Cisco WLC supports the same strings as those for the src_port.</td>
</tr>
<tr>
<td>eth</td>
<td>Filters packets based on the values in the Ethernet II header.</td>
</tr>
<tr>
<td>ip</td>
<td>Filters packets based on the values in the IP header.</td>
</tr>
<tr>
<td>lwapp-dot11</td>
<td>Filters packets based on the 802.11 header in the Lightweight Access Point Protocol (LWAPP) payload.</td>
</tr>
<tr>
<td>bssid</td>
<td>Basic Service Set Identifier of the VLAN.</td>
</tr>
<tr>
<td>lwapp-ip</td>
<td>Filters packets based on the IP header in the LWAPP payload.</td>
</tr>
</tbody>
</table>
**debug packet logging**

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable logging of a packet:

```
(Cisco Controller) > debug packet logging enable
```
To configure debugging of the access policy manager, use the `debug pem` command.

```
debug pem { events | state } { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>events</code></td>
<td>Configures the debugging of the policy manager events.</td>
</tr>
<tr>
<td><code>state</code></td>
<td>Configures the debugging of the policy manager state machine.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of the access policy manager.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of the access policy manager.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of the access policy manager:

```
(Cisco Controller) >debug pem state enable
```
**debug pm**

To configure the debugging of the security policy manager module, use the `debug pm` command.

```plaintext
debug pm (all disable | config | hwcrypto | ikemsg | init | list | message | pki | rng
| rules | sa-export | sa-import | ssh-l2tp | ssh-appgw | ssh-engine | ssh-int | ssh-pmgr
| ssh-ppp | ssh-tcp) (enable | disable)
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all disable</td>
<td>Disables all debugging in the policy manager module.</td>
</tr>
<tr>
<td>config</td>
<td>Configures the debugging of the policy manager configuration.</td>
</tr>
<tr>
<td>hwcrypto</td>
<td>Configures the debugging of hardware offload events.</td>
</tr>
<tr>
<td>ikemsg</td>
<td>Configures the debugging of Internet Key Exchange (IKE) messages.</td>
</tr>
<tr>
<td>init</td>
<td>Configures the debugging of policy manager initialization events.</td>
</tr>
<tr>
<td>list</td>
<td>Configures the debugging of policy manager list mgmt.</td>
</tr>
<tr>
<td>message</td>
<td>Configures the debugging of policy manager message queue events.</td>
</tr>
<tr>
<td>pki</td>
<td>Configures the debugging of Public Key Infrastructure (PKI) related events.</td>
</tr>
<tr>
<td>rng</td>
<td>Configures the debugging of random number generation.</td>
</tr>
<tr>
<td>rules</td>
<td>Configures the debugging of Layer 3 policy events.</td>
</tr>
<tr>
<td>sa-export</td>
<td>Configures the debugging of SA export (mobility).</td>
</tr>
<tr>
<td>sa-import</td>
<td>Configures the debugging of SA import (mobility).</td>
</tr>
<tr>
<td>ssh-l2tp</td>
<td>Configures the debugging of policy manager Layer 2 Tunneling Protocol (L2TP) handling.</td>
</tr>
<tr>
<td>ssh-appgw</td>
<td>Configures the debugging of application gateways.</td>
</tr>
<tr>
<td>ssh-engine</td>
<td>Configures the debugging of the policy manager engine.</td>
</tr>
<tr>
<td>ssh-int</td>
<td>Configures the debugging of the policy manager intercepter.</td>
</tr>
<tr>
<td>ssh-pmgr</td>
<td>Configures the debugging of the policy manager.</td>
</tr>
</tbody>
</table>
**ssh-ppp**
Confires the debugging of policy manager Point To Point Protocol (PPP) handling.

**ssh-tcp**
Confires the debugging of policy manager TCP handling.

**enable**
Enables the debugging.

**disable**
Disables the debugging.

---

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the debugging of PKI-related events:

(Cisco Controller) > debug pm pki enable

**Related Commands**

debug disable-all
To configure the debugging of Power over Ethernet (PoE), use the `debug poe` command.

`debug poe { detail | message | error } { enable | disable }`

**Syntax Description**

- **detail**: Configures the debugging of PoE detail logs.
- **error**: Configures the debugging of PoE error logs.
- **message**: Configures the debugging of PoE messages.
- **enable**: Enables the debugging of PoE logs.
- **disable**: Disables the debugging of PoE logs.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the PoE debugging:

```
(Cisco Controller) > debug poe message enable
```

**Related Commands**

- `debug disable-all`
debug policy

To configure debugging of policy settings, use the **debug policy** command.

```
debug policy {errors | events} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors</td>
<td>Configures debugging of policy errors.</td>
</tr>
<tr>
<td>events</td>
<td>Configures debugging of policy events.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of policy events.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of policy events.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable debugging of policy errors:

```
(Cisco Controller) > debug policy errors enable
```
debug profiling

To configure the debugging of client profiling, use the `debug profiling` command.

```
debug profiling { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of client profiling (HTTP and DHCP profiling).</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of client profiling (HTTP and DHCP profiling).</td>
</tr>
</tbody>
</table>

**Command Default**

Disabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of client profiling:

```
(Cisco Controller) > debug profiling enable
```
Debug Commands: r to z

- debug rbcp, on page 1206
- debug rfid, on page 1207
- debug snmp, on page 1208
- debug transfer, on page 1209
- debug voice-diag, on page 1210
- debug wcp, on page 1212
- debug web-auth, on page 1213
- debug wips, on page 1214
- debug wps sig, on page 1215
- debug wps mfp, on page 1216
debug rbcp

To configure Router Blade Control (RBCP) debug options, use the `debug rbcp` command.

```
debug rbcp {all | detail | errors | packet} {enable | disable}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of RBCP.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures the debugging of RBCP detail.</td>
</tr>
<tr>
<td>errors</td>
<td>Configures the debugging of RBCP errors.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures the debugging of RBCP packet trace.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the RBCP debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the RBCP debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

The following example shows how to enable the debugging of RBCP settings:

```
(Cisco Controller) > debug rbcp packet enable
```

**Related Commands**

- `debug disable-all`
debug rfid

To configure radio frequency identification (RFID) debug options, use the **debug rfid** command.

```
debug rfid { all | detail | errors | nmsp | receive } { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all RFID.</td>
</tr>
<tr>
<td>detail</td>
<td>Configures the debugging of RFID detail.</td>
</tr>
<tr>
<td>errors</td>
<td>Configures the debugging of RFID error messages.</td>
</tr>
<tr>
<td>nmsp</td>
<td>Configures the debugging of RFID Network Mobility Services Protocol (NMSP) messages.</td>
</tr>
<tr>
<td>receive</td>
<td>Configures the debugging of incoming RFID tag messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the RFID debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the RFID debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

The following example shows how to enable the debugging of RFID error messages:

```
(Cisco Controller) > debug rfid errors enable
```

**Related Commands**

**debug disable-all**
**debug snmp**

To configure SNMP debug options, use the `debug snmp` command.

```
deput snmp {agent | all | mib | trap} {enable | disable}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent</td>
<td>Configures the debugging of the SNMP agent.</td>
</tr>
<tr>
<td>all</td>
<td>Configures the debugging of all SNMP messages.</td>
</tr>
<tr>
<td>mib</td>
<td>Configures the debugging of the SNMP MIB.</td>
</tr>
<tr>
<td>trap</td>
<td>Configures the debugging of SNMP traps.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the SNMP debugging.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the SNMP debugging.</td>
</tr>
</tbody>
</table>

**Command Default**

None

The following example shows how to enable the SNMP debugging:

```
(Cisco Controller) > debug snmp trap enable
```

**Related Commands**

`debug disable-all`
To configure transfer debug options, use the `debug transfer` command.

```
debug transfer {all | tftp | trace} {enable | disable}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures the debugging of all transfer messages.</td>
</tr>
<tr>
<td>tftp</td>
<td>Configures the debugging of TFTP transfers.</td>
</tr>
<tr>
<td>trace</td>
<td>Configures the debugging of transfer messages.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the debugging of transfer messages.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of transfer messages.</td>
</tr>
</tbody>
</table>

### Command Default

None

The following example shows how to enable the debugging of transfer messages:

```
(Cisco Controller) > debug transfer trace enable
```
debug voice-diag

To trace call or packet flow, use the **debug voice-diag** command.

```
debug voice-diag { enable client_mac1 [client_mac2] [verbose] | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging of voice diagnostics for voice clients involved in a call.</td>
</tr>
<tr>
<td>client_mac1</td>
<td>MAC address of a voice client.</td>
</tr>
<tr>
<td>client_mac2</td>
<td>(Optional) MAC address of an additional voice client.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Enables debug information to be displayed on the console.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging of voice diagnostics for voice clients involved in a call.</td>
</tr>
</tbody>
</table>

**Note**

- Voice diagnostics can be enabled or disabled for a maximum of two voice clients at a time.
- When voice diagnostics is enabled from the NCS or Prime Infrastructure, the verbose option is not available.

**Command Default**

None

**Usage Guidelines**

Follow these guidelines when you use the **debug voice-diag** command:

- When the command is entered, the validity of the clients is not checked.
- A few output messages of the command are sent to the NCS or Prime Infrastructure.
- The command expires automatically after 60 minutes.
- The command provides the details of the call flow between a pair of client MACs involved in an active call.

**Note**

Voice diagnostics can be enabled for a maximum of two voice clients at a time.

The following example shows how to enable transfer/upgrade settings:

```
(Cisco Controller) > debug voice-diag enable 00:1a:a1:92:b9:5c 00:1a:a1:92:b5:9c verbose
```

**Related Commands**

- **show client voice-diag**
show client calls
To configure the debugging of WLAN Control Protocol (WCP), use the `debug wcp` command.

```
debug wcp { events | packet } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>events</code></td>
<td>Configures the debugging of WCP events.</td>
</tr>
<tr>
<td><code>packet</code></td>
<td>Configures the debugging of WCP packets.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the debugging of WCP settings.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the debugging of WCP settings.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of WCP settings:

```
(Cisco Controller) > debug wcp packet enable
```
debug web-auth

To configure debugging of web-authenticated clients, use the `debug web-auth` command.

```
display web-auth (redirect { enable mac mac_address | disable } | webportal-server { enable | disable })
```

**Syntax Description**
- **redirect**
  - Configures debugging of web-authenticated and redirected clients.

- **enable**
  - Enables the debugging of web-authenticated clients.

- **mac**
  - Configures the MAC address of the web-authenticated client.

- **mac_address**
  - MAC address of the web-authenticated client.

- **disable**
  - Disables the debugging of web-authenticated clients.

- **webportal-server**
  - Configures the debugging of portal authentication of clients.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of a web authenticated and redirected client:

```
```
debug wips

To configure debugging of wireless intrusion prevention system (WIPS), use the debug wips command.

```
depug wips { all | error | event | nmsp | packet } { enable | disable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Configures debugging of all WIPS messages.</td>
</tr>
<tr>
<td>error</td>
<td>Configures debugging of WIPS errors.</td>
</tr>
<tr>
<td>event</td>
<td>Configures debugging of WIPS events.</td>
</tr>
<tr>
<td>nmsp</td>
<td>Configures debugging of WIPS Network Mobility Services Protocol (NMSP) events.</td>
</tr>
<tr>
<td>packet</td>
<td>Configures debugging of WIPS packets.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables debugging of WIPS.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables debugging of WIPS.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

- **Release**
  - 7.6

- **Modification**
  - This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable debugging of all WIPS messages:

```
(Cisco Controller) > debug wips all enable
```

### Related Commands

- debug client
- debug dot11 rogue
- show wps summary
- show wps wips
debug wps sig

To configure the debugging of Wireless Provisioning Service (WPS) signature settings, use the `debug wps sig` command.

```
default wps sig { enable | disable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the debugging for WPS settings.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables the debugging for WPS settings.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the debugging of WPS signature settings:

```
(Cisco Controller) > debug wps sig enable
```

**Related Commands**

- `debug wps mfp`
- `debug disable-all`
debug wps mfp

To configure the debugging of WPS Management Frame Protection (MFP) settings, use the `debug wps mfp` command.

```
debug wps mfp { client | capwap | detail | report | mm } { enable | disable }
```

**Syntax Description**

- **client**: Configures the debugging for client MFP messages.
- **capwap**: Configures the debugging for MFP messages between the controller and access points.
- **detail**: Configures the detailed debugging for MFP messages.
- **report**: Configures the debugging for MFP reporting.
- **mm**: Configures the debugging for MFP mobility (inter-Cisco WLC) messages.
- **enable**: Enables the debugging for WPS MFP settings.
- **disable**: Disables the debugging for WPS MFP settings.

**Command Default**

None

**Command History**

- **Release**: 7.6
- **Modification**: This command was introduced in a release earlier than Release 7.6.

The following example shows how to enable the debugging of WPS MFP settings:

```
(Cisco Controller) > debug wps mfp detail enable
```

**Related Commands**

- `debug disable-all`
- `debug wps sig`
PART V

IMM Commands

• IMM Commands, on page 1219
IMM Commands

• imm address, on page 1220
• imm dhcp, on page 1221
• imm mode, on page 1222
• imm restart, on page 1223
• imm summary, on page 1224
• imm username, on page 1225
**imm address**

To configure the static IP address of the IMM, use the `imm address` command.

```
imm address ip-addr netmask gateway
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr</td>
<td>IP address of the IMM</td>
</tr>
<tr>
<td>netmask</td>
<td>Netmask of the IMM</td>
</tr>
<tr>
<td>gateway</td>
<td>Gateway of the IMM</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

The following example shows how to set the static IP address of an IMM:

```
(Cisco Controller) >imm address 209.165.200.225 255.255.255.224 10.1.1.1
```
**imm dhcp**

To configure DHCP for the IMM, use the `imm dhcp` command.

```
imm dhcp {enable | disable | fallback}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables DHCP for the IMM</td>
</tr>
<tr>
<td>disable</td>
<td>Disables DHCP for the IMM</td>
</tr>
<tr>
<td>fallback</td>
<td>Enables DHCP for the IMM, but if it fails, then uses static IP of the IMM</td>
</tr>
</tbody>
</table>

**Command Default**

DHCP for IMM is enabled.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable DHCP for the IMM:

```
(Cisco Controller) >imm dhcp enable
```
**imm mode**

To configure the IMM mode, use the **imm mode** command.

```
imm mode {shared | dedicated}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shared</td>
<td>Sets IMM in shared mode</td>
</tr>
<tr>
<td>dedicated</td>
<td>Sets IMM in dedicated mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Dedicated</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the IMM in shared mode:

```
(Cisco Controller) >imm mode
```

**IMM Commands**
imm restart

To restart the IMM, use the **imm restart** command.

```bash
imm restart
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>restart Saves your settings and restarts the IMM</th>
</tr>
</thead>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
# imm summary

To view the IMM parameters, use the **imm summary** command.

**imm summary**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>summary</strong></td>
<td>Lists the IMM parameters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
<td><strong>Modification</strong></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows a typical summary of the IMM:

```plaintext
(Cisco Controller) >imm summary
User ID..username1
Mode... Shared
DHCP... Enabled
IP Address....................................... 209.165.200.225
Subnet Mask...................................... 255.255.255.224
Gateway.. 10.1.1.1
```
imm username

To configure the logon credentials for an IMM user, use the `imm username` command.

```
imm username username password
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Username for the user</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Password for the user</td>
</tr>
</tbody>
</table>

| Command Default    | None                      |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the logon credentials of an IMM user:

```plaintext
(Cisco Controller) >imm username user1 password1
```
imm username
PART VI

License Commands

• License Commands, on page 1229
License Commands

• license activate ap-count eval, on page 1230
• license activate feature, on page 1231
• license add ap-count, on page 1232
• license add feature, on page 1233
• license clear, on page 1234
• license comment, on page 1235
• license deactivate ap-count eval, on page 1236
• license deactivate feature, on page 1237
• license delete ap-count, on page 1238
• license delete feature, on page 1239
• license install, on page 1240
• license modify priority, on page 1241
• license revoke, on page 1243
• license save, on page 1244
license activate ap-count eval

To activate an evaluation access point license on the Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN Controllers, use the license activate ap-count eval command.

**license activate ap-count eval**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
By default, in release 7.3 Cisco Flex 7500 Series Controllers and Cisco 8500 Series Wireless LAN Controllers support 6000 APs.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
When you activate this license, the controller prompts you to accept or reject the End User License Agreement (EULA) for the given license. If you activate a license that supports a smaller number of APs than the current number of APs connected to the controller, the activation command fails.

The following example shows how to activate an evaluation AP-count license on a Cisco Flex 7500 Series controller:

(Cisco Controller) > license activate ap-count eval
License Commands

license activate feature

To activate a feature license on Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN Controllers, use the `license activate feature` command.

```
license activate feature license_name
```

**Syntax Description**

- `license_name`  
  Name of the feature license. The license name can be up to 50 case-sensitive characters.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to activate a data DTLS feature license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license activate feature data-DTLS
```
license add ap-count

To configure the number of access points (APs) that an AP license can support on Cisco Flex 7500 and 8500 Series Wireless LAN controllers, use the `license add ap-count` command.

**license add ap-count count**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of APs that the AP license supports. The range is from 1 to the maximum number of APs that the controller can support. The count must be a multiple of 5.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Right to Use (RTU) licensing allows you to enable a desired AP license count on the controller after accepting the End User License Agreement (EULA). You can now easily add AP counts on a controller without using external tools. RTU licensing is available only on Cisco Flex 7500 and 8500 series Wireless LAN controllers.

You can use this command to increase the count of an existing AP license. When you activate a license that supports a smaller number of APs than the current number of APs connected to the controller, the activation command fails.

The following example shows how to configure the count of an AP license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license add ap-count 5000
```
license add feature

To add a license for a feature on the Cisco 5520 WLC, Cisco Flex 7510 WLC, Cisco 8510 WLC, Cisco 8540 WLC, and Cisco Virtual Controller, use the `license add feature` command.

**license add feature license_name**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>license_name</code></td>
<td>Name of the feature license. The license name can be up to 50 case-sensitive characters. For example, <code>data_encryption</code>.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6. This command is applicable to Cisco Flex 7510 WLC and Cisco 8510 WLC.</td>
</tr>
<tr>
<td>8.1</td>
<td>This command is applicable to Cisco 5520 WLC, Cisco Flex 7510 WLC, Cisco 8510 WLC, Cisco 8540 WLC, and Cisco vWLC.</td>
</tr>
</tbody>
</table>

The following example shows how to add a `data_encryption` feature license:

```
(Cisco Controller) > license add feature data_encryption
```
license clear

To remove a license from the Cisco 5500 Series Controller, use the license clear command.

license clear license_name

Syntax Description

| license_name | Name of the license. |

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can delete an expired evaluation license or any unused license. You cannot delete unexpired evaluation licenses, the permanent base image license, or licenses that are in use by the controller.

The following example shows how to remove the license settings of the license named wplus-ap-count:

(Cisco Controller) > license clear wplus-ap-count
license comment

To add comments to a license or delete comments from a license on the Cisco 5500 Series Controller, use the **license comment** command.

```
license comment { add | delete } license_name comment_string
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>add</strong></td>
<td>Adds a comment.</td>
</tr>
<tr>
<td><strong>delete</strong></td>
<td>Deletes a comment.</td>
</tr>
<tr>
<td><strong>license_name</strong></td>
<td>Name of the license.</td>
</tr>
<tr>
<td><strong>comment_string</strong></td>
<td>License comment.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to add a comment “wplus ap count license” to the license name wplus-ap-count:

```
(Cisco Controller) > license comment add wplus-ap-count Comment for wplus ap count license
```
license deactivate ap-count eval

To deactivate an evaluation access point license on the Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN Controllers, use the `license deactivate ap-count eval` command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to deactivate an evaluation AP license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license deactivate ap-count eval
```
license deactivate feature

To deactivate a feature license on Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN controllers, use the `license deactivate feature` command.

`license deactivate feature license_name`

**Syntax Description**

| `license_name` | Name of the feature license. The license name can be up to 50 case-sensitive characters. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to deactivate a data DTLS feature license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license deactivate feature data_DTLS
```
**license delete ap-count**

To delete an access point (AP) count license on the Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN Controllers, use the `license delete ap-count` command.

```
license delete ap-count count
```

**Syntax Description**

| count | Number of APs that the AP license supports. The range is from 1 to the maximum number of APs that the controller can support. The count must be a multiple of 5. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an AP count license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license delete ap-count 5000
```
license delete feature

To delete a license for a feature on Cisco Flex 7500 Series and Cisco 8500 Series Wireless LAN controllers, use the **license delete feature** command.

```
license delete feature license_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>license_name</th>
<th>Name of the feature license.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the High Availability feature license on a Cisco Flex 7500 Series controller:

```
(Cisco Controller) > license delete feature high_availability
```
license install

To install a license on the Cisco 5500 Series Controller, use the `license install` command.

`license install url`

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>url</code></td>
<td>URL of the TFTP server</td>
</tr>
<tr>
<td></td>
<td>(tftp://server_ip/path/filename).</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

We recommend that the access point count be the same for the base-ap-count and wplus-ap-count licenses installed on your controller. If your controller has a base-ap-count license of 100 and you install a wplus-ap-count license of 12, the controller supports up to 100 access points when the base license is in use but only a maximum of 12 access points when the wplus license is in use.

You cannot install a wplus license that has an access point count greater than the controller's base license. For example, you cannot apply a wplus-ap-count 100 license to a controller with an existing base-ap-count 12 license. If you attempt to register for such a license, an error message appears indicating that the license registration has failed. Before upgrading to a wplus-ap-count 100 license, you would first have to upgrade the controller to a base-ap-count 100 or 250 license.

The following example shows how to install a license on the controller from the URL tftp://10.10.10.10/path/license.lic:

```
(Cisco Controller) > license install tftp://10.10.10.10/path/license.lic
```
license modify priority

To raise or lower the priority of the base-ap-count or wplus-ap-count evaluation license on a Cisco 5500 Series Controller, use the `license modify priority` command.

```
license modify priority license_name { high | low }
```

**Syntax Description**

- `license_name`: Ap-count evaluation license.
- `high`: Modifies the priority of an ap-count evaluation license.
- `low`: Modifies the priority of an ap-count evaluation license.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you are considering upgrading to a license with a higher access point count, you can try an evaluation license before upgrading to a permanent version of the license. For example, if you are using a permanent license with a 50 access point count and want to try an evaluation license with a 100 access point count, you can try out the evaluation license for 60 days.

AP-count evaluation licenses are set to low priority by default so that the controller uses the ap-count permanent license. If you want to try an evaluation license with an increased access point count, you must change its priority to high. If you no longer want to have this higher capacity, you can lower the priority of the ap-count evaluation license, which forces the controller to use the permanent license.

**Note**

You can set the priority only for ap-count evaluation licenses. AP-count permanent licenses always have a medium priority, which cannot be configured.

**Note**

If the ap-count evaluation license is a wplus license and the ap-count permanent license is a base license, you must also change the feature set to wplus.

**Note**

To prevent disruptions in operation, the controller does not switch licenses when an evaluation license expires. You must reboot the controller in order to return to a permanent license. Following a reboot, the controller defaults to the same feature set level as the expired evaluation license. If no permanent license at the same feature set level is installed, the controller uses a permanent license at another level or an unexpired evaluation license.

The following example shows how to set the priority of the wplus-ap-count to high:
(Cisco Controller) > license modify priority wplus-ap-count high
license revoke

To rehost a license on a Cisco 5500 Series WLC, use the `license revoke` command.

```
license revoke {permission_ticket_url | rehost rehost_ticket_url}
```

**Syntax Description**

- `permission_ticket_url`: URL of the TFTP server (tftp://server_ip/path/filename) where you saved the permission ticket.
- `rehost`: Specifies the rehost license settings.
- `rehost_ticket_url`: URL of the TFTP server (tftp://server_ip/path/filename) where you saved the rehost ticket.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

Before you revoke a license, save the device credentials by using the `license save credential url` command.

You can rehost all permanent licenses except the permanent base image license. Evaluation licenses and the permanent base image license cannot be rehosted.

In order to rehost a license, you must generate credential information from the controller and use it to obtain a permission ticket to revoke the license from the Cisco licensing site, https://tools.cisco.com/SWIFT/LicensingUI/Quickstart. Next, you must obtain a rehost ticket and use it to obtain a license installation file for the controller on which you want to install the license.

For detailed information on rehosting licenses, see the “Installing and Configuring Licenses” section in the Cisco Wireless LAN Controller Configuration Guide.

The following example shows how to revoke the license settings from the saved permission ticket URL tftp://10.10.10.10/path/permit_ticket.lic:

```
(Cisco Controller) > license revoke tftp://10.10.10.10/path/permit_ticket.lic
```

The following example shows how to revoke the license settings from the saved rehost ticket URL tftp://10.10.10.10/path/rehost_ticket.lic:

```
(Cisco Controller) > license revoke rehost tftp://10.10.10.10/path/rehost_ticket.lic
```
To save a backup copy of all installed licenses or license credentials on the Cisco 5500 Series Controller, use the **license save** command.

```
license save credential url
```

### Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>credential</td>
<td>Device credential information.</td>
</tr>
<tr>
<td>url</td>
<td>URL of the TFTP server (tftp://server_ip/path/filename).</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Save the device credentials before you revoke the license by using the **license revoke** command.

The following example shows how to save a backup copy of all installed licenses or license credentials on tftp://10.10.10.10/path/cred.lic:

```
(Cisco Controller) > license save credential tftp://10.10.10.10/path/cred.lic
```
PART VII

Show Commands

- Show Commands: 802.11, on page 1247
- Show Commands: a to i, on page 1263
- Show Commands: j to q, on page 1461
- Show Commands: r to z, on page 1575
Show Commands: 802.11

- show 802.11, on page 1248
- show 802.11, on page 1250
- show 802.11 cleanair, on page 1252
- show 802.11 cleanair air-quality summary, on page 1254
- show 802.11 cleanair air-quality worst, on page 1255
- show 802.11 cleanair device ap, on page 1256
- show 802.11 cleanair device type, on page 1257
- show 802.11 cu-metrics, on page 1259
- show 802.11 extended, on page 1260
- show 802.11 media-stream, on page 1261
show 802.11

To display basic 802.11a, 802.11b/g, or 802.11h network settings, use the **show 802.11** command.

```
show 802.11 { a | b | h }
```

**Syntax Description**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Specifies the 802.11h network.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

None.

This example shows to display basic 802.11a network settings:

```
> show 802.11a
802.11a Network.............................. Enabled
11nSupport.................................... Enabled
 802.11a Low Band.......................... Enabled
 802.11a Mid Band......................... Enabled
 802.11a High Band....................... Enabled
802.11a Operational Rates
 802.11a 6M Rate.......................... Mandatory
 802.11a 9M Rate.......................... Supported
 802.11a 12M Rate......................... Mandatory
 802.11a 18M Rate........................ Supported
 802.11a 24M Rate......................... Mandatory
 802.11a 36M Rate......................... Supported
 802.11a 48M Rate......................... Supported
 802.11a 54M Rate......................... Supported
802.11n MCS Settings:
 MCS 0.. Supported
 MCS 1.. Supported
 MCS 2.. Supported
 MCS 3.. Supported
 MCS 4.. Supported
 MCS 5.. Supported
 MCS 6.. Supported
 MCS 7.. Supported
 MCS 8.. Supported
 MCS 9.. Supported
 MCS 10....................................... Supported
 MCS 11....................................... Supported
 MCS 12....................................... Supported
 MCS 13....................................... Supported
 MCS 14....................................... Supported
 MCS 15....................................... Supported
802.11n Status:
 A-MPDU Tx:
 Priority 0.............................. Enabled
 Priority 1.............................. Disabled
 Priority 2.............................. Disabled
 Priority 3.............................. Disabled
 Priority 4.............................. Disabled
 Priority 5.............................. Disabled
 Priority 6.............................. Disabled
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
Priority 7............................... Disabled
Beacon Interval.......................... 100
CF Pollable mandatory...................... Disabled
CF Poll Request mandatory................. Disabled
--More-- or (q)uit
CFP Period.............................. 4
CFP Maximum Duration..................... 60
Default Channel.......................... 36
Default Tx Power Level.................... 0
DTPC Status.............................. Enabled
Fragmentation Threshold................... 2346
TI Threshold............................. -50
Legacy Tx Beamforming setting............. Disabled
Traffic Stream Metrics Status............. Enabled
Expedited BW Request Status.............. Disabled
World Mode.............................. Enabled
EDCA profile type......................... default-wmm
Voice MAC optimization status............ Disabled
Call Admission Control (CAC) configuration
Voice AC:
  Voice AC - Admission control (ACM)........ Disabled
  Voice max RF bandwidth.................. 75
  Voice reserved roaming bandwidth....... 6
  Voice load-based CAC mode.............. Disabled
  Voice tspec inactivity timeout.......... Disabled
  Voice Stream-Size....................... 84000
  Voice Max-Streams...................... 2
Video AC:
  Video AC - Admission control (ACM)........ Disabled
  Video max RF bandwidth................ Infinite
  Video reserved roaming bandwidth....... 0

This example shows how to display basic 802.11h network settings:

```
> show 802.11h
802.11h ... powerconstraint : 0
802.11h ... channelswitch : Disable
802.11h ... channelswitch mode : 0
```

Related Commands

- show ap stats
- show ap summary
- show client summary
- show network
- show network summary
- show port
- show wlan
**show 802.11**

To display basic 802.11a, 802.11b/g, or 802.11h network settings, use the **show 802.11** command.

```
show 802.11 {a | b | h}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><strong>h</strong></td>
<td>Specifies the 802.11h network.</td>
</tr>
</tbody>
</table>

**Command Default**

None.

This example shows to display basic 802.11a network settings:

```
> show 802.11a
802.11a Network.............................. Enabled
11nSupport................................. Enabled
 802.11a Low Band.......................... Enabled
 802.11a Mid Band.......................... Enabled
 802.11a High Band........................ Enabled
802.11a Operational Rates
 802.11a 6M Rate............................ Mandatory
 802.11a 9M Rate............................ Supported
 802.11a 12M Rate........................... Mandatory
 802.11a 18M Rate........................... Supported
 802.11a 24M Rate........................... Mandatory
 802.11a 36M Rate........................... Supported
 802.11a 48M Rate........................... Supported
 802.11a 54M Rate........................... Supported
802.11n MCS Settings:
 MCS 0..................................... Supported
 MCS 1..................................... Supported
 MCS 2..................................... Supported
 MCS 3..................................... Supported
 MCS 4..................................... Supported
 MCS 5..................................... Supported
 MCS 6..................................... Supported
 MCS 7..................................... Supported
 MCS 8..................................... Supported
 MCS 9..................................... Supported
 MCS 10.................................... Supported
 MCS 11.................................... Supported
 MCS 12.................................... Supported
 MCS 13.................................... Supported
 MCS 14.................................... Supported
 MCS 15.................................... Supported
802.11n Status:
 A-MPDU Tx:
 Priority 0.............................. Enabled
 Priority 1.............................. Disabled
 Priority 2.............................. Disabled
 Priority 3.............................. Disabled
 Priority 4.............................. Disabled
 Priority 5.............................. Disabled
 Priority 6.............................. Disabled
```
Priority 7........................................ Disabled
Beacon Interval.............................. 100
CF Pollable mandatory........................ Disabled
CF Poll Request mandatory.................... Disabled
--More-- or (q)uit
CFP Period...................................... 4
CFP Maximum Duration......................... 60
Default Channel.............................. 36
Default Tx Power Level......................... 0
DTPC Status.................................... Enabled
Fragmentation Threshold....................... 2346
TI Threshold................................... -50
Legacy Tx Beamforming setting................. Disabled
Traffic Stream Metrics Status................ Enabled
Expeditied BW Request Status................ Disabled
World Mode..................................... Enabled
EDCA profile type.............................. default-wmm
Voice MAC optimization status................. Disabled
Call Admission Control (CAC) configuration
Voice AC:
  Voice AC - Admission control (ACM)......... Disabled
  Voice max RF bandwidth....................... 75
  Voice reserved roaming bandwidth........... 6
  Voice load-based CAC mode.................... Disabled
  Voice tspec inactivity timeout.............. Disabled
  Voice Stream-Size............................ 84000
  Voice Max-Streams........................... 2
Video AC:
  Video AC - Admission control (ACM)......... Disabled
  Video max RF bandwidth....................... Infinite
  Video reserved roaming bandwidth........... 0

This example shows how to display basic 802.11h network settings:

> show 802.11h
802.11h ........................................ powerconstraint : 0
802.11h ........................................ channelswitch : Disable
802.11h ........................................ channelswitch mode : 0

Related Commands

show ap stats
show ap summary
show client summary
show network
show network summary
show port
show wlan
show 802.11 cleanair

To display the multicast-direct configuration state, use the `show 802.11 cleanair` command.

```
show 802.11 {a | b | h} cleanair config
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>h</td>
<td>Specifies the 802.11h network.</td>
</tr>
<tr>
<td>config</td>
<td>Displays the network Cleanair configuration.</td>
</tr>
</tbody>
</table>

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the 802.11a cleanair configuration:

```
(Cisco Controller) > show 802.11a cleanair
Clean Air Solution.................................. Enabled
Air Quality Settings:
 Air Quality Reporting........................ Enabled
 Air Quality Reporting Period (min)........... 15
 Air Quality Alarms............................ Enabled
 Air Quality Alarm Threshold.................. 35 Interference Device
Settings:
 Interference Device Reporting.............. Enabled
 Interference Device Types:
 TDD Transmitter............................ Disabled
 Jammer....................................... Disabled
 Continuous Transmitter.................... Disabled
 DECT-like Phone............................ Disabled
 Video Camera................................ Disabled
 WiFi Inverted............................. Disabled
 WiFi Invalid Channel...................... Disabled
 SuperAG.................................... Disabled
 Radar...................................... Disabled
 Canopy..................................... Disabled
 WiMax Mobile.............................. Disabled
 WiMax Fixed................................ Disabled
 Interference Device Alarms.................. Enabled
 Interference Device Types Triggering Alarms:
 TDD Transmitter............................ Disabled
 Jammer..................................... Disabled
```
Continuous Transmitter................... Disabled
DECT-like Phone......................... Disabled
Video Camera............................ Disabled
WiFi Inverted........................... Disabled
WiFi Invalid Channel.................... Disabled
SuperAG.................................. Disabled
Radar..................................... Disabled
Canopy................................... Disabled
WiMax Mobile............................ Disabled
WiMax Fixed............................. Disabled Additional

Clean Air Settings:
  CleanAir Event-driven RRM State......... Enabled
  CleanAir Driven RRM Sensitivity......... Medium
  CleanAir Persistent Devices state....... Disabled
show 802.11 cleanair air-quality summary

To display the air quality summary information for the 802.11 networks, use the show 802.11 cleanair air-quality summary command.

show 802.11 {a | b | h} cleanair air-quality summary

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>summary</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the air quality information for the 802.11a network:

(Cisco Controller) > show 802.11a cleanair air-quality summary
AQ = Air Quality
DFS = Dynamic Frequency Selection
AP Name Channel Avg AQ Min AQ Interferers DFS
------------------ ------- ------ ------- ----------- ---
CISCO_AP3500 36 95 70 0
CISCO_AP3500 40 93 75 0
show 802.11 cleanair air-quality worst

To display the worst air quality information for the 802.11 networks, use the show 802.11 cleanair air-quality worst command.

show 802.11 {a | b | h} cleanair air-quality worst

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>h</td>
<td>Specifies the 802.11h network.</td>
</tr>
<tr>
<td>worst</td>
<td>Displays the worst air quality information for 802.11 networks.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display worst air quality information for the 802.11a network:

(Cisco Controller) > show 802.11 cleanair air-quality worst

AQ = Air Quality
DFS = Dynamic Frequency Selection

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Channel</th>
<th>Avg AQ</th>
<th>Min AQ</th>
<th>Interferers</th>
<th>DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO_AP3500</td>
<td>1</td>
<td>83</td>
<td>57</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
show 802.11 cleanair device ap

To display the information of the device access point on the 802.11 radio band, use the show 802.11 cleanair device ap command.

show 802.11 {a | b | h} cleanair device ap cisco_ap

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>h</td>
<td>Specifies the 802.11h network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Specified access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the device access point for the 802.11a network:

(Cisco Controller) > show 802.11a cleanair device ap AP_3500

DC = Duty Cycle (%)
ISI = Interference Severity Index (1-Low Interference, 100-High Interference)
RSSI = Received Signal Strength Index (dBm)
DevID = Device ID
No ClusterID DevID Type AP Name ISI
RSSI DC Channel
--- ------------------ ------ ---------- --------------- ---- ----- ----
1 c2:f7:40:00:00:03 0x8001 DECT phone 1 149,153,157,161 -43 3
2 c2:f7:40:00:00:51 0x8002 Radar 1 153,157,161,165 -81 2
3 c2:f7:40:00:00:03 0x8005 Canopy 2 153,157,161,165 -62 2
show 802.11 cleanair device type

To display the information of all the interferers device type detected by a specific access point on the 802.11 radio band, use the show 802.11 cleanair device type command.

show 802.11 {a | b | h} cleanair device type device_type

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>h</td>
<td>Specifies the 802.11h network.</td>
</tr>
</tbody>
</table>

device_type

Interferer device type for a specified radio band. The device type is one of the following:

- tdd-tx—Tdd-transmitter device information.
- jammer—Jammer device information.
- cont-tx—Continuous-transmitter devices information.
- dect-like—Dect-like phone devices information.
- video—Video devices information.
- 802.11-inv—WiFi inverted devices information.
- 802.11-nonstd—Nonstandard WiFi devices information.
- superag—Superag devices information.
- canopy—Canopy devices information.
- wimax-mobile—WiMax mobile devices information.
- wimax-fixed—WiMax fixed devices information.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the information of all the interferers detected by a specified access point for the 802.11a network:

(Cisco Controller) > show 802.11a cleanair device type canopy
DC = Duty Cycle (%)
<table>
<thead>
<tr>
<th>No</th>
<th>ClusterID</th>
<th>DevID</th>
<th>Type</th>
<th>AP Name</th>
<th>ISI</th>
<th>RSSI</th>
<th>DC</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1c2:f7:40:00:00:03</td>
<td>Canopy</td>
<td>CISCO_AP3500</td>
<td>2</td>
<td>-62</td>
<td>2</td>
<td>153,157,161,165</td>
</tr>
</tbody>
</table>
show 802.11 cu-metrics

To display access point channel utilization metrics, use the **show 802.11 cu-metrics** command.

```
show 802.11 {a | b} cu-metrics cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show 802.11a cu-metrics** command:

```
(Cisco Controller) > show 802.11a cu-metrics AP1
AP Interface Mac: 30:37:a6:c8:8a:50
Measurement Duration: 90sec
Timestamp Thu Jan 27 09:08:48 2011
Channel Utilization stats

Picc (50th Percentile)...... 0
Pib (50th Percentile)...... 76
Picc (90th Percentile)...... 0
Pib (90th Percentile)...... 77
Timestamp Thu Jan 27 09:34:34 2011
```
show 802.11 extended

To display access point radio extended configurations, use the **show 802.11 extended** command.

**show 802.11 {a | b} extended**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><strong>extended</strong></td>
<td>Displays the 802.11a/b radio extended configurations.</td>
</tr>
</tbody>
</table>

<p>| Command Default   | None |</p>
<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>7.6</strong></td>
<td>Modification</td>
</tr>
<tr>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
<tr>
<td><strong>8.0</strong></td>
<td>The command output was expanded to include the Rx SOP threshold.</td>
</tr>
</tbody>
</table>

The following example shows how to display radio extended configurations:

```
(Cisco Controller) > show 802.11a extended
Default 802.11a band radio extended configurations:
 beacon period 300, range 60;
 multicast buffer 45, rate 200;
 RX SOP -80; CCA threshold -90;
AP0022.9090.b618 00:24:97:88:99:60
 beacon period 300, range 60; multicast buffer 45, rate 200;
 RX SOP -80; CCA threshold -77
AP0022.9090.bb3e 00:24:97:88:c5:d0
 beacon period 300, range 0; multicast buffer 0, rate 0;
 RX SOP -80; CCA threshold -0
ironRap.ddbf 00:17:df:36:dd:b0
 beacon period 300, range 0; multicast buffer 0, rate 0;
 RX SOP -80; CCA threshold -0
```

The following example shows how to display radio extended configurations and the Rx SOP threshold:

```
(Cisco Controller) > show 802.11a extended
Default 802.11a band Radio Extended Configurations:
 Beacon period: 100, range: 0 (AUTO);
 Multicast buffer: 0 (AUTO), rate: 0 (AUTO);
 RX SOP threshold: -76; CCA threshold: 0 (AUTO);
AP3600-VALE3 34:a8:4e:6a17b:00
 Beacon period: 100, range: 0 (AUTO);
 Multicast buffer: 0 (AUTO), rate: 0 (AUTO);
 RX SOP threshold: -76; CCA threshold: 0 (AUTO);
```
**show 802.11 media-stream**

To display the multicast-direct configuration state, use the `show 802.11 media-stream` command.

```
show 802.11 {a | b | h} media-stream media_stream_name
```

**Syntax Description**
- **a**
  - Specifies the 802.11a network.
- **b**
  - Specifies the 802.11b/g network.
- **h**
  - Specifies the 802.11h network.
- **media_stream_name**
  - Specified media stream name.

**Command Default**
None.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display the media-stream configuration:

```
> show 802.11a media-stream rrc
Multicast-direct................................. Enabled
Best Effort...................................... Disabled
Video Re-Direct................................. Enabled
Max Allowed Streams Per Radio................. Auto
Max Allowed Streams Per Client............... Auto
Max Video Bandwidth............................ 0
Max Voice Bandwidth......................... 75
Max Media Bandwidth......................... 85
Min PHY Rate..................................... 6000
Max Retry Percentage....................... 80
```
Show Commands

show 802.11 media-stream
Show Commands: a to i

- show aaa auth, on page 1267
- show acl, on page 1268
- show acl detailed, on page 1270
- show acl summary, on page 1271
- show advanced 802.11 channel, on page 1272
- show advanced 802.11 coverage, on page 1273
- show advanced 802.11 group, on page 1274
- show advanced 802.11 l2roam, on page 1275
- show advanced 802.11 logging, on page 1276
- show advanced 802.11 monitor, on page 1277
- show advanced 802.11 optimized roaming, on page 1278
- show advanced 802.11 profile, on page 1279
- show advanced 802.11 receiver, on page 1280
- show advanced 802.11 summary, on page 1281
- show advanced 802.11 txpower, on page 1282
- show advanced backup-controller, on page 1283
- show advanced dot11-padding, on page 1284
- show advanced hotspot, on page 1285
- show advanced max-1x-sessions, on page 1286
- show advanced probe, on page 1287
- show advanced rate, on page 1288
- show advanced timers, on page 1289
- show advanced client-handoff, on page 1290
- show advanced eap, on page 1291
- show advanced send-disassoc-on-handoff, on page 1292
- show advanced sip-preferred-call-no, on page 1293
- show advanced sip-snooping-ports, on page 1294
- show arp kernel, on page 1295
- show arp switch, on page 1296
- show ap auto-rf, on page 1297
- show ap aid-audit-mode, on page 1299
- show ap ccx rm, on page 1300
- show ap cdp, on page 1301
- show ap channel, on page 1303
- show ap config, on page 1304
- show ap config general, on page 1310
- show ap config global, on page 1312
- show ap core-dump, on page 1313
- show ap crash-file, on page 1314
- show ap data-plane, on page 1315
- show ap dtls-cipher-suite, on page 1316
- show ap ethernet tag, on page 1317
- show ap eventlog, on page 1318
- show ap flexconnect, on page 1319
- show ap image, on page 1320
- show ap inventory, on page 1321
- show ap join stats detailed, on page 1322
- show ap join stats summary, on page 1323
- show ap join stats summary all, on page 1324
- show ap led-state, on page 1325
- show ap led-flash, on page 1326
- show ap link-encryption, on page 1327
- show ap max-count summary, on page 1328
- show ap monitor-mode summary, on page 1329
- show ap packet-dump status, on page 1330
- show ap prefer-mode stats, on page 1331
- show ap retransmit, on page 1332
- show ap stats, on page 1333
- show ap summary, on page 1336
- show ap tcp-mss-adjust, on page 1337
- show ap wlan, on page 1338
- show assisted-roaming, on page 1339
- show atf config, on page 1340
- show atf statistics ap, on page 1341
- show auth-list, on page 1342
- show avc applications, on page 1343
- show avc engine, on page 1344
- show avc profile, on page 1345
- show avc protocol-pack, on page 1346
- show avc statistics application, on page 1347
- show avc statistics client, on page 1349
- show avc statistics guest-lan, on page 1351
- show avc statistics remote-lan, on page 1352
- show avc statistics top-apps, on page 1353
- show avc statistics wlan, on page 1355
- show boot, on page 1357
- show band-select, on page 1358
- show buffers, on page 1359
- show cac voice stats, on page 1361
Show Commands

- show cac voice summary, on page 1362
- show cac video stats, on page 1363
- show cac video summary, on page 1365
- show call-control ap, on page 1366
- show call-control client, on page 1370
- show capwap reap association, on page 1371
- show capwap reap status, on page 1372
- show cdp, on page 1373
- show certificate compatibility, on page 1374
- show certificate lsc, on page 1375
- show certificate ssc, on page 1376
- show certificate summary, on page 1377
- show client ap, on page 1378
- show client calls, on page 1379
- show client ccx client-capability, on page 1380
- show client ccx frame-data, on page 1381
- show client ccx last-response-status, on page 1382
- show client ccx last-test-status, on page 1383
- show client ccx log-response, on page 1384
- show client ccx manufacturer-info, on page 1385
- show client ccx operating-parameters, on page 1386
- show client ccx profiles, on page 1387
- show client ccx results, on page 1389
- show client ccx rm, on page 1390
- show client ccx stats-report, on page 1392
- show client detail, on page 1393
- show client location-calibration summary, on page 1397
- show client roam-history, on page 1398
- show client summary, on page 1399
- show client summary guest-lan, on page 1401
- show client tsm, on page 1402
- show client username, on page 1404
- show client voice-diag, on page 1405
- show client detail, on page 1406
- show client location-calibration summary, on page 1408
- show client probing, on page 1409
- show client roam-history, on page 1410
- show client summary, on page 1411
- show client wlan, on page 1413
- show cloud-services cmx summary, on page 1414
- show cloud-services cmx statistics, on page 1415
- show coredump summary, on page 1416
- show country, on page 1417
- show country channels, on page 1418
- show country supported, on page 1419
- show cpu, on page 1421
• show custom-web, on page 1422
• show database summary, on page 1423
• show dhcp, on page 1424
• show dhcp proxy, on page 1425
• show dhcp timeout, on page 1426
• show dtls connections, on page 1427
• show exclusionlist, on page 1428
• show flexconnect acl detailed, on page 1429
• show flexconnect acl summary, on page 1430
• show flexconnect group detail, on page 1431
• show flexconnect group summary, on page 1432
• show flexconnect office-extend, on page 1433
• show flow exporter, on page 1434
• show flow monitor summary, on page 1435
• show guest-lan, on page 1436
• show ike, on page 1437
• show interface summary, on page 1438
• show interface detailed, on page 1439
• show interface group, on page 1441
• show invalid-config, on page 1443
• show inventory, on page 1444
• show IPsec, on page 1445
• show ipv6 acl, on page 1447
• show ipv6 summary, on page 1448
• show guest-lan, on page 1449
• show ipv6 acl, on page 1450
• show ipv6 acl cpu, on page 1451
• show ipv6 acl detailed, on page 1452
• show ipv6 neighbor-binding, on page 1453
• show ipv6 ra-guard, on page 1457
• show ipv6 route summary, on page 1458
• show ipv6 summary, on page 1459
• show known ap, on page 1460
show aaa auth

To display the configuration settings for the AAA authentication server database, use the `show aaa auth` command.

show aaa auth

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the configuration settings for the AAA authentication server database:

(Cisco Controller) > show aaa auth
Management authentication server order:
1............................................ local
2............................................ tacacs

Related Commands

- config aaa auth
- config aaa auth mgmt
show acl

To display the access control lists (ACLs) that are configured on the controller, use the `show acl` command.

```
show acl { cpu | detailed acl_name | summary | layer2 { summary | detailed acl_name } }
```

**Syntax Description**

- **cpu**
  - Displays the ACLs configured on the Cisco WLC's central processing unit (CPU).

- **detailed**
  - Displays detailed information about a specific ACL.

- **acl_name**
  - ACL name. The name can be up to 32 alphanumeric characters.

- **summary**
  - Displays a summary of all ACLs configured on the controller.

- **layer2**
  - Displays the Layer 2 ACLs.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the access control lists on the CPU.

```
(Cisco Controller) > show acl cpu

CPU Acl Name.................. Wireless Traffic............ Disabled
 Wired Traffic............ Disabled
 Applied to NPU............ No
```

The following example shows how to display a summary of the access control lists.

```
(Cisco Controller) > show acl summary

ACL Counter Status............ Disabled
IPv4 ACL Name................ Applied
IPv6 ACL Name................ Applied
```

The following example shows how to display the detailed information of the access control lists.

(Cisco Controller) > **show acl detailed acl_name**

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Source Port</th>
<th>Dest Port</th>
<th>Action</th>
<th>Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 0.0.0.0/0.0.0.0</td>
<td>0.0.0.0/0.0.0.0</td>
<td>Any</td>
<td>0-65535</td>
<td>0-65535</td>
<td>0</td>
</tr>
<tr>
<td>In 0.0.0.0/0.0.0.0</td>
<td>200.200.200.0/24</td>
<td>6</td>
<td>80-80</td>
<td>0-65535</td>
<td>Any</td>
</tr>
</tbody>
</table>

DenyCounter : 0

**Note**
The Counter field increments each time a packet matches an ACL rule, and the DenyCounter field increments each time a packet does not match any of the rules.

**Related Commands**
- clear acl counters
- config acl apply
- config acl counter
- config acl cpu
- config acl create
- config acl delete
- config interface acl
- config acl rule
show acl detailed

To display detailed DNS-based ACL information, use the **show acl detailed** command.

```
show acl detailed acl_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>acl_name</th>
<th>Name of the access control list.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show acl detailed acl_name` command.

```
(Cisco Controller) > show acl detailed android

No rules are configured for this ACL.
DenyCounter : 0
URLs configured in this ACL

*.play.google.com
*.store.google.com
```
show acl summary

To display DNS-based ACL information, use the `show acl summary` command.

**show acl summary**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>summary</strong></td>
<td>Displays DNS-based ACL information.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show acl summary` command.

```
(Cisco Controller) > show acl summary
ACL Counter Status Disabled
--
IPv4 ACL Name Applied android No
StoreACL Yes
--
IPv6 ACL Name Applied
```

1
show advanced 802.11 channel

To display the automatic channel assignment configuration and statistics, use the **show advanced 802.11 channel** command.

**show advanced 802.11 {a | b} channel**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the automatic channel assignment configuration and statistics:

(Cisco Controller) > **show advanced 802.11a channel**

Automatic Channel Assignment
  Channel Assignment Mode.............................. AUTO
  Channel Update Interval............................ 600 seconds [startup]
  Anchor time (Hour of the day)...................... 0
  Channel Update Contribution....................... SNI.
  Channel Assignment Leader.......................... 00:1a:6d:dd:1e:40
  Last Run........................................... 129 seconds ago
  DCA Sensitivity Level: ........................... STARTUP (5 dB)
  DCA Minimum Energy Limit.......................... -95 dBm

Channel Energy Levels
  Minimum.......................................... unknown
  Average........................................... unknown
  Maximum........................................... unknown

Channel Dwell Times
  Minimum.......................................... unknown
  Average........................................... unknown
  Maximum........................................... unknown

Auto-RF Allowed Channel List..........................
  36,40,44,48,52,56,60,64,149,
  ............................................. 153,157,161

Auto-RF Unused Channel List.........................
  100,104,108,112,116,132,136,
  ............................................. 140,165,190,196

DCA Outdoor AP option............................... Enabled
show advanced 802.11 coverage

To display the configuration and statistics for coverage hole detection, use the `show advanced 802.11 coverage` command.

```
show advanced 802.11 (a | b) coverage
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the statistics for coverage hole detection:

```
(Cisco Controller) > show advanced 802.11a coverage
Coverage Hole Detection
 802.11a Coverage Hole Detection Mode........... Enabled
 802.11a Coverage Voice Packet Count............. 100 packets
 802.11a Coverage Voice Packet Percentage...... 50%
 802.11a Coverage Voice RSSI Threshold.......... -80 dBm
 802.11a Coverage Data Packet Count............. 50 packets
 802.11a Coverage Data Packet Percentage....... 50%
 802.11a Coverage Data RSSI Threshold.......... -80 dBm
 802.11a Global coverage exception level....... 25 %
 802.11a Global client minimum exception lev.... 3 clients
```
# show advanced 802.11 group

To display 802.11a or 802.11b Cisco radio RF grouping, use the **show advanced 802.11 group** command.

```
show advanced 802.11 {a | b} group
```

## Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

## Command Default

None

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display Cisco radio RF group settings:

```
(Cisco Controller) > show advanced 802.11a group
Radio RF Grouping
 802.11a Group Mode.................................. AUTO
 802.11a Group Update Interval...................... 600 seconds
 802.11a Group Member............................. xx:xx:xx:xx:xx:xx
 802.11a Last Run.................................... 133 seconds ago
```
show advanced 802.11 l2roam

To display 802.11a or 802.11b/g Layer 2 client roaming information, use the `show advanced 802.11 l2roam` command.

```
show advanced 802.11 {a | b} l2roam {rf-param | statistics} mac_address
```

**Syntax Description**

- **a**: Specifies the 802.11a network.
- **b**: Specifies the 802.11b/g network.
- **rf-param**: Specifies the Layer 2 frequency parameters.
- **statistics**: Specifies the Layer 2 client roaming statistics.
- **mac_address**: MAC address of the client.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show advanced 802.11b l2roam rf-param` command:

```
(Cisco Controller) > show advanced 802.11b l2roam rf-param
L2Roam 802.11bg RF Parameters....................
 Config Mode................................. Default
 Minimum RSSI............................... -85
 Roam Hysteresis............................ 2
 Scan Threshold............................. -72
 Transition time............................ 5
```
show advanced 802.11 logging

To display 802.11a or 802.11b RF event and performance logging, use the `show advanced 802.11 logging` command.

`show advanced 802.11 {a | b} logging`

**Syntax Description**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display 802.11b RF event and performance logging:

(Cisco Controller) > `show advanced 802.11b logging`

RF Event and Performance Logging

- Channel Update Logging......................... Off
- Coverage Profile Logging...................... Off
- Foreign Profile Logging....................... Off
- Load Profile Logging.......................... Off
- Noise Profile Logging......................... Off
- Performance Profile Logging.................. Off
- TxPower Update Logging....................... Off
show advanced 802.11 monitor

To display the 802.11a or 802.11b default Cisco radio monitoring, use the **show advanced 802.11 monitor** command.

```
show advanced 802.11 {a | b} monitor
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a</strong></td>
<td>Specifies the 802.11a network.</td>
<td></td>
</tr>
<tr>
<td><strong>b</strong></td>
<td>Specifies the 802.11b/g network.</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the radio monitoring for the 802.11b network:

```
(Cisco Controller) > show advanced 802.11b monitor
Default 802.11b AP monitoring
 802.11b Monitor Mode......................... enable
 802.11b Monitor Channels..................... Country channels
 802.11b RRM Neighbor Discovery Type........ Transparent
 802.11b AP Coverage Interval................. 180 seconds
 802.11b AP Load Interval..................... 60 seconds
 802.11b AP Noise Interval.................... 180 seconds
 802.11b AP Signal Strength Interval........ 60 seconds
```
show advanced 802.11 optimized roaming

To display the optimized roaming configurations for 802.11a/b networks, use the show advanced 802.11 optimized roaming command.

show advanced 802.11 {a | b} optimized roaming [stats]

**Syntax Description**

- **stats** (Optional) Displays optimized roaming statistics for a 802.11a/b network.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display the optimized roaming configurations for an 802.11a network:

(Cisco Controller) > show advanced 802.11a optimized roaming
OptimizedRoaming
  802.11a OptimizedRoaming Mode.................. Enabled
  802.11a OptimizedRoaming Reporting Interval.... 20 seconds
  802.11a OptimizedRoaming Rate Threshold....... disabled

The following example shows how to display the optimized roaming statistics for an 802.11a network:

(Cisco Controller) > show advanced 802.11a optimized roaming stats
OptimizedRoaming Stats
  802.11a OptimizedRoaming Disassociations....... 2
  802.11a OptimizedRoaming Rejections............ 1
show advanced 802.11 profile

To display the 802.11a or 802.11b lightweight access point performance profiles, use the `show advanced 802.11 profile` command.

```
show advanced 802.11 {a | b} profile {global | cisco_ap}
```

**Syntax Description**

- `a`: Specifies the 802.11a network.
- `b`: Specifies the 802.11b/g network.
- `global`: Specifies all Cisco lightweight access points.
- `cisco_ap`: Name of a specific Cisco lightweight access point.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the global configuration and statistics of an 802.11a profile:

```
(Cisco Controller) > show advanced 802.11 profile global
Default 802.11a AP performance profiles
 802.11a Global Interference threshold.............. 10%
 802.11a Global noise threshold...................... -70 dBm
 802.11a Global RF utilization threshold.............. 80%
 802.11a Global throughput threshold................ 1000000 bps
 802.11a Global clients threshold................... 12 clients
 802.11a Global coverage threshold................... 12 dB
 802.11a Global coverage exception level........... 80%
 802.11a Global client minimum exception lev....... 3 clients
```

The following example shows how to display the configuration and statistics of a specific access point profile:

```
(Cisco Controller) > show advanced 802.11 profile AP1
Cisco AP performance profile not customized
```

This response indicates that the performance profile for this lightweight access point is using the global defaults and has not been individually configured.
show advanced 802.11 receiver

To display the configuration and statistics of the 802.11a or 802.11b receiver, use the **show advanced 802.11 receiver** command.

```
show advanced 802.11 {a | b} receiver
```

**Syntax Description**

- **a**
  - Specifies the 802.11a network.

- **b**
  - Specifies the 802.11b/g network.

**Command Default**

- None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the configuration and statistics of the 802.11a network settings:

```
(Cisco Controller) > show advanced 802.11 receiver
802.11a Receiver Settings
 RxStart : Signal Threshold........................... 15
 RxStart : Signal Lamp Threshold........................ 5
 RxStart : Preamble Power Threshold.................... 2
 RxReStart : Signal Jump Status......................... Enabled
 RxReStart : Signal Jump Threshold...................... 10
 TxStomp : Low RSSI Status.............................. Enabled
 TxStomp : Low RSSI Threshold......................... 30
 TxStomp : Wrong BSSID Status......................... Enabled
 TxStomp : Wrong BSSID Data Only Status.............. Enabled
 RxAbort : Raw Power Drop Status...................... Disabled
 RxAbort : Raw Power Drop Threshold................... 10
 RxAbort : Low RSSI Status............................ Disabled
 RxAbort : Low RSSI Threshold......................... 0
 RxAbort : Wrong BSSID Status......................... Disabled
 RxAbort : Wrong BSSID Data Only Status.............. Disabled
```
show advanced 802.11 summary

To display the 802.11a or 802.11b Cisco lightweight access point name, channel, and transmit level summary, use the **show advanced 802.11 summary** command.

**show advanced 802.11 {a | b} summary**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the 802.11b access point settings:

(Cisco Controller) > **show advanced 802.11b summary**

AP Name	MAC Address	Admin State	Operation State	Channel
CJ-1240  | 00:21:1b:ea:36:60 | ENABLED     | UP              | 161     |
CJ-1130  | 00:1f:ca:cf:b6:60 | ENABLED     | UP              | 56*     |

**Note**

An asterisk (*) next to a channel number or power level indicates that it is being controlled by the global algorithm settings.
**show advanced 802.11 txpower**

To display the 802.11a or 802.11b automatic transmit power assignment, use the `show advanced 802.11 txpower` command.

```
show advanced 802.11 {a | b} txpower
```

---

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Specifies the 802.11b/g network.</td>
</tr>
</tbody>
</table>

---

**Command Default**

None

---

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

---

The following example shows how to display the configuration and statistics of the 802.11b transmit power cost:

```
(Cisco Controller) > show advanced 802.11b txpower
Automatic Transmit Power Assignment
 Transmit Power Assignment Mode.................. AUTO
 Transmit Power Update Interval.................. 600 seconds
 Transmit Power Threshold....................... -65 dBm
 Transmit Power Neighbor Count.................. 3 APs
 Transmit Power Update Contribution............. SN.
 Last Run...................................... 384 seconds ago
```
show advanced backup-controller

To display a list of primary and secondary backup WLCs, use the `show advanced backup-controller` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the backup controller information:

```
(Cisco Controller) >
show advanced backup-controller
AP primary Backup Controller controller 10.10.10.10
AP secondary Backup Controller 0.0.0.0
```
show advanced dot11-padding

To display the state of over-the-air frame padding on a wireless LAN controller, use the `show advanced dot11-padding` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to view the state of over-the-air frame padding:

```
(Cisco Controller) > show advanced dot11-padding
dot11-padding.. Disabled
```
**show advanced hotspot**

To display the advanced HotSpot parameters, use the `show advanced hotspot` command.

```
show advanced hotspot
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the advanced HotSpot parameters:

```
(Cisco Controller) > show advanced hotspot
ANQP 4-way state......................... Disabled
GARP Broadcast state: Enabled
GAS request rate limit Disabled
ANQP comeback delay in TUs(TU=1024usec)....... 50
```
show advanced max-1x-sessions

To display the maximum number of simultaneous 802.1X sessions allowed per access point, use the `show advanced max-1x-sessions` command.

`show advanced max-1x-sessions`

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the maximum 802.1X sessions per access point:

```
(Cisco Controller) > show advanced max-1x-sessions
Max 802.1x session per AP at a given time........ 0
```
show advanced probe

To display the number of probes sent to the Cisco WLC per access point per client and the probe interval in milliseconds, use the `show advanced probe` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the probe settings for the WLAN controller:

```
(Cisco Controller) > show advanced probe
Probe request filtering.......................... Enabled
Probes fwd to controller per client per radio.... 12
Probe request rate-limiting interval............. 100 msec
```
show advanced rate

To display whether control path rate limiting is enabled or disabled, use the `show advanced rate` command.

```plaintext
show advanced rate
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the switch control path rate limiting mode:

```plaintext
(Cisco Controller) >show advanced rate
Control Path Rate Limiting....................... Disabled
```
show advanced timers

To display the mobility anchor, authentication response, and rogue access point entry timers, use the `show advanced timers` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

The defaults are shown in the “Examples” section.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the system timers setting:

```
(Cisco Controller) >show advanced timers
Authentication Response Timeout (seconds)........ 10
Rogue Entry Timeout (seconds).................... 1200
AP Heart Beat Timeout (seconds).................. 30
AP Discovery Timeout (seconds)................... 10
AP Local mode Fast Heartbeat (seconds)......... disable
AP flexconnect mode Fast Heartbeat (seconds)........ disable
AP Primary Discovery Timeout (seconds)......... 120
```
show advanced client-handoff

To display the number of automatic client handoffs after retries, use the `show advanced client-handoff` command.

**Syntax Description**

This command has no arguments or keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the client auto handoff mode after excessive retries:

```
(Cisco Controller) >show advanced client-handoff
Client auto handoff after retries................. 130
```
show advanced eap

To display Extensible Authentication Protocol (EAP) settings, use the `show advanced eap` command.

```
show advanced eap
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the EAP settings:

```
(Cisco Controller) > show advanced eap
EAP-Identity-Request Timeout (seconds)........... 1
EAP-Identity-Request Max Retries.................. 20
EAP Key-Index for Dynamic WEP.................... 0
EAP Max-Login Ignore Identity Response.......... enable
EAP-Request Timeout (seconds).................... 1
EAP-Request Max Retries.......................... 20
EAPOL-Key Timeout (milliseconds)................. 1000
EAPOL-Key Max Retries............................ 2
```

**Related Commands**

- `config advanced eap`
- `config advanced timers eap-identity-request-delay`
- `config advanced timers eap-timeout`
show advanced send-disassoc-on-handoff

To display whether the WLAN controller disassociates clients after a handoff, use the show advanced send-disassoc-on-handoff command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show advanced send-disassoc-on-handoff command:

```
(Cisco Controller) > show advanced send-disassoc-on-handoff
Send Disassociate on Handoff................. Disabled
```
**show advanced sip-preferred-call-no**

To display the list of preferred call numbers, use the `show advanced sip-preferred-call-no` command.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
<th>Command History</th>
</tr>
</thead>
</table>
| This command has no arguments or keywords. | None | Modification | Release  
This command was introduced in a release earlier than Release 7.6.  |

The following is a sample output of the `show advanced sip-preferred-call-no` command:

```
(Cisco Controller) > show advanced sip-preferred-call-no
Preferred Call Numbers List
Call Index Preferred Call No
---------- ---------------
1 911
2 100
3 101
4 102
5 103
6 104
```
show advanced sip-snooping-ports

To display the port range for call snooping, use the show advanced sip-snooping-ports command.

show advanced sip-snooping-ports

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show advanced sip-snooping-ports command:

(Cisco Controller) > show advanced sip-snooping-ports
SIP Call Snoop Ports: 1000 - 2000
show arp kernel

To display the kernel Address Resolution Protocol (ARP) cache information, use the `show arp kernel` command.

**show arp kernel**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show arp kernel` command:

```
(Cisco Controller) > show arp kernel
IP address HW type Flags HW address Mask Device
192.0.2.1 0x1 0x2 00:1A:6C:2A:09:C2 * dtl0
192.0.2.8 0x1 0x6 00:1E:E5:E6:DB:56 * dtl0
```
**show arp switch**

To display the Cisco wireless LAN controller MAC addresses, IP addresses, and port types, use the `show arp switch` command.

**Syntax Description**

This command has no arguments or keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show arp switch` command:

```
(Cisco Controller) > show arp switch
MAC Address IP Address Port VLAN Type
--------------- ------------- ---------- ---------- ---- --------------
```
show ap auto-rf

To display the auto-RF settings for a Cisco lightweight access point, use the `show ap auto-rf` command.

`show ap auto-rf 802.11{a | b} cisco_ap`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display auto-RF information for an access point:

```
(Cisco Controller) > show ap auto-rf 802.11a AP1
Number Of Slots.................................. 2
AP Name.. AP03
MAC Address...................................... 00:0b:85:01:18:b7
Radio Type..................................... RADIO_TYPE_80211a
Noise Information
 Noise Profile.................................. PASSED
 Channel 36................................... -88 dBm
 Channel 40................................... -86 dBm
 Channel 44................................... -87 dBm
 Channel 48................................... -85 dBm
 Channel 52................................... -84 dBm
 Channel 56................................... -83 dBm
 Channel 60................................... -84 dBm
 Channel 64................................... -85 dBm
Interference Information
 Interference Profile......................... PASSED
 Channel 36................................... -66 dBm @ 1% busy
 Channel 40................................... -128 dBm @ 0% busy
 Channel 44................................... -128 dBm @ 0% busy
 Channel 48................................... -128 dBm @ 0% busy
 Channel 52................................... -73 dBm @ 1% busy
 Channel 56................................... -55 dBm @ 1% busy
 Channel 60................................... -69 dBm @ 1% busy
 Channel 64................................... -69 dBm @ 1% busy
Rogue Histogram (20/40_ABOVE/40_BELOW)
 Channel 36................................... 16/ 0/ 0
 Channel 40................................... 28/ 0/ 0
 Channel 44................................... 9/ 0/ 0
```
Channel 48................................... 9/ 0/ 0
Channel 52................................... 3/ 0/ 0
Channel 56................................... 4/ 0/ 0
Channel 60................................... 7/ 1/ 0
Channel 64................................... 2/ 0/ 0

Load Information
Load Profile................................ PASSED
Receive Utilization.................................... 0%
Transmit Utilization.................................... 0%
Channel Utilization.................................... 1%
Attached Clients..................................... 1 clients

Coverage Information
Coverage Profile................................ PASSED
Failed Clients....................................... 0 clients

Client Signal Strengths
RSSI -100 dBm................................ 0 clients
RSSI -92 dBm................................ 0 clients
RSSI -84 dBm................................ 0 clients
RSSI -76 dBm................................ 0 clients
RSSI -68 dBm................................ 0 clients
RSSI -60 dBm................................ 0 clients
RSSI -52 dBm................................ 0 clients

Client Signal To Noise Ratios
SNR 0 dBm................................. 0 clients
SNR 5 dBm................................. 0 clients
SNR 10 dBm................................. 0 clients
SNR 15 dBm................................. 0 clients
SNR 20 dBm................................. 0 clients
SNR 25 dBm................................. 0 clients
SNR 30 dBm................................. 0 clients
SNR 35 dBm................................. 0 clients
SNR 40 dBm................................. 0 clients
SNR 45 dBm................................. 0 clients

Nearby RADs
RAD 00:0b:85:01:05:08 slot 0................. -46 dBm on 10.1.30.170
RAD 00:0b:85:01:12:65 slot 0................. -24 dBm on 10.1.30.170

Channel Assignment Information
Current Channel Average Energy.............. -86 dBm
Previous Channel Average Energy.............. -75 dBm
Channel Change Count............................. 109
Last Channel Change Time......................... Wed Sep 29 12:53e:34

2004
Recommended Best Channel...................... 44

RF Parameter Recommendations
Power Level..................................... 1
RTS/CTS Threshold.............................. 2347
Fragmentation Threshold...................... 2346
Antenna Pattern............................... 0
show ap aid-audit-mode

To view the AP aid-audit mode status, use the show ap aid-audit mode command.

show ap aid-audit mode

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display the aid-audit mode status:

(Cisco Controller) > show ap aid-audit-mode
Aid Audit Mode ................................ Disabled
show ap ccx rm

To display an access point’s Cisco Client eXtensions (CCX) radio management status information, use the `show ap ccx rm` command.

`show ap ccx rm ap_name status`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ap_name</code></td>
<td>Specified access point name.</td>
</tr>
<tr>
<td><code>status</code></td>
<td>Displays the CCX radio management status information for an access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the status of the CCX radio management:

```
(Cisco Controller) > show ap ccx rm AP1240-21ac status
A Radio
Channel Load Request Disabled
Noise Histogram Request Disabled
Beacon Request Disabled
Frame Request Disabled
Interval 60
Iteration 10
G Radio
Channel Load Request Disabled
Noise Histogram Request Disabled
Beacon Request Disabled
Frame Request Disabled
Interval 60
Iteration 10
```
show ap cdp

To display the Cisco Discovery Protocol (CDP) information for an access point, use the **show ap cdp** command.

```
show ap cdp { all | ap-name cisco_ap | neighbors { all | ap-name cisco_ap | detail cisco_ap } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays the CDP status on all access points.</td>
</tr>
<tr>
<td>ap-name</td>
<td>Displays the CDP status for a specified access point.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Specified access point name.</td>
</tr>
<tr>
<td>neighbors</td>
<td>Displays neighbors using CDP.</td>
</tr>
<tr>
<td>detail</td>
<td>Displays details about a specific access point neighbor using CDP.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the CDP status of all access points:

```
(Cisco Controller) >show ap cdp all
AP CDP State
AP Name AP CDP State
------------------ -------
SB_RAP1 enable
SB_MAP1 enable
SB_MAP2 enable
SB_MAP3 enable
```

The following example shows how to display the CDP status of a specified access point:

```
(Cisco Controller) >show ap cdp ap-name SB_RAP1
AP CDP State
AP Name AP CDP State
------------------ -------
AP CDP State..................Enabled
AP Interface-Based CDP state
Ethernet 0.................Enabled
Slot 0....................Enabled
Slot 1....................Enabled
```

The following example shows how to display details about all neighbors using CDP:

```
(Cisco Controller) >show ap cdp neighbor all
AP Name AP IP Neighbor Name Neighbor IP Neighbor Port
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
The following example shows how to display details about a specific neighbor with a specified access point using CDP:

(Cisco Controller) > show ap cdp neighbors ap-name SB_MAP2

<table>
<thead>
<tr>
<th>AP Name</th>
<th>AP IP</th>
<th>Neighbor Name</th>
<th>Neighbor IP</th>
<th>Neighbor Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_MAP2</td>
<td>192.168.102.138</td>
<td>SB_MAP1</td>
<td>192.168.102.137</td>
<td>Virtual-Dot11Radio1</td>
</tr>
<tr>
<td>SB_MAP2</td>
<td>192.168.102.138</td>
<td>SB_MAP3</td>
<td>192.168.102.139</td>
<td>Virtual-Dot11Radio0</td>
</tr>
</tbody>
</table>

The following example shows how to display details about neighbors using CDP:

(Cisco Controller) > show ap cdp neighbors detail SB_MAP2

Device ID: SB_MAP2
Entry address(es): 192.168.102.138
Platform: cisco AIR-LAP1522AG-A-K9 , Capabilities: Trans-BridgeInterface: Virtual-Dot11Radio1, Port ID (outgoing port): Virtual-Dot11Radio0Holdtime : 180 secVersion :
Entry address(es): 192.168.102.139
Platform: cisco AIR-LAP1522AG-A-K9 , Capabilities: Trans-BridgeInterface: Virtual-Dot11Radio1, Port ID (outgoing port): Virtual-Dot11Radio0Holdtime : 180 secVersion :
**show ap channel**

To display the available channels for a specific mesh access point, use the `show ap channel` command.

`show ap channel ap_name`

**Syntax Description**

| **ap_name** | Name of the mesh access point. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the available channels for a particular access point:

```
(Cisco Controller) >show ap channel AP47
802.11b/g Current Channel1
Allowed Channel List..................1,2,3,4,5,6,7,8,9,10,11
802.11a Current Channel161
Allowed Channel List..................36,40,44,48,52,56,60,64,100,
..104,108,112,116,132,136,140,
..149,153,157,161
```
**show ap config**

To display the detailed configuration for a lightweight access point, use the `show ap config` command.

```
show ap config 802.11 {a | b} [summary] cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a or 802.11b/g network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays radio summary of all APs</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Lightweight access point name.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed configuration for an access point:

```
(Cisco Controller) >show ap config 802.11a AP02
Cisco AP Identifier.............................. 0
Cisco AP Name.................................... AP02
Country code..................................... US - United States
Regulatory Domain allowed by Country.......... 802.11bg:-A 802.11a:-A
AP Regulatory Domain........................... Unconfigured
Switch Port Number 1
MAC Address...................................... 00:0b:85:18:b6:50
IP Address Configuration....................... DHCP
IP Address....................................... 1.100.49.240
IP NetMask....................................... 255.255.255.0
Gateway IP Addr.................................. 1.100.49.1
CAPWAP Path MTU.................................. 1485
Telnet State.................................... Disabled
Ssh State.. Disabled
Cisco AP Location.............................. default-location
Cisco AP Group Name............................. default-group
Primary Cisco Switch........................... Cisco_32:ab:63
Primary Cisco Switch IP Address............... Not Configured
Secondary Cisco Switch........................ Secondary Cisco Switch IP Address........... Not Configured
Tertiary Cisco Switch........................... Tertiary Cisco Switch IP Address............. Not Configured
Administrative State............................ ADMIN_ENABLED
Operation State REGISTERED
Mirroring Mode Disabled
AP Mode .. Sniffer
Public Safety Global: Disabled, Local: Disabled
AP SubMode Not Configured
Remote AP Debug Disabled
Logging trap severity level informational
Logging syslog facility kern
S/W Version 7.0.110.6
```
Boot Version ................................... 12.4.18.0  
Mini IOS Version ............................. 3.0.51.0  
Stats Reporting Period ....................... 180  
Stats Re--More-- or (q)uit  
LED State...................................... Enabled  
PoE Pre-Standard Switch...................... Enabled  
PoE Power Injector MAC Addr.................. Disabled  
Power Type/Mode................................ Power injector / Normal mode  
Number Of Slots................................ 2  
AP Model...................................... AIR-LAP1142N-A-K9  
AP Image...................................... C1140-K9W8-M  
IOS Version.................................... 12.4(20100502:031212)  
Reset Button.................................. Enabled  
AP Serial Number............................. FTX1305S180  
AP Certificate Type........................... Manufacture Installed  
AP User Mode.................................. AUTOMATIC  
AP User Name................................... Not Configured  
AP Dot1x User Mode............................ Not Configured  
AP Dot1x User Name............................ Not Configured  
Cisco AP system logging host................ 255.255.255.255  
AP Up Time.................................... 47 days, 23 h 47 m 47 s  
AP LWAPP Up Time.............................. 47 days, 23 h 10 m 37 s  
Join Date and Time............................ Tue May 4 16:05:00 2010  
Join Taken Time............................... 0 days, 00 h 01 m 37 s  
Attributes for Slot 1  
Radio Type................................... RADIO_TYPE_80211n-5  
Radio Subband................................. RADIO_SUBBAND_ALL  
Administrative State.......................... ADMIN_ENABLED  
Operation State.............................. UP  
Radio Role .................................. ACCESS  
CellId ....................................... 0  
Configuration ................................ AUTOMATIC  
Number Of WLANs.............................. 2  
Medium Occupancy Limit....................... 100  
CFF Period................................... 4  
CFF MaxDuration.............................. 60  
BSSID ....................................... 00:24:97:88:99:60  
Operation Rate Set  
6000 Kilo Bits..................... MANDATORY  
9000 Kilo Bits..................... SUPPORTED  
12000 Kilo Bits.................. MANDATORY  
18000 Kilo Bits.................. SUPPORTED  
24000 Kilo Bits.................. MANDATORY  
36000 Kilo Bits.................. SUPPORTED  
48000 Kilo Bits.................. SUPPORTED  
54000 Kilo Bits.................. SUPPORTED  
MCS Set  
MCS 0................................. SUPPORTED  
MCS 1................................. SUPPORTED  
MCS 2................................. SUPPORTED  
MCS 3................................. SUPPORTED  
MCS 4................................. SUPPORTED  
MCS 5................................. SUPPORTED  
MCS 6................................. SUPPORTED  
MCS 7................................. SUPPORTED  
MCS 8................................. SUPPORTED  
MCS 9................................. SUPPORTED  
MCS 10................................. SUPPORTED  
MCS 11................................. SUPPORTED  
MCS 12................................. SUPPORTED  
MCS 13................................. SUPPORTED  
MCS 14................................. SUPPORTED  
MCS 15................................. SUPPORTED
Beacon Period ............................. 100
Fragmentation Threshold ................... 2346
Multi Domain Capability Implemented ...... TRUE
Multi Domain Capability Enabled ........... TRUE
Country String ............................ US

Multi Domain Capability
Configuration ............................. AUTOMATIC
First Chan Num ............................ 36
Number Of Channels ....................... 21

MAC Operation Parameters
Configuration ............................. AUTOMATIC
Fragmentation Threshold ................... 2346
Packet Retry Limit ........................ 64

Tx Power
Num Of Supported Power Levels .......... 6
Tx Power Level 1 .......................... 14 dBm
Tx Power Level 2 .......................... 11 dBm
Tx Power Level 3 .......................... 8 dBm
Tx Power Level 4 .......................... 5 dBm
Tx Power Level 5 .......................... 2 dBm
Tx Power Level 6 .......................... -1 dBm
Tx Power Configuration ................. AUTOMATIC
Current Tx Power Level ................. 0

Phy OFDM parameters
Configuration ............................. AUTOMATIC
Current Channel ......................... 36
Channel Width ............................ 20 Mhz
Allowed Channel List ..................... 36,40,44,48,52,56,60,64,100,
......................................... 104,108,112,116,132,136,140,
......................................... 149,153,157,161,165
TI Threshold ............................ -50
Legacy Tx Beamforming Configuration ...... AUTOMATIC
Legacy Tx Beamforming ..................... DISABLED
Antenna Type ............................ INTERNAL_ANTENNA
Internal Antenna Gain (in .5 dBi units) ... 6
Diversity .................................. DIVERSITY_ENABLED

802.11n Antennas
Tx
A .......................... ENABLED
B .......................... ENABLED
Rx
A .......................... ENABLED
B .......................... ENABLED
C .......................... ENABLED

Performance Profile Parameters
Configuration ............................. AUTOMATIC
Interference threshold ................... 10 %
Noise threshold ................................ -70 dBm
RF utilization threshold ................... 80 %
Data-rate threshold ....................... 1000000 bps
Client threshold ........................... 12 clients
Coverage SNR threshold .................... 16 dB
Coverage exception level .................... 25 %
Client minimum exception level ........ 3 clients

Rogue Containment Information
Containment Count ....................... 0
CleanAir Management Information
CleanAir Capable ......................... No

Radio Extended Configurations:
Buffer size ............................ 30
Data-rate ................................. 0
Beacon start ......................... .90 ms
Rx-Sensitivity SOP threshold .......... -80 dB
CCA threshold .................. -60 dB

The following example shows how to display the detailed configuration for another access point:

(Cisco Controller) >show ap config 802.11b AP02
Cisco AP Identifier.............................. 0
Cisco AP Name................................. AP02
AP Regulatory Domain........................ Unconfigured
Switch Port Number............................ 1
MAC Address.................................... 00:0b:85:18:b6:50
IP Address Configuration....................... DHCP
IP Address...................................... 1.100.49.240
IP NetMask..................................... 255.255.255.0
Gateway IP Addr................................ 1.100.49.1
Cisco AP Location.............................. default-location
Cisco AP Group Name.......................... default-group
Primary Cisco Switch.......................... Cisco_32:ab:63
Secondary Cisco Switch........................
Tertiary Cisco Switch.......................... 
Administrative State............................. ADMIN_ENABLED
Operation State................................. REGISTERED
Mirroring Mode................................. Disabled
AP Mode........................................ Local
Remote AP Debug............................... Disabled
S/W Version..................................... 3.1.61.0
Boot Version.................................... 1.2.59.6
Stats Reporting Period......................... 180
LED State........................................ Enabled
ILP Pre Standard Switch....................... Disabled
ILP Power Injector............................. Disabled
Number Of Slots............................... 2
AP Model........................................ AS-1200
AP Serial Number.............................. 044110223A
AP Certificate Type............................ Manufacture Installed
Attributes for Slot 1
Radio Type...................................... RADIO_TYPE_80211g
Administrative State............................ ADMIN_ENABLED
Operation State................................. UP
CellId........................................... 0
Station Configuration
Configuration................................. AUTOMATIC
Number Of WLANs.............................. 1
Medium Occupancy Limit....................... 100
CFP Period..................................... 4
CFP MaxDuration............................... 60
BSSID........................................... 00:0b:85:18:b6:50
Operation Rate Set
1000 Kilo Bits................................. MANDATORY
2000 Kilo Bits................................. MANDATORY
5500 Kilo Bits................................. MANDATORY
11000 Kilo Bits............................... MANDATORY
6000 Kilo Bits................................. SUPPORTED
9000 Kilo Bits................................. SUPPORTED
12000 Kilo Bits............................... SUPPORTED
18000 Kilo Bits............................... SUPPORTED
24000 Kilo Bits............................... SUPPORTED
36000 Kilo Bits............................... SUPPORTED
48000 Kilo Bits............................... SUPPORTED
54000 Kilo Bits............................... SUPPORTED
Beacon Period................................. 100
DTIM Period..................................... 1
Fragmentation Threshold...................... 2346
Multi Domain Capability Implemented....... TRUE
Multi Domain Capability Enabled .......... TRUE
Country String ............................ US
Multi Domain Capability
Configuration ............................. AUTOMATIC
First Chan Num ............................ 1
Number Of Channels ........................ 11
MAC Operation Parameters
Configuration ............................. AUTOMATIC
RTS Threshold ............................. 2347
Short Retry Limit ........................... 7
Long Retry Limit ............................ 4
Fragmentation Threshold ..................... 2346
Maximum Tx MSDU Life Time ................. 512
Maximum Rx Life Time ...................... 512
TX Power
Num Of Supported Power Levels.............. 5
Tx Power Level 1 .......................... 17 dBm
Tx Power Level 2 .......................... 14 dBm
Tx Power Level 3 .......................... 11 dBm
Tx Power Level 4 .......................... 8 dBm
Tx Power Level 5 .......................... 5 dBm
Tx Power Configuration ..................... CUSTOMIZED
Current Tx Power Level ..................... 5
PHY OFDM Parameters
Configuration ............................. CUSTOMIZED
Current Channel ............................ 1
TI Threshold ............................... -50
Legacy Tx Beamforming Configuration ...... CUSTOMIZED
Legacy Tx Beamforming ..................... ENABLED
Antenna Type ............................... INTERNAL_ANTENNA
Internal Antenna Gain (in5 dBm units) ...... 11
Diversity ................................. DIVERSITY_ENABLED
Performance Profile Parameters
Configuration ............................. AUTOMATIC
Interference threshold ..................... 10%
Noise threshold ............................ -70 dBm
RF utilization threshold .................... 80%
Data-rate threshold ........................ 1000000 bps
Client threshold ........................... 12 clients
Coverage SNR threshold .................... 12 dB
Coverage exception level ................. 25%
Client minimum exception level .......... 3 clients
Rogue Containment Information
Containment Count ............................ 0

The following example shows how to display the general configuration of a Cisco access point:

(Cisco Controller) > show ap config general cisco-ap
Cisco AP Identifier.............................. 9
Cisco AP Name.................................... cisco-ap
Country code..................................... US - United States
Regulatory Domain allowed by Country......... 802.11bg:-A 802.11a:-A
AP Country code.................................. US - United States
AP Regulatory Domain............................. 802.11bg:-A 802.11a:-A
Switch Port Number ............................. 1
MAC Address.................................... 12:12:12:12:12:12
IP Address Configuration ..................... DHCP
IP Address....................................... 10.10.10.10
IP NetMask...................................... 255.255.255.0
CAPWAP Path MTU .............................. 1485
Domain...........................................
Name Server...................................
Telnet State.................................... Disabled
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ssh State</td>
<td>Disabled</td>
</tr>
<tr>
<td>Cisco AP Location</td>
<td>default location</td>
</tr>
<tr>
<td>Cisco AP Group Name</td>
<td>default-group</td>
</tr>
<tr>
<td>Primary Cisco Switch Name</td>
<td>4404</td>
</tr>
<tr>
<td>Primary Cisco Switch IP Address</td>
<td>10.10.10.32</td>
</tr>
<tr>
<td>Secondary Cisco Switch Name</td>
<td>4404</td>
</tr>
<tr>
<td>Secondary Cisco Switch IP Address</td>
<td>Not Configured</td>
</tr>
<tr>
<td>Tertiary Cisco Switch Name</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>Administrative State</td>
<td>ADMIN_ENABLED</td>
</tr>
<tr>
<td>Operation State</td>
<td>REGISTERED</td>
</tr>
<tr>
<td>Mirroring Mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>AP Mode</td>
<td>Local</td>
</tr>
<tr>
<td>Public Safety</td>
<td>Global: Disabled, Local: Disabled</td>
</tr>
<tr>
<td>AP subMode</td>
<td>WIPS</td>
</tr>
<tr>
<td>Remote AP Debug</td>
<td>Disabled</td>
</tr>
<tr>
<td>S/W Version</td>
<td>5.1.0.0</td>
</tr>
<tr>
<td>Boot Version</td>
<td>12.4.10.0</td>
</tr>
<tr>
<td>Mini IOS Version</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>Stats Reporting Period</td>
<td>180</td>
</tr>
<tr>
<td>LED State</td>
<td>Enabled</td>
</tr>
<tr>
<td>PoE Pre-Standard Switch</td>
<td>Enabled</td>
</tr>
<tr>
<td>Power Type/Mode</td>
<td>PoE/Low Power (degraded mode)</td>
</tr>
<tr>
<td>Number Of Slots</td>
<td>2</td>
</tr>
<tr>
<td>AP Model</td>
<td>AIR-LAP1252AG-A-K9</td>
</tr>
<tr>
<td>IOS Version</td>
<td>12.4(10:0)</td>
</tr>
<tr>
<td>Reset Button</td>
<td>Enabled</td>
</tr>
<tr>
<td>AP Serial Number</td>
<td>serial_number</td>
</tr>
<tr>
<td>AP Certificate Type</td>
<td>Manufacture Installed</td>
</tr>
<tr>
<td>Management Frame Protection Validation</td>
<td>Enabled (Global MFP Disabled)</td>
</tr>
<tr>
<td>AP User Mode</td>
<td>CUSTOMIZED</td>
</tr>
<tr>
<td>AP username</td>
<td>maria</td>
</tr>
<tr>
<td>AP Dot1x User Mode</td>
<td>Not Configured</td>
</tr>
<tr>
<td>AP Dot1x username</td>
<td>Not Configured</td>
</tr>
<tr>
<td>Cisco AP system logging host</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>AP Up Time</td>
<td>4 days, 06 h 17 m 22 s</td>
</tr>
<tr>
<td>AP LWAPP Up Time</td>
<td>4 days, 06 h 15 m 00 s</td>
</tr>
<tr>
<td>Join Date and Time</td>
<td>Mon Mar 3 06:19:47 2008</td>
</tr>
<tr>
<td>Ethernet Port Duplex</td>
<td>Auto</td>
</tr>
<tr>
<td>Ethernet Port Speed</td>
<td>Auto</td>
</tr>
<tr>
<td>AP Link Latency</td>
<td>Enabled</td>
</tr>
<tr>
<td>Current Delay</td>
<td>0 ms</td>
</tr>
<tr>
<td>Maximum Delay</td>
<td>240 ms</td>
</tr>
<tr>
<td>Minimum Delay</td>
<td>0 ms</td>
</tr>
<tr>
<td>Last updated (based on AP Up Time)</td>
<td>4 days, 06 h 17 m 20 s</td>
</tr>
<tr>
<td>Rogue Detection</td>
<td>Enabled</td>
</tr>
<tr>
<td>AP TCP MSS Adjust</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mesh preferred parent</td>
<td>00:24:13:0f:92:00</td>
</tr>
</tbody>
</table>
show ap config general

To display the access point specific syslog server settings for all access points, use the show ap config general command.

**show ap config general**

**Syntax Description**

This command has no arguments and keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in the Release 8.0</td>
</tr>
</tbody>
</table>

The following example shows how to display AP specific server settings:

```
ap_console > show ap config general APc89c.1d53.6799
Cisco AP Identifier.............................. APc89c.1d53.6799
Cisco AP Name..................................... APc89c.1d53.6799
Country code..................................... Multiple Countries:IN,JP,US
Regulatory Domain allowed by Country......... 802.11bg:-AJPU 802.11a:-AJN
AP Country code.................................. US - United States
AP Regulatory Domain............................. 802.11bg:-A 802.11a:-A
Switch Port Number 1
MAC Address...................................... c8:9c:1d:53:67:99
IP Address Configuration......................... DHCP
IP Address....................................... 10.8.77.103
IP NetMask....................................... 255.255.255.0
Gateway IP Addr.................................. 10.8.77.1
NAT External IP Address.......................... None
CAPWAP Path MTU.................................. 1485
Telnet State..................................... Globally Disabled
SSH State.. Globally Disabled
Cisco AP Location................................ default location
Cisco AP Floor Label............................. 0
Cisco AP Group Name.............................. apGroup2
Primary Cisco Switch Name....................... Not Configured
Primary Cisco Switch IP Address................ Not Configured
Secondary Cisco Switch Name..................... Not Configured
Secondary Cisco Switch IP Address.............. Not Configured
Tertiary Cisco Switch Name-------------------- Not Configured
Tertiary Cisco Switch IP Address.............. Not Configured
Operation State REGISTERED
Mirroring Mode Disabled
AP Mode .. Local
Public Safety Disabled
AP SubMode Not Configured
Remote AP Debug Disabled
Logging trap severity level informational
Logging syslog facility system
S/W Version 8.0.72.132
Boot Version 12.4.23.0
Mini IOS Version 3.0.51.0
Stats Reporting Period 180
Stats Collection Mode normal
LED State... Enabled
PoE Pre-Standard Switch......................... Disabled
PoE Power Injector MAC Addr................. Not Configured
Power Type/Mode PoE/Full Power
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Of Slots</td>
<td>2</td>
</tr>
<tr>
<td>AP Model</td>
<td>AIR-LAP1142N-A-K9</td>
</tr>
<tr>
<td>AP Image</td>
<td>C1140-K9W8-M</td>
</tr>
<tr>
<td>IOS Version</td>
<td>15.3(20140302:180954)$</td>
</tr>
<tr>
<td>Reset Button</td>
<td>Enabled</td>
</tr>
<tr>
<td>AP Serial Number</td>
<td>FSL151053VZ</td>
</tr>
<tr>
<td>AP Certificate Type</td>
<td>Manufacture Installed</td>
</tr>
<tr>
<td>AP User Mode</td>
<td>AUTOMATIC</td>
</tr>
<tr>
<td>AP User Name</td>
<td>cisco</td>
</tr>
<tr>
<td>AP Dot1x User Mode</td>
<td>Not Configured</td>
</tr>
<tr>
<td>AP Dot1x User Name</td>
<td>Not Configured</td>
</tr>
<tr>
<td>Cisco AP system logging host</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>AP Up Time</td>
<td>0 days, 18 h 43 m 35 s</td>
</tr>
<tr>
<td>AP LWAPP Up Time</td>
<td>0 days, 18 h 42 m 23 s</td>
</tr>
<tr>
<td>Join Date and Time</td>
<td>Wed Mar 5 07:26:07 2014</td>
</tr>
<tr>
<td>Join Taken Time</td>
<td>0 days, 00 h 01 m 11 s</td>
</tr>
<tr>
<td>Memory Type</td>
<td>DDR3</td>
</tr>
<tr>
<td>Memory Size</td>
<td>98294 KBytes</td>
</tr>
<tr>
<td>CPU Type</td>
<td>PowerPC405ex CPU at 586Mhz, revision number 0x147E</td>
</tr>
<tr>
<td>Flash Type</td>
<td>Onboard Flash</td>
</tr>
<tr>
<td>Flash Size</td>
<td>31374 KBytes</td>
</tr>
<tr>
<td>GPS Present</td>
<td>NO</td>
</tr>
<tr>
<td>Ethernet Vlan Tag</td>
<td>Disabled</td>
</tr>
<tr>
<td>Ethernet Port Duplex</td>
<td>Auto</td>
</tr>
<tr>
<td>Ethernet Port Speed</td>
<td>Auto</td>
</tr>
<tr>
<td>AP Link Latency</td>
<td>Disabled</td>
</tr>
<tr>
<td>Rogue Detection</td>
<td>Enabled</td>
</tr>
<tr>
<td>AP TCP MSS Adjust</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hotspot Venue Group</td>
<td>Unspecified</td>
</tr>
<tr>
<td>Hotspot Venue Type</td>
<td>Unspecified</td>
</tr>
<tr>
<td>DNS server IP</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
**show ap config global**

To display the global syslog server settings for all access points that join the controller, use the `show ap config global` command.

**Syntax Description**

This command has no arguments and keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display global syslog server settings:

```
(Cisco Controller) >show ap config global
AP global system logging host......................... 255.255.255.255
```
**show ap core-dump**

To display the memory core dump information for a lightweight access point, use the `show ap core-dump` command.

```
show ap core-dump cisco_ap
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>cisco_ap</code></th>
<th>Cisco lightweight access point name.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display memory core dump information:

```
(Cisco Controller) > show ap core-dump AP02
Memory core dump is disabled.
```
show ap crash-file

To display the list of both crash and radio core dump files generated by lightweight access points, use the `show ap crash-file` command.

`show ap crash-file`

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the crash file generated by the access point:

(Cisco Controller) > `show ap crash-file`
**show ap data-plane**

To display the data plane status for all access points or a specific access point, use the `show ap data-plane` command.

```
show ap data-plane {all | cisco_ap}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all Cisco lightweight access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of a Cisco lightweight access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the data plane status of all access points:

```
(Cisco Controller) > show ap data-plane all
Min Data Data Max Data Last Round Trip Round Trip Round Trip Update
--------------- -------------- -------------- ----------------- --------- --------- --------- ------
1130 0.000s 0.000s 0.000s 18:51:23
1240 0.000s 0.000s 0.000s 18:50:45
```
show ap dtls-cipher-suite

To display the DTLS show cipher suite information, use the **show ap dtls-cipher-suite** command.

```
show ap dtls-cipher-suite
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display DTLS cipher suite information:

```
(Cisco Controller) > show ap dtls-cipher-suite
DTLS Cipher Suite................................. RSA-AES256-SHA
```
show ap ethernet tag

To display the VLAN tagging information of an Ethernet interface, use the `show ap ethernet tag` command.

```
show ap ethernet tag { summary | cisco_ap }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary</code></td>
<td>Displays the VLAN tagging information for all access points associated to the controller.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of the Cisco lightweight access point. Displays the VLAN tagging information for a specific access point associated to the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the access point is unable to route traffic or reach the controller using the specified trunk VLAN, it falls back to the untagged configuration. If the access point joins the controller using this fallback configuration, the controller sends a trap to a trap server such as the WCS, which indicates the failure of the trunk VLAN. In this scenario, the "Failover to untagged" message appears in show command output.

The following example shows how to display the VLAN tagging information for all access points associated to the controller:

```
(Cisco Controller) > show ap ethernet tag summary

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Vlan Tag Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP2</td>
<td>7 (Failover to untagged)</td>
</tr>
<tr>
<td>charan.AP1140.II</td>
<td>disabled</td>
</tr>
</tbody>
</table>
```
show ap eventlog

To display the contents of the event log file for an access point that is joined to the controller, use the `show ap eventlog` command.

```
show ap eventlog ap_name
```

**Syntax Description**

- `ap_name` Event log for the specified access point.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the event log of an access point:

```
(Cisco Controller) > show ap eventlog ciscoAP
AP event log download has been initiated
Waiting for download to complete
AP event log download completed.
------------------------ AP Event log Contents ------------------------
*Feb 13 11:54:17.146: %CAPWAP-3-CLIENTEVENTLOG: AP event log has been cleared from the controller 'admin'
*Mar 1 00:00:39.134: %CDP_PD-4-POWER_OK: Full power - NEGOTIATED inline power source
*Mar 1 00:00:39.174: %LINK-3-UPDOWN: Interface Dot11Radio1, changed state to up
*Mar 1 00:00:39.211: %LINK-3-UPDOWN: Interface Dot11Radio0, changed state to up
*Mar 1 00:00:49.947: %CAPWAP-3-CLIENTEVENTLOG: Did not get vendor specific options from DHCP.
...
show ap flexconnect

To view the details of APs in FlexConnect mode, use the `show ap flexconnect` command.

```
show ap flexconnect module-vlan ap-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>module-vlan</td>
<td>Displays the status of FlexConnect local switching and VLAN ID value</td>
</tr>
<tr>
<td>ap-name</td>
<td>Cisco AP name</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>
show ap image

To display the detailed information about the predownloaded image for specified access points, use the `show ap image` command.

```
show ap image {cisco_ap | all}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco_ap</td>
<td>Name of the lightweight access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
</tbody>
</table>

Note

If you have an AP that has the name `all`, it conflicts with the keyword `all` that specifies all access points. In this scenario, the keyword `all` takes precedence over the AP that is named `all`.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
show ap inventory

To display inventory information for an access point, use the `show ap inventory` command.

```
show ap inventory {ap-name | all}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ap-name</code></td>
<td>Inventory for the specified AP.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Inventory for all the APs.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the inventory of an access point:

```
(Cisco Controller) >show ap inventory test101
NAME: "test101" , DESCR: "Cisco Wireless Access Point"
PID: AIR-LAP1131AG-A-K9 , VID: V01, SN: FTX1123T2XX
```
show ap join stats detailed

To display all join-related statistics collected for a specific access point, use the `show ap join stats detailed` command.

show ap join stats detailed ap_mac

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ap_mac</code></td>
<td>Access point Ethernet MAC address or the MAC address of the 802.11 radio interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display join information for a specific access point trying to join the controller:

```
(Cisco Controller) > show ap join stats detailed 00:0b:85:02:0d:20

Discovery phase statistics
  - Discovery requests received.......................... 2
  - Successful discovery responses sent................ 2
  - Unsuccessful discovery request processing............ 0
  - Reason for last unsuccessful discovery attempt....... Not applicable
  - Time at last successful discovery attempt............ Aug 21 12:50:23:335
  - Time at last unsuccessful discovery attempt.......... Not applicable

Join phase statistics
  - Join requests received............................... 1
  - Successful join responses sent....................... 1
  - Unsuccessful join request processing................. 1
  - Reason for last unsuccessful join attempt............ RADIUS authorization is pending for the AP
  - Time at last successful join attempt................ Aug 21 12:50:34:481
  - Time at last unsuccessful join attempt............... Aug 21 12:50:34:374

Configuration phase statistics
  - Configuration requests received...................... 1
  - Successful configuration responses sent.............. 1
  - Unsuccessful configuration request processing....... 0
  - Reason for last unsuccessful configuration attempt... Not applicable
  - Time at last successful configuration attempt........ Aug 21 12:50:34:374
  - Time at last unsuccessful configuration attempt...... Not applicable

Last AP message decryption failure details
  - Reason for last message decryption failure.......... Not applicable

Last AP disconnect details
  - Reason for last AP connection failure............... Not applicable

Last join error summary
  - Type of error that occurred last.................... Lwapp join request rejected
  - Reason for error that occurred last................ RADIUS authorization is pending for the AP
  - Time at which the last join error occurred.......... Aug 21 12:50:34:374
```
show ap join stats summary

To display the last join error detail for a specific access point, use the **show ap join stats summary** command.

show ap join stats summary ap_mac

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ap_mac Access point Ethernet MAC address or the MAC address of the 802.11 radio interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
</tr>
</tbody>
</table>
| Command History | **Release** Modification
| | 7.6 This command was introduced in a release earlier than Release 7.6. |

To obtain the MAC address of the 802.11 radio interface, enter the **show interface** command on the access point.

The following example shows how to display specific join information for an access point:

(Cisco Controller) >**show ap join stats summary 00:0b:85:02:0d:20**

- Is the AP currently connected to controller......................... No
- Time at which the AP joined this controller last time........... Aug 21 12:50:36:061
- Type of error that occurred last..................................... Lwapp join request rejected
- Reason for error that occurred last................................. RADIUS authorization is pending for the AP
- Time at which the last join error occurred....................... Aug 21 12:50:34:374
show ap join stats summary all

To display the MAC addresses of all the access points that are joined to the controller or that have tried to join, use the `show ap join stats summary all` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of join information for all access points:

(Cisco Controller) > `show ap join stats summary all`

<table>
<thead>
<tr>
<th>Base Mac</th>
<th>AP EthernetMac</th>
<th>AP Name</th>
<th>IP Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0b:85:57:bc:c0</td>
<td>00:0b:85:57:bc:c0</td>
<td>AP1130</td>
<td>10.10.163.217</td>
<td>Joined</td>
</tr>
<tr>
<td>00:1c:0f:81:db:80</td>
<td>00:1c:63:23:ac:a0</td>
<td>AP1140</td>
<td>10.10.163.216</td>
<td>Not joined</td>
</tr>
<tr>
<td>00:1c:0f:81:fc:20</td>
<td>00:1b:d5:9f:7d:b2</td>
<td>AP1</td>
<td>10.10.163.215</td>
<td>Joined</td>
</tr>
<tr>
<td>00:21:1b:ea:36:60</td>
<td>00:0c:d4:8a:6b:c1</td>
<td>AP2</td>
<td>10.10.163.214</td>
<td>Not joined</td>
</tr>
</tbody>
</table>
show ap led-state

To view the LED state of all access points or a specific access point, use the `show ap led-state` command.

```
show ap led-state { all | cisco_ap }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Shows the LED state for all access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point whose LED state is to be shown.</td>
</tr>
</tbody>
</table>

Command Default

The AP LED state is enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to get the LED state of all access points:

```
(Cisco Controller) > show ap led-state all
Global LED State: Enabled (default)
```
show ap led-flash

To display the LED flash status of an access point, use the `show ap led-flash` command.

```
show ap led-flash cisco_ap
```

Syntax Description
- `cisco_ap` Enter the name of the Cisco AP.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the LED flash status of an access point:

```
(Cisco Controller) >show ap led-flash
```
show ap link-encryption

To display the MAC addresses of all the access points that are joined to the controller or that have tried to join, use the `show ap link-encryption` command.

```
show ap link-encryption {all | cisco_ap}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>cisco_ap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies all access points.</td>
<td></td>
<td>Name of the lightweight access point.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the link encryption status of all access points:

```
(Cisco Controller) > show ap link-encryption all

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Encryption</th>
<th>Dnstream Count</th>
<th>Upstream Count</th>
<th>Last Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>1240</td>
<td>Dis</td>
<td>4406</td>
<td>237553</td>
<td>Never</td>
</tr>
<tr>
<td>1130</td>
<td>En</td>
<td>2484</td>
<td>276308</td>
<td>19:31</td>
</tr>
</tbody>
</table>
```
show ap max-count summary

To display the maximum number of access points supported by the Cisco WLC, use the `show ap max-count summary` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show ap max-count summary` command:

```
(Cisco Controller) >show ap max-count

The max number of AP's supported................. 500
```
show ap monitor-mode summary

To display the current channel-optimized monitor mode settings, use the `show ap monitor-mode summary` command.

```bash
show ap monitor-mode summary
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display current channel-optimized monitor mode settings:

```bash
(Cisco Controller) >show ap monitor-mode summary
AP Name Ethernet MAC Status Scanning Channel List
--- ----------------- ---------- ----------------------
AP_004 xx:xx:xx:xx:xx Tracking 1, 6, 11, 4
```
show ap packet-dump status

To display access point Packet Capture configurations, use the show ap packet-dump status command.

show ap packet-dump status

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Packet Capture does not work during intercontroller roaming.

The controller does not capture packets created in the radio firmware and sent out of the access point, such as the beacon or probe response. Only packets that flow through the Radio driver in the Tx path are captured.

The following example shows how to display the access point Packet Capture configurations:

(Cisco Controller) > show ap packet-dump status
Packet Capture Status............................ Stopped
FTP Server IP Address............................. 0.0.0.0
FTP Server Path..................................
FTP Server Username............................... ********
FTP Server Password.............................. ********
Buffer Size for Capture........................... 2048 KB
Packet Capture Time.............................. 45 Minutes
Packet Truncate Length............................ Unspecified
Packet Capture Classifier....................... None
show ap prefer-mode stats

To view prefer-mode global and per AP group statistics, use the `show ap prefer-mode stats` command.

```
show ap prefer-mode stats
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stats</td>
<td>Displays prefer-mode global and per AP group statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
show ap retransmit

To display access point control packet retransmission parameters, use the `show ap retransmit` command.

```
show ap retransmit { all | cisco_ap }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all access points.</td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Name of the access point.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the control packet retransmission parameters of all access points on a network:

```
(Cisco Controller) > show ap retransmit all
Global control packet retransmit interval: 3 (default)
Global control packet retransmit count: 5 (default)

AP Name     Retransmit Interval Retransmit count
------------- ------------------- -------------------
AP_004       3 (default)       5 (WLC default), 5 (AP default)
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show ap stats

To display the statistics for a Cisco lightweight access point, use the `show ap stats` command.

```
show ap stats {802.11 {a | b} | wlan | ethernet summary} cisco_ap [tsm {client_mac | all}]
```

Syntax Description

- **802.11a**: Specifies the 802.11a network.
- **802.11b**: Specifies the 802.11b/g network.
- **wlan**: Specifies WLAN statistics.
- **ethernet**: Specifies AP ethernet interface statistics.
- **summary**: Displays ethernet interface summary of all the connected Cisco access points.
- **cisco_ap**: Name of the lightweight access point.
- **tsm**: (Optional) Specifies the traffic stream metrics.
- **client_mac**: (Optional) MAC address of the client.
- **all**: (Optional) Specifies all access points.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command was modified. The OEAP WMM Counters were added to the output.</td>
</tr>
</tbody>
</table>

The following example shows how to display statistics of an access point for the 802.11b network:

```
(Cisco Controller) >show ap stats 802.11a Ibiza

Number Of Slots.................................. 2
AP Name.......................................... Ibiza
MAC Address..................................... 44:2b:03:9a:8a:73
Radio Type........................................ RADIO_TYPE_80211a
Stats Information
  Number of Users................................. 0
  TxFragmentCount............................... 84628
  MulticastTxFrameCnt......................... 84628
  FailedCount................................... 0
  RetryCount.................................... 0
  MultipleRetryCount......................... 0
  FrameDuplicateCount......................... 0
  RtsSuccessCount............................. 1
  RtsFailureCount............................. 0
  AckFailureCount............................. 0
```
RxIncompleteFragment........................... 0
MulticastRxFrameCnt............................ 0
FcsErrorCount................................. 20348857
TxFrameCount.................................. 84628
WepUndecryptableCount......................... 19907
TxFramesDropped................................ 0
OEAP WMM Stats:
 Best Effort:
 Tx Frame Count............................ 0
 Tx Failed Frame Count..................... 0
 Tx Expired Count.......................... 0
 Tx Overflow Count........................ 0
 Tx Queue Count............................ 0
 Tx Queue Max Count......................... 0
 Rx Frame Count................................ 0
 Rx Failed Frame Count...................... 0
 Background:
 Tx Frame Count............................ 0
 Tx Failed Frame Count..................... 0
 Tx Expired Count.......................... 0
 Tx Overflow Count........................ 0
 Tx Queue Count............................ 0
 Tx Queue Max Count......................... 0
 Rx Frame Count................................ 0
 Rx Failed Frame Count...................... 0
 Video:
 Tx Frame Count............................ 0
 Tx Failed Frame Count..................... 0
 Tx Expired Count.......................... 0
 Tx Overflow Count........................ 0
 Tx Queue Count............................ 0
 Tx Queue Max Count......................... 0
 Rx Frame Count................................ 0
 Rx Failed Frame Count...................... 0
 Voice:
 Tx Frame Count............................ 0
 Tx Failed Frame Count..................... 0
 Tx Expired Count.......................... 0
 Tx Overflow Count........................ 0
 Tx Queue Count............................ 0
 Tx Queue Max Count......................... 0
 Rx Frame Count................................ 0
 Rx Failed Frame Count...................... 0
Rate Limiting Stats:
 Wlan 1:
 Number of Data Packets Received............. 592
 Number of Data Rx Packets Dropped........... 160
 Number of Data Bytes Received................ 160783
 Number of Data Rx Bytes Dropped.............. 0
 Number of Realtime Packets Received.......... 592
 Number of Realtime Rx Packets Dropped....... 0
 Number of Realtime Bytes Received............ 160783
 Number of Realtime Rx Bytes Dropped.......... 0
 Number of Data Packets Sent................... 131
 Number of Data Tx Packets Dropped............ 0
 Number of Data Bytes Sent.................... 23436
 Number of Data Tx Bytes Dropped.............. 0
 Number of Realtime Packets Sent.............. 131
 Number of Realtime Tx Packets Dropped....... 0
 Number of Realtime Bytes Sent................ 23436
 Number of Realtime Tx Bytes Dropped.......... 0
 Call Admission Control (CAC) Stats
 Voice Bandwidth in use(% of config bw)......... 0
Voice Roam Bandwidth in use (% of config bw)........ 0
Total channel MT free.......................... 0
Total voice MT free............................. 0
Na Direct.. 0
Na Roam.. 0
Video Bandwidth in use (% of config bw).......... 0
Video Roam Bandwidth in use (% of config bw).... 0
Total BW in use for Voice (%)................... 0
Total BW in use for SIP Preferred call (%)...... 0
WMM TSPEC CAC Call Stats
Total num of voice calls in progress............. 0
Num of roaming voice calls in progress.......... 0
Total Num of voice calls since AP joined......... 0
Total Num of roaming calls since AP joined...... 0
Total Num of exp bw requests received.......... 0
Total Num of exp bw requests admitted.......... 0
Num of voice calls rejected since AP joined.... 0
Num of roaming calls rejected since AP joined... 0
Num of calls rejected due to insufficient bw... 0
Num of calls rejected due to invalid params.... 0
Num of calls rejected due to PHY rate.......... 0
Num of calls rejected due to QoS policy........ 0
SIP CAC Call Stats
Total Num of calls in progress.................. 0
Num of roaming calls in progress................. 0
Total Num of calls since AP joined.............. 0
Total Num of roaming calls since AP joined...... 0
Total Num of Preferred calls received.......... 0
Total Num of preferred calls accepted.......... 0
Total Num of ongoing Preferred calls........... 0
Total Num of calls rejected(Insuff BW)......... 0
Total Num of roaming calls rejected(Insuff BW) 0
WMM Video TSPEC CAC Call Stats
Total num of video calls in progress........... 0
Num of roaming video calls in progress......... 0
Total Num of video calls since AP joined....... 0
Total Num of video roaming calls since AP j.... 0
Num of video calls rejected since AP joined.... 0
Num of video roam calls rejected since AP j.... 0
Num of video calls rejected due to insufficient BW... 0
Num of video calls rejected due to PHY rate.... 0
Num of video calls rejected due to QoS policy... 0
SIP Video CAC Call Stats
Total Num of video calls in progress........... 0
Num of video roaming calls in progress......... 0
Total Num of video calls since AP joined....... 0
Total Num of video roaming calls since AP j.... 0
Total Num of video calls rejected(Insuff BW).... 0
Total Num of video roaming calls rejected(Insu... 0
Band Select Stats
Num of dual band client 0
Num of dual band client added................... 0
Num of dual band client expired................. 0
Num of dual band client replaced.............. 0
Num of dual band client detected.............. 0
Num of suppressed client 0
Num of suppressed client expired.............. 0
Num of suppressed client replaced............ 0

Cisco Wireless LAN Controller Command Reference, Release 8.0
show ap summary

To display a summary of all lightweight access points attached to the controller, use the `show ap summary` command.

`show ap summary [cisco_ap]`

Syntax Description

- `cisco_ap`: (Optional) Type sequence of characters that make up the name of a specific AP or a group of APs, or enter a wild character search pattern.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A list that contains each lightweight access point name, number of slots, manufacturer, MAC address, location, and the controller port number appears. When you specify

The following example shows how to display a summary of all connected access points:

```
(Cisco Controller) >show ap summary
Number of APs.................................... 2
Global AP username.............................. user
Global AP Dot1x username........................ Not Configured
Number of APs.................................... 2
Global AP username.............................. user
Global AP Dot1x username........................ Not Configured

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slots</th>
<th>AP Model</th>
<th>Ethernet MAC</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1040</td>
<td>2</td>
<td>AIR-LAP1042N-A-K9</td>
<td>00:40:96:b9:4b:89</td>
<td>default</td>
</tr>
</tbody>
</table>

Access Points using IPv6 transport:

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slots</th>
<th>AP Model</th>
<th>Ethernet MAC</th>
<th>Location</th>
<th>Country</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1040</td>
<td>2</td>
<td>AIR-LAP1042N-A-K9</td>
<td>00:40:96:b9:4b:89</td>
<td>default</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show ap tcp-mss-adjust

To display the Basic Service Set Identifier (BSSID) value for each WLAN defined on an access point, use the `show ap tcp-mss-adjust` command.

```plaintext
show ap tcp-mss-adjust {cisco_ap | all}
```

Syntax Description

- `cisco_ap` : Specified lightweight access point name.
- `all` : Specifies all access points.

Note

If an AP itself is configured with the keyword `all`, the all access points case takes precedence over the AP that is with the keyword `all`.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display Transmission Control Protocol (TCP) maximum segment size (MSS) information of all access points:

```plaintext
(Cisco Controller) > show ap tcp-mss-adjust all
AP Name            TCP State MSS Size
------------------ --------- -------
AP-1140            enabled  536
AP-1240            disabled -
AP-1130            disabled -
```
show ap wlan

To display the Basic Service Set Identifier (BSSID) value for each WLAN defined on an access point, use the `show ap wlan` command.

```
show ap wlan 802.11 { a | b } cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>802.11a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td></td>
<td>ap_name</td>
<td>Lightweight access point name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display BSSIDs of an access point for the 802.11b network:

```
(Cisco Controller) >show ap wlan 802.11b AP01
Site Name........................................ MY_AP_GROUP1
Site Description................................. MY_AP_GROUP1
WLAN ID Interface BSSID
------- ----------- --------------------------
1 management 00:1c:0f:81:fc:20
2 dynamic 00:1c:0f:81:fc:21
```
show assisted-roaming

To display assisted roaming and 802.11k configurations, use the show assisted-roaming command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display assisted roaming and 802.11k configurations:

(Cisco Controller) >show assisted-roaming
Assisted Roaming and 80211k Information:
 Floor RSSI Bias.................................. 15 dBm
 Maximum Denial................................... 2 counts
 Minimum Optimized Neighbor Assigned............. 2 neighbors

 Assisted Roaming Performance Chart:
 Matching Assigned Neighbor....................... [0] = 0
 Matching Assigned Neighbor....................... [1] = 0
 Matching Assigned Neighbor....................... [2] = 0
 Matching Assigned Neighbor....................... [3] = 0
 Matching Assigned Neighbor....................... [5] = 0
 Matching Assigned Neighbor....................... [6] = 0
 Matching Assigned Neighbor....................... [7] = 0
 No Matching Neighbor............................. [8] = 0
 No Neighbor Assigned................................ [9] = 0

Related Commands

config assisted-roaming
config wlan assisted-roaming
debug 11k
show atf config

To monitor Cisco Airtime Fairness configuration, use the `show atf config` command.

```
show atf config  {all | {ap-name ap-name} | {802.11a | b} | policy | wlan}
```

Syntax Description

- **all**: Shows Cisco ATF configuration of all radios
- **ap-name**: Shows Cisco ATF configuration of an AP
- **ap-name**: AP name that you must specify
- **802.11a**: Shows Cisco ATF configuration of all 5-GHz radios
- **802.11b**: Shows Cisco ATF configuration of all 2.4-GHz radios
- **policy**: Shows configuration of all airtime policies
- **wlan**: Shows Cisco ATF configuration of all WLANs

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced</td>
</tr>
</tbody>
</table>

This example shows how to monitor Cisco Airtime Fairness configuration:

```
(Cisco Controller) > show atf config all
```
show atf statistics ap

To monitor Cisco Airtime Fairness statistics, use the `show atf statistics` command.

`show atf statistics ap ap-name 802.11 {a | b} {summary | wlan-id | policy-id}

Syntax Description

- **802.11a**: Shows detailed statistics on all 5-GHz radios.
- **802.11b**: Shows detailed statistics on all 2.4-GHz radios.
- **summary**: Shows summary statistics for the AP.
- **wlan wlan-id**: Shows detailed ATF statistics for the specified WLAN.
- **policy policy-name**: Shows detailed ATF statistics for the specified policy name.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to monitor Cisco Airtime Fairness statistics:

(Cisco Controller) > `show atf statistics ap Ap01323 802.11a summary`
show auth-list

To display the access point authorization list, use the **show auth-list** command.

show auth-list

Syntax Description
This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the access point authorization list:

```plaintext
(Cisco Controller) >show auth-list
Authorize APs against AAA...................... disabled
Allow APs with Self-signed Certificate (SSC)... disabled
Mac Addr Cert Type Key Hash
------------------------------------------
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show avc applications

To display all the supported Application Visibility and Control (AVC) applications, use the **show avc applications** command.

show avc applications

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

AVC uses the Network-Based Application Recognition (NBAR) deep packet inspection technology to classify applications based on the protocol they use. Using AVC, the controller can detect more than 1500 Layer 4 to Layer 7 protocols.

The following is a sample output of the **show avc applications** command:

(Cisco Controller) > **show avc applications**

<table>
<thead>
<tr>
<th>Application-Name</th>
<th>App-ID</th>
<th>Engine-ID</th>
<th>Selector-ID</th>
<th>Application-Group-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3com-amp3</td>
<td>538</td>
<td>3</td>
<td>629</td>
<td>other</td>
</tr>
<tr>
<td>3com-tsmux</td>
<td>977</td>
<td>3</td>
<td>106</td>
<td>obsolete</td>
</tr>
<tr>
<td>3pc</td>
<td>788</td>
<td>1</td>
<td>34</td>
<td>layer3-over-ip</td>
</tr>
<tr>
<td>914c/g</td>
<td>1109</td>
<td>3</td>
<td>211</td>
<td>net-admin</td>
</tr>
<tr>
<td>9pfs</td>
<td>479</td>
<td>3</td>
<td>564</td>
<td>net-admin</td>
</tr>
<tr>
<td>acap</td>
<td>582</td>
<td>3</td>
<td>674</td>
<td>net-admin</td>
</tr>
<tr>
<td>acas</td>
<td>939</td>
<td>3</td>
<td>62</td>
<td>other</td>
</tr>
<tr>
<td>accessbuilder</td>
<td>662</td>
<td>3</td>
<td>888</td>
<td>other</td>
</tr>
<tr>
<td>accessnetwork</td>
<td>607</td>
<td>3</td>
<td>699</td>
<td>other</td>
</tr>
<tr>
<td>acp</td>
<td>513</td>
<td>3</td>
<td>599</td>
<td>other</td>
</tr>
<tr>
<td>acr-nema</td>
<td>975</td>
<td>3</td>
<td>104</td>
<td>industrial-protocols</td>
</tr>
<tr>
<td>active-directory</td>
<td>1194</td>
<td>13</td>
<td>473</td>
<td>other</td>
</tr>
<tr>
<td>activesync</td>
<td>1419</td>
<td>13</td>
<td>490</td>
<td>business-and-productivity-tools</td>
</tr>
<tr>
<td>adobe-connect</td>
<td>1441</td>
<td>13</td>
<td>505</td>
<td>other</td>
</tr>
<tr>
<td>aed-512</td>
<td>963</td>
<td>3</td>
<td>149</td>
<td>obsolete</td>
</tr>
<tr>
<td>afpovertcp</td>
<td>1327</td>
<td>3</td>
<td>548</td>
<td>business-and-productivity-tools</td>
</tr>
<tr>
<td>agentx</td>
<td>609</td>
<td>3</td>
<td>705</td>
<td>net-admin</td>
</tr>
<tr>
<td>alpes</td>
<td>377</td>
<td>3</td>
<td>463</td>
<td>net-admin</td>
</tr>
<tr>
<td>aminet</td>
<td>558</td>
<td>3</td>
<td>2639</td>
<td>file-sharing</td>
</tr>
<tr>
<td>an</td>
<td>861</td>
<td>1</td>
<td>107</td>
<td>layer3-over-ip</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show avc engine

To display information about the Network-Based Application Recognition 2 (NBAR2) engine, use the `show avc engine` command.

```
show avc engine version
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>None</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The Application Visibility and Control (AVC) protocol pack is not supported in the Cisco 2500 Series Wireless Controllers.

The following is a sample output of the `show avc engine` command:

```
(Cisco Controller) > show avc engine version
AVC Engine Version: 13
```
show avc profile

To display Application Visibility and Control (AVC) profiles, use the show avc profile command.

show avc profile { summary | detailed profile_name }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a summary of AVC profiles.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays the details of an AVC profile.</td>
</tr>
<tr>
<td>profile_name</td>
<td>Name of the AVC profile. The profile name can be up to 32 case-sensitive, alphanumeric characters.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show avc profile summary command.

(Cisco Controller) > show avc profile summary

<table>
<thead>
<tr>
<th>Profile-Name</th>
<th>Number of Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile 1</td>
<td>3</td>
</tr>
<tr>
<td>avc_profile2</td>
<td>1</td>
</tr>
</tbody>
</table>

The following is a sample output of the show avc profile detailed command.

(Cisco Controller) > show avc profile detailed

<table>
<thead>
<tr>
<th>Application-Name</th>
<th>Application-Group-Name</th>
<th>Action</th>
<th>DSCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>file-sharing</td>
<td>Drop</td>
<td>-</td>
</tr>
<tr>
<td>flash-video</td>
<td>browsing</td>
<td>Mark</td>
<td>10</td>
</tr>
<tr>
<td>facebook</td>
<td>browsing</td>
<td>Mark</td>
<td>10</td>
</tr>
</tbody>
</table>

Associated WLAN IDs:
Associated Remote LAN IDs:
Associated Guest LAN IDs:
show avc protocol-pack

To display information about the Application Visibility and Control (AVC) protocol pack in the Cisco Wireless LAN Controller (WLC), use the `show avc protocol-pack` command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>version</code></td>
<td>None</td>
</tr>
<tr>
<td>Displays the version of the AVC protocol pack.</td>
<td></td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The AVC protocol pack is not supported in the Cisco 2500 Series Wireless Controllers.

The following is a sample output of the `show avc protocol-pack` command:

```
(Cisco Controller) > show avc protocol-pack version

AVC Protocol Pack Name: Advanced Protocol Pack
AVC Protocol Pack Version: 1.0
```
show avc statistics application

To display the statistics of an application, use the `show avc statistics application` command.

```
show avc statistics application application_name top-users [downstream wlan | upstream wlan | wlan] [wlan_id]
```

Syntax Description

- `application_name` Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.
- `top-users` Displays AVC statistics for top application users.
- `downstream` (Optional) Displays statistics of top downstream applications.
- `wlan` (Optional) Displays AVC statistics of a WLAN.
- `wlan_id` WLAN identifier from 1 to 512.
- `upstream` (Optional) Displays statistics of top upstream applications.

Command Default

None

Command History

Release Modification

7.4 This command was introduced.

The following is a sample output of the `show avc statistics application` command:

```
(Cisco Controller) > show avc statistics application ftp top-users downstream wlan 1

<table>
<thead>
<tr>
<th>Client MAC</th>
<th>Client IP</th>
<th>WLAN ID</th>
<th>Packets</th>
<th>Bytes</th>
<th>Avg Pkt</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(n secs)</td>
<td>(n secs)</td>
<td>Size</td>
<td>(Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:0a:ab:15:00:9c (U)</td>
<td>172.16.31.156</td>
<td>1</td>
<td>16</td>
<td>91</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>00:0a:ab:15:00:5a (U)</td>
<td>172.16.31.90</td>
<td>1</td>
<td>7</td>
<td>39</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>00:0a:ab:15:00:6a</td>
<td>172.16.31.96</td>
<td>1</td>
<td>19</td>
<td>117</td>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>00:0a:ab:15:00:4a (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>18</td>
<td>139</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:a4 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
<tr>
<td>00:0a:ab:15:00:48 (U)</td>
<td>172.16.31.72</td>
<td>1</td>
<td>21</td>
<td>2738</td>
<td>130</td>
<td>21</td>
</tr>
<tr>
<td>00:0a:ab:15:00:72 (U)</td>
<td>172.16.31.164</td>
<td>1</td>
<td>23</td>
<td>4409</td>
<td>191</td>
<td>24</td>
</tr>
</tbody>
</table>
```

Show Commands

show avc statistics application

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IP Address</th>
<th>Active Sessions</th>
<th>Active User Sessions</th>
<th>Inbound Packets</th>
<th>Inbound Bits</th>
<th>Outbound Packets</th>
<th>Outbound Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:0a:ab:15:00:87</td>
<td>172.16.31.135</td>
<td>1</td>
<td>11</td>
<td>47</td>
<td>4</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>00:0a:ab:15:00:92</td>
<td>172.16.31.146</td>
<td>1</td>
<td>10</td>
<td>73</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>00:0a:ab:15:00:31</td>
<td>172.16.31.49</td>
<td>1</td>
<td>11</td>
<td>95</td>
<td>8</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>00:0a:ab:15:00:46</td>
<td>172.16.31.70</td>
<td>1</td>
<td>7</td>
<td>47</td>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>00:0a:ab:15:00:b3</td>
<td>172.16.31.179</td>
<td>1</td>
<td>10</td>
<td>85</td>
<td>8</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>
show avc statistics client

To display the client Application Visibility and Control (AVC) statistics, use the `show avc statistics client` command.

```
show avc statistics client client_MAC { application application_name | top-apps [upstream | downstream] }
```

Syntax Description

- **client_MAC**: MAC address of the client.
- **application**: Displays AVC statistics for an application.
- **application_name**: Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.
- **top-apps**: Displays AVC statistics for top applications.
- **upstream**: (Optional) Displays statistics of top upstream applications.
- **downstream**: (Optional) Displays statistics of top downstream applications.

Command Default

None

Command History

- **Release Modification**
 - 7.4: This command was introduced.

The following is a sample output of the `show avc statistics client` command:

```
(Cisco Controller) > show avc statistics client 00:0a:ab:15:00:01 application http

Description Upstream Downstream
----------- ----------- -----------
Number of Packtes(n secs) 5059 6369
Number of Bytes(n secs) 170144 8655115
Average Packet size(n secs) 33 1358
Total Number of Packtes 131878 150169
Total Number of Bytes 6054464 205239972
DSCP Incoming packet 16 0
DSCP Outgoing Packet 16 0
```

The following is a sample output of the `show avc statistics client` command.

```
(Cisco Controller) > show avc statistics client 00:0a:ab:15:00:01 top-apps

Application-Name Packets Bytes Avg Pkt Packets Bytes DSCP DSCP
(U/D) (n secs) (n secs) Size (Total) (Total) In Out
----------- ----------- ----------- ----------- ----------- ------ -----
http (U) 6035 637728 105 6035 637728 16 16
(D) 5420 7218796 1331 5420 7218796 0 0
ggp (U) 1331 1362944 1024 1331 1362944 0 0
(D) 0 0 0 0 0 0 0
smp (U) 1046 1071104 1024 1046 1071104 0 0
(D) 0 0 0 0 0 0 0
vrrp (U) 205 209920 1024 205 209920 0 0
```
show avc statistics client

<table>
<thead>
<tr>
<th>Protocol</th>
<th>(D)</th>
<th>(U)</th>
<th>(D)</th>
<th>(U)</th>
<th>(D)</th>
<th>(U)</th>
<th>(D)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bittorrent</td>
<td>0</td>
<td>117</td>
<td>0</td>
<td>117</td>
<td>0</td>
<td>1604</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>icmp</td>
<td>121</td>
<td>70469</td>
<td>582</td>
<td>121</td>
<td>70469</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>edonkey</td>
<td>72</td>
<td>40032</td>
<td>556</td>
<td>72</td>
<td>40032</td>
<td>48</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>dns</td>
<td>10</td>
<td>380</td>
<td>38</td>
<td>10</td>
<td>38</td>
<td>33076</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>realmedia</td>
<td>2</td>
<td>158</td>
<td>79</td>
<td>2</td>
<td>158</td>
<td>24</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>65</td>
<td>32</td>
<td>2</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show avc statistics guest-lan

To display the Application Visibility and Control (AVC) statistics of a guest LAN, use the `show avc statistics guest-lan` command.

```
show avc statistics guest-lan guest-lan_id { application application_name | top-app-groups [ upstream | downstream ] | top-apps [ upstream | downstream ] }
```

Syntax Description

- **guest-lan_id**: Guest LAN identifier from 1 to 5.
- **application**: Displays AVC statistics for an application.
- **application_name**: Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.
- **top-app-groups**: Displays AVC statistics for top application groups.
- **upstream**: (Optional) Displays statistics of top upstream applications.
- **downstream**: (Optional) Displays statistics of top downstream applications.
- **top-apps**: Displays AVC statistics for top applications.

Command Default

None

Command History

Release	**Modification**
7.4 | This command was introduced.

The following is a sample output of the `show avc statistics` command.

```
(Cisco Controller) > show avc statistics guest-lan 1

Application-Name  Packets  Bytes  Avg Pkt  Packets  Bytes
                      (n secs)  (n secs)  Size  (Total)  (Total)
--------------------- =========== ========= ========= =========== ===========
  unclassified (U)   191464    208627    1     92208613 11138796586
                      (D)     63427   53440610   842   16295621  9657054635
  ftp (U)            805       72880    90      172939  11206202
                      (D)     911     58143    63      190900  17418653
  http (U)          319894   436915253 1365    29850934 36817587924
                      (D)     264904  12508288     47    27493945 2837672192
  gre (U)           0         0       0      10158872 10402684928
                      (D)     0        0       0          0
  icmp (U)          7262     4034576   555     2888266 1605133372
                      (D)    3145      40494     298   3509061  1971306541
  ipinip (U)       62565   64066560 1024    11992305 12280128320
                      (D)     0        0       0          0
  imap (U)         1430     16798     11     305161   3795766
                      (D)    1555    576371    370    332290 125799465
  irc (U)           9       74       8      1736   9133
                      (D)     11     371       33      1972  173381
  nntp (U)         22       158       7      1705   9612
                      (D)    22       372      16     2047  214391

```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show avc statistics remote-lan

To display the Application Visibility and Control (AVC) statistics of a remote LAN, use the show avc statistics remote-lan command.

```
show avc statistics remote-lan remote-lan_id { application application_name | top-app-groups [ upstream | downstream ] | top-apps [ upstream | downstream ] }
```

Syntax Description

- `remote-lan_id`: Remote LAN identifier from 1 to 512.
- `application`: Displays AVC statistics for an application.
- `application_name`: Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.
- `top-app-groups`: Displays AVC statistics for top application groups.
- `upstream`: (Optional) Displays statistics of top upstream applications.
- `downstream`: (Optional) Displays statistics of top downstream applications.
- `top-apps`: Displays AVC statistics for top applications.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show avc statistics remote-lan command.

```
(Cisco Controller) > show avc statistics remote-lan 1

Application-Name Packets Bytes Avg Pkt Packets Bytes
(Up/Down) (n secs) (n secs) Size (Total) (Total)

unclassified (U) 191464 208627 1 92208613 11138796586
(D) 63427 53440610 842 16295621 9657054635
ftp (U) 805 72880 90 172939 11206202
(D) 911 58143 63 190900 17418653
http (U) 264904 12508288 47 27493945 2837672192
(D) 319894 436915253 1365 29850934 36817587924
gre (U) 0 0 0 10158872 10402684928
(D) 0 0 0 0 0
icmp (U) 1 40 40 323 98476
(D) 7262 4034576 555 2888266 1605133372
ipinip (U) 62565 64066560 1024 11992305 12280120320
(D) 0 0 0 0 0
imap (U) 1430 16798 11 305161 3795766
(D) 1555 576371 370 332290 125799465
irc (U) 9 74 8 1736 9133
(D) 11 371 33 1972 173381
nntp (U) 22 158 7 1705 9612
(D) 22 372 16 2047 214391
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show avc statistics top-apps

To display the Application Visibility and Control (AVC) statistics for the most used applications, use the `show avc statistics top-apps` command.

`show avc statistics top-apps [upstream | downstream]`

Syntax Description

- `upstream` (Optional) Displays statistics of the most used upstream applications.
- `downstream` (Optional) Displays statistics of the most used downstream applications.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show avc statistics top-apps` command:

```
(Cisco Controller) > show avc statistics top-apps

<table>
<thead>
<tr>
<th>Application-Name (Up/Down)</th>
<th>Packets (n secs)</th>
<th>Bytes (n secs)</th>
<th>Avg Pkt Size (Total)</th>
<th>Packets (Total)</th>
<th>Bytes (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>http (U)</td>
<td>204570</td>
<td>10610912</td>
<td>51</td>
<td>28272539</td>
<td>2882294016</td>
</tr>
<tr>
<td>realmedia (U)</td>
<td>908</td>
<td>62154</td>
<td>68</td>
<td>400698</td>
<td>26470359</td>
</tr>
<tr>
<td>mpls-in-ip (U)</td>
<td>166694</td>
<td>220522943</td>
<td>1322</td>
<td>35802836</td>
<td>47131836785</td>
</tr>
<tr>
<td>fire (U)</td>
<td>77448</td>
<td>79306752</td>
<td>1024</td>
<td>10292787</td>
<td>10539813888</td>
</tr>
<tr>
<td>pipe (U)</td>
<td>70890</td>
<td>72591360</td>
<td>1024</td>
<td>10242484</td>
<td>1048303616</td>
</tr>
<tr>
<td>gre (U)</td>
<td>68296</td>
<td>69935104</td>
<td>1024</td>
<td>1024255</td>
<td>10469637120</td>
</tr>
<tr>
<td>crudp (U)</td>
<td>60982</td>
<td>62445568</td>
<td>1024</td>
<td>10340221</td>
<td>10588386304</td>
</tr>
<tr>
<td>rtp (U)</td>
<td>26430</td>
<td>27064320</td>
<td>1024</td>
<td>10109812</td>
<td>10352447488</td>
</tr>
<tr>
<td>icmp (U)</td>
<td>7482</td>
<td>9936096</td>
<td>1328</td>
<td>2603923</td>
<td>3458009744</td>
</tr>
<tr>
<td>(D)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Related Commands

- `config avc profile delete`
- `config avc profile create`
- `config avc profile rule`
- `config wlan avc`
- `show avc profile`
- `show avc applications`
- `show avc statistics client`
show avc statistics wlan
show avc statistics applications
show avc statistics guest-lan
show avc statistics remote-lan
debug avc error
debug avc events
show avc statistics wlan

To display the Application Visibility and Control (AVC) statistics of a WLAN, use the `show avc statistics wlan` command.

```
show avc statistics wlan wlan_id  { application application_name | top-app-groups [ upstream | downstream ] | top-apps [ upstream | downstream ] }
```

Syntax Description

- **wlan_id**: WLAN identifier from 1 to 512.
- **application**: Displays AVC statistics for an application.
- **application_name**: Name of the application. The application name can be up to 32 case-sensitive, alphanumeric characters.
- **top-app-groups**: Displays AVC statistics for top application groups.
- **upstream**: (Optional) Displays statistics of top upstream applications.
- **downstream**: (Optional) Displays statistics of top downstream applications.
- **top-apps**: Displays AVC statistics for top applications.

Command Default

None

Command History

Release	**Modification**
7.4 | This command was introduced.

The following is a sample output of the `show avc statistics` command.

```
(Cisco Controller) > show avc statistics wlan 1

Application-Name (Up/Down) | Packets (n secs) | Bytes (n secs) | Avg Pkt Size (Total) | Packets (Total) | Bytes (Total)
-------------------------------|-----------------|---------------|---------------------|-----------------|------------------
unclassified (U) | 191464 | 208627 | 1 | 92208613 | 11138796586
(U) | 63427 | 53440610 | 842 | 16295621 | 9657056435
(D) | 911 | 58143 | 63 | 190900 | 17418653
 fw | 805 | 72880 | 90 | 172939 | 11206202
(U) | 911 | 58143 | 63 | 190900 | 17418653
http | 264904 | 12508288 | 47 | 27493945 | 283762192
(U) | 319894 | 436915253 | 1365 | 29850934 | 3681758792
(D) | 0 | 0 | 0 | 0 | 0
 gre | 0 | 0 | 0 | 10158872 | 10402684928
(D) | 0 | 0 | 0 | 0 | 0
cmp | 7262 | 4034576 | 555 | 2888266 | 160513372
(U) | 1430 | 16798 | 11 | 305161 | 3795766
(D) | 1555 | 576371 | 370 | 332290 | 125799465
 icmp | 9 | 74 | 8 | 1736 | 9133
(U) | 11 | 371 | 33 | 1972 | 173381
 nntp | 22 | 158 | 7 | 1705 | 9612
(U) | 22 | 372 | 16 | 2047 | 214391
```
The following is a sample output of the `show avc statistics wlan` command.

(Cisco Controller) > `show avc statistics wlan 1 application ftp`

<table>
<thead>
<tr>
<th>Description</th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Packtes (n secs)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of Bytes (n secs)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average Packet size (n secs)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Number of Packtes</td>
<td>32459</td>
<td>64888</td>
</tr>
<tr>
<td>Total Number of Bytes</td>
<td>274</td>
<td>94673983</td>
</tr>
</tbody>
</table>
show boot

To display the primary and backup software build numbers with an indication of which is active, use the `show boot` command.

```
show boot
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Each Cisco wireless LAN controller retains one primary and one backup operating system software load in nonvolatile RAM to allow controllers to boot off the primary load (default) or revert to the backup load when desired.

The following is a sample output of the `show boot` command:

```
(Cisco Controller) > show boot
Primary Boot Image............................... 3.2.13.0 (active)
Backup Boot Image................................ 3.2.15.0
```

Related Commands

`config boot`
show band-select

To display band selection information, use the show band-select command.

show band-select

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show band-select command:

(Cisco Controller) > show band-select
Band Select Probe Response....................... per WLAN enabling
 Cycle Count................................... 3 cycles
 Cycle Threshold............................... 200 milliseconds
 Age Out Suppression........................... 20 seconds
 Age Out Dual Band............................. 60 seconds
 Client RSSI................................... -80 dBm

Related Commands
config band-select
config wlan band-select
show buffers

To display buffer information of the controller, use the `show buffers` command.

show buffers

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show buffers` command:

```
(Cisco Controller) > show buffers
Pool[00]: 16 byte chunks
    chunks in pool:  50000
    chunks in use:  9196
    bytes in use:  147136
    bytes requested: 73218 (73918 overhead bytes)
Pool[01]: 64 byte chunks
    chunks in pool:  50100
    chunks in use:  19222
    bytes in use:  1230208
    bytes requested: 729199 (501009 overhead bytes)
Pool[02]: 128 byte chunks
    chunks in pool:  26200
    chunks in use:  9861
    bytes in use:  1262208
    bytes requested: 848732 (413476 overhead bytes)
Pool[03]: 256 byte chunks
    chunks in pool:  3000
    chunks in use:  596
    bytes in use:  152576
    bytes requested: 93145 (59431 overhead bytes)
Pool[04]: 384 byte chunks
    chunks in pool:  6000
    chunks in use:  258
    bytes in use:  99072
    bytes requested: 68235 (30837 overhead bytes)
Pool[05]: 512 byte chunks
    chunks in pool:  18700
    chunks in use:  18667
    bytes in use:  9557504
    bytes requested: 7933814 (1623690 overhead bytes)
Pool[06]: 1024 byte chunks
    chunks in pool:  3500
    chunks in use:  94
    bytes in use:  96256
    bytes requested: 75598 (20658 overhead bytes)
Pool[07]: 2048 byte chunks
    chunks in pool:  1000
    chunks in use:  54
    bytes in use:  110592
    bytes requested: 76153 (34439 overhead bytes)
Pool[08]: 4096 byte chunks
    chunks in pool:  1000
```
show buffers

chunks in use: 47
bytes in use: 192512
bytes requested: 128258 (64254 overhead bytes)

Raw Pool:
chunks in use: 256
bytes requested: 289575125
show cac voice stats

To view the detailed voice CAC statistics of the 802.11a or 802.11b radio, use the `show cac voice stats` command.

`show cac voice stats {802.11a | 802.11b}`

Syntax Description

- **802.11a**
 Displays detailed voice CAC statistics for 802.11a.

- **802.11b**
 Displays detailed voice CAC statistics for 802.11b/g.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show cac voice stats 802.11b` command:

```
(Cisco Controller) > show cac voice stats 802.11b

WLC Voice Call Statistics for 802.11b Radio

WMM TSPEC CAC Call Stats
Total num of Calls in progress................. 0
Num of Roam Calls in progress.................. 0
Total Num of Calls Admitted.................... 0
Total Num of Roam Calls Admitted.............. 0
Total Num of exp bw requests received......... 0
Total Num of exp bw requests Admitted......... 0
Total Num of Calls Rejected................... 0
Total Num of Roam Calls Rejected............. 0
Num of Calls Rejected due to insufficient bw.. 0
Num of Calls Rejected due to invalid params... 0
Num of Calls Rejected due to PHY rate......... 0
Num of Calls Rejected due to QoS policy....... 0

SIP CAC Call Stats
Total Num of Calls in progress................ 0
Num of Roam Calls in progress................ 0
Total Num of Calls Admitted................... 0
Total Num of Roam Calls Admitted.............. 0
Total Num of Preferred Calls Received......... 0
Total Num of Preferred Calls Admitted......... 0
Total Num of Ongoing Preferred Calls.......... 0
Total Num of Calls Rejected(Insuff BW)........ 0

KTS based CAC Call Stats
Total Num of Calls in progress................ 0
Num of Roam Calls in progress................ 0
Total Num of Calls Admitted................... 0
Total Num of Roam Calls Admitted.............. 0
Total Num of Calls Rejected(Insuff BW)........ 0

```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show cac voice summary

To view the list of all APs with brief voice statistics (includes bandwidth used, maximum bandwidth available, and the number of calls information), use the `show cac voice summary` command.

show cac voice summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show cac voice summary` command:

```
(Cisco Controller) > show cac voice summary
AP Name          Slot# Radio  BW Used/Max  Calls
----------------- ------- ----- ----------- -----
APc47d.4f3a.3547 0 11b/g 0/23437 0
1 11a 1072/23437 1
```
show cac video stats

To view the detailed video CAC statistics of the 802.11a or 802.11b radio, use the `show cac video stats` command.

`show cac video stats {802.11a | 802.11b}`

Syntax Description

- **802.11a** Displays detailed video CAC statistics for 802.11a.
- **802.11b** Displays detailed video CAC statistics for 802.11b/g.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show cac video stats 802.11b` command:

```
(Cisco Controller) > show cac video stats 802.11b

WLC Video Call Statistics for 802.11b Radio

WMM TSPEC CAC Call Stats
Total num of Calls in progress.................... 0
Num of Roam Calls in progress..................... 0
Total Num of Calls Admitted......................... 0
Total Num of Roam Calls Admitted.................... 0
Total Num of Calls Rejected......................... 0
Total Num of Roam Calls Rejected.................... 0
Num of Calls Rejected due to insufficient bw.... 0
Num of Calls Rejected due to invalid params.... 0
Num of Calls Rejected due to PHY rate............ 0
Num of Calls Rejected due to QoS policy........... 0

SIP CAC Call Stats
Total Num of Calls in progress..................... 0
Num of Roam Calls in progress..................... 0
Total Num of Calls Admitted......................... 0
Total Num of Roam Calls Admitted.................... 0
Total Num of Calls Rejected(Insuff BW)............ 0
Total Num of Roam Calls Rejected(Insuff BW)...... 0
```

Related Commands

- config 802.11 cac voice
- config 802.11 cac defaults
- config 802.11 cac video
- config 802.11 cac multimedia
- show cac voice stats
- show cac voice summary
- show cac video stats
- show cac video summary
- config 802.11 cac video load-based
config 802.11 cac video cac-method
config 802.11 cac video sip
show cac video summary

To view the list of all access points with brief video statistics (includes bandwidth used, maximum bandwidth available, and the number of calls information), use the **show cac video summary** command.

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show cac video summary** command:

```
(Cisco Controller) > show cac video summary

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slot#</th>
<th>Radio</th>
<th>BW Used/Max</th>
<th>Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP001b.d571.88e0</td>
<td>0</td>
<td>11b/g</td>
<td>0/10937</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/18750</td>
<td>0</td>
</tr>
<tr>
<td>AP5_1250</td>
<td>0</td>
<td>11b/g</td>
<td>0/10937</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/18750</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Related Commands

- `config 802.11 cac voice`
- `config 802.11 cac defaults`
- `config 802.11 cac video`
- `config 802.11 cac multimedia`
- `show cac voice stats`
- `show cac voice summary`
- `show cac video stats`
- `show cac video summary`
- `config 802.11 cac video load-based`
- `config 802.11 cac video cac-method`
- `config 802.11 cac video sip`
show call-control ap

The `show call-control ap` command is applicable only for SIP based calls.

To see the metrics for successful calls or the traps generated for failed calls, use the `show call-control ap` command.

```
show call-control ap {802.11a | 802.11b} cisco_ap {metrics | traps}
```

Syntax Description
- **802.11a**: Specifies the 802.11a network.
- **802.11b**: Specifies the 802.11b/g network.
- **cisco_ap**: Cisco access point name.
- **metrics**: Specifies the call metrics information.
- **traps**: Specifies the trap information for call control.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To aid in troubleshooting, the output of this command shows an error code for any failed calls. This table explains the possible error codes for failed calls.

Table 12: Error Codes for Failed VoIP Calls

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Integer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>unknown</td>
<td>Unknown error.</td>
</tr>
<tr>
<td>400</td>
<td>badRequest</td>
<td>The request could not be understood because of malformed syntax.</td>
</tr>
<tr>
<td>401</td>
<td>unauthorized</td>
<td>The request requires user authentication.</td>
</tr>
<tr>
<td>402</td>
<td>paymentRequired</td>
<td>Reserved for future use.</td>
</tr>
<tr>
<td>403</td>
<td>forbidden</td>
<td>The server understood the request but refuses to fulfill it.</td>
</tr>
<tr>
<td>404</td>
<td>notFound</td>
<td>The server has information that the user does not exist at the domain specified in the Request-URI.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Integer</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>405</td>
<td>methodNotallowed</td>
<td>The method specified in the Request-Line is understood but not allowed for the address identified by the Request-URI.</td>
</tr>
<tr>
<td>406</td>
<td>notAcceptable</td>
<td>The resource identified by the request is only capable of generating response entities with content characteristics that are not acceptable according to the Accept header field sent in the request.</td>
</tr>
<tr>
<td>407</td>
<td>proxyAuthenticationRequired</td>
<td>The client must first authenticate with the proxy.</td>
</tr>
<tr>
<td>408</td>
<td>requestTimeout</td>
<td>The server could not produce a response within a suitable amount of time.</td>
</tr>
<tr>
<td>409</td>
<td>conflict</td>
<td>The request could not be completed due to a conflict with the current state of the resource.</td>
</tr>
<tr>
<td>410</td>
<td>gone</td>
<td>The requested resource is no longer available at the server, and no forwarding address is known.</td>
</tr>
<tr>
<td>411</td>
<td>lengthRequired</td>
<td>The server is refusing to process a request because the request entity-body is larger than the server is willing or able to process.</td>
</tr>
<tr>
<td>413</td>
<td>requestEntityTooLarge</td>
<td>The server is refusing to process a request because the request entity-body is larger than the server is willing or able to process.</td>
</tr>
<tr>
<td>414</td>
<td>requestURITooLarge</td>
<td>The server is refusing to service the request because the Request-URI is longer than the server is willing to interpret.</td>
</tr>
<tr>
<td>415</td>
<td>unsupportedMediaType</td>
<td>The server is refusing to service the request because the message body of the request is in a format not supported by the server for the requested method.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Integer</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>420</td>
<td>badExtension</td>
<td>The server did not understand the protocol extension specified in a Proxy-Require or Require header field.</td>
</tr>
<tr>
<td>480</td>
<td>temporarilyNotAvailable</td>
<td>The callee’s end system was contacted successfully, but the callee is currently unavailable.</td>
</tr>
<tr>
<td>481</td>
<td>callLegDoesNotExist</td>
<td>The UAS received a request that does not match any existing dialog or transaction.</td>
</tr>
<tr>
<td>482</td>
<td>loopDetected</td>
<td>The server has detected a loop.</td>
</tr>
<tr>
<td>483</td>
<td>tooManyHops</td>
<td>The server received a request that contains a Max-Forwards header field with the value zero.</td>
</tr>
<tr>
<td>484</td>
<td>addressIncomplete</td>
<td>The server received a request with a Request-URI that was incomplete.</td>
</tr>
<tr>
<td>485</td>
<td>ambiguous</td>
<td>The Request-URI was ambiguous.</td>
</tr>
<tr>
<td>486</td>
<td>busy</td>
<td>The callee’s end system was contacted successfully, but the callee is currently not willing or able to take additional calls at this end system.</td>
</tr>
<tr>
<td>500</td>
<td>internalServerError</td>
<td>The server encountered an unexpected condition that prevented it from fulfilling the request.</td>
</tr>
<tr>
<td>501</td>
<td>notImplemented</td>
<td>The server does not support the functionality required to fulfill the request.</td>
</tr>
<tr>
<td>502</td>
<td>badGateway</td>
<td>The server, while acting as a gateway or proxy, received an invalid response from the downstream server it accessed in attempting to fulfill the request.</td>
</tr>
<tr>
<td>503</td>
<td>serviceUnavailable</td>
<td>The server is temporarily unable to process the request because of a temporary overloading or maintenance of the server.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Integer</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>504</td>
<td>serverTimeout</td>
<td>The server did not receive a timely response from an external server it accessed in attempting to process the request.</td>
</tr>
<tr>
<td>505</td>
<td>versionNotSupported</td>
<td>The server does not support or refuses to support the SIP protocol version that was used in the request.</td>
</tr>
<tr>
<td>600</td>
<td>busyEverywhere</td>
<td>The callee’s end system was contacted successfully, but the callee is busy or does not want to take the call at this time.</td>
</tr>
<tr>
<td>603</td>
<td>decline</td>
<td>The callee’s machine was contacted successfully, but the user does not want to or cannot participate.</td>
</tr>
<tr>
<td>604</td>
<td>doesNotExistAnywhere</td>
<td>The server has information that the user indicated in the Request-URI does not exist anywhere.</td>
</tr>
<tr>
<td>606</td>
<td>notAcceptable</td>
<td>The user’s agent was contacted successfully, but some aspects of the session description (such as the requested media, bandwidth, or addressing style) were not acceptable.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show call-controller ap` command that displays successful calls generated for an access point:

```
(Cisco Controller) >show call-control ap 802.11a Cisco_AP metrics
Total Call Duration in Seconds................... 120
Number of Calls.................................. 10
Number of calls for given client is................. 1
```

The following is a sample output of the `show call-control ap` command that displays metrics of traps generated for an AP:

```
(Cisco Controller) >show call-control ap 802.11a Cisco_AP traps
Number of traps sent in one min................... 2
Last SIP error code.............................. 404
Last sent trap timestamp....................... Jun 20 10:05:06
```
show call-control client

To see call information for a call-aware client when Voice-over-IP (VoIP) snooping is enabled and the call is active, use the `show call-control client` command

```
show call-control client callInfo client_MAC_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>callInfo</td>
<td>Specifies the call-control information.</td>
</tr>
<tr>
<td>client_MAC_address</td>
<td>Client MAC address.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example is a sample output of the `show call-controller client` command:

```
(Cisco Controller) > show call-control client callInfo 10.10.10.10.10
Uplink IP/port................................. 0.0.0.0 / 0
Downlink IP/port.............................. 9.47.96.107 / 5006
UP............................................... 6
Calling Party.................................... sip:1021
Called Party..................................... sip:1000
Call ID......................................... 38423970c3fca477
Call on hold: .................................. FALSE
Number of calls for given client is............ 1
```
show capwap reap association

To display the list of clients associated with an access point and their SSIDs, use the show capwap reap association command.

show capwap reap association

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display clients associated to an access point and their SSIDs:

(Cisco Controller) > show capwap reap association
show capwap reap status

To display the status of the FlexConnect access point (connected or standalone), use the `show capwap reap status` command.

```
show capwap reap status
```

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The command shows only the VLAN when configured as AP-specific.

The following example shows how to display the status of the FlexConnect access point:

```
(Cisco Controller) > show capwap reap status
```
show cdp

To display the status and details of the Cisco Discovery Protocol (CDP), use the show cdp command.

```
show cdp {neighbors [detail] | entry all | traffic}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbors</td>
<td>Displays a list of all CDP neighbors on all interfaces.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information of the controller’s CDP neighbors. This command shows only the CDP neighbors of the controller; it does not show the CDP neighbors of the controller’s associated access points.</td>
</tr>
<tr>
<td>entry all</td>
<td>Displays all CDP entries in the database.</td>
</tr>
<tr>
<td>traffic</td>
<td>Displays CDP traffic information.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show cdp command:

```
(Cisco Controller) > show cdp
CDP counters :
Total packets output: 0, Input: 0
Chksum error: 0
No memory: 0, Invalid packet: 0,
```

Related Commands

- config cdp
- config ap cdp
- show ap cdp
show certificate compatibility

To display whether or not certificates are verified as compatible in the Cisco wireless LAN controller, use the show certificate compatibility command.

show certificate compatibility

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show certificate compatibility command:

(Cisco Controller) > show certificate compatibility
Certificate compatibility mode:................. off
show certificate lsc

To verify that the controller has generated a Locally Significant Certificate (LSC), use the show certificate lsc summary command.

Syntax Description

- **summary**: Displays a summary of LSC certificate settings and certificates.
- **ap-provision**: Displays details about the access points that are provisioned using the LSC.

Syntax Description

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show certificate lsc summary command:

```plaintext
(Cisco Controller) > show certificate lsc summary
LSC Enabled................................. Yes
LSC CA-Server............................... http://10.0.0.1:8080/caserver
LSC AP-Provisioning........................ Yes
Provision-List............................. Not Configured
LSC Revert Count in AP reboots........... 3
LSC Params:
  Country................................... 4
  State..................................... ca
  City...................................... ss
  Orgn...................................... org
  Dept...................................... dep
  Email...................................... dep@co.com
  KeySize.................................. 390
LSC Certs:
  CA Cert................................... Not Configured
  RA Cert................................... Not Configured
```

This example shows how to display the details about the access points that are provisioned using the LSC:

```plaintext
(Cisco Controller) > show certificate lsc ap-provision
LSC AP-Provisioning....................... Yes
Provision-List............................ Present
Idx Mac Address
--- -------------
1 00:18:74:c7:c0:90
```
show certificate ssc

To view the Self Signed Device Certificate (SSC) and hash key of the virtual controller, use the `show certificate ssc` command.

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show certificate ssc` command:

```
(Cisco Controller) > show certificate ssc
SSC Hash validation......................... Enabled.

SSC Device Certificate details:

  Subject Name :
  C=US, ST=California, L=San Jose, O=Cisco Virtual Wireless LAN Controller, 
  CN=DEVICE-vWLC-AIR-CTVM-K9-000C297F2CF7, MAILTO=support@vwlc.com

  Validity :
  End   : 2022 Jun 1st, 15:47:53 GMT

  Hash key  : 5870ffabb15de2a617132bafcd73
```
show certificate summary

To verify that the controller has generated a certificate, use the `show certificate summary` command.

show certificate summary

This command has no arguments or keywords.

Syntax Description

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show certificate summary` command:

```
(Cisco Controller) > show certificate summary
Web Administration Certificate.................. Locally Generated
Web Authentication Certificate.................. Locally Generated
Certificate compatibility mode:............... off
```
show client ap

To display the clients on a Cisco lightweight access point, use the `show client ap` command.

```
show client ap 802.11 {a | b} cisco_ap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>802.11a</th>
<th>Specifies the 802.11a network.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td></td>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
</tr>
</tbody>
</table>

Command Default
None

Usage Guidelines

The `show client ap` command may list the status of automatically disabled clients. Use the `show exclusionlist` command to view clients on the exclusion list (blacklisted).

This example shows how to display client information on an access point:

```
(Cisco Controller) >show client ap 802.11b AP1
MAC Address | AP Id | Status  | WLAN Id | Authenticated
-------------|-------|---------|---------|----------------|
xx:xx:xx:xx:xx:xx | 1     | Associated | 1      | No
```
show client calls

To display the total number of active or rejected calls on the controller, use the `show client calls` command.

```
show client calls { active | rejected } { 802.11a | 802.11bg | all }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Specifies active calls.</td>
</tr>
<tr>
<td>rejected</td>
<td>Specifies rejected calls.</td>
</tr>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11bg</td>
<td>Specifies the 802.11b/g network.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies both the 802.11a and 802.11b/g network.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client calls active 802.11a` command:

```
(Cisco Controller) > show client calls active 802.11a
Client MAC  Username  Total Call Duration (sec)  AP Name               Radio Type
------------ ---------- --------------- ------------------------ ----------------------- ----------- 
00:09: ef: 02:65:70  abc          45                  VJ-1240C-ed45cc  802.11a
00:13: ce: cc: 51:39  xyz          45                  AP1130-a416    802.11a
00:40:96: af: 15:15  def          45                  AP1130-a416    802.11a
00:40:96:b2:69: df   def          45                  AP1130-a416    802.11a
Number of Active Calls ------------------------------------ 4
```
show client ccx client-capability

To display the client’s capability information, use the `show client ccx client-capability` command.

```
show client ccx client-capability client_mac_address
```

Syntax Description

| client_mac_address | MAC address of the client. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays the client’s available capabilities, not the current settings for the capabilities.

The following is a sample output of the `show client ccx client-capability` command:

```
(Cisco Controller) > show client ccx client-capability 00:40:96:a8:f7:98
Service Capability.......................... Voice, Streaming(uni-directional) Video, Interactive(bi-directional) Video
Radio Type..................................... DSSS OFDM(802.11a) HRDSSS(802.11b) ERP(802.11g)
Radio Type..................................... DSSS
Radio Channels............................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode.................................. Automatic
Rate List(MB).................................. 1.0 2.0
Radio Type..................................... HRDSSS(802.11b)
Radio Channels............................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode.................................. Automatic
Rate List(MB).................................. 5.5 11.0
Radio Type..................................... ERP(802.11g)
Radio Channels............................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode.................................. Automatic
Rate List(MB).................................. 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0
Are you sure you want to start? (y/N)y Are you sure you want to start? (y/N)
```
show client ccx frame-data

To display the data frames sent from the client for the last test, use the `show client ccx frame-data` command.

```
show client ccx frame-data client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_mac_address</code></td>
<td>MAC address of the client.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx frame-data` command:

```
(Cisco Controller) > show client ccx frame-data
```
show client ccx last-response-status

To display the status of the last test response, use the `show client ccx last-response-status` command.

```
show client ccx last-response-status client_mac_address
```

Syntax Description

- **client_mac_address**: MAC address of the client.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx last-response-status` command:

```
(Cisco Controller) > show client ccx last-response-status
Test Status ..................... Success
Response Dialog Token .......... 87
Response Status ................ Successful
Response Test Type .............. 802.1x Authentication Test
Response Time .................... 3476 seconds since system boot
```
show client ccx last-test-status

To display the status of the last test, use the `show client ccx last-test-status` command.

```
show client ccx last-test-status client_mac_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>client_mac_address</td>
<td>MAC address of the client.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx last-test-status` command:

```
(Cisco Controller) >show client ccx last-test-status

Test Type ......................... Gateway Ping Test
Test Status ...................... Pending/Success/Timeout
Dialog Token ..................... 15
Timeout ......................... 15000 ms
Request Time ..................... 1329 seconds since system boot
```
show client ccx log-response

To display a log response, use the `show client ccx log-response` command.

```
show client ccx log-response { roam | rsna | syslog } client_mac_address
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>roam</td>
<td>(Optional) Displays the CCX client roaming log response.</td>
</tr>
<tr>
<td>rsna</td>
<td>(Optional) Displays the CCX client RSNA log response.</td>
</tr>
<tr>
<td>syslog</td>
<td>(Optional) Displays the CCX client system log response.</td>
</tr>
<tr>
<td>client_mac_address</td>
<td>Inventory for the specified access point.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx log-response syslog` command:

```
(Cisco Controller) > show client ccx log-response syslog 00:40:96:a8:f7:98
Tue Jun 26 18:07:48 2007 Syslog Response LogID=131: Status=Successful
  Event Timestamp=0d 00h 19m 42s 278987us
  Client SysLog = '<11> Jun 19 11:49:47 unraval13777 Mandatory elements missing in the
  OID response'
  Event Timestamp=0d 00h 19m 42s 278990us
  Client SysLog = '<11> Jun 19 11:49:47 unraval13777 Mandatory elements missing in the
  OID response'
Tue Jun 26 18:07:48 2007 Syslog Response LogID=131: Status=Successful
  Event Timestamp=0d 00h 19m 42s 278987us
  Client SysLog = '<11> Jun 19 11:49:47 unraval13777 Mandatory elements missing in the
  OID response'
  Event Timestamp=0d 00h 19m 42s 278990us
  Client SysLog = '<11> Jun 19 11:49:47 unraval13777 Mandatory elements missing in the
  OID response'
```

The following example shows how to display the client roaming log response:

```
(Cisco Controller) > show client ccx log-response roam 00:40:96:a8:f7:98
  Event Timestamp=0d 00h 00m 13s 322396us
  Target BSSID=00:0b:85:26:70, Transition Time=100(ms)
  Transition Reason: Normal roam, poor link
  Target BSSID=00:0b:85:10:6d, Transition Time=3235(ms)
  Transition Reason: First association to WLAN
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show client ccx manufacturer-info

To display the client manufacturing information, use the `show client ccx manufacturer-info` command.

`show client ccx manufacturer-info client_mac_address`

Syntax Description

- `client_mac_address`
 MAC address of the client.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx manufacturer-info` command:

```
(Cisco Controller) > show client ccx manufacturer-info 00:40:96:a8:f7:98
Manufacturer OUI .............................. 00:40:96
Manufacturer ID ................................. Cisco
Manufacturer Model ............................. Cisco Aironet 802.11a/b/g Wireless Adapter
Manufacturer Serial ............................ FOC1046N3S3X
Mac Address .................................... 00:40:96:b2:8d:5e
Radio Type ..................................... DSSS OFDM(802.11a) HRDSSS(802.11b)
Antenna Type ................................... Omni-directional diversity
Antenna Gain .................................... 2 dBi
Rx Sensitivity:  
  Radio Type ................................... DSSS
  Rx Sensitivity ............................... Rate:1.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:2.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:5.5 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:11.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:6.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:9.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:12.0 Mbps, MinRssi:-95, MaxRss1:-30
  Rx Sensitivity ............................... Rate:18.0 Mbps, MinRssi:-95, MaxRss1:-30
```
show client ccx operating-parameters

To display the client operating-parameters, use the `show client ccx operating-parameters` command.

```
show client ccx operating-parameters client_mac_address
```

Syntax Description

- `client_mac_address`
 MAC address of the client.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx operating-parameters` command:

```plaintext
(Cisco Controller) > show client ccx operating-parameters 00:40:96:b2:8d:5e
Client Mac ......................................... 00:40:96:b2:8d:5e
Radio Type ......................................... OFDM(802.11a)
Radio Type ......................................... OFDM(802.11a)
Radio Channels .................................... 36 40 44 48 52 56 60 64 100 104 108 112
116 120 124 128 132 136 140 149 153 157 161 165
Tx Power Mode .................................... Automatic
Rate List(MB) ..................................... 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0
Power Save Mode .................................. Normal Power Save
SSID ............................................... wifi
Security Parameters[EAP Method, Credential]...... None
Auth Method ...................................... None
Key Management ................................... None
Encryption ....................................... None
Device Name ...................................... Wireless Network Connection 15
Device Type ...................................... 0
OS Id ............................................. Windows XP
OS Version ....................................... 5.1.6.2600 Service Pack 2
IP Type .......................................... DHCP address
IPv4 Address ..................................... Available
IPv4 Address ..................................... 70.0.4.66
Subnet Mask ...................................... 255.0.0.0
Default Gateway .................................. 70.1.0.1
IPv6 Address ..................................... Not Available
IPv6 Address ..................................... 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:
IPv6 Subnet Mask ................................ 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:
DNS Servers ....................................... 103.0.48.0
WINS Servers ...................................... None
System Name ...................................... URAVAL3777
Firmware Version .................................. 4.0.0.187
Driver Version .................................... 4.0.0.187
```
show client ccx profiles

To display the client profiles, use the `show client ccx profiles` command.

`show client ccx profiles client_mac_address`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>MAC address of the client.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx profiles` command:

```
(Cisco Controller) > show client ccx profiles 00:40:96:15:21:ac
Number of Profiles .................................. 1
Current Profile ..................................... 1
Profile ID .......................................... 1
Profile Name ........................................ wifiEAP
SSID ................................................ wifiEAP
Security Parameters [EAP Method, Credential]........ EAP-TLS, Host OS Login Credentials
Auth Method ......................................... EAP
Key Management ...................................... WPA2+CCKM
Encryption .......................................... AES-CCMP
Power Save Mode ..................................... Constantly Awake
Radio Configuration:
Radio Type........................................... DSSS
Preamble Type.................................... Long preamble
CCA Method....................................... Energy Detect + Carrier
Detect/Correlation
Data Retries........................................ 6
Fragment Threshold................................ 2342
Radio Channels.................................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode..................................... Automatic
Rate List (MB).................................. 1.0 2.0
Radio Type........................................... HRDSSS(802.11b)
Preamble Type.................................... Long preamble
CCA Method....................................... Energy Detect + Carrier
Detect/Correlation
Data Retries........................................ 6
Fragment Threshold................................ 2342
Radio Channels.................................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode..................................... Automatic
Rate List (MB).................................. 5.5 11.0
Radio Type........................................... ERP(802.11g)
Preamble Type.................................... Long preamble
CCA Method....................................... Energy Detect + Carrier
Detect/Correlation
Data Retries........................................ 6
Fragment Threshold................................ 2342
Radio Channels.................................... 1 2 3 4 5 6 7 8 9 10 11
Tx Power Mode..................................... Automatic
Rate List (MB).................................. 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0
Radio Type........................................... OFDM(802.11a)
Preamble Type.................................... Long preamble
CCA Method....................................... Energy Detect + Carrier
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
Detect/Correlation
Data Retries................................. 6
Fragment Threshold......................... 2342
Radio Channels.............................. 36 40 44 48 52 56 60 64 149 153 157 161
165
Tx Power Mode............................... Automatic
Rate List (MB)............................... 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0
show client ccx results

To display the results from the last successful diagnostic test, use the `show client ccx results` command.

```
show client ccx results client_mac_address
```

Syntax Description

<table>
<thead>
<tr>
<th><code>client_mac_address</code></th>
<th>MAC address of the client.</th>
</tr>
</thead>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client ccx results` command:

```
(Cisco Controller) > show client ccx results xx.xx.xx.xx
dot1x Complete................................. Success
EAP Method........................................ *1,Host OS Login Credentials
dot1x Status...................................... 255
```
show client ccx rm

To display Cisco Client eXtension (CCX) client radio management report information, use the `show client ccx rm` command.

```
show client ccx rm client_MAC { status | { report { chan-load | noise-hist | frame | beacon | pathloss } }}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>client_MAC</code></td>
<td>Client MAC address.</td>
</tr>
<tr>
<td><code>status</code></td>
<td>Displays the client CCX radio management status information.</td>
</tr>
<tr>
<td><code>report</code></td>
<td>Displays the client CCX radio management report.</td>
</tr>
<tr>
<td><code>chan-load</code></td>
<td>Displays radio management channel load reports.</td>
</tr>
<tr>
<td><code>noise-hist</code></td>
<td>Displays radio management noise histogram reports.</td>
</tr>
<tr>
<td><code>beacon</code></td>
<td>Displays radio management beacon load reports.</td>
</tr>
<tr>
<td><code>frame</code></td>
<td>Displays radio management frame reports.</td>
</tr>
<tr>
<td><code>pathloss</code></td>
<td>Displays radio management path loss reports.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the client radio management status information:

```
(Cisco Controller) > show client ccx rm 00:40:96:15:21:ac status
Client Mac Address............................... 00:40:96:15:21:ac
Channel Load Request............................ Enabled
Noise Histogram Request........................... Enabled
Beacon Request.................................... Enabled
Frame Request..................................... Enabled
Interval.......................................... 30
Iteration......................................... 10
```

The following example shows how to display the client radio management load reports:

```
(Cisco Controller) > show client ccx rm 00:40:96:15:21:ac report chan-load
Channel Load Report
Client Mac Address............................... 00:40:96:ae:53:bc
Timestamp........................................ 788751121
Incapable Flag................................... Off
Refused Flag..................................... Off
Chan CCA Busy Fraction-----------------------
The following example shows how to display the client radio management noise histogram reports:

(Cisco Controller) > `show client ccx rm 00:40:96:15:21:ac report noise-hist`

Noise Histogram Report
Client Mac Address......................... 00:40:96:15:21:ac
Timestamp...................................... 4294967295
Incapable Flag.................................. Off
Refused Flag................................... Off
Chan RPI0 RPI1 RPI2 RPI3 RPI4 RPI5 RPI6 RPI7
show client ccx stats-report

To display the Cisco Client eXtensions (CCX) statistics report from a specified client device, use the **show client ccx stats-report** command.

**show client ccx stats-report client_mac_address**

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>client_mac_address</th>
<th>Client MAC address.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show client ccx stats-report** command:

```
(Cisco Controller) > show client ccx stats-report 00:0c:41:07:33:a6
Measurement duration = 1
dot11TransmittedFragmentCount = 1
dot11MulticastTransmittedFrameCount = 2
dot11FailedCount = 3
dot11RetryCount = 4
dot11MultipleRetryCount = 5
dot11FrameDuplicateCount = 6
dot11RTSSuccessCount = 7
dot11RTSFailureCount = 8
dot11ACKFailureCount = 9
dot11ReceivedFragmentCount = 10
dot11MulticastReceivedFrameCount = 11
dot11FCSErrorCount = 12
dot11TransmittedFrameCount = 13
```
show client detail

To display IP addresses per client learned through DNS snooping (DNS-based ACL), use the `show client detail mac_address` command.

**Syntax Description**

```
show client detail mac_address
```

- **mac_address**: MAC address of the client.

**Command Default**

None

**Command History**

**Release**  | **Modification**
---|---
7.6 | This command was introduced.

The following is a sample output of the `show client detail mac_address` command.

```
(Cisco Controller) > show client detail 01:35:6x:yy:21:00
Client MAC Address... 01:35:6x:yy:21:00
Client Username ... test
AP MAC Address... 00:11:22:33:44:x0
AP Name.. AP0011.2020.x111
AP radio slot Id... 1
Client State... Associated
Client NAC OOB State.. Access
Wireless LAN Id.. 7
Hotspot (802.11u)... Not Supported
BSSID.. 00:11:22:33:44:xx
Connected For ... 28 secs
Channel... 56
IP Address... 10.0.0.1
Gateway Address... Unknown
Netmask.. Unknown
IPv6 Address... xx20::222:6xyy:zeeb:2233
Association Id... 1
Authentication Algorithm................................. Open System
Reason Code... 1
Status Code.. 0
Client CCX version.. No CCX support
Re-Authentication Timeout................................. 1756
QoS Level... Silver
Avg data Rate.. 0
Burst data Rate.. 0
Avg Real time data Rate.................................... 0
Burst Real Time data Rate................................. 0
802.1P Priority Tag.. disabled
CTS Security Group Tag...................................... Not Applicable
KTS CAC Capability.. No
WMM Support.. Enabled
```
APSD ACs........................................ BK BE VI VO
Power Save........................................ ON
Current Rate...................................... m7
Supported Rates................................. 6.0,9.0,12.0,18.0,24.0,36.0,48.0,54.0
Mobility State................................. Local
Mobility Move Count............................ 0
Security Policy Completed..................... No
Policy Manager State........................... SUPPLICANT_PROVISIONING
Policy Manager Rule Created.................. Yes
AAA Override ACL Name......................... android
AAA Override ACL Applied Status............. Yes
AAA Override Flex ACL Name................... none
AAA Override Flex ACL Applied Status....... Unavailable
AAA URL redirect............................... https://10.0.0.3:8443/guestportal/gateway?sessionId=0a68aa7200000015272404e&action=nsp
Audit Session ID............................... 0a68aa7200000015272404e
AAA Role Type.................................. none
Local Policy Applied.......................... p1
IPv4 ACL Name.................................. none
IPv4 ACL Applied Status....................... Unavailable
IPv6 ACL Name.................................. none
IPv6 ACL Applied Status....................... Unavailable
Layer2 ACL Name............................... none
Layer2 ACL Applied Status.................... Unavailable
Client Type..................................... SimpleIP
mDNS Status..................................... Enabled
mDNS Profile Name............................. default-mdns-profile
No. of mDNS Services Advertised.............. 0
Policy Type...................................... WPA2
Authentication Key Management................ 802.1x
Encryption Cipher.............................. CCMP (AES)
Protected Management Frame................... No
Management Frame Protection.................. No
EAP Type........................................ PEAP
Interface....................................... management
VLAN............................................... 0
Quarantine VLAN................................. 0
Access VLAN.................................... 0
Client Capabilities:
  CF Pollable.................................. Not implemented
  CF Poll Request.............................. Not implemented
  Short Preamble............................... Not implemented
  PBCC.......................................... Not implemented
  Channel Agility............................. Not implemented
  Listen Interval.............................. 10
  Fast BSS Transition......................... Not implemented
Client Wifi Direct Capabilities:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFD capable</td>
<td>No</td>
</tr>
<tr>
<td>Managed WFD capable</td>
<td>No</td>
</tr>
<tr>
<td>Cross Connection Capable</td>
<td>No</td>
</tr>
<tr>
<td>Support Concurrent Operation</td>
<td>No</td>
</tr>
<tr>
<td>Fast BSS Transition Details:</td>
<td></td>
</tr>
<tr>
<td>Client Statistics:</td>
<td></td>
</tr>
<tr>
<td>Number of Bytes Received</td>
<td>123659</td>
</tr>
<tr>
<td>Number of Bytes Sent</td>
<td>120564</td>
</tr>
<tr>
<td>Number of Packets Received</td>
<td>1375</td>
</tr>
<tr>
<td>Number of Packets Sent</td>
<td>276</td>
</tr>
<tr>
<td>Number of Interim-Update Sent</td>
<td>0</td>
</tr>
<tr>
<td>Number of EAP Id Request Msg Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Number of EAP Id Request Msg Failures</td>
<td>0</td>
</tr>
<tr>
<td>Number of EAP Request Msg Timeouts</td>
<td>2</td>
</tr>
<tr>
<td>Number of EAP Request Msg Failures</td>
<td>0</td>
</tr>
<tr>
<td>Number of EAP Key Msg Timeouts</td>
<td>0</td>
</tr>
<tr>
<td>Number of EAP Key Msg Failures</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Retries</td>
<td>82</td>
</tr>
<tr>
<td>Number of RTS Retries</td>
<td>0</td>
</tr>
<tr>
<td>Number of Duplicate Received Packets</td>
<td>0</td>
</tr>
<tr>
<td>Number of Decrypt Failed Packets</td>
<td>0</td>
</tr>
<tr>
<td>Number of Mic Failed Packets</td>
<td>0</td>
</tr>
<tr>
<td>Number of Mic Missing Packets</td>
<td>0</td>
</tr>
<tr>
<td>Number of RA Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Policy Errors</td>
<td>0</td>
</tr>
<tr>
<td>Radio Signal Strength Indicator</td>
<td>-51 dBm</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>46 dB</td>
</tr>
<tr>
<td>Client Rate Limiting Statistics:</td>
<td></td>
</tr>
<tr>
<td>Number of Data Packets Received</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Rx Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Bytes Received</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Rx Bytes Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Packets Recieved</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Rx Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Bytes Recieved</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Rx Bytes Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Packets Sent</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Tx Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Bytes Sent</td>
<td>0</td>
</tr>
<tr>
<td>Number of Data Tx Bytes Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Packets Sent</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Tx Packets Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Bytes Sent</td>
<td>0</td>
</tr>
<tr>
<td>Number of Realtime Tx Bytes Dropped</td>
<td>0</td>
</tr>
<tr>
<td>Nearby AP Statistics:</td>
<td></td>
</tr>
<tr>
<td>AP0022.9090.c545(slot 0)</td>
<td></td>
</tr>
<tr>
<td>antenna0: 26 secs ago</td>
<td>-33 dBm</td>
</tr>
<tr>
<td>antenna1: 26 secs ago</td>
<td>-35 dBm</td>
</tr>
<tr>
<td>AP0022.9090.c545(slot 1)</td>
<td></td>
</tr>
<tr>
<td>antenna0: 25 secs ago</td>
<td>-41 dBm</td>
</tr>
<tr>
<td>antenna1: 25 secs ago</td>
<td>-44 dBm</td>
</tr>
</tbody>
</table>
APc47d.4f3a.35c2 (slot 0)
  antenna0: 26 secs ago.................... -30 dBm
  antenna1: 26 secs ago.................... -36 dBm
APc47d.4f3a.35c2 (slot 1)
  antenna0: 24 secs ago.................... -43 dBm
  antenna1: 24 secs ago.................... -45 dBm

DNS Server details:
  DNS server IP ............................. 0.0.0.0
  DNS server IP ............................. 0.0.0.0

Client Dhcp Required: False
Allowed (URL)IP Addresses
----------------------------------------
209.165.200.225
209.165.200.226
209.165.200.227
209.165.200.228
209.165.200.229
209.165.200.230
209.165.200.231
209.165.200.232
209.165.200.233
209.165.200.234
209.165.200.235
209.165.200.236
209.165.200.237
209.165.200.238
209.165.201.1
209.165.201.2
209.165.201.3
209.165.201.4
209.165.201.5
209.165.201.6
209.165.201.7
209.165.201.8
209.165.201.9
209.165.201.10
show client location-calibration summary

To display client location calibration summary information, use the `show client location-calibration summary` command.

show client location-calibration summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the location calibration summary information:

```
(Cisco Controller) > show client location-calibration summary
MAC Address Interval
10:10:10:10:10:10 60
```
show client roam-history

To display the roaming history of a specified client, use the **show client roam-history** command.

```
show client roam-history mac_address
```

**Syntax Description**

- `mac_address`: Client MAC address.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show client roam-history** command:

```
(Cisco Controller) > show client roam-history 00:14:6c:0a:57:77
```
**show client summary**

To display a summary of clients associated with a Cisco lightweight access point, use the `show client summary` command.

```
show client summary [ssid / ip / username / devicetype]
```

**Syntax Description**

This command has no arguments or keywords up to Release 7.4.

- **ssid / ip / username / devicetype**
  
  (Optional) Displays active clients selective details on any of the following parameters or all the parameters in any order:
  - SSID
  - IP address
  - Username
  - Device type (such as Samsung-Device or WindowsXP-Workstation)

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use `show client ap` command to list the status of automatically disabled clients. Use the `show exclusionlist` command to display clients on the exclusion list (blacklisted).

The following example shows how to display a summary of the active clients:

```
(Cisco Controller) > show client summary
Number of Clients.......................... 24
Number of PMIPv6 Clients.................... 200
MAC Address AP Name Status WLAN/GLAN/RLAN Auth Protocol Port
Wired PMIPv6
----------------- ----------------- ------------- -------------- ---- ---------------- ----
------- ------ ------- ------- ------- ------- -------
00:00:15:01:00:01 NMSP-TalwarSIM1-2 Associated 1 Yes 802.11a 13
Yes No
00:00:15:01:00:02 NMSP-TalwarSIM1-2 Associated 1 Yes 802.11a 13
No No
00:00:15:01:00:03 NMSP-TalwarSIM1-2 Associated 1 Yes 802.11a 13
Yes No
00:00:15:01:00:04 NMSP-TalwarSIM1-2 Associated 1 Yes 802.11a 13
No No
```

The following example shows how to display all clients that are WindowsXP-Workstation device type:

```
(Cisco Controller) > show client summary WindowsXP-Workstation
```
Number of Clients in WLAN....................... 0

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>AP Name</th>
<th>Status</th>
<th>Auth Protocol</th>
<th>Port Wired Mobility Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>

Number of Clients with requested device type..... 0
To display the active wired guest LAN clients, use the `show client summary guest-lan` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client summary guest-lan` command:

```
(Cisco Controller) > show client summary guest-lan
Number of Clients.......................... 1
MAC Address AP Name Status WLAN Auth Protocol Port Wired
------------ ------- -------- ---- ---- -------- ---- ----
00:16:36:40:ac:58 N/A Associated 1 No 802.3 1 Yes
```
**show client tsm**

To display the client traffic stream metrics (TSM) statistics, use the `show client tsm` command.

```
show client tsm 802.11 { a | b } client_mac { ap_mac | all }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>Specifies the 802.11a network.</td>
</tr>
<tr>
<td>802.11b</td>
<td>Specifies the 802.11 b/g network.</td>
</tr>
<tr>
<td>client_mac</td>
<td>MAC address of the client.</td>
</tr>
<tr>
<td>ap_mac</td>
<td>MAC address of the tsm access point.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies the list of all access points to which the client has associations.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client tsm 802.11a` command:

```
(Cisco Controller) > show client tsm 802.11a xx:xx:xx:xx:xx:xx all
AP Interface MAC: 00:0b:85:01:02:03
Client Interface Mac: 00:01:02:03:04:05
Measurement Duration: 90 seconds
Timestamp 1st Jan 2006, 06:35:80
UpLink Stats

Average Delay (5sec intervals).........................35
Delay less than 10 ms................................20
Delay bet 10 - 20 ms................................20
Delay bet 20 - 40 ms................................20
Delay greater than 40 ms............................20
Total packet Count................................80
Total packet lost count (5sec).........................10
Maximum Lost Packet count(5sec).......................5
Average Lost Packet count(5secs)......................2
DownLink Stats

Average Delay (5sec intervals).........................35
Delay less than 10 ms................................20
Delay bet 10 - 20 ms................................20
Delay bet 20 - 40 ms................................20
Delay greater than 40 ms............................20
Total packet Count................................80
Total packet lost count (5sec).........................10
Maximum Lost Packet count(5sec).......................5
Average Lost Packet count(5secs)......................2
```

**Related Commands**

- `show client ap`
show client username

To display the client data by the username, use the `show client username` command.

**show client username username**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>username</code></td>
<td>Client’s username. You can view a list of the first eight clients that are in RUN state associated to controller's access points.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client username` command:

```
(Cisco Controller) > show client username local

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Device Type</th>
<th>AP Name</th>
<th>Status</th>
<th>WLAN</th>
<th>Auth</th>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:22:64:00:01:01</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:02</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:03</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:04</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:05</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:06</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:07</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
<tr>
<td>12:22:64:00:01:08</td>
<td>Unknown</td>
<td>WEB-AUTH-AP-1</td>
<td>Associated</td>
<td>1</td>
<td>Yes</td>
<td>802.11g</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
show client voice-diag

To display voice diagnostics statistics, use the `show client voice-diag` command.

```
show client voice-diag { quos-map | roam-history | rssi | status | tspec }
```

**Syntax Description**

- **quos-map**
  
  Displays information about the QoS/DSCP mapping and packet statistics in each of the four queues: VO, VI, BE, BK. The different DSCP values are also displayed.

- **roam-history**
  
  Displays information about history of the last three roamings. The output contains the timestamp, access point associated with the roaming, the roaming reason, and if there is a roaming failure, the reason for the roaming failure.

- **rssi**
  
  Displays the client’s RSSI values in the last 5 seconds when voice diagnostics are enabled.

- **status**
  
  Displays the status of voice diagnostics for clients.

- **tspec**
  
  Displays TSPEC for the voice diagnostic for clients.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show client voice-diag status` command:

```
(Cisco Controller) > show client voice-diag status
Voice Diagnostics Status: FALSE
```

**Related Commands**

- `show client ap`
- `show client detail`
- `show client summary`
- `debug voice-diag`
**show client detail**

To display detailed information for a client on a Cisco lightweight access point, use the `show client detail` command.

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show client detail mac_address</code></td>
<td>Client MAC address.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `show client ap` command may list the status of automatically disabled clients. Use the `show exclusionlist` command to display clients on the exclusion list (blacklisted).

The following example shows how to display the client detailed information:

```
(Cisco Controller) > show client detail 00:0c:41:07:33:a6
```

Policy Manager State.............................. POSTURE_REQD
Policy Manager Rule Created....................... Yes
Client MAC Address................................ 00:16:36:40:ac:58
Client Username.................................. N/A
Client State..................................... Associated
Client NAC OOB State............................. QUARANTINE
Guest LAN Id..................................... 1
IP Address...................................... Unknown
Session Timeout.................................. 0
QoS Level........................................ Platinum
802.1P Priority Tag.............................. disabled
RTS CAC Capability................................ Yes
WMM Support...................................... Enabled
Power Save....................................... ON
Diff Serv Code Point (DSPC)....................... disabled
Mobility State................................... Local
Internal Mobility State.......................... apfMsMmInitial
Security Policy Completed........................ No
Policy Manager State............................. WEBAUTH_REQD
Policy Manager Rule Created....................... Yes
NPU Fast Fast Notified........................... Yes
Last Policy Manager State......................... WEBAUTH_REQD
Client Entry Create Time......................... 460 seconds
Interface........................................ wired-guest
FlexConnect Authentication....................... Local
FlexConnect Data Switching....................... Local
VLAN............................................. 236
Quarantine VLAN.................................. 0
Client Statistics:
  Number of Bytes Received................... 66806
  Number of Data Bytes Received............. 160783
  Number of Realtime Bytes Received...... 160783
  Number of Data Bytes Sent................ 23436
  Number of Realtime Bytes Sent........... 23436
  Number of Data Packets Received......... 592
  Number of Realtime Packets Received...... 592
Number of Data Packets Sent..................... 131
Number of Realtime Packets Sent................. 131
Number of Interim-Update Sent............... 0
Number of EAP Id Request Msg Timeouts..... 0
Number of EAP Request Msg Timeouts......... 0
Number of EAP Key Msg Timeouts............. 0
Number of Data Retries...................... 0
Number of RTS Retries....................... 0
Number of Duplicate Received Packets...... 3
Number of Decrypt Failed Packets........... 0
Number of Mic Failed Packets............... 0
Number of Mic Missing Packets.............. 0
Number of RA Packets Dropped............... 6
Number of Policy Errors.................... 0
Radio Signal Strength Indicator............. -50 dBm
Signal to Noise Ratio...................... 43 dB
...
show client location-calibration summary

To display client location calibration summary information, use the `show client location-calibration summary` command.

---

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the location calibration summary information:

(Cisco Controller) > `show client location-calibration summary`

MAC Address Interval

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:10:10:10:10:10</td>
<td>60</td>
</tr>
</tbody>
</table>
show client probing

To display the number of probing clients, use the `show client probing` command.

```
show client probing
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the number of probing clients:

```
(Cisco Controller) >show client probing
Number of Probing Clients......................... 0
```
show client roam-history

To display the roaming history of a specified client, use the **show client roam-history** command.

**show client roam-history** *mac_address*

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>mac_address</em></td>
<td>Client MAC address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td></td>
</tr>
<tr>
<td><strong>Release</strong></td>
<td><strong>Modification</strong></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show client roam-history** command:

```
(Cisco Controller) > show client roam-history 00:14:6c:0a:57:77
```
show client summary

To display a summary of clients associated with a Cisco lightweight access point, use the **show client summary** command.

**show client summary command**

**Syntax Description**

This command has no arguments or keywords up to Release 7.4.

**Syntax Description**

```
sSID / ip / username / devicetype
```

(Optional) Displays active clients selective details on any of the following parameters or all the parameters in any order:

- SSID
- IP address
- Username
- Device type (such as Samsung-Device or WindowsXP-Workstation)

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use **show client ap** command to list the status of automatically disabled clients. Use the **show exclusionlist** command to display clients on the exclusion list (blacklisted).

The following example shows how to display a summary of the active clients:

```
(Cisco Controller) > show client summary
Number of Clients.............................. 24
Number of PMIPv6 Clients........................ 200
MAC Address AP Name Status WLAN/GLAN/RLAN Auth Protocol Port
 Wired PMIPv6
-------------------- ------------------ -------------- ------------------- ----
00:00:15:01:00:01 NMSP-TalwarSIM1-2 Associated Yes 802.11a 13
00:00:15:01:00:02 NMSP-TalwarSIM1-2 Associated Yes 802.11a 13
00:00:15:01:00:03 NMSP-TalwarSIM1-2 Associated Yes 802.11a 13
00:00:15:01:00:04 NMSP-TalwarSIM1-2 Associated Yes 802.11a 13
```

The following example shows how to display all clients that are WindowsXP-Workstation device type:

```
(Cisco Controller) > show client summary WindowsXP-Workstation
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
Number of Clients in WLAN......................... 0

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>AP Name</th>
<th>Status</th>
<th>Auth Protocol</th>
<th>Port Wired Mobility Role</th>
</tr>
</thead>
</table>

Number of Clients with requested device type..... 0
# show client wlan

To display the summary of clients associated with a WLAN, use the `show client wlan` command.

`show client wlan wlan_id [devicetype device]`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512.</td>
</tr>
<tr>
<td>devicetype</td>
<td>(Optional) Displays all clients with the specified device type.</td>
</tr>
<tr>
<td>device</td>
<td>Device type. For example, Samsung-Device or WindowsXP-Workstation.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following are sample outputs of the `show client wlan` command:

```
(Cisco Controller) > show client wlan 1
Number of Clients in WLAN......................... 0

(Cisco Controller) > show client devicetype WindowsXP-Workstation
Number of Clients in WLAN......................... 0
MAC Address AP Name Status Auth Protocol Port Wired Mobility Role
-------------------- -------- ---------- ---------------- ----------------------- -----------------------
Number of Clients with requested device type.... 0
```
**show cloud-services cmx summary**

To view the cmx cloud services summary, use the **show cloud-services cmx summary** command.

**show cloud-services cmx summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows the CMX Cloud Services summary:

(Cisco Controller) >**show cloud-services cmx summary**
show cloud-services cmx statistics

To view the cmx cloud services statistics, use the **show cloud-services cmx statistics** command.

**show cloud-services cmx statistics**

This command has no arguments or keywords.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows the CMX Cloud Services statistics:

(Cisco Controller) > **show cloud-services cmx statistics**
show coredump summary

To display a summary of the controller’s core dump file, use the `show coredump summary` command.

```
show coredump summary
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following is a sample output of the `show coredump summary` command:

```
(Cisco Controller) > show coredump summary
Core Dump is enabled
FTP Server IP................................. 10.10.10.17
FTP Filename.................................... file1
FTP Username..................................... ftpuser
FTP Password.................................. *********
```

**Related Commands**

- `config coredump`
- `config coredump ftp`
- `config coredump username`
**show country**

To display the configured country and the radio types that are supported, use the **show country** command.

**show country**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the configured countries and supported radio types:

```
(Cisco Controller) >show country
Configured Country............................. United States
Configured Country Codes
US - United States............................. 802.11a / 802.11b / 802.11g
```
show country channels

To display the radio channels supported in the configured country, use the `show country channels` command.

```
show country channels
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the auto-RF channels for the configured countries:

```
(Cisco Controller) > show country channels
Configured Country................... United States
 KEY: * = Channel is legal in this country and may be configured manually.
Configured Country................... United States
 KEY: * = Channel is legal in this country and may be configured manually.
 A = Channel is the Auto-RF default in this country.
 . = Channel is not legal in this country.
 x = Channel has been configured for use by Auto-RF.
 * = Channel is available to be configured for use by Auto-RF.

802.11BG :
Channels : 1 1 1 1 1
: 1 2 3 4 5 6 7 8 9 0 1 2 3 4
---------:+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 US : A * * * A * * * A .
---------:+-+
802.11A :
Channels : 3 3 3 4 4 4 4 4 5 5 5 5 6 6 0 0 0 0 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6
: 4 6 8 0 2 4 6 8 2 6 0 4 0 4 8 2 6 0 4 8 2 6 0 9 3 7 1 5
---------:+-+
 US : . A . A . A A A A A * * * * . . . * * * A A A A *
---------:+-+
```
show country supported

To display a list of the supported country options, use the **show country supported** command.

**show country supported**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a list of all the supported countries:

```
(Cisco Controller) >show country supported
Configured Country.......................... United States
Supported Country Codes
AR - Argentina............................... 802.11a / 802.11b / 802.11g
AT - Austria.................................. 802.11a / 802.11b / 802.11g
AU - Australia................................ 802.11a / 802.11b / 802.11g
BR - Brazil................................... 802.11a / 802.11b / 802.11g
BE - Belgium.................................. 802.11a / 802.11b / 802.11g
BG - Bulgaria................................ 802.11a / 802.11b / 802.11g
CA - Canada................................... 802.11a / 802.11b / 802.11g
CH - Switzerland............................. 802.11a / 802.11b / 802.11g
CL - Chile..................................... 802.11b / 802.11g
CN - China..................................... 802.11a / 802.11b / 802.11g
CO - Colombia................................ 802.11a / 802.11b / 802.11g
CY - Cyprus.................................... 802.11a / 802.11b / 802.11g
CZ - Czech Republic.......................... 802.11a / 802.11b
DE - Germany.................................. 802.11a / 802.11b / 802.11g
DK - Denmark.................................. 802.11a / 802.11b / 802.11g
EE - Estonia................................... 802.11a / 802.11b / 802.11g
ES - Spain..................................... 802.11a / 802.11b / 802.11g
FI - Finland.................................. 802.11a / 802.11b / 802.11g
FR - France.................................... 802.11a / 802.11b / 802.11g
GB - United Kingdom.......................... 802.11a / 802.11b / 802.11g
GI - Gibraltar................................ 802.11a / 802.11b / 802.11g
GR - Greece................................... 802.11a / 802.11b / 802.11g
HK - Hong Kong................................ 802.11a / 802.11b / 802.11g
HU - Hungary.................................. 802.11a / 802.11b / 802.11g
ID - Indonesia................................ 802.11a / 802.11b / 802.11g
IE - Ireland................................... 802.11a / 802.11b / 802.11g
IN - India...................................... 802.11a / 802.11b / 802.11g
IL - Israel..................................... 802.11a / 802.11b / 802.11g
ILO - Israel (outdoor)......................... 802.11a / 802.11b / 802.11g
IS - Iceland................................... 802.11a / 802.11b / 802.11g
IT - Italy...................................... 802.11a / 802.11b / 802.11g
JP - Japan (J).................................. 802.11a / 802.11b / 802.11g
J2 - Japan 2(P)................................ 802.11a / 802.11b / 802.11g
J3 - Japan 3(U)................................. 802.11a / 802.11b / 802.11g
KR - Korea Republic (C)....................... 802.11a / 802.11b / 802.11g
KE - Korea Extended (K)....................... 802.11a / 802.11b / 802.11g
LI - Liechtenstein............................ 802.11a / 802.11b / 802.11g
```
<table>
<thead>
<tr>
<th>Country</th>
<th>Frequency Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>LU</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>LV</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>MC</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>MT</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>MX</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>MY</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>NL</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>NZ</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>NO</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>PA</td>
<td>802.11b / 802.11g</td>
</tr>
<tr>
<td>PE</td>
<td>802.11b / 802.11g</td>
</tr>
<tr>
<td>PH</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>PL</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>PT</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>RU</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>RO</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>SA</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>SE</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>SG</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>SI</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>SK</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>TH</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>TR</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>TW</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>UA</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>US</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>USL</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>USX</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
<tr>
<td>VE</td>
<td>802.11b / 802.11g</td>
</tr>
<tr>
<td>ZA</td>
<td>802.11a / 802.11b / 802.11g</td>
</tr>
</tbody>
</table>
show cpu

To display current WLAN controller CPU usage information, use the `show cpu` command.

**Syntax Description**

This command has no arguments or keywords.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show cpu` command:

```
(Cisco Controller) > show cpu
Current CPU load: 2.50%
```
show custom-web

To display all the web authentication customization information, use the `show custom-web` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Display all Web-Auth customization information.</td>
</tr>
<tr>
<td><code>remote-lan</code></td>
<td>Display per WLAN Web-Auth customization information.</td>
</tr>
<tr>
<td><code>guest-lan</code></td>
<td>Display per Guest LAN Web-Auth customization information.</td>
</tr>
<tr>
<td><code>sleep-client</code></td>
<td>Display all Web-Auth Sleeping Client entries summary.</td>
</tr>
<tr>
<td><code>webauth-bundle</code></td>
<td>Display the content of Web-Auth Bundle.</td>
</tr>
<tr>
<td><code>wlan</code></td>
<td>Display per WLAN Web-Auth customization information.</td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in the release earlier than 7.6.</td>
</tr>
<tr>
<td>8.2</td>
<td>This command was modified and the all, remote-lan, guest-lan, sleep-client, webauth-bundle, and wlan keywords are added.</td>
</tr>
</tbody>
</table>

The following is a sample output of the command:

```
(Cisco Controller) > show custom-web all
Radius Authentication Method.................. PAP
Cisco Logo.................................... Enabled
CustomLogo..................................... None
Custom Title.................................. None
Custom Message................................ None
Custom Redirect URL........................... None
Web Authentication Type....................... Internal Default
Logout-popup................................. Enabled
External Web Authentication URL............... None
```
**show database summary**

To display the maximum number of entries in the database, use the `show database summary` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

The following is a sample output of the `show database summary` command:

```
(Cisco Controller) > show database summary
Maximum Database Entries......................... 2048
Maximum Database Entries On Next Reboot.......... 2048
Database Contents
 MAC Filter Entries......................... 2
 Exclusion List Entries................... 0
 AP Authorization List Entries............. 1
 Management Users.......................... 1
 Local Network Users...................... 1
 Local Users................................ 1
 Guest Users............................. 0
 Total---------------------------------- 5
```

**Related Commands**

`config database size`
show dhcp

To display the internal Dynamic Host Configuration Protocol (DHCP) server configuration, use the `show dhcp` command.

```
show dhcp { leases | summary | scope }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>leases</td>
<td>Displays allocated DHCP leases.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays DHCP summary information.</td>
</tr>
<tr>
<td>scope</td>
<td>Name of a scope to display the DHCP information for that scope.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the allocated DHCP leases:

```
(Cisco Controller) > show dhcp leases
No leases allocated.
```

The following example shows how to display the DHCP summary information:

```
(Cisco Controller) > show dhcp summary
Scope Name Enabled Address Range
003 No 0.0.0.0 -> 0.0.0.0
```

The following example shows how to display the DHCP information for the scope 003:

```
(Cisco Controller) > show dhcp 003
Enabled....................................... No
Lease Time.................................. 0
Pool Start.................................. 0.0.0.0
Pool End.................................... 0.0.0.0
Network..................................... 0.0.0.0
Netmask..................................... 0.0.0.0
Default Routers............................ 0.0.0.0 0.0.0.0 0.0.0.0
DNS Domain..................................
DNS... 0.0.0.0 0.0.0.0 0.0.0.0
Netbios Name Servers..................... 0.0.0.0 0.0.0.0 0.0.0.0
```
**show dhcp proxy**

To display the status of DHCP proxy handling, use the `show dhcp proxy` command.

`show dhcp proxy`

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the status of DHCP proxy information:

(Cisco Controller) > `show dhcp proxy`

DHCP Proxy Behavior: enabled
show dhcp timeout

To display the DHCP timeout value, use the `show dhcp timeout` command.

**show dhcp timeout**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the DHCP timeout value:

```
(Cisco Controller) >show dhcp timeout
DHCP Timeout (seconds)............... 10
```
show dtls connections

To display the Datagram Transport Layer Security (DTLS) server status, use the `show dtls connections` command.

**show dtls connections**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show dtls connections` command.

```
Device > show dtls connections

AP Name Local Port Peer IP Peer Port Ciphersuite
---------- ---------- ---------- ---------- ------------------------------
 1130 Capwap_Ctrl 1.100.163.210 23678 TLS_RSA_WITH_AES_128_CBC_SHA
 1130 Capwap_Data 1.100.163.210 23678 TLS_RSA_WITH_AES_128_CBC_SHA
 1240 Capwap_Ctrl 1.100.163.209 59674 TLS_RSA_WITH_AES_128_CBC_SHA
```
show exclusionlist

To display a summary of all clients on the manual exclusion list (blacklisted) from associating with this Cisco wireless LAN controller, use the show exclusionlist command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command displays all manually excluded MAC addresses.

The following example shows how to display the exclusion list:

```
(Cisco Controller) > show exclusionlist
No manually disabled clients.
Dynamically Disabled Clients

MAC Address Exclusion Reason Time Remaining (in secs)
--------- --------------- -------------------
00:40:96:b4:82:55 802.1X Failure 51
```

**Related Commands**

config exclusionlist
show flexconnect acl detailed

To display a detailed summary of FlexConnect access control lists, use the `show flexconnect acl detailed` command.

```
show flexconnect acl detailed acl-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-name</td>
<td>Name of the access control list.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the FlexConnect detailed ACLs:

```
(Cisco Controller) > show flexconnect acl detailed acl-2
```
show flexconnect acl summary

To display a summary of all access control lists on FlexConnect access points, use the `show flexconnect acl summary` command.

**show flexconnect acl summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the FlexConnect ACL summary:

```
(Cisco Controller) > show flexconnect acl summary
ACL Name | Status
--------------|-------
ACL1 | Modified
ACL10 | Modified
ACL100 | Modified
ACL101 | Modified
ACL102 | Modified
ACL103 | Modified
ACL104 | Modified
ACL105 | Modified
ACL106 | Modified
```
show flexconnect group detail

To display details of a FlexConnect group, use the `show flexconnect group detail` command.

```
show flexconnect group detail group_name
```

Syntax Description

| group_name | Name of the FlexConnect group. |

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.1</td>
<td>The <code>module-vlan</code> and <code>aps</code> parameters were added.</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed information for a specific FlexConnect group:

```
(Cisco Controller) >show flexconnect group detail myflexgroup
Number of Ap’s in Group: 1
00:0a:b8:3b:0b:c2 AP1200 Joined
Group Radius Auth Servers:
 Primary Server Index Disabled
 Secondary Server Index Disabled
```
show flexconnect group summary

To display the current list of FlexConnect groups, use the show flexconnect group summary command.

show flexconnect group summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the current list of FlexConnect groups:

(Cisco Controller) >show flexconnect group summary
flexconnect Group Summary:  Count 1
Group Name  # APs
Group 1    1


show flexconnect office-extend

To view information about OfficeExtend access points that in FlexConnect mode, use the show flexconnect office-extend command.

```
show flexconnect office-extend { summary | latency }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a list of all OfficeExtend access points.</td>
</tr>
<tr>
<td>latency</td>
<td>Displays the link delay for OfficeExtend access points.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about the list of FlexConnect OfficeExtend access points:

```
(Cisco Controller) >show flexconnect office-extend summary
Summary of OfficeExtend AP
AP Name Ethernet MAC Encryption Join-Mode Join-Time
-------------------- ----------------- ---------- ----------- ----------
```

The following example shows how to display the FlexConnect OfficeExtend access point’s link delay:

```
(Cisco Controller) >show flexconnect office-extend latency
Summary of OfficeExtend AP link latency
AP Name Status Current Maximum Minimum
-------------------- ---------- ---------- ---------- ----------
AP1130 Enabled 15 ms 45 ms 12 ms
AP1140 Enabled 14 ms 179 ms 12 ms
```
**show flow exporter**

To display the details or the statistics of the flow exporter, use the `show flow exporter` command.

```
show flow exporter {summary | statistics}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a summary of the flow exporter.</td>
</tr>
<tr>
<td>statistics</td>
<td>Displays the statistics of flow exporters such as the number of records sent, or the time when the last record was sent.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show flow exporter summary` command:

```
(Cisco Controller) > show flow exporter summary
Exporter-Name Exporter-IP Port
------------- -------------- -----
expol 9.9.120.115 800
```
show flow monitor summary

To display the details of the NetFlow monitor, use the show flow monitor summary command.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Netflow record monitoring and export are used for integration with an NMS or any Netflow analysis tool.

The following is a sample output of the show flow monitor summary:

```
(Cisco Controller) > show flow monitor summary
Monitor-Name Exporter-Name Exporter-IP Port Record Name
--------------- ------------- --------------- ---- ---------------------
mon1 expol 9.9.120.115 800 ipv4_client_app_flow_record
```
**show guest-lan**

To display the configuration of a specific wired guest LAN, use the `show guest-lan` command.

```
show guest-lan guest_lan_id
```

**Syntax Description**
- `guest_lan_id` ID of the selected wired guest LAN.

**Command Default**
- None

**Command History**
- **Release** Modification
  - 7.6 This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**
To display all wired guest LANs configured on the controller, use the `show guest-lan summary` command.

The following is a sample output of the `show guest-lan guest_lan_id` command:

```
(Cisco Controller) >show guest-lan 2
Guest LAN Identifier............................. 1
Profile Name..................................... guestlan
Network Name (SSID)............................. guestlan
Status.. Enabled
AAA Policy Override............................. Disabled
Number of Active Clients....................... 1
Exclusionlist Timeout......................... 60 seconds
Session Timeout................................... Infinity
Interface.. wired
Ingress Interface.................................. wired-guest
WLAN ACL.. unconfigured
DHCP Server....................................... 10.20.236.90
DHCP Address Assignment Required............ Disabled
Quality of Service.............................. Silver (best effort)
Security
 Web Based Authentication.................... Enabled
 ACL.. Unconfigured
 Web-Passthrough............................... Disabled
 Conditional Web Redirect.................... Disabled
 Auto Anchor.................................... Disabled
Mobility Anchor List
GLAN ID IP Address Status
```
# show ike

To display active Internet Key Exchange (IKE) security associations (SAs), use the `show ike` command.

```
show ike {brief | detailed} IP_or_MAC_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brief</td>
<td>Displays a brief summary of all active IKE SAs.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays a detailed summary of all active IKE SAs.</td>
</tr>
<tr>
<td>IP_or_MAC_address</td>
<td>IP or MAC address of active IKE SA.</td>
</tr>
</tbody>
</table>

**Command Default**: None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the active Internet Key Exchange security associations:

```
(Cisco Controller) > show ike brief 209.165.200.254
```
show interface summary

To display summary details of the system interfaces, use the `show interface summary` command.

**show interface summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command was updated and displays IPv6 related details</td>
</tr>
</tbody>
</table>

The following example displays the summary of the local IPv4 interfaces:

(Cisco Controller) > `show interface summary`

Number of Interfaces.......................... 6

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Port</th>
<th>Vlan Id</th>
<th>IP Address</th>
<th>Type</th>
<th>Ap Mgr</th>
<th>Guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>dyn59</td>
<td>LAG 59</td>
<td>9.10.59.66</td>
<td>Dynamic</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td>LAG 56</td>
<td>9.10.56.60</td>
<td>Static</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>redundancy-management</td>
<td>LAG 56</td>
<td>0.0.0.0</td>
<td>Static</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>redundancy-port</td>
<td>-</td>
<td>untagged 0.0.0</td>
<td>Static</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>service-port</td>
<td>N/A</td>
<td>N/A</td>
<td>2.2.2.2</td>
<td>Static</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>virtual</td>
<td>N/A</td>
<td>N/A</td>
<td>1.2.3.4</td>
<td>Static</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

The following example displays the summary of the local IPv6 interfaces:

show ipv6 interface summary

Number of Interfaces.......................... 2

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Port</th>
<th>Vlan Id</th>
<th>IPv6 Address/Prefix Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>LAG 56</td>
<td></td>
<td>fe80::224:97ff:fe69:69af/64</td>
</tr>
<tr>
<td></td>
<td>LAG 56</td>
<td></td>
<td>2001:9:10:56::60/64</td>
</tr>
<tr>
<td>service-port</td>
<td>N/A</td>
<td>N/A</td>
<td>fe80::224:97ff:fe69:69a1/64</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>::/128</td>
</tr>
</tbody>
</table>
show interface detailed

To display details of the system interfaces, use the show interface command.

```
show interfacedetailed [interface_name | management | redundancy-management | redundancy-port | service-port | virtual]
```

**Syntax Description**

- **detailed**: Displays detailed interface information.
- **interface_name**: Interface name for detailed display.
- **management**: Displays detailed management interface information.
- **redundancy-management**: Displays detailed redundancy management interface information.
- **redundancy-port**: Displays detailed redundancy port information.
- **service-port**: Displays detailed service port information.
- **virtual**: Displays detailed virtual gateway interface information.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command was updated in Release 8.0 and displays IPv6 related details</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed interface information:

```
(Cisco Controller) > show interface detailed management

Interface Name.......................... management
MAC Address............................ 00:24:97:69:69:af
IP Address.............................. 9.10.56.60
IP Netmask.............................. 255.255.255.0
IP Gateway.............................. 9.10.56.1
External NAT IP State.................. Disabled
External NAT IP Address................. 0.0.0.0
Link Local IPv6 Address................ fe80::224:97ff:fe69:69af/64
STATE REACHABLE
Primary IPv6 Address.................... 2001:9:10:56::60/64
STATE REACHABLE
Primary IPv6 Gateway.................... fe80::aea0:16ff:fe4f:2242
Primary IPv6 Gateway Mac Address...... ac:a0:16:4f:22:42
STATE REACHABLE
VLAN...................................... 56
Quarantine-vlan.......................... 0
NAS-Identifier........................... Building1
```
Active Physical Port............................. LAG (13)
Primary Physical Port............................ LAG (13)
Backup Physical Port............................ Unconfigured
DHCP Proxy Mode................................. Global
Primary DHCP Server............................. 9.1.0.100
Secondary DHCP Server........................... Unconfigured
DHCP Option 82................................... Disabled
DHCP Option 82 bridge mode insertion............. Disabled
IPv4 ACL......................................... Unconfigured
IPv6 ACL......................................... Unconfigured
mDNS Profile Name................................ Unconfigured
AP Manager....................................... Yes
Guest Interface.................................. No
L2 Multicast..................................... Enabled

Some WLAN controllers may have only one physical port listed because they have only one physical port.

The following example shows how to display the detailed redundancy management interface information:

(Cisco Controller) > show interface detailed redundancy-management
Interface Name................................. redundancy-management
MAC Address.................................... 88:43:e1:7e:0b:20
IP Address....................................... 209.165.201.2

The following example shows how to display the detailed redundancy port information:

(Cisco Controller) > show interface detailed redundancy-port
Interface Name................................ redundancy-port
MAC Address................................ 88:43:e1:7e:0b:22
IP Address...................................... 169.254.120.5

The following example shows how to display the detailed service port information:

(Cisco Controller) > show interface detailed service-port
Interface Name................................ redundancy-port
MAC Address................................ 88:43:e1:7e:0b:22
IP Address...................................... 169.254.120.5

The following example shows how to display the detailed virtual gateway interface information:

(Cisco Controller) > show interface detailed virtual
Interface Name.................................. virtual
MAC Address................................... 88:43:e1:7e:0b:20
IP Address...................................... 192.0.2.1
Virtual DNS Host Name.......................... Disabled
AP Manager..................................... No
Guest Interface.................................. No
show interface group

To display details of system interface groups, use the show interface group command.

```
show interface group { summary | detailed interface_group_name }
```

**Syntax Description**

- **summary**: Displays a summary of the local interface groups.
- **detailed**: Displays detailed interface group information.
- **interface_group_name**: Interface group name for a detailed display.

**Command Default**

None

**Command History**

- **Release 7.6**: This command was introduced in a release earlier than Release 7.6.

The following example shows how to display a summary of local interface groups:

```
(Cisco Controller) > show interface group summary
Interface Group Name Total Interfaces Total WLANs Total AP Groups Quarantine
----------------------- -------------- ---------- ------------ ------------
mygroup1 1 0 0 No
mygroup2 1 0 0 No
mygroup3 5 1 0 No
```

The following example shows how to display the detailed interface group information:

```
(Cisco Controller) > show interface group detailed mygroup1
Interface Group Name............................. mygroup1
Quarantine No
Number of Wlans using the Interface Group...... 0
Number of AP Groups using the Interface Group... 0
Number of Interfaces Contained................... 5
mDNS Profile Name............................... NCS12Prof
Interface Group Description..................... My Interface Group
Next interface for allocation to client........... testabc
Interfaces Contained in this group testabc
Interface marked with * indicates DHCP dirty interface
Interface list sorted based on vlan:

Index Vlan Interface Name
----- ---- -----------------------
```
show interface group

0     42     testabc
show invalid-config

To see any ignored commands or invalid configuration values in an edited configuration file, use the `show invalid-config` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enter this command only before the `clear config` or `save config` command.

The following is a sample output of the `show invalid-config` command:

```
(Cisco Controller) > show invalid-config
config wlan peer-blocking drop 3
config wlan dhcp_server 3 192.168.0.44 required
```
show inventory

To display a physical inventory of the Cisco wireless LAN controller, use the show inventory command.

show inventory

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Some wireless LAN controllers may have no crypto accelerator (VPN termination module) or power supplies listed because they have no provisions for VPN termination modules or power supplies.

The following is a sample output of the show inventory command:

(Cisco Controller) > show inventory
Burned-in MAC Address............................ 50:3D:E5:1A:31:A0
Power Supply 1................................... Present, OK
Power Supply 2................................... Absent
Maximum number of APs supported.................. 500
NAME: "Chassis" , DESCR: "Cisco 5500 Series Wireless LAN Controller"
PID: AIR-CT5508-K9, VID: V01, SN: XXXXXXXXXXX
**show IPsec**

To display active Internet Protocol Security (IPsec) security associations (SAs), use the `show IPsec` command.

```
show IPsec {brief | detailed} IP_or_MAC_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brief</td>
<td>Displays a brief summary of active IPsec SAs.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays a detailed summary of active IPsec SAs.</td>
</tr>
<tr>
<td>IP_or_MAC_address</td>
<td>IP address or MAC address of a device.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display brief information about the active Internet Protocol Security (IPsec) security associations (SAs):

```
(Cisco Controller) > show IPsec brief 209.165.200.254
```

**Related Commands**

- `config radius acct ipsec authentication`
- `config radius acct ipsec disable`
- `config radius acct ipsec enable`
- `config radius acct ipsec encryption`
- `config radius auth IPsec encryption`
- `config radius auth IPsec authentication`
- `config radius auth IPsec disable`
- `config radius auth IPsec encryption`
- `config radius auth IPsec ike`
- `config trapflags IPsec`
- `config wlan security IPsec disable`
- `config wlan security IPsec enable`
- `config wlan security IPsec authentication`
- `config wlan security IPsec encryption`
- `config wlan security IPsec config`
- `config wlan security IPsec ike authentication`
config wlan security IPsec ike dh-group
config wlan security IPsec ike lifetime
config wlan security IPsec ike phase1
config wlan security IPsec ike contivity
show ipv6 acl

To display the IPv6 access control lists (ACLs) that are configured on the controller, use the show ipv6 acl command.

```
show ipv6 acl detailed {acl_name | summary}
```

**Syntax Description**

- `acl_name`: IPv6 ACL name. The name can be up to 32 alphanumeric characters.
- `detailed`: Displays detailed information about a specific ACL.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed information of the access control lists:

```
(Cisco Controller) >show ipv6 acl detailed acl6
Rule Index............................... 1
Direction.................................. Any
IPv6 source prefix....................... ::/0
IPv6 destination prefix.................. ::/0
Protocol.................................. Any
Source Port Range......................... 0-65535
Destination Port Range................... 0-65535
DSCP..................................... Any
Flow label................................ 0
Action.................................... Permit
Counter.................................... 0
Deny Counter............................. 0
```
show ipv6 summary

To display the IPv6 configuration settings, use the **show ipv6 summary** command.

**show ipv6 summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example displays the output of the **show ipv6 summary** command:

```
(Cisco Controller) >show ipv6 summary
Global Config............................... Enabled
Reachable-lifetime value.................... 30
Stale-lifetime value......................... 300
Down-lifetime value......................... 300
RA Throttling................................ Disabled
RA Throttling allow at-least............... 1
RA Throttling allow at-most................ no-limit
RA Throttling max-through.................. 5
RA Throttling throttle-period.............. 600
RA Throttling interval-option............... ignore
NS Multicast CacheMiss Forwarding.......... Enabled
NA Multicast Forwarding...................... Enabled
IPv6 Capwap UDP Lite......................... Enabled
Operating System IPv6 state Enabled
```
show guest-lan

To display the configuration of a specific wired guest LAN, use the `show guest-lan` command.

```
show guest-lan guest_lan_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest_lan_id</td>
<td>ID of the selected wired guest LAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To display all wired guest LANs configured on the controller, use the `show guest-lan summary` command.

The following is a sample output of the `show guest-lan guest_lan_id` command:

```
(Cisco Controller) >show guest-lan 2
Guest LAN Identifier......................... 1
Profile Name................................. guestlan
Network Name (SSID).......................... guestlan
Status....................................... Enabled
AAA Policy Override........................... Disabled
Number of Active Clients.................... 1
Exclusionlist Timeout......................... 60 seconds
Session Timeout.............................. Infinity
Interface.................................... wired
Ingress Interface............................ wired-guest
WLAN ACL...................................... unconfigured
DHCP Server................................. 10.20.236.90
DHCP Address Assignment Required........... Disabled
Quality of Service............................ Silver (best effort)
Security
 Web Based Authentication................. Enabled
 ACL... Unconfigured
 Web-Passthrough........................... Disabled
 Conditional Web Redirect................... Disabled
 Auto Anchor................................ Disabled
Mobility Anchor List
GLAN ID IP Address Status
```
show ipv6 acl

To display the IPv6 access control lists (ACLs) that are configured on the controller, use the `show ipv6 acl` command.

`show ipv6 acl detailed {acl_name | summary}`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_name</td>
<td>IPv6 ACL name. The name can be up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays detailed information about a specific ACL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command History</td>
<td>Release</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed information of the access control lists:

```
(Cisco Controller) >show ipv6 acl detailed acl6
Rule Index....................................... 1
Direction.. Any
IPv6 source prefix............................... ::/0
IPv6 destination prefix.......................... ::/0
Protocol... Any
Source Port Range................................ 0-65535
Destination Port Range........................... 0-65535
DSCP... Any
Flow label....................................... 0
Action... Permit
Counter.. 0
Deny Counter..................................... 0
```
show ipv6 acl cpu

To display the IPv6 ACL CPU details, use the show ipv6 acl cpu command.

**show ipv6 acl cpu**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports IPv6 address format.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show ipv6 acl cpu command:

(Cisco Controller) > show ipv6 acl cpu

CPU Acl Name............................... NOT CONFIGURED
Wireless Traffic......................... Disabled
Wired Traffic.............................. Disabled
show ipv6 acl detailed

To display the IPv6 ACL details, use the `show ipv6 acl detailed` command.

**show ipv6 acl detailed**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports IPv6 address format.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show ipv6 acl detailed` command:

```
(Cisco Controller) > show ipv6 acl detailed ddd

Rule Index....................................... 1
Direction.. Any
IPv6 source prefix............................... 2001:9:5:90::115/128
IPv6 destination prefix.......................... ::/0
Protocol... 6
Source Port Range................................ 0-65535
Destination Port Range........................... 0-65535
DSCP... Any
Action... Permit
Counter.. 0

Rule Index....................................... 2
Direction.. Any
IPv6 source prefix............................... ::/0
IPv6 destination prefix.......................... 2001:9:5:90::115/128
Protocol... 6
Source Port Range................................ 0-65535
Destination Port Range........................... 0-65535
DSCP... Any
Action... Permit
Counter.. 0
```
show ipv6 neighbor-binding

To display the IPv6 neighbor binding data that are configured on the controller, use the `show ipv6 neighbor-binding` command.

```
show ipv6 neighbor-binding { capture-policy | counters | detailed { mac mac_address | port port_number | vlan vlan_id } | features | policies | ra-throttle { statistics vlan_id | routers vlan_id } | summary }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>capture-policy</td>
<td>Displays IPv6 next-hop message capture policies.</td>
</tr>
<tr>
<td>counters</td>
<td>Displays IPv6 next-hop counters (Bridging mode only).</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays the IPv6 neighbor binding table.</td>
</tr>
<tr>
<td>mac</td>
<td>Displays the IPv6 binding table entries for a specific MAC address.</td>
</tr>
<tr>
<td>mac_address</td>
<td>Displays the IPv6 binding table entries for a specific MAC address.</td>
</tr>
<tr>
<td>port</td>
<td>Displays the IPv6 binding table entries for a specific port.</td>
</tr>
<tr>
<td>port_number</td>
<td>Port Number. You can enter ap for an access point or LAG for a LAG port.</td>
</tr>
<tr>
<td>vlan</td>
<td>Displays the IPv6 neighbor binding table entries for a specific VLAN.</td>
</tr>
<tr>
<td>vlan_id</td>
<td>VLAN identifier.</td>
</tr>
<tr>
<td>features</td>
<td>Displays IPv6 next-hop registered features.</td>
</tr>
<tr>
<td>policies</td>
<td>Displays IPv6 next-hop policies.</td>
</tr>
<tr>
<td>ra-throttle</td>
<td>Displays RA throttle information.</td>
</tr>
<tr>
<td>statistics</td>
<td>Displays RA throttle statistics.</td>
</tr>
<tr>
<td>routers</td>
<td>Displays RA throttle routers.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays the IPv6 neighbor binding table.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

---

Cisco Wireless LAN Controller Command Reference, Release 8.0

1453
DHCPv6 counters are applicable only for IPv6 bridging mode.

The following is the output of the `show ipv6 neighbor-binding summary` command:

```
(Cisco Controller) >show ipv6 neighbor-binding summary
Binding Table has 6 entries, 5 dynamic
Codes: L - Local, S - Static, ND - Neighbor Discovery, DH - DDCP
Preflevel flags (prlvl):
 0001:MAC and LLA match 0002:Orig trunk 0004:Orig access
 0008:Orig trusted access 0010:Orig trusted trunk 0020:DHCP assigned
 0040:Cga authenticated 0080:Cert authenticated 0100:Statically assigned
IPv6 address MAC Address Port VLAN Type prlvl age state Time left
--- -- ----------------- ---- ---- -------- ----- -------- -----
 ND fe80::216:46ff:fe43:eb01 00:16:46:43:eb:01 1 980 wired 0005 2 REACHABLE 157
 ND fe80::6233:4bff:fe05:25ef 60:33:4b:05:25:ef AP 980 wireless 0005 2 REACHABLE 203
 ND fe80::250:56ff:fe8b:4a8f 00:50:56:8b:4a:8f AP 980 wireless 0005 2 REACHABLE 157
 S 2001:410:0:1::9 00:00:00:00:00:08 AP 980 wireless 0100 1 REACHABLE 205
```

The following is the output of the `show ipv6 neighbor-binding detailed` command:

```
(Cisco Controller) >show ipv6 neighbor-binding detailed mac 60:33:4b:05:25:ef
macDB has 3 entries for mac 60:33:4b:05:25:ef, 3 dynamic
Codes: L - Local, S - Static, ND - Neighbor Discovery, DH - DDCP
Preflevel flags (prlvl):
 0001:MAC and LLA match 0002:Orig trunk 0004:Orig access
 0008:Orig trusted access 0010:Orig trusted trunk 0020:DHCP assigned
 0040:Cga authenticated 0080:Cert authenticated 0100:Statically assigned
IPv6 address MAC Address Port VLAN Type prlvl age state Time left
--- -- ----------------- ---- ---- -------- ----- -------- -----
 ND fe80::6233:4bff:fe05:25ef 60:33:4b:05:25:ef AP 980 wireless 0009 0 REACHABLE 303
```

The following is the output of the `show ipv6 neighbor-binding counters` command:

```
(Cisco Controller) >show ipv6 neighbor-binding counters
Received Messages
NDP Router Solicitation 6
NDP Router Advertisement 19
NDP Neighbor Solicitation 557
NDP Neighbor Advertisement 48
NDP Redirect 0
NDP Certificate Solicit 0
NDP Certificate Advert 0
DHCPv6 Solicitation 0
```
DHCPv6 Advertisement 0
DHCPv6 Request 0
DHCPv6 Reply 0
DHCPv6 Inform 0
DHCPv6 Confirm 0
DHCPv6 Renew 0
DHCPv6 Rebind 0
DHCPv6 Release 0
DHCPv6 Decline 0
DHCPv6 Reconfigure 0
DHCPv6 Relay Forward 0
DHCPv6 Relay Rep 0

Bridged Messages

NDP Router Solicitation 6
NDP Router Advertisement 19
NDP Neighbor Solicitation 471
NDP Neighbor Advertisement 16
NDP Redirect 0
NDP Certificate Solicit 0
NDP Certificate Advert 0
DHCPv6 Solicitation 0
DHCPv6 Advertisement 0
DHCPv6 Request 0
DHCPv6 Reply 0
DHCPv6 Inform 0
DHCPv6 Confirm 0
DHCPv6 Renew 0
DHCPv6 Rebind 0
DHCPv6 Release 0
DHCPv6 Decline 0
DHCPv6 Reconfigure 0
DHCPv6 Relay Forward 0
DHCPv6 Relay Rep 0

NDSUPPRESS Drop counters

<table>
<thead>
<tr>
<th>total</th>
<th>silent</th>
<th>ns_in_out</th>
<th>ns_dad</th>
<th>unicast</th>
<th>multicast</th>
<th>internal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SNOOPING Drop counters

<table>
<thead>
<tr>
<th>Dropped Msgs</th>
<th>total</th>
<th>silent</th>
<th>internal</th>
<th>CGA_vfy</th>
<th>RSA_vfy</th>
<th>limit</th>
<th>martian</th>
<th>martian_mac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP RS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP RA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP NS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP Redirect</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP CERT SOL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NDP CERT ADV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHCPv6 Sol</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DHCPv6 Adv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show ipv6 neighbor-binding

DHCPv6 Req 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Confirm 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Renew 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Rebind 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Reply 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Release 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Decline 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Recfg 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Infreq 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Relayfwd 0 0 0 0 0 0 0 0
 0 0 0
DHCPv6 Relayreply 0 0 0 0 0 0 0 0
 0 0 0

CacheMiss Statistics
  Multicast NS Forwarded
    To STA 0
    To DS 0
  Multicast NS Dropped
    To STA 467
    To DS 467

Multicast NA Statistics
  Multicast NA Forwarded
    To STA 0
    To DS 0
  Multicast NA Dropped
    To STA 0
    To DS 0

(Cisco Controller) >>
show ipv6 ra-guard

To display the RA guard statistics, use the `show ipv6 ra-guard` command.

```
show ipv6 ra-guard { ap | wlc } summary
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap</td>
<td>Displays Cisco access point details.</td>
</tr>
<tr>
<td>wlc</td>
<td>Displays Cisco controller details.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays RA guard statistics.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example show the output of the `show ipv6 ra-guard ap summary` command:

```
(Cisco Controller) > show ipv6 ra-guard ap summary
IPv6 RA Guard on AP...................... Enabled
RA Dropped per client:
 MAC Address AP Name WLAN/GLAN Number of RA Dropped
 ------------------ -------------- -------------- ---------------------
 00:40:96:b9:4b:89 Bhavik_1130_1_p13 2 19
 ------------------ -------------- -------------- ---------------------
Total RA Dropped on AP................... 19
```

The following example shows how to display the RA guard statistics for a controller:

```
(Cisco Controller) > show ipv6 ra-guard wlc summary
IPv6 RA Guard on WLC.................... Enabled
```

show ipv6 route summary

To display configuration information for IPv6 route, use the show ipv6 route summary command.

show ipv6 route summary

This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced in a Release 8.0.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show ipv6 route summary command:

(Cisco Controller) > show ipv6 route summary
Number of Routes................................. 1

Destination Network PrefixLength Gateway
------------------- ------------- -------------------
2001:9:5::115 /128 2001:9:5:91::1
show ipv6 summary

To display the IPv6 configuration settings, use the `show ipv6 summary` command.

**show ipv6 summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example displays the output of the `show ipv6 summary` command:

(Cisco Controller) >**show ipv6 summary**
Global Config............................... Enabled
Reachable-lifetime value.................... 30
Stale-lifetime value......................... 300
Down-lifetime value......................... 300
RA Throttling............................... Disabled
RA Throttling allow at-least............... 1
RA Throttling allow at-most............... no-limit
RA Throttling max-through................... 5
RA Throttling throttle-period............... 600
RA Throttling interval-option............... ignore
NS Multicast CacheMiss Forwarding......... Enabled
NA Multicast Forwarding..................... Enabled
IPv6 Capwap UDP Lite....................... Enabled
Operating System IPv6 state ............... Enabled
show known ap

To display known Cisco lightweight access point information, use the show known ap command.

show known ap  { summary  |  detailed MAC }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a list of all known access points.</td>
</tr>
<tr>
<td>detailed</td>
<td>Provides detailed information for all known access points.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>MAC address of the known AP.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all known access points:

(Cisco Controller) > show known ap summary

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>State</th>
<th># APs</th>
<th># Clients</th>
<th>Last Heard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Show Commands: j to q

- show l2tp, on page 1464
- show lag eth-port-hash, on page 1465
- show lag ip-port-hash, on page 1466
- show lag summary, on page 1467
- show ldap, on page 1468
- show ldap statistics, on page 1469
- show ldap summary, on page 1470
- show license all, on page 1471
- show license capacity, on page 1472
- show license detail, on page 1473
- show license expiring, on page 1474
- show license evaluation, on page 1475
- show license feature, on page 1476
- show license file, on page 1477
- show license handle, on page 1478
- show license image-level, on page 1479
- show license in-use, on page 1480
- show license permanent, on page 1481
- show license status, on page 1482
- show license statistics, on page 1483
- show license summary, on page 1484
- show license udi, on page 1485
- show load-balancing, on page 1486
- show local-auth config, on page 1487
- show local-auth statistics, on page 1489
- show local-auth certificates, on page 1491
- show logging, on page 1492
- show logging config-history, on page 1494
- show logging flags, on page 1495
- show loginsession, on page 1496
- show macfilter, on page 1497
- show mdns ap summary, on page 1498
- show mdns domain-name-ip summary, on page 1499
• show mdns profile, on page 1501
• show mdns service, on page 1503
• show media-stream client, on page 1505
• show media-stream group detail, on page 1506
• show media-stream group summary, on page 1507
• show mesh ap, on page 1508
• show mesh astools stats, on page 1509
• show mesh backhaul, on page 1510
• show mesh cac, on page 1511
• show mesh client-access, on page 1513
• show mesh config, on page 1514
• show mesh convergence, on page 1515
• show mesh env, on page 1516
• show mesh neigh, on page 1517
• show mesh path, on page 1520
• show mesh per-stats, on page 1521
• show mesh public-safety, on page 1522
• show mesh queue-stats, on page 1523
• show mesh security-stats, on page 1524
• show mesh stats, on page 1526
• show mgmtuser, on page 1527
• show mobility anchor, on page 1528
• show mobility ap-list, on page 1529
• show mobility foreign-map, on page 1530
• show mobility group member, on page 1531
• show mobility oracle, on page 1532
• show mobility statistics, on page 1534
• show mobility summary, on page 1535
• show msglog, on page 1537
• show nac statistics, on page 1538
• show nac summary, on page 1539
• show network, on page 1540
• show network summary, on page 1541
• show netuser, on page 1543
• show netuser guest-roles, on page 1544
• show network multicast mgid detail, on page 1545
• show network multicast mgid summary, on page 1546
• show network summary, on page 1547
• show nmsp notify-interval summary, on page 1549
• show nmsp status, on page 1550
• show nmsp statistics, on page 1551
• show nmsp subscription, on page 1553
• show nmsp subscription summary, on page 1554
• show ntp-keys, on page 1555
• show ntp-keys, on page 1556
• show pmk-cache, on page 1557
• show pmipv6 domain, on page 1558
• show pmipv6 mag bindings, on page 1559
• show pmipv6 mag globals, on page 1560
• show pmipv6 mag stats, on page 1561
• show pmipv6 profile summary, on page 1563
• show policy, on page 1564
• show port, on page 1566
• show profiling policy summary, on page 1568
• show qos, on page 1571
• show queue-info, on page 1572
show l2tp

To display Layer 2 Tunneling Protocol (L2TP) sessions, use the `show l2tp` command.

```
show l2tp {summary | ip_address}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>summary</th>
<th>Displays all L2TP sessions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>IP address.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all L2TP sessions:

```
(Cisco Controller) > show l2tp summary
LAC_IPaddr LTid LSid RTid RSid ATid ASid State
---------- ---- ---- ---- ---- ---- ---- -----
show lag eth-port-hash

To display the physical port used for specific MAC addresses, use the **show lag eth-port-hash** command.

```
show lag eth-port-hash dest_MAC [source_MAC]
```

Syntax Description

- **dest_MAC**
 - MAC address to determine output port for non-IP packets.

- **source_MAC**
 - (Optional) MAC address to determine output port for non-IP packets.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the physical port used for a specific MAC address:

```
(Cisco Controller) > show lag eth-port-hash 11:11:11:11:11:11
Destination MAC 11:11:11:11:11:11 currently maps to port 1
```
show lag ip-port-hash

To display the physical port used for specific IP addresses, use the `show lag ip-port-hash` command.

```
show lag ip-port-hash dest_IP [source_IP]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dest_IP</code></td>
<td>IP address to determine the output port for IP packets.</td>
</tr>
<tr>
<td><code>source_IP</code> (Optional)</td>
<td>(Optional) IP address to determine the output port for IP packets.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 addresses.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For CAPWAP packets, enter the IP address of the access points. For EOIP packets, enter the IP address of the controller. For WIRED_GUEST packets, enter its IP address. For non tunneled IP packets from WLC, enter the destination IP address. For other non tunneled IP packets, enter both destination and source IP addresses.</td>
<td></td>
</tr>
<tr>
<td>This command is applicable for both IPv4 and IPv6 addresses.</td>
<td></td>
</tr>
<tr>
<td>The following example shows how to display the physical port used for a specific IP address:</td>
<td></td>
</tr>
<tr>
<td>(Cisco Controller) > <code>show lag ip-port-hash 192.168.102.138</code></td>
<td></td>
</tr>
<tr>
<td>Destination IP 192.168.102.138 currently maps to port 1</td>
<td></td>
</tr>
</tbody>
</table>
show lag summary

To display the current link aggregation (LAG) status, use the `show lag summary` command.

```
show lag summary
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the current status of the LAG configuration:

```
(Cisco Controller) > show lag summary
LAG Enabled
```
show ldap

To display the Lightweight Directory Access Protocol (LDAP) server information for a particular LDAP server, use the **show ldap** command.

```
show ldap index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>index</th>
<th>LDAP server index. Valid values are from 1 to 17.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the detailed LDAP server information:

```
(Cisco Controller) > show ldap 1
Server Index.................................. 1
Address........................................ 2.3.1.4
Port............................................. 389
Enabled.......................................... Yes
User DN......................................... name1
User Attribute................................. attr1
User Type........................................ username1
Retransmit Timeout............................. 3 seconds
Bind Method ...................................... Anonymous
```

Related Commands

- `config ldap`
- `config ldap add`
- `config ldap simple-bind`
- `show ldap statistics`
- `show ldap summary`
show ldap statistics

To display all Lightweight Directory Access Protocol (LDAP) server information, use the **show ldap statistics** command.

show ldap statistics

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the LDAP server statistics:

```
(Cisco Controller) > show ldap statistics
Server Index..................................... 1
Server statistics:
  Initialized OK.................................. 0
  Initialization failed.......................... 0
  Initialization retries......................... 0
  Closed OK....................................... 0
Request statistics:
  Received........................................ 0
  Sent............................................ 0
  OK............................................... 0
  Success........................................ 0
  Authentication failed.......................... 0
  Server not found............................... 0
  No received attributes........................ 0
  No passed username............................. 0
  Not connected to server....................... 0
  Internal error.................................. 0
  Retries......................................... 0
Server Index..................................... 2
...
```

Related Commands

- `config ldap`
- `config ldap add`
- `config ldap simple-bind`
- `show ldap`
- `show ldap summary`
show ldap summary

To display the current Lightweight Directory Access Protocol (LDAP) server status, use the **show ldap summary** command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of configured LDAP servers:

```
(Cisco Controller) > show ldap summary
Idx    Server Address    Port  Enabled
---    -------------    ----  -----
1      2.3.1.4         389   Yes
2      10.10.20.22     389   Yes
```

Related Commands

- config ldap
- config ldap add
- config ldap simple-bind
- show ldap statistics
- show ldap
show license all

To display information for all licenses on the Cisco WLCs, use the `show license all` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display all the licenses:

```
> show license all
License Store: Primary License Storage
StoreIndex: 0 Feature: wplus-ap-count  Version: 1.0
  License Type: Permanent
  License State: Inactive
  License Count: 12/0/0
  License Priority: Medium
StoreIndex: 1 Feature: base     Version: 1.0
  License Type: Permanent
  License State: Active, Not in Use
  License Count: Non-Counted
  License Priority: Medium
StoreIndex: 2 Feature: wplus    Version: 1.0
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
License Store: Evaluation License Storage
StoreIndex: 0 Feature: wplus    Version: 1.0
  License Type: Evaluation
  License State: Inactive
  Evaluation total period: 8 weeks 4 days
  Evaluation period left: 6 weeks 6 days
  License Count: Non-Counted
  License Priority: Low
StoreIndex: 1 Feature: wplus-ap-count Version: 1.0
  License Type: Evaluation
  License State: Active, In Use
  Evaluation total period: 8 weeks 4 days
  Evaluation period left: 2 weeks 3 days
  Expiry date: Thu Jun 25 18:09:43 2009
  License Count: 250/250/0
  License Priority: High
StoreIndex: 2 Feature: base     Version: 1.0
  License Type: Evaluation
  License State: Inactive
  Evaluation total period: 8 weeks 4 days
  Evaluation period left: 8 weeks 4 days
  License Count: Non-Counted
  License Priority: Low
StoreIndex: 3 Feature: base-ap-count Version: 1.0
  License Type: Evaluation
  License State: Active, Not in Use, EULA accepted
  Evaluation total period: 8 weeks 4 days
  Evaluation period left: 8 weeks 3 days
  License Count: 250/0/0
  License Priority: Low
```
show license capacity

To display the maximum number of access points allowed for this license on the Cisco 5500 Series Controller, the number of access points currently joined to the controller, and the number of access points that can still join the controller, use the show license capacity command.

show license capacity

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the license capacity:

> show license capacity
Licensed Feature Max Count Current Count Remaining Count

AP Count 250 47 203

Related Commands

license install
show license all
show license detail
show license feature
show license image-level
show license summary
license modify priority
show license evaluation
show license detail

To display details of a specific license on the Cisco 5500 Series Controller, use the `show license detail` command.

`show license detail license-name`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>license-name</code></td>
<td>Name of a specific license.</td>
</tr>
</tbody>
</table>

Command Default

None.

This example shows how to display the license details:

```
> show license detail wplus
Feature: wplus        Period left: Life time
Index:  1              Feature: wplus      Version: 1.0
        License Type: Permanent
        License State: Active, In Use
        License Count: Non-Counted
        License Priority: Medium
        Store Index: 2
        Store Name: Primary License Storage
Index:  2              Feature: wplus      Version: 1.0
        License Type: Evaluation
        Evaluation total period: 8 weeks 4 days
        Evaluation period left: 6 weeks 6 days
        License Count: Non-Counted
        License Priority: Low
        Store Index: 0
```

Related Commands

- `license install`
- `show license agent`
- `show license all`
- `show license feature`
- `show license image-level`
- `show license summary`
- `license modify priority`
show license expiring

To display details of expiring licenses on the Cisco 5500 Series Controller, use the `show license expiring` command.

show license expiring

This command has no arguments or keywords.

None.

This example shows how to display the details of the expiring licenses:

```
> show license expiring
StoreIndex:  0  Feature:  wplus  Version: 1.0
            License Type: Evaluation
            License State: Inactive
            Evaluation total period:  8 weeks 4 days
            Evaluation period left:  6 weeks 6 days
            License Count:  Non-Counted
            License Priority: Low
StoreIndex:  1  Feature:  wplus-ap-count  Version: 1.0
            License Type: Evaluation
            License State: Active, In Use
            Evaluation total period:  8 weeks 4 days
            Evaluation period left:  2 weeks 3 days
            Expiry date: Thu Jun 25 18:09:43 2009
            License Count: 250/250/0
            License Priority: High
StoreIndex:  2  Feature:  base  Version: 1.0
            License Type: Evaluation
            License State: Inactive
            Evaluation total period:  8 weeks 4 days
            Evaluation period left:  8 weeks 4 days
            License Count:  Non-Counted
            License Priority: Low
StoreIndex:  3  Feature:  base-ap-count  Version: 1.0
            License Type: Evaluation
            License State: Active, Not in Use, EULA accepted
            Evaluation total period:  8 weeks 4 days
            Evaluation period left:  8 weeks 3 days
            License Count: 250/0/0
            License Priority: Low
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license in-use`
- `show license summary`
- `license modify priority`
- `show license evaluation`
show license evaluation

To display details of evaluation licenses on the Cisco 5500 Series Controller, use the `show license evaluation` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the details of the evaluation licenses:

```
> show license evaluation
StoreIndex: 0 Feature: wplus Version: 1.0
  License Type: Evaluation
  License State: Inactive
    Evaluation total period: 8 weeks 4 days
    Evaluation period left: 6 weeks 6 days
    License Count: Non-Counted
    License Priority: Low
StoreIndex: 1 Feature: wplus-ap-count Version: 1.0
  License Type: Evaluation
  License State: Active, In Use
    Evaluation total period: 8 weeks 4 days
    Evaluation period left: 2 weeks 3 days
    Expiry date: Thu Jun 25 18:09:43 2009
    License Count: 250/250/0
    License Priority: High
StoreIndex: 2 Feature: base Version: 1.0
  License Type: Evaluation
  License State: Inactive
    Evaluation total period: 8 weeks 4 days
    Evaluation period left: 8 weeks 4 days
    License Count: Non-Counted
    License Priority: Low
StoreIndex: 3 Feature: base-ap-count Version: 1.0
  License Type: Evaluation
  License State: Active, Not in Use, EULA accepted
    Evaluation total period: 8 weeks 4 days
    Evaluation period left: 8 weeks 3 days
    License Count: 250/0/0
    License Priority: Low
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license expiring`
- `show license in-use`
- `show license summary`
- `license modify priority`
show license feature

To display a summary of license-enabled features on the Cisco 5500 Series Controller, use the `show license feature` command.

show license feature

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the license-enabled features:

```
> show license feature
  Feature name  Enforcement  Evaluation  Clear Allowed  Enabled
  wplus         yes          yes         yes          yes
  wplus-ap-count yes          yes         yes          yes
  base          no           yes         yes          no
  base-ap-count yes          yes         yes          no
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license expiring`
- `show license image-level`
- `show license in-use`
- `show license summary`
- `show license modify priority`
- `show license evaluation`
show license file

To display a summary of license-enabled features on the Cisco 5500 Series Controller, use the **show license file** command.

Syntax Description

This command has no arguments or keywords.

This example shows how to display the license files:

```
> show license file
Licensed Store: Primary License Storage
Store Index: 0
License: 11 wplus-ap-count 1.0 LONG NORMAL STANDALONE EXCL 12 KEYS INFINITE KEYS NEVER NEVER NEVER NIL SLM_CODE CL_ND_LCK NIL *1AR5NS7M5AD8PPU400 NIL NIL NIL 5_MIN <UDI><FID>AIR-CT5508-K9</FID><SN>RFDD000P2D27</SN></UDI> Pe0L7tv8KDvqo:ziPe4235wasgM8G,tTs0i,7z1yA3Vfxhn1e5aJa m631R518JK3DPkrk4O2DI4311LKn7jomo3RP11LjMRqlKkh1LJ2tOyufS9S2bCAO6 nR3Wi38xKi3t5<WLC>AEWBIQAB//++mCzRUbohw28vz0czAY0iAm7ocDLUMb9ER0 +BD3w2PhNEywsBN/T3xXBgjGmFC+oKQwInXo3s+nsLU7rOtddOxoIAYZAdo3hYmUJ+M FzaqylXoJv1PyEvqS8H21MNJYVbhoN8gyIwayiJaM8Q7KVBQFzhr10GYolVzdzfJf EPQfX6tz++/Vtc/q3SF/5K08XCY--</WLC>
Comment: Hash: iOGjuLXgLhcTB1130hIzzxVioHA=
```

Related Commands

- **license install**
- **show license all**
- **show license detail**
- **show license expiring**
- **show license feature**
- **show license image-level**
- **show license in-use**
- **show license summary**
- **show license evaluation**
show license handle

To display the license handles on the Cisco 5500 Series Controller, use the show license handle command.

show license handle

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the license handles:

```
> show license handle
Feature: wplus, Handle Count: 1
  Units: Q1 (0), ID: 0x5e000001, NotifyPC: 0x1001e8f4 LS-Handle (0x00000001),
  Units: (1)
    Registered clients: 1
    Context 0x1051b610, epID 0x10029378
Feature: base, Handle Count: 0
  Registered clients: 1
  Context 0x1053ace0, epID 0x10029378
Feature: wplus-ap-count, Handle Count: 1
  Units: 250 (0), ID: 0xd4000002, NotifyPC: 0x1001e8f4 LS-Handle (0x00000002),
  Units: (250)
  Registered clients: None
Feature: base-ap-count, Handle Count: 0
  Registered clients: None
Global Registered clients: 2
  Context 0x10546270, epID 0x100294cc
  Context 0x1053bae8, epID 0x100294cc
```

Related Commands

license install
show license all
show license detail
show license expiring
show license feature
show license image-level
show license in-use
show license summary
show license image-level

To display the license image level that is in use on the Cisco 5500 Series Controller, use the show license image-level command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the image level license settings:

```
> show license image-level
Module name  Image level  Priority  Configured  Valid license
wnbu          wplus       1        YES       wplus
base          2        NO

NOTE: wplus includes two additional features: Office Extend AP, Mesh AP.
```

Related Commands

- license install
- show license all
- show license detail
- show license expiring
- show license feature
- license modify priority
- show license in-use
- show license summary
show license in-use

To display the licenses that are in use on the Cisco 5500 Series Controller, use the **show license in-use** command.

`show license in-use`

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the licenses that are in use:

```
> show license in-use
StoreIndex: 2 Feature: wplus Version: 1.0
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
StoreIndex: 1 Feature: wplus-ap-count Version: 1.0
  License Type: Evaluation
  License State: Active, In Use
    Evaluation total period: 8 weeks 4 days
    Evaluation period left: 2 weeks 3 days
  Expiry date: Thu Jun 25 18:09:43 2009
  License Count: 250/250/0
  License Priority: High
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license expiring`
- `show license feature`
- `show license image-level`
- `show license modify priority`
- `show license summary`
- `show license permanent`
- `show license evaluation`
show license permanent

To display the permanent licenses on the Cisco 5500 Series Controller, use the `show license permanent` command.

show license permanent

Syntax Description

This command has no arguments or keywords.

None.

Command Default

This example shows how to display the permanent license’s information:

```
> show license permanent
StoreIndex:  0  Feature: wplus-ap-count  Version: 1.0
  License Type: Permanent
  License State: Inactive
  License Count: 12/0/0
  License Priority: Medium
StoreIndex:  1  Feature: base  Version: 1.0
  License Type: Permanent
  License State: Active, Not in Use
  License Count: Non-Counted
  License Priority: Medium
StoreIndex:  2  Feature: wplus  Version: 1.0
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license expiring`
- `show license feature`
- `show license image-level`
- `show license in-use`
- `show license summary`
- `license modify priority`
- `show license evaluation`
show license status

To display the license status on the Cisco Wireless Controller, use the `show license status` command.

show license status

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to view the license status on the RTU license mechanism:

```plaintext
> show license status
  License Type Supported
    permanent Non-expiring node locked license
    extension Expiring node locked license
    evaluation Expiring non node locked license
  License Operation Supported
    install Install license
    clear Clear license
    annotate Comment license
    save Save license
    revoke Revoke license
  Device status
    Device Credential type: DEVICE
    Device Credential Verification: PASS
    Rehost Type: DC_OR_IC
```
show license statistics

To display license statistics on the Cisco 5500 Series Controller, use the `show license statistics` command.

```
show license statistics
```

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the license statistics:

```
$ show license statistics
Administrative statistics
  Install success count: 0
  Install failure count: 0
  Install duplicate count: 0
  Comment add count: 0
  Comment delete count: 0
  Clear count: 0
  Save count: 0
  Save cred count: 0
Client status
  Request success count 2
  Request failure count 0
  Release count 0
  Global Notify count 0
```

Related Commands

- `license install`
- `show license all`
- `show license detail`
- `show license expiring`
- `show license feature`
- `show license image-level`
- `show license in-use`
- `show license summary`
- `license modify priority`
- `show license evaluation`
show license summary

To display a brief summary of all licenses on the Cisco WLCs, use the **show license summary** command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display a brief summary of all licenses:

```bash
> show license summary
Index 1 Feature: wplus
  Period left: Life time
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
Index 2 Feature: wplus-ap-count
  Period left: 2 weeks 3 days
  License Type: Evaluation
  License State: Active, In Use
  License Count: 250/250/0
  License Priority: High
Index 3 Feature: base
  Period left: Life time
  License Type: Permanent
  License State: Active, Not in Use
  License Count: Non-Counted
  License Priority: Medium
Index 4 Feature: base-ap-count
  Period left: 8 weeks 3 days
  License Type: Evaluation
  License State: Active, Not in Use, EULA accepted
  License Count: 250/0/0
  License Priority: Low
```
show license udi

To display unique device identifier (UDI) values for licenses on the Cisco WLCs, use the `show license udi` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to view the UDI values for licenses on the RTU license mechanism:

```
(Cisco Controller) > show license udi
Device# PID          SN          UDI
*0    AIR-CT5508-K9  RFD000P2D27 AIR-CT5508-K9:RFD000P2D27
```
show load-balancing

To display the status of the load-balancing feature, use the **show load-balancing** command.

show load-balancing

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the load-balancing status:

```
> show load-balancing
Aggressive Load Balancing...................... Enabled
Aggressive Load Balancing Window.............. 0 clients
Aggressive Load Balancing Denial Count...... 3
Statistics
Total Denied Count............................. 10 clients
Total Denial Sent................................ 20 messages
Exceeded Denial Max Limit Count............... 0 times
None 5G Candidate Count........................ 0 times
None 2.4G Candidate Count...................... 0 times
```

Related Commands

`config load-balancing`
show local-auth config

To display local authentication configuration information, use the show local-auth config command.

show local-auth config

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the local authentication configuration information:

(Cisco Controller) > show local-auth config
User credentials database search order:
Primary Local DB
Configured EAP profiles:
Name fast-test
Certificate issuer default
Enabled methods fast
Configured on WLANs 2
EAP Method configuration:
EAP-TLS:
Certificate issuer default
Peer verification options:
 Check against CA certificates Enabled
 Verify certificate CN identity Disabled
 Check certificate date validity ... Enabled
EAP-FAST:
TTL for the PAC 3 600
Initial client message <none>
Local certificate required No
Client certificate required No
Vendor certificate required No
Anonymous provision allowed Yes
Authenticator ID 7b7fffffff000000000000000000000000
Authority Information Test
EAP Profile.................................. tls-prof
Enabled methods for this profile tls
Active on WLANs 1 3EAP Method configuration:
EAP-TLS:
Certificate issuer used cisco
Peer verification options:
 Check against CA certificates disabled
show local-auth config

Verify certificate CN identity disabled
Check certificate date validity ... disabled

Related Commands

- clear stats local-auth
- config local-auth active-timeout
- config local-auth eap-profile
- config local-auth method fast
- config local-auth user-credentials
- debug aaa local-auth
- show local-auth certificates
- show local-auth statistics
show local-auth statistics

To display local Extensible Authentication Protocol (EAP) authentication statistics, use the show local-auth statistics command:

```
show local-auth statistics
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the local authentication certificate statistics:

```
(Cisco Controller) > show local-auth statistics
Local EAP authentication DB statistics:
Requests received ................................ 14
Responses returned ................................ 14
Requests dropped (no EAP AVP) ................. 0
Requests dropped (other reasons) ............. 0
Authentication timeouts ....................... 0
Authentication statistics:
  Method Success Fail
    Unknown 0 0
    LEAP 0 0
    EAP-FAST 2 0
    EAP-TLS 0 0
    PEAP 0 0
Local EAP credential request statistics:
Requests sent to LDAP DB ...................... 0
Requests sent to File DB .................... 2
Requests failed (unable to send) ............ 0
Authentication results received:
  Success ................................ 2
  Fail .................................... 0
Certificate operations:
Local device certificate load failures ....... 0
Total peer certificates checked .............. 0
Failures:
  CA issuer check .......................... 0
  CN name not equal to identity .......... 0
  Dates not valid or expired ............. 0
```

Related Commands

- `clear stats local-auth`
show local-auth statistics

cfg local-auth active-timeout
cfg local-auth eap-profile
cfg local-auth method fast
cfg local-auth user-credentials
debug aaa local-auth
show local-auth config
show local-auth certificates
show local-auth certificates

To display local authentication certificate information, use the **show local-auth certificates** command:

```plaintext
show local-auth certificates
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the authentication certificate information stored locally:

```plaintext
(Cisco Controller) > show local-auth certificates
```

Related Commands

- clear stats local-auth
- config local-auth active-timeout
- config local-auth eap-profile
- config local-auth method fast
- config local-auth user-credentials
- debug aaa local-auth
- show local-auth config
- show local-auth statistics
show logging

To display the syslog facility logging parameters and buffer contents, use the `show logging` command.

show logging

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the current settings and buffer content details:

(Cisco Controller) > show logging

(Cisco Controller) > config logging syslog host 10.92.125.52
System logs will be sent to 10.92.125.52 from now on

(Cisco Controller) > config logging syslog host 2001:9:6:40::623
System logs will be sent to 2001:9:6:40::623 from now on

(Cisco Controller) > show logging
Logging to buffer:
- Logging of system messages to buffer:
 - Logging filter level.......................... errors
 - Number of system messages logged.............. 1316
 - Number of system messages dropped............ 6892
- Logging of debug messages to buffer Disabled
 - Number of debug messages logged.............. 0
 - Number of debug messages dropped.............. 0
- Cache of logging Disabled
 - Cache of logging time(mins) 10080
 - Number of over cache time log dropped 0
Logging to console:
- Logging of system messages to console:
 - Logging filter level.......................... disabled
 - Number of system messages logged.............. 0
 - Number of system messages dropped............ 8243
- Logging of debug messages to console Enabled
 - Number of debug messages logged.............. 0
 - Number of debug messages dropped.............. 0
Logging to syslog:
- Syslog facility................................ local0
 - Logging of system messages to console:
 - Logging filter level.......................... disabled
 - Number of system messages logged.............. 0
 - Number of system messages dropped............ 8208
 - Logging of debug messages to console Enabled
 - Number of debug messages logged.............. 0
 - Number of debug messages dropped.............. 0
 - Logging of system messages to syslog:
 - Logging filter level.......................... errors
 - Number of system messages logged.............. 1316
 - Number of system messages dropped............ 6892
- Logging of debug messages to syslog Disabled
- Number of debug messages logged 0
- Number of debug messages dropped 0
- Number of remote syslog hosts 2
 - syslog over tls Disabled
 - Host 0 10.92.125.52
 - Host 1 2001:9:6:40::623
 - Host 2..................................
 Logging of RFC 5424 Disabled
Logging of traceback Enabled
show logging config-history

To view all the `config` commands executed from the time of reboot, use the `show logging config-history` command. This command is useful to understand the timestamp of execution of these commands, order of occurrence, source of command execution, and executed command history, which are lost after Cisco WLC reboot or after you clear all the configuration.

show logging config-history

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
show logging flags

To display the existing flags, use the `show logging flags` command.

```
show logging flags AP  | Cilent
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command has no arguments or keywords.</td>
<td>None.</td>
</tr>
</tbody>
</table>

This example shows how to display the current flags details:

```
> show logging flags
ID  username  Connection From  Idle Time  Login Time
--  ----------  ---------------  ---------  ---------
00  admin     EIA-232          00:00:00  00:19:04
```

Related Commands

```
config logging flags close
```
show loginsession

To display the existing sessions, use the **show loginsession** command.

show loginsession

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the current session details:

```
> show loginsession
ID  username       Connection  From  Idle Time  Session Time
--  ---------------  ---------------  -----  ----------  ----------
00  admin          EIA-232         00:00:00  00:19:04
```

Related Commands

config loginsession close
show macfilter

To display the MAC filter parameters, use the show macfilter command.

show macfilter { summary | detail MAC | mesh | { wlan wlan-id } }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a summary of all MAC filter entries.</td>
</tr>
<tr>
<td>detail MAC</td>
<td>Displays details of a MAC filter entry.</td>
</tr>
<tr>
<td>mesh</td>
<td>Display a summary of all MESH AP MAC filter entries.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The MAC delimiter (none, colon, or hyphen) for MAC addresses sent to RADIUS servers is displayed. The MAC filter table lists the clients that are always allowed to associate with a wireless LAN.

The following example shows how to display the detailed display of a MAC filter entry:

```
WLAN Identifier........................... Any
Interface Name............................ management
Description............................... RAP
```

The following example shows how to display a summary of the MAC filter parameters:

```
(Cisco Controller) > show macfilter summary
MAC Filter RADIUS Compatibility mode.............. Cisco ACS
MAC Filter Delimiter.............................. None
Local Mac Filter Table
MAC Address                       WLAN Id  Description
---------------------------------  --------  ----------------------------
```
show mdns ap summary

To display all the access points for which multicast Domain Name System (mDNS) forwarding is enabled, use the show mDNS ap summary command.

show mdns ap summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the show mDNS ap summary command:

(Cisco Controller) > show mdns ap summary

Number of mDNS APs.......................... 2

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Ethernet MAC</th>
<th>Number of Vlans</th>
<th>VlanIdentifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-3500</td>
<td>cc:ef:48:72:0d:d9</td>
<td>0</td>
<td>Not applicable</td>
</tr>
<tr>
<td>ap-3600</td>
<td>00:22:bd:df:04:68</td>
<td>2</td>
<td>124,122</td>
</tr>
</tbody>
</table>

The following table describes the significant fields shown in the display.

Table 13: show mdns ap summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Name</td>
<td>Name of the mDNS access point (access point for which mDNS forwarding is enabled).</td>
</tr>
<tr>
<td>Ethernet MAC</td>
<td>MAC address of the mDNS access point.</td>
</tr>
<tr>
<td>Number of VLANs</td>
<td>Number of VLANs from which the access point snoops the mDNS advertisements from the wired side. An access point can snoop on a maximum of 10 VLANs.</td>
</tr>
<tr>
<td>VLAN Identifiers</td>
<td>Identifiers of the VLANs the access point snoops on.</td>
</tr>
</tbody>
</table>
show mdns domain-name-ip summary

To display the summary of the multicast Domain Name System (mDNS) domain names, use the `show mdns domain-name-ip summary` command.

show mdns domain-name-ip summary

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Each service advertisement contains a record that maps the domain name of the service provider to the IP address. The mapping also contains details such as the client MAC address, VLAN ID, Time to Live (TTL), and IPv4 address.

The following is a sample output of the `show mdns domain-name-ip summary` command:

```
(Cisco Controller) > show mdns domain-name-ip summary
Number of Domain Name-IP Entries................. 1
DomainName       MAC Address     IP Address       Vlan Id Type   TTL   Time left
                  -------------  -------------  --------------  ----  -------
               tixp77.local. 00:50:b6:4f:69:70 209.165. 202.128 999 mDNSAP  4725  906
```

The following table describes the significant fields shown in the display.

Table 14: show mdns domain-name-ip summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Name</td>
<td>Domain name of the service provider.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the service provider.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the service provider.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID of the service provider.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Type | Origin of service that can be one of the following:
 - Wired
 - Wireless
 - Wired guest
 - mDNS AP

TTL | TTL value, in seconds, that determines the validity of the service offered by the service provider. The service provider is removed from the Cisco Wireless LAN Controller when the TTL expires.

Time Left | Time remaining, in seconds, before the service provider is removed from the Cisco WLC.
show mdns profile

To display mDNS profile information, use the `show mdns profile` command.

```
show mdns profile  { summary  |  detailed profile-name }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays the summary of the mDNS profiles.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays details of an mDNS profile.</td>
</tr>
<tr>
<td>profile-name</td>
<td>Name of the mDNS profile.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows how to display a summary of all the mDNS profiles:

```
> show mdns profile summary
Number of Profiles............................... 2

ProfileName No. Of Services
-------------------------------- ---------------
default-mdns-profile 5
profile1 2
```

This example shows how to display the detailed information of an mDNS profile:

```
> show mdns profile detailed default-mdns-profile
Profile Name..................................... default-mdns-profile
Profile Id....................................... 1
No of Services................................... 5
Services......................................... AirPrint
                                              AppleTV
                                              HP_Photosmart_Printer_1
                                              HP_Photosmart_Printer_2
                                              Printer

No. Interfaces Attached.......................... 0
No. Interface Groups Attached.................... 0
No. Wlans Attached................................ 1
Wlan Ids......................................... 1
```

Related Commands

- `config mdns query interval`
- `config mdns service`
- `config mdns snooping`
show mdns profile

config interface mdns-profile
config interface group mdns-profile
config wlan mdns
config mdns profile
show mdns ap
config mdns ap
show mdns service
clear mdns service-database
debug mdns all
debug mdns error
debug mdns detail
debug mdns message
show mdns service

To display multicast Domain Name System (mDNS) service information, use the `show mdns service` command.

```
show mdns service  { summary | detailed service-name | not-learnt }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary</code></td>
<td>Displays the summary of all mDNS services.</td>
</tr>
<tr>
<td><code>detailed</code></td>
<td>Displays the details of an mDNS service.</td>
</tr>
<tr>
<td><code>service-name</code></td>
<td>Name of the mDNS service.</td>
</tr>
<tr>
<td><code>not-learnt</code></td>
<td>Displays the summary of all the service advertisements that were received by the controller but were not discovered because the service query status was disabled.</td>
</tr>
</tbody>
</table>

Service advertisements for all VLANs and origin types that are not learned are displayed in the output. The top 500 services appear in the summary list.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>7.5</td>
<td>The <code>not-learnt</code> keyword was added.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show mdns summary` command:

```
Device > show mdns service summary
Number of Services......................... 5

Service-Name LSS Origin No SP Service-string
------------------------ -------------- ------ --------
AirPrint Yes Wireless 1 _ipp._tcp.local.
AppleTV Yes Wireless 1 _airplay._tcp.local.
HP_Photosmart_Printer_1 Yes Wireless 1 _universal._sub._ipp._tcp.local.
HP_Photosmart_Printer_2 No Wired 0 _cups._sub._ipp._tcp.local.
Printer No Wired 0 _printer._tcp.local.
```

The following is a sample output of the `show mdns service detailed` command:

```
Device > show mdns service detailed AirPrint

Service Name............................ AirPrint
Service Id................................ 1
Service query status.................... Enabled
Service LSS status....................... Disabled
Service learn origin..................... Wired
Number of Profiles....................... 2
Profile.................................. student-profile, guest-profile
```
Number of Service Providers 2

<table>
<thead>
<tr>
<th>Service Provider</th>
<th>MAC-Address</th>
<th>AP Radio MAC</th>
<th>VLAN ID</th>
<th>Type</th>
<th>TTL</th>
<th>Time left</th>
</tr>
</thead>
<tbody>
<tr>
<td>user1</td>
<td>60:33:4b:2b:a6:9a</td>
<td>-----</td>
<td>104</td>
<td>Wired</td>
<td>4500</td>
<td>4484</td>
</tr>
</tbody>
</table>

Number of priority MAC addresses 1

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>MAC Address</th>
<th>AP group name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44:03:a7:a4:04:45</td>
<td>AP_floor1</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show mdns service not-learnt` command:

Device > `show mdns service not-learnt`

Number of Services............................... 4

<table>
<thead>
<tr>
<th>Origin Service-string</th>
<th>VLAN</th>
<th>TTL</th>
<th>TTL left</th>
<th>Client MAC</th>
<th>AP-MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.106.11.9.in-addr.arpa.</td>
<td>106</td>
<td>120</td>
<td>112</td>
<td>00:21:6a:78:ff:82</td>
<td>04:da:d2:b3:11:00</td>
</tr>
<tr>
<td>Wireless</td>
<td>106</td>
<td>120</td>
<td>75</td>
<td>00:21:6a:78:ff:82</td>
<td>04:da:d2:b3:11:00</td>
</tr>
<tr>
<td>108.104.11.9.in-addr.arpa.</td>
<td>106</td>
<td>120</td>
<td>119</td>
<td>00:21:6a:78:ff:82</td>
<td>04:da:d2:b3:11:00</td>
</tr>
<tr>
<td>Wireless</td>
<td>106</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show media-stream client

To display the details for a specific media-stream client or a set of clients, use the `show media-stream client` command.

```
show media-stream client {media-stream_name | summary}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>media-stream_name</td>
<td>Name of the media-stream client of which the details is to be displayed.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays the details for a set of media-stream clients.</td>
</tr>
</tbody>
</table>

Command Default

None.

This example shows how to display a summary media-stream clients:

```
> show media-stream client summary
Number of Clients......................... 1
Client Mac     Stream Name   Stream Type Radio WLAN QoS Status
-------------------- ----------- ----------- ---- ---- ------ -------
00:1a:73:dd:b1:12 mountainview MC-direct 2.4 2 Video Admitted
```

Related Commands

- `show media-stream group summary`
show media-stream group detail

To display the details for a specific media-stream group, use the `show media-stream group detail` command.

```
show media-stream group detail media-stream_name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>media-stream_name</td>
<td>Name of the media-stream group.</td>
</tr>
</tbody>
</table>

Command Default

None.

This example shows how to display media-stream group configuration details:

```
> show media-stream group detail abc
Media Stream Name............................ abc
Start IP Address.............................. 227.8.8.8
End IP Address............................... 227.9.9.9
RRC Parameters
Avg Packet Size(Bytes)....................... 1200
Expected Bandwidth(Kbps).................... 300
Policy......................................... Admit
RRC re-evaluation............................ periodic
QoS............................................. Video
Status......................................... Multicast-direct
Usage Priority................................ Usage Priority
Violation...................................... drop
```

Related Commands

- `show media-stream group summary`
show media-stream group summary

To display the summary of the media stream and client information, use the show media-stream group summary command.

```
show media-stream group summary
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display a summary of the media-stream group:

```
(Cisco Controller) > show media-stream group summary
Stream Name       Start IP    End IP    Operation Status
----------------- ----------- -------- ----------------
abc               227.8.8.8   227.9.9.9 Multicast-direct
```

Related Commands

- show 802.11 media-stream client
- show media-stream client
- show media-stream group detail
show mesh ap

To display settings for mesh access points, use the `show mesh ap` command.

```
show mesh ap {summary | tree}
```

Syntax Description

- **summary**

 Displays a summary of mesh access point information including the name, model, bridge virtual interface (BVI) MAC address, United States Computer Emergency Response Team (US-CERT) MAC address, hop, and bridge group name.

- **tree**

 Displays a summary of mesh access point information in a tree configuration, including the name, hop counter, link signal-to-noise ratio (SNR), and bridge group name.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary format:

```
(Cisco Controller) >show mesh ap summary
AP Name   AP Model   BVI MAC      CERT MAC      Hop   Bridge Group Name
------------------------------------------
SB_RAP1   AIR-LAP1522AG-A-K9 00:1d:71:0e:d0:00 00:1d:71:0e:d0:00  0   sbox
SB_MAP1   AIR-LAP1522AG-A-K9 00:1d:71:0e:85:00 00:1d:71:0e:85:00  1   sbox
SB_MAP2   AIR-LAP1522AG-A-K9 00:1b:d4:a7:8b:00 00:1b:d4:a7:8b:00  2   sbox
SB_MAP3   AIR-LAP1522AG-A-K9 00:1d:71:0d:ee:00 00:1d:71:0d:ee:00  3   sbox
Number of Mesh APs............................... 4
Number of RAPs................................... 1
Number of MAPs................................... 3
```

The following example shows how to display settings in a hierarchical (tree) format:

```
(Cisco Controller) >show mesh ap tree
-----------------------------------------------------
|| AP Name [Hop Counter, Link SNR, Bridge Group Name] ||
-----------------------------------------------------
[Sector 1]
----------
SB_RAP1[0,0,sbox]
   |-SB_MAP1[1,32,sbox]
      |-SB_MAP2[2,27,sbox]
      |-SB_MAP3[3,30,sbox]
-----------------------------------------------------
Number of Mesh APs............................... 4
Number of RAPs................................... 1
Number of MAPs................................... 3
------------------------------------------
```
show mesh astools stats

To display antistranding statistics for outdoor mesh access points, use the `show mesh astools stats` command.

```
show mesh astools stats [cisco_ap]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cisco_ap</code></td>
<td>(Optional) Antistranding feature statistics for a designated mesh access point.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display anti-stranding statistics on all outdoor mesh access points:

```
(Cisco Controller) >show mesh astools stats
Total No of Aps stranded : 0
```

The following example shows how to display anti-stranding statistics for access point `sb_map1`:

```
(Cisco Controller) >show mesh astools stats sb_map1
Total No of Aps stranded : 0
```
show mesh backhaul

To check the current backhaul information, use the `show mesh backhaul` command.

```
show mesh backhaul cisco_ap
```

Syntax Description

```
cisco_ap
```

Name of the access point.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the current backhaul:

```
(Cisco Controller) >show mesh backhaul
```

If the current backhaul is 5 GHz, the output is as follows:

```
Basic Basic Attributes for Slot 0
    Radio Type.............................. RADIO_TYPE_80211g
    Radio Role.............................. DOWNLINK ACCESS
    Administrative State .................. ADMIN_ENABLED
    Operation State ........................ UP
    Current Tx Power Level ................ 1
If the current backhaul is 2.4 GHz, the output is as follows:
Basic Attributes for Slot 1
    Radio Type.............................. RADIO_TYPE_80211a
    Radio Subband.......................... RADIO_SUBBAND_ALL
    Radio Role.............................. DOWNLINK ACCESS
    Administrative State .................. ADMIN_ENABLED
    Operation State ........................ UP
    Current Tx Power Level ................ 1
    Current Channel ....................... 165
    Antenna Type........................... EXTERNAL_ANTENNA
    External Antenna Gain (in .5 dBm units).... 0
    Current Channel........................ 6
    Antenna Type........................... EXTERNAL_ANTENNA
    External Antenna Gain (in .5 dBm units).... 0
```
show mesh cac

To display call admission control (CAC) topology and the bandwidth used or available in a mesh network, use the `show mesh cac` command.

```
show mesh cac { summary | { bwused { voice | video } | access | callpath | rejected } cisco_ap }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays the total number of voice calls and voice bandwidth used for each mesh access point.</td>
</tr>
<tr>
<td>bwused</td>
<td>Displays the bandwidth for a selected access point in a tree topology.</td>
</tr>
<tr>
<td>voice</td>
<td>Displays the mesh topology and the voice bandwidth used or available.</td>
</tr>
<tr>
<td>video</td>
<td>Displays the mesh topology and the video bandwidth used or available.</td>
</tr>
<tr>
<td>access</td>
<td>Displays access voice calls in progress in a tree topology.</td>
</tr>
<tr>
<td>callpath</td>
<td>Displays the call bandwidth distributed across the mesh tree.</td>
</tr>
<tr>
<td>rejected</td>
<td>Displays voice calls rejected for insufficient bandwidth in a tree topology.</td>
</tr>
</tbody>
</table>

Cisco_ap

Mesh access point name.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the call admission control settings:

```
(Cisco Controller) > show mesh cac summary

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slot#</th>
<th>Radio</th>
<th>BW Used/Max</th>
<th>Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_RAP1</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td>SB_MAP1</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td>SB_MAP2</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td>SB_MAP3</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td>0</td>
</tr>
</tbody>
</table>
```

The following example shows how to display the mesh topology and the voice bandwidth used or available:
show mesh cac bwused voice SB_MAP1

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slot#</th>
<th>Radio</th>
<th>BW Used/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB_RAP1</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td></td>
</tr>
<tr>
<td>SB_MAP1</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td></td>
</tr>
<tr>
<td>SB_MAP2</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td></td>
</tr>
<tr>
<td>SB_MAP3</td>
<td>0</td>
<td>11b/g</td>
<td>0/23437</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0/23437</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to display the access voice calls in progress in a tree topology:

show mesh cac access 1524_Map1

<table>
<thead>
<tr>
<th>AP Name</th>
<th>Slot#</th>
<th>Radio</th>
<th>Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1524_Rap</td>
<td>0</td>
<td>11b/g</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1524_Map1</td>
<td>0</td>
<td>11b/g</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1524_Map2</td>
<td>0</td>
<td>11b/g</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
show mesh client-access

To display the backhaul client access configuration setting, use the `show mesh client-access` command.

```
show mesh client-access
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display backhaul client access configuration settings for a mesh access point:

```
(Cisco Controller) >show mesh client-access
Backhaul with client access status: enabled
Backhaul with client access extended status(3 radio AP): disabled
```
show mesh config

To display mesh configuration settings, use the **show mesh config** command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The display was expanded to include Mesh Convergence Method.</td>
</tr>
</tbody>
</table>

The following example shows how to display global mesh configuration settings:

(Cisco Controller) >**show mesh config**
Mesh Range....................................... 12000
Mesh Statistics update period.................... 3 minutes
Backhaul with client access status.............. disabled
Backhaul with extended client access status..... disabled
Background Scanning State......................... enabled
Backhaul Amsdu State............................. disabled
Mesh Security
 Security Mode................................. EAP
 External-Auth................................. disabled
 Use MAC Filter in External AAA server......... disabled
 Force External Authentication.................. disabled
Mesh Alarm Criteria
 Max Hop Count.................................... 4
 Recommended Max Children for MAP.............. 10
 Recommended Max Children for RAP.............. 20
 Low Link SNR.................................... 12
 High Link SNR.................................. 60
 Max Association Number......................... 10
 Association Interval......................... 60 minutes
 Parent Change Numbers.......................... 3
 Parent Change Interval........................ 60 minutes
Mesh Multicast Mode.............................. In-Out
Mesh Full Sector DFS............................. enabled
Mesh Ethernet Bridging VLAN Transparent Mode.... enabled
Mesh DCA channels for serial backhaul APs....... enabled
Mesh Slot Bias.................................... enabled
Mesh Convergence Method.......................... standard
show mesh convergence

To display mesh convergence settings, use the `show mesh convergence` command.

```
show mesh convergence
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command must be entered from an access point’s console port.

The following example shows how to display mesh convergence settings:

```
ap_console > show mesh convergence
Convergence method: fast
Subset channels: 157 165
Num.of Subset channels: 2

Mesh Convergence Global Data
old_conv_method: standard
updated_subset: 1 subset_chan_seek: 1
```
show mesh env

To display global or specific environment summary information for mesh networks, use the `show mesh env` command.

```
show mesh env {summary | cisco_ap}
```

Syntax Description
- `summary`: Displays global environment summary information.
- `cisco_ap`: Name of access point for which environment summary information is requested.

Command Default
None

Command History
- **7.6**: This command was introduced in a release earlier than Release 7.6.

The following example shows how to display global environment summary information:

```
(Cisco Controller) > show mesh env summary

AP Name Temperature(C) Heater Ethernet Battery
------------------ -------------- ------ -------- -------
ap1130:5f:be:90 N/A N/A DOWN N/A
AP1242:b2.31.ea N/A N/A DOWN N/A
AP1131:f2.8d.92 N/A N/A DOWN N/A
AP1131:46f2.98ac N/A N/A DOWN N/A
ap1500:62:39:70 -36 OFF UP N/A
```

The following example shows how to display an environment summary for an access point:

```
(Cisco Controller) > show mesh env SB_RAP1

AP Name.......................................... SB_RAP1
AP Model......................................... AIR-LAP1522AG-A-K9
AP Role.......................................... RootAP
Temperature...................................... 21 C, 69 F
Heater........................................... OFF
Backhaul......................................... GigabitEthernet0
GigabitEthernet0 Status...................... UP
  Duplex....................................... FULL
  Speed........................................ 100
  Rx Unicast Packets.......................... 114754
  Rx Non-Unicast Packets..................... 1464
  Tx Unicast Packets......................... 9630
  Tx Non-Unicast Packets..................... 3351
GigabitEthernet1 Status...................... DOWN
  POE Out...................................... OFF
  Battery...................................... N/A
```
show mesh neigh

To display summary or detailed information about the mesh neighbors of a mesh access point, use the **show mesh neigh** command.

```
show mesh neigh {detail | summary} {cisco_ap | all}
```

Syntax Description

<table>
<thead>
<tr>
<th>detail</th>
<th>Summary</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>Displays the channel and signal-to-noise ratio (SNR) details between the designated mesh access point and its neighbor.</td>
<td></td>
</tr>
<tr>
<td>summary</td>
<td>Displays the mesh neighbors for a designated mesh access point.</td>
<td></td>
</tr>
<tr>
<td>cisco_ap</td>
<td>Cisco lightweight access point name.</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Displays all access points.</td>
<td></td>
</tr>
</tbody>
</table>

Note

If an AP itself is configured with the **all** keyword, the **all** keyword access points take precedence over the AP that is named **all**.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a neighbor summary of an access point:

```
(Cisco Controller) >show mesh neigh summary RAP1
AP Name/Radio Mac Channel Rate Link-Snr Flags State
----------------- ------- ----- -------- -------- --------
00:1D:71:0F:CA:00 157 54 6 0x0 BEACON
00:1E:14:48:25:00 157 24 1 0x0 BEACON
MAP1-BB00 157 54 41 0x11 CHILD BEACON
```

The following example shows how to display the detailed neighbor statistics of an access point:

```
(Cisco Controller) >show mesh neigh detail RAP1
AP MAC : 00:1E:BD:1A:1A:00 AP Name: HOR1522_MINE06_MAP_S_Dyke
backhaul rate 54
FLAGS : 860 BEACON
worstDv 255, Ant 0, channel 153, hiters 0, ppiters 0
Numroutes 0, snr 0, snrUp 0, snrDown 0, linkSnr 0
adjustedEase 0, unadjustedEase 0
txParent 0, rxParent 0
poorSnr 0
lastUpdate 2483353214 (Sun Aug 4 23:51:58 1912)
parentChange 0
Per antenna smoothed snr values: 0 0 0 0
Vector through 00:1E:BD:1A:1A:00
```

The following table lists the output flags displayed for the **show mesh neigh detail** command.
Table 15: Output Flags for the show mesh neigh detail command

<table>
<thead>
<tr>
<th>Output Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP MAC</td>
<td>MAC address of a mesh neighbor for a designated mesh access point.</td>
</tr>
<tr>
<td>AP Name</td>
<td>Name of the mesh access point.</td>
</tr>
</tbody>
</table>
| FLAGS | Describes adjacency. The possible values are as follows:

 - UPDATED—Recently updated neighbor.
 - NEIGH—One of the top neighbors.
 - EXCLUDED—Neighbor is currently excluded.
 - WASEXCLUDED—Neighbor was recently removed from the exclusion list.
 - PERMSNR—Permanent SNR neighbor.
 - CHILD—A child neighbor.
 - PARENT—A parent neighbor.
 - NEEDUPDATE—Not a current neighbor and needs an update.
 - BEACON—Heard a beacon from this neighbor.
 - ETHER—Ethernet neighbor. |
<p>| worstDv | Worst distance vector through the neighbor. |
| Ant | Antenna on which the route was received. |
| channel | Channel of the neighbor. |
| biters | Number of black list timeouts left. |
| ppioters | Number of potential parent timeouts left. |
| Numroutes | Number of distance routes. |
| snr | Signal to Noise Ratio. |
| snrUp | SNR of the link to the AP. |
| snrDown | SNR of the link from the AP. |
| linkSnr | Calculated SNR of the link. |
| adjustedEase| Ease to the root AP through this AP. It is based on the current SNR and threshold SNR values. |</p>
<table>
<thead>
<tr>
<th>Output Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unadjustedEase</td>
<td>Ease to the root AP through this AP after applying correct for number of hops.</td>
</tr>
<tr>
<td>txParent</td>
<td>Packets sent to this node while it was a parent.</td>
</tr>
<tr>
<td>rxParent</td>
<td>Packets received from this node while it was a parent.</td>
</tr>
<tr>
<td>poorSnr</td>
<td>Packets with poor SNR received from a node.</td>
</tr>
<tr>
<td>lastUpdate</td>
<td>Timestamp of the last received message for this neighbor</td>
</tr>
<tr>
<td>parentChange</td>
<td>When this node last became parent.</td>
</tr>
<tr>
<td>per antenna smoother SNR values</td>
<td>SNR value is populated only for antenna 0.</td>
</tr>
</tbody>
</table>
show mesh path

To display the channel and signal-to-noise ratio (SNR) details for a link between a mesh access point and its neighbor, use the **show mesh path** command.

```
show mesh path cisco_ap
```

Syntax Description

| `cisco_ap` | Mesh access point name. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display channel and SNR details for a designated link path:

```
(Cisco Controller) > show mesh path mesh-45-rap1

AP Name/Radio Mac Channel Rate Link-Snr Flags State
----------------- ------- ----- -------- -------- --------
MAP1-BB00 157 54 32 0x0 UPDATED NEIGH PARENT BEACON
RAP1 157 54 37 0x0 BEACON
```
show mesh per-stats

To display the percentage of packet errors for packets transmitted by the neighbors of a specified mesh access point, use the `show mesh per-stats` command.

```
show mesh per-stats summary  {cisco_ap | all}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary</code></td>
<td>Displays the packet error rate stats summary.</td>
</tr>
<tr>
<td><code>cisco_ap</code></td>
<td>Name of mesh access point.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Displays all mesh access points.</td>
</tr>
</tbody>
</table>

Note

If an AP itself is configured with the `all` keyword, the `all` keyword access points take precedence over the AP that is named `all`.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The packet error rate percentage equals 1, which is the number of successfully transmitted packets divided by the number of total packets transmitted.

The following example shows how to display the percentage of packet errors for packets transmitted by the neighbors to a mesh access point:

```
(Cisco Controller) >show mesh per-stats summary ap_12
Neighbor MAC Address: 00:0B:85:5F:FA:F0
Total Packets transmitted: 104833
Total Packets transmitted successfully: 104833
Total Packets transmitted successfully: 104833
Total Packets retried for transmission: 33028
RTS Attempts: 0
RTS Success: 0
Neighbor MAC Address: 00:0B:85:80:ED:D0
Total Packets transmitted: 0
Total Packets transmitted successfully: 0
Total Packets retried for transmission: 0
RTS Attempts: 0
RTS Success: 0
Neighbor MAC Address: 00:17:94:FE:C3:5F
Total Packets transmitted: 0
Total Packets transmitted successfully: 0
Total Packets retried for transmission: 0
RTS Attempts: 0
RTS Success: 0
```
show mesh public-safety

To display 4.8-GHz public safety settings, use the show mesh public-safety command.

show mesh public-safety

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to view 4.8-GHz public safety settings:

(Cisco Controller) > (Cisco Controller) > show mesh public-safety
Global Public Safety status: disabled
show mesh queue-stats

To display the number of packets in a client access queue by type for a mesh access point, use the `show mesh queue-stats` command.

```
show mesh queue-stats {cisco_ap | all}
```

Note

If an AP itself is configured with the `all` keyword, the `all` keyword access points take precedence over the AP that is named `all`.

Syntax Description

- `cisco_ap` Name of access point for which you want packet queue statistics.
- `all` Displays all access points.

Command Default

None

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to display packet queue statistics for access point ap417:

```
(Cisco Controller) > show mesh queue-stats ap417
Queue Type Overflows Peak length Average length
--------------- ----------- ----------------- ---------------
Silver         0          1         0.000
Gold           0          4         0.004
Platinum       0          4         0.001
Bronze         0          0         0.000
Management     0          0         0.000
```
show mesh security-stats

To display packet error statistics for a specific access point, use the `show mesh security-stats` command.

```
show mesh security-stats  {cisco_ap | all}
```

Syntax Description

- `cisco_ap` Name of access point for which you want packet error statistics.
- `all` Displays all access points.

Note

If an AP itself is configured with the `all` keyword, the `all` keyword access points take precedence over the AP that is named `all`.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command shows packet error statistics and a count of failures, timeouts, and successes with respect to associations and authentications as well as reassociations and reauthentications for the specified access point and its child.

The following example shows how to view packet error statistics for access point `ap417`:

```
(Cisco Controller) >show mesh security-stats ap417
AP MAC : 00:0B:85:5F:FA:F0
Packet/Error Statistics:
-----------------------------
  x Packets 14, Rx Packets 19, Rx Error Packets 0
Parent-Side Statistics:
--------------------------
Unknown Association Requests 0
Invalid Association Requests 0
Unknown Re-Authentication Requests 0
Invalid Re-Authentication Requests 0
Unknown Re-Association Requests 0
Invalid Re-Association Requests 0
Child-Side Statistics:
--------------------------
Association Failures 0
Association Timeouts 0
Association Successes 0
Authentication Failures 0
Authentication Timeouts 0
Authentication Successes 0
Re-Association Failures 0
Re-Association Timeouts 0
Re-Association Successes 0
Re-Authentication Failures 0
```
show mesh security-stats

Re-Authentication Timeouts 0
Re-Authentication Successes 0
show mesh stats

To display the mesh statistics for an access point, use the `show mesh stats` command.

```
show mesh stats cisco_ap
```

Syntax Description

| cisco_ap | Access point name. |

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display statistics of an access point:

```
(Cisco Controller) > show mesh stats RAP_AP1
RAP in state Maint
rxNeighReq 759978, rxNeighRsp 568673
txNeighReq 115433, txNeighRsp 759978
rxNeighUpd 8266447 txNeighUpd 693062
tnextchan 0, nextrant 0, downAnt 0, downChan 0, curAnts 0
tnextNeigh 0, malformedNeighPackets 244, poorNeighSnr 27901
blacklistPackets 0, insufficientMemory 0
authenticationFailures 0
Parent Changes 1, Neighbor Timeouts 16625
```
show mgmtuser

To display the local management user accounts on the Cisco wireless LAN controller, use the **show mgmtuser** command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display a list of management users:

```
> show mgmtuser
User Name    Permissions  Description     Password Strength
admin        read-write   ------------   --------------
```

Related Commands

- `config mgmtuser add`
- `config mgmtuser delete`
- `config mgmtuser description`
- `config mgmtuser password`
show mobility anchor

To display the wireless LAN anchor export list for the Cisco wireless LAN controller mobility groups or to display a list and status of controllers configured as mobility anchors for a specific WLAN or wired guest LAN, use the `show mobility anchor` command.

```
show mobility anchor [wlan wlan_id | guest-lan guest_lan_id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan</td>
<td>(Optional) Displays wireless LAN mobility group settings.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier from 1 to 512 (inclusive).</td>
</tr>
<tr>
<td>guest-lan</td>
<td>(Optional) Displays guest LAN mobility group settings.</td>
</tr>
<tr>
<td>guest_lan_id</td>
<td>Guest LAN identifier from 1 to 5 (inclusive).</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The status field display (see example) shows one of the following values:

- **UP**—The controller is reachable and able to pass data.
- **CNTRL_PATH_DOWN**—The mpings failed. The controller cannot be reached through the control path and is considered failed.
- **DATA_PATH_DOWN**—The epings failed. The controller cannot be reached and is considered failed.
- **CNTRL_DATA_PATH_DOWN**—Both the mpings and epings failed. The controller cannot be reached and is considered failed.

The following example shows how to display a mobility wireless LAN anchor list:

```
(Cisco Controller) >show mobility anchor
Mobility Anchor Export List
WLAN ID   IP Address    Status
-------   ----------------- ----- 
12        192.168.0.15    UP 
GLAN ID   IP Address    Status
-------   ----------------- ----- 
1         192.168.0.9     CNTRL_DATA_PATH_DOWN 
```
show mobility ap-list

To display the mobility AP list, use the show mobility ap-list command.

show mobility ap-list

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the mobility AP list:

(Cisco Controller) >show mobility ap-list

<table>
<thead>
<tr>
<th>AP Name</th>
<th>AP Radio MAC address</th>
<th>Controller</th>
<th>Learnt From</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP30e4.dbc5.38ab</td>
<td>b8:62:1f:e5:33:10</td>
<td>9.7.104.10</td>
<td>Self</td>
</tr>
</tbody>
</table>

Note

The AP name is displayed only with New Mobility. With Old Mobility, the AP name is displayed as Unknown.
show mobility foreign-map

To display a mobility wireless LAN foreign map list, use the **show mobility foreign-map** command.

```
show mobility foreign-map wlan wlan_id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlan</td>
<td>Displays the mobility WLAN foreign-map list.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Wireless LAN identifier between 1 and 512.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to get a mobility wireless LAN foreign map list:

```
(Cisco Controller) > show mobility foreign-map wlan 2
Mobility Foreign Map List
WLAN ID    Foreign MAC Address         Interface
---------- -------------------------- -----------
2          00:1b:d4:6b:87:20           dynamic-105
```
show mobility group member

To display the details of the mobility group members in the same domain, use the show mobility group member command.

show mobility group member hash

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td>Displays the hash keys of the mobility group members in the same domain.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the hash keys of the mobility group members:

```
(Cisco Controller) > show mobility group member hash
Default Mobility Domain..................... new-mob

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Hash Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.115.68</td>
<td>a819d479dcfeb3e0974421b6e8335582263d9169</td>
</tr>
<tr>
<td>9.6.99.10</td>
<td>0974421b6e8335582263d9169a819d479dcfeb3e</td>
</tr>
<tr>
<td>9.7.7.7</td>
<td>feb3e0974421b6e8335582263d9169a819d479dc</td>
</tr>
</tbody>
</table>
```
show mobility oracle

To display the status of the mobility controllers known to the Mobility Oracle (MO) or display the details of the MO client database, use the `show mobility oracle` command.

```
show mobility oracle { client { detail | summary } | summary }
```

Syntax Description

- `client` Displays the MO client database.
- `detail` Displays details pertaining to a client in MO client database.
- `summary` Displays the summary of the MO database.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.112.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show mobility oracle summary` command:

```
(Cisco Controller) > show mobility oracle summary
Number of MCs................................. 2

IP Address     MAC Address  Link Status     Client Count
--------------- ----------------- ------------- --------------
9.71.104.10    88:43:e1:7d:fe:00 Control Path Down 0
9.71.104.250    e8:b7:48:a2:16:e0  Up             2
```

The following is a sample output of the `show mobility oracle client summary` command:

```
(Cisco Controller) > show mobility oracle client summary
Number of Clients........................... 2

MAC Address  Anchor MC  Foreign MC  AssocTime
------------  ----------  ----------  0
00:18:de:b0:5c:91  9.72.104.250 -          0
00:1e:e5:f9:c9:e2  9.72.104.250 -          0
```

The following is a sample output of the `show mobility oracle client detail` command:

```
(Cisco Controller) > show mobility oracle client detail 00:1e:e5:f9:c9:e2
Client MAC Address : 00:1e:e5:f9:c9:e2
Client IP address : 0.0.0.0
Anchor MC IP address : 9.71.104.250
Anchor MC NAT IP address : 9.71.104.250
Foreign MC IP address : -
Foreign MC NAT IP address : -
Client Association Time : 0
Client Entry update timestamp : 1278543135.0
```
show mobility oracle
show mobility statistics

To display the statistics information for the Cisco wireless LAN controller mobility groups, use the `show mobility statistics` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display statistics of the mobility manager:

```
(Cisco Controller) >show mobility statistics
Global Mobility Statistics
  Rx Errors................................. 0
  Tx Errors.................................. 0
  Responses Retransmitted.................. 0
  Handoff Requests Received................. 0
  Handoff End Requests Received............. 0
  State Transitions Disallowed............. 0
  Resource Unavailable...................... 0
Mobility Initiator Statistics
  Handoff Requests Sent..................... 0
  Handoff Replies Received................... 0
  Handoff as Local Received.................. 2
  Handoff as Foreign Received............... 0
  Handoff Denys Received.................... 0
  Anchor Request Sent........................ 0
  Anchor Deny Received........................ 0
  Anchor Grant Received..................... 0
  Anchor Transfer Received................... 0
Mobility Responder Statistics
  Handoff Requests Ignored.................. 0
  Ping Pong Handoff Requests Dropped........ 0
  Handoff Requests Dropped................... 0
  Handoff Requests Denied.................... 0
  Client Handoff as Local.................... 0
  Client Handoff as Foreign.................. 0
  Client Handoff Inter Group................ 0
  Anchor Requests Received................... 0
  Anchor Requests Denied..................... 0
  Anchor Requests Granted................... 0
  Anchor Transferred......................... 0
```
show mobility summary

To display the summary information for the Cisco WLC mobility groups, use the **show mobility summary** command.

show mobility summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Some WLAN controllers may list no mobility security mode.

The following is a sample output of the **show mobility summary** command.

```
(Cisco Controller) >show mobility summary

Symmetric Mobility Tunneling (current) .......... Disabled
Symmetric Mobility Tunneling (after reboot) ..... Disabled
Mobility Protocol Port........................... 16666
Mobility Security Mode........................... Disabled
Default Mobility Domain.......................... snmp_gui
Multicast Mode .................................. Disabled
Mobility Domain ID for 802.11r................... 0x66bd
Mobility Keepalive Interval...................... 10
Mobility Keepalive Count......................... 3
Mobility Group Members Configured............... 1
Mobility Control Message DSCP Value.............. 0
Controllers configured in the Mobility Group
MAC Address  IP Address  Group Name  Multicast IP  Status
00:1b:d4:6b:87:20  1.100.163.70  snmp_gui  0.0.0.0  Up
```

The following is a sample output of the **show mobility summary** command with new mobility architecture.

```
(Cisco Controller) >show mobility summary

Mobility Protocol Port........................... 16666
Default Mobility Domain.......................... Mobility
Multicast Mode .................................. Disabled
Mobility Domain ID for 802.11r................... 0xb348
Mobility Keepalive Interval...................... 10
Mobility Keepalive Count......................... 3
Mobility Group Members Configured............... 3
Mobility Control Message DSCP Value.............. 0
Controllers configured in the Mobility Group
IP Address  Public IP Address  Group Name  Multicast IP  MAC Address  Status
9.71.106.2  9.72.106.2  Mobility  0.0.0.0  00:00:00:00:00:00  Control and Data Path Down
```
<table>
<thead>
<tr>
<th>IP Address 1</th>
<th>IP Address 2</th>
<th>Mobility</th>
<th>Control and Data Path Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.71.106.3</td>
<td>9.72.106.3</td>
<td>0.0.0.0</td>
<td>00:00:00:00:00:00:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control and Data Path Down</td>
</tr>
<tr>
<td>9.71.106.69</td>
<td>9.72.106.69</td>
<td>0.0.0.0</td>
<td>68:ef:bd:8e:5f:20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up</td>
</tr>
</tbody>
</table>
show msglog

To display the message logs written to the Cisco WLC database, use the `show msglog` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If there are more than 15 entries, you are prompted to display the messages shown in the example.

The following example shows how to display message logs:

```
(Cisco Controller) > show msglog
Message Log Severity Level ....................... ERROR
AP failure was due to Link Failure 
Thu Aug 4 14:30:08 2005  [ERROR] spam_lrad.c 13840: Updating IP info for AP 00:
0:b:85:18:b6:50 -- static 0, 1.100.49.240/255.255.255.0, gtw 1.100.49.1
Thu Aug 4 14:29:32 2005  [ERROR] dhcpd.c 78: dhcp server: binding to 0.0.0.0
Thu Aug 4 14:29:32 2005  [ERROR] rrmgroup.c 733: Airewave Director: 802.11a switch group reset
Thu Aug 4 14:29:22 2005  [ERROR] sim.c 2841: Unable to get link state for primary port 0 of interface ap-manager
Thu Aug 4 14:29:22 2005  [ERROR] dtl_l2_dot1q.c 767: Unable to get USP
Thu Aug 4 14:29:22 2005  Previous message occurred 2 times
NULL pointer: osapi_bstime.c:927
NULL pointer: osapi_bstime.c:919
Thu Aug 4 14:29:13 2005  [CRITICAL] bootos.c 791: Starting code...
```
show nac statistics

To display detailed Network Access Control (NAC) information about a Cisco wireless LAN controller, use the `show nac statistics` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display detailed statistics of network access control settings:

```
(Cisco Controller) > show nac statistics
Server Index....................................................... 1
Server Address.................................................... xxx.xxx.xxx.xxx
Number of requests sent............................................ 0
Number of retransmissions.......................................... 0
Number of requests received........................................ 0
Number of malformed requests received.............................. 0
Number of bad auth requests received............................... 0
Number of pending requests......................................... 0
Number of timed out requests...................................... 0
Number of misc dropped request received........................ 0
Number of requests sent............................................ 0
```

Related Commands

- `show nac summary`
- `config guest-lan nac`
- `config wlan nac`
- `debug nac`
show nac summary

To display NAC summary information for a Cisco wireless LAN controller, use the `show nac summary` command.

show nac summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6 | This command was introduced in a release earlier than Release 7.6.

The following example shows how to display a summary information of network access control settings:

```
(Cisco Controller) > show nac summary
NAC ACL Name ...............................................
Index Server Address Port State
----- ---------------------------------------- ---- ----
1 xxx.xxx.xxx.xxx 13336 Enabled
```

Related Commands

- `show nac statistics`
- `config guest-lan nac`
- `config wlan nac`
- `debug nac`

Cisco Wireless LAN Controller Command Reference, Release 8.0
show network

To display the current status of 802.3 bridging for all WLANs, use the show network command.

show network

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the network details:

(Cisco Controller) > show network

Related Commands

- config network
- show network summary
- show network multicast mgid detail
- show network multicast mgid summary
show network summary

To display the network configuration of the Cisco wireless LAN controller, use the `show network summary` command.

show network summary

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command has no arguments or keywords.</td>
<td>None.</td>
</tr>
</tbody>
</table>

This example shows how to display a summary configuration:

```
(Cisco Controller) >show network summary
RF-Network Name................................ RF
Web Mode...................................... Disable
Secure Web Mode.............................. Enable
Secure Web Mode Cipher-Option High........ Disable
Secure Web Mode Cipher-Option SSLv2........ Disable
Secure Web Mode RC4 Cipher Preference.... Disable
OCSP.......................................... Disabled
OCSP responder URL..........................
Secure Shell (ssh)............................. Enable
Telnet.......................................... Enable
Ethernet Multicast Mode...................... Disable Mode: Ucast
Ethernet Broadcast Mode..................... Disable
Ethernet Multicast Forwarding.............. Disable
Ethernet Broadcast Forwarding.............. Disable
AP Multicast/Broadcast Mode............... Unicast
IGMP snooping................................ Disabled
IGMP timeout.................................. 60 seconds
IGMP Query Interval........................ 20 seconds
MLD snooping.................................. Disabled
MLD timeout.................................. 60 seconds
MLD query interval......................... 20 seconds
User Idle Timeout......................... 300 seconds
AP Join Priority............................ Disable
ARP Idle Timeout........................... 300 seconds
ARP Unicast Mode............................ Disabled
Cisco AP Default Master..................... Disable
Mgmt Via Wireless Interface................. Disable
Mgmt Via Dynamic Interface............... Disabled
Bridge MAC filter Config.................... Enable
Bridge Security Mode....................... EAP
Over The Air Provisioning of AP's.......... Enable
Apple Talk................................. Disable
Mesh Full Sector DFS....................... Enable
AP Fallback.................................. Disable
Web Auth CMCC Support...................... Disabled
Web Auth Redirect Ports.................... 80
Web Auth Proxy Redirect.................... Disable
Web Auth Captive-Bypass.................... Disable
Web Auth Secure Web......................... Enable
Fast SSID Change............................ Disabled
AP Discovery - NAT IP Only............... Enabled
IP/MAC Addr Binding Check.................. Enabled
CCX-lite status.............................. Disable
oeap-600 dual-rlan-ports.................. Disable
```
oeap-600 local-network Enable
mDNS snooping................................ Disabled
mDNS Query Interval.......................... 15 minutes
Web Color Theme............................. Red
Web Color Theme............................. Default
CAPWAP Prefer Mode......................... IPv4
show netuser

To display the configuration of a particular user in the local user database, use the `show netuser` command.

`show netuser { detail user_name | guest-roles | summary }`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>Displays detailed information about the specified network user.</td>
</tr>
<tr>
<td>user_name</td>
<td>Network user.</td>
</tr>
<tr>
<td>guest_roles</td>
<td>Displays configured roles for guest users.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays a summary of all users in the local user database.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show netuser summary` command:

```
(Cisco Controller) > show netuser summary
Maximum logins allowed for a given username ........Unlimited
```

The following is a sample output of the `show netuser detail` command:

```
(Cisco Controller) > show netuser detail john10
username........................................... abc
WLAN Id............................................. Any
Lifetime............................................ Permanent
Description........................................ test user
```

Related Commands

- `config netuser add`
- `config netuser delete`
- `config netuser description`
- `config netuser guest-role apply`
- `config netuser wlan-id`
- `config netuser guest-roles`
show netuser guest-roles

To display a list of the current quality of service (QoS) roles and their bandwidth parameters, use the `show netuser guest-roles` command.

```bash
(Cisco Controller) > show netuser guest-roles
Role Name.............................. Contractor
  Average Data Rate.................. 10
  Burst Data Rate.................... 10
  Average Realtime Rate.............. 100
  Burst Realtime Rate................ 100

Role Name.............................. Vendor
  Average Data Rate.................. unconfigured
  Burst Data Rate.................... unconfigured
  Average Realtime Rate.............. unconfigured
  Burst Realtime Rate................ unconfigured
```

This example shows how to display a QoS role for the guest network user:

```bash
(Cisco Controller) > show netuser guest-roles
Role Name.............................. Contractor
  Average Data Rate.................. 10
  Burst Data Rate.................... 10
  Average Realtime Rate.............. 100
  Burst Realtime Rate................ 100

Role Name.............................. Vendor
  Average Data Rate.................. unconfigured
  Burst Data Rate.................... unconfigured
  Average Realtime Rate.............. unconfigured
  Burst Realtime Rate................ unconfigured
```

Related Commands

- `config netuser add`
- `config netuser delete`
- `config netuser description`
- `config netuser guest-role apply`
- `config netuser wlan-id`
- `show netuser guest-roles`
- `show netuser`
show network multicast mgid detail

To display all the clients joined to the multicast group in a specific multicast group identification (MGID), use the **show network multicast mgid detail** command.

show network multicast mgid detail mgid_value

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mgid_value</td>
<td>Number between 550 and 4095.</td>
</tr>
</tbody>
</table>

| Command Default | None. |

This example shows how to display details of the multicast database:

```
> show network multicast mgid detail
Mgid ............................... 550
Multicast Group Address .......... 239.255.255.250
Vlan ............................... 0
Rx Packet Count .................... 807399588
No of clients ...................... 1
Client List ........................
Client MAC         Expire Time (mm:ss)
                   00:13:02:23:82:ad   0:20
```

Related Commands

- `show network summary`
- `show network multicast mgid detail`
- `show network`
show network multicast mgid summary

To display all the multicast groups and their corresponding multicast group identifications (MGIDs), use the `show network multicast mgid summary` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display a summary of multicast groups and their MGIDs:

```bash
show network multicast mgid summary
```

Layer2 MGID Mapping:

<table>
<thead>
<tr>
<th>InterfaceName</th>
<th>vlanId</th>
<th>MGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>test</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>wired</td>
<td>20</td>
<td>8</td>
</tr>
</tbody>
</table>

Layer3 MGID Mapping:

```
Number of Layer3 MGIDs ............... 1
Group address | Vlan | MGID
---------------|------|------
239.255.255.250 | 0    | 550  
```
show network summary

To display the network configuration settings, use the `show network summary` command.

show network summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command updated to display the IPv6 multicast details in the network summary.</td>
</tr>
</tbody>
</table>

The following example displays the output of the `show ipv6 summary` command:

```
(Cisco Controller) >show network summary
RF-Network Name............................. johnny
Web Mode.................................... Enable
Secure Web Mode............................ Enable
Secure Web Mode Cipher-Option High....... Disable
Secure Web Mode Cipher-Option SSLv2....... Disable
Secure Web Mode RC4 Cipher Preference.... Disable
OCSP........................................ Disabled
OCSP responder URL..........................
Secure Shell (ssh).......................... Enable
Telnet...................................... Enable
Ethernet Multicast Forwarding............. Enable
Ethernet Broadcast Forwarding............. Enable
IPv4 AP Multicast/Broadcast Mode......... Multicast Address : 239.9.9.9
IPv6 AP Multicast/Broadcast Mode......... Multicast Address : ff1e::6:9
IGMP snooping.............................. Enabled
IGMP timeout................................ 60 seconds
IGMP Query Interval....................... 20 seconds
MLD snooping.............................. Enabled
MLD timeout................................ 60 seconds
MLD query interval......................... 20 seconds
User Idle Timeout......................... 300 seconds
ARP Idle Timeout......................... 300 seconds
Cisco AP Default Master................... Disable
AP Join Priority......................... Disable
Mgmt Via Wireless Interface.............. Enable
Mgmt Via Dynamic Interface.............. Enable
Bridge MAC filter Config.................. Enable
Bridge Security Mode....................... EAP
Mesh Full Sector DFS..................... Enable
AP Fallback................................. Enable
Web Auth CMCC Support..................... Disabled
Web Auth Redirect Ports................... 80
Web Auth Proxy Redirect................... Disable
Web Auth Captive-Bypass................... Disable
Web Auth Secure Web....................... Enable
Fast SSID Change.......................... Disabled
AP Discovery - NAT IP Only............... Enabled
IP/MAC Addr Binding Check................ Enabled
Link Local Bridging Status.............. Disabled
```
show network summary

CCX-lite status Disable
oeap-600 dual-rlan-ports Disable
oeap-600 local-network Enable
oeap-600 Split Tunneling (Printers) Disable
WebPortal Online Client 0
WebPortal NTF_LOGOUT Client 0
mDNS snooping.............................. Disabled
mDNS Query Interval........................ 15 minutes
Web Color Theme............................ Default
L3 Prefer Mode.............................. IPv4
show nmsp notify-interval summary

To display the Network Mobility Services Protocol (NMSP) configuration settings, use the `show nmsp notify-interval summary` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display NMSP configuration settings:

```
> show nmsp notify-interval summary
NMSP Notification Interval Summary
Client  Measurement interval:  2 sec
RFID    Measurement interval:  8 sec
Rogue AP Measurement interval:  2 sec
Rogue Client Measurement interval:  2 sec
```

Related Commands

- `clear locp statistics`
- `clear nmsp statistics`
- `config nmsp notify-interval measurement`
- `show nmsp statistics`
- `show nmsp status`
show nmsp status

To view the active NMSP connections status, use the `show nmsp status` command.

show nmsp status

This command has no arguments or keywords.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows the active nmsp connections status:

```
(Cisco Controller) > show nmsp status
```
show nmsp statistics

To display Network Mobility Services Protocol (NMSP) counters, use the `show nmsp statistics` command.

```
show nmsp statistics { summary | connection all }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary</code></td>
<td>Displays common NMSP counters.</td>
</tr>
<tr>
<td><code>connection all</code></td>
<td>Displays all connection-specific counters.</td>
</tr>
</tbody>
</table>

Command Default

None.

This example shows how to display a summary of common NMSP counters:

```
> show nmsp statistics summary
Send RSSI with no entry: 0
Send too big msg: 0
Failed SSL write: 0
Partial SSL write: 0
SSL write attempts to want write: 0
Transmit Q full: 0
Max Measure Notify Msg: 0
Max Info Notify Msg: 0
Max Tx Q Size: 2
Max Rx Size: 1
Max Info Notify Q Size: 0
Max Client Info Notify Delay: 0
Max Rogue AP Info Notify Delay: 0
Max Rogue Client Info Notify Delay: 0
Max Client Measure Notify Delay: 0
Max Tag Measure Notify Delay: 0
Max Rogue AP Measure Notify Delay: 0
Max Rogue Client Measure Notify Delay: 0
Max Client Stats Notify Delay: 0
Max Tag Stats Notify Delay: 0
RFID Measurement Periodic: 0
RFID Measurement Immediate: 0
Reconnect Before Conn Timeout: 0
```

This example shows how to display all the connection-specific NMSP counters:

```
> show nmsp statistics connection all
NMSP Connection Counters
Connection 1:
  Connection status: UP
  Freed Connection: 0
  Nmsp Subscr Req: 0  NMSP Subscr Resp: 0
  Info Req: 1  Info Resp: 1
  Measure Req: 2  Measure Resp: 2
  Stats Req: 2  Stats Resp: 2
  Info Notify: 0  Measure Notify: 0
  Loc Capability: 2
  Location Req: 0  Location Rsp: 0
  Loc Subscr Req: 0  Loc Subscr Rsp: 0
  Loc Notif: 0
  Loc Unsubscr Req: 0  Loc Unsubscr Rsp: 0
```
show nmsp statistics

IDS Get Req: 0 IDS Get Resp: 0
IDS Notif: 0
IDS Set Req: 0 IDS Set Resp: 0

Related Commands

- show nmsp notify-interval summary
- clear nmsp statistics
- config nmsp notify-interval measurement
- show nmsp status
show nmssp subscription

To display the Network Mobility Services Protocol (NMSP) services that are active on the controller, use the
show nmssp subscription command.

```
show nmssp subscription { summary | detail ip-addr }
```

Syntax Description

- **summary**
 - Displays all of the NMSP services to which the controller is subscribed.

- **detail**
 - Displays details for all of the NMSP services to which the controller is subscribed.

- **ip-addr**
 - Details only for the NMSP services subscribed to by a specific IPv4 or IPv6 address.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

This example shows how to display a summary of all the NMSP services to which the controller is subscribed:

```
> show nmssp subscription summary
Mobility Services Subscribed:
Server IP Services
---------
10.10.10.31 RSSI, Info, Statistics
```

This example shows how to display details of all the NMSP services:

```
> show nmssp subscription detail 10.10.10.31
Mobility Services Subscribed by 10.10.10.31
Services Sub-services
---------
RSSI Mobile Station, Tags,
Info Mobile Station,
Statistics Mobile Station, Tags,
```

```
> show nmssp subscription detail 2001:9:6:40::623
Mobility Services Subscribed by 2001:9:6:40::623
Services Sub-services
---------
RSSI Mobile Station, Tags,
Info Mobile Station,
Statistics Mobile Station, Tags,
```
show nmsp subscription summary

To view the mobility services subscribed on controller by Mobility Services Engine, use the `show nmsp subscription summary` command.

show nmsp subscription summary

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

This example shows the subscribed mobility services on controller:

(Cisco Controller) > `show nmsp subscription summary`
show ntp-keys

To display network time protocol authentication key details, use the `show ntp-keys` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display NTP authentication key details:

```
(Cisco Controller) > show ntp-keys
Ntp Authentication Key Details....................
    Key Index
    ---------------
        1
        3
```

Related Commands

- `config time ntp`
show ntp-keys

To display network time protocol authentication key details, use the `show ntp-keys` command.

```
show ntp-keys
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display NTP authentication key details:

```
(Cisco Controller) > show ntp-keys
Ntp Authentication Key Details..................
  Key Index
    -----------
    1
    3
```
show pmk-cache

To display information about the pairwise master key (PMK) cache, use the `show pmk-cache` command.

```
show pmk-cache  { all  |  MAC }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays information about all entries in the PMK cache.</td>
</tr>
<tr>
<td>MAC</td>
<td>Information about a single entry in the PMK cache.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about a single entry in the PMK cache:

```
(Cisco Controller) > show pmk-cache xx:xx:xx:xx:xx:xx
```

The following example shows how to display information about all entries in the PMK cache:

```
(Cisco Controller) > show pmk-cache all
```
show pmipv6 domain

To display the summary information of a PMIPv6 domain, use the `show pmipv6 domain` command.

```
show pmipv6 domain domain_name profile profile_name
```

Syntax Description

<table>
<thead>
<tr>
<th>domain_name</th>
<th>Name of the PMIPv6 domain. The domain name can be up to 127 case-sensitive alphanumeric characters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile</td>
<td>Specifies the PMIPv6 profile.</td>
</tr>
<tr>
<td>profile_name</td>
<td>Name of the profile associated with the PMIPv6 domain. The profile name can be up to 127 case-sensitive alphanumeric characters.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the summary information of a PMIPv6 domain:

```
(Cisco Controller) > show pmipv6 domain floor1 profile profile1
NAI: @example.com
APN: Example
LMA: Examplelma

NAI: *
APN: ciscoapn
LMA: ciscolma
```
show pmipv6 mag bindings

To display the binding information of a Mobile Access Gateway (MAG), use the `show pmipv6 mag binding` command.

```
show pmipv6 mag bindings [lma lma_name | nai nai_string]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lma</td>
<td>(Optional) Displays the binding details of the MAG to an Local Mobility Anchor (LMA).</td>
</tr>
<tr>
<td>lma_name</td>
<td>Name of the LMA. The LMA name is case-sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
<tr>
<td>nai</td>
<td>(Optional) Displays the binding details of the MAG to a client.</td>
</tr>
<tr>
<td>nai_string</td>
<td>Network Access Identifier (NAI) of the client. The NAI is case-sensitive and can be up to 127 alphanumeric characters. You can use all special characters except a colon.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the MAG bindings:

```
(Cisco Controller) > show pmipv6 mag binding
[Binding][MN]: Domain: D1, Nai: MN1@cisco.com
  [Binding][MN]: State: ACTIVE
  [Binding][MN]: Interface: Management
  [Binding][MN]: Hoa: 0xE0E0E02, att: 3, llid: aabb.cc00.c800
  [Binding][MN][LMA]: Id: LMA1
  [Binding][MN][LMA]: lifetime: 3600
  [Binding][MN][GREKEY]: Upstream: 102, Downstream: 1
```
show pmipv6 mag globals

To display the global PMIPv6 parameters of the Mobile Access Gateway (MAG), use the `show pmipv6 mag globals` command.

show pmipv6 mag globals

Syntax Description

This command has no arguments or keywords.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the global PMIPv6 parameters of a MAG:

```
(Cisco Controller) > show pmipv6 mag globals
Domain : D1
MAG Identifier : M1
  MAG Interface : Management
  Max Bindings : 10000
  Registration Lifetime : 3600 (sec)
  BRI Init-delay time : 1000 (msec)
  BRI Max-delay time : 2000 (msec)
  BRI Max retries : 1
  Refresh time : 300 (sec)
  Refresh RetxInit time : 1000 (msec)
  Refresh RetxMax time : 32000 (msec)
  Timestamp option : Enabled
  Validity Window : 7
Peer#1:
  LMA Name: AN-LMA-5K  LMA IP: 209.165.201.10
Peer#2:
  LMA Name: AN-LMA  LMA IP: 209.165.201.4
Peer#3:
  LMA Name: AN-LMA  LMA IP: 209.165.201.4
```
show pmipv6 mag stats

To display the statistics of the Mobile Access Gateway (MAG), use the `show pmipv6 mag stats` command.

```
show pmipv6 mag stats [ domain domain_name peer lma_name ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>(Optional) Displays the MAG statistics for a Local Mobility Anchor (LMA) in the domain.</td>
</tr>
<tr>
<td>domain_name</td>
<td>Name of the PMIPv6 domain. The domain name is case-sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
<tr>
<td>peer</td>
<td>(Optional) Displays the MAG statistics for an LMA.</td>
</tr>
<tr>
<td>lma_name</td>
<td>Name of the LMA. The LMA name is case sensitive and can be up to 127 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This table lists the descriptions of the LMA statistics.

<table>
<thead>
<tr>
<th>LMA Statistics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU Sent</td>
<td>Total number of Proxy Binding Updates (PBUs) sent to the LMA by the MAG. PBU is a request message sent by the MAG to a mobile node’s LMA for establishing a binding between the mobile node’s interface and its current care-of address (Proxy-CoA).</td>
</tr>
<tr>
<td>PBA Received</td>
<td>Total number of Proxy Binding Acknowledgements (PBAs) received by the MAG from the LMA. PBA is a reply message sent by an LMA in response to a PBU message that it receives from a MAG.</td>
</tr>
<tr>
<td>PBRI Sent</td>
<td>Total number of Proxy Binding Revocation Indications (PBRI) sent by the MAG to the LMA.</td>
</tr>
<tr>
<td>PBRI Received</td>
<td>Total number of PBRI sent from the LMA to the MAG.</td>
</tr>
<tr>
<td>PBRA Sent</td>
<td>Total number of Proxy Binding Revocation Acknowledgements (PBRAs) sent by the MAG to the LMA.</td>
</tr>
<tr>
<td>PBRA Received</td>
<td>Total number of PBRA sent from the LMA to the MAG.</td>
</tr>
<tr>
<td>Number of Handoff</td>
<td>Total number of handoffs between the MAG and the LMA.</td>
</tr>
</tbody>
</table>
The following example shows how to display the LMA statistics:

```
(Cisco Controller) > show pmipv6 mag stats
[MI]: Total Bindings : 1
[MI]: PBU Sent : 7
[MI]: PBA Rcvd : 4
[MI]: PBRI Sent : 0
[MI]: PBRI Rcvd : 0
[MI]: PBRA Sent : 0
[MI]: PBRA Rcvd : 0
[MI]: No Of handoff : 0
```
show pmipv6 profile summary

To display the summary of the PMIPv6 profiles, use the `show pmipv6 profile summary` command.

show pmipv6 profile summary

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the summary of the PMIPv6 profiles:

```
(Cisco Controller) >show pmipv6 profile summary
Profile Name       | WLAN IDS (Mapped) |
--------------------|-------------------|
Group1              | 6                 |
```
show policy

To display the summary of the configured policies, and the details and statistics of a policy, use the show policy command.

```
show policy  { summary | policy-name [ statistics ] }
```

Syntax Description

- **summary**: Displays the summary of configured policies.
- **policy-name**: Name of the policy.
- **statistics**: (Optional) Displays the statistics of a policy.

Command Default

None

Command History

- **Release** 7.5
 This command was introduced.

The following is a sample output of the `show policy summary` command:

```
(Cisco Controller) > show policy summary

Number of Policies............................. 2
Policy Index Policy Name
------------ ----------------
1 student-FullAccess
2 teacher-FullAccess

The following example shows how to display the details of a policy:

```
(Cisco Controller) > show policy student-FullAccess

Policy Index..................................... 1
 Match Role....................................... <none>
 Match Eap Type................................... EAP-TLS
 ACL.. <none>
 QOS.. <none>
 Average Data Rate.............................. 0
 Average Real Time Rate........................ 0
 Burst Data Rate................................ 0
 Burst Real Time Rate......................... 0
 Vlan Id... 155
 Session Timeout............................... 1800
 Sleeping client timeout...................... 12

Active Hours

 Start Time End Time Day
 -------- -------- ---
```

Cisco Wireless LAN Controller Command Reference, Release 8.0
Match Device Types

------------------
Android

The following example shows how to display the statistics of a policy:

(Cisco Controller) > `show policy student-FullAccess statistics`

<table>
<thead>
<tr>
<th>Policy Index</th>
<th>student-FullAccess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching Attributes None</td>
<td>619</td>
</tr>
<tr>
<td>No Policy Match</td>
<td>224</td>
</tr>
<tr>
<td>Device Type Match</td>
<td>0</td>
</tr>
<tr>
<td>EAP Type Match</td>
<td>0</td>
</tr>
<tr>
<td>Role Type Match</td>
<td>0</td>
</tr>
<tr>
<td>Client Disconnected</td>
<td>4</td>
</tr>
<tr>
<td>Acl Applied</td>
<td>0</td>
</tr>
<tr>
<td>Vlan changed</td>
<td>614</td>
</tr>
<tr>
<td>Session Timeout Applied</td>
<td>4</td>
</tr>
<tr>
<td>QoS Applied</td>
<td>0</td>
</tr>
<tr>
<td>Avg Data Rate Applied</td>
<td>0</td>
</tr>
<tr>
<td>Avg Real Time Rate Applied</td>
<td>0</td>
</tr>
<tr>
<td>Burst Data Rate Applied</td>
<td>0</td>
</tr>
<tr>
<td>Burst Real Time Rate Applied</td>
<td>0</td>
</tr>
<tr>
<td>Sleeping-Client-Timeout Applied</td>
<td>0</td>
</tr>
</tbody>
</table>
show port

To display the Cisco wireless LAN controller port settings on an individual or global basis, use the `show port` command.

```
show port {port-number | summary | detailed-info | vlan}
```

**Syntax Description**

- `port-number`  
  Port number of the physical interface.
- `summary`  
  Displays a summary of all ports.
- `detailed-info`  
  Displays detailed port information.
- `vlan`  
  Displays VLAN port table summary.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about an individual wireless LAN controller port:

```
(Cisco Controller) > show port 1

STP Admin Physical Physical Link Link Mcast
Pr Type Stat Mode Mode Status Status Trap Appliance POE
-- ------- ---- ------- ---------- ---------- ------ ------- --------
1 Normal Disa Enable Auto 1000 Full Down Enable Enable N/A
```

**Note**

Some WLAN controllers may not have multicast or Power over Ethernet (PoE) listed because they do not support those features.

The following example shows how to display a summary of all ports:

```
(Cisco Controller) > show port summary

STP Admin Physical Physical Link Link Mcast
Pr Type Stat Mode Mode Status Status Trap Appliance POE
-- ------- ---- ------- ---------- ---------- ------ ------- --------
1 Normal Forw Enable Auto 1000 Full Up Enable Enable N/A
 NotPresent
2 Normal Disa Enable Auto 1000 Full Down Enable Enable N/A
 NotPresent
3 Normal Disa Enable Auto 1000 Full Down Enable Enable N/A
```
<table>
<thead>
<tr>
<th>NotPresent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Normal Disa Enable Auto 1000 Full Down Enable Enable N/A</td>
</tr>
</tbody>
</table>

**Note**

Some WLAN controllers may have only one port listed because they have only one physical port.
show profiling policy summary

To display local device classification of the Cisco Wireless LAN Controller (WLC), use the `show profiling policy summary` command.

### Syntax Description
This command has no arguments or keywords.

### Command Default
None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show profiling policy summary` command:

```
(Cisco Controller) > show profiling policy summary
Number of Builtin Classification Profiles: 88

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Parent</th>
<th>Min</th>
<th>CM</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Android</td>
<td>None</td>
<td>30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Apple-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Apple-MacBook</td>
<td>1</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Apple-iPad</td>
<td>1</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Apple-iPhone</td>
<td>1</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Apple-iPod</td>
<td>1</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Aruba-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Avaya-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Avaya-IP-Phone</td>
<td>7</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BlackBerry</td>
<td>None</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Brother-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Canon-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cisco-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Cisco-IP-Phone</td>
<td>12</td>
<td>20</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cisco-IP-Phone-7945G</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th></th>
<th>Device</th>
<th>Priority</th>
<th>Status</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Cisco-IP-Phone-7975</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>Cisco-IP-Phone-9971</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Cisco-DMP</td>
<td>12</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>Cisco-DMP-4400</td>
<td>17</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>Cisco-DMP-4310</td>
<td>17</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>Cisco-DMP-4305</td>
<td>17</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>DLink-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>Enterasys-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>HP-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>HP-JetDirect-Printer</td>
<td>23</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>Lexmark-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>26</td>
<td>Lexmark-Printer-E260dn</td>
<td>25</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>27</td>
<td>Microsoft-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>Netgear-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>29</td>
<td>NintendoWII</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>30</td>
<td>Nortel-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>31</td>
<td>Nortel-IP-Phone-2000-Series</td>
<td>30</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>32</td>
<td>SonyPS3</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>33</td>
<td>XBOX360</td>
<td>27</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>34</td>
<td>Xerox-Device</td>
<td>None</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>35</td>
<td>Xerox-Printer-Phaser3250</td>
<td>34</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>36</td>
<td>Aruba-AP</td>
<td>6</td>
<td>20</td>
<td>Yes</td>
</tr>
<tr>
<td>37</td>
<td>Cisco-Access-Point</td>
<td>12</td>
<td>10</td>
<td>Yes</td>
</tr>
<tr>
<td>38</td>
<td>Cisco-IP-Conference-Station-7935</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>39</td>
<td>Cisco-IP-Conference-Station-7936</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>show profiling policy summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 Cisco-IP-Conference-Station-7937</td>
<td>13</td>
<td>70</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
show qos

To display quality of service (QoS) information, use the **show qos** command.

**show qos {bronze | gold | platinum | silver}**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>bronze</th>
<th>Displays QoS information for the bronze profile of the WLAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gold</td>
<td>Displays QoS information for the gold profile of the WLAN.</td>
</tr>
<tr>
<td></td>
<td>platinum</td>
<td>Displays QoS information for the platinum profile of the WLAN.</td>
</tr>
<tr>
<td></td>
<td>silver</td>
<td>Displays QoS information for the silver profile of the WLAN.</td>
</tr>
</tbody>
</table>

**Command Default**

None.

This example shows how to display QoS information for the gold profile:

```
> show qos gold
Description................................. For Video Applications
Maximum Priority............................ video
Unicast Default Priority.................... video
Multicast Default Priority.................. video
Per-SSID Rate Limits......................... UpstreamDownstream
Average Data Rate............................ 0 0
Average Realtime Data Rate.................. 0 0
Burst Data Rate.............................. 0 0
Burst Realtime Data Rate..................... 0 0
Per-Client Rate Limits...................... UpstreamDownstream
Average Data Rate............................ 0 0
Average Realtime Data Rate.................. 0 0
Burst Data Rate.............................. 0 0
Burst Realtime Data Rate..................... 0 0
protocol..................................... none

802.11a Customized EDCA Settings:
ecwmin.. 3
ecwmax.. 4
aifs.. 7
taxop... 94

802.11a Customized packet parameter Settings:
Packet retry time............................ 3
Not retrying threshold....................... 100
Disassociating threshold.................... 500
Time out value.............................. 35
```

**Related Commands**

config qos protocol-type
show queue-info

To display all the message queue information pertaining to the system, use the `show queue-info` command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show queue-info` command.

(Cisco Controller) > `show queue-info`

Total message queue count = 123

```
Queue Name Allocated InUse MaxUsed

PRINTF-Q 256 0 0
dtlqueue 4096 0 6
GRE Queue 100 0 1
dtlarpqueue 4096 0 6
NIM-Q 116 0 1
SIM-Q 116 0 6
DHCP Client Queue 8 0 0
dhcpv6ProxyMsgQueue 250 0 0
FDQ-Q 30300 0 3
dot1d_Queue 512 0 29
Garp-Q 256 0 1
dot3ad_queue 1024 0 0
DEBUG-Q 8192 0 8
LOGGER-Q 8192 0 5
TS-Q 256 0 0
```

The following table describes the significant fields shown in the display.

### Table 17: show queue-info Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Name</td>
<td>Name of the task message queue.</td>
</tr>
<tr>
<td>Allocated</td>
<td>Memory size, in bytes, of the message queue.</td>
</tr>
<tr>
<td>InUse</td>
<td>Queue that is currently used. A value of 0 indicates that there are no messages that have to be processed by the task.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>MaxUsed</td>
<td>Maximum number of messages processed by the task after the controller is up.</td>
</tr>
</tbody>
</table>
show queue-info
Show Commands: r to z

- show radius acct detailed, on page 1578
- show radius acct statistics, on page 1579
- show radius auth detailed, on page 1580
- show radius auth statistics, on page 1581
- show radius avp-list, on page 1582
- show radius summary, on page 1583
- show redundancy interfaces, on page 1584
- show redundancy latency, on page 1585
- show redundancy mobilitymac, on page 1586
- show redundancy peer-route summary, on page 1587
- show redundancy peer-system statistics, on page 1588
- show redundancy statistics, on page 1589
- show redundancy summary, on page 1590
- show redundancy timers, on page 1591
- show remote-lan, on page 1592
- show reset, on page 1594
- show rfid client, on page 1595
- show rfid config, on page 1596
- show rfid detail, on page 1597
- show rfid summary, on page 1598
- show rf-profile summary, on page 1599
- show rf-profile details, on page 1600
- show rogue adhoc custom summary, on page 1601
- show rogue adhoc detailed, on page 1602
- show rogue adhoc friendly summary, on page 1603
- show rogue adhoc malicious summary, on page 1604
- show rogue adhoc unclassified summary, on page 1605
- show rogue adhoc summary, on page 1606
- show rogue ap clients, on page 1607
- show rogue ap custom summary, on page 1609
- show rogue ap detailed, on page 1611
- show rogue ap friendly summary, on page 1614
- show rogue ap malicious summary, on page 1616
• show rogue ap summary, on page 1618
• show rogue ap unclassified summary, on page 1621
• show rogue auto-contain, on page 1622
• show rogue client detailed, on page 1623
• show rogue client summary, on page 1624
• show rogue ignore-list, on page 1625
• show rogue rule detailed, on page 1627
• show rogue rule summary, on page 1629
• show route kernel, on page 1630
• show route summary, on page 1631
• show rules, on page 1632
• show run-config startup-commands, on page 1633
• show serial, on page 1634
• show sessions, on page 1635
• show snmpcommunity, on page 1636
• show snmpengineID, on page 1637
• show snmptrap, on page 1638
• show snmpv3user, on page 1639
• show snmpversion, on page 1640
• show spanningtree port, on page 1641
• show spanningtree switch, on page 1642
• show stats port, on page 1643
• show stats switch, on page 1645
• show switchconfig, on page 1647
• show sysinfo, on page 1648
• show system iostat, on page 1650
• show system top, on page 1651
• show tacacs acct statistics, on page 1655
• show tacacs athr statistics, on page 1656
• show tacacs auth statistics, on page 1657
• show tacacs summary, on page 1658
• show tech-support, on page 1659
• show time, on page 1660
• show trapflags, on page 1662
• show traplog, on page 1664
• show watchlist, on page 1665
• show wlan, on page 1666
• show wps ap-authentication summary, on page 1671
• show wps cids-sensor, on page 1672
• show wps mfp, on page 1673
• show wps shun-list, on page 1674
• show wps signature detail, on page 1675
• show wps signature events, on page 1676
• show wps signature summary, on page 1678
• show wps summary, on page 1680
• show wps wips statistics, on page 1682
• show wps wips summary, on page 1683
• show wps ap-authentication summary, on page 1684
show radius acct detailed

To display RADIUS accounting server information, use the `show radius acct detailed` command.

```
show radius acct detailed radius_index
```

**Syntax Description**

- **radius_index**: Radius server index. The range is from 1 to 17.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display RADIUS accounting server information:

```
(Cisco Controller) > show radius acct detailed 5
Radius Index........5
NAI Realms............LAB.VTV.BLR.cisco.co.in
```
**show radius acct statistics**

To display the RADIUS accounting server statistics for the Cisco wireless LAN controller, use the `show radius acct statistics` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display RADIUS accounting server statistics:

```
(Cisco Controller) > show radius acct statistics
Accounting Servers:
Server Index..................................... 1
Server Address................................... 10.1.17.10
Msg Round Trip Time.............................. 0 (1/100 second)
First Requests................................... 0
Retry Requests................................... 0
Accounting Responses............................. 0
Malformed Msgs................................... 0
Bad Authenticator Msgs........................... 0
Pending Requests................................. 0
Timeout Requests................................. 0
Unknowntype Msgs................................ 0
Other Drops...................................... 0
```

**Related Commands**

- `config radius acct`
- `config radius acct ipsec authentication`
- `config radius acct ipsec disable`
- `config radius acct network`
- `show radius auth statistics`
- `show radius summary`
show radius auth detailed

To display RADIUS authentication server information, use the `show radius auth detailed` command.

```
show radius auth detailed radius_index
```

**Syntax Description**

```
radius_index
```

Radius server index. The range is from 1 to 17.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display RADIUS authentication server information:

```
(Cisco Controller) > show radius auth detailed 1
Radius Index........1
NAI Realms..........LAB.VTV.BLR.cisco.co.in
```
show radius auth statistics

To display the RADIUS authentication server statistics for the Cisco wireless LAN controller, use the show radius auth statistics command.

show radius auth statistics

This command has no arguments or keyword.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display RADIUS authentication server statistics:

(Cisco Controller) > show radius auth statistics

Authentication Servers:
- Server Index: 1
- Server Address: 209.165.200.10
- Msg Round Trip Time: 0 (1/100 second)
- First Requests: 0
- Retry Requests: 0
- Accept Responses: 0
- Reject Responses: 0
- Challenge Responses: 0
- Malformed Msgs: 0
- Bad Authenticator Msgs: 0
- Pending Requests: 0
- Timeout Requests: 0
- Unknowntype Msgs: 0
- Other Drops: 0

### Related Commands

- config radius auth
- config radius auth management
- config radius auth network
- show radius summary
show radius avp-list

To display RADIUS VSA AVPs, use the `show radius avp-list` command.

```
show radius avp-list profile-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>profile-name</th>
<th>Profile name for which downloaded AVPs to be shown.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to display RADIUS VSA AVPs:

```
(Cisco Controller) > show radius avp-list
```
show radius summary

To display the RADIUS authentication and accounting server summary, use the show radius summary command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a RADIUS authentication server summary:

(Cisco Controller) > show radius summary
Vendor Id Backward Compatibility................. Disabled
Credentials Caching................................ Disabled
Call Station Id Type............................. IP Address
Administrative Authentication via RADIUS....... Enabled
Authentication Servers
Index Type Server Address Port State Tout RFC-3576 IPsec -
Mod AuthMod e/Phase1/Group/Lifetime/Auth/Encr
----- ---- ---------------------- -------- ---- -------- ---------------

---------------------------------

Accounting Servers
Index Type Server Address Port State Tout RFC-3576 IPsec -
Mod AuthMod e/Phase1/Group/Lifetime/Auth/Encr
----- ---- ---------------------- -------- ---- -------- ---------------

---------------------------------

**Related Commands**

show radius auth statistics
show radius acct statistics
show redundancy interfaces

To display details of redundancy and service port IP addresses, use the `show redundancy interfaces` command.

```
show redundancy interfaces
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the redundancy and service port IP addresses information:

```
(Cisco Controller) > show redundancy interfaces

Redundancy Management IP Address.................. 9.4.120.5
Peer Redundancy Management IP Address........... 9.4.120.3
Redundancy Port IP Address...................... 169.254.120.5
Peer Redundancy Port IP Address.................. 169.254.120.3
Peer Service Port IP Address..................... 10.104.175.189
```
show redundancy latency

To display the average latency to reach the management gateway and the peer redundancy management IP address, use the `show redundancy latency` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the average latency to reach the management gateway and the peer redundancy management IP address:

(Cisco Controller) > `show redundancy latency`

Network Latencies (RTT) for the Peer Reachability on the Redundancy Port in micro seconds for the past 10 intervals
- Peer Reachability Latency[ 1 ] : 524 usecs
- Peer Reachability Latency[ 2 ] : 524 usecs
- Peer Reachability Latency[ 3 ] : 522 usecs
- Peer Reachability Latency[ 5 ] : 524 usecs
- Peer Reachability Latency[ 6 ] : 524 usecs
- Peer Reachability Latency[ 7 ] : 522 usecs
- Peer Reachability Latency[ 8 ] : 522 usecs
- Peer Reachability Latency[ 9 ] : 526 usecs
- Peer Reachability Latency[10 ] : 523 usecs

Network Latencies (RTT) for the Management Gateway Reachability in micro seconds for the past 10 intervals
- Gateway Reachability Latency[ 1 ] : 1347 usecs
- Gateway Reachability Latency[ 8 ] : 2853 usecs
- Gateway Reachability Latency[ 9 ] : 832 usecs
- Gateway Reachability Latency[10 ] : 3708 usecs
show redundancy mobilitymac

To display the High Availability (HA) mobility MAC address that is used to communicate with the peer, use the `show redundancy mobilitymac` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the HA mobility MAC address used to communicate with the peer:

(Cisco Controller) > **show redundancy mobilitymac**

`ff:ff:ff:ff:ff:ff`
show redundancy peer-route summary

To display the routes assigned to the standby WLC, use the show redundancy peer-route summary command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display all the configured routes of the standby WLC:

(Cisco Controller) >show redundancy peer-route summary
Number of Routes................................. 1

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Netmask</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx.xxx.xxx.xxx</td>
<td>255.255.0</td>
<td>xxx.xxx.xxx.xxx</td>
</tr>
</tbody>
</table>
show redundancy peer-system statistics

To display statistical information about the standby WLC, use the `show redundancy peer-system statistics` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7</td>
<td>The serial number and fan status of the standby WLC are added to the output of the command.</td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

```plaintext
(Cisco Controller) > show redundancy peer-system statistics

Peer System CPU statistics:
Current CPU(s) load: 0%
Individual CPU load: 0%/1%, 0%/0%, 0%/1%, 0%/0%, 0%/0%, 0%/0%, 0%/0%, 0%/0%, 0%/0%, 0%/1%

Peer System Memory Statistics:
Total System Memory..........: 1027727360 bytes (980.18 MB)
Used System Memory..........: 535404544 bytes (510.63 MB)
Free System Memory..........: 492322816 bytes (469.54 MB)
Bytes allocated from RTOS...: 5550080 bytes (5.29 MB)
Chunks Free...................: 7 bytes
Number of mmapped regions...: 86
Total space in mmapped regions.: 369500160 bytes (352.40 MB)
Total allocated space.......: 4200328 bytes (4.00 MB)
Total non-inuse space.......: 1349752 bytes (1.28 MB)
Top-most releasable space...: 94664 bytes (92.44 KB)
Total allocated (incl mmap)...: 375050240 bytes (357.70 MB)
Total used (incl mmap)......: 373700488 bytes (356.41 MB)
Total free (incl mmap)......: 1349752 bytes (1.28 MB)

Peer system Power supply statistics:
Power Supply 1..................: Present, OK
Power Supply 2...................: Absent
Serial Number....................: XXXXXXXXX
Fan Status.......................: OK
```
show redundancy statistics

To display the statistics information of the Redundancy Manager, use the `show redundancy statistics` command.

**show redundancy statistics**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command displays the statistics of different redundancy counters.

Local Physical Ports - Connectivity status of each physical port of the controller. 1 indicates that the port is up and 0 indicates that the port is down.

Peer Physical Ports - Connectivity status of each physical port of the peer controller. 1 indicates that the port is up and 0 indicates that the port is down.

The following example shows how to display the statistics information of the Redundancy Manager:

(Cisco Controller) > `show redundancy statistics`

```
Redundancy Manager Statistics

Keep Alive Request Send Counter : 16
Keep Alive Response Receive Counter : 16
Keep Alive Request Receive Counter : 500322
Keep Alive Response Send Counter : 500322
Ping Request to Default GW Counter : 63360
Ping Response from Default GW Counter : 63360
Ping Request to Peer Counter : 12
Ping Response from Peer Counter : 3
Keep Alive Loss Counter : 0
Default GW Loss Counter : 0
Local Physical Ports 1...8 : 10000000
Peer Physical Ports 1...8 : 10000000
```
show redundancy summary

To display the redundancy summary information, use the `show redundancy summary` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the redundancy summary information of the controller:

```
(Cisco Controller) > show redundancy summary
Redundancy Mode = SSO DISABLED
 Local State = ACTIVE
 Unit = Primary
 Unit ID = 88:43:E1:7E:03:80
Redundancy State = N/A
 Mobility MAC = 88:43:E1:7E:03:80
Network Monitor = ENABLED
Link Encryption = DISABLED

 BulkSync Status = <Status>
Average Redundancy Peer Reachability Latency = 1390 usecs
Average Management Gateway Reachability Latency = 1165 usecs

 Redundancy Management IP Address................. 9.4.92.12
 Peer Redundancy Management IP Address............ 9.4.92.14
 Redundancy Port IP Address....................... 169.254.92.12
 Peer Redundancy Port IP Address.................. 169.254.92.14
```
show redundancy timers

To display details of the Redundancy Manager timers, use the `show redundancy timers` command.

```
show redundancy timers
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the details of the Redundancy Manager timers:

```
(Cisco Controller) >show redundancy timers

 Keep Alive Timer : 100 msecs
 Peer Search Timer : 120 secs
```
show remote-lan

To display information about remote LAN configuration, use the **show remote-lan** command.

**show remote-lan { summary | remote-lan-id }**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a summary of all remote LANs.</td>
</tr>
<tr>
<td>remote-lan-id</td>
<td>Remote LAN identifier.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all remote LANs:

(Cisco Controller) > **show remote-lan summary**

Number of Remote LANS............................ 2
RLAN ID RLAN Profile Name Status Interface Name
------- ------------------------------------- -------- -------------------
2 remote Disabled management
8 test Disabled management

The following example shows configuration information about the remote LAN with the **remote-lan-id** 2:

(Cisco Controller) > **show remote-lan 2**

Remote LAN Identifier............................ 2
Profile Name..................................... remote
Status........................................... Disabled
MAC Filtering.................................... Disabled
AAA Policy Override.............................. Disabled
Network Admission Control
  Radius-NAC State............................... Disabled
  SNMP-NAC State................................. Disabled
  Quarantine VLAN............................... 0
Maximum number of Associated Clients............. 0
Number of Active Clients......................... 0
Exclusionlist.................................... Disabled
Session Timeout.................................. Infinity
CHD per Remote LAN................................ Enabled
Webauth DHCP exclusion........................... Disabled
Interface........................................ management
Remote LAN ACL................................... unconfigured
DHCP Server...................................... Default
DHCP Address Assignment Required................ Disabled
Static IP client tunneling....................... Disabled
Remote Servers
  Authentication................................ Global Servers
  Accounting.................................... Global Servers
  Dynamic Interface............................. Disabled
Security
  Web Based Authentication..................... Enabled
ACL............................................. Unconfigured
Web Authentication server precedence:
1............................................... local
2............................................... radius
3............................................... ldap
Web-Passthrough................................ Disabled
Conditional Web Redirect...................... Disabled
Splash-Page Web Redirect...................... Disabled
show reset

To display the scheduled system reset parameters, use the **show reset** command.

**show reset**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display the scheduled system reset parameters:

```
> show reset
System reset is scheduled for Mar 27 01:01:01 2010
Current local time and date is Mar 24 02:57:44 2010
A trap will be generated 10 minutes before each scheduled system reset.
Use ‘reset system cancel’ to cancel the reset.
Configuration will be saved before the system reset.
```

**Related Commands**

reset system at  
reset system in  
reset system cancel  
reset system notify-time
show rfid client

To display the radio frequency identification (RFID) tags that are associated to the controller as clients, use the **show rfid client** command.

**show rfid client**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

**Usage Guidelines**

When the RFID tag is not in client mode, the above fields are blank.

This example shows how to display the RFID tag that is associated to the controller as clients:

```
> show rfid client
------------------ -------- --------- ----------------- ------ ----------------
<table>
<thead>
<tr>
<th>RFID Mac</th>
<th>VENDOR</th>
<th>Sec Ago</th>
<th>Associated AP</th>
<th>Chnl</th>
<th>Client State</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:14:7e:00:0b:b1</td>
<td>Pango</td>
<td>35</td>
<td>AP0019.e75c.fef4</td>
<td>1</td>
<td>Probing</td>
</tr>
</tbody>
</table>
```

**Related Commands**

- config rfid status
- config rfid timeout
- show rfid config
- show rfid detail
- show rfid summary
show rfid config

To display the current radio frequency identification (RFID) configuration settings, use the show rfid config command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display the current RFID configuration settings:

```
> show rfid config
RFID Tag Data Collection Enabled
RFID Tag Auto-Timeout Enabled
RFID Client Data Collection Disabled
RFID Data Timeout 200 seconds
```

**Related Commands**

- config rfid status
- config rfid timeout
- show rfid client
- show rfid detail
- show rfid summary
**show rfid detail**

To display detailed radio frequency identification (RFID) information for a specified tag, use the `show rfid detail` command.

```plaintext
show rfid detail mac_address
```

**Syntax Description**

| `mac_address` | MAC address of an RFID tag. |

**Command Default**

None.

This example shows how to display detailed RFID information:

```plaintext
> show rfid detail 00:12:b8:00:20:52
RFID address................................. 00:12:b8:00:20:52
Vendor....................................... G2
Last Heard..................................... 51 seconds ago
Packets Received............................. 2
Bytes Received................................ 324
Cisco Type.................................... Content Header
Version.. 0
Tx Power....................................... 12 dBm
Channel...................................... 1
Reg Class..................................... 12
Burst Length.................................. 1
CCX Payload

Last Sequence Control........................ 0
Payload length.............................. 127

Nearby AP Statistics:
lap1242-2(slot 0, chan 1) 50 seconds ago... -76 dBm
lap1242(slot 0, chan 1) 50 seconds ago..... -65 dBm
```

**Related Commands**

- `config rfid status`
- `config rfid timeout`
- `show rfid config`
- `show rfid client`
- `show rfid summary`
show rfid summary

To display a summary of the radio frequency identification (RFID) information for a specified tag, use the `show rfid summary` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display a summary of RFID information:

```
> show rfid summary
Total Number of RFID : 5

<table>
<thead>
<tr>
<th>RFID ID</th>
<th>VENDOR</th>
<th>Closest AP</th>
<th>RSSI</th>
<th>Time Since Last Heard</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:04:f1:00:00:04</td>
<td>Wherenet</td>
<td>ap:1120</td>
<td>-51</td>
<td>858 seconds ago</td>
</tr>
<tr>
<td>00:0c:cc:5c:06:d3</td>
<td>Aerosct</td>
<td>ap:1120</td>
<td>-51</td>
<td>68 seconds ago</td>
</tr>
<tr>
<td>00:0c:cc:5c:08:45</td>
<td>Aerosct</td>
<td>AP_1130</td>
<td>-54</td>
<td>477 seconds ago</td>
</tr>
<tr>
<td>00:0c:cc:5c:08:4b</td>
<td>Aerosct</td>
<td>wolverine</td>
<td>-54</td>
<td>332 seconds ago</td>
</tr>
<tr>
<td>00:0c:cc:5c:08:52</td>
<td>Aerosct</td>
<td>ap:1120</td>
<td>-51</td>
<td>699 seconds ago</td>
</tr>
</tbody>
</table>
```

**Related Commands**

- config rfid status
- config rfid timeout
- show rfid client
- show rfid detail
- show rfid config
show rf-profile summary

To display a summary of RF profiles in the controller, use the `show rf-profile summary` command.

**show rf-profile summary**

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is the output of the `show rf-profile summary` command:

```
(Cisco Controller) >show rf-profile summary
Number of RF Profiles......................... 2
Out Of Box State............................ Disabled
RF Profile Name Band Description Applied
----------------- ------ ---------------- --------
 T1a 5 GHz <none> No
 T1b 2.4 GHz <none> No
```
show rf-profile details

To display the RF profile details in the Cisco wireless LAN controller, use the `show rf-profile details` command.

```
show rf-profile details rf-profile-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>rf-profile-name</th>
<th>Name of the RF profile.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The output was updated to include the Rx SOP threshold.</td>
</tr>
</tbody>
</table>

The following is the output of the `show rf-profile details` command:

```
(Cisco Controller) >show rf-profile details T1a
Description.............................. <none>
Radio policy............................. 5 GHz
Transmit Power Threshold v1.............. -70 dBm
Transmit Power Threshold v2.............. -67 dBm
Min Transmit Power........................ -10 dBm
Max Transmit Power........................ 30 dBm
Rx Sop Threshold........................ Medium
802.11a Operational Rates
 802.11a 6M Rate.......................... Mandatory
 802.11a 9M Rate.......................... Supported
 802.11a 12M Rate........................ Mandatory
 802.11a 18M Rate........................ Supported
 802.11a 24M Rate........................ Mandatory
 802.11a 36M Rate........................ Supported
 802.11a 48M Rate........................ Supported
 802.11a 54M Rate........................ Supported
Max Clients................................ 200
Client Trap Threshold..................... 50
Multicast Data Rate....................... 0
Rx Sop Threshold.......................... 0 dBm
Cca Threshold............................. 0 dBm
Slot Admin State.......................... Enabled
Band Select Probe Response................. Disabled
Band Select Cycle Count................... 2 cycles
Band Select Cycle Threshold............... 200 milliseconds
Band Select Expire Suppression............ 20 seconds
Band Select Expire Dual Band................ 60 seconds
Band Select Client Rssi................... -80 dBm
Load Balancing Denial..................... 3 count
Load Balancing Window..................... 5 clients
Coverage Data............................ -80 dBm
Coverage Voice........................... -80 dBm
Coverage Exception....................... 3 clients
Coverage Level........................... 25%
```
**show rogue adhoc custom summary**

To display information about custom rogue ad-hoc rogue access points, use the `show rogue adhoc custom summary` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display details of custom rogue ad-hoc rogue access points:

```
(Cisco Controller) > show rogue adhoc custom summary
Number of Adhocs..................0

MAC Address State # APs # Clients Last Heard
------------------- -------------- ------ ------ ------------

```

**Related Commands**

- `show rogue adhoc detailed`
- `show rogue adhoc summary`
- `show rogue adhoc friendly summary`
- `show rogue adhoc malicious summary`
- `show rogue adhoc unclassified summary`
- `config rogue adhoc`
show rogue adhoc detailed

To display details of an ad-hoc rogue access point detected by the Cisco wireless LAN controller, use the `show rogue adhoc client detailed` command.

```
show rogue adhoc detailed MAC_address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>MAC_address</th>
<th>Adhoc rogue MAC address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to display detailed ad-hoc rogue MAC address information:

```
(Cisco Controller) > show rogue adhoc client detailed 02:61:ce:8e:a8:8c
Adhoc Rogue MAC address.......................... 02:61:ce:8e:a8:8c
Adhoc Rogue BSSID................................ 02:61:ce:8e:a8:8c
State.. Alert
First Time Adhoc Rogue was Reported............ Tue Dec 11 20:45:45 2007
Last Time Adhoc Rogue was Reported............. Tue Dec 11 20:45:45 2007
Reported By
AP 1
MAC Address....................................... 00:14:1b:58:4a:e0
Name.. AP0014.1ced.2a60
Radio Type.. 802.11b
SSID... rf4k3ap
Channel.. 3
RSSI.. -56 dBm
SNR... 15 dB
Encryption.. Disabled
ShortPreamble..................................... Disabled
WPA Support....................................... Disabled
Last reported by this AP......................... Tue Dec 11 20:45:45 2007
```

Related Commands
- `config rogue adhoc`
- `show rogue ignore-list`
- `show rogue rule summary`
- `show rogue rule detailed`
- `config rogue rule`
- `show rogue adhoc summary`
show rogue adhoc friendly summary

To display information about friendly rogue ad-hoc rogue access points, use the `show rogue adhoc friendly summary` command.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about friendly rogue ad-hoc rogue access points:

(Cisco Controller) > `show rogue adhoc friendly summary`

Number of Adhocs--------------------------0

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>State</th>
<th># APs</th>
<th># Clients</th>
<th>Last Heard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**
- `show rogue adhoc custom summary`
- `show rogue adhoc detailed`
- `show rogue adhoc summary`
- `show rogue adhoc malicious summary`
- `show rogue adhoc unclassified summary`
- `config rogue adhoc`
show rogue adhoc malicious summary

To display information about malicious rogue ad-hoc rogue access points, use the `show rogue adhoc malicious summary` command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display details of malicious rogue ad-hoc rogue access points:

```plaintext
(Cisco Controller) > show rogue adhoc malicious summary
Number of Adhocs............................0

MAC Address State # APs # Clients Last Heard
----------------- ------------------ ----- --------
```

**Related Commands**

- `show rogue adhoc custom summary`
- `show rogue adhoc detailed`
- `show rogue adhoc summary`
- `show rogue adhoc friendly summary`
- `show rogue adhoc unclassified summary`
- `config rogue adhoc`
show rogue adhoc unclassified summary

To display information about unclassified rogue ad-hoc rogue access points, use the show rogue adhoc unclassified summary command.

**show rogue adhoc unclassified summary**

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about unclassified rogue ad-hoc rogue access points:

```
(Cisco Controller) > show rogue adhoc unclassified summary
```

<table>
<thead>
<tr>
<th>Number of Adhocs............................0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address State # APs # Clients Last Heard</td>
</tr>
<tr>
<td>--------------------------------------------</td>
</tr>
</tbody>
</table>

**Related Commands**

- show rogue adhoc custom summary
- show rogue adhoc detailed
- show rogue adhoc summary
- show rogue adhoc friendly summary
- show rogue adhoc malicious summary
- config rogue adhoc
show rogue adhoc summary

To display a summary of the ad-hoc rogue access points detected by the Cisco wireless LAN controller, use the **show rogue adhoc summary** command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following examples show how to display a summary of all ad-hoc rogues:

```
(Cisco Controller) > show rogue adhoc summary
Detect and report Ad-Hoc Networks................ Enabled
Client MAC Address Adhoc BSSID State # APs Last Heard
------------------ ----------- ----- --- -------
```

**Related Commands**

- `config rogue adhoc`
- `show rogue ignore-list`
- `show rogue rule summary`
- `show rogue rule detailed`
- `config rogue rule`
- `show rogue adhoc detailed`
**show rogue ap clients**

To display details of rogue access point clients detected by the Cisco wireless LAN controller, use the `show rogue ap clients` command.

```
show rogue ap clients ap_mac_address
```

**Syntax Description**

- **ap_mac_address**: Rogue access point MAC address.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display details of rogue access point clients:

```
(Cisco Controller) > show rogue ap clients xx:xx:xx:xx:xx
MAC Address State # APs Last Heard
----------------- ------------------ ----- -------------------------
```

**Related Commands**

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
- show rogue ignore-list
- show rogue rule detailed
show rogue ap clients

show rogue rule summary
show rogue ap custom summary

To display information about custom rogue ad-hoc rogue access points, use the `show rogue ap custom summary` command.

**show rogue ap custom summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display details of custom rogue ad-hoc rogue access points:

(Cisco Controller) > `show rogue ap custom summary`

```
Number of APs............................0

MAC Address State # APs # Clients Last Heard
----------------- ------------------ ----- ---------
```

**Related Commands**

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
- show rogue ignore-list
show rogue rule detailed
show rogue rule summary
show rogue ap detailed

To display details of a rogue access point detected by the Cisco wireless LAN controller, use the `show rogue-ap detailed` command.

**Syntax Description**

| `ap_mac_address` | Rogue access point MAC address. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display detailed information of a rogue access point:

(Cisco Controller) > `show rogue ap detailed xx:xx:xx:xx:xx:xx`
Rogue BSSID......................... 00:0b:85:63:d1:94  
Is Rogue on Wired Network........... No  
Classification........................ Unclassified  
State.................................. Alert  
First Time Rogue was Reported....... Fri Nov 30 11:24:56 2007  
Last Time Rogue was Reported........ Fri Nov 30 11:24:56 2007  
Reported By                        AP 1  
MAC Address.......................... 00:12:44:bb:25:d0  
Name.................................. flexconnect  
Radio Type.......................... 802.11g  
SSID.................................. edu-eap  
Channel.............................. 6  
RSSI.................................. -61 dBm  
SNR................................... -1 dB  
Encryption.......................... Enabled  
ShortPreamble......................... Enabled  
WPA Support.......................... Disabled  
Last reported by this AP............ Fri Nov 30 11:24:56 2007

This example shows how to display detailed information of a rogue access point with a customized classification:

(Cisco Controller) > `show rogue ap detailed xx:xx:xx:xx:xx:xx`
Rogue BSSID......................... 00:17:0f:34:48:a0  
Is Rogue on Wired Network........... No  
Classification........................ custom
Severity Score .................................. 1
Class Name........................................ VeryMalicious
Class Change by.................................. Rogue Rule
Classified at ................................... -60 dBm
Classified by.................................... c4:0a:cb:a1:18:80
State............................................ Contained
State change by.................................. Rogue Rule
First Time Rogue was Reported............... Mon Jun 4 10:31:18 2012
Last Time Rogue was Reported............... Mon Jun 4 10:31:18 2012
Reported By
   AP 1
       MAC Address.............................. c4:0a:cb:a1:18:80
       Name..................................... SHIELD-3600-2027
       Radio Type............................... 802.11g
       SSID..................................... sri
       Channel.................................. 11
       RSSI..................................... -87 dBm
       SNR...................................... 4 dB
       Encryption............................... Enabled
       ShortPreamble............................ Enabled
       WPA Support.............................. Enabled
       Last reported by this AP............... Mon Jun 4 10:31:18 2012

Related Commands
  config rogue adhoc
  config rogue ap classify
  config rogue ap friendly
  config rogue ap rldp
  config rogue ap timeout
  config rogue ap valid-client
  config rogue client
  config trapflags rogueap
  show rogue ap clients
  show rogue ap summary
  show rogue ap friendly summary
  show rogue ap malicious summary
  show rogue ap unclassified summary
  show rogue client detailed
  show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
show rogue ap friendly summary

To display a list of the friendly rogue access points detected by the controller, use the show rogue ap friendly summary command.

**show rogue ap friendly summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all friendly rogue access points:

```
(Cisco Controller) > show rogue ap friendly summary
Number of APs.................................... 1
MAC Address State # APs # Clients Last Heard
----------------- ------------------ ----- ---------

```

**Related Commands**

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap malicious summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
- show rogue ignore-list
show rogue rule detailed
show rogue rule summary
show rogue ap malicious summary

To display a list of the malicious rogue access points detected by the controller, use the show rogue ap malicious summary command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all malicious rogue access points:

(Cisco Controller) > show rogue ap malicious summary
Number of APs......................... 2
MAC Address State # APs # Clients Last Heard
----------------- ------------------ ----- --------
---------------------------

Related Commands

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap summary
- show rogue ap friendly summary
- show rogue ap unclassified summary
- show rogue client detailed
- show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
show rogue ap summary

To display a summary of the rogue access points detected by the Cisco wireless LAN controller, use the `show rogue-ap summary` command.

`show rogue ap summary {ssid | channel}`

**Syntax Description**

- `ssid` Displays specific user-configured SSID of the rogue access point.
- `channel` Displays specific user-configured radio type and channel of the rogue access point.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The new keywords SSID and channel are added.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all rogue access points:

(Cisco Controller) > `show rogue ap summary`

Rogue Location Discovery Protocol................. Disabled
Rogue ap timeout................................. 1200
Rogue on wire Auto-Contain......................... Disabled
Rogue using our SSID Auto-Contain............... Disabled
Valid client on rogue AP Auto-Contain............ Disabled
Rogue AP timeout................................. 1200
Rogue Detection Report Interval................... 10
Rogue Detection Min Rssi......................... -128
Rogue Detection Transient Interval............... 0
Rogue Detection Client Num Thershold............. 0
Total Rogues(AP+Ad-hoc) supported................. 2000
Total Rogues classified......................... 729

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Classification</th>
<th># APs</th>
<th># Clients</th>
<th>Last Heard</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx:xx:xx:xx:xx</td>
<td>malicious</td>
<td>1</td>
<td>0</td>
<td>Thu Aug 4 19:00:11 2005</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all rogue access points with SSID as extended parameter.

(Cisco Controller) > `show rogue ap summary ssid`

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Class</th>
<th>State</th>
<th>SSID</th>
<th>Security</th>
</tr>
</thead>
</table>
The following examples show how to display a summary of all rogue access points with channel as an extended parameter.

(Cisco Controller) > show rogue ap summary channel

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Class</th>
<th>State</th>
<th>Det RadioType</th>
<th>Channel</th>
<th>RSSI(last/Max)</th>
</tr>
</thead>
</table>

The following example shows how to display a summary of all rogue access points with both SSID and channel as extended parameters.

(Cisco Controller) > show rogue ap summary ssid channel

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Class</th>
<th>State</th>
<th>SSID</th>
<th>Security</th>
<th>Det RadioType</th>
<th>Channel</th>
<th>RSSI(last/Max)</th>
</tr>
</thead>
</table>

**Related Commands**
- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap timeout
- config rogue ap valid-client
- config rogue client
- config trapflags rogueap
- show rogue ap clients
- show rogue ap detailed
- show rogue ap friendly summary
- show rogue ap malicious summary
show rogue ap summary
show rogue client detailed
show rogue client summary
show rogue ignore-list
show rogue rule detailed
show rogue rule summary
show rogue ap unclassified summary

To display a list of the unclassified rogue access points detected by the controller, use the **show rogue ap unclassified summary** command.

**show rogue ap unclassified summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a list of all unclassified rogue access points:

```
(Cisco Controller) > show rogue ap unclassified summary
Number of APs.. 164
MAC Address State # APs # Clients Last Heard
----------------- ------------- ----- --------- ---------------
```
show rogue auto-contain

To display information about rogue auto-containment, use the **show rogue auto-contain** command.

**show rogue auto-contain**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display information about rogue auto-containment:

(Cisco Controller) > **show rogue auto-contain**
含制内水平................................................. 3
monitor_ap_only.................................... false

**Related Commands**

- **config rogue adhoc**
- **config rogue auto-contain level**
show rogue client detailed

To display details of a rogue client detected by a Cisco wireless LAN controller, use the `show rogue client detailed` command.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Rogue_AP</code></td>
<td>Rogue AP address.</td>
</tr>
<tr>
<td><code>MAC_address</code></td>
<td>Rogue client MAC address.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.1</td>
<td>The <code>Rogue_AP</code> parameter to the <code>show rogue client detailed</code> command is added.</td>
</tr>
</tbody>
</table>

The following example shows how to display detailed information for a rogue client:

```
(Cisco Controller) > show rogue client detailed xx:xx:xx:xx:xx:xx
Rogue BSSID...................................... 00:0b:85:23:ea:d1
State.. Alert
First Time Rogue was Reported.................... Mon Dec 3 21:50:36 2007
Last Time Rogue was Reported..................... Mon Dec 3 21:50:36 2007
Rogue Client IP address.......................... Not known
Reported By
AP 1
MAC Address...................................... 00:15:c7:82:b6:b0
Name..................................... AP0016.47b2.31ea
Radio Type..................................... 802.11a
RSSI..................................... -71 dBm
SNR...................................... 23 dB
Channel.................................. 149
Last reported by this AP.............. Mon Dec 3 21:50:36 2007
```

Related Commands

- `show rogue client summary`
- `show rogue ignore-list`
- `config rogue rule client`
- `config rogue rule`
show rogue client summary

To display a summary of the rogue clients detected by the Cisco wireless LAN controller, use the show rogue client summary command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

Release  Modification
7.6          This command was introduced in a release earlier than Release 7.6.

The following example shows how to display a list of all rogue clients:

(Cisco Controller) > show rogue client summary
Validate rogue clients against AAA............... Disabled
Total Rogue Clients supported.................... 2500
Total Rogue Clients present...................... 3

MAC Address State # APs Last Heard
----------------- ------------------ ----- -----------------------
xx:xx:xx:xx:xx:xx Alert 1 Thu Aug 4 19:00:08 2005

Related Commands

show rogue client detailed
show rogue ignore-list
config rogue client
config rogue rule
show rogue ignore-list

To display a list of rogue access points that are configured to be ignored, use the `show rogue ignore-list` command.

```
show rogue ignore-list
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a list of all rogue access points that are configured to be ignored.

```
(Cisco Controller) > show rogue ignore-list

MAC Address

```

**Related Commands**

- config rogue adhoc
- config rogue ap classify
- config rogue ap friendly
- config rogue ap rldp
- config rogue ap ssid
- config rogue ap timeout
- config rogue ap valid-client
- config rogue rule
- config trapflags rogueap
- show rogue client detailed
- show rogue ignore-list
- show rogue rule summary
- show rogue client summary
- show rogue ap unclassified summary
- show rogue ap malicious summary
- show rogue ap friendly summary
config rogue client
show rogue ap summary
show rogue ap clients
show rogue ap detailed
config rogue rule
show rogue rule detailed

To display detailed information for a specific rogue classification rule, use the `show rogue rule detailed` command.

```
show rogue rule detailed rule_name
```

**Syntax Description**

- `rule_name` Rogue rule name.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display detailed information on a specific rogue classification rule:

```
(Cisco Controller) > show rogue rule detailed Rule2
Priority......................... 2
Rule Name.......................... Rule2
State.............................. Enabled
Type............................... Malicious
Severity Score.................... 1
Class Name........................ Very_Malicious
Notify............................. All
State Contain
Match Operation.................... Any
Hit Count.......................... 352
Total Conditions................... 2
Condition 1
 type............................ Client-count
 value.......................... 10
Condition 2
 type............................ Duration
 value (seconds)............... 2000
Condition 3
 type............................ Managed-ssid
 value.......................... Enabled
Condition 4
 type............................ No-encryption
 value.......................... Enabled
Condition 5
 type............................ Rssi
 value (dBm)..................... -50
Condition 6
 type............................ Ssid
 SSID Count..................... 1
 SSID 1.......................... test
```

**Related Commands**

- `config rogue rule`
- `show rogue ignore-list`
show rogue rule detailed

show rogue rule summary
show rogue rule summary

To display the rogue classification rules that are configured on the controller, use the **show rogue rule summary** command.

**show rogue rule summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a list of all rogue rules that are configured on the controller:

(Cisco Controller) > **show rogue rule summary**

<table>
<thead>
<tr>
<th>Priority</th>
<th>Rule Name</th>
<th>State</th>
<th>Type</th>
<th>Match</th>
<th>Hit Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mtest</td>
<td>Enabled</td>
<td>Malicious</td>
<td>All</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>asdfasdf</td>
<td>Enabled</td>
<td>Malicious</td>
<td>All</td>
<td>0</td>
</tr>
</tbody>
</table>

The following example shows how to display a list of all rogue rules that are configured on the controller:

(Cisco Controller) > **show rogue rule summary**

<table>
<thead>
<tr>
<th>Priority</th>
<th>Rule Name</th>
<th>Rule state</th>
<th>Class</th>
<th>Type</th>
<th>Notify</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rule2</td>
<td>Enabled</td>
<td>Friendly</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Alert</td>
<td>All</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>rule1</td>
<td>Enabled</td>
<td>Custom</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Alert</td>
<td>All</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**

- config rogue rule
- show rogue ignore-list
- show rogue rule detailed
show route kernel

To display the kernel route cache information, use the **show route kernel** command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None.

This example shows how to display the kernel route cache information:

```
> show route kernel

<table>
<thead>
<tr>
<th>Iface</th>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>RefCnt</th>
<th>Use</th>
<th>Metric</th>
<th>Mask</th>
<th>MTU</th>
<th>Window</th>
<th>IRTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt10</td>
<td>14010100</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>28282800</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>34010100</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>eth0</td>
<td>02020200</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>33010100</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>32010100</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>0A010100</td>
<td>00000000</td>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lo</td>
<td>FF000000</td>
<td>0202020A</td>
<td>0003</td>
<td>0</td>
<td>0</td>
<td>FFFFF00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dt10</td>
<td>00000000</td>
<td>0A010109</td>
<td>0003</td>
<td>0</td>
<td>0</td>
<td>E000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

### Related Commands

- clear ap
- debug arp
- show arp kernel
- config route add
- config route delete
show route summary

To display the routes assigned to the Cisco wireless LAN controller service port, use the `show route summary` command.

```
show route summary
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display all the configured routes:

```
> show route summary
Number of Routes............................... 1
 Destination Network Genmask Gateway
 xxx.xxx.xxx.xxx 255.255.255.0 xxx.xxx.xxx.xxx
```

**Related Commands**

`config route`
**show rules**

To display the active internal firewall rules, use the `show rules` command.

```
show rules
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display active internal firewall rules:

```
(Cisco Controller) > show rules
--
Rule ID.............: 3
Ref count...........: 0
Precedence..........: 99999999
Flags...............: 00000001 (PASS)
Source IP range:
 (Local stack)
Destination IP range:
 (Local stack)
--
Rule ID.............: 25
Ref count...........: 0
Precedence..........: 99999999
Flags...............: 00000001 (PASS)
Service Info
 Service name.......: GDB
 Protocol...........: 6
 Source port low....: 0
 Source port high...: 0
 Dest port low......: 1000
 Dest port high.....: 1000
Source IP range:
 IP High............: 0.0.0.0
 Interface..........: ANY
Destination IP range:
 (Local stack)
--
```
show run-config startup-commands

To display a comprehensive view of the current Cisco wireless LAN controller configuration, use the show run-config startup-commands command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show run-config startup-commands</td>
<td>Displays the running configuration commands.</td>
</tr>
<tr>
<td>run-config</td>
<td>Displays list of configured startup commands on Wireless LAN Controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The configuration commands on the Wireless LAN controller are uploaded to the TFTP or NCS servers using the transfer upload process. The show run-config startup-commands command enables the Wireless LAN controller to generate running-configuration in CLI format. The configuration commands generated can be used as backup configuration to restore the network.

**Example**

The following is a sample output of the show run-config startup-commands command:

```
show run-config startup-commands
(Cisco Controller) > show run-config
(startup-commands
(Cisco Controller) > show run-config startup-commands
This may take some time.
Are you sure you want to proceed? (y/N) y

config location expiry tags 5
config mdns profile service add default-mdns-profile AirPrint
config mdns profile service add default-mdns-profile AirTunes
config mdns profile service add default-mdns-profile AppleTV
config mdns profile service add default-mdns-profile HP_Photosmart_Printer_1
config mdns profile service add default-mdns-profile HP_Photosmart_Printer_2
config mdns profile service add default-mdns-profile Printer
config mdns profile create default-
```
show serial

To display the serial (console) port configuration, use the show serial command.

show serial

Syntax Description
This command has no arguments or keywords.

Command Default
The default values for Baud rate, Character, Flow Control, Stop Bits, Parity type of the port configuration are 9600, 8, off, 1, none.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display EIA-232 parameters and the serial port inactivity timeout:

(Cisco Controller) > show serial
Serial Port Login Timeout (minutes)........ 45
Baud Rate.................................... 9600
Character Size............................. 8
Flow Control:............................... Disable
Stop Bits.................................... 1
Parity Type:.................................. none
show sessions

To display the console port login timeout and maximum number of simultaneous command-line interface (CLI) sessions, use the `show sessions` command.

```
show sessions
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

5 minutes, 5 sessions.

This example shows how to display the CLI session configuration setting:

```
> show sessions
CLI Login Timeout (minutes)............ 0
Maximum Number of CLI Sessions........ 5
```

The response indicates that the CLI sessions never time out and that the Cisco wireless LAN controller can host up to five simultaneous CLI sessions.

**Related Commands**

- `config sessions maxsessions`
- `config sessions timeout`
show snmpcommunity

To display Simple Network Management Protocol (SNMP) community entries, use the **show snmpcommunity** command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display SNMP community entries:

```
> show snmpcommunity
SNMP Community Name Client IP Address Client IP Mask Access Mode Status
--------------------- ----------------- ----------------- ----------- --------
public 0.0.0.0 0.0.0.0 Read Only Enable
****** 0.0.0.0 0.0.0.0 Read/Write Enable
```

**Related Commands**

- `config snmp community accessmode`
- `config snmp community create`
- `config snmp community delete`
- `config snmp community ipaddr`
- `config snmp community mode`
- `config snmp syscontact`
**show snmpengineID**

To display the SNMP engine ID, use the `show snmpengineID` command.

```
show snmpengineID
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None.

This example shows how to display the SNMP engine ID:

```
> show snmpengineID
SNMP EngineId... ffffffffffff
```

**Related Commands**

`config snmp engineID`
show snmptrap

To display Cisco wireless LAN controller Simple Network Management Protocol (SNMP) trap receivers and their status, use the `show snmptrap` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display SNMP trap receivers and their status:

```
> show snmptrap
SNMP Trap Receiver Name IP Address Status
------------------------ ---------- --------
xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx Enable
```
show snmpv3user

To display Simple Network Management Protocol (SNMP) version 3 configuration, use the show snmpv3user command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display SNMP version 3 configuration information:

```
> show snmpv3user
SNMP v3 username AccessMode Authentication Encryption
---------------- ----------- -------------- ----------
default Read/Write HMAC-SHA CFB-AES
```

Related Commands

config snmp v3user create
config snmp v3user delete
show snmpversion

To display which versions of Simple Network Management Protocol (SNMP) are enabled or disabled on your controller, use the `show snmpversion` command.

**show snmpversion**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

Enable.

This example shows how to display the SNMP v1/v2/v3 status:

```
> show snmpversion
SNMP v1 Mode.............................. Disable
SNMP v2c Mode................................ Enable
SNMP v3 Mode.............................. Enable
```

**Related Commands**

`config snmp version`
show spanningtree port

To display the Cisco wireless LAN controller spanning tree port configuration, use the show spanningtree port command.

show spanningtree port port

**Syntax Description**

<table>
<thead>
<tr>
<th>port</th>
<th>Physical port number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 1 through 4 on Cisco 2100 Series Wireless LAN Controller.</td>
</tr>
<tr>
<td></td>
<td>• 1 or 2 on Cisco 4402 Series Wireless LAN Controller.</td>
</tr>
<tr>
<td></td>
<td>• 1 through 4 on Cisco 4404 Series Wireless LAN Controller.</td>
</tr>
</tbody>
</table>

**Command Default**

The default SPT configuration output values are 800C, Disabled, 802.1D, 128, 100, Auto.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the a Cisco 4400 Series wireless LAN controller is configured for port redundancy, the Spanning Tree Protocol (STP) must be disabled for all ports on the Cisco 4400 Series Wireless LAN Controller. STP can remain enabled on the switch connected to the Cisco 4400 Series Wireless LAN Controller.

**Note**

Some WLAN controllers do not support the spanning tree function.

The following example shows how to display spanning tree values on a per port basis:

(Cisco Controller) > show spanningtree port 3
STP Port ID................................. 800C
STP Port State.............................. Disabled
STP Port Administrative Mode.............. 802.1D
STP Port Priority........................... 128
STP Port Path Cost......................... 100
STP Port Path Cost Mode.................... Auto
show spanningtree switch

To display the Cisco wireless LAN controller network (DS port) spanning tree configuration, use the show spanningtree switch command.

show spanningtree switch

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Some WLAN controllers do not support the spanning tree function.

The following example shows how to display spanning tree values on a per switch basis:

```
(Cisco Controller) > show spanningtree switch
STP Specification...................... IEEE 802.1D
STP Base MAC Address.................... 00:0B:85:02:0D:20
Spanning Tree Algorithm............... Disable
STP Bridge Priority..................... 32768
STP Bridge Max. Age (seconds)......... 20
STP Bridge Hello Time (seconds)....... 2
STP Bridge Forward Delay (seconds).... 15
```
show stats port

To display physical port receive and transmit statistics, use the `show stats port` command.

**show stats port** { detailed *port*  |  summary *port* }

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detailed</td>
<td>Displays detailed port statistics.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays port summary statistics.</td>
</tr>
<tr>
<td><em>port</em></td>
<td>Physical port number:</td>
</tr>
<tr>
<td></td>
<td>• 1 through 4 on Cisco 2100 Series Wireless LAN Controllers.</td>
</tr>
<tr>
<td></td>
<td>• 1 or 2 on Cisco 4402 Series Wireless LAN Controllers.</td>
</tr>
<tr>
<td></td>
<td>• 1 through 4 on Cisco 4404 Series Wireless LAN Controllers.</td>
</tr>
<tr>
<td></td>
<td>• 1 on Cisco WLCM Series Wireless LAN Controllers.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the port summary information:

```
(Cisco Controller) > show stats port summary
Packets Received Without Error................. 399958
Packets Received With Error.................... 0
Broadcast Packets Received.................... 8350
Packets Transmitted Without Error.............. 106060
Transmit Packets Errors........................ 0
Collisions Frames.............................. 0
Time Since Counters Last Cleared................ 2 day 11 hr 16 min 23 sec
```

The following example shows how to display the detailed port information:

```
(Cisco Controller) > show stats port detailed 1
PACKETS RECEIVED (OCTETS)
Total Bytes...................................... 267799881
64 byte pkts : 918281
65-127 byte pkts : 354016
128-255 byte pkts : 1283092
```
256-511 byte pkts :8406 512-1023 byte pkts :3006
1024-1518 byte pkts :1184 1519-1530 byte pkts :0
> 1530 byte pkts :2
PACKETS RECEIVED SUCCESSFULLY
Total............................................ 2567987
Unicast Pkts :2547844 Multicast Pkts:0 Broadcast Pkts:20143
PACKETS RECEIVED WITH MAC ERRORS
Total............................................ 0
Jabbers :0 Undersize :0 Alignment :0
FCS Errors:0 Overruns :0
RECEIVED PACKETS NOT FORWARDED
Total............................................ 0
Local Traffic Frames:0 RX Pause Frames :0
Unacceptable Frames :0 VLAN Membership :0
VLAN Viable Discards:0 Multicast Tree Viable:0
ReserveAddr Discards:0
CFI Discards :0 Upstream Threshold :0
PACKETS TRANSMITTED (OCTETS)
Total Bytes...................................... 353831
64 byte pkts :0 65-127 byte pkts :0
128-255 byte pkts :0 256-511 byte pkts :0
512-1023 byte pkts :0 1024-1518 byte pkts :2
1519-1530 byte pkts :0 Max Info :1522
PACKETS TRANSMITTED SUCCESSFULLY
Total............................................ 5875
Unicast Pkts :5868 Multicast Pkts:0 Broadcast Pkts:7
TRANSMIT ERRORS
Total Errors..................................... 0
FCS Error :0 TX Oversized :0 Underrun Error:0
TRANSMIT DISCARDS
Total Discards................................... 0
Single Coll Frames :0 Multiple Coll Frames:0
Excessive Coll Frame:0 Port Membership :0
VLAN Viable Discards:0
PROTOCOL STATISTICS
BPDUs Received :6 BPDUs Transmitted :0
802.3x RX Pause Frame:0
Time Since Counters Last Cleared............... 2 day 0 hr 39 min 59 sec
show stats switch

To display the network (DS port) receive and transmit statistics, use the show stats switch command.

show stats switch {detailed | summary}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detailed</td>
<td>Displays detailed switch statistics.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays switch summary statistics.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display switch summary statistics:

(Cisco Controller) > show stats switch summary
Packets Received Without Error.................. 136410
Broadcast Packets Received...................... 18805
Packets Received With Error..................... 0
Packets Transmitted Without Error.............. 78002
Broadcast Packets Transmitted.................. 3340
Transmit Packet Errors........................... 2
Address Entries Currently In Use................. 26
VLAN Entries Currently In Use.................... 1
Time Since Counters Last Cleared................ 2 day 11 hr 22 min 17 sec

The following example shows how to display detailed switch statistics:

(Cisco Controller) > show stats switch detailed
RECEIVE
Octets........................................... 19351718
Total Pkts....................................... 183468
Unicast Pkts..................................... 180230
Multicast Pkts................................... 3219
Broadcast Pkts................................... 19
Pkts Discarded................................... 0

TRANSMIT
Octets........................................... 354251
Total Pkts....................................... 5882
Unicast Pkts..................................... 5875
Multicast Pkts................................... 0
Broadcast Pkts................................... 7
Pkts Discarded................................... 0

ADDRESS ENTRIES
Most Ever Used..................................... 1
Currently In Use................................... 1
VLAN ENTRIES
Maximum......................................... 128
Most Ever Used.................................. 1
Static In Use.................................... 1
Dynamic In Use.................................. 0
VLANs Deleted................................... 0
Time Since Ctrs Last Cleared..................... 2 day 0 hr 43 min 22 sec
show switchconfig

To display parameters that apply to the Cisco wireless LAN controller, use the show switchconfig command.

show switchconfig

Syntax Description

This command has no arguments or keywords.

Command Default

Enabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display parameters that apply to the Cisco wireless LAN controller:

(Cisco Controller) >> show switchconfig
802.3x Flow Control Mode......................... Disabled
FIPS prerequisite features....................... Enabled
Boot Break....................................... Enabled
secret obfuscation................................ Enabled
Strong Password Check Features:
    case-check ............Disabled
    consecutive-check ....Disabled
    default-check ........Disabled
    username-check ......Disabled

Related Commands

config switchconfig mode
config switchconfig secret-obfuscation
config switchconfig strong-pwd
config switchconfig flowcontrol
config switchconfig fips-prerequisite
show stats switch
show sysinfo

To display high-level Cisco WLC information, use the `show sysinfo` command.

**show sysinfo**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

This example shows a sample output of the command run on Cisco 8540 Wireless Controller using Release 8.3:

```
(Cisco Controller) >show sysinfo

Manufacturer's Name.............................. Cisco Systems Inc.
Product Name..................................... Cisco Controller
Product Version.................................. 8.3.100.0
RTOS Version..................................... 8.3.100.0
Bootloader Version............................... 8.0.110.0
Emergency Image Version.......................... 8.0.110.0
OUI File Last Update Time........................ Sun Sep 07 10:44:07 IST 2014
Build Type....................................... DATA + WPS
System Name...................................... TestSpartan8500Dev1
System Location..................................
System Contact...................................
System ObjectID.................................. 1.3.6.1.4.1.9.1.1615
Redundancy Mode.................................. Disabled
IP Address....................................... 8.1.4.2
IPv6 Address..................................... ::
System Up Time................................... 0 days 17 hrs 20 mins 58 secs
System Timezone Location.........................
System Stats Realtime Interval................... 5
System Stats Normal Interval..................... 180
Configured Country............................... Multiple Countries : IN,US
Operating Environment............................ Commercial (10 to 35 C)
Internal Temp Alarm Limits....................... 10 to 38 C
Internal Temperature............................ +21 C
Fan Status....................................... OK
RAID Volume Status
Drive 0.. Good
Drive 1.. Good
State of 802.11b Network......................... Enabled
State of 802.11a Network......................... Enabled
Number of WLANs.................................. 7
Number of Active Clients........................ 1
OUI Classification Failure Count................. 0
```
Burned-in MAC Address............................ F4:CF:E2:0A:27:00
Power Supply 1................................... Present, OK

--More-- or (q)uit
Power Supply 2................................... Present, OK
Maximum number of APs supported.................. 6000
System Nas-Id....................................
WLC MIC Certificate Types......................... SHA1/SHA2
Licensing Type................................... RTU
show system iostat

To display CPU statistics, input or output statistics for devices, and partitions with extended statistics of the system, use the `show system iostat` command.

```
show system iostat { detail | summary }
```

**Syntax Description**
- `detail` Provides CPU statistics, input or output statistics for devices, and partitions with extended statistics of the system.
- `summary` Provides CPU statistics, input or output statistics for devices, and partitions of the system.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the `show system iostat summary` command:

```
(Cisco Controller) > show system iostat summary
Linux 2.6.21_mvlcge500-octeon-mips64_octeon_v2_be (localhost) 10/11/13
avg-cpu: %user %nice %system %iowait %steal %idle
 1.13 0.00 0.27 0.08 0.00 98.52
Device: tps MB_read/s MB_wrtn/s MB_read MB_wrtn
 cfa 1.21 0.02 0.00 15 0
```

The following is a sample output of the `show system iostat detail` command:

```
(Cisco Controller) > show system iostat detail
Linux 2.6.21_mvlcge500-octeon-mips64_octeon_v2_be (localhost) 10/11/13
avg-cpu: %user %nice %system %iowait %steal %idle
 0.87 0.00 0.21 0.06 0.00 98.86
Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await
 svctm %util
 cfa 8.42 0.15 0.84 0.09 0.01 0.00 28.79 0.02 23.41
 7.20 0.67
```
show system top

To display a list of the most CPU-intensive tasks on the system, use the **show system top** command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show system top** command:

```
(Cisco Controller) >show system top
 top - 06:16:32 up 2 min, 0 users, load average: 2.68, 1.05, 0.38
 Tasks: 180 total, 1 running, 179 sleeping, 0 stopped, 0 zombie
 Cpu0 : 0.0%us, 0.9%sy, 0.0%ni, 99.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
 Cpu1 : 0.7%us, 0.3%sy, 0.0%ni, 98.7%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
 Cpu2 : 0.3%us, 0.2%sy, 0.0%ni, 97.9%id, 0.7%wa, 0.0%hi, 0.0%si, 0.0%st
 Cpu3 : 8.6%us, 1.0%sy, 0.0%ni, 89.1%id, 0.8%wa, 0.0%hi, 0.6%si, 0.0%st
 Cpu4 : 13.8%us, 6.9%sy, 0.0%ni, 77.0%id, 0.6%wa, 0.0%hi, 1.7%si, 0.0%st
 Cpu5 : 32.9%us, 0.2%sy, 0.0%ni, 65.1%id, 0.7%wa, 0.0%hi, 1.1%si, 0.0%st
 Cpu6 : 0.4%us, 0.2%sy, 0.0%ni, 98.5%id, 0.7%wa, 0.0%hi, 0.2%si, 0.0%st
 Cpu7 : 15.6%us, 0.6%sy, 0.0%ni, 82.4%id, 0.7%wa, 0.0%hi, 0.7%si, 0.0%st
 Cpu8 : 3.8%us, 0.4%sy, 0.0%ni, 95.2%id, 0.6%wa, 0.0%hi, 0.1%si, 0.0%st
 Cpu9 : 0.7%us, 0.3%sy, 0.0%ni, 97.9%id, 0.2%wa, 0.0%hi, 0.8%si, 0.0%st
 Mem: 1004116k total, 681232k used, 322884k free, 220k buffers
 Swap: 0k total, 0k used, 0k free, 138696k cached
```

```
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1555 root 20 0 0 0 0 0 S 0.0 0.0 0:00.07 top
 1 root 20 0 4420 752 628 S 0.1 0:00.00 init
 2 root 20 0 0 0 S 0.0 0:00.00 migration/0
 3 root 20 0 0 0 S 0.0 0:00.00 migration/0
 4 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 5 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 6 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 7 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 8 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 9 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 10 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 11 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 12 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 13 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 14 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 15 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 16 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 17 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 18 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 19 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 20 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 21 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 22 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
 23 root 20 -10 0 0 0 S 0.0 0:00.00 migration/0
```
Cisco Wireless LAN Controller Command Reference, Release 8.0

show system top
Cisco Wireless LAN Controller Command Reference, Release 8.0

Show Commands

show system top

88 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-high/7
89 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-timer/7
90 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-tx/
91 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-rx/
92 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-block/7
93 root -51 0 0 0 0 S 0 0.0 0:00.84 softirq-tasklet
94 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-sched/7
95 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-rcu/7
96 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/7
97 root 5 -10 0 0 0 S 0 0.0 0:00.00 desched/7
98 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/8
99 root RT 0 0 0 0 S 0 0.0 0:00.00 posix_cpu_timer
100 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-high/8
101 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-timer/8
102 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-tx/
103 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-rx/
104 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-block/8
105 root -51 0 0 0 0 S 0 0.0 0:00.07 softirq-tasklet
106 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-sched/8
107 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-rcu/8
108 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/8
109 root 5 -10 0 0 0 S 0 0.0 0:00.00 desched/8
110 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/9
111 root RT 0 0 0 0 S 0 0.0 0:00.00 posix_cpu_timer
112 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-high/9
113 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-timer/9
114 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-tx/
115 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-net-rx/
116 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-block/9
117 root -51 0 0 0 0 S 0 0.0 0:01.10 softirq-tasklet
118 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-sched/9
119 root -51 0 0 0 0 S 0 0.0 0:00.00 softirq-rcu/9
120 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/9
121 root 5 -10 0 0 0 S 0 0.0 0:00.00 desched/9
122 root -2 -20 0 0 0 S 0 0.0 0:01.14 events/0
123 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/1
124 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/2
125 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/3
126 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/4
127 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/5
128 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/6
129 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/7
130 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/8
131 root -2 -20 0 0 0 S 0 0.0 0:00.00 events/9
132 root 15 -5 0 0 0 S 0 0.0 0:00.03 khelper
133 root 15 -5 0 0 0 S 0 0.0 0:00.00 kthread
134 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/0
135 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/1
136 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/2
137 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/3
138 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/4
139 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/5
140 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/6
141 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/7
142 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/8
143 root 20 -5 0 0 0 S 0 0.0 0:00.00 kblockd/9
144 root 21 0 0 0 0 S 0 0.0 0:00.00 pdflush
145 root 16 -5 0 0 0 S 0 0.0 0:00.00 kswapd
146 root 15 0 0 0 0 S 0 0.0 0:00.00 flush_filesd/0
147 root 15 0 0 0 0 S 0 0.0 0:00.00 flush_filesd/1
148 root 10 -5 0 0 0 S 0 0.0 0:00.00 flush_filesd/2
149 root 10 -5 0 0 0 S 0 0.0 0:00.00 flush_filesd/3
150 root 10 -5 0 0 0 S 0 0.0 0:00.00 flush_filesd/4
show tacacs acct statistics

To display detailed radio frequency identification (RFID) information for a specified tag, use the `show tacacs acct statistics` command.

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display detailed RFID information:

```
(Cisco Controller) > show tacacs acct statistics
Accounting Servers:
Server Index..................................... 1
Server Address................................... 10.0.0.0
Msg Round Trip Time.............................. 0 (1/100 second)
First Requests................................... 1
Retry Requests................................... 0
Accounting Response.............................. 0
Accounting Request Success....................... 0
Accounting Request Failure....................... 0
Malformed Msgs................................... 0
Bad Authenticator Msgs........................... 0
Pending Requests................................. -1
Timeout Requests................................. 1
Unknowntype Msgs................................ 0
Other Drops...................................... 0
```
show tacacs athr statistics

To display TACACS+ server authorization statistics, use the `show tacacs athr statistics` command.

```
show tacacs athr statistics
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display TACACS server authorization statistics:

```
(Cisco Controller) > show tacacs athr statistics
Authorization Servers:
 Server Index.......................... 3
 Server Address.......................... 10.0.0.3
 Msg Round Trip Time.................... 0 (1/100 second)
 First Requests.......................... 0
 Retry Requests......................... 0
 Received Responses..................... 0
 Authorization Success.................. 0
 Authorization Failure.................. 0
 Challenge Responses.................... 0
 Malformed Msgs.......................... 0
 Bad Authenticator Msgs................ 0
 Pending Requests....................... 0
 Timeout Requests....................... 0
 Unknowntype Msgs....................... 0
 Other Drops............................ 0
```

**Related Commands**

- `config tacacs acct`
- `config tacacs athr`
- `config tacacs auth`
- `show tacacs auth statistics`
- `show tacacs summary`
show tacacs auth statistics

To display TACACS+ server authentication statistics, use the `show tacacs auth statistics` command.

**show tacacs auth statistics**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display TACACS server authentication statistics:

(Cisco Controller) > `show tacacs auth statistics`
Authentication Servers:
Server Index..................................... 2
Server Address................................... 10.0.0.2
Msg Round Trip Time.............................. 0 (msec)
First Requests................................... 0
Retry Requests................................... 0
Accept Responses................................. 0
Reject Responses................................. 0
Error Responses.................................. 0
Restart Responses................................ 0
Follow Responses................................. 0
GetData Responses................................ 0
Encrypt no secret Responses...................... 0
Challenge Responses.............................. 0
Malformed Msgs................................... 0
Bad Authenticator Msgs........................... 0
Pending Requests.................................. 0
Timeout Requests.................................. 0
Unknown type Msgs................................ 0
Other Drops...................................... 0
show tacacs summary

To display TACACS+ server summary information, use the **show tacacs summary** command.

**show tacacs summary**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display TACACS server summary information:

```plaintext
(Cisco Controller) > show tacacs summary
Authentication Servers
Idx Server Address Port State Tout
--- ---------------- ----- ------ ----
2 10.0.0.1 49 Enabled 30

Accounting Servers
Idx Server Address Port State Tout
--- ---------------- ----- ------ ----
1 10.0.0.0 49 Enabled 5

Authorization Servers
Idx Server Address Port State Tout
--- ---------------- ----- ------ ----
3 10.0.0.3 49 Enabled 5

Idx Server Address Port State Tout
--- ---------------- ----- ------ ----
4 2001:9:6:40::623 49 Enabled 5
...```

Related Commands

- config tacacs acct
- config tacacs athr
- config tacacs auth
- show tacacs summary
- show tacacs athr statistics
- show tacacs auth statistics
show tech-support

To display Cisco wireless LAN controller variables frequently requested by Cisco Technical Assistance Center (TAC), use the `show tech-support` command.

show tech-support

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display system resource information:

```plaintext
> show tech-support
Current CPU Load................................. 0%
System Buffers
  Max Free Buffers.............................. 4608
  Free Buffers................................ 4604
  Buffers In Use.............................. 4
Web Server Resources
  Descriptors Allocated....................... 152
  Descriptors Used............................ 3
  Segments Allocated......................... 152
  Segments Used.............................. 3
System Resources
  Uptime........................................ 747040 Secs
  Total Ram..................................... 127552 Kbytes
  Free Ram...................................... 19540 Kbytes
  Shared Ram................................... 0 Kbytes
  Buffer Ram.................................. 460 Kbytes
```
show time

To display the Cisco wireless LAN controller time and date, use the **show time** command.

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display the controller time and date when authentication is not enabled:

```
> show time
Time............................................. Wed Apr 13 09:29:15 2011
Timezone delta................................... 0:0
Timezone location........................ (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata
NTP Servers
   NTP Polling Interval......................... 3600
   Index NTP Key Index NTP Server NTP Msg Auth Status
------- ---------------------------------------------------------------
   1 0 9.2.60.60 AUTH DISABLED
```

This example shows successful authentication of NTP Message results in the AUTH Success:

```
> show time
Time............................................. Thu Apr  7 13:56:37 2011
Timezone delta................................... 0:0
Timezone location........................ (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata
NTP Servers
   NTP Polling Interval......................... 3600
   Index NTP Key Index NTP Server NTP Msg Auth Status
------- ---------------------------------------------------------------
   1  1 9.2.60.60 AUTH SUCCESS
```

This example shows that if the packet received has errors, then the NTP Msg Auth status will show AUTH Failure:

```
> show time
Time............................................. Thu Apr  7 13:56:37 2011
Timezone delta................................... 0:0
Timezone location........................ (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata
NTP Servers
   NTP Polling Interval......................... 3600
   Index NTP Key Index NTP Server NTP Msg Auth Status
------- ---------------------------------------------------------------
   1 10 9.2.60.60 AUTH FAILURE
```

This example shows that if there is no response from NTP server for the packets, the NTP Msg Auth status will be blank:

```
> show time
Time............................................. Thu Apr  7 13:56:37 2011
Timezone delta................................... 0:0
Timezone location........................ (GMT +5:30) Colombo, New Delhi, Chennai, Kolkata
```
NTP Servers

NTP Polling Interval 3600
Index NTP Key Index NTP Server NTP Msg Auth Status
------- ----------------- --------------- ------------------
 1 11 9.2.60.60

Related Commands

config time manual
config time ntp
config time timezone
config time timezone location
To display the Cisco wireless LAN controller Simple Network Management Protocol (SNMP) trap flags, use the `show trapflags` command.

show trapflags

Syntax Description

This command has no arguments or keywords.

Command Default

None.

This example shows how to display controller SNMP trap flags:

```plaintext
> show trapflags

Authentication Flag............................ Enable
Link Up/Down Flag.............................. Enable
Multiple Users Flag............................ Enable
Spanning Tree Flag............................. Enable

Client Related Traps
  802.11 Disassociation....................... Disable
  802.11 Association........................... Disabled
  802.11 Deauthenticate....................... Disable
  802.11 Authentication Failure............... Disable
  802.11 Association Failure................... Disable
  Authentication............................... Disabled
  Excluded..................................... Disable

Max Client Warning Threshold.................. 90%
Nac-Alert Traps................................. Disabled

RFID Related Traps
  Max RFIDs Warning Threshold............... 90%

802.11 Security related traps
  WEP Decrypt Error............................ Enable
  IDS Signature Attack......................... Disable

Cisco AP
  Register..................................... Enable
  InterfaceUp.................................. Enable

Auto-RF Profiles
  Load......................................... Enable
  Noise........................................ Enable
  Interference................................ Enable
  Coverage..................................... Enable

Auto-RF Thresholds
  tx-power..................................... Enable
  channel...................................... Enable
  antenna...................................... Enable

AAA
  auth......................................... Enable
  servers..................................... Enable
  rogueap...................................... Enable
  adjchannel-rogueap......................... Disabled
  wps.......................................... Enable
  configsave.................................. Enable

IP Security
  esp-auth...................................... Enable
  esp-replay.................................. Enable
  invalidSPI.................................. Enable
```
ike-neg.. Enable
suite-neg....................................... Enable
invalid-cookie................................. Enable

Mesh

auth failure.................................... Enabled
child excluded parent......................... Enabled
parent change.................................. Enabled
child moved..................................... Enabled
excessive parent change...................... Enabled
onset SNR.. Enabled
abate SNR.. Enabled
console login.................................. Enabled
excessive association......................... Enabled
default bridge group name.................... Enabled
excessive hop count............................ Disabled
excessive children............................ Enabled
sec backhaul change......................... Disabled

Related Commands

config trapflags 802.11-Security
config trapflags aaa
config trapflags ap
config trapflags authentication
config trapflags client
config trapflags configsave
config trapflags IPsec
config trapflags linkmode
show traplog

To display the Cisco wireless LAN controller Simple Network Management Protocol (SNMP) trap log, use the **show traplog** command.

show traplog

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following is a sample output of the **show traplog** command:

(Cisco Controller) > **show traplog**
Number of Traps Since Last Reset........... 2447
Number of Traps Since Log Last Displayed... 2447
Log System Time Trap
--- --
 0 Thu Aug 4 19:54:14 2005 Rogue AP : 00:0b:85:52:62:fe detected on Base Rad
io MAC : 00:0b:85:18:b6:50 Interface no:1(802.11 b/g) with RSSI: -78 and SNR: 10
 1 Thu Aug 4 19:54:14 2005 Rogue AP : 00:0b:85:52:19:d8 detected on Base Rad
io MAC : 00:0b:85:18:b6:50 Interface no:1(802.11 b/g) with RSSI: -72 and SNR: 16
 2 Thu Aug 4 19:54:14 2005 Rogue AP : 00:0b:85:26:a1:8d detected on Base Rad
io MAC : 00:0b:85:18:b6:50 Interface no:1(802.11 b/g) with RSSI: -82 and SNR: 6
 3 Thu Aug 4 19:54:14 2005 Rogue AP : 00:0b:85:14:b3:4f detected on Base Rad
io MAC : 00:0b:85:18:b6:50 Interface no:1(802.11 b/g) with RSSI: -56 and SNR: 30

Would you like to display more entries? (y/n)
show watchlist

To display the client watchlist, use the `show watchlist` command.

```
show watchlist
```

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the client watchlist information:

```
(Cisco Controller) >show watchlist
client watchlist state is disabled
```
show wlan

To display configuration information for a specified wireless LAN or a foreign access point, or to display wireless LAN summary information, use the `show wlan` command.

```
show wlan { apgroups | summary | wlan_id | foreignAp | lobby-admin-access }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apgroups</td>
<td>Displays access point group information.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays a summary of all wireless LANs.</td>
</tr>
<tr>
<td>wlan_id</td>
<td>Displays the configuration of a WLAN. The Wireless LAN identifier range is from 1 to 512.</td>
</tr>
<tr>
<td>foreignAp</td>
<td>Displays the configuration for support of foreign access points.</td>
</tr>
</tbody>
</table>

Command Default

None

Usage Guidelines

For 802.1X client security type, which creates the PMK cache, the maximum session timeout that can be set is 86400 seconds when the session timeout is disabled. For other client security such as open, WebAuth, and PSK for which the PMK cache is not created, the session timeout value is shown as infinite when session timeout is disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of wireless LANs for wlan_id 1:

```
(Cisco Controller) >show wlan 1
WLAN Identifier.................. 1
Profile Name........................... aicha
Network Name (SSID).................. aicha
Status................................. Enabled
MAC Filtering........................ Disabled
Broadcast SSID......................... Enabled
AAA Policy Override.................. Disabled
Network Admission Control
   RADIUS Profiling Status ............ Disabled
   DHCP ............................... Disabled
   HTTP ................................ Disabled
Client Profiling Status.............. Disabled
   DHCP ............................... Disabled
   HTTP ................................ Disabled
   Radius-NAC State................... Enabled
   SNMP-NAC State...................... Enabled
Quarantine VLAN........................ 0
Maximum number of Associated Clients................. 0
Maximum number of Clients per AP Radio............. 200
Number of Active Clients....................... 0
Exclusionlist Timeout................... 60 seconds
Session Timeout.......................... 1800 seconds
User Idle Timeout....................... 300 seconds
```
User Idle Threshold: 0 Bytes
NAS-identifier: Talwar1
CHD per WLAN: Enabled
Webauth DHCP exclusion: Disabled
Interface: management
Multicast Interface: Not Configured
WLAN IPv4 ACL: unconfigured
WLAN IPv6 ACL: unconfigured
mDNS Status: Disabled
mDNS Profile Name: unconfigured
DHCP Server: Default
DHCP Address Assignment Required: Disabled
Static IP client tunneling: Enabled
PMIPv6 Mobility Type: none
Quality of Service: Silver (best effort)
Per-SSID Rate Limits: Upstream 0, Downstream 0
Average Data Rate: 0
Average Realtime Data Rate: 0
Burst Data Rate: 0
Burst Realtime Data Rate: 0
Per-Client Rate Limits: Upstream 0, Downstream 0
Average Data Rate: 0
Average Realtime Data Rate: 0
Burst Data Rate: 0
Burst Realtime Data Rate: 0
Scan Defer Priority: 4, 5, 6
Scan Defer Time: 100 milliseconds
WMM: Allowed
WMM UAPSD Compliant Client Support: Disabled
Media Stream Multicast-direct: Disabled
CCX - Aironet Support: Enabled
CCX - Gratuitous ProbeResponse (GPR): Disabled
CCX - Diagnostics Channel Capability: Disabled
Dot11-Phone Mode (7920): Disabled
Wired Protocol: None
Passive Client Feature: Disabled
IPv6 Support: Disabled
Peer-to-Peer Blocking Action: Disabled
Radio Policy: All
DTIM period for 802.11a radio: 1
DTIM period for 802.11b radio: 1
Radius Servers
Authentication: Global Servers
Accounting: Global Servers
Interim Update: Disabled
Dynamic Interface: Disabled
Local EAP Authentication: Enabled (Profile 'Controller_Local_EAP')
Radius NAI-Realm: Enabled
Security
802.11 Authentication: Open System
FT Support: Disabled
Static WEP Keys: Disabled
802.1x: Disabled
WPA (SSN IE): Enabled
WPA2 (RSN IE): Enabled
TKIP Cipher: Enabled
AES Cipher: Enabled
Auth Key Management
802.1x: Enabled
PSK: Disabled
CCRM: Enabled
FT(802.11r)............................. Disabled
FT-PSK(802.11r)......................... Disabled
PMF-1X(802.11w)......................... Enabled
PMF-PSK(802.11w)......................... Disabled
FT Reassociation Timeout......................... 20
FT Over-The-Air mode......................... Enabled
FT Over-The-Ds mode............................. Enabled
GTK Randomization.......................... Disabled
SKC Cache Support.......................... Disabled
CCKM TSF Tolerance........................... 1000
Wi-Fi Direct policy configured............. Disabled
EAP-Passthrough............................... Disabled
CKIP ... Disabled
IP Security................................... Disabled
IP Security Passthru.......................... Disabled
Web Based Authentication..................... Disabled
Web-Passthrough.............................. Disabled
Conditional Web Redirect..................... Disabled
Splash-Page Web Redirect.................... Disabled
Auto Anchor................................... Disabled
FlexConnect Local Switching................. Enabled
flexconnect Central Dhcpc Flag.............. Disabled
flexconnect nat-pat Flag.................... Disabled
flexconnect Dna Override Flag.............. Disabled
FlexConnect Vlan based Central Switching... Disabled
FlexConnect Local Authentication............ Disabled
FlexConnect Learn IP Address................. Enabled
Client MPP.................................... Optional
PMF... Disabled
PMF Association Comeback Time.............. 1
PMF SA Query RetryTimeout................... 200
Tkip MIC Countermeasure Hold-down Timer.... 60
call Snooping................................. Disabled
Roamed Call Re-Anchor Policy................. Disabled
SIP CAC Fail Send-486-Busy Policy............ Enabled
SIP CAC Fail Send Dis-Association Policy..... Disabled
KTS based CAC Policy........................... Disabled
Band Select................................. Disabled
Load Balancing.............................. Disabled
Mobility Anchor List
WLAN ID IP Address Status
------- -------------- -------
802.11u.................................... Enabled
Network Access type......................... Chargeable Public Network
Internet service............................ Enabled
Network Authentication type............... Not Applicable
HESSID.......................... 00:00:00:00:00:00
IPv4 Address type.......................... Available
IPv6 Address type.......................... Not Known
Roaming Consortium List
Index OUI List In Beacon
----- -------------- ---------
1 313131 Yes
2 DDBBCC No
3 DDDDDD Yes
Realm configuration summary
Realm index................................. 1
Realm name.................................. jobin
EAP index.................................. 1
EAP method................................. Unsupported
Index Inner Authentication Authentication Method
----- ------------------ ----------------------
The following example shows how to display a summary of all WLANs:

(Cisco Controller) >show wlan summary
Number of WLANs................................. 1

WLAN ID WLAN Profile Name / SSID Status Interface Name PMIPv6 Mobility
------- -- -------- -------------- ------------
 -- -------- ------------------

1 apsso / apsso Disabled management none

The following example shows how to display the configuration for support of foreign access points:

(Cisco Controller) >show wlan foreignap
Foreign AP support is not enabled.

The following example shows how to display the AP groups:

The following example shows how to display the AP groups:
show wlan apgroups

Total Number of AP Groups....................... 1
Site Name.. APuser
Site Description.................................. <none>
Venue Name....................................... Not configured
Venue Group Code.................................. Unspecified
Venue Type Code................................... Unspecified
Language Code..................................... Not configured
AP Operating Class............................... 83,84,112,113,115,116,117,118,123

RF Profile

2.4 GHz band..................................... <none>
5 GHz band....................................... <none>

WLAN ID Interface Network Admission Control Radio Policy
------- ----------- -------------------------- ------------
14 int_4 Disabled All

AP Name Slots AP Model Ethernet MAC Location Port
------------------ ----- ------------------- ----------------- ---------------- ----
------- --------
Ibiza 2 AIR-CAP2602I-A-K9 44:2b:03:9a:8a:73 default location 1
US 1
US 1
US 1

Number of Clients............................. 1

MAC Address AP Name Status Device Type
----------------- ------------- ------------- -----------------
24:77:03:89:9b:f8 ap2 Associated Android
show wps ap-authentication summary

To display the access point neighbor authentication configuration on the controller, use the show wps ap-authentication summary command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the Wireless Protection System (WPS) access point neighbor authentication:

(Cisco Controller) > show wps ap-authentication summary
AP neighbor authentication is <disabled>.
Authentication alarm threshold is 1.
RF-Network Name: <B1>

Related Commands

config wps ap-authentication
show wps cids-sensor

To display Intrusion Detection System (IDS) sensor summary information or detailed information on a specified Wireless Protection System (WPS) IDS sensor, use the `show wps cids-sensor` command.

```
show wps cids-sensor {summary | detail index}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays a summary of sensor settings.</td>
<td></td>
</tr>
<tr>
<td>detail</td>
<td>Displays all settings for the selected sensor.</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>IDS sensor identifier.</td>
<td></td>
</tr>
</tbody>
</table>

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display all settings for the selected sensor:

```
(Cisco Controller) > show wps cids-sensor detail
IP Address....................................... 10.0.0.51
Port............................................. 443
Query Interval................................. 60
Username......................................... Sensor_user1
Cert Fingerprint............................... SHA1: 00:00:00:00:00:00:00:00:00
00:00:00:00:00:00:00:00:00:00:00:00
00:00:00:00:00:00:00:00:00:00:00:00
Query State...................................... Disabled
Last Query Result.............................. Unknown
Number of Queries Sent........................ 0
```

Related Commands
config wps ap-authentication
show wps mfp

To display Management Frame Protection (MFP) information, use the `show wps mfp` command.

```
show wps mfp {summary | statistics}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays the MFP configuration and status.</td>
</tr>
<tr>
<td>statistics</td>
<td>Displays MFP statistics.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the MFP configuration and status:

```
(Cisco Controller) > show wps mfp summary
Global Infrastructure MFP state............... DISABLED (*all infrastructure settings are overridden)
Controller Time Source Valid..................... False
WLAN ID  WLAN Name  Status  Protection  Protection
-------  ------------  ------  -----------  -----------
 1       homeap      Disabled *Enabled  Optional but inactive
          (WPA2 not configured)
 2       7921        Enabled  *Enabled  Optional but inactive
          (WPA2 not configured)
 3       open1       Enabled  *Enabled  Optional but inactive
          (WPA2 not configured)
 4       7920        Enabled  *Enabled  Optional but inactive
          (WPA2 not configured)
```

The following example shows how to display the MFP statistics:

```
(Cisco Controller) > show wps mfp statistics
BSSID  Radio Validator AP  Last Source Addr  Found  Error Type
Count  Frame Types
-------  ------------  ------------------  -----  ------
no errors
```

Related Commands

- `config wps mfp`
show wps shun-list

To display the Intrusion Detection System (IDS) sensor shun list, use the **show wps shun-list** command.

show wps shun-list

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the IDS system sensor shun list:

```
(Cisco Controller) > show wps shun-list
```

Related Commands
`config wps shun-list re-sync`
show wps signature detail

To display installed signatures, use the `show wps signature detail` command.

```
show wps signature detail sig-id
```

Syntax Description

- `sig-id` Signature ID of an installed signature.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

This example shows how to display information on the attacks detected by standard signature 1:

```
(Cisco Controller) > show wps signature detail 1
Signature-ID......................... 1
Precedence............................ 1
Signature Name.......................... Bcast deauth
Type.................................... standard
FrameType................................ management
State.................................... enabled
Action.................................. report
Tracking.................................. per Signature and Mac
Signature Frequency.................... 500 pkts/interval
Signature Mac Frequency............... 300 pkts/interval
Interval.................................. 10 sec
Quiet Time................................ 300 sec
Description............................ Broadcast Deauthentication Frame Patterns:
                                    0(Header):0x0:0x0
                                    4(Header):0x0:0x0
```

Related Commands

- `config wps signature`
- `config wps signature frequency`
- `config wps signature mac-frequency`
- `config wps signature interval`
- `config wps signature quiet-time`
- `config wps signature reset`
- `show wps signature events`
- `show wps signature summary`
- `show wps summary`
show wps signature events

To display more information about the attacks detected by a particular standard or custom signature, use the show wps signature events command.

show wps signature events {summary | {standard | custom} precedenceID {summary | detailed}}

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summary</td>
<td>Displays all tracking signature summary information.</td>
</tr>
<tr>
<td>standard</td>
<td>Displays Standard Intrusion Detection System (IDS) signature settings.</td>
</tr>
<tr>
<td>custom</td>
<td>Displays custom IDS signature settings.</td>
</tr>
<tr>
<td>precedenceID</td>
<td>Signature precedence identification value.</td>
</tr>
<tr>
<td>detailed</td>
<td>Displays tracking source MAC address details.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the number of attacks detected by all enabled signatures:

(Cisco Controller) > show wps signature events summary

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Signature Name</th>
<th>Type</th>
<th># Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bcast deauth</td>
<td>Standard</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>NULL probe resp</td>
<td>Standard</td>
<td>1</td>
</tr>
</tbody>
</table>

This example shows how to display a summary of information on the attacks detected by standard signature 1:

(Cisco Controller) > show wps signature events standard 1 summary

Precedence......................... 1
Signature Name.......................... Bcast deauth
Type.................................... Standard
Number of active events............... 2
Source MAC Addr Track Method Frequency # APs Last Heard
---------------------------------- -------- ---- ----------
00:a0:f8:58:60:dd Per Signature 50 1 Wed Oct 25 15:03:05 2006
00:a0:f8:58:60:dd Per Mac 30 1 Wed Oct 25 15:02:53 2006
Related Commands

- `config wps signature frequency`
- `config wps signature mac-frequency`
- `config wps signature interval`
- `config wps signature quiet-time`
- `config wps signature reset`
- `config wps signature`
- `show wps signature summary`
- `show wps summary`
show wps signature summary

To see individual summaries of all of the standard and custom signatures installed on the controller, use the `show wps signature summary` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of all of the standard and custom signatures:

```
(Cisco Controller) > show wps signature summary
Signature-ID................................. 1
Precedence................................. 1
Signature Name.............................. Bcast deauth
Type........................................ standard
FrameType.................................... management
State........................................ enabled
Action....................................... report
Tracking..................................... per Signature and Mac
Signature Frequency....................... 50 pkts/interval
Signature Mac Frequency................... 30 pkts/interval
Interval.................................... 1 sec
Quiet Time.................................. 300 sec
Description............................... Broadcast
Deauthentication Frame
Patterns:
  0(Header):0x00c0:00ff
  4(Header):0x01:0x01
  ...
```

Related Commands

- `config wps signature frequency`
- `config wps signature interval`
- `config wps signature quiet-time`
- `config wps signature reset`
- `show wps signature events`
- `show wps summary`
- `config wps signature mac-frequency`
config wps signature
show wps summary

To display Wireless Protection System (WPS) summary information, use the `show wps summary` command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display WPS summary information:

```
(Cisco Controller) > show wps summary
Auto-Immune
   Auto-Immune............................... Disabled
Client Exclusion Policy
   Excessive 802.11-association failures........ Enabled
   Excessive 802.11-authentication failures...... Enabled
   Excessive 802.1x-authentication................ Enabled
   IP-theft..................................... Enabled
   Excessive Web authentication failure.......... Enabled
Trusted AP Policy
   Management Frame Protection.................. Disabled
   Mis-configured AP Action..................... Alarm Only
      Enforced encryption policy................ none
      Enforced preamble policy................... none
      Enforced radio type policy............... none
   Validate SSID................................ Disabled
   Alert if Trusted AP is missing.............. Disabled
   Trusted AP timeout........................... 120
Untrusted AP Policy
   Rogue Location Discovery Protocol............ Disabled
   RLDP Action.................................. Alarm Only
   Rogue APs
      Rogues AP advertising my SSID............. Alarm Only
      Detect and report Ad-Hoc Networks........ Enabled
   Rogue Clients
      Validate rogue clients against AAA........ Enabled
      Detect trusted clients on rogue APs........ Alarm Only
   Rogue AP timeout............................ 1300
Signature Policy
   Signature Processing........................ Enabled
...
Related Commands

- config wps signature frequency
- config wps signature interval
- config wps signature quiet-time
- config wps signature reset
- show wps signature events
- show wps signature mac-frequency
- show wps summary
- config wps signature
- config wps signature interval
show wps wips statistics

To display the current state of the Cisco Wireless Intrusion Prevention System (wIPS) operation on the controller, use the **show wps wips statistics** command.

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display the statistics of the wIPS operation:

```
(Cisco Controller) > show wps wips statistics
Policy Assignment Requests............ 1
Policy Assignment Responses.......... 1
Policy Update Requests................ 0
Policy Update Responses............ 0
Policy Delete Requests............. 0
Policy Delete Responses............ 0
Alarm Updates....................... 13572
Device Updates....................... 8376
Device Update Requests............... 0
Device Update Responses........... 0
Forensic Updates.................... 1001
Invalid WIPS Payloads............... 0
Invalid Messages Received........... 0
NMSP Transmitted Packets............ 22950
NMSP Transmit Packets Dropped...... 0
NMSP Largest Packet................ 1377
```

**Related Commands**

- `config 802.11 enable`
- `config ap mode`
- `config ap monitor-mode`
- `show ap config`
- `show ap monitor-mode summary`
- `show wps wips summary`
**show wps wips summary**

To display the adaptive Cisco Wireless Intrusion Prevention System (wIPS) configuration that the Wireless Control System (WCS) forwards to the controller, use the `show wps wips summary` command.

**show wps wips summary**

**Syntax Description**  
This command has no arguments or keywords.

**Command Default**  
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the wIPS configuration:

(Cisco Controller) > `show wps wips summary`
Policy Name.......................... Default
Policy Version......................... 3

**Related Commands**

- `config 802.11 enable`
- `config ap mode`
- `config ap monitor-mode`
- `show ap config`
- `show ap monitor-mode summary`
- `show wps wips statistics`
show wps ap-authentication summary

To display the access point neighbor authentication configuration on the controller, use the `show wps ap-authentication summary` command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to display a summary of the Wireless Protection System (WPS) access point neighbor authentication:

```
(Cisco Controller) > show wps ap-authentication summary
AP neighbor authentication is <disabled>.
Authentication alarm threshold is 1.
RF-Network Name: <B1>
```
PART VIII

Miscellaneous Commands

• Miscellaneous Commands: 1, on page 1687
• Miscellaneous Commands: 1, on page 1693
Miscellaneous Commands: 1

- cping, on page 1688
- eping, on page 1689
- mping, on page 1690
- ping, on page 1691
To test mobility data traffic using CAPWAP, use the **cping** command.

**cping mobility_peer_IP_address**

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mobility_peer_IP_address</td>
<td>IP address of a peer mobility controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>This command was introduced in the controller 7.5 Release.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command tests the mobility data traffic using the new mobility architecture.

The following example shows how to test the data traffic of a controller with peer mobility IP address as 172.12.35.31:

(Cisco Controller) > **cping 172.12.35.31**
**eping**

To test the mobility Ethernet over IP (EoIP) data packet communication between two Cisco WLCs, use the *eping* command.

**eping mobility_peer_IP_address**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mobility_peer_IP_address</strong></td>
<td>IP address of a controller that belongs to a mobility group.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command tests the mobility data traffic over the management interface.

This ping test is not Internet Control Message Protocol (ICMP) based. The term “ping” is used to indicate an echo request and an echo reply message.

The IPv6 address format for this command is not supported.

The following example shows how to test EoIP data packets and to set the IP address of a controller that belongs to a mobility group to 172.12.35.31:

(Cisco Controller) >eping 172.12.35.31
To test mobility UDP control packet communication between two Cisco WLCs, use the `mping` command.

```
mping mobility_peer_IP_address
```

**Syntax Description**

| `mobility_peer_IP_address` | IP address of a controller that belongs to a mobility group. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This test runs over mobility UDP port 16666. It tests whether the mobility control packet can be reached over the management interface.

**Note**

This ping test is not Internet Control Message Protocol (ICMP) based. The term “ping” is used to indicate an echo request and an echo reply message.

The following example shows how to test mobility UDP control packet communications and to set the IP address of a Cisco WLC that belongs to a mobility group to 172.12.35.31:

(Cisco Controller) > mping 172.12.35.31
ping

To send ICMP echo packets to a specified IP address, use the ping command:

```
ping ip-addr interface-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr</td>
<td>IP address of the interface that you are trying to send ICMP echo packets to</td>
</tr>
<tr>
<td>interface-name</td>
<td>Name of the interface to which you are trying to send ICMP echo packets</td>
</tr>
</tbody>
</table>

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you run the `ping` command, the CPU spikes up to 98 percent in the “osapi_ping_rx process”. While the `ping` command is running, the terminal and web activity on the Cisco WLC is blocked.

**Example**

The following example shows how to send ICMP echo packets to an interface:

```
(Cisco Controller) >ping 209.165.200.225 dyn-interface-1
```
ping
**Miscellaneous Commands: 1**

- capwap ap controller ip address, on page 1695
- capwap ap dot1x, on page 1696
- capwap ap hostname, on page 1697
- capwap ap ip address, on page 1698
- capwap ap ip default-gateway, on page 1699
- capwap ap log-server, on page 1700
- capwap ap mode, on page 1701
- capwap ap primary-base, on page 1702
- capwap ap primed-timer, on page 1703
- capwap ap secondary-base, on page 1704
- capwap ap tertiary-base, on page 1705
- lwapp ap controller ip address, on page 1706
- reset system at, on page 1707
- reset system in, on page 1708
- reset system cancel, on page 1709
- reset system notify-time, on page 1710
- reset peer-system, on page 1711
- save config, on page 1712
- transfer download certpassword, on page 1713
- transfer download datatype, on page 1714
- transfer download filename, on page 1716
- transfer download mode, on page 1717
- transfer download password, on page 1718
- transfer download path, on page 1719
- transfer download port, on page 1720
- transfer download serverip, on page 1721
- transfer download start, on page 1722
- transfer download tftpPktTimeout, on page 1723
- transfer download tftpMaxRetries, on page 1724
- transfer download username, on page 1725
- transfer encrypt, on page 1726
- transfer upload datatype, on page 1727
- transfer upload filename, on page 1729
• transfer upload mode, on page 1730
• transfer upload pac, on page 1731
• transfer upload password, on page 1732
• transfer upload path, on page 1733
• transfer upload peer-start, on page 1734
• transfer upload port, on page 1735
• transfer upload serverip, on page 1736
• transfer upload start, on page 1737
• transfer upload username, on page 1738
capwap ap controller ip address

To configure the controller IP address into the CAPWAP access point from the access point’s console port, use the capwap ap controller ip address command.

capwap ap controller ip address A.B.C.D

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>A.B.C.D</th>
<th>IP address of the controller.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port. This command is applicable for IPv4 addresses only.

The access point must be running Cisco IOS Release 12.3(11)JX1 or later releases.

The following example shows how to configure the controller IP address 10.23.90.81 into the CAPWAP access point:

```
ap_console > capwap ap controller ip address 10.23.90.81
```
capwap ap dot1x

To configure the dot1x username and password into the CAPWAP access point from the access point’s console port, use the `capwap ap dot1x` command.

```
capwap ap dot1x username user_name password password
```

**Syntax Description**

- `user_name`: Dot1x username.
- `password`: Dot1x password.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port.

**Note**

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the dot1x username ABC and password pass01:

```
ap_console > capwap ap dot1x username ABC password pass01
```
capwap ap hostname

To configure the access point host name from the access point’s console port, use the `capwap ap hostname` command.

```
capwap ap hostname host_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>host_name</code></th>
<th>Hostname of the access point.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port.

The access point must be running Cisco IOS Release 12.3(11)JX1 or later releases. This command is available only for the Cisco Lightweight AP IOS Software recovery image (rcvk9w8) without any private-config. You can remove the private-config by using the `clear capwap private-config` command.

This example shows how to configure the hostname `WLC` into the capwap access point:

```
ap_console > capwap ap hostname WLC
```
capwap ap ip address

To configure the IP address into the CAPWAP access point from the access point’s console port, use the capwap ap ip address command.

capwap ap ip address A.B.C.D

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.B.C.D</td>
<td>IP address.</td>
</tr>
</tbody>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command must be entered from an access point’s console port. This command supports only IPv4 address format.

Note

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the IP address 10.0.0.1 into CAPWAP access point:

ap_console > capwap ap ip address 10.0.0.1
### capwap ap ip default-gateway

To configure the default gateway from the access point’s console port, use the `capwap ap ip default-gateway` command.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>A.B.C.D</code></td>
<td>Default gateway address of the capwap access point.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port. This command supports only IPv4 address format.

**Note**

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the CAPWAP access point with the default gateway address 10.0.0.1:

```
ap_console >capwap ap ip default-gateway 10.0.0.1
```
capwap ap log-server

To configure the system log server to log all the CAPWAP errors, use the `capwap ap log-server` command.

```
capwap ap log-server A.B.C.D
```

**Syntax Description**

```
A.B.C.D IP address of the syslog server.
```

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port. This command supports only IPv4 address format.

**Note**

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the syslog server with the IP address 10.0.0.1:

```
ap_console >capwap ap log-server 10.0.0.1
```
**capwap ap mode**

To configure the local or bridge mode on the access point, use the `capwap ap mode` command.

```
capwap ap mode local | bridge
```

**Syntax Description**

- `local`  Configures the access point in local mode.
- `bridge` Configures the access point in bridge mode.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port.

**Note**

When you execute this command, the access point reboots.

The following example shows how to configure an access point in bridge mode:

```
ap_console #capwap ap mode bridge
```
capwap ap primary-base

To configure the primary controller name and IP address into the CAPWAP access point from the access point’s console port, use the **capwap ap primary-base** command.

---

**Note**

This command configures the IPv4 and IPv6 address for Cisco Wave 2 APs.

---

**Syntax Description**

- **WORD**
  - Name of the primary controller.

- **A.B.C.D**
  - IP address of the primary controller.

---

**Command Default**

None

---

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports IPv4 and IPv6 address format.</td>
</tr>
</tbody>
</table>

---

**Usage Guidelines**

This command must be entered from an access point’s console port in enable mode (elevated access).

This example shows how to configure the primary controller name WLC1 and primary controller IP address 209.165.200.225 into the CAPWAP access point:

```plaintext
ap_console > capwap ap primary-base WLC1 209.165.200.225
```
capwap ap primed-timer

To configure the primed timer into the CAPWAP access point, use the `capwap ap primed-timer` command.

```
capwap ap primed-timer { enable | disable }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables the primed timer settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disable</td>
<td>Disables the primed timer settings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | This command must be entered from an access point’s console port. |

| Note | The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases. |

This example shows how to enable the primed-timer settings:

```
>capwap ap primed-timer enable
```
capwap ap secondary-base

To configure the name and IP address of the secondary Cisco WLC into the CAPWAP access point from the access point’s console port, use the `capwap ap secondary-base` command.

```
capwap ap secondary-base controller_name controller_ip_address
```

**Syntax Description**

- `controller_name`: Name of the secondary Cisco WLC.
- `controller_ip_address`: IP address of the secondary Cisco WLC.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port. This command supports only IPv4 address format.

**Note**

The access point must be running Cisco Access Point IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the secondary Cisco WLC name as WLC2 and secondary Cisco WLC IP address 209.165.200.226 into the CAPWAP access point:

```
ap_console >capwap ap secondary-base WLC2 209.165.200.226
```
capwap ap tertiary-base

To configure the name and IP address of the tertiary Cisco WLC into the CAPWAP access point from the access point’s console port, use the `capwap ap tertiary-base` command.

```
capwap ap tertiary-base WORDA.B.C.D
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORD</td>
<td>Name of the tertiary Cisco WLC.</td>
</tr>
<tr>
<td>A.B.C.D</td>
<td>IP address of the tertiary Cisco WLC.</td>
</tr>
</tbody>
</table>

| Command Default | None |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command must be entered from an access point’s console port. This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Note**

The access point must be running Cisco IOS Release 12.3(11)JX1 or later releases.

This example shows how to configure the tertiary Cisco WLC with the name WLC3 and secondary Cisco WLC IP address 209.165.200.227 into the CAPWAP access point:

```
ap_console >capwap ap tertiary-base WLC3 209.165.200.227
```
lwapp ap controller ip address

To configure the Cisco WLC IP address into the FlexConnect access point from the access point’s console port, use the **lwapp ap controller ip address** command.

**lwapp ap controller ip address A.B.C.D**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.B.C.D</td>
<td>IP address of the controller.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports only IPv4 address format.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command must be entered from an access point’s console port. This command is applicable for IPv4 addresses only.

Prior to changing the FlexConnect configuration on an access point using the access point’s console port, the access point must be in standalone mode (not connected to a controller) and you must remove the current LWAPP private configuration by using the **clear lwapp private-config** command.

**Note**

The access point must be running Cisco IOS Release 12.3(11)JX1 or higher releases.

The following example shows how to configure the controller IP address 10.92.109.1 into the FlexConnect access point:

```
ap_console > lwapp ap controller ip address 10.92.109.1
```
reset system at

To reset the system at a specified time, use the `reset system at` command.

```
reset system at YYYY-MM-DD HH: MM: SS image {no-swap | swap} reset-aps [save-config]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>YYYY-MM-DD</th>
<th>Specifies the date.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH: MM: SS</td>
<td>Specifies the time in a 24-hour format.</td>
</tr>
<tr>
<td>image</td>
<td>Configures the image to be rebooted.</td>
</tr>
<tr>
<td>swap</td>
<td>Changes the active boot image; boots the non-active image and sets the default flag on it on the next reboot.</td>
</tr>
<tr>
<td>no-swap</td>
<td>Boots from the active image.</td>
</tr>
<tr>
<td>reset-aps</td>
<td>Resets all access points during the system reset.</td>
</tr>
<tr>
<td>save-config</td>
<td>(Optional) Saves the configuration before the system reset.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to reset the system at 2010-03-29 and 12:01:01 time:

```
(Cisco Controller) > reset system at 2010-03-29 12:01:01 image swap reset-aps save-config
```
reset system in

To specify the amount of time delay before the devices reboot, use the reset system in command.

```
reset system in HH:MM:SS image {swap | no-swap} reset-aps save-config
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH :MM :SS</td>
<td>Specifies a delay in duration.</td>
</tr>
<tr>
<td>image</td>
<td>Configures the image to be rebooted.</td>
</tr>
<tr>
<td>swap</td>
<td>Changes the active boot image; boots the non-active image and sets the default flag on it on the next reboot.</td>
</tr>
<tr>
<td>no-swap</td>
<td>Boots from the active image.</td>
</tr>
<tr>
<td>reset-aps</td>
<td>Resets all access points during the system reset.</td>
</tr>
<tr>
<td>save-config</td>
<td>Saves the configuration before the system reset.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to reset the system after a delay of 00:01:01:

```
(Cisco Controller) > reset system in 00:01:01 image swap reset-aps save-config
```
reset system cancel

To cancel a scheduled reset, use the reset system cancel command.

reset system cancel

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to cancel a scheduled reset:

(Cisco Controller) > reset system cancel
reset system notify-time

To configure the trap generation prior to scheduled resets, use the reset system notify-time command.

```
reset system notify-time minutes
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>minutes</th>
<th>Number of minutes before each scheduled reset at which to generate a trap.</th>
</tr>
</thead>
</table>

**Command Default**

The default time period to configure the trap generation prior to scheduled resets is 10 minutes.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the trap generation to 10 minutes before the scheduled resets:

```
(Cisco Controller) > reset system notify-time 55
```
reset peer-system

To reset the peer controller, use the **reset peer-system** command.

```plaintext
reset peer-system
```

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to reset the peer controller:

```plaintext
> reset peer-system
```
save config

To save the controller configurations, use the `save config` command.

**save config**

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to save the controller settings:

```plaintext
(Cisco Controller) > save config
Are you sure you want to save? (y/n) y
Configuration Saved!
```
transfer download certpassword

To set the password for the .PEM file so that the operating system can decrypt the web administration SSL key and certificate, use the `transfer download certpassword` command.

```
transfer download certpassword private_key_password
```

**Syntax Description**

- **private_key_password**: Certificate’s private key password.

**Command Default**

None

**Command History**

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>
```

The following example shows how to transfer a file to the switch with the certificate’s private key password `certpassword`:

```
(Cisco Controller) > transfer download certpassword
Clearing password
```
**transfer download datatype**

To set the download file type, use the `transfer download datatype` command.

```
transfer download datatype { avc-protocol-pack | code | config | eapdevcert | eapcacert | icon | image | ipseccacert | ipseccert | login-banner | radius-avplist | signature | webadmincert | webauthbundle | webauthcert }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>avc-protocol-pack</code></td>
<td>Downloads an AVC protocol pack to the system.</td>
</tr>
<tr>
<td><code>code</code></td>
<td>Downloads an executable image to the system.</td>
</tr>
<tr>
<td><code>config</code></td>
<td>Downloads the configuration file.</td>
</tr>
<tr>
<td><code>eapcacert</code></td>
<td>Downloads an EAP ca certificate to the system.</td>
</tr>
<tr>
<td><code>eapdevcert</code></td>
<td>Downloads an EAP dev certificate to the system.</td>
</tr>
<tr>
<td><code>icon</code></td>
<td>Downloads an executable image to the system.</td>
</tr>
<tr>
<td><code>image</code></td>
<td>Downloads a web page login to the system.</td>
</tr>
<tr>
<td><code>ipseccacert</code></td>
<td>Downloads an IPSec Certificate Authority (CA) certificate to the system.</td>
</tr>
<tr>
<td><code>ipseccert</code></td>
<td>Downloads an IPSec dev certificate to the system.</td>
</tr>
<tr>
<td><code>login-banner</code></td>
<td>Downloads the controller login banner. Only text file is supported with a maximum of 1500 bytes.</td>
</tr>
<tr>
<td><code>radius-avplist</code></td>
<td>Downloads the RADIUS AVPs in the XML file format from the FTP server.</td>
</tr>
<tr>
<td><code>signature</code></td>
<td>Downloads a signature file to the system.</td>
</tr>
<tr>
<td><code>webadmincert</code></td>
<td>Downloads a certificate for web administration to the system.</td>
</tr>
<tr>
<td><code>webauthbundle</code></td>
<td>Downloads a custom webauth bundle to the system.</td>
</tr>
<tr>
<td><code>webauthcert</code></td>
<td>Downloads a web certificate for the web portal to the system.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The <code>ipseccacert</code>, <code>ipseccert</code>, and <code>radius-avplist</code> options were introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to download an executable image to the system:
(Cisco Controller) > transfer download datatype code
transfer download filename

To download a specific file, use the `transfer download filename` command.

**Syntax Description**

<table>
<thead>
<tr>
<th><strong>filename</strong></th>
<th>Filename that contains up to 512 alphanumeric characters.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You cannot use special characters such as `\: * " < > |` for the filename.

The following example shows how to transfer a file named build603:

```
(Cisco Controller) > transfer download filename build603
```
transfer download mode

To set the transfer mode, use the transfer download mode command.

`transfer upload mode { ftp | tftp | sftp }`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ftp</th>
<th>Sets the transfer mode to FTP.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tftp</td>
<td>Sets the transfer mode to TFTP.</td>
</tr>
<tr>
<td></td>
<td>sftp</td>
<td>Sets the transfer mode to SFTP.</td>
</tr>
</tbody>
</table>

Command Default: None

Command History:

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to transfer a file using the TFTP mode:

(Cisco Controller) > transfer download mode tftp
transfer download password

To set the password for an FTP transfer, use the `transfer download password` command.

`transfer download password password`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>password</th>
<th>Password.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the password for FTP transfer to pass01:

```
(Cisco Controller) > transfer download password pass01
```
**transfer download path**

To set a specific FTP or TFTP path, use the `transfer download path` command.

**Syntax Description**

```
transfer download path path
```

* `path` - Directory path.

**Note**
Path names on a TFTP or FTP server are relative to the server’s default or root directory. For example, in the case of the Solarwinds TFTP server, the path is “/”.

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 7.6     | This command was introduced in a release earlier than Release 7.6.

**Usage Guidelines**

You cannot use special characters such as `\ * ? " < > |` for the file path.

The following example shows how to transfer a file to the path `c:\install\version2`:

```
(Cisco Controller) > transfer download path c:\install\version2
```
transfer download port

To specify the FTP port, use the `transfer download port` command.

```
transfer download port port
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>FTP port.</td>
</tr>
</tbody>
</table>

| Command Default     | The default FTP `port` is 21. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td></td>
<td>ch</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to specify FTP port number 23:

```
(Cisco Controller) > transfer download port 23
```
To configure the IPv4 or IPv6 address of the TFTP server from which to download information, use the `transfer download serverip` command.

**Syntax Description**

```
transfer download serverip IP addr
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>IP addr</th>
<th>TFTP server IPv4 or IPv6 address.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the IPv4 address of the TFTP server:

(Cisco Controller) > `transfer download serverip 175.34.56.78`

The following example shows how to configure the IPv6 address of the TFTP server:

(Cisco Controller) > `transfer download serverip 2001:10:1:1::1`
# transfer download start

To initiate a download, use the `transfer download start` command.

### Syntax Description

This command has no arguments or keywords.

### Command Default

None

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to initiate a download:

```
(Cisco Controller) > transfer download start
Mode... TFTP
Data Type...................................... Site Cert
TFTP Server IP................................ 172.16.16.78
TFTP Path...................................... directory path
TFTP Filename.................................. webadmincert_name
This may take some time.
Are you sure you want to start? (y/n) Y
TFTP Webadmin cert transfer starting.
Certificate installed.
Please restart the switch (reset system) to use the new certificate.
```
**transfer download tftpPktTimeout**

To specify the TFTP packet timeout, use the `transfer download tftpPktTimeout` command.

```
transfer download tftpPktTimeout timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout</code></td>
<td>None</td>
<td>Release 7.6</td>
</tr>
<tr>
<td>Timeout in seconds between 1 and 254.</td>
<td></td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to transfer a file with the TFTP packet timeout of 55 seconds:

```
(Cisco Controller) > transfer download tftpPktTimeout 55
```
transfer download tftpMaxRetries

To specify the number of allowed TFTP packet retries, use the `transfer download tftpMaxRetries` command.

```
transfer download tftpMaxRetries retries
```

**Syntax Description**

| retries | Number of allowed TFTP packet retries between 1 and 254 seconds. |

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the number of allowed TFTP packet retries to 55:

```
(Cisco Controller) > transfer download tftpMaxRetries 55
```
**transfer download username**

To specify the FTP username, use the `transfer download username` command.

```
transfer download username username
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>username</th>
<th>Username.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to set the FTP username to `ftp_username`:

```
(Cisco Controller) > transfer download username ftp_username
```
To configure encryption for configuration file transfers, use the `transfer encrypt` command.

```
transfer encrypt (enable | disable | set-key key)
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the encryption settings.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Disables the encryption settings.</td>
</tr>
<tr>
<td><code>set-key</code></td>
<td>Specifies the encryption key for configuration file transfers.</td>
</tr>
<tr>
<td><code>key</code></td>
<td>Encryption key for config file transfers.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to enable the encryption settings:

```
(Cisco Controller) > transfer encrypt enable
```
transfer upload datatype

To set the controller to upload specified log and crash files, use the transfer upload datatype command.

```
transfer upload datatype { ap-crash-data | config | coredump | crashfile | debug-file |
eapcacert | eapdevcert | errorlog | invalid-config | ipseccacert | ipsecdevcert | pac |
packet-capture | panic-crash-file | radio-core-dump | radius-avplist | rrm-log | run-config |
signature | systemtrace | traplog | watchdog-crash-filewebadmincert | webauthbundle | webauthcert }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-crash-data</td>
<td>Uploads the AP crash files.</td>
</tr>
<tr>
<td>config</td>
<td>Uploads the system configuration file.</td>
</tr>
<tr>
<td>coredump</td>
<td>Uploads the core-dump file.</td>
</tr>
<tr>
<td>crashfile</td>
<td>Uploads the system crash file.</td>
</tr>
<tr>
<td>debug-file</td>
<td>Uploads the system's debug log file.</td>
</tr>
<tr>
<td>eapcacert</td>
<td>Uploads an EAP CA certificate.</td>
</tr>
<tr>
<td>eapdevcert</td>
<td>Uploads an EAP Dev certificate.</td>
</tr>
<tr>
<td>errorlog</td>
<td>Uploads the system error log file.</td>
</tr>
<tr>
<td>invalid-config</td>
<td>Uploads the system invalid-config file.</td>
</tr>
<tr>
<td>ipseccacert</td>
<td>Uploads CA certificate file.</td>
</tr>
<tr>
<td>ipsecdevcert</td>
<td>Uploads device certificate file.</td>
</tr>
<tr>
<td>pac</td>
<td>Uploads a Protected Access Credential (PAC).</td>
</tr>
<tr>
<td>packet-capture</td>
<td>Uploads a packet capture file.</td>
</tr>
<tr>
<td>panic-crash-file</td>
<td>Uploads the kernel panic information file.</td>
</tr>
<tr>
<td>radio-core-dump</td>
<td>Uploads the system error log.</td>
</tr>
<tr>
<td>radius-avplist</td>
<td>Uploads the XML file from the controller to the</td>
</tr>
<tr>
<td></td>
<td>RADIUS server.</td>
</tr>
<tr>
<td>rrm-log</td>
<td>Uploads the system's trap log.</td>
</tr>
<tr>
<td>run-config</td>
<td>Upload the WLC's running configuration</td>
</tr>
<tr>
<td>signature</td>
<td>Uploads the system signature file.</td>
</tr>
<tr>
<td>systemtrace</td>
<td>Uploads the system trace file.</td>
</tr>
<tr>
<td>traplog</td>
<td>Uploads the system trap log.</td>
</tr>
</tbody>
</table>
**watchdog-crash-file**
Uploads a console dump file resulting from a software-watchdog-initiated controller reboot following a crash.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>The ipseccacert, ipsecdvcert, and radius-avplist options were introduced.</td>
</tr>
</tbody>
</table>

The following example shows how to upload the system error log file:

(Cisco Controller) > `transfer upload datatype errorlog`
transfer upload filename

To upload a specific file, use the `transfer upload filename` command.

```
transfer upload filename filename
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>Filename that contains up to 16 alphanumeric characters.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You cannot use special characters such as `\ : * ? " < >` | for the filename.

The following example shows how to upload a file build603:

```
(Cisco Controller) > transfer upload filename build603
```
transfer upload mode

To configure the transfer mode, use the transfer upload mode command.

\[ \text{transfer upload mode } \{ \text{ftp | tftp | sftp} \} \]

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>ftp</th>
<th>Sets the transfer mode to FTP.</th>
<th>tftp</th>
<th>Sets the transfer mode to TFTP.</th>
<th>sftp</th>
<th>Sets the transfer mode to SFTP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command History</td>
<td>Release Modification</td>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to set the transfer mode to TFTP:

(Cisco Controller) > transfer upload mode tftp
transfer upload pac

To load a Protected Access Credential (PAC) to support the local authentication feature and allow a client to import the PAC, use the \texttt{transfer upload pac} command.

\texttt{transfer upload pac \textit{username \textit{validity \textit{password}}}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{username}</td>
<td>User identity of the PAC.</td>
</tr>
<tr>
<td>\textit{validity}</td>
<td>Validity period (days) of the PAC.</td>
</tr>
<tr>
<td>\textit{password}</td>
<td>Password to protect the PAC.</td>
</tr>
</tbody>
</table>

\textbf{Command Default}

None

\textbf{Command History}

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

\textbf{Usage Guidelines}

The client upload process uses a TFTP or FTP server.

The following example shows how to upload a PAC with the username user1, validity period 53, and password pass01:

\begin{verbatim}
(Cisco Controller) > transfer upload pac user1 53 pass01
\end{verbatim}
transfer upload password

To configure the password for FTP transfer, use the transfer upload password command.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>password</th>
<th>Password needed to access the FTP server.</th>
</tr>
</thead>
</table>

**transfer upload password** *password*

**Command Default**
None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the password for the FTP transfer to pass01:

(Cisco Controller) > transfer upload password pass01
transfer upload path

To set a specific upload path, use the transfer upload path command.

transfer upload path path

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>path</th>
<th>Server path to file.</th>
</tr>
</thead>
</table>

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You cannot use special characters such as `\:*?"<>|` for the file path.

The following example shows how to set the upload path to `c:\install\version2`:

```
(Cisco Controller) > transfer upload path c:\install\version2
```
transfer upload peer-start

To upload a file to the peer WLC, use the transfer upload peer-start command.

Syntax Description

This command has no arguments or keywords.

Command Default

None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to start uploading a file to the peer controller:

(Cisco Controller) > transfer upload peer-start
Mode.......................... FTP
FTP Server IP.................. 209.165.201.1
FTP Server Port................ 21
FTP Path......................... /builds/nimm/
FTP Filename.................... AS_5500_7_4_1_20.aes
FTP Username.................... wnbu
FTP Password.................... *********
Data Type........................ Error Log

Are you sure you want to start upload from standby? (y/N) n

Transfer Canceled
transfer upload port

To specify the FTP port, use the transfer upload port command.

```
transfer upload port port
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>Port number.</td>
</tr>
</tbody>
</table>

| Command Default    | The default FTP port is 21. |

<table>
<thead>
<tr>
<th>Command History</th>
<th>release  Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to specify FTP port 23:

```
(Cisco Controller) > transfer upload port 23
```
transfer upload serverip

To configure the IPv4 or IPv6 address of the TFTP server to upload files to, use the **transfer upload serverip** command.

**Syntax**

```
transfer upload serverip IP addr
```

**Syntax Description**

- **IP addr**
  - TFTP Server IPv4 or IPv6 address.

**Command Default**

None

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
<tr>
<td>8.0</td>
<td>This command supports both IPv4 and IPv6 address formats.</td>
</tr>
</tbody>
</table>

The following example shows how to set the IPv4 address of the TFTP server to 175.31.56.78:

```
(Cisco Controller) > transfer upload serverip 175.31.56.78
```

The following example shows how to set the IPv6 address of the TFTP server to 175.31.56.78:

```
(Cisco Controller) > transfer upload serverip 2001:10:1::1
```
transfer upload start

To initiate an upload, use the transfer upload start command.

Syntax Description
This command has no arguments or keywords.

Command Default
None

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>This command was introduced in a release earlier than Release 7.6.</td>
</tr>
</tbody>
</table>

The following example shows how to initiate an upload of a file:

(Cisco Controller) > transfer upload start
Mode........................................... TFTP
TFTP Server IP................................. 172.16.16.78
TFTP Path...................................... C:\find\off/
TFTP Filename.................................. wps_2_0_75_0.aes
Data Type...................................... Code
Are you sure you want to start? (y/n) n
Transfer Cancelled
transfer upload username

To specify the FTP username, use the `transfer upload username` command.

```
transfer upload username
```

**Syntax Description**

```
username
```

Username required to access the FTP server. The username can contain up to 31 characters.

**Command Default**

None

**Command History**

```
Release Modification
7.6 This command was introduced in a release earlier than Release 7.6.
```

The following example shows how to set the FTP username to `ftp_username`:

```
(Cisco Controller) > transfer upload username ftp_username
```