Configuring Ports and Interfaces

This chapter describes the controller’s physical ports and interfaces and provides instructions for configuring them. It contains these sections:

- Overview of Ports and Interfaces, page 3-1
- Configuring the Management, AP-Manager, Virtual, and Service-Port Interfaces, page 3-11
- Configuring Dynamic Interfaces, page 3-17
- Configuring Ports, page 3-23
- Choosing Between Link Aggregation and Multiple AP-Manager Interfaces, page 3-36
- Enabling Link Aggregation, page 3-36
- Configuring Multiple AP-Manager Interfaces, page 3-42
- Configuring VLAN Select, page 3-49

Overview of Ports and Interfaces

Three concepts are key to understanding how controllers connect to a wireless network: ports, interfaces, and WLANs.

Ports

A port is a physical entity that is used for connections on the controller platform. Controllers have two types of ports: distribution system ports and a service port. Figure 3-1 through Figure 3-4 show the ports available on each controller.

Note: The controller in a Cisco Integrated Services Router and the controllers on the Cisco WiSM do not have external physical ports. They connect to the network through ports on the router or switch.
Overview of Ports and Interfaces

Figure 3-1
Ports on the Cisco 2100 Series Wireless LAN Controllers

![Figure 3-1 Ports on the Cisco 2100 Series Wireless LAN Controllers]

- Console port
- PoE-enabled ports 7 and 8
- Distribution system ports 1-6

Figure 3-2
Ports on the Cisco 4400 Series Wireless LAN Controllers

![Figure 3-2 Ports on the Cisco 4400 Series Wireless LAN Controllers]

- Service port
- Serial console port
- Distribution system ports 1-4

Note

Figure 3-2 shows a Cisco 4404 Controller. The Cisco 4402 Controller is similar but has only two distribution system ports. The utility port, which is the unlabeled port in Figure 3-2, is currently not operational.

Figure 3-3
Ports on the Cisco 5500 Series Wireless LAN Controllers

![Figure 3-3 Ports on the Cisco 5500 Series Wireless LAN Controllers]

1. Redundant port for future use (RJ-45)
2. Service port (RJ-45)
3. Console port (RJ-45)¹
4. USB ports 0 and 1 (Type A)
5. Console port (Mini USB Type B)¹
6. SFP distribution system ports 1–8
7. Management port LEDs
8. SFP distribution port Link and Activity LEDs
9. Power supply (PS1 and PS2), System (SYS), and Alarm (ALM) LEDs
10. Expansion module slot

¹. You can use only one console port (either RJ-45 or mini USB). When you connect to one console port, the other is disabled.
Overview of Ports and Interfaces

Figure 3-4 Ports on the Catalyst 3750G Integrated Wireless LAN Controller Switch

Table 3-1 provides a list of ports per controller.

Table 3-1 Controller Ports

<table>
<thead>
<tr>
<th>Controller</th>
<th>Service Ports</th>
<th>Distribution System Ethernet Ports</th>
<th>Serial Console Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100 series</td>
<td>None</td>
<td>8 (6 + 2 PoE ports)</td>
<td>1</td>
</tr>
<tr>
<td>4402</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4404</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5508</td>
<td>1</td>
<td>8 (ports 1–8)</td>
<td>1</td>
</tr>
<tr>
<td>Cisco WiSM</td>
<td>2 (ports 9 and 10)</td>
<td>8 (ports 1–8)</td>
<td>2</td>
</tr>
<tr>
<td>Controller Network Module within the Cisco 28/37/38xx Series Integrated Services Routers</td>
<td>None</td>
<td>1</td>
<td>1(^1)</td>
</tr>
<tr>
<td>Catalyst 3750G Integrated Wireless LAN Controller Switch</td>
<td>1</td>
<td>2 (ports 27 and 28)</td>
<td>1</td>
</tr>
</tbody>
</table>

1. The baud rate for the Gigabit Ethernet version of the controller network module is limited to 9600 bps while the baud rate for the Fast Ethernet version supports up to 57600 bps.

Note Appendix E provides logical connectivity diagrams and related software commands for the integrated controllers.

Distribution System Ports

A distribution system port connects the controller to a neighbor switch and serves as the data path between these two devices.

- Cisco 2100 Series Controllers have eight 10/100 copper Ethernet distribution system ports through which the controller can support up to 6, 12, or 25 access points. Two of these ports (7 and 8) are power-over-Ethernet (PoE) enabled and can be used to provide power directly to access points that are connected to these ports.
Note All client connections to the Cisco 2100 Series Controller are limited to the 10/100 Ethernet uplink port connection between the switch and the controller, even though their connection speeds might be higher. The exception is for access points running in local hybrid-REAP mode because this traffic is switched at the access point level and not forwarded back to the controller.

- Cisco 4402 Controllers have two Gigabit Ethernet distribution system ports, each of which is capable of managing up to 48 access points. However, we recommend no more than 25 access points per port due to bandwidth constraints. The 4402-25 and 4402-50 models allow a total of 25 or 50 access points to join the controller.

- Cisco 4404 Controllers have four Gigabit Ethernet distribution system ports, each of which is capable of managing up to 48 access points. However, we recommend no more than 25 access points per port due to bandwidth constraints. The 4404-25, 4404-50, and 4404-100 models allow a total of 25, 50, or 100 access points to join the controller.

Note The Gigabit Ethernet ports on the Cisco 4402 and 4404 Controllers accept these SX/LC/T small form-factor plug-in (SFP) modules:
- 1000BASE-SX SFP modules, which provide a 1000-Mbps wired connection to a network through an 850nM (SX) fiber-optic link using an LC physical connector
- 1000BASE-LX SFP modules, which provide a 1000-Mbps wired connection to a network through a 1300nM (LX/LH) fiber-optic link using an LC physical connector
- 1000BASE-T SFP modules, which provide a 1000-Mbps wired connection to a network through a copper link using an RJ-45 physical connector

- Cisco 5508 Controllers have eight Gigabit Ethernet distribution system ports, through which the Controller can manage multiple access points. The 5508-12, 5508-25, 5508-50, 5508-100, and 5508-250 models allow a total of 12, 25, 50, 100, or 250 access points to join the controller. Cisco 5508 controllers have no restrictions on the number of access points per port. However, we recommend using link aggregation (LAG) or configuring dynamic AP-manager interfaces on each Gigabit Ethernet port to automatically balance the load. If more than 100 access points are connected to the Cisco 5500 Series Controller, make sure that more than one Gigabit Ethernet interface is connected to the upstream switch.

Note The Gigabit Ethernet ports on the Cisco 5508 Controllers accept these SX/LC/T small form-factor plug-in (SFP) modules:
- 1000BASE-SX SFP modules, which provide a 1000-Mbps wired connection to a network through an 850nM (SX) fiber-optic link using an LC physical connector
- 1000BASE-LX SFP modules, which provide a 1000-Mbps wired connection to a network through a 1300nM (LX/LH) fiber-optic link using an LC physical connector
- 1000BASE-T SFP modules, which provide a 1000-Mbps wired connection to a network through a copper link using an RJ-45 physical connector

- The Catalyst 6500 series switch Wireless Services Module (WiSM) and the Cisco 7600 series router Wireless Services Module (WiSM) have eight internal Gigabit Ethernet distribution system ports (ports 1 through 8) that connect the switch or router and the integrated controller. These internal ports are located on the backplane of the switch or router and are not visible on the front panel. Through these ports, the controller can support up to 300 access points.
The controller network module within the Cisco 28/37/38xx Series Integrated Services Router can support up to 6, 8, 12, or 25 access points (and up to 256, 256, 350, or 350 clients, respectively), depending on the version of the network module. The network module supports these access points through a Fast Ethernet distribution system port (on the NM-AIR-WLC6-K9 6-access-point version) or a Gigabit Ethernet distribution system port (on the 8-, 12-, and 25-access-point versions and on the NME-AIR-WLC6-K9 6-access-point version) that connects the router and the integrated controller. This port is located on the router backplane and is not visible on the front panel. The Fast Ethernet port operates at speeds up to 100 Mbps, and the Gigabit Ethernet port operates at speeds up to 1 Gbps.

The Catalyst 3750G Integrated Wireless LAN Controller Switch has two internal Gigabit Ethernet distribution system ports (ports 27 and 28) that connect the switch and the integrated controller. These internal ports are located on the switch backplane and are not visible on the front panel. Each port is capable of managing up to 48 access points. However, we recommend no more than 25 access points per port due to bandwidth constraints. The -S25 and -S50 models allow a total of 25 or 50 access points to join the controller.

Each distribution system port is, by default, an 802.1Q VLAN trunk port. The VLAN trunking characteristics of the port are not configurable.

Some controllers support link aggregation (LAG), which bundles all of the controller’s distribution system ports into a single 802.3ad port channel. Cisco 4400 Series Controllers support LAG in software release 3.2 or later releases, Cisco 5500 Series Controllers support LAG in software release 6.0 or later releases, and LAG is enabled automatically on the controllers within the Cisco WiSM and the Catalyst 3750G Integrated Wireless LAN Controller Switch. See the “Enabling Link Aggregation” section on page 3-36 for more information.

Service Port

Cisco 4400 and Cisco 5500 Series Controllers also have a 10/100/1000 copper Ethernet service port. The service port is controlled by the service-port interface and is reserved for out-of-band management of the controller and system recovery and maintenance in the event of a network failure. It is also the only port that is active when the controller is in boot mode. The service port is not capable of carrying 802.1Q tags, so it must be connected to an access port on the neighbor switch. Use of the service port is optional.

The Cisco WiSM’s controllers use the service port for internal protocol communication between the controllers and the Supervisor 720.

The Cisco 2100 Series Controller and the controller in the Cisco Integrated Services Router do not have a service port.
Overview of Ports and Interfaces

Note
The service port is not autosensing. You must use the correct straight-through or crossover Ethernet cable to communicate with the service port.

Caution
Do not configure wired clients in the same VLAN or subnet of the service port on the network. If you configure wired clients on the same subnet or VLAN as the service port, you will not be able to access the management interface.

Interfaces

An interface is a logical entity on the controller. An interface has multiple parameters associated with it, including an IP address, default gateway (for the IP subnet), primary physical port, secondary physical port, VLAN identifier, and DHCP server.

These five types of interfaces are available on the controller. Four of these are static and are configured at setup time:

- Management interface (static and configured at setup time; mandatory)
- AP-manager interface (static and configured at setup time; mandatory)
- Virtual interface (static and configured at setup time; mandatory)
- Service-port interface (static and configured at setup time; optional)
- Dynamic interface (user-defined)

Each interface is mapped to at least one primary port, and some interfaces (management and dynamic) can be mapped to an optional secondary (or backup) port. If the primary port for an interface fails, the interface automatically moves to the backup port. In addition, multiple interfaces can be mapped to a single controller port.

Note
You are not required to configure an AP-manager interface on Cisco 5500 Series Controllers.

- Virtual interface (static and configured at setup time; mandatory)
- Service-port interface (static and configured at setup time; optional)
- Dynamic interface (user-defined)

For Cisco 5500 Series Controllers in a non-link-aggregation (non-LAG) configuration, the management interface must be on a different VLAN than any dynamic AP-manager interface. Otherwise, the management interface cannot fail over to the port that the AP-manager is on.

Note
Cisco 5500 Series Controllers do not support fragmented pings on any interface. Similarly, Cisco 4400 Series Controllers, the Cisco WiSM, and the Catalyst 3750G Integrated Wireless LAN Controller Switch do not support fragmented pings on the AP-manager interface.

Note
See the “Enabling Link Aggregation” section on page 3-36 if you want to configure the controller to dynamically map the interfaces to a single port channel rather than having to configure primary and secondary ports for each interface.
Management Interface

The management interface is the default interface for in-band management of the controller and connectivity to enterprise services such as AAA servers. It is also used for communications between the controller and access points. The management interface has the only consistently “pingable” in-band interface IP address on the controller. You can access the controller’s GUI by entering the controller’s management interface IP address in Internet Explorer’s or Mozilla Firefox’s address field.

For CAPWAP, the controller requires one management interface to control all inter-controller communications and one AP-manager interface to control all controller-to-access point communications, regardless of the number of ports.

Note
If the service port is in use, the management interface must be on a different supernet from the service-port interface.

Caution
Do not map a guest WLAN to the management interface. If the EoIP tunnel breaks, the client could obtain an IP and be placed on the management subnet.

Caution
Do not configure wired clients in the same VLAN or subnet of the service port on the network. If you configure wired clients on the same subnet or VLAN as the service port, you will not be able to access the management interface.

AP-Manager Interface

A controller has one or more AP-manager interfaces, which are used for all Layer 3 communications between the controller and lightweight access points after the access points have joined the controller. The AP-manager IP address is used as the tunnel source for CAPWAP packets from the controller to the access point and as the destination for CAPWAP packets from the access point to the controller.

Note
For Cisco 5500 Series Controllers, you are not required to configure an AP-manager interface. The management interface acts like an AP-manager interface by default, and the access points can join on this interface.

Note
The Controller does not support transmitting the jumbo frames. To avoid having the controller transmit CAPWAP packets to the AP that will necessitate fragmentation and reassembly, reduce MTU/MSS on the client side.

Note
With the 7.0.116.0 release onwards, the MAC address of the management interface and the AP-manager interface is the same as the base LAG MAC address.

The AP-manager interface communicates through any distribution system port by listening across the Layer 3 network for access point CAPWAP or LWAPP join messages to associate and communicate with as many lightweight access points as possible.
Overview of Ports and Interfaces

For Cisco 4404 and WiSM Controllers, configure the AP-manager interface on all distribution system ports (1, 2, 3, and 4). For Cisco 4402 Controllers, configure the AP-manager interface on distribution system ports 1 and 2. In both cases, the static (or permanent) AP-manager interface is always assigned to distribution system port 1 and given a unique IP address. Configuring the AP-manager interface on the same VLAN or IP subnet as the management interface results in optimum access point association.

Note
If only one distribution system port can be used, you should use distribution system port 1.

If link aggregation (LAG) is enabled, there can be only one AP-manager interface. But when LAG is disabled, one or more AP-manager interfaces can be created, generally one per physical port.

Note
The Cisco 2100 Series Controllers do not support LAG.

Note
See the “Configuring Multiple AP-Manager Interfaces” section on page 3-42 for information on creating and using multiple AP-manager interfaces.

Virtual Interface

The virtual interface is used to support mobility management, Dynamic Host Configuration Protocol (DHCP) relay, and embedded Layer 3 security such as guest web authentication and VPN termination. It also maintains the DNS gateway host name used by Layer 3 security and mobility managers to verify the source of certificates when Layer 3 web authorization is enabled.

Specifically, the virtual interface plays these two primary roles:

- Acts as the DHCP server placeholder for wireless clients that obtain their IP address from a DHCP server.
- Serves as the redirect address for the web authentication login page.

Note
See Chapter 6, “Configuring Security Solutions,” for additional information on web authentication.

The virtual interface IP address is used only in communications between the controller and wireless clients. It never appears as the source or destination address of a packet that goes out a distribution system port and onto the switched network. For the system to operate correctly, the virtual interface IP address must be set (it cannot be 0.0.0.0), and no other device on the network can have the same address as the virtual interface. Therefore, the virtual interface must be configured with an unassigned and unused gateway IP address. The virtual interface IP address is not pingable and should not exist in any routing table in your network. In addition, the virtual interface cannot be mapped to a backup port.

Note
All controllers within a mobility group must be configured with the same virtual interface IP address. Otherwise, inter-controller roaming may appear to work, but the handoff does not complete, and the client loses connectivity for a period of time.
Service-Port Interface

The service-port interface controls communications through and is statically mapped by the system to the service port. The service port can obtain an IP address using DHCP, or it can be assigned a static IP address, but a default gateway cannot be assigned to the service-port interface. Static routes can be defined through the controller for remote network access to the service port.

Note
Only Cisco 4400 and Cisco 5500 Series Controllers have a service-port interface.

Note
You must configure an IP address on the service-port interface of both Cisco WiSM controllers. Otherwise, the neighbor switch is unable to check the status of each controller.

Dynamic Interface

Dynamic interfaces, also known as VLAN interfaces, are created by users and designed to be analogous to VLANs for wireless LAN clients. A controller can support up to 512 dynamic interfaces (VLANs). Each dynamic interface is individually configured and allows separate communication streams to exist on any or all of a controller’s distribution system ports. Each dynamic interface controls VLANs and other communications between controllers and all other network devices, and each acts as a DHCP relay for wireless clients associated to WLANs mapped to the interface. You can assign dynamic interfaces to distribution system ports, WLANs, the Layer 2 management interface, and the Layer 3 AP-manager interface, and you can map the dynamic interface to a backup port.

You can configure zero, one, or multiple dynamic interfaces on a distribution system port. However, all dynamic interfaces must be on a different VLAN or IP subnet from all other interfaces configured on the port. If the port is untagged, all dynamic interfaces must be on a different IP subnet from any other interface configured on the port.

Note
A controller’s WLAN dynamic interface and all wireless clients in the WLAN that are local to the controller must have IP addresses in the same subnet.

Note
We recommend using tagged VLANs for dynamic interfaces.

Dynamic AP Management

A dynamic interface is created as a WLAN interface by default. However, any dynamic interface can be configured as an AP-manager interface, with one AP-manager interface allowed per physical port. A dynamic interface with the Dynamic AP Management option enabled is used as the tunnel source for packets from the controller to the access point and as the destination for CAPWAP packets from the access point to the controller. The dynamic interfaces for AP management must have a unique IP address and are usually configured on the same subnet as the management interface.

Note
If link aggregation (LAG) is enabled, there can be only one AP-manager interface.
Overview of Ports and Interfaces

We recommend having a separate dynamic AP-manager interface per controller port. See the “Configuring Multiple AP-Manager Interfaces” section on page 3-42 for instructions on configuring multiple dynamic AP-manager interfaces.

WLANs

A WLAN associates a service set identifier (SSID) to an interface. It is configured with security, quality of service (QoS), radio policies, and other wireless network parameters. Up to 512 access point WLANs can be configured per controller.

Note: Chapter 7, “Configuring WLANs,” provides instructions for configuring WLANs.

Figure 3-5 shows the relationship between ports, interfaces, and WLANs.

Figure 3-5 Ports, Interfaces, and WLANs
As shown in Figure 3-5, each controller port connection is an 802.1Q trunk and should be configured as such on the neighbor switch. On Cisco switches, the native VLAN of an 802.1Q trunk is an untagged VLAN. If you configure an interface to use the native VLAN on a neighboring Cisco switch, make sure you configure the interface on the controller to be untagged.

Note: A zero value for the VLAN identifier (on the Controller > Interfaces page) means that the interface is untagged.

The default (untagged) native VLAN on Cisco switches is VLAN 1. When controller interfaces are configured as tagged (meaning that the VLAN identifier is set to a nonzero value), the VLAN must be allowed on the 802.1Q trunk configuration on the neighbor switch and not be the native untagged VLAN.

We recommend that tagged VLANs be used on the controller. You should also allow only relevant VLANs on the neighbor switch’s 802.1Q trunk connections to controller ports. All other VLANs should be disallowed or pruned in the switch port trunk configuration. This practice is extremely important for optimal performance of the controller.

Note: We recommend that you assign one set of VLANs for WLANs and a different set of VLANs for management interfaces to ensure that controllers properly route VLAN traffic.

Note: With 4400 series controllers, when a client is associated with a management WLAN, the dynamic interface is not reachable from the client.

When a client is associated with a dynamic interface WLAN, the management interface and the dynamic interface are reachable from the client, but not any other dynamic interfaces. That is, the client can ping only the management interface and the dynamic interface with which the WLAN is associated, but not any other dynamic interfaces.

Configuring the Management, AP-Manager, Virtual, and Service-Port Interfaces

Typically, you define the management, AP-manager, virtual, and service-port interface parameters using the Startup Wizard. However, you can display and configure interface parameters through either the GUI or CLI after the controller is running.

Note: When assigning a WLAN to a DHCP server, both should be on the same subnet. Otherwise, you need to use a router to route traffic between the WLAN and the DHCP server.

Using the GUI to Configure the Management, AP-Manager, Virtual, and Service-Port Interfaces

To display and configure the management, AP-manager, virtual, and service-port interface parameters using the controller GUI, follow these steps:
Step 1 Choose Controller > Interfaces to open the Interfaces page (see Figure 3-6).

Figure 3-6 Interfaces Page

This page shows the current controller interface settings.

Step 2 If you want to modify the settings of a particular interface, click the name of the interface. The Interfaces > Edit page for that interface appears.

Step 3 Configure the following parameters for each interface type:

Management Interface

- Quarantine and quarantine VLAN ID, if applicable

 Note Select the **Quarantine** check box if you want to configure this VLAN as unhealthy or you want to configure network access control (NAC) out-of-band integration. Doing so causes the data traffic of any client that is assigned to this VLAN to pass through the controller. See Chapter 7, “Configuring WLANs,” for more information about NAC out-of-band integration.

- NAT address (only for Cisco 5500 Series Controllers configured for dynamic AP management)

 Note Select the **Enable NAT Address** check box and enter the external NAT IP address if you want to be able to deploy your Cisco 5500 Series Controller behind a router or other gateway device that is using one-to-one mapping network address translation (NAT). NAT allows a device, such as a router, to act as an agent between the Internet (public) and a local network (private). In this case, it maps the controller’s intranet IP addresses to a corresponding external address. The controller’s dynamic AP-manager interface must be configured with the external NAT IP address so that the controller can send the correct IP address in the Discovery Response.

 Note The NAT parameters are supported for use only with one-to-one-mapping NAT, where each private client has a direct and fixed mapping to a global address. The NAT parameters do not support one-to-many NAT, which uses source port mapping to enable a group of clients to be represented by a single IP address.
Chapter 3 Configuring Ports and Interfaces

Configuring the Management, AP-Manager, Virtual, and Service-Port Interfaces

Note If a Cisco 5500 Series Controller is configured with an external NAT IP address under the management interface, the APs in local mode cannot associate with the controller. The workaround is to either ensure that the management interface has a globally valid IP address or ensure that external NAT IP address is valid internally for the local APs.

- VLAN identifier

Note Enter 0 for an untagged VLAN or a nonzero value for a tagged VLAN. We recommend using tagged VLANs for the management interface.

- Fixed IP address, IP netmask, and default gateway
- Dynamic AP management (for Cisco 5500 Series Controllers only)

Note For Cisco 5500 Series Controllers, the management interface acts like an AP-manager interface by default. If desired, you can disable the management interface as an AP-manager interface and create another dynamic interface as an AP manager.

- Physical port assignment (for all controllers except the Cisco 5500 Series Controller)
- Primary and secondary DHCP servers
- Access control list (ACL) setting, if required

Note To create ACLs, follow the instructions in Chapter 6, “Configuring Security Solutions.”

AP-Manager Interface

Note For Cisco 5500 Series Controllers, you are not required to configure an AP-manager interface. The management interface acts like an AP-manager interface by default.

- Physical port assignment
- VLAN identifier

Note Enter 0 for an untagged VLAN or a nonzero value for a tagged VLAN. We recommend using tagged VLANs for the AP-manager interface.

- Fixed IP address, IP netmask, and default gateway
- Primary and secondary DHCP servers
- Access control list (ACL) name, if required

Note To create ACLs, follow the instructions in Chapter 6, “Configuring Security Solutions.”

Virtual Interface

- Any fictitious, unassigned, and unused gateway IP address
Configuring the Management, AP-Manager, Virtual, and Service-Port Interfaces

Chapter 3 Configuring Ports and Interfaces

- DNS gateway hostname

Note To ensure connectivity and web authentication, the DNS server should always point to the virtual interface. If a DNS hostname is configured for the virtual interface, then the same DNS host name must be configured on the DNS server(s) used by the client.

Service-Port Interface

Note The service-port interface uses the controller’s factory-set service-port MAC address.

- DHCP protocol (enabled)
- DHCP protocol (disabled) and IP address and IP netmask

Step 4 Click **Save Configuration** to save your changes.

Step 5 If you made any changes to the management or virtual interface, reboot the controller so that your changes take effect.

Using the CLI to Configure the Management, AP-Manager, Virtual, and Service-Port Interfaces

This section provides instructions for displaying and configuring the management, AP-manager, virtual, and service-port interfaces using the CLI.

Using the CLI to Configure the Management Interface

To display and configure the management interface parameters using the CLI, follow these steps:

Step 1 Enter the `show interface detailed management` command to view the current management interface settings.

Note The management interface uses the controller’s factory-set distribution system MAC address.

Step 2 Enter the `config wlan disable wlan-number` command to disable each WLAN that uses the management interface for distribution system communication.

Step 3 Enter these commands to define the management interface:

- `config interface address management ip-addr ip-netmask gateway`
- `config interface quarantine vlan management vlan_id`

Note Use the `config interface quarantine vlan management vlan_id` command to configure a quarantine VLAN on the management interface.

- `config interface vlan management {vlan-id | 0}`
Note Enter 0 for an untagged VLAN or a nonzero value for a tagged VLAN. We recommend using tagged VLANs for the management interface.

- **config interface ap-manager management** *(enable | disable)* (for Cisco 5500 Series Controllers only)

Note Use the `config interface ap-manager management` *(enable | disable)* command to enable or disable dynamic AP management for the management interface. For Cisco 5500 Series Controllers, the management interface acts like an AP-manager interface by default. If desired, you can disable the management interface as an AP-manager interface and create another dynamic interface as an AP manager.

- **config interface port management** `physical-ds-port-number` (for all controllers except the 5500 series)
- **config interface dhcp management** `ip-address-of-primary-dhcp-server`
 `[ip-address-of-secondary-dhcp-server]`
- **config interface acl management** `access-control-list-name`

Note See Chapter 6, “Configuring Security Solutions,” for more information on ACLs.

Step 4 Enter these commands if you want to be able to deploy your Cisco 5500 Series Controller behind a router or other gateway device that is using one-to-one mapping network address translation (NAT):

- **config interface nat-address management** *(enable | disable)*
- **config interface nat-address management** set `public_IP_address`

NAT allows a device, such as a router, to act as an agent between the Internet (public) and a local network (private). In this case, it maps the controller’s intranet IP addresses to a corresponding external address. The controller’s dynamic AP-manager interface must be configured with the external NAT IP address so that the controller can send the correct IP address in the Discovery Response.

Note These NAT commands can be used only on Cisco 5500 Series Controllers and only if the management interface is configured for dynamic AP management.

Note These commands are supported for use only with one-to-one-mapping NAT, where each private client has a direct and fixed mapping to a global address. These commands do not support one-to-many NAT, which uses source port mapping to enable a group of clients to be represented by a single IP address.

Step 5 Enter the `save config` command to save your changes.

Step 6 Enter the `show interface detailed management` command to verify that your changes have been saved.

Step 7 If you made any changes to the management interface, enter the `reset system` command to reboot the controller in order for the changes to take effect.
Using the CLI to Configure the AP-Manager Interface

To display and configure the AP-manager interface parameters using the CLI, follow these steps:

Note For Cisco 5500 Series Controllers, you are not required to configure an AP-manager interface. The management interface acts like an AP-manager interface by default.

Step 1 Enter the `show interface summary` command to view the current interfaces.

Note If the system is operating in Layer 2 mode, the AP-manager interface is not listed.

Step 2 Enter the `show interface detailed ap-manager` command to view the current AP-manager interface settings.

Step 3 Enter the `config wlan disable wlan-number` command to disable each WLAN that uses the AP-manager interface for distribution system communication.

Step 4 Enter these commands to define the AP-manager interface:

- `config interface address ap-manager ip-addr ip-netmask gateway`
- `config interface vlan ap-manager {vlan-id | 0}`

 Note Enter 0 for an untagged VLAN or a nonzero value for a tagged VLAN. We recommend using tagged VLANs for the AP-manager interface.

- `config interface port ap-manager physical-ds-port-number`
- `config interface dhcp ap-manager ip-address-of-primary-dhcp-server [ip-address-of-secondary-dhcp-server]`
- `config interface acl ap-manager access-control-list-name`

 Note See Chapter 6, “Configuring Security Solutions,” for more information on ACLs.

Step 5 Enter the `save config` command to save your changes.

Step 6 Enter the `show interface detailed ap-manager` command to verify that your changes have been saved.

Using the CLI to Configure the Virtual Interface

To display and configure the virtual interface parameters using the CLI, follow these steps:

Step 1 Enter the `show interface detailed virtual` command to view the current virtual interface settings.

Step 2 Enter the `config wlan disable wlan-number` command to disable each WLAN that uses the virtual interface for distribution system communication.

Step 3 Enter these commands to define the virtual interface:

- `config interface address virtual ip-address`
Note For ip-address, enter any fictitious, unassigned, and unused gateway IP address.

- config interface hostname virtual dns-host-name

Step 4 Enter the reset system command. At the confirmation prompt, enter Y to save your configuration changes to NVRAM. The controller reboots.

Step 5 Enter the show interface detailed virtual command to verify that your changes have been saved.

Using the CLI to Configure the Service-Port Interface

To display and configure the service-port interface parameters using the CLI, follow these steps:

Step 1 Enter the show interface detailed service-port command to view the current service-port interface settings.

Note The service-port interface uses the controller’s factory-set service-port MAC address.

Step 2 Enter these commands to define the service-port interface:
- To configure the DHCP server: config interface dhcp service-port ip-address-of-primary-dhcp-server [ip-address-of-secondary-dhcp-server]
- To disable the DHCP server: config interface dhcp service-port none
- To configure the IP address: config interface address service-port ip-addr ip-netmask

Step 3 The service port is used for out-of-band management of the controller. If the management workstation is in a remote subnet, you may need to add a route on the controller in order to manage the controller from that remote workstation. To do so, enter this command:
config route add network-ip-addr ip-netmask gateway

Step 4 Enter the save config command to save your changes.

Step 5 Enter the show interface detailed service-port command to verify that your changes have been saved.

Configuring Dynamic Interfaces

This section provides instructions for configuring dynamic interfaces using either the GUI or CLI. This sections contains the following topics:
- Guidelines and Limitations
- Using the GUI to Configure Dynamic Interfaces
- Using the CLI to Configure Dynamic Interfaces
Guidelines and Limitations

- The controller does not respond to SNMP requests if the source address of the request comes from a subnet that is configured as a dynamic interface.
- You must not configure a dynamic interface in the same sub-network as a server that has to be reachable by the controller CPU, like a RADIUS server, as it might cause asymmetric routing issues.

Using the GUI to Configure Dynamic Interfaces

To create new or edit existing dynamic interfaces using the controller GUI, follow these steps:

Step 1 Choose Controller > Interfaces to open the Interfaces page (see Figure 3-6).

Step 2 Perform one of the following:
- To create a new dynamic interface, click New. The Interfaces > New page appears (see Figure 3-7). Go to Step 3.
- To modify the settings of an existing dynamic interface, click the name of the interface. The Interfaces > Edit page for that interface appears (see Figure 3-8). Go to Step 5.
- To delete an existing dynamic interface, hover your cursor over the blue drop-down arrow for the desired interface and choose Remove.

Step 3 Enter an interface name and a VLAN identifier, as shown in Figure 3-7.

Step 4 Click Apply to commit your changes. The Interfaces > Edit page appears (see Figure 3-8).
Step 5 Configure the following parameters:

- Guest LAN, if applicable
- Quarantine and quarantine VLAN ID, if applicable

Note Select the Quarantine check box if you want to configure this VLAN as unhealthy or you want to configure network access control (NAC) out-of-band integration. Doing so causes the data traffic of any client that is assigned to this VLAN to pass through the controller. See Chapter 7, “Configuring WLANs,” for more information about NAC out-of-band integration.

- Physical port assignment (for all controllers except the 5500 series)
- NAT address (only for Cisco 5500 Series Controllers configured for dynamic AP management)
Chapter 3 Configuring Ports and Interfaces

Configuring Dynamic Interfaces

Note
Select the Enable NAT Address check box and enter the external NAT IP address if you want to be able to deploy your Cisco 5500 Series Controller behind a router or other gateway device that is using one-to-one mapping network address translation (NAT). NAT allows a device, such as a router, to act as an agent between the Internet (public) and a local network (private). In this case, it maps the controller’s intranet IP addresses to a corresponding external address. The controller’s dynamic AP-manager interface must be configured with the external NAT IP address so that the controller can send the correct IP address in the Discovery Response.

Note
The NAT parameters are supported for use only with one-to-one-mapping NAT, where each private client has a direct and fixed mapping to a global address. The NAT parameters do not support one-to-many NAT, which uses source port mapping to enable a group of clients to be represented by a single IP address.

• Dynamic AP management

Note
When you enable this feature, this dynamic interface is configured as an AP-manager interface (only one AP-manager interface is allowed per physical port). A dynamic interface that is marked as an AP-manager interface cannot be used as a WLAN interface.

Note
Set the APs in a VLAN that is different than the dynamic interface configured on the controller. If the APs are in the same VLAN as the dynamic interface, the APs are not registered on the controller and the “LWAPP discovery rejected” and “Layer 3 discovery request not received on management VLAN” errors are logged on the controller.

• VLAN identifier
• Fixed IP address, IP netmask, and default gateway
• Primary and secondary DHCP servers
• Access control list (ACL) name, if required

Note
See Chapter 6, “Configuring Security Solutions,” for more information on ACLs.

Note
To ensure proper operation, you must set the Port Number and Primary DHCP Server parameters.

Step 6 Click Save Configuration to save your changes.

Step 7 Repeat this procedure for each dynamic interface that you want to create or edit.
Note
When you apply a flow policer or an aggregate policer on the ingress of a Dynamic Interface VLAN for the Upstream (wireless to wired) traffic, it is not possible to police because the VLAN based policy has no effect and thus no policing occurs. When the traffic comes out of the WiSM LAG (L2) and hits the Switch Virtual Interface (SVI) (L3), the QoS policy applied is a VLAN based policy that has no effect on the policing.

To enable ingress L3 VLAN based policy on the SVI, you must enable VLAN based QoS equivalent to the mls qos vlan-based command on the WiSM LAG. All the previous 12.2(33)SX1 releases, which support Auto LAG for WiSM only, that is 12.2(33)SX1, 12.2(33)SX1i, 12.2(33)SX1a, 12.2(33)SX13, and so on, do not have this WiSM CLI. Therefore, the VLAN based QoS policy applied ingress on the SVI for wireless to wired traffic never polices any traffic coming out of the WiSM LAG and hitting the SVI. The commands equivalent to the mls qos vlan-based command are as follows:

Standalone: `wism module module_no controller controller_no qos-vlan-based`

Virtual Switching System: `wism switch switch_no module module_no controller controller_no qos-vlan-based`

Using the CLI to Configure Dynamic Interfaces

To configure dynamic interfaces using the CLI, follow these steps:

Step 1 Enter the `show interface summary` command to view the current dynamic interfaces.

Step 2 View the details of a specific dynamic interface by entering this command:
`show interface detailed operator_defined_interface_name`.

Note Interface names that contain spaces must be enclosed in double quotes. For example: `config interface create "vlan 25"`.

Step 3 Enter the `config wlan disable wlan_id` command to disable each WLAN that uses the dynamic interface for distribution system communication.

Step 4 Enter these commands to configure dynamic interfaces:

- `config interface create operator_defined_interface_name {vlan_id | x}`
- `config interface address operator_defined_interface_name ip_addr ip_netmask [gateway]`
- `config interface vlan operator_defined_interface_name {vlan_id | 0}`
- `config interface port operator_defined_interface_name physical_ds_port_number`
- `config interface ap-manager operator_defined_interface_name {enable | disable}`

Note Use the `config interface ap-manager operator_defined_interface_name {enable | disable}` command to enable or disable dynamic AP management. When you enable this feature, this dynamic interface is configured as an AP-manager interface (only one AP-manager interface is allowed per physical port). A dynamic interface that is marked as an AP-manager interface cannot be used as a WLAN interface.
• **config interface dhcp** `operator_defined_interface_name ip_address_of_primary_dhcp_server`
 `[ip_address_of_secondary_dhcp_server]`

• **config interface quarantine vlan** `interface_name vlan_id`

 Note Use the `config interface quarantine vlan` `interface_name vlan_id` command to configure a quarantine VLAN on any interface.

• **config interface acl** `operator_defined_interface_name access_control_list_name`

 Note See Chapter 6, “Configuring Security Solutions,” for more information on ACLs.

Step 5
Enter these commands if you want to be able to deploy your Cisco 5500 Series Controller behind a router or other gateway device that is using one-to-one mapping network address translation (NAT):

• **config interface nat-address dynamic-interface** `operator_defined_interface_name` `{enable | disable}`

• **config interface nat-address dynamic-interface** `operator_defined_interface_name` `set public_IP_address`

NAT allows a device, such as a router, to act as an agent between the Internet (public) and a local network (private). In this case, it maps the controller’s intranet IP addresses to a corresponding external address. The controller’s dynamic AP-manager interface must be configured with the external NAT IP address so that the controller can send the correct IP address in the Discovery Response.

 Note These NAT commands can be used only on Cisco 5500 Series Controllers and only if the dynamic interface is configured for dynamic AP management.

 Note These commands are supported for use only with one-to-one-mapping NAT, whereby each private client has a direct and fixed mapping to a global address. These commands do not support one-to-many NAT, which uses source port mapping to enable a group of clients to be represented by a single IP address.

Step 6
Enter the **config wlan enable** `wlan_id` command to reenable each WLAN that uses the dynamic interface for distribution system communication.

Step 7
Enter the **save config** command to save your changes.

Step 8
Enter the **show interface detailed** `operator_defined_interface_name` command and **show interface summary** command to verify that your changes have been saved.

 Note If desired, you can enter the **config interface delete** `operator_defined_interface_name` command to delete a dynamic interface.
Configuring Ports

The controller’s ports are preconfigured with factory-default settings designed to make the controllers’ ports operational without additional configuration. However, you can view the status of the controller’s ports and edit their configuration parameters at any time.

To use the GUI to view the status of the controller’s ports and make any configuration changes if necessary, follow these steps:

Step 1 Choose **Controller > Ports** to open the Ports page (see Figure 3-9).

This page shows the current configuration for each of the controller’s ports.

If you want to change the settings of any port, click the number for that specific port. The Port > Configure page appears (see Figure 3-10).

Note

If the management and AP-manager interfaces are mapped to the same port and are members of the same VLAN, you must disable the WLAN before making a port-mapping change to either interface. If the management and AP-manager interfaces are assigned to different VLANs, you do not need to disable the WLAN.

Note

The number of parameters available on the Port > Configure page depends on your controller type. For instance, Cisco 2100 Series Controller and the controller in a Cisco Integrated Services Router have fewer configurable parameters than a Cisco 4400 Series Controller, which is shown in Figure 3-10.
Figure 3-10 Port > Configure Page

Port No: 3
Admin Status: Enable
Mirror Mode: Disable
Physical Mode: Auto
Physical Status: 3000 Mbps Full Duplex
Link Status: Link Up
Link Speed: N/A
Power Over Ethernet: NA
Multicast Appliance Mode: Enable

Spanning Tree Protocol Configuration

- STP Port ID: 801
- STP Mode: Off
- STP State: Forwarding
- STP Port Designated Root: 0000 00:00:00:00:00:00:00:00
- STP Port Designated Cost: 0
- STP Port Designated Bridge: 0000 00:00:00:00:00:00:00:00
- STP Port Designated Port: 0000
- STP Port Forward Transitions Count: 0
- STP Port Priority: 128
- STP Port Path Cost Mode: Auto
- STP Port Path Cost: 0
Table 3-2 shows the current status of the port.

Table 3-2 Port Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Number</td>
<td>Number of the current port.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>Current state of the port.</td>
</tr>
<tr>
<td>Values:</td>
<td>Enable or Disable</td>
</tr>
<tr>
<td>Physical Mode</td>
<td>Configuration of the port physical interface. The mode varies by the</td>
</tr>
<tr>
<td>Values:</td>
<td>controller type. Auto, 100 Mbps Full Duplex, 100 Mbps Half Duplex, 10 Mbps</td>
</tr>
<tr>
<td>Note</td>
<td>In Cisco NM-AIR-WLC6-K9, 5500 series, and 7500 series controllers, the</td>
</tr>
<tr>
<td></td>
<td>physical mode is always set to Auto.</td>
</tr>
<tr>
<td>Physical Status</td>
<td>The data rate being used by the port. The available data rates vary based</td>
</tr>
<tr>
<td></td>
<td>on controller type.</td>
</tr>
<tr>
<td>Controller</td>
<td>Available Data Rates</td>
</tr>
<tr>
<td>5500 series</td>
<td>1000 Mbps full duplex</td>
</tr>
<tr>
<td>4400 series</td>
<td>1000 Mbps full duplex</td>
</tr>
<tr>
<td>2100 series</td>
<td>10 or 100 Mbps, half or full duplex</td>
</tr>
<tr>
<td>WiSM</td>
<td>1000 Mbps full duplex</td>
</tr>
<tr>
<td>Controller network module</td>
<td>100 Mbps full duplex</td>
</tr>
<tr>
<td>Catalyst 3750G Integrated Wireless LAN Controller Switch</td>
<td>1000 Mbps full duplex</td>
</tr>
<tr>
<td>Link Status</td>
<td>Port’s link status.</td>
</tr>
<tr>
<td>Values:</td>
<td>Link Up or Link Down</td>
</tr>
<tr>
<td>Link Trap</td>
<td>Whether the port is set to send a trap when the link status changes.</td>
</tr>
<tr>
<td>Values:</td>
<td>Enable or Disable</td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td>If the connecting device is equipped to receive power through the Ethernet</td>
</tr>
<tr>
<td></td>
<td>cable and if so, provides –48 VDC.</td>
</tr>
<tr>
<td>Values:</td>
<td>Enable or Disable</td>
</tr>
<tr>
<td>Note</td>
<td>Some older Cisco access points do not draw PoE even if it is enabled on the</td>
</tr>
<tr>
<td></td>
<td>controller port. In such cases, contact the Cisco Technical Assistance</td>
</tr>
<tr>
<td></td>
<td>Center (TAC).</td>
</tr>
<tr>
<td>Note</td>
<td>The controller in the Catalyst 3750G Integrated Wireless LAN Controller</td>
</tr>
<tr>
<td></td>
<td>Switch supports PoE on all ports.</td>
</tr>
</tbody>
</table>
Step 2 Table 3-3 lists and describes the port’s configurable parameters. Follow the instructions in the table to make any desired changes.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Status</td>
<td>Enables or disables the flow of traffic through the port.</td>
</tr>
<tr>
<td></td>
<td>Options: Enable or Disable</td>
</tr>
<tr>
<td></td>
<td>Default: Enable</td>
</tr>
<tr>
<td></td>
<td>Note Administratively disabling the port on a controller does not affect the port’s link status. The link can be brought down only by other Cisco devices. On other Cisco products, however, administratively disabling a port brings the link down.</td>
</tr>
<tr>
<td>Physical Mode</td>
<td>Determines whether the port’s data rate is set automatically or specified by the user. The supported data rates vary based on the controller type.</td>
</tr>
<tr>
<td></td>
<td>Default: Auto</td>
</tr>
<tr>
<td>Controller</td>
<td>Supported Data Rates</td>
</tr>
<tr>
<td>5500 series</td>
<td>Fixed 1000 Mbps full duplex</td>
</tr>
<tr>
<td>4400 series</td>
<td>Auto or 1000 Mbps full duplex</td>
</tr>
<tr>
<td>2100 series</td>
<td>Auto or 10 or 100 Mbps, half or full duplex</td>
</tr>
<tr>
<td>WiSM</td>
<td>Auto or 1000 Mbps full duplex</td>
</tr>
<tr>
<td>Controller network module</td>
<td>Auto or 100 Mbps full duplex</td>
</tr>
<tr>
<td>Catalyst 3750G Integrated Wireless LAN Controller Switch</td>
<td>Auto or 1000 Mbps full duplex</td>
</tr>
<tr>
<td></td>
<td>Note Make sure that a duplex mismatch does not exist between a Cisco 2100 series Controller and the Catalyst switch. A duplex mismatch is a situation where the switch operates at full duplex and the connected device operates at half duplex or vice versa. The results of a duplex mismatch are extremely slow performance, intermittent connectivity, and loss of connection. Other possible causes of data link errors at full duplex are bad cables, faulty switch ports, or client software or hardware issues.</td>
</tr>
<tr>
<td>Link Trap</td>
<td>Causes the port to send a trap when the port’s link status changes.</td>
</tr>
<tr>
<td></td>
<td>Options: Enable or Disable</td>
</tr>
<tr>
<td></td>
<td>Default: Enable</td>
</tr>
<tr>
<td>Multicast Appliance Mode</td>
<td>Enables or disables the multicast appliance service for this port.</td>
</tr>
<tr>
<td></td>
<td>Options: Enable or Disable</td>
</tr>
<tr>
<td></td>
<td>Default: Enable</td>
</tr>
</tbody>
</table>

Step 3 Click **Apply** to commit your changes.

Step 4 Click **Save Configuration** to save your changes.
Chapter 3 Configuring Ports and Interfaces

Configuring Ports

Step 5 Click Back to return to the Ports page and review your changes.
Step 6 Repeat this procedure for each additional port that you want to configure.
Step 7 Go to the following sections if you want to configure the controller’s ports for these advanced features:
 - For port mirroring, see the “Configuring Port Mirroring” section on page 3-27
 - For the Spanning Tree Protocol (STP), see the “Configuring Spanning Tree Protocol” section on page 3-28.

Note Users will be prompted with a warning message when the following events occur:
1. When the traffic rate from the data ports exceeds 300 Mbps.
2. When the traffic rate from the data ports exceeds 250 Mbps constantly for one minute.
3. When the traffic rate from the data ports falls back to normal from one of the above state for 1 minute.

Configuring Port Mirroring

Mirror mode enables you to duplicate to another port all of the traffic originating from or terminating at a single client device or access point. It is useful in diagnosing specific network problems. Mirror mode should be enabled only on an unused port as any connections to this port become unresponsive.

Note The Cisco 5500 Series Controllers, Cisco 2100 Series Controller, controller network modules, and Cisco WiSM controllers do not support mirror mode. Also, a controller’s service port cannot be used as a mirrored port.

Note Port mirroring is not supported when link aggregation (LAG) is enabled on the controller.

Note We recommend that you do not mirror traffic from one controller port to another as this setup could cause network problems.

To enable port mirroring, follow these steps:

Step 1 Choose Controller > Ports to open the Ports page (see Figure 3-9).
Step 2 Click the number of the unused port for which you want to enable mirror mode. The Port > Configure page appears (see Figure 3-10).
Step 3 Set the Mirror Mode parameter to Enable.
Step 4 Click Apply to commit your changes.
Step 5 Perform one of the following:
• Follow these steps if you want to choose a specific client device that will mirror its traffic to the port you selected on the controller:
 a. Choose Wireless > Clients to open the Clients page.
 b. Click the MAC address of the client for which you want to enable mirror mode. The Clients > Detail page appears.
 c. Under Client Details, set the Mirror Mode parameter to Enable.

• Follow these steps if you want to choose an access point that will mirror its traffic to the port you selected on the controller:
 a. Choose Wireless > Access Points > All APs to open the All APs page.
 b. Click the name of the access point for which you want to enable mirror mode. The All APs > Details page appears.
 c. Choose the Advanced tab.
 d. Set the Mirror Mode parameter to Enable.

Step 6 Click Save Configuration to save your changes.

Configuring Spanning Tree Protocol

Spanning Tree Protocol (STP) is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two network devices. STP allows only one active path at a time between network devices but establishes redundant links as a backup if the initial link should fail.

The spanning-tree algorithm calculates the best loop-free path throughout a Layer 2 network. Infrastructure devices such as controllers and switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The devices do not forward these frames but use them to construct a loop-free path.

Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Infrastructure devices might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network.

STP defines a tree with a root bridge and a loop-free path from the root to all infrastructure devices in the Layer 2 network.

Note

STP discussions use the term root to describe two concepts: the controller on the network that serves as a central point in the spanning tree is called the root bridge, and the port on each controller that provides the most efficient path to the root bridge is called the root port. The root bridge in the spanning tree is called the spanning-tree root.

STP forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path.

When two ports on a controller are part of a loop, the spanning-tree port priority and path cost settings determine which port is put in the forwarding state and which is put in the blocking state. The port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.
Chapter 3 Configuring Ports and Interfaces

Configuring Ports

The controller maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the bridge priority and the controller’s MAC address, is associated with each instance. For each VLAN, the controller with the lowest controller ID becomes the spanning-tree root for that VLAN.

STP is disabled for the controller’s distribution system ports by default. The following sections provide instructions for configuring STP for your controller using either the GUI or CLI.

Note

STP cannot be configured for Cisco 2100 Series Controllers, Cisco 5500 Series Controllers, Cisco Flex 7500 Series Controllers, and the controller in the Catalyst 3750G Integrated Wireless LAN Controller Switch.

Using the GUI to Configure Spanning Tree Protocol

To configure STP using the controller GUI, follow these steps:

Step 1 Choose Controller > Ports to open the Ports page (see Figure 3-9).

Step 2 Click the number of the port for which you want to configure STP. The Port > Configure page appears (see Figure 3-10). This page shows the STP status of the port and enables you to configure STP parameters.

Table 3-4 interprets the current STP status of the port.

Table 3-4 Port Spanning Tree Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP Port ID</td>
<td>Number of the port for which STP is enabled or disabled.</td>
</tr>
<tr>
<td>STP State</td>
<td>Port’s current STP state. It controls the action that a port takes upon</td>
</tr>
<tr>
<td></td>
<td>receiving a frame.</td>
</tr>
<tr>
<td></td>
<td>Values: Disabled, Blocking, Listening, Learning, Forwarding, and</td>
</tr>
<tr>
<td></td>
<td>Broken</td>
</tr>
<tr>
<td>STP State</td>
<td>Description</td>
</tr>
<tr>
<td>Disabled</td>
<td>Port that does not participate in spanning tree because the port is shut</td>
</tr>
<tr>
<td></td>
<td>down, the link is down, or STP is not enabled for this port.</td>
</tr>
<tr>
<td>Blocking</td>
<td>Port that does not participate in frame forwarding.</td>
</tr>
<tr>
<td>Listening</td>
<td>First transitional state after the blocking state when STP determines that</td>
</tr>
<tr>
<td></td>
<td>the port should participate in frame forwarding.</td>
</tr>
<tr>
<td>Learning</td>
<td>Port that prepares to participate in frame forwarding.</td>
</tr>
<tr>
<td>Forwarding</td>
<td>Port that forwards frames.</td>
</tr>
<tr>
<td>Broken</td>
<td>Port that is malfunctioning.</td>
</tr>
<tr>
<td>STP Port Designated Root</td>
<td>Unique identifier of the root bridge in the configuration BPDUs.</td>
</tr>
<tr>
<td>STP Port Designated Cost</td>
<td>Path cost of the designated port.</td>
</tr>
</tbody>
</table>
Table 3-5 Port Spanning Tree Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP Mode</td>
<td>STP administrative mode associated with this port.</td>
</tr>
<tr>
<td></td>
<td>Options: Off, 802.1D, or Fast</td>
</tr>
<tr>
<td></td>
<td>Default: Off</td>
</tr>
<tr>
<td></td>
<td>STP Mode</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>Off</td>
<td>Disables STP for this port.</td>
</tr>
<tr>
<td>802.1D</td>
<td>Enables this port to participate in the spanning tree and go through all of the spanning tree states when the link state transitions from down to up.</td>
</tr>
<tr>
<td>Fast</td>
<td>Enables this port to participate in the spanning tree and puts it in the forwarding state when the link state transitions from down to up more quickly than when the STP mode is set to 802.1D.</td>
</tr>
<tr>
<td>Note</td>
<td>In this state, the forwarding delay timer is ignored on link up.</td>
</tr>
<tr>
<td>STP Port Priority</td>
<td>Location of the port in the network topology and how well the port is located to pass traffic.</td>
</tr>
<tr>
<td></td>
<td>Range: 0 to 255</td>
</tr>
<tr>
<td></td>
<td>Default: 128</td>
</tr>
<tr>
<td>STP Port Path Cost Mode</td>
<td>Whether the STP port path cost is set automatically or specified by the user. If you choose User Configured, you also need to set a value for the STP Port Path Cost parameter.</td>
</tr>
<tr>
<td></td>
<td>Range: Auto or User Configured</td>
</tr>
<tr>
<td></td>
<td>Default: Auto</td>
</tr>
</tbody>
</table>
Step 4 Click **Apply** to commit your changes.

Step 5 Click **Save Configuration** to save your changes.

Step 6 Click **Back** to return to the Ports page.

Step 7 Repeat Step 2 through Step 6 for each port for which you want to enable STP.

Step 8 Choose **Controller > Advanced > Spanning Tree** to open the Controller Spanning Tree Configuration page (see Figure 3-11).

Figure 3-11 Controller Spanning Tree Configuration Page

This page allows you to enable or disable the spanning tree algorithm for the controller, modify its characteristics, and view the STP status. Table 3-6 interprets the current STP status for the controller.
Table 3-6 Controller Spanning Tree Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree Specification</td>
<td>STP version being used by the controller. Currently, only an IEEE 802.1D</td>
</tr>
<tr>
<td></td>
<td>implementation is available.</td>
</tr>
<tr>
<td>Base MAC Address</td>
<td>MAC address used by this bridge when it must be referred to in a unique</td>
</tr>
<tr>
<td></td>
<td>fashion. When it is concatenated with dot1dStpPriority, a unique bridge</td>
</tr>
<tr>
<td></td>
<td>identifier is formed that is used in STP.</td>
</tr>
<tr>
<td>Topology Change Count</td>
<td>Total number of topology changes detected by this bridge since the</td>
</tr>
<tr>
<td></td>
<td>management entity was last reset or initialized.</td>
</tr>
<tr>
<td>Time Since Topology Changed</td>
<td>Time (in days, hours, minutes, and seconds) since a topology change</td>
</tr>
<tr>
<td></td>
<td>was detected by the bridge.</td>
</tr>
<tr>
<td>Designated Root</td>
<td>Bridge identifier of the spanning tree root. This value is used as the</td>
</tr>
<tr>
<td></td>
<td>Root Identifier parameter in all configuration BPDUs originated by this</td>
</tr>
<tr>
<td></td>
<td>node.</td>
</tr>
<tr>
<td>Root Port</td>
<td>Number of the port that offers the lowest cost path from this bridge to</td>
</tr>
<tr>
<td></td>
<td>the root bridge.</td>
</tr>
<tr>
<td>Root Cost</td>
<td>Cost of the path to the root as seen from this bridge.</td>
</tr>
<tr>
<td>Max Age (seconds)</td>
<td>Maximum age of STP information learned from the network on any port before</td>
</tr>
<tr>
<td></td>
<td>it is discarded.</td>
</tr>
<tr>
<td>Hello Time (seconds)</td>
<td>Amount of time between the transmission of configuration BPDUs by this</td>
</tr>
<tr>
<td></td>
<td>port on any port when it is the root of the spanning tree or trying to</td>
</tr>
<tr>
<td></td>
<td>become so. This is the actual value that this bridge is currently using.</td>
</tr>
<tr>
<td>Forward Delay (seconds)</td>
<td>Value that controls how fast a port changes its spanning tree state when</td>
</tr>
<tr>
<td></td>
<td>moving toward the forwarding state. It determines how long the port stays</td>
</tr>
<tr>
<td></td>
<td>in each of the listening and learning states that precede the forwarding</td>
</tr>
<tr>
<td></td>
<td>state. This value is also used, when a topology change has been detected</td>
</tr>
<tr>
<td></td>
<td>and is underway, to age all dynamic entries in the forwarding database.</td>
</tr>
<tr>
<td></td>
<td>Note This value is the actual value that this bridge is currently using,</td>
</tr>
<tr>
<td></td>
<td>in contrast to Stp Bridge Forward Delay, which is the value that this</td>
</tr>
<tr>
<td></td>
<td>bridge and all others would start using if this bridge were to become the</td>
</tr>
<tr>
<td></td>
<td>root.</td>
</tr>
<tr>
<td>Hold Time (seconds)</td>
<td>Minimum time period to elapse between the transmission of configuration</td>
</tr>
<tr>
<td></td>
<td>BPDUs through a given LAN port.</td>
</tr>
<tr>
<td></td>
<td>Note Only one configuration BPDU can be transmitted in any hold</td>
</tr>
<tr>
<td></td>
<td>time period.</td>
</tr>
</tbody>
</table>

Step 9 See Table 3-7 for the controller’s configurable STP parameters. Follow the instructions in the table to make any desired changes.
Step 10 Click Apply to commit your changes.
Step 11 Click Save Configuration to save your changes.

Using the CLI to Configure Spanning Tree Protocol

To configure STP using the CLI, follow these steps:

Step 1 Enter the show spanningtree port command and the show spanningtree switch command to view the current STP status.

Step 2 If STP is enabled, you must disable it before you can change STP settings. Enter the config spanningtree switch mode disable command to disable STP on all ports.

Step 3 Enter one of these commands to configure the STP port administrative mode:

- config spanningtree port mode 802.1d {port-number | all}
- config spanningtree port mode fast {port-number | all}
- config spanningtree port mode off {port-number | all}
Using the Cisco 5500 Series Controller USB Console Port

The USB console port on the Cisco 5500 Series Controllers connects directly to the USB connector of a PC using a USB Type A-to-5-pin mini Type B cable.

Note

The 4-pin mini Type B connector is easily confused with the 5-pin mini Type B connector. They are not compatible. Only the 5-pin mini Type B connector can be used.

For operation with Microsoft Windows, the Cisco Windows USB console driver must be installed on any PC connected to the console port. With this driver, you can plug and unplug the USB cable into and from the console port without affecting Windows HyperTerminal operations.

Note

Only one console port can be active at a time. When a cable is plugged into the USB console port, the RJ-45 port becomes inactive. Conversely, when the USB cable is removed from the USB port, the RJ-45 port becomes active.

USB Console OS Compatibility

These operating systems are compatible with the USB console:

- Microsoft Windows 2000, XP, Vista (Cisco Windows USB console driver required)
- Apple Mac OS X 10.5.2 (no driver required)
Linux (no driver required)

To install the Cisco Windows USB console driver, follow these steps:

Step 1 Download the USB_Console.inf driver file as follows:

a. Click this URL to go to the Software Center:

b. Click **Wireless LAN Controllers**.

c. Click **Standalone Controllers**.

d. Click **Cisco 5500 Series Wireless LAN Controllers**.

e. Click **Cisco 5508 Wireless LAN Controller**.

f. Choose the USB driver file.

g. Save the file to your hard drive.

Step 2 Connect the Type A connector to a USB port on your PC.

Step 3 Connect the mini Type B connector to the USB console port on the controller.

Step 4 When prompted for a driver, browse to the USB_Console.inf file on your PC. Follow the prompts to install the USB driver.

Note Some systems might also require an additional system file. You can download the Usbser.sys file from the Microsoft Support website.

The USB driver is mapped to COM port 6. Some terminal emulation programs do not recognize a port higher than COM 4. If necessary, change the Cisco USB systems management console COM port to an unused port of COM 4 or lower. To do so, follow these steps:

Step 1 From your Windows desktop, right-click **My Computer** and choose **Manage**.

Step 2 From the list on the left side, choose **Device Manager**.

Step 3 From the device list on the right side, double-click **Ports (COM & LPT)**.

Step 4 Right-click **Cisco USB System Management Console 0108** and choose **Properties**.

Step 5 Click the **Port Settings** tab and click the **Advanced** button.

Step 6 From the COM Port Number drop-down list, choose an unused COM port of 4 or lower.

Step 7 Click **OK** to save and then close the **Advanced Settings** dialog box.

Step 8 Click **OK** to save and then close the **Communications Port Properties** dialog box.
Choosing Between Link Aggregation and Multiple AP-Manager Interfaces

Cisco 4400 Series Controllers can support up to 48 access points per port. However, you can configure your Cisco 4400 Series Controller to support more access points by using link aggregation (LAG) or configuring dynamic AP-managers on each Gigabit Ethernet port. Cisco 5500 Series Controllers have no restrictions on the number of access points per port, but we recommend using LAG or multiple AP-manager interfaces on each Gigabit Ethernet port to automatically balance the load.

The following factors should help you decide which method to use if your controller is set for Layer 3 operation:

- With LAG, all of the controller ports need to connect to the same neighbor switch. If the neighbor switch goes down, the controller loses connectivity.
- With multiple AP-manager interfaces, you can connect your ports to different neighbor devices. If one of the neighbor switches goes down, the controller still has connectivity. However, using multiple AP-manager interfaces presents certain challenges (as discussed in the “Configuring Multiple AP-Manager Interfaces” section) when port redundancy is a concern.

Note

If a 4400 series WLC has LAG and IGMP snooping enabled, WLC port 1 must be active. WLC sourced IGMP queries (only applicable if WLC IGMP snooping is enabled) are sent out of only WLC port 1 when LAG is enabled. This restriction is not applicable if LAG is disabled and the Management and AP Manager interfaces are mapped to ports other than 1. This restriction is not applicable to other WLC platforms.

Follow the instructions on the page indicated for the method you want to use:

- Link aggregation, page 3-36
- Multiple AP-manager interfaces, page 3-42

Enabling Link Aggregation

Link aggregation (LAG) is a partial implementation of the 802.3ad port aggregation standard. It bundles all of the controller’s distribution system ports into a single 802.3ad port channel, thereby reducing the number of IP addresses needed to configure the ports on your controller. When LAG is enabled, the system dynamically manages port redundancy and load balances access points transparently to the user.

Note

The Cisco 2100 Series Controller do not support LAG.

Note

You can bundle all four ports on a Cisco 4404 Controller (or two on a 4402 controller) or all eight ports on a Cisco 5508 Controller into a single link.

Cisco 5500 Series Controllers support LAG in software release 6.0 or later releases, Cisco 4400 Series Controllers support LAG in software release 3.2 or later releases, and LAG is enabled automatically on the controllers within the Cisco WiSM and the Catalyst 3750G Integrated Wireless LAN Controller Switch. Without LAG, each distribution system port on a Cisco 4400 Series Controller supports up to 48 access points. With LAG enabled, a Cisco 4402 Controller’s logical port supports up to 50 access points,
a Cisco 4404 Controller’s logical port supports up to 100 access points, and the logical port on the Catalyst 3750G Integrated Wireless LAN Controller Switch and on each Cisco WiSM controller supports up to 150 access points.

Figure 3-12 shows LAG.

Figure 3-12 Link Aggregation

LAG simplifies controller configuration because you no longer need to configure primary and secondary ports for each interface. If any of the controller ports fail, traffic is automatically migrated to one of the other ports. As long as at least one controller port is functioning, the system continues to operate, access points remain connected to the network, and wireless clients continue to send and receive data.

Note

LAG is supported across switches.

Terminating on two different modules within a single Catalyst 6500 series switch provides redundancy and ensures that connectivity between the switch and the controller is maintained when one module fails. Figure 3-13 shows this use of redundant modules. A Cisco 4402-50 Controller is connected to two different Gigabit modules (slots 2 and 3) within the Catalyst 6500 Series Switch. The controller’s port 1 is connected to Gigabit interface 3/1, and the controller’s port 2 is connected to Gigabit interface 2/1 on the Catalyst 6500 series switch. Both switch ports are assigned to the same channel group.

When a Cisco 5500 Series Controller, Cisco 4404 Controller, or WiSM controller module LAG port is connected to a Catalyst 3750G or a 6500 or 7600 channel group employing load balancing, note the following:

- LAG requires the EtherChannel to be configured for the on mode on both the controller and the Catalyst switch.
Once the EtherChannel is configured as on at both ends of the link, it does not matter if the Catalyst switch is configured for either Link Aggregation Control Protocol (LACP) or Cisco proprietary Port Aggregation Protocol (PAgP) because no channel negotiation is done between the controller and the switch. Additionally, LACP and PAgP are not supported on the controller.

The load-balancing method configured on the Catalyst switch must be a load-balancing method that terminates all IP datagram fragments on a single controller port. Not following this recommendation may result in problems with access point association.

The recommended load-balancing method for Catalyst switches is src-dst-ip (enter the `port-channel load-balance src-dst-ip` command).

For the Cisco 4400 Series controllers, the Catalyst 6500 series switches running in PFC3 or PFC3CXL mode implement enhanced EtherChannel load balancing. The enhanced EtherChannel load balancing adds the VLAN number to the hash function, which is incompatible with LAG. From Release 12.2(33)SXH and later releases, Catalyst 6500 IOS software offers the `exclude vlan` keyword to the `port-channel load-balance` command to implement src-dst-ip load distribution. See the Cisco IOS Interface and Hardware Component Command Reference for more information.

For the Cisco 4400 Series controllers, enter the `show platform hardware pfc mode` command on the Catalyst 6500 switch to confirm the PFC operating mode.

The following example shows a Catalyst 6500 series switch in PFC3B mode when you enter the global configuration `port-channel load-balance src-dst-ip` command for proper LAG functionality:

```
# show platform hardware pfc mode PFC operating mode
PFC operating mode : PFC3B
# show EtherChannel load-balance
EtherChannel Load-Balancing Configuration:
src-dst-ip
```

The following example shows Catalyst 6500 series switch in PFC3C mode when you enter the `exclude vlan` keyword in the `port-channel load-balance src-dst-ip exclude vlan` command:

```
# show platform hardware pfc mode
PFC operating mode : PFC3C
# show EtherChannel load-balance
EtherChannel Load-Balancing Configuration:
src-ip enhanced
# mpls label-ip
```

If the recommended load-balancing method cannot be configured on the Catalyst switch, then configure the LAG connection as a single member link or disable LAG on the controller.
Link Aggregation Guidelines

Follow these guidelines when using LAG:

- You cannot configure the controller’s ports into separate LAG groups. Only one LAG group is supported per controller. Therefore, you can connect a controller in LAG mode to only one neighbor device.

 Note The two internal Gigabit ports on the controller within the Catalyst 3750G Integrated Wireless LAN Controller Switch are always assigned to the same LAG group.

- When you enable LAG or make any changes to the LAG configuration, you must immediately reboot the controller.
- When you enable LAG, you can configure only one AP-manager interface because only one logical port is needed. LAG removes the requirement for supporting multiple AP-manager interfaces.
- When you enable LAG, all dynamic AP-manager interfaces and untagged interfaces are deleted, and all WLANs are disabled and mapped to the management interface. Also, the management, static AP-manager, and VLAN-tagged dynamic interfaces are moved to the LAG port.
- Multiple untagged interfaces to the same port are not allowed.
- When you enable LAG, you cannot create interfaces with a primary port other than 29.
- When you enable LAG, all ports participate in LAG by default. You must configure LAG for all of the connected ports in the neighbor switch.
- When you enable LAG on the Cisco WiSM, you must enable port-channeling/EtherChanneling for all of the controller’s ports on the switch.
- When you enable LAG, port mirroring is not supported.
- When you enable LAG, if any single link goes down, traffic migrates to the other links.
- When you enable LAG, only one functional physical port is needed for the controller to pass client traffic.
- When you enable LAG, access points remain connected to the switch, and data service for users continues uninterrupted.
- When you enable LAG, you eliminate the need to configure primary and secondary ports for each interface.
- When you enable LAG, the controller sends packets out on the same port on which it received them. If a CAPWAP packet from an access point enters the controller on physical port 1, the controller removes the CAPWAP wrapper, processes the packet, and forwards it to the network on physical port 1. This may not be the case if you disable LAG.
- When you disable LAG, the management, static AP-manager, and dynamic interfaces are moved to port 1.
- When you disable LAG, you must configure primary and secondary ports for all interfaces.
- When you disable LAG, you must assign an AP-manager interface to each port on the controller. Otherwise, access points are unable to join.
- Cisco 5500 and 4400 Series Controllers support a single static link aggregation bundle.
- LAG is typically configured using the Startup Wizard, but you can enable or disable it at any time through either the GUI or CLI.

Note LAG is enabled by default and is the only option on the WiSM controller and the controller in the Catalyst 3750G Integrated Wireless LAN Controller Switch.

Using the GUI to Enable Link Aggregation

To enable LAG on your controller using the controller GUI, follow these steps:

Step 1 Choose **Controller > General** to open the General page (see Figure 3-14).

Figure 3-14 General Page

![General Page](image)

Step 2 Set the LAG Mode on Next Reboot parameter to **Enabled**.
Using the CLI to Enable Link Aggregation

To enable LAG on your controller using the CLI, follow these steps:

Step 1 Enter the `config lag enable` command to enable LAG.

Note Enter the `config lag disable` command if you want to disable LAG.

Step 2 Enter the `save config` command to save your settings.

Step 3 Reboot the controller.

Using the CLI to Verify Link Aggregation Settings

To verify your LAG settings, enter this command:

`show lag summary`

Information similar to the following appears:

LAG Enabled

Configuring Neighbor Devices to Support Link Aggregation

The controller’s neighbor devices must also be properly configured to support LAG.

- Each neighbor port to which the controller is connected should be configured as follows:

  ```
  interface GigabitEthernet <interface id>
  switchport
  channel-group <id> mode on
  no shutdown
  ```

- The port channel on the neighbor switch should be configured as follows:

  ```
  interface port-channel <id>
  switchport
  switchport trunk encapsulation dot1q
  ```
Configuring Multiple AP-Manager Interfaces

Note Only Cisco 2500, 5500 Series Controllers and Cisco 4400 Series Controllers support the use of multiple AP-manager interfaces.

When you create two or more AP-manager interfaces, each one is mapped to a different port (see Figure 3-15). The ports should be configured in sequential order so that AP-manager interface 2 is on port 2, AP-manager interface 3 is on port 3, and AP-manager interface 4 is on port 4.

Note AP-manager interfaces do not need to be on the same VLAN or IP subnet, and they may or may not be on the same VLAN or IP subnet as the management interface. However, we recommend that you configure all AP-manager interfaces on the same VLAN or IP subnet.

Note You must assign an AP-manager interface to each port on the controller.

Before an access point joins a controller, it sends out a discovery request. From the discovery response that it receives, the access point can tell the number of AP-manager interfaces on the controller and the number of access points on each AP-manager interface. The access point generally joins the AP-manager with the least number of access points. In this way, the access point load is dynamically distributed across the multiple AP-manager interfaces.

Note Access points may not be distributed completely evenly across all of the AP-manager interfaces, but a certain level of load balancing occurs.
Before implementing multiple AP-manager interfaces, you should consider how they would impact your controller’s port redundancy.

Examples:

1. The Cisco 4402-50 Controller supports a maximum of 50 access points and has two ports. To support the maximum number of access points, you would need to create two AP-manager interfaces (see Figure 3-15) because a Cisco 4400 Series Controller can support only 48 access points on one port.

2. The Cisco 4404-100 Controller supports up to 100 access points and has four ports. To support the maximum number of access points, you would need to create three (or more) AP-manager interfaces (see Figure 3-16). If the port of one of the AP-manager interfaces fails, the controller clears the access points’ state, and the access points must reboot to reestablish communication with the controller using the normal controller join process. The controller no longer includes the failed AP-manager interface in the CAPWAP or LWAPP discovery responses. The access points then rejoin the controller and are load balanced among the available AP-manager interfaces.
Figure 3-16 Three AP-Manager Interfaces

Figure 3-17 shows the use of four AP-manager interfaces to support 100 access points on a Cisco 4400 Series Controller.
This configuration has the advantage of load balancing all 100 access points evenly across all four AP-manager interfaces. If one of the AP-manager interfaces fails, all of the access points connected to the controller would be evenly distributed among the three available AP-manager interfaces. For example, if AP-manager interface 2 fails, the remaining AP-manager interfaces (1, 3, and 4) would each manage approximately 33 access points.

Using the GUI to Create Multiple AP-Manager Interfaces

To create multiple AP-manager interfaces using the controller GUI, follow these steps:

Step 1 Choose Controller > Interfaces to open the Interfaces page.

Step 2 Click New. The Interfaces > New page appears (see Figure 3-18).

Step 3 Enter an AP-manager interface name and a VLAN identifier.

Step 4 Click Apply to commit your changes. The Interfaces > Edit page appears (see Figure 3-19).
Step 5 Enter the appropriate interface parameters.

Note Every interface supports primary and backup port, with the following exceptions:

- Dynamic interface is converted to AP manager, will not support backup port configuration.
- IF AP manager is enabled on management interface and when management interface moves to backup port because of primary port failure, the AP manager would be disabled.

Step 6 To make this interface an AP-manager interface, select the **Enable Dynamic AP Management** check box.

Note Only one AP-manager interface is allowed per physical port. A dynamic interface that is marked as an AP-manager interface cannot be used as a WLAN interface.

Step 7 Click **Save Configuration** to save your settings.

Step 8 Repeat this procedure for each additional AP-manager interface that you want to create.
Using the CLI to Create Multiple AP-Manager Interfaces

To create multiple AP-manager interfaces using the controller CLI, follow these steps:

Step 1
Enter these commands to create a new interface:

- `config interface create operator_defined_interface_name {vlan_id | x}`
- `config interface address operator_defined_interface_name ip_addr ip_netmask [gateway]`
- `config interface vlan operator_defined_interface_name {vlan_id | 0}`
- `config interface port operator_defined_interface_name physical_ds_port_number`
- `config interface dhcp operator_defined_interface_name ip_address_of_primary_dhcp_server [ip_address_of_secondary_dhcp_server]`
- `config interface quarantine vlan interface_name vlan_id`

Note
Use this command to configure a quarantine VLAN on any interface.

- `config interface acl operator_defined_interface_name access_control_list_name`

Note
See Chapter 6, “Configuring Security Solutions,” for more information on ACLs.

Step 2
To make this interface an AP-manager interface, enter this command:

`config interface ap-manager operator_defined_interface_name {enable | disable}`

Note
Only one AP-manager interface is allowed per physical port. A dynamic interface that is marked as an AP-manager interface cannot be used as a WLAN interface.

Step 3
To save your changes, enter this command:

`save config`

Step 4
Repeat this procedure for each additional AP-manager interface that you want to create.

Cisco 5500 Series Controller Example

For a Cisco 5500 Series Controller, we recommend having eight dynamic AP-manager interfaces and associating them to the controller’s eight Gigabit ports. If you are using the management interface, which acts like an AP-manager interface by default, you need to create only seven more dynamic AP-manager interfaces and associate them to the remaining seven Gigabit ports. For example, Figure 3-20 shows a dynamic interface that is enabled as a dynamic AP-manager interface and associated to port number 2, and Figure 3-21 shows a Cisco 5500 Series Controller with LAG disabled, the management interface used as one dynamic AP-manager interface, and seven additional dynamic AP-manager interfaces, each mapped to a different Gigabit port.
Figure 3-20 Dynamic Interface Example with Dynamic AP Management

Figure 3-21 Cisco 5500 Series Controller Interface Configuration Example
Configuring VLAN Select

Whenever a wireless client connects to a wireless network (WLAN), the client is placed in a VLAN that is associated with the WLAN. Release 7.0.116.0 and prior releases of the controller software enabled you to associate one VLAN with a WLAN. Each VLAN required a single IP subnet. As a result, a WLAN required a large subnet to accommodate more clients. In a large venue such as an auditorium, a stadium, or a conference where there may be numerous wireless clients, having only a single WLAN to accommodate many clients might be a challenge.

The VLAN select feature enables you to use a single WLAN that can support multiple VLANs. Clients can get assigned to one of the configured VLANs. This feature enables you to map a WLAN to a single or multiple interface VLANs using interface groups. Wireless clients that associate to the WLAN get an IP address from a pool of subnets identified by the interfaces in round-robin fashion. This feature also extends the current AP group architecture where AP groups can override an interface or interface group to which the WLAN is mapped to, with multiple interfaces using the interface groups. This feature also provides the solution to auto anchor restrictions where a wireless guest user on a foreign location can get an IP address from multiple subnets based on their foreign locations or foreign controllers from the same anchor controller.

When a client roams from one controller to another, the foreign controller sends the VLAN information as part of the mobility announce message. Based on the VLAN information received, the anchor decides whether the tunnel should be created between the anchor controller and the foreign controller. If the same VLAN is available on the foreign controller, the client context is completely deleted from the anchor and the foreign controller becomes the new anchor controller for the client.

If an interface (int-1) in a subnet is untagged in one controller (Vlan ID 0) and the interface (int-2) in the same subnet is tagged to another controller (Vlan ID 1), then with the VLAN select, client joining the first controller over this interface may not undergo an L2 roam while it moves to the second controller. Hence, for L2 roaming to happen between two controllers with VLAN select, all the interfaces in the same subnet should be either tagged or untagged.

As part of the VLAN select feature, the mobility announce message carries an additional vendor payload that contains the list of VLAN interfaces in an interface group mapped to a foreign controller’s WLAN. This VLAN list enables the anchor to differentiate from a local to local or local to foreign handoff.

Note

VLAN pooling applies to wireless clients and centrally switched WLANs.

This section lists the following topics:

- “Platform Support” section on page 3-49
- “Using Interface Groups” section on page 3-50
- “Using Multicast Optimization” section on page 3-52

Platform Support

The following lightweight access points are supported:
Cisco Aironet 1120, 1230, 1130, 1040, 1140, 1240, 1250, 1260, 3500, 1522/1524 Access Points, and 800 Series access points.

The following controllers are supported:
Cisco Flex 7500, Cisco 5508, 4402, 4404, WISM, WiSM-2, 2500, 2106, 2112, 2125 Series Controllers.
Using Interface Groups

Interface groups are logical groups of interfaces. Interface groups facilitate user configuration where the same interface group can be configured on multiple WLANs or while overriding a WLAN interface per AP group. An interface group can exclusively contain either quarantine or nonquarantine interfaces. An interface can be part of multiple interface groups.

A WLAN can be associated with an interface or interface group. The interface group name and the interface name cannot be the same.

This feature also enables you to associate a client to specific subnets based on the foreign controller that they are connected to. The anchor controller WLAN can be configured to maintain a mapping between foreign controller MAC and a specific interface or interface group (Foreign maps) as needed. If this mapping is not configured, clients on that foreign controller gets VLANs associated in a round robin fashion from interface group configured on WLAN.

Table 3-8 lists the platform support for interface and interface groups:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Interface Groups</th>
<th>Interfaces per Interface Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiSM-2, Cisco 5508 Series Controller, Cisco Flex 7500 Series Controller, Cisco 2500 Series Controller.</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>WiSM, Cisco 4400 Series Controller, Cisco 4200 Series Controllers</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Cisco 2100 Series Controller and NM6 series</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

This section contains the following topics:

- Using the GUI to Create Interface Groups, page 3-50
- Using the CLI to Create Interface Groups, page 3-51
- Using the GUI to Add Interfaces to Interface Groups, page 3-51
- Using the CLI to Add Interfaces to Interface Groups, page 3-52
- Using the GUI to Add an Interface Group to a WLAN, page 3-52
- Using the CLI to Add an Interface Group to a WLAN, page 3-52
- Using the GUI to Configure a Multicast VLAN, page 3-52
- Using the CLI to Configure Multicast VLAN, page 3-53

Using the GUI to Create Interface Groups

To create interface groups using the controller GUI, follow these steps:

Step 1 Choose **Controller > Interface Groups** from the left navigation pane.
The Interface Groups page appears with the list of interface groups already created.

Note
To remove an interface group, hover your mouse pointer over the blue drop-down icon and choose **Remove**.

Step 2
Click **Add Group** to add a new group.
The Add New Interface Group page appears.

Step 3
Enter the details of the interface group:
- **Interface Group Name**—Specify the name of the interface group.
- **Description**—Add a brief description of the interface group.

Step 4
Click **Add**.

Using the CLI to Create Interface Groups

To create interface groups using the CLI, use the following commands:

- `config interface group {create | delete} interface_group_name`—Creates or deletes an interface group
- `config interface group description interface_group_name "description"`—Adds a description to the interface group

Using the GUI to Add Interfaces to Interface Groups

To add an interface to an interface group, follow these steps:

Step 1
Choose **Controller > Interface Groups**.
The Interface Groups page appears with a list of all interface groups.

Step 2
Click the name of the interface group to which you want to add interfaces.
The Interface Groups > Edit page appears.

Step 3
Choose the interface name that you want to add to this interface group from the Interface Name drop-down list.

Step 4
Click **Add Interface** to add the interface to the Interface group.

Step 5
Repeat Steps 2 and 3 if you want to add multiple interfaces to this interface group.

Note
To remove an interface from the interface group, hover your mouse pointer over the blue drop-down arrow and choose **Remove**.
Using the CLI to Add Interfaces to Interface Groups

To add interfaces to interface groups, use the `config interface group interface add interface_group interface_name` command.

Using the GUI to Add an Interface Group to a WLAN

To add an interface group to a WLAN, follow these steps:

Step 1 Choose the WLAN tab.

The WLANs page appears listing the available WLANs.

Step 2 Click the WLAN ID of the WLAN to which you want to add the interface group.

Step 3 In the General tab, choose the interface group from the Interface/Interface Group (G) drop-down list.

Step 4 Click Apply.

Using Multicast Optimization

Prior to the 7.0.116.0 release, multicast was based on the grouping of the multicast address and the VLAN as one entity, MGID. With VLAN select and VLAN pooling, there is a possibility that you might increase duplicate packets. With the VLAN select feature, every client listens to the multicast stream on a different VLAN. As a result, the controller creates different MGIDs for each multicast address and VLAN. Therefore, the upstream router sends one copy for each VLAN, which results, in the worst case, in as many copies as there are VLANs in the pool. Since the WLAN is still the same for all clients, multiple copies of the multicast packet are sent over the air. To suppress the duplication of a multicast stream on the wireless medium and between the controller and access points, you can use the multicast optimization feature.

Multicast optimization enables you to create a multicast VLAN which you can use for multicast traffic. You can configure one of the VLANs of the WLAN as a multicast VLAN where multicast groups are registered. Clients are allowed to listen to a multicast stream on the multicast VLAN. The MGID is generated using multicast VLAN and multicast IP addresses. If multiple clients on the VLAN pool of the same WLAN are listening to a single multicast IP address, a single MGID is generated. The controller makes sure that all multicast streams from the clients on this VLAN pool always go out on the multicast VLAN to ensure that the upstream router has one entry for all the VLANs of the VLAN pool. Only one multicast stream hits the VLAN pool even if the clients are on different VLANs. Therefore, the multicast packets that are sent out over the air is just one stream.

Using the GUI to Configure a Multicast VLAN

To configure a multicast VLAN using the controller GUI, follow these steps:
Step 1 Choose the WLANs tab.
The WLANs tab appears.

Step 2 Click on the WLAN ID of the WLAN that you want to choose for a multicast VLAN.
The WLANs > Edit page appears.

Step 3 Enable the multicast VLAN feature by selecting the Multicast VLAN feature check box.
The Multicast Interface drop-down list appears.

Step 4 Choose the VLAN from the Multicast Interface drop-down list.

Step 5 Click Apply.

Using the CLI to Configure Multicast VLAN

Use the config wlan multicast interface wlan_id enable interface_name command to configure the multicast VLAN feature.