THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2018 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface

About This Guide vii
Conventions Used vii
Supported Documents and Resources viii
Related Documentation viii
Obtaining Documentation viii
Contacting Customer Support ix

CHAPTER 1

Ultra M Overview 1
VNF Support 1
Ultra M Model(s) 1
Functional Components 2
Virtual Machine Allocations 3
VM Resource Requirements 4

CHAPTER 2

Hardware Specifications 7
Cisco Catalyst Switches 7
Catalyst C2960XR-48TD-I Switch 7
Catalyst 3850-48T-S Switch 8
Cisco Nexus Switches 8
Nexus 93180-YC-EX 8
Nexus 9236C 8
UCS C-Series Servers 9
Server Functions and Quantities 9
VM Deployment per Node Type 11
Server Configurations 13
Storage 14
CHAPTER 3
Software Specifications 17

CHAPTER 4
Networking Overview 19
- UCS-C240 Network Interfaces 19
- VIM Network Topology 22
- Openstack Tenant Networking 24
- VNF Tenant Networks 26
 - Supporting Trunking on VNF Service ports 27
- Layer 1 Leaf and Spine Topology 27
 - Hyper-converged Ultra M Single and Multi-VNF Model Network Topology 28

CHAPTER 5
Deploying the Ultra M Solution 43
- Deployment Workflow 44
- Plan Your Deployment 44
 - Network Planning 44
- Install and Cable the Hardware 44
 - Related Documentation 44
 - Rack Layout 45
 - Hyper-converged Ultra M XS Single VNF Deployment 45
 - Hyper-converged Ultra M XS Multi-VNF Deployment 46
- Cable the Hardware 48
- Configure the Switches 48
- Prepare the UCS C-Series Hardware 49
 - Prepare the Staging Server/Ultra M Manager Node 50
 - Prepare the Controller Nodes 50
 - Prepare the Compute Nodes 52
 - Prepare the OSD Compute Nodes 53
- Deploy the Virtual Infrastructure Manager 58
 - Deploy the VIM for Hyper-Converged Ultra M Models 58
- Deploy the USP-Based VNF 58

CHAPTER 6
Event and Syslog Management Within the Ultra M Solution 61
- Syslog Proxy 62
- Event Aggregation 66
Install the Ultra M Manager RPM 76
Restarting the Ultra M Manager Service 77
Check the Ultra M Manager Service Status 78
Stop the Ultra M Manager Service 78
Start the Ultra M Manager Service 79
Uninstalling the Ultra M Manager 79
Encrypting Passwords in the ultram_cfg.yaml File 80

APPENDIX A

Network Definitions (Layer 2 and 3) 83

APPENDIX B

Example ultram_cfg.yaml File 89

APPENDIX C

Ultra M MIB 93

APPENDIX D

Ultra M Component Event Severity and Fault Code Mappings 99
OpenStack Events 100
 Component: Ceph 100
 Component: Cinder 100
 Component: Neutron 101
 Component: Nova 101
 Component: NTP 101
 Component: PCS 101
 Component: Rabbitmqctl 102
 Component: Services 102
UCS Server Events 104
UAS Events 105
ESC VM Events 105

APPENDIX E

Ultra M Troubleshooting 107
Ultra M Component Reference Documentation 107
 UCS C-Series Server 107
 Nexus 9000 Series Switch 107
 Catalyst 2960 Switch 108
 Red Hat 109
 OpenStack 109
Collecting Support Information 109
 From UCS: 109
 From Host/Server/Compute/Controller/Linux: 109
 From Switches 110
 From ESC (Active and Standby) 111
 From UAS 111
 From UEM (Active and Standby) 112
 From UGP (Through StarOS) 112
About Ultra M Manager Log Files 113

APPENDIX F
Using the UCS Utilities Within the Ultra M Manager 115
 Overview 115
 Perform Pre-Upgrade Preparation 116
 Shutdown the ESC VMs 120
 Upgrade the Compute Node Server Software 120
 Upgrade the OSD Compute Node Server Software 122
 Restart the UAS and ESC (VNFM) VMs 125
 Upgrade the Controller Node Server Software 125
 Upgrade Firmware on UCS Bare Metal 128
 Upgrade Firmware on the OSP-D Server/Ultra M Manager Node 130
 Controlling UCS BIOS Parameters Using ultram_ucs_utils.py Script 131

APPENDIX G
ultram_ucs_utils.py Help 135
About This Guide

This preface describes the *Ultra M Solution Guide*, how it is organized, and its document conventions.

Ultra M is a pre-packaged and validated virtualized mobile packet core solution designed to simplify the deployment of virtual network functions (VNFs).

- Conventions Used, page vii
- Supported Documents and Resources, page viii
- Contacting Customer Support, page ix

Conventions Used

The following tables describe the conventions used throughout this documentation.

<table>
<thead>
<tr>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
</table>
| Text represented as screen display | This typeface represents displays that appear on your terminal screen, for example:
 Login: |
| Text represented as commands | This typeface represents commands that you enter, for example: show ip access-list
 This document always gives the full form of a command in lowercase letters. Commands are not case sensitive. |
Typeface Conventions

<table>
<thead>
<tr>
<th>Description</th>
<th>Typeface Conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>This typeface represents a variable that is part of a command, for example: <code>show card slot_number</code></td>
<td>Text represented as a command variable</td>
</tr>
<tr>
<td><code>slot_number</code> is a variable representing the desired chassis slot number.</td>
<td></td>
</tr>
<tr>
<td>This typeface represents menus and sub-menus that you access within a software application, for example: Click the File menu, then click New</td>
<td>Text represented as menu or sub-menu names</td>
</tr>
</tbody>
</table>

Supported Documents and Resources

Related Documentation

The most up-to-date information for the UWS is available in the product *Release Notes* provided with each product release.

The following common documents are available:

- *Ultra Gateway Platform System Administration Guide*
- *Ultra-M Deployment Guide*
- *Ultra Services Platform Deployment Automation Guide*
- *Ultra Services Platform NETCONF API Guide*
- *VPC-DI System Administration Guide*
- *StarOS Product-specific and Feature-specific Administration Guides*

Obtaining Documentation

Nephelo Documentation

The most current Nephelo documentation is available on the following website: http://nephelo.cisco.com/page_vPC.html

StarOS Documentation

The most current Cisco documentation is available on the following website: http://www.cisco.com/cisco/web/psa/default.html

Use the following path selections to access the StarOS documentation:
Contacting Customer Support

Use the information in this section to contact customer support. Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
Ultra M Overview

Ultra M is a pre-packaged and validated virtualized mobile packet core solution designed to simplify the deployment of virtual network functions (VNFs).

The solution combines the Cisco Ultra Service Platform (USP) architecture, Cisco Validated OpenStack infrastructure, and Cisco networking and computing hardware platforms into a fully integrated and scalable stack. As such, Ultra M provides the tools to instantiate and provide basic lifecycle management for VNF components on a complete OpenStack virtual infrastructure manager.

- VNF Support, page 1
- Ultra M Model(s), page 1
- Functional Components, page 2
- Virtual Machine Allocations, page 3

VNF Support

In this release, Ultra M supports the Ultra Gateway Platform (UGP) VNF.

The UGP currently provides virtualized instances of the various 3G and 4G mobile packet core (MPC) gateways that enable mobile operators to offer enhanced mobile data services to their subscribers. The UGP addresses the scaling and redundancy limitations of VPC-SI (Single Instance) by extending the StarOS boundaries beyond a single VM. UGP allows multiple VMs to act as a single StarOS instance with shared interfaces, shared service addresses, load balancing, redundancy, and a single point of management.

Ultra M Model(s)

The Ultra M Extra Small (XS) model is currently available. It is based on OpenStack 10 and implements a Hyper-Converged architecture that combines the Ceph Storage and Compute node. The converged node is referred to as an OSD compute node.

This model includes 6 Active Service Functions (SFs) per VNF and is supported in deployments from 1 to 4 VNFs.
Functional Components

As described in Hardware Specifications, on page 7, the Ultra M solution consists of multiple hardware components including multiple servers that function as controller, compute, and storage nodes. The various functional components that comprise the Ultra M are deployed on this hardware:

- **OpenStack Controller**: Serves as the Virtual Infrastructure Manager (VIM).

 Important
 In this release, all VNFs in a multi-VNF Ultra M are deployed as a single “site” leveraging a single VIM.

- **Ultra Automation Services (UAS)**: A suite of tools provided to simplify the deployment process:

- **Cisco Elastic Services Controller (ESC)**: Serves as the Virtual Network Function Manager (VNFM).

 Important
 ESC is the only VNFM supported in this release.

- **VNF Components**: USP-based VNFs are comprised of multiple components providing different functions:

 * **Ultra Element Manager (UEM)**: Serves as the Element Management System (EMS, also known as the VNF-EM); it manages all of the major components of the USP-based VNF architecture.

 * **Control Function (CF)**: A central sub-system of the UGP VNF, the CF works with the UEM to perform lifecycle events and monitoring for the UGP VNF.
Service Function (SF): Provides service context (user I/O ports), handles protocol signaling, session processing tasks, and flow control (demux).

Figure 1: Ultra M Components

![Figure 1: Ultra M Components]

Virtual Machine Allocations

Each of the Ultra M functional components are deployed on one or more virtual machines (VMs) based on their redundancy requirements as identified in Table 1: Function VM Requirements per Ultra M Model, on page 4. Some of these component VMs are deployed on a single compute node as described in VM Deployment per Node Type, on page 11. All deployment models use three OpenStack controllers to provide VIM layer redundancy and upgradability.
Table 1: Function VM Requirements per Ultra M Model

<table>
<thead>
<tr>
<th>Function(s)</th>
<th>XS Single VNF</th>
<th>XS Multi VNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP-D*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AutoIT**</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AutoDeploy**</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AutoVNF</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ESC (VNFM)</td>
<td>2</td>
<td>2 per VNF</td>
</tr>
<tr>
<td>UEM</td>
<td>3</td>
<td>3 per VNF</td>
</tr>
<tr>
<td>CF</td>
<td>2</td>
<td>2 per VNF</td>
</tr>
<tr>
<td>SF</td>
<td>8</td>
<td>8 per VNF</td>
</tr>
</tbody>
</table>

* OSP-D is deployed as a VM for Hyper-Converged Ultra M models.
** AutoIT and AutoDeploy each require 2 VMs when deployed in HA mode (recommended).

VM Resource Requirements

The CF, SF, UEM, and ESC VMs require the resource allocations identified in Table 2: VM Resource Allocation, on page 4. The host resources are included in these numbers.

Table 2: VM Resource Allocation

<table>
<thead>
<tr>
<th>Virtual Machine</th>
<th>vCPU</th>
<th>RAM (GB)</th>
<th>Root Disk (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP-D*</td>
<td>16</td>
<td>32</td>
<td>200</td>
</tr>
<tr>
<td>AutoIT**</td>
<td>2</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>AutoDeploy**</td>
<td>2</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>AutoVNF</td>
<td>2</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>ESC</td>
<td>2</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>UEM</td>
<td>2</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>CF</td>
<td>8</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Virtual Machine</td>
<td>vCPU</td>
<td>RAM (GB)</td>
<td>Root Disk (GB)</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>SF</td>
<td>24</td>
<td>96</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 4 vCPUs, 2 GB RAM, and 54 GB root disks are reserved for host reservation.

* OSP-D is deployed as a VM for Hyper-Converged Ultra M models. Though the recommended root disk size is 200GB, additional space can be allocated if available.

** AutoIT is used to deploy the VIM Orchestrator (Undercloud) and VIM (Overcloud) for Hyper-Converged Ultra M models. AutoIT, AutoDeploy, and OSP-D are installed as VMs on the same physical server in this scenario.
Hardware Specifications

Ultra M deployments use the following hardware:

The specific component software and firmware versions identified in the sections that follow have been validated in this Ultra M solution release.

- Cisco Catalyst Switches, page 7
- Cisco Nexus Switches, page 8
- UCS C-Series Servers, page 9

Cisco Catalyst Switches

Cisco Catalyst Switches provide as physical layer 1 switching for Ultra M components to the management and provisioning networks. One of two switch models is used based on the Ultra M model being deployed:

- Catalyst C2960XR-48TD-I Switch, on page 7
- Catalyst 3850-48T-S Switch, on page 8

Catalyst C2960XR-48TD-I Switch

The Catalyst C2960XR-48TD-I has 48 10/100/1000 ports.

<table>
<thead>
<tr>
<th>Ultra M Model(s)</th>
<th>Quantity</th>
<th>Software Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M XS Single VNF</td>
<td>2</td>
<td>IOS 15.2.(2) E5</td>
<td>Boot Loader: 15.2(3r)E1</td>
</tr>
<tr>
<td>Ultra M XS Multi-VNF</td>
<td>1 per rack</td>
<td>IOS 15.2.(2) E5</td>
<td>Boot Loader: 15.2(3r)E1</td>
</tr>
</tbody>
</table>
Catalyst 3850-48T-S Switch

The Catalyst 3850 48T-S has 48 10/100/1000 ports.

Table 4: Catalyst 3850-48T-S Switch Information

<table>
<thead>
<tr>
<th>Ultra M Models</th>
<th>Quantity</th>
<th>Software Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M XS Single VNF</td>
<td>2</td>
<td>IOS: 03.06.06E</td>
<td>Boot Loader: 3.58</td>
</tr>
<tr>
<td>Ultra M XS Multi-VNF</td>
<td>1 per Rack</td>
<td>IOS: 03.06.06E</td>
<td>Boot Loader: 3.58</td>
</tr>
</tbody>
</table>

Cisco Nexus Switches

Cisco Nexus Switches serve as top-of-rack (TOR) leaf and end-of-rack (EOR) spine switches provide out-of-band (OOB) network connectivity between Ultra M components. Two switch models are used for the various Ultra M models:

- Nexus 93180-YC-EX, on page 8
- Nexus 9236C, on page 8

Nexus 93180-YC-EX

Nexus 93180 switches serve as network leafs within the Ultra M solution. Each switch has 48 10/25-Gbps Small Form Pluggable Plus (SFP+) ports and 6 40/100-Gbps Quad SFP+ (QSFP+) uplink ports.

Table 5: Nexus 93180-YC-EX

<table>
<thead>
<tr>
<th>Ultra M Model(s)</th>
<th>Quantity</th>
<th>Software Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M XS Single VNF</td>
<td>2</td>
<td>NX-OS: 7.0(3)I5(2)</td>
<td>BIOS: 7.59</td>
</tr>
<tr>
<td>Ultra M XS Multi-VNF</td>
<td>2 per Rack</td>
<td>NX-OS: 7.0(3)I5(2)</td>
<td>BIOS: 7.59</td>
</tr>
</tbody>
</table>

Nexus 9236C

Nexus 9236 switches serve as network spines within the Ultra M solution. Each switch provides 36 10/25/40/50/100 Gbps ports.
UCS C-Series Servers

Cisco UCS C240 M4S SFF servers host the functions and virtual machines (VMs) required by Ultra M.

Server Functions and Quantities

Server functions and quantity differ depending on the Ultra M model you are deploying:

- **Ultra M Manager Node**: Required only for Ultra M models based on the Hyper-Converged architecture, this server hosts the following:
 - AutoIT HA VMs
 - AutoDeploy HA VMs
 - OSP-D VM

- **OpenStack Controller Nodes**: These servers host the high availability (HA) cluster that serves as the VIM within the Ultra M solution. In addition, they facilitate the Ceph storage monitor function required by the Ceph Storage Nodes and/or OSD Compute Nodes.

- **OSD Compute Nodes**: Required only for Hyper-converged Ultra M models, these servers provide Ceph storage functionality in addition to hosting VMs for the following:
 - AutoVNF HA VMs
 - Elastic Services Controller (ESC) Virtual Network Function Manager (VNF) active and standby VMs
 - Ultra Element Manager (UEM) VM HA cluster
 - Ultra Service Platform (USP) Control Function (CF) active and standby VMs

Table 6: Nexus 9236C

<table>
<thead>
<tr>
<th>Ultra M Model(s)</th>
<th>Quantity</th>
<th>Software Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M XS Single VNF</td>
<td>2</td>
<td>NX-OS: 7.0(3)I5(2)</td>
<td>BIOS: 7.59</td>
</tr>
<tr>
<td>Ultra M XS Multi-VNF</td>
<td>2</td>
<td>NX-OS: 7.0(3)I5(2)</td>
<td>BIOS: 7.59</td>
</tr>
</tbody>
</table>
Table 7: Ultra M Server Quantities by Model and Function

<table>
<thead>
<tr>
<th>Ultra M Model(s)</th>
<th>Server Quantity (max)</th>
<th>Ultra M Manager Node</th>
<th>Controller Nodes</th>
<th>OSD Compute Nodes</th>
<th>Compute Nodes (max)</th>
<th>Additional Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M XS Single VNF</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>Based on node type as described in Table 8: Hyper-Converged Ultra M Single and Multi-VNF UCS C240 Server Specifications by Node Type, on page 13.</td>
</tr>
<tr>
<td>Ultra M XS Multi-VNF</td>
<td>45</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>38*</td>
<td>Based on node type as described in Table 8: Hyper-Converged Ultra M Single and Multi-VNF UCS C240 Server Specifications by Node Type, on page 13.</td>
</tr>
</tbody>
</table>

* Supports a maximum of 4 VNFs – 8 for the first VNF, 10 for each subsequent VNF.
VM Deployment per Node Type

Figure 3: VM Distribution on Server Nodes for Hyper-converged Ultra M Single VNF Models

Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models
Server Configurations

Table 8: Hyper-Converged Ultra M Single and Multi-VNF UCS C240 Server Specifications by Node Type

<table>
<thead>
<tr>
<th>Node Type</th>
<th>CPU</th>
<th>RAM</th>
<th>Storage</th>
<th>Software Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra M Manager Node*</td>
<td>2x 2.60 GHz</td>
<td>4x 32GB DDR4-2400-MHz RDIMM/PC4</td>
<td>2x 1.2 TB 12G SAS HDD</td>
<td>MLOM: 4.1(3a)</td>
<td>CIMC: 3.0(3e) System BIOS: C240M4.3.0.3c.0.0831170228</td>
</tr>
<tr>
<td>Controller</td>
<td>2x 2.60 GHz</td>
<td>4x 32GB DDR4-2400-MHz RDIMM/PC4</td>
<td>2x 1.2 TB 12G SAS HDD</td>
<td>MLOM: 4.1(3a)</td>
<td>CIMC: 3.0(3e) System BIOS: C240M4.3.0.3c.0.0831170228</td>
</tr>
<tr>
<td>Compute</td>
<td>2x 2.60 GHz</td>
<td>8x 32GB DDR4-2400-MHz RDIMM/PC4</td>
<td>2x 1.2 TB 12G SAS HDD</td>
<td>MLOM: 4.1(3a)</td>
<td>CIMC: 3.0(3e) System BIOS: C240M4.3.0.3c.0.0831170228</td>
</tr>
<tr>
<td>OSD Compute</td>
<td>2x 2.60 GHz</td>
<td>8x 32GB DDR4-2400-MHz RDIMM/PC4</td>
<td>4x 1.2 TB 12G SAS HDD</td>
<td>MLOM: 4.1(3a)</td>
<td>CIMC: 3.0(3e) System BIOS: C240M4.3.0.3c.0.0831170228</td>
</tr>
</tbody>
</table>

* OSP-D is deployed as a VM on the Ultra M Manager Node for Hyper-Converged Ultra M model(s).
Storage

Figure 5: UCS C240 Front-Plane, on page 14 displays the storage disk layout for the UCS C240 series servers used in the Ultra M solution.

NOTES:

- The Boot disks contain the operating system (OS) image with which to boot the server.
- The Journal disks contain the Ceph journal file(s) used to repair any inconsistencies that may occur in the Object Storage Disks.
- The Object Storage Disks store object data for USP-based VNFs.
- Ensure that the HDD and SSD used for the Boot Disk, Journal Disk, and object storage devices (OSDs) are available as per the Ultra M BoM and installed in the appropriate slots as identified in Table 9: UCS C240 M4S SFF Storage Specifications by Node Type, on page 14.

Table 9: UCS C240 M4S SFF Storage Specifications by Node Type

<table>
<thead>
<tr>
<th>Ultra M Manager Node and Staging Server:</th>
<th>2 x 1.2 TB HDD – For Boot OS configured as Virtual Drive in RAID1 – placed on Slots 1 & 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllers, Computes:</td>
<td>2 x 1.2 TB HDD – For Boot OS configured as Virtual Drive in RAID1 – placed on Slots 1 & 2</td>
</tr>
</tbody>
</table>
OSD Computes: | 2 x 300 GB HDD – For Boot OS configured as Virtual Drive in RAID1 – placed on Slots 1 & 2
1 x 480 GB SSD – For Journal Disk as Virtual Drive in RAID0 – Slot 3
(Reserve for SSD Slot 3,4,5,6 future scaling needs)
4 x 1.2 TB HDD – For OSD’s configured as Virtual Drive in RAID0 each – Slot 7,8,9,10
(Reserve for OSD 7,8,9,10…..24)

- Ensure that the RAIDs are sized such that:

 Boot Disks < Journal Disk(s) < OSDs

- Ensure that FlexFlash is disabled on each UCS-C240 M4 (default Factory).

- Ensure that all nodes are in Unconfigured Good state under **Cisco SAS RAID Controllers** (factory default).
Software Specifications

Table 10: Required Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Red Hat Enterprise Linux 7.3</td>
</tr>
<tr>
<td>Hypervisor</td>
<td>Qemu (KVM)</td>
</tr>
<tr>
<td>VIM</td>
<td>Hyper-converged Ultra M Single and Multi-VNF Models:</td>
</tr>
<tr>
<td></td>
<td>Red Hat OpenStack Platform 10 (OSP 10 - Newton)</td>
</tr>
<tr>
<td>VNF</td>
<td>21.6</td>
</tr>
<tr>
<td>VNFM</td>
<td>ESC 3.1.0.145</td>
</tr>
<tr>
<td>UEM</td>
<td>UEM 6.0</td>
</tr>
<tr>
<td>USP</td>
<td>USP 6.0</td>
</tr>
</tbody>
</table>
Networking Overview

This section provides information on Ultra M networking requirements and considerations.

- UCS-C240 Network Interfaces, page 19
- VIM Network Topology, page 22
- Openstack Tenant Networking, page 24
- VNF Tenant Networks, page 26
- Layer 1 Leaf and Spine Topology, page 27

UCS-C240 Network Interfaces

Figure 6: UCS-C240 Back-Plane
<table>
<thead>
<tr>
<th>Number</th>
<th>Designation</th>
<th>Description</th>
<th>Applicable Node Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CIMC/IPMI/M</td>
<td>The server’s Management network interface used for accessing the UCS Cisco Integrated Management Controller (CIMC) application, performing Intelligent Platform Management Interface (IPMI) operations.</td>
<td>All</td>
</tr>
<tr>
<td>2</td>
<td>Intel Onboard</td>
<td>Port 1: VIM Orchestration (Undercloud) Provisioning network interface.</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port 2: External network interface for Internet access. It must also be routable to External floating IP addresses on other nodes.</td>
<td>Ultra M Manager Node Staging Server</td>
</tr>
<tr>
<td>Number</td>
<td>Designation</td>
<td>Description</td>
<td>Applicable Node Types</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>3</td>
<td>Modular LAN on Motherboard (mLOM)</td>
<td>VIM networking interfaces used for:</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• External floating IP network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internal API network</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Storage network</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Storage Management network</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tenant network (virtio only – VIM provisioning, VNF Management, and VNF Orchestration)</td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OSD Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceph</td>
</tr>
<tr>
<td>4</td>
<td>PCIe 4</td>
<td>Port 1: With NIC bonding enabled, this port provides the active Service network interfaces for VNF ingress and egress connections.</td>
<td>Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port 2: With NIC bonding enabled, this port provides the standby Di-internal network interface for inter-VNF component communication.</td>
<td>OSD Compute</td>
</tr>
</tbody>
</table>
VIM Network Topology

Ultra M’s VIM is based on the OpenStack project TripleO ("OpenStack-On-OpenStack") which is the core of the OpenStack Platform Director (OSP-D). TripleO allows OpenStack components to install a fully operational OpenStack environment.

Two cloud concepts are introduced through TripleO:

- **VIM Orchestrator (Undercloud)**: The VIM Orchestrator is used to bring up and manage the VIM. Though OSP-D and Undercloud are sometimes referred to synonymously, the OSP-D bootstraps the Undercloud deployment and provides the underlying components (e.g. Ironic, Nova, Glance, Neutron, etc.) leveraged by the Undercloud to deploy the VIM. Within the Ultra M Solution, OSP-D and the Undercloud are hosted on the same server.

<table>
<thead>
<tr>
<th>Number</th>
<th>Designation</th>
<th>Description</th>
<th>Applicable Node Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PCIe 1</td>
<td>Port 1: With NIC bonding enabled, this port provides the active Di-internal network interface for inter-VNF component communication.</td>
<td>Compute OSD Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port 2: With NIC bonding enabled, this port provides the standby Service network interfaces for VNF ingress and egress connections.</td>
<td>Compute</td>
</tr>
</tbody>
</table>

Ultra M Solutions Guide, Release 6.0

Networking Overview
• **VIM (Overcloud):** The VIM consists of the compute, controller, and storage nodes on which the VNFs are deployed.

![Figure 7: Hyper-converged Ultra M Single and Multi-VNF Model OpenStack VIM Network Topology](image)

Some considerations for VIM Orchestrator and VIM deployment are as follows:

• External network access (e.g. Internet access) can be configured in one of the following ways:

 - Across all node types: A single subnet is configured on the Controller HA, VIP address, floating IP addresses and OSP-D/Staging server’s external interface provided that this network is data-center routable as well as it is able to reach the internet.

 - Limited to OSP-D: The External IP network is used by Controllers for HA and Horizon dashboard as well as later on for Tenant Floating IP address requirements. This network must be data-center routable. In addition, the External IP network is used only by OSP-D/Staging Server node’s external interface that has a single IP address. The External IP network must be lab/data-center routable must also have internet access to Red Hat cloud. It is used by OSP-D/Staging Server for subscription purposes and also acts as an external gateway for all controllers, computes and Ceph-storage nodes.

• IPMI must be enabled on all nodes.

• Two networks are needed to deploy the VIM Orchestrator:
- IPMI/CIMC Network
- Provisioning Network

- The OSP-D/Staging Server must have reachability to both IPMI/CIMC and Provisioning Networks. (VIM Orchestrator networks need to be routable between each other or have to be in one subnet.)
- DHCP-based IP address assignment for Introspection PXE from Provisioning Network (Range A)
- DHCP based IP address assignment for VIM PXE from Provisioning Network (Range B) must be separate from Introspection.
- The Ultra M Manager Node/Staging Server acts as a gateway for Controller, Ceph and Computers. Therefore, the external interface of this node/server needs to be able to access the Internet. In addition, this interface needs to be routable with the Data-center network. This allows the External interface IP-address of the Ultra M Manager Node/Staging Server to reach Data-center routable Floating IP addresses as well as the VIP addresses of Controllers in HA Mode.
- Prior to assigning floating and virtual IP addresses, make sure that they are not already allocated through OpenStack. If the addresses are already allocated, then they must be freed up for use or you must assign a new IP address that is available in the VIM.
- Multiple VLANs are required in order to deploy OpenStack VIM:
 - 1 for the Management and Provisioning networks interconnecting all the nodes regardless of type
 - 1 for the Staging Server/OSP-D Node external network
 - 1 for Compute, Controller, and Ceph Storage or OSD Compute Nodes
 - 1 for Management network interconnecting the Leafs and Spines

- Login to individual Compute nodes will be from OSP-D/Staging Server using heat user login credentials. The OSP-D/Staging Server acts as a “jump server” where the br-ctlplane interface address is used to login to the Controller, Ceph or OSD Computes, and Computes post VIM deployment using heat-admin credentials.

Layer 1 networking guidelines for the VIM network are provided in Layer 1 Leaf and Spine Topology, on page 27. In addition, a template is provided in Network Definitions (Layer 2 and 3), on page 83 to assist you with your Layer 2 and Layer 3 network planning.

Openstack Tenant Networking

The interfaces used by the VNF are based on the PCIe architecture. Single root input/output virtualization (SR-IOV) is used on these interfaces to allow multiple VMs on a single server node to use the same network interface as shown in Figure 8: Physical NIC to Bridge Mappings, on page 25. SR-IOV Networking is network
type Flat under OpenStack configuration. NIC Bonding is used to ensure port level redundancy for PCIe Cards involved in SR-IOV Tenant Networks as shown in Figure 9: NIC Bonding, on page 25.

Figure 8: Physical NIC to Bridge Mappings

Figure 9: NIC Bonding
VNF Tenant Networks

While specific VNF network requirements are described in the documentation corresponding to the VNF, Figure 10: Typical USP-based VNF Networks, on page 26 displays the types of networks typically required by USP-based VNFs.

Figure 10: Typical USP-based VNF Networks

The USP-based VNF networking requirements and the specific roles are described here:

- **Public**: *External public network*. The router has an external gateway to the public network. All other networks (except DI-Internal and ServiceA-n) have an internal gateway pointing to the router. And the router performs secure network address translation (SNAT).

- **DI-Internal**: This is the DI-internal network which serves as a 'backplane' for CF-SF and CF-CF communications. Since this network is internal to the UGP, it does not have a gateway interface to the
router in the OpenStack network topology. A unique DI internal network must be created for each instance of the UGP. The interfaces attached to these networks use performance optimizations.

- **Management**: This is the local management network between the CFs and other management elements like the UEM and VNFM. This network is also used by OSP-D to deploy the VNFM and AutoVNF. To allow external access, an OpenStack floating IP address from the Public network must be associated with the UGP VIP (CF) address.

 You can ensure that the same floating IP address can be assigned to the CF, UEM, and VNFM after a VM restart by configuring parameters in the AutoDeploy configuration file or the UWS service delivery configuration file.

 Note: Prior to assigning floating and virtual IP addresses, make sure that they are not already allocated through OpenStack. If the addresses are already allocated, then they must be freed up for use or you must assign a new IP address that is available in the VIM.

- **Orchestration**: This is the network used for VNF deployment and monitoring. It is used by the VNFM to onboard the USP-based VNF.

- **ServiceA-n**: These are the service interfaces to the SF. Up to 12 service interfaces can be provisioned for the SF with this release. The interfaces attached to these networks use performance optimizations.

 Layer 1 networking guidelines for the VNF network are provided in [Layer 1 Leaf and Spine Topology](#), on page 27. In addition, a template is provided in [Network Definitions (Layer 2 and 3)](#), on page 83 to assist you with your Layer 2 and Layer 3 network planning.

Supporting Trunking on VNF Service ports

Service ports within USP-based VNFs are configured as trunk ports and traffic is tagged using the VLAN command. In this configuration, trunking to the uplink switch is supported using the `sriovnicswitch` mechanism driver.

This driver supports Flat network types in OpenStack, enabling the guest OS to tag the packets.

Flat networks are untagged networks in OpenStack. Typically, these networks are previously existing infrastructure, where OpenStack guests can be directly applied.

Layer 1 Leaf and Spine Topology

Ultra M implements a Leaf and Spine network topology. Topology details differ between Ultra M models based on the scale and number of nodes.

Note: When connecting component network ports, ensure that the destination ports are rated at the same speed as the source port (e.g., connect a 10G port to a 10G port). Additionally, the source and destination ports must support the same physical medium (e.g., Ethernet) for interconnectivity.
Hyper-converged Ultra M Single and Multi-VNF Model Network Topology

Figure 11: Hyper-converged Ultra M Single and Multi-VNF Leaf and Spine Topology, on page 28 illustrates the logical leaf and spine topology for the various networks required for the Hyper-converged Ultra M models. In this figure, two VNFs are supported. (Leafs 1 and 2 pertain to VNF1, Leafs 3 and 4 pertain to VNF 2). If additional VNFs are supported, additional Leafs are required (e.g. Leafs 5 and 6 are needed for VNF 3, Leafs 7 and 8 for VNF4). Each set of additional Leafs would have the same meshed network interconnects with the Spines and with the Controller, OSD Compute, and Compute Nodes.

For single VNF models, Leaf 1 and Leaf 2 facilitate all of the network interconnects from the server nodes and from the Spines.

Figure 11: Hyper-converged Ultra M Single and Multi-VNF Leaf and Spine Topology
As identified in Cisco Nexus Switches, on page 8, the number of leaf and spine switches differ between the Ultra M models. Similarly, the specific leaf and spine ports used also depend on the Ultra M solution model being deployed. That said, general guidelines for interconnecting the leaf and spine switches in an Ultra M XS multi-VNF deployment are provided in Table 11: Catalyst Management Switch 1 (Rack 1) Port Interconnects, on page 29 through Table 20: Spine 2 Port Interconnect Guidelines, on page 41. Using the information in these tables, you can make appropriate adjustments to your network topology based on your deployment scenario (e.g. number of VNFs and number of Compute Nodes).

Table 11: Catalyst Management Switch 1 (Rack 1) Port Interconnects

<table>
<thead>
<tr>
<th>From Switch Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device</td>
<td>Network</td>
<td>Port(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>1, 2, 11</td>
<td>OSD Compute Nodes</td>
<td>Management</td>
<td>CIMC</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>3-10</td>
<td>Compute Nodes</td>
<td>Management</td>
<td>CIMC</td>
<td>6 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>12</td>
<td>Ultra M Manager Node</td>
<td>Management</td>
<td>CIMC</td>
<td>Management Switch 1 only</td>
</tr>
<tr>
<td>13</td>
<td>Controller 0</td>
<td>Management</td>
<td>CIMC</td>
<td></td>
</tr>
<tr>
<td>21, 22, 31</td>
<td>OSD Compute Nodes</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>23-30</td>
<td>Compute Nodes</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>6 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>32-33</td>
<td>Ultra M Manager Node</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>2 sequential ports</td>
</tr>
<tr>
<td>34</td>
<td>Controller 0</td>
<td>Management</td>
<td>CIMC</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Leaf 1</td>
<td>Management</td>
<td>48</td>
<td>Switch port 47 connects with Leaf 1 port 48</td>
</tr>
<tr>
<td>48</td>
<td>Leaf 2</td>
<td>Management</td>
<td>48</td>
<td>Switch port 48 connects with Leaf 2 port 48</td>
</tr>
</tbody>
</table>

Table 12: Catalyst Management Switch 2 (Rack 2) Port Interconnects

<table>
<thead>
<tr>
<th>From Switch Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device</td>
<td>Network</td>
<td>Port(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>1-10</td>
<td>Compute Nodes</td>
<td>Management</td>
<td>CIMC</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
</tbody>
</table>
Table 13: Catalyst Management Switch 3 (Rack 3) Port Interconnects

<table>
<thead>
<tr>
<th>From Switch Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Controller 1</td>
<td>Management</td>
<td>CIMC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Controller 2</td>
<td>Management</td>
<td>CIMC</td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>Compute Nodes</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>35</td>
<td>Controller 1</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Controller 2</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Leaf 3</td>
<td>Management</td>
<td>48</td>
<td>Switch port 47 connects with Leaf 3 port 48</td>
</tr>
<tr>
<td>48</td>
<td>Leaf 4</td>
<td>Management</td>
<td>48</td>
<td>Switch port 48 connects with Leaf 4 port 48</td>
</tr>
</tbody>
</table>

Table 14: Catalyst Management Switch 4 (Rack 4) Port Interconnects

<table>
<thead>
<tr>
<th>From Switch Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>Compute Nodes</td>
<td>Management</td>
<td>CIMC</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>21-30</td>
<td>Compute Nodes</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>47</td>
<td>Leaf 5</td>
<td>Management</td>
<td>48</td>
<td>Switch port 47 connects with Leaf 5 port 48</td>
</tr>
<tr>
<td>48</td>
<td>Leaf 6</td>
<td>Management</td>
<td>48</td>
<td>Switch port 48 connects with Leaf 6 port 48</td>
</tr>
<tr>
<td>1-10</td>
<td>Compute Nodes</td>
<td>Management</td>
<td>CIMC</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
</tbody>
</table>
Table 15: Leaf 1 and 2 (Rack 1) Port Interconnects*

<table>
<thead>
<tr>
<th>From Switch Port(s)</th>
<th>To Device(s)</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30</td>
<td>Compute Nodes</td>
<td>Provisioning</td>
<td>Mgmt</td>
<td>10 sequential ports - 1 per Compute Node</td>
</tr>
<tr>
<td>47</td>
<td>Leaf 7</td>
<td>Management</td>
<td>48</td>
<td>Switch port 47 connects with Leaf 7 port 48</td>
</tr>
<tr>
<td>48</td>
<td>Leaf 8</td>
<td>Management</td>
<td>48</td>
<td>Switch port 48 connects with Leaf 8 port 48</td>
</tr>
</tbody>
</table>

Table 15: Leaf 1 and 2 (Rack 1) Port Interconnects*

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device(s)</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2, 11</td>
<td>OSD Compute Nodes</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>12</td>
<td>Controller 0 Node</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td></td>
</tr>
<tr>
<td>17, 18, 27</td>
<td>OSD Compute Nodes</td>
<td>Di-internal (active)</td>
<td>PCIe01 P1</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>3 - 10 (inclusive)</td>
<td>Compute Nodes</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>19-26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (active)</td>
<td>PCIe01 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes / OSD Compute Nodes</td>
<td>Service (active)</td>
<td>PCIe04 P1</td>
<td>Sequential ports based on the number of Compute Nodes and/or OSD Compute Nodes - 1 per OSD Compute Node and/or Compute Node</td>
</tr>
</tbody>
</table>

Note Though the OSD Compute Nodes do not use the Service Networks, they are provided to ensure compatibility within the OpenStack Overcloud (VIM) deployment.
<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>47</td>
<td>Leaf 1 connects to Switch 1</td>
</tr>
<tr>
<td>49-50</td>
<td>Spine 1</td>
<td>Downlink</td>
<td>1-2</td>
<td>Leaf 1 port 49 connects to Spine 1 port 1 Leaf 1 port 50 connects to Spine 1 port 2</td>
</tr>
<tr>
<td>51-52</td>
<td>Spine 2</td>
<td>Downlink</td>
<td>3-4</td>
<td>Leaf 1 port 51 connects to Spine 2 port 3 Leaf 1 port 52 connects to Spine 2 port 4</td>
</tr>
<tr>
<td>Leaf 2</td>
<td>OSD Compute Nodes</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>1, 2, 11</td>
<td>Controller 0 Node</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Controller 0 Node</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td></td>
</tr>
<tr>
<td>17, 18, 27</td>
<td>OSD Compute Nodes</td>
<td>Di-internal (redundant)</td>
<td>PCIe04 P2</td>
<td>3 non-sequential ports - 1 per OSD Compute Node</td>
</tr>
<tr>
<td>3 - 10 (inclusive)</td>
<td>OSD Compute Nodes</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>19-26 (inclusive)</td>
<td>OSD Compute Nodes</td>
<td>Di-internal (redundant)</td>
<td>PCIe04 P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>OSD Compute Nodes</td>
<td>Service (redundant)</td>
<td>PCIe01 P2</td>
<td>Sequential ports based on the number of Compute Nodes and/or OSD Compute Nodes - 1 per OSD Compute Node and/or Compute Node</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>48</td>
<td>Leaf 2 connects to Switch 1</td>
</tr>
</tbody>
</table>

Note Though the OSD Compute Nodes do not use the Service Networks, they are provided to ensure compatibility within the OpenStack Overcloud (VIM) deployment.
Table 16: Leaf 3 and 4 (Rack 2) Port Interconnects

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10 (inclusive)</td>
<td>Compute Nodes</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1 (Rack 1). These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>13 - 14 (inclusive)</td>
<td>Controller Nodes</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td>Leaf 3 port 13 connects to Controller 1 MLOM P1 port. Leaf 3 port 14 connects to Controller 1 MLOM P1 port</td>
</tr>
<tr>
<td>17 - 26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (active)</td>
<td>PCIe01 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>From Leaf Port(s)</td>
<td>To Device</td>
<td>Network</td>
<td>Port(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes</td>
<td>Service (active)</td>
<td>PCIe04 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>47</td>
<td>Leaf 3 connects to Switch 2</td>
</tr>
<tr>
<td>49-50</td>
<td>Spine 1</td>
<td>Downlink</td>
<td>5-6</td>
<td>Leaf 3 port 49 connects to Spine 1 port 5 Leaf 3 port 50 connects to Spine 1 port 6</td>
</tr>
<tr>
<td>51-52</td>
<td>Spine 2</td>
<td>Downlink</td>
<td>7-8</td>
<td>Leaf 3 port 51 connects to Spine 2 port 7 Leaf 3 port 52 connects to Spine 2 port 8</td>
</tr>
</tbody>
</table>

Leaf 4

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 10 (inclusive)</td>
<td>Compute Nodes</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node Important Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>13-14 (inclusive)</td>
<td>Controller Nodes</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td>Leaf 4 port 13 connects to Controller 1 MLOM P2 port Leaf 4 port 14 connects to Controller 1 MLOM P2 port</td>
</tr>
<tr>
<td>17-26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (redundant)</td>
<td>PCIe04 P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node Important Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
</tbody>
</table>
Table 17: Leaf 5 and 6 (Rack 3) Port Interconnects

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device</td>
<td>Network</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes</td>
<td>Service (redundant)</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
</tr>
</tbody>
</table>
| 49-50 | Spine 1 | Downlink | 5-6 | Leaf 4 port 49 connects to Spine 1 port 5
| | | | | Leaf 4 port 50 connects to Spine 1 port 6 |
| 51-52 | Spine 2 | Downlink | 7-8 | Leaf 4 port 51 connects to Spine 2 port 7
| | | | | Leaf 4 port 52 connects to Spine 2 port 8 |

- **Important Note:** Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.
<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (active)</td>
<td>PCIe01 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes</td>
<td>Service (active)</td>
<td>PCIe04 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>47</td>
<td>Leaf 5 connects to Switch 3</td>
</tr>
<tr>
<td>49-50</td>
<td>Spine 1</td>
<td>Downlink</td>
<td>9-10</td>
<td>Leaf 5 port 49 connects to Spine 1 port 9. Leaf 5 port 50 connects to Spine 1 port 10</td>
</tr>
<tr>
<td>51-52</td>
<td>Spine 2</td>
<td>Downlink</td>
<td>3-4, 7-8, 11-12, 15-16</td>
<td>Leaf 5 port 51 connects to Spine 2 port 11. Leaf 5 port 52 connects to Spine 2 port 12</td>
</tr>
<tr>
<td>Leaf 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 10 (inclusive)</td>
<td>Compute Nodes</td>
<td>Management & Orchestration (redundant)</td>
<td>MLOM P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
</tbody>
</table>
Table 18: Leaf 7 and 8 (Rack 4) Port Interconnects

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (redundant)</td>
<td>PCIe04 P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important: Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes</td>
<td>Service (redundant)</td>
<td>PCIe01 P2</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node.</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>48</td>
<td>Leaf 6 connects to Switch 3</td>
</tr>
<tr>
<td>49-50</td>
<td>Spine 1</td>
<td>Downlink</td>
<td>9-10</td>
<td>Leaf 6 port 49 connects to Spine 1 port 9. Leaf 6 port 50 connects to Spine 1 port 10.</td>
</tr>
<tr>
<td>51-52</td>
<td>Spine 2</td>
<td>Downlink</td>
<td>11-12</td>
<td>Leaf 6 port 51 connects to Spine 2 port 11. Leaf 6 port 52 connects to Spine 2 port 12.</td>
</tr>
</tbody>
</table>

Table 18: Leaf 7 and 8 (Rack 4) Port Interconnects

<table>
<thead>
<tr>
<th>From Leaf Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Leaf Port(s)</td>
<td>To Device</td>
<td>Network</td>
<td>Port(s)</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1 - 10 (inclusive)</td>
<td>Compute Nodes</td>
<td>Management & Orchestration (active)</td>
<td>MLOM P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>17-26 (inclusive)</td>
<td>Compute Nodes</td>
<td>Di-internal (active)</td>
<td>PCIe01 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node. Important Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.</td>
</tr>
<tr>
<td>33-42 (inclusive)</td>
<td>Compute Nodes</td>
<td>Service (active)</td>
<td>PCIe04 P1</td>
<td>Sequential ports based on the number of Compute Nodes - 1 per Compute Node.</td>
</tr>
<tr>
<td>48</td>
<td>Catalyst Management Switches</td>
<td>Management</td>
<td>47</td>
<td>Leaf 7 connects to Switch 4</td>
</tr>
<tr>
<td>49-50</td>
<td>Spine 1</td>
<td>Downlink</td>
<td>13-14</td>
<td>Leaf 7 port 49 connects to Spine 1 port 13. Leaf 7 port 50 connects to Spine 1 port 14.</td>
</tr>
<tr>
<td>51-52</td>
<td>Spine 2</td>
<td>Downlink</td>
<td>15-16</td>
<td>Leaf 7 port 51 connects to Spine 2 port 15. Leaf 7 port 52 connects to Spine 2 port 16.</td>
</tr>
<tr>
<td>Leaf 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Leaf Port(s) to Device | Network | Port(s) | Notes
--- | --- | --- | ---
1 - 10 (inclusive) | Compute Nodes | Management & Orchestration (redundant) | MLOM P2 | Sequential ports based on the number of Compute Nodes - 1 per Compute Node. **Important** Leaf Ports 1 and 2 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.

17-26 (inclusive) | Compute Nodes | Di-internal (redundant) | PCIe04 P2 | Sequential ports based on the number of Compute Nodes - 1 per Compute Node. **Important** Leaf Ports 17 and 18 are used for the first two Compute Nodes on VNFs other than VNF1. These are used to host management-related VMs as shown in Figure 4: VM Distribution on Server Nodes for Hyper-converged Ultra M Multi-VNF Models, on page 11.

33-42 (inclusive) | Compute Nodes | Service (redundant) | PCIe01 P2 | Sequential ports based on the number of Compute Nodes - 1 per Compute Node.

48 | Catalyst Management Switches | Management | 48 | Leaf 8 connects to Switch 4

49-50 | Spine 1 | Downlink | 13-14 | Leaf 8 port 49 connects to Spine 1 port 13. Leaf 8 port 50 connects to Spine 1 port 14.

51-52 | Spine 2 | Downlink | 15-16 | Leaf 8 port 51 connects to Spine 2 port 15. Leaf 8 port 52 connects to Spine 2 port 16.
Table 19: Spine 1 Port Interconnect Guidelines

<table>
<thead>
<tr>
<th>From Spine Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1-2, 5-6, 9-10, 13-14 | Leaf 1, 3, 5, 7 | Downlink | 49-50 | Spine 1 ports 1 and 2 connect to Leaf 1 ports 49 and 50
Spine 1 ports 5 and 6 connect to Leaf 3 ports 49 and 50
Spine 1 ports 9 and 10 connect to Leaf 5 ports 49 and 50
Spine 1 ports 13 and 14 connect to Leaf 7 ports 49 and 50 |
| 3-4, 7-8, 11-12, 15-16 | Leaf 2, 4, 6, 8 | Downlink | 49-50 | Spine 1 ports 3 and 4 connect to Leaf 2 ports 49 and 50
Spine 1 ports 7 and 8 connect to Leaf 4 ports 49 and 50
Spine 1 ports 11 and 12 connect to Leaf 6 ports 49 and 50
Spine 1 ports 15 and 16 connect to Leaf 8 ports 49 and 50 |
Spine 1 port 31 connects to Spine 2 port 31
Spine 1 port 32 connects to Spine 2 port 32
Spine 1 ports 33-34 connect to Spine 2 ports 33-34 |
| 21-22, 23-24, 25-26 | Router | Uplink | - | |

Networking Overview

Hyper-converged Ultra M Single and Multi-VNF Model Network Topology
Table 20: Spine 2 Port Interconnect Guidelines

<table>
<thead>
<tr>
<th>From Spine Port(s)</th>
<th>To Device</th>
<th>Network</th>
<th>Port(s)</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1-2, 5-6, 9-10, 13-14 | Leaf 1, 3, 5, 7 | Downlink | 51-52 | Spine 1 ports 1 and 2 connect to Leaf 1 ports 51 and 52
Spine 1 ports 5 and 6 connect to Leaf 3 ports 51 and 52
Spine 1 ports 9 and 10 connect to Leaf 5 ports 51 and 52
Spine 1 ports 13 and 14 connect to Leaf 7 ports 51 and 52 |
| 3-4, 7-8, 11-12, 15-16 | Leaf 2, 4, 6, 8 | Downlink | 51-52 | Spine 1 ports 3 and 4 connect to Leaf 2 ports 51 and 52
Spine 1 ports 7 and 8 connect to Leaf 4 ports 51 and 52
Spine 1 ports 11 and 12 connect to Leaf 6 ports 51 and 52
Spine 1 ports 15 and 16 connect to Leaf 8 ports 51 and 52 |
| 29-30, 31, 32, 33-34 | Spine 1 | Interconnect | 29-30, 31, 32, 33-34 | Spine 2 ports 29-30 connect to Spine 1 ports 29-30
Spine 2 port 31 connects to Spine 1 port 31
Spine 2 port 32 connects to Spine 1 port 32
Spine 2 ports 33-34 connect to Spine 1 ports 33-34 |
| 21-22, 23-24, 25-26 | Router | Uplink | - | |
Deploying the Ultra M Solution

Ultra M is a multi-product solution. Detailed instructions for installing each of these products is beyond the scope of this document. Instead, the sections that follow identify the specific, non-default parameters that must be configured through the installation and deployment of those products in order to deploy the entire solution.

- Deployment Workflow, page 44
- Plan Your Deployment, page 44
- Install and Cable the Hardware, page 44
- Configure the Switches, page 48
- Prepare the UCS C-Series Hardware, page 49
- Deploy the Virtual Infrastructure Manager, page 58
- Deploy the USP-Based VNF, page 58
Deployment Workflow

Figure 12: Ultra M Deployment Workflow

Plan Your Deployment

Before deploying the Ultra M solution, it is very important to develop and plan your deployment.

Network Planning

Networking Overview, on page 19 provides a general overview and identifies basic requirements for networking the Ultra M solution.

With this background, use the tables in Network Definitions (Layer 2 and 3), on page 83 to help plan the details of your network configuration.

Install and Cable the Hardware

This section describes the procedure to install all the components included in the Ultra M Solution.

Related Documentation

To ensure hardware components of the Ultra M solution are installed properly, refer to the installation guides for the respective hardware components.

Hyper-converged Ultra M XS Single VNF Deployment

Table 21: Hyper-converged Ultra M XS Single VNF Deployment Rack Layout, on page 45 provides details for the recommended rack layout for the Hyper-converged Ultra M XS Single VNF deployment model.

<table>
<thead>
<tr>
<th>Rack #1</th>
<th>Rack #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU-1</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-2</td>
<td>Spine EOR Switch A: Nexus 9236C</td>
</tr>
<tr>
<td>RU-3</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-4</td>
<td>VNF Mgmt Switch: Catalyst C3850-48T-S OR C2960XR-48TD</td>
</tr>
<tr>
<td>RU-5</td>
<td>VNF Leaf TOR Switch A: Nexus 93180YC-EX</td>
</tr>
<tr>
<td>RU-6</td>
<td>VNF Leaf TOR Switch B: Nexus 93180YC-EX</td>
</tr>
<tr>
<td>RU-7/8</td>
<td>Ultra UEM 1A: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-9/10</td>
<td>Ultra UEM 1B: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-11/12</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-13/14</td>
<td>Demux SF: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-15/16</td>
<td>Standby SF: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-17/18</td>
<td>Active SF 1: UCS C240 M4 SFF</td>
</tr>
</tbody>
</table>
Table 22: Hyper-converged Ultra M XS Multi-VNF Deployment Rack Layout

<table>
<thead>
<tr>
<th>Rack #1</th>
<th>Rack #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU-19/20 Active SF 2: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-21/22 Active SF 3: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-23/24 Active SF 4: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-25/26 Active SF 5: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-27/28 Active SF 6: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-29/30 Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-31/32 Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-33/34 Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-35/36 Ultra UEM 1C</td>
<td>OpenStack Control C: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-37/38 Ultra M Manager: UCS C240 M4 SFF</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-39/40 OpenStack Control A: UCS C240 M4 SFF</td>
<td>OpenStack Control B: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-41/42 Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>Cables Controller Rack Cables</td>
<td>Cables Controller Rack Cables</td>
</tr>
<tr>
<td>Cables Spine Uplink/Interconnect Cables</td>
<td>Spine Uplink/Interconnect Cables</td>
</tr>
<tr>
<td>Cables Leaf TOR To Spine Uplink Cables</td>
<td>Empty</td>
</tr>
<tr>
<td>Cables VNF Rack Cables</td>
<td>Empty</td>
</tr>
</tbody>
</table>

Hyper-converged Ultra M XS Multi-VNF Deployment

Table 22: Hyper-converged Ultra M XS Multi-VNF Deployment Rack Layout, on page 46 provides details for the recommended rack layout for the Hyper-converged Ultra M XS Multi-VNF deployment model.

Table 22: Hyper-converged Ultra M XS Multi-VNF Deployment Rack Layout

<table>
<thead>
<tr>
<th>Rack #1</th>
<th>Rack #2</th>
<th>Rack #3</th>
<th>Rack #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU-1</td>
<td>Empty</td>
<td>Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-2</td>
<td>Rack #1</td>
<td>Spine EOR Switch A: Nexus 9236C</td>
<td>Rack #2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RU-3</td>
<td>Empty</td>
<td>Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-6</td>
<td>VNF Leaf TOR Switch B: Nexus 93180YC-EX</td>
<td>VNF Leaf TOR Switch B: Nexus 93180YC-EX</td>
<td>VNF Leaf TOR Switch B: Nexus 93180YC-EX</td>
</tr>
<tr>
<td>RU-11/12</td>
<td>Empty</td>
<td>Empty</td>
<td>Empty</td>
</tr>
<tr>
<td>RU-17/18</td>
<td>Active SF 1: UCS C240 M4 SFF</td>
<td>Active SF 1: UCS C240 M4 SFF</td>
<td>Active SF 1: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-19/20</td>
<td>Active SF 2: UCS C240 M4 SFF</td>
<td>Active SF 2: UCS C240 M4 SFF</td>
<td>Active SF 2: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-21/22</td>
<td>Active SF 3: UCS C240 M4 SFF</td>
<td>Active SF 3: UCS C240 M4 SFF</td>
<td>Active SF 3: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-23/24</td>
<td>Active SF 4: UCS C240 M4 SFF</td>
<td>Active SF 4: UCS C240 M4 SFF</td>
<td>Active SF 4: UCS C240 M4 SFF</td>
</tr>
<tr>
<td>RU-25/26</td>
<td>Active SF 5: UCS C240 M4 SFF</td>
<td>Active SF 5: UCS C240 M4 SFF</td>
<td>Active SF 5: UCS C240 M4 SFF</td>
</tr>
</tbody>
</table>
Rack #1
- RU-27/28: Active SF 6: UCS C240 M4 SFF
- RU-29/30: Empty
- RU-31/32: Empty
- RU-33/34: Empty
- RU-35/36: Ultra UEM 1C, 2C, 3C, 4C
- RU-37/38: Ultra M Manager: UCS C240 M4 SFF
- RU-39/40: OpenStack Control A: UCS C240 M4 SFF
- RU-41/42: Empty
- Cables: Controller Rack Cables
- Cables: Spine Uplink/Interconnect Cables
- Cables: Leaf TOR To Spine Uplink Cables
- Cables: VNF Rack Cables

Rack #2
- Active SF 6: UCS C240 M4 SFF
- Empty
- Empty
- Empty
- OpenStack Control C: UCS C240 M4 SFF
- Empty
- Controller Rack Cables
- Spine Uplink/Interconnect Cables
- Leaf TOR To Spine Uplink Cables
- VNF Rack Cables

Rack #3
- Active SF 6: UCS C240 M4 SFF
- Empty
- Empty
- Empty
- Empty
- Controller Rack Cables
- Empty
- Empty
- VNF Rack Cables

Rack #4
- Active SF 6: UCS C240 M4 SFF
- Empty

Cable the Hardware

After the hardware has been installed, install all power and network cabling for the hardware using the information and instructions in the documentation for the specific hardware product. Refer to Related Documentation, on page 44 for links to the hardware product documentation. Ensure that you install your network cables according to your network plan.

Configure the Switches

All of the switches must be configured according to your planned network specifications.
Refer to Network Planning, on page 44 for information and consideration for planning your network.

Note

Refer to the user documentation for each of the switches for configuration information and instructions:

Prepare the UCS C-Series Hardware

UCS-C hardware preparation is performed through the Cisco Integrated Management Controller (CIMC). The tables in the following sections list the non-default parameters that must be configured per server type:

- Prepare the Staging Server/Ultra M Manager Node, on page 50
- Prepare the Controller Nodes, on page 50
- Prepare the Compute Nodes, on page 52
- Prepare the OSD Compute Nodes, on page 53

Refer to the UCS C-series product documentation for more information:

Note

Part of the UCS server preparation is the configuration of virtual drives. If there are virtual drives present which need to be deleted, select the Virtual Drive Info tab, select the virtual drive you wish to delete, then click Delete Virtual Drive. Refer to the CIMC documentation for more information.

Note

The information in this section assumes that the server hardware was properly installed per the information and instructions in Install and Cable the Hardware, on page 44.
Prepare the Staging Server/Ultra M Manager Node

Table 23: Staging Server/Ultra M Manager Node Parameters

<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMC Utility Setup</td>
<td></td>
</tr>
<tr>
<td>Enable IPV4</td>
<td>Configures parameters for the dedicated management port.</td>
</tr>
<tr>
<td>Dedicated</td>
<td></td>
</tr>
<tr>
<td>No redundancy</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>DNS address</td>
<td></td>
</tr>
<tr>
<td>Admin > User Management</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Configures administrative user credentials for accessing the CIMC utility.</td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Admin > Communication Services</td>
<td></td>
</tr>
<tr>
<td>IPMI over LAN Properties = Enabled</td>
<td>Enables the use of Intelligent Platform Management Interface capabilities over the management port.</td>
</tr>
<tr>
<td>Server > BIOS > Configure BIOS > Advanced</td>
<td></td>
</tr>
<tr>
<td>Intel(R) Hyper-Threading Technology = Disabled</td>
<td>Disable hyper-threading on server CPUs to optimize Ultra M system performance.</td>
</tr>
<tr>
<td>Storage > Cisco 12GSAS Modular RAID Controller > Physical Drive Info</td>
<td>Ensures that the hardware is ready for use.</td>
</tr>
<tr>
<td>Status = Unconfigured Good</td>
<td></td>
</tr>
</tbody>
</table>

Prepare the Controller Nodes

Table 24: Controller Node Parameters

<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMC Utility Setup</td>
<td></td>
</tr>
<tr>
<td>Parameters and Settings</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Enable IPV4</td>
<td>Configures parameters for the dedicated management port.</td>
</tr>
<tr>
<td>Dedicated</td>
<td></td>
</tr>
<tr>
<td>No redundancy</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>DNS address</td>
<td></td>
</tr>
</tbody>
</table>

Admin > User Management

| Username | Configures administrative user credentials for accessing the CIMC utility. |
| Password | |

Admin > Communication Services

| IPMI over LAN Properties = Enabled | Enables the use of Intelligent Platform Management Interface capabilities over the management port. |
| | |

Admin > Communication Services

| IPMI over LAN Properties = Enabled | Enables the use of Intelligent Platform Management Interface capabilities over the management port. |
| | |

Server > BIOS > Configure BIOS > Advanced

| Intel(R) Hyper-Threading Technology = Disabled | Intel(R) Hyper-Threading Technology = Disabled |
| | |

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Info

| Status = Unconfigured Good | Ensures that the hardware is ready for use. |
| | |

Storage > Cisco 12G SAS Modular RAID Controller > Controller Info

| | |
| | |
Create the virtual drives required for use by the operating system (OS).

- **Virtual Drive Name**: OS
- **Read Policy**: No Read Ahead
- **RAID Level**: RAID 1
- **Cache Policy**: Direct IO
- **Strip Size**: 64KB
- **Disk Cache Policy**: Unchanged
- **Access Policy**: Read Write
- **Size**: 1143455 MB
- **Write Policy**: Write Through

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info

- **Initialize Type**: Fast Initialize

Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.

Prepare the Compute Nodes

Table 25: Compute Node Parameters

<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMC Utility Setup</td>
<td></td>
</tr>
<tr>
<td>Enable IPV4</td>
<td>Configures parameters for the dedicated management port.</td>
</tr>
<tr>
<td>Dedicated</td>
<td></td>
</tr>
<tr>
<td>No redundancy</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>DNS address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin > User Management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Configures administrative user credentials for accessing the CIMC utility.</td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin > Communication Services</th>
<th></th>
</tr>
</thead>
</table>
Prepare the OSD Compute Nodes

Parameters and Settings

IPMI over LAN Properties
- **Enabled**
 - Enables the use of Intelligent Platform Management Interface capabilities over the management port.

Server > BIOS > Configure BIOS > Advanced
- **Intel(R) Hyper-Threading Technology**
 - **Disabled**

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Info
- **Status**
 - **Unconfigured Good**
 - Ensures that the hardware is ready for use.

Storage > Cisco 12G SAS Modular RAID Controller > Controller Info
- **Virtual Drive Name**
 - **BOOTOS**
- **Read Policy**
 - **No Read Ahead**
- **RAID Level**
 - **RAID 1**
- **Cache Policy**
 - **Direct IO**
- **Strip Size**
 - **64KB**
- **Disk Cache Policy**
 - **Unchanged**
- **Access Policy**
 - **Read Write**
- **Size**
 - **1143455 MB**
- **Write Policy**
 - **Write Through**
 - Creates the virtual drives required for use by the operating system (OS).

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, BOOTOS
- **Initialize Type**
 - **Fast Initialize**
 - Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.
- **Set as Boot Drive**
 - Sets the BOOTOS virtual drive as the system boot drive.

Note
OSD Compute Nodes are only used in Hyper-converged Ultra M models as described in *UCS C-Series Servers*, on page 9.
Table 26: OSD Compute Node Parameters

<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMC Utility Setup</td>
<td></td>
</tr>
<tr>
<td>Enable IPV4</td>
<td>Configures parameters for the dedicated management port.</td>
</tr>
<tr>
<td>Dedicated</td>
<td></td>
</tr>
<tr>
<td>No redundancy</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td></td>
</tr>
<tr>
<td>Subnet mask</td>
<td></td>
</tr>
<tr>
<td>Gateway address</td>
<td></td>
</tr>
<tr>
<td>DNS address</td>
<td></td>
</tr>
<tr>
<td>Admin > User Management</td>
<td></td>
</tr>
<tr>
<td>Username</td>
<td>Configures administrative user credentials for accessing the CIMC utility.</td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Admin > Communication Services</td>
<td></td>
</tr>
<tr>
<td>IPMI over LAN Properties = Enabled</td>
<td>Enables the use of Intelligent Platform Management Interface capabilities over the management port.</td>
</tr>
<tr>
<td>Server > BIOS > Configure BIOS > Advanced</td>
<td></td>
</tr>
<tr>
<td>Intel(R) Hyper-Threading Technology = Disabled</td>
<td>Intel(R) Hyper-Threading Technology = Disabled</td>
</tr>
<tr>
<td>Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Info</td>
<td></td>
</tr>
<tr>
<td>Status = Unconfigured Good</td>
<td>Ensures that the hardware is ready for use.</td>
</tr>
<tr>
<td>SLOT-HBA Physical Drive Numbers =</td>
<td>Ensure the UCS slot host-bus adapter for the drives are configured accordingly.</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 1</td>
<td></td>
</tr>
</tbody>
</table>
Parameters and Settings

<table>
<thead>
<tr>
<th>Virtual Drive Name = BOOTOS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Policy = No Read Ahead</td>
<td>Creates a virtual drive leveraging the storage space available to physical drive number 1.</td>
</tr>
<tr>
<td>RAID Level = RAID 1</td>
<td></td>
</tr>
<tr>
<td>Cache Policy: Direct IO</td>
<td>Note Ensure that the size of this virtual drive is less than the size of the designated journal and storage drives.</td>
</tr>
<tr>
<td>Strip Size: 64KB</td>
<td></td>
</tr>
<tr>
<td>Disk Cache Policy: Unchanged</td>
<td></td>
</tr>
<tr>
<td>Access Policy: Read Write</td>
<td></td>
</tr>
<tr>
<td>Size: 285148 MB</td>
<td></td>
</tr>
<tr>
<td>Write Policy: Write Through</td>
<td></td>
</tr>
</tbody>
</table>

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, BOOTOS, Physical Drive Number = 1

- **Initialize Type = Fast Initialize**
 - Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.

- **Set as Boot Drive**
 - Sets the BOOTOS virtual drive as the system boot drive.

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 2

- **Virtual Drive Name = BOOTOS**
 - Creates a virtual drive leveraging the storage space available to physical drive number 2. |
 - **Note** Ensure that the size of this virtual drive is less than the size of the designated journal and storage drives. |
- **Read Policy = No Read Ahead** |
- **RAID Level = RAID 1** |
- **Cache Policy: Direct IO** |
- **Strip Size: 64KB** |
- **Disk Cache Policy: Unchanged** |
- **Access Policy: Read Write** |
- **Size: 285148 MB** |
- **Write Policy: Write Through** |

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, BOOTOS, Physical Drive Number = 2

- **Initialize Type = Fast Initialize**
 - Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.

- **Set as Boot Drive**
 - Sets the BOOTOS virtual drive as the system boot drive.

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 3
<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
</table>
| Virtual Drive Name = JOURNAL
Read Policy = No Read Ahead
RAID Level = RAID 0
Cache Policy: Direct IO
Strip Size: 64KB
Disk Cache Policy: Unchanged
Access Policy: Read Write
Size: 456809 MB
Write Policy: Write Through | Creates a virtual drive leveraging the storage space available to physical drive number 3. |

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, JOURNAL, Physical Drive Number = 3

| Initialize Type = Fast Initialize | Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background. |

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 7

| Virtual Drive Name = OSD1
Read Policy = No Read Ahead
RAID Level = RAID 0
Cache Policy: Direct IO
Strip Size: 64KB
Disk Cache Policy: Unchanged
Access Policy: Read Write
Size: 1143455 MB
Write Policy: Write Through | Creates a virtual drive leveraging the storage space available to physical drive number 7. |

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, OSD1, Physical Drive Number = 7

| Initialize Type = Fast Initialize | Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background. |

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 8
<table>
<thead>
<tr>
<th>Parameters and Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Drive Name = OSD2 Read Policy = No Read Ahead RAID Level = RAID 0 Cache Policy: Direct IO Strip Size: 64KB Disk Cache Policy: Unchanged Access Policy: Read Write Size: 1143455 MB Write Policy: Write Through</td>
<td>Creates a virtual drive leveraging the storage space available to physical drive number 8.</td>
</tr>
</tbody>
</table>

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, OSD2, Physical Drive Number = 8

Initialize Type = Fast Initialize

Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 9

Virtual Drive Name = OSD3 Read Policy = No Read Ahead RAID Level = RAID 0 Cache Policy: Direct IO Strip Size: 64KB Disk Cache Policy: Unchanged Access Policy: Read Write Size: 1143455 MB Write Policy: Write Through

Creates a virtual drive leveraging the storage space available to physical drive number 9.

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, OSD3, Physical Drive Number = 9

Initialize Type = Fast Initialize

Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.

Storage > Cisco 12G SAS Modular RAID Controller > Physical Drive Number = 10
Parameters and Settings

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters and Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates a virtual drive</td>
<td>Virtual Drive Name = OSD4</td>
</tr>
<tr>
<td>leveraging the storage space</td>
<td>Read Policy = No Read Ahead</td>
</tr>
<tr>
<td>available to physical drive</td>
<td>RAID Level = RAID 0</td>
</tr>
<tr>
<td>number 10.</td>
<td>Cache Policy: Direct IO</td>
</tr>
<tr>
<td></td>
<td>Strip Size: 64KB</td>
</tr>
<tr>
<td></td>
<td>Disk Cache Policy: Unchanged</td>
</tr>
<tr>
<td></td>
<td>Access Policy: Read Write</td>
</tr>
<tr>
<td></td>
<td>Size: 1143455 MB</td>
</tr>
<tr>
<td></td>
<td>Write Policy: Write Through</td>
</tr>
</tbody>
</table>

Storage > Cisco 12G SAS Modular RAID Controller > Virtual Drive Info, OSD4, Physical Drive Number = 10

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters and Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initializes this virtual drive. A fast initialization quickly writes zeroes to the first and last 10-MB regions of the new virtual drive and completes the initialization in the background.</td>
<td>Initialize Type = Fast Initialize</td>
</tr>
</tbody>
</table>
This process is performed through the Ultra Automation Services (UAS). UAS is an automation framework consisting of a set of software modules used to automate the USP-based VNF deployment and related components such as the VNFM.

For detailed information on the automation workflow, refer to the *Ultra Service Platform Deployment Automation Guide*.
Event and Syslog Management Within the Ultra M Solution

Hyper-Converged Ultra M solution models support a centralized monitor and management function. This function provides a central aggregation point for events (faults and alarms) and a proxy point for syslogs generated by the different components within the solution as identified in Table 27: Component Event Sources, on page 66. This monitor and management function runs on the Ultra M Manager Node.

The software to enable this functionality is distributed as a both a stand-alone RPM and as part of the Ultra Services Platform (USP) release ISO as described in Install the Ultra M Manager RPM, on page 76. Once installed, additional configuration is required based on the desired functionality as described in the following sections:

- Syslog Proxy, page 62
- Event Aggregation, page 66
- Install the Ultra M Manager RPM, page 76
Syslog Proxy

The Ultra M Manager Node can be configured as a proxy server for syslogs received from UCS servers and/or OpenStack. As a proxy, the Ultra M Manager Node acts a single logging collection point for syslog messages from these components and relays them to a remote collection server.

NOTES:

• This functionality is currently supported only with Ultra M deployments based on OSP 10 and that leverage the Hyper-Converged architecture.

• You must configure a remote collection server to receive and filter log files sent by the Ultra M Manager Node.

• Though you can configure syslogging at any severity level your deployment scenario requires, it is recommended that you only configure syslog levels with severity levels 0 (emergency) through 4 (warning).

Once the Ultra M Manager RPM is installed, a script provided with this release allows you to quickly enable syslog on the nodes and set the Ultra M Manager Node as the proxy. Leveraging inputs from a YAML-based configuration file, the script:

• Inspects the nodes within the Undercloud and Overcloud

• Logs on to each node

• Enables sysloging at the specified level or both the UCS hardware and for OpenStack

• Sets the Ultra M Manager Node’s address as the syslog proxy

Important
The use of this script assumes that all of the nodes use the same login credentials.

To enable this functionality:

1. Install the Ultra M Manager bundle RPM using the instructions in Install the Ultra M Manager RPM, on page 76.

Note
This step is not needed if the Ultra M Manager bundle was previously installed.

2. Become the root user.

 `sudo -i`

3. Verify that there are no previously existing configuration files for logging information messages in `/etc/rsyslog.d`.

a Navigating to `/etc/rsyslog.d`.

```bash
cd /etc/rsyslog.d
ls -al
```
Example output:
```
total 24
drwxr-xr-x. 2 root root 4096 Sep 3 23:17 .
drwxr-xr-x. 152 root root 12288 Sep 3 23:05 ..
-rw-r--r--. 1 root root 49 Apr 21 00:03 listen.conf
-rw-r--r--. 1 root root 280 Jan 12 2017 openstack-swift.conf
```

b Check the `listen.conf` file.

```bash
cat listen.conf
```
Example output:
```
$SystemLogSocketName /run/systemd/journal/syslog
```

c Check the configuration of the `openstack-swift.conf`.

```bash
cat openstack-swift.conf
```
Example configuration:
```
# LOCAL0 is the upstream default and LOCAL2 is what Swift gets in
# RHOS and RDO if installed with Packstack (also, in docs).
# The breakout action prevents logging into /var/log/messages, bz#997983.
local0.*;local2.* /var/log/swift/swift.log
& stop
```

4 Enabling syslogging to the external server by configuring the `/etc/rsyslog.conf` file.

```bash
vi /etc/rsyslog.conf
```

a Enable TCP/UDP reception.

```bash
# provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514
```

b Disable logging for private authentication messages.

```bash
# Don't log private authentication messages!
#{*.info;mail.none;authpriv.none;cron.none} /var/log/messages
```

c Configure the desired log severity levels.

```bash
# log 0-4 severity logs to external server 172.21.201.53
*.4,3,2,1,0 @<external_syslog_server_ipv4_address>:514
```

Though it is possible to configure the system to locally store syslog on the Ultra M Manager Node, it is highly recommended that you avoid doing so to avoid the risk of data loss and to preserve disk space.

5 Restart the syslog server.

```bash
service rsyslog restart
```

6 Navigate to `/.etc`.

```bash
cd /etc
```

7 Create and/or edit the `ultram_cfg.yaml` file based your VIM Orchestrator and VIM configuration. A sample of this configuration file is provided in Example `ultram_cfg.yaml File`, on page 89.
The `ultram_cfg.yaml` file pertains to both the syslog proxy and event aggregation functionality. Some parts of this file's configuration overlap and may have been configured in relation to the other function.

```yaml
vi ultram_cfg.yaml
```

a Optional. Configure your Undercloud settings if they are not already configured.

```
under-cloud:
  enabled: true
  environment:
    OS_AUTH_URL: <auth_url>
    OS_TENANT_NAME: <tenant_name>
    OS_USERNAME: admin
    OS_PASSWORD: <admin_user_password>
    ssh-key: /opt/cisco/heat_admin_ssh_key
```

b Optional. Configure your Overcloud settings if they are not already configured.

```
over-cloud:
  enabled: true
  environment:
    OS_AUTH_URL: <auth_url>
    OS_TENANT_NAME: <tenant_name>
    OS_USERNAME: <user_name>
    OS_PASSWORD: <user_password>
    OS_ENDPOINT_TYPE: publicURL
    OS_IDENTITY_API_VERSION: 2
    OS_REGION_NAME: regionOne
```

c Specify the IP address of the Ultra M Manager Node to be the proxy server.

```
rsyslog:
  level: 4,3,2,1,0
  proxy-rsyslog: <ultram_manager_address>
```

Important

- You can modify the syslog levels to report according to your requirements using the `level` parameter as shown above.
- `<ultram_manager_address>` is the internal IP address of the Ultra M Manager Node reachable by OpenStack and the UCS servers.
- If you are copying the above information from an older configuration, make sure the `proxy-rsyslog` IP address does not contain a port number.

d Optional. Configure the CIMC login information for each of the nodes on which syslogging is to be enabled.

```
ucs-cluster:
  enabled: true
  user: <username>
  password: <password>
```

Important

The use of this script assumes that all of the nodes use the same login credentials.

8 Navigate to `/opt/cisco/usp/ultram-manager`.

```
cd /opt/cisco/usp/ultram-manager
```
Encrypt the clear text passwords in the `ultram_cfg.yaml` file.

```
utilis.py --secure-cfg /etc/ultram_cfg.yaml
```

Important Executing this script encrypts the passwords in the configuration file and appends "encrypted: true" to the end of the file (e.g. `ultram_cfg.yaml: encrypted: true`). Refer to Encrypting Passwords in the `ultram_cfg.yaml` File, on page 80 for more information.

10 Optional. Disable syslog if it was previously configured on the UCS servers.

```
/ultram_syslogs.py --cfg /etc/ultram_cfg.yaml -u -d
```

11 Execute the `ultram_syslogs.py` script to load the configuration on the various nodes.

```
/ultram_syslogs.py --cfg /etc/ultram_cfg.yaml -o -u
```

Important Additional command line options for the `ultram_syslogs.py` script can be seen by entering `ultram_syslogs.py --help` at the command prompt. An example of the output of this command is below:

```
usage: ultram_syslogs.py [-h] [-c CFG] [-d] [-u] [-o]
optional arguments:
  -h, --help show this help message and exit
  -c CFG, --cfg CFG Configuration file
  -d, --disable-syslog Disable Syslog
  -u, --ucs Apply syslog configuration on UCS servers
  -o, --openstack Apply syslog configuration on OpenStack
```

Example output:

```
2017-09-13 15:24:23,305 - Get information about all the nodes from under-cloud
2017-09-13 15:24:37,178 - Enabling syslog configuration on 192.100.3.5
2017-09-13 15:25:00,546 - syslog configuration success.
2017-09-13 15:25:00,547 - Enabling syslog configuration on 192.100.3.6
2017-09-13 15:25:19,003 - Connected.
2017-09-13 15:25:24,808 - syslog configuration success.
2017-09-13 15:25:24,808 - syslog configuration success.
```

<---SNIP--->

```
2017-09-13 15:46:07,15 - Enabling syslog configuration on vnfl-osd-compute-1
2017-09-13 15:46:08,817 - Connected
2017-09-13 15:46:09,046 - /etc/rsyslog.conf
2017-09-13 15:46:09,047 - Enabling syslog ...
2017-09-13 15:46:09,130 - Restarting rsyslog
2017-09-13 15:46:09,237 - Restarted
2017-09-13 15:46:09,321 - /etc/nova/nova.conf
2017-09-13 15:46:09,321 - Enabling syslog ...
2017-09-13 15:46:09,467 - Restarting Services 'openstack-nova-compute.service'
```

12 Ensure that client log messages are being received by the server and are uniquely identifiable.

NOTES:

- If necessary, configure a unique tag and hostname as part of the syslog configuration/template for each client.
- Syslogs are very specific in terms of the file permissions and ownership. If need be, manually configure permissions for the log file on the client using the following command:

```
chmod +r <URL>/log_filename
```
Event Aggregation

The Ultra M Manager Node can be configured to aggregate events received from different Ultra M components as identified in Table 27: Component Event Sources, on page 66.

Important

This functionality is currently supported only with Ultra M deployments based on OSP 10 and that leverage the Hyper-Converged architecture.

Table 27: Component Event Sources

<table>
<thead>
<tr>
<th>Solution Component</th>
<th>Event Source Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS server hardware</td>
<td>CIMC</td>
<td>Reports on events collected from UCS C-series hardware via CIMC-based subscription. These events are monitored in real-time.</td>
</tr>
</tbody>
</table>
| VIM (Overcloud) | OpenStack service health | Reports on OpenStack service fault events pertaining to:
 • Failures (stopped, restarted)
 • High availability
 • Ceph / storage
 • Neutron / compute host and network agent
 • Nova scheduler (VIM instances)
 Refer to Table 28: Monitored OpenStack Services, on page 68 for a complete list of services. |
| UAS (AutoVNF, UEM, and ESC) | UAS cluster/USP management component events | Reports on UAS service fault events pertaining to:
 • Service failure (stopped, restarted)
 • High availability
 • AutoVNF
 • UEM
 • ESC (VNFM) |

Important

In order to ensure optimal performance, it is strongly recommended that you do not change the default polling-interval.
<table>
<thead>
<tr>
<th>Solution Component</th>
<th>Event Source Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNF VM Status</td>
<td>ESC (VNFM) event</td>
<td>Reports on VNF VM deployment state events generated by ESC (the VNFM). The following events are supported:</td>
</tr>
<tr>
<td></td>
<td>notifications</td>
<td>• VM_DEPLOYED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_ALIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_UNDEPLOYED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_REBOOTED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_RECOVERY_REBOOT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_RECOVERY_UNDEPLOYED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_RECOVERY_DEPLOYED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_RECOVERY_COMPLETE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM_STOPPED</td>
</tr>
</tbody>
</table>

Important This feature is not fully qualified in this release. It is available only for testing purposes. AutoVNF monitors for event notifications from ESC in real time. Though AutoVNF updates the VNFR for the VNF and VNFC the event pertains to upon receipt of an event, it does not generate a corresponding SNMP trap.
Table 28: Monitored OpenStack Services

<table>
<thead>
<tr>
<th>Node Type</th>
<th>OpenStack Module</th>
<th>OpenStack Services</th>
</tr>
</thead>
</table>
| Controller| aodh | • openstack-aodh-evaluator.service,
| | | • openstack-aodh-listener.service,
| | | • openstack-aodh-notifier.service |
| | ceilometer | • openstack-ceilometer-central.service,
| | | • openstack-ceilometer-collector.service,
| | | • openstack-ceilometer-notification.service |
| | cinder | • openstack-cinder-api.service,
| | | • openstack-cinder-schedulerservice |
| | glance | • openstack-glance-api.service,
| | | • openstack-glance-registry.service |
| | gnocchi | • openstack-gnocchi-metricd.service,
| | | • openstack-gnocchi-statsd.service |
| | heat-engine | openstack-heat-engine.service |
| | heat-api | • openstack-heat-api-cfn.service,
| | | • openstack-heat-api-cfndns.service,
| | | • openstack-heat-api-cloudwatch.service,
| | | • openstack-heat-api.service |
| | heat | • openstack-heat-api-cfn.service,
| | | • openstack-heat-api-cloudwatch.service,
<p>| | | • openstack-heat-api.service |
| | nova | |</p>
<table>
<thead>
<tr>
<th>Node Type</th>
<th>OpenStack Module</th>
<th>OpenStack Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• openstack-nova-api.service,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-nova-conductor.service,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-nova-consoleauth.service,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-nova-novncproxy.service,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-nova-scheduler.service</td>
</tr>
<tr>
<td>swift-object</td>
<td></td>
<td>• openstack-swift-object-auditorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-object-replicatorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-object-updaterservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-object.service</td>
</tr>
<tr>
<td>swift-account</td>
<td></td>
<td>• openstack-swift-account-auditorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-account-replicatorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-account-updaterservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-account.service</td>
</tr>
<tr>
<td>swift-container</td>
<td></td>
<td>• openstack-swift-container-auditorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-container-replicatorservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-container-updaterservice,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• openstack-swift-container.service</td>
</tr>
<tr>
<td>swift-proxy</td>
<td></td>
<td>openstack-swift-proxy.service</td>
</tr>
<tr>
<td>swift</td>
<td></td>
<td>All above swift services</td>
</tr>
<tr>
<td>ntpd</td>
<td></td>
<td>ntpd.service</td>
</tr>
<tr>
<td>mongod</td>
<td></td>
<td>mongod.service</td>
</tr>
<tr>
<td>memcached</td>
<td></td>
<td>memcached</td>
</tr>
<tr>
<td>neutron-dhcp-agent</td>
<td></td>
<td>neutron-dhcp-agent.service</td>
</tr>
<tr>
<td>neutron-l3-agent</td>
<td></td>
<td>neutron-l3-agent.service</td>
</tr>
<tr>
<td>neutron-metadata-agent</td>
<td></td>
<td>neutron-metadata-agent.service</td>
</tr>
<tr>
<td>Node Type</td>
<td>OpenStack Module</td>
<td>OpenStack Services</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>neutron-openvswitch-agent</td>
<td>neutron-openvswitch-agent.service</td>
</tr>
<tr>
<td></td>
<td>neutron-server</td>
<td>neutron-server.service</td>
</tr>
<tr>
<td></td>
<td>httpd</td>
<td>httpd.service</td>
</tr>
<tr>
<td>OSD Compute</td>
<td>ceph-mon.target</td>
<td>ceph-mon.target</td>
</tr>
<tr>
<td></td>
<td>ceph-radosgw.target</td>
<td>ceph-radosgw.target</td>
</tr>
<tr>
<td></td>
<td>ceph.target</td>
<td>ceph.target</td>
</tr>
<tr>
<td></td>
<td>openvswitch.service</td>
<td>openvswitch.service</td>
</tr>
<tr>
<td></td>
<td>neutron-sriov-nic-agent</td>
<td>neutron-sriov-nic-agent.service</td>
</tr>
<tr>
<td></td>
<td>neutron-openvswitch-agent</td>
<td>neutron-openvswitch-agent.service</td>
</tr>
<tr>
<td></td>
<td>ntpd</td>
<td>ntpd.service</td>
</tr>
<tr>
<td></td>
<td>nova-compute</td>
<td>openstack-nova-compute.service</td>
</tr>
<tr>
<td></td>
<td>libvirtd</td>
<td>libvirtd.service</td>
</tr>
<tr>
<td>Compute</td>
<td>ceph-mon.target</td>
<td>ceph-mon.target</td>
</tr>
<tr>
<td></td>
<td>ceph-radosgw.target</td>
<td>ceph-radosgw.target</td>
</tr>
<tr>
<td></td>
<td>ceph.target</td>
<td>ceph.target</td>
</tr>
<tr>
<td></td>
<td>openvswitch.service</td>
<td>openvswitch.service</td>
</tr>
<tr>
<td></td>
<td>neutron-sriov-nic-agent</td>
<td>neutron-sriov-nic-agent.service</td>
</tr>
<tr>
<td></td>
<td>neutron-openvswitch-agent</td>
<td>neutron-openvswitch-agent.service</td>
</tr>
<tr>
<td></td>
<td>ntpd</td>
<td>ntpd.service</td>
</tr>
<tr>
<td></td>
<td>nova-compute</td>
<td>openstack-nova-compute.service</td>
</tr>
<tr>
<td></td>
<td>libvirtd</td>
<td>libvirtd.service</td>
</tr>
</tbody>
</table>

Events received from the solution components, regardless of the source type, are mapped against the Ultra M SNMP MIB (CISCO-ULTRAM-MIB.my, refer to Ultra M MIB, on page 93). The event data is parsed and categorized against the following conventions:
• **Fault code:** Identifies the area in which the fault occurred for the given component. Refer to the "CFaultCode" convention within the Ultra M MIB for more information.

• **Severity:** The severity level associated with the fault. Refer to the "CFaultSeverity" convention within the Ultra M MIB for more information. Since the Ultra M Manager Node aggregates events from different components within the solution, the severities supported within the Ultra M Manager Node MIB map to those for the specific components. Refer to Ultra M Component Event Severity and Fault Code Mappings, on page 99 for details.

• **Domain:** The component in which the fault occurred (e.g. UCS hardware, VIM, UEM, etc.). Refer to the "CFaultDomain" convention within the Ultra M MIB for more information.

UAS and OpenStack events are monitored at the configured polling interval as described in Table 29: SNMP Fault Entry Table Element Descriptions, on page 73. At the polling interval, the Ultra M Manager Node:

1. Collects data from UAS and OpenStack.
2. Generates/updates .log and .report files and an SNMP-based fault table with this information. It also includes related data about the fault such as the specific source, creation time, and description.
3. Processes any events that occurred:
 a. If an error or fault event is identified, then a .error file is created and an SNMP trap is sent.
 b. If the event received is a clear condition, then an informational SNMP trap is sent to "clear" an active fault.
 c. If no event occurred, then no further action is taken beyond Step 2.

UCS and ESC VM events are monitored and acted upon in real-time. When events occur, the Ultra M Manager generates a .log file and the SNMP fault table. In the case of VM events reported by ESC, upon receipt of an event, AutoVNF updates the VNFR for the VNF and VNFC the event pertains to. In parallel, it passes the event information to the Ultra M Manager functionality within AutoIT. The Ultra M Manager then generates corresponding SNMP traps for each event.

Active faults are reported “only” once and not on every polling interval. As a result, there is only one trap as long as this fault is active. Once the fault is “cleared”, an informational trap is sent.

Important

UCS events are considered to be the "same" if a previously received fault has the same distinguished name (DN), severity, and lastTransition time. UCS events are considered as "new" only if any of these elements change.
These processes are illustrated in Figure 14: Ultra M Manager Node Event Aggregation Operation, on page 72. Refer to About Ultra M Manager Log Files, on page 113 for more information.

Figure 14: Ultra M Manager Node Event Aggregation Operation

An example of the snmp_faults_table file is shown below and the entry syntax is described in Figure 15: SNMP Fault Table Entry Description, on page 72:

```
0: [3 "neuton-osd-compute-0: neutron-sriov-nic-agent.service" 1 8 "status known"]
1: [3 "neuton-osd-compute-0: ntpd" 1 8 "Service is not active state: inactive"]
2: [3 "neuton-osd-compute-1: neutron-sriov-nic-agent.service" 1 8 "status known"]
3: [3 "neuton-osd-compute-1: ntpd" 1 8 "Service is not active state: inactive"]
4: [3 "neuton-osd-compute-2: neutron-sriov-nic-agent.service" 1 8 "status known"]
5: [3 "neuton-osd-compute-2: ntpd" 1 8 "Service is not active state: inactive"]
```

Refer to About Ultra M Manager Log Files, on page 113 for more information.

Figure 15: SNMP Fault Table Entry Description

Each element in the SNMP Fault Table Entry corresponds to an object defined in the Ultra M SNMP MIB as described in Table 29: SNMP Fault Entry Table Element Descriptions, on page 73. (Refer also to Ultra M MIB, on page 93.)
Table 29: SNMP Fault Entry Table Element Descriptions

<table>
<thead>
<tr>
<th>SNMP Fault Table Entry Element</th>
<th>MIB Object</th>
<th>Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry ID</td>
<td>cultramFaultIndex</td>
<td>A unique identifier for the entry</td>
</tr>
</tbody>
</table>
| Fault Domain | cultramFaultDomain | The component area in which the fault occurred. The following domains are supported in this release:
| | | • hardware(1) : Hardware including UCS servers |
| | | • vim(3) : OpenStack VIM manager |
| | | • uas(4) : Ultra Automation Services Modules |
| Fault Source | cultramFaultSource | Information identifying the specific component within the Fault Domain that generated the event. The format of the information is different based on the Fault Domain. Refer to Table 30: cultramFaultSource Format Values, on page 75 for details. |
| Fault Severity | cultramFaultSeverity| The severity associated with the fault as one of the following: |
| | | • emergency(1) : System level FAULT impacting multiple VNFs/Services |
| | | • critical(2) : Critical Fault specific to VNF/Service |
| | | • major(3) : component level failure within VNF/service. |
| | | • alert(4) : warning condition for a service/VNF, may eventually impact service. |
| | | • informational(5) : informational only, does not impact service |

Refer to Ultra M Component Event Severity and Fault Code Mappings, on page 99 for details on how these severities map to events generated by the various Ultra M components.
SNMP Fault Table Entry Element

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>cultramFaultCode</th>
<th>Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A unique ID representing the type of fault as. The following codes are supported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• other(1) : Other events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• networkConnectivity(2) : Network Connectivity Failure Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• resourceUsage(3) : Resource Usage Exhausted Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• resourceThreshold(4) : Resource Threshold crossing alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• hardwareFailure(5) : Hardware Failure Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• securityViolation(6) : Security Alerts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• configuration(7) : Config Error Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• serviceFailure(8) : Process/Service failures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to [Ultra M Component Event Severity and Fault Code Mappings](#), on page 99 for details on how these fault codes map to events generated by the various Ultra M components.

Fault Description

| cultramFaultDescription | A message containing details about the fault. |
Table 30: cultramFaultSource Format Values

<table>
<thead>
<tr>
<th>FaultDomain</th>
<th>Format Value of cultramFaultSource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware (UCS Servers)</td>
<td>Node: <code><UCS-SERVER-IP-ADDRESS></code>, affectedDN: <code><FAULT-OBJECT-DISTINGUISHED-NAME></code>
Where:
<code><UCS-SERVER-IP-ADDRESS></code> : The management IP address of the UCS server that generated the fault.
<code><FAULT-OBJECT-DISTINGUISHED-NAME></code> : The distinguished name of the affected UCS object.</td>
</tr>
<tr>
<td>UAS</td>
<td>Node: <code><UAS-MANAGEMENT-IP></code>
Where:
<code><UAS-MANAGEMENT-IP></code> : The management IP address for the UAS instance.</td>
</tr>
<tr>
<td>VIM (OpenStack)</td>
<td><code><OS-HOSTNAME></code>: <code><SERVICE-NAME></code>
Where:
<code><OS-HOSTNAME></code> : The OpenStack node hostname that generated the fault.
<code><SERVICE-NAME></code> : Then name of the OpenStack service that generated the fault.</td>
</tr>
</tbody>
</table>

Fault and alarm collection and aggregation functionality within the Hyper-Converged Ultra M solution is configured and enabled through the `ultram_cfg.yaml` file. (An example of this file is located in [Example ultram_cfg.yaml File](#), on page 89.) Parameters in this file dictate feature operation and enable SNMP on the UCS servers and event collection from the other Ultra M solution components.

To enable this functionality on the Ultra M solution:

1. Install the Ultra M Manager bundle RPM using the instructions in [Install the Ultra M Manager RPM](#), on page 76.

 - **Important** This step is not needed if the Ultra M Manager bundle was previously installed.

2. Become the root user.
   ```
   sudo -i
   ```

3. Navigate to `/etc`.
   ```
   cd /etc
   ```

4. Create and/or edit the `ultram_cfg.yaml` file based on your deployment scenario.
The `ultram_cfg.yaml` file pertains to both the syslog proxy and event aggregation functionality. Some parts of this file's configuration overlap and may have been configured in relation to the other function.

5 Navigate to `/opt/cisco/usp/ultram-manager`.
 `cd /opt/cisco/usp/ultram-manager`

6 Encrypt the clear text passwords in the `ultram_cfg.yaml` file.
 `utils.py --secure-cfg /etc/ultram_cfg.yaml`

 Important Executing this script encrypts the passwords in the configuration file and appends "encrypted: true" to the end of the file (e.g. `ultram_cfg.yaml:encrypted: true`). Refer to Encrypting Passwords in the `ultram_cfg.yaml` File, on page 80 for more information.

7 Start the Ultra M Manager Service, on page 79.

 Important Subsequent configuration changes require you to restart the health monitor service. Refer to Restarting the Ultra M Manager Service, on page 77 for details.

8 Verify the configuration by checking the `ultram_health.log` file.
 `cat /var/log/cisco/ultram_health.log`

Install the Ultra M Manager RPM

The Ultra M Manager functionality described in this chapter is enabled through software distributed both as part of the USP ISO and as a separate RPM bundle.

Ensure that you have access to either of these RPM bundles prior to proceeding with the instructions below.

To access the Ultra M Manager RPM packaged within the USP ISO, onboard the ISO and navigate to the `ultram_manager` directory. Refer to the USP Deployment Automation Guide for instructions on onboarding the USP ISO.

1 **Optional.** Remove any previously installed versions of the Ultra M Manager per the instructions in Uninstalling the Ultra M Manager, on page 79.

2 Log on to the Ultra M Manager Node.

3 Become the root user.
 `sudo -i`

4 Copy the "ultram-manager" RPM file to the Ultra M Manager Node.

5 Navigate to the directory in which you copied the file.

6 Install the ultram-manager bundle RPM that was distributed with the ISO.
 `yum install -y ultram-manager-<version>.x86_64.rpm`

A message similar to the following is displayed upon completion:

```
 Installed:
 ultram-health.x86_64 0:5.1.6-2
```
Complete!

7 Verify that log rotation is enabled in support of the syslog proxy functionality by checking the logrotate file.

 cd /etc/cron.daily
 ls -al

Example output:

 total 28
 drwxr-xr-x. 2 root root 4096 Sep 10 18:15 .
 drwxr-xr-x. 128 root root 12288 Sep 11 18:12 ..
 -rwx------. 1 root root 219 Jan 24 2017 logrotate
 -rwxr-xr-x. 1 root root 618 Mar 17 2014 man-db.cron
 -rwx------. 1 root root 256 Jun 21 16:57 rhsmd

 cat /etc/cron.daily/logrotate

Example output:

 #!/bin/sh
 /usr/sbin/logrotate -s /var/lib/logrotate/logrotate.status /etc/logrotate.conf
 EXITVALUE=$?
 if [$EXITVALUE != 0]; then
 /usr/bin/logger -t logrotate "ALERT exited abnormally with [$EXITVALUE]"
 fi
 exit 0

8 Create and configure the ultram_health file.

 cd /etc/logrotate.d
 vi ultram_health

 /var/log/cisco/ultram-manager/* {
 size 50M
 rotate 30
 missingok
 notifempty
 compress
 }

9 Proceed to either Syslog Proxy, on page 62 or Event Aggregation, on page 66 to configure the desired functionality.

Restarting the Ultra M Manager Service

In the event of configuration change or a server reboot, the Ultra M Manager service must be restarted. To restart the Ultra M Manager service:

1 Check the Ultra M Manager Service Status, on page 78.
2 Stop the Ultra M Manager Service, on page 78.
3 Start the Ultra M Manager Service, on page 79.
4 Check the Ultra M Manager Service Status, on page 78.
Check the Ultra M Manager Service Status

It may be necessary to check the status of the Ultra M Manager service.

Note

These instructions assume that you are already logged into the Ultra M Manager Node as the root user.

To check the Ultra M Manager status:

1. Check the service status.

```
   service ultram_health.service status
```

Example Output – Inactive Service:

```
Redirecting to /bin/systemctl status ultram_health.service
ultram_health.service - Cisco UltraM Health monitoring Service
   Loaded: loaded (/etc/systemd/system/ultram_health.service; enabled; vendor preset: disabled)
   Active: inactive (dead)
```

Example Output – Active Service:

```
Redirecting to /bin/systemctl status ultram_health.service
ultram_health.service - Cisco UltraM Health monitoring Service
   Loaded: loaded (/etc/systemd/system/ultram_health.service; enabled; vendor preset: disabled)
   Active: active (running) since Sun 2017-09-10 22:20:20 EDT; 5s ago
   Main PID: 16982 (start_ultram_health)
   CGroup: /system.slice/ultram_health.service
   └─ 16982 /bin/sh /usr/local/sbin/start_ultram_health
       ├─ 16983 python /opt/cisco/usp/ultram-manager/ultram_health.py /etc/ultram_cfg.yaml
       │  └─ 16991 python /opt/cisco/usp/ultram-manager/ultram_health.py /etc/ultram_cfg.yaml
       └─ 17052 /usr/bin/python /bin/ironic node-show

19844e8d-2def-4be4-b2cf-937f34ebd117
```

```
Sep 10 22:20:20 ospd-tb1.mitg-bxb300.cisco.com systemd[1]: Starting Cisco UltraM Health monitoring Service...
```

2. Check the status of the mongo process.

```
   ps -ef | grep mongo
```

Example output:

```
mongodb 3769  1 0 Aug23 ?  00:43:30 /usr/bin/mongod --quiet -f /etc/mongod.conf run
```

Stop the Ultra M Manager Service

It may be necessary to stop the Ultra M Manager service under certain circumstances.

Note

These instructions assume that you are already logged into the Ultra M Manager Node as the root user.

To stop the Ultra M Manager service, enter the following command from the `/opt/cisco/usp/ultram-manager` directory:

```
./service ultram_health.service stop
```
Start the Ultra M Manager Service

It is necessary to start/restart the Ultra M Manager service in order to execute configuration changes and or after a reboot of the Ultra M Manager Node.

These instructions assume that you are already logged into the Ultra M Manager Node as the root user.

To start the Ultra M Manager service, enter the following command from the `/opt/cisco/usp/ultram-manager` directory:

```
./service ultram_health.service start
```

Uninstalling the Ultra M Manager

If you have previously installed the Ultra M Manager, you must uninstall it before installing newer releases.

To uninstall the Ultra M Manager:

1. Log on the Ultra M Manager Node.
2. Become the root user.
3. Make a backup copy of the existing configuring file (e.g. `/etc/ultram_cfg.yaml`).
4. Check the installed version.
   ```
   yum list installed | grep ultra
   ```
 Example output:
   ```
   ultram-manager.x86_64 5.1.3-1 installed
   ```
5. Uninstall the previous version.
   ```
   yum erase ultram-manager
   ```
 Example output:
   ```
   Loaded plugins: enabled_repos_upload, package_upload, product-id, search-disabled-repos, subscription-manager, Versionlock
   Resolving Dependencies
   --> Running transaction check
   --> Package ultram-manager.x86_64 0:5.1.5-1 will be erased
   --> Finished Dependency Resolution
   Dependencies Resolved
   ```

Package	Size	Arch	Version	Repository
ultram-health	148 k	x86_64	5.1.5-1	installed

Transaction Summary

Remove 1 Package

Installed size: 148 k
Is this ok [y/N]:
Enter y at the prompt to continue.
A message similar to the following is displayed upon completion:

Removed:
 ultram-health.x86_64 0:5.1.3-1

Complete!
Uploading Enabled Repositories Report
Loaded plugins: product-id, versionlock

Proceed to Install the Ultra M Manager RPM, on page 76

Encrypting Passwords in the `ultram_cfg.yaml` File

The `ultram_cfg.yaml` file requires the specification of passwords for the managed components. These passwords are entered in clear text within the file. To mitigate security risks, the passwords should be encrypted before using the file to deploy Ultra M Manager-based features/functions.

To encrypt the passwords, the Ultra M Manager provides a script called `utils.py` in the `/opt/cisco/usp/ultram-manager/` directory. The script can be run against your `ultram_cfg.yaml` file by navigating to that directory and executing the following command as the root user:

```bash
utils.py --secure-cfg /etc/ultram_cfg.yaml
```

Important

Data is encrypted using AES via a 256 bit key that is stored in the MongoDB. As such, an OSPD user on OSPD is able to access this key and possibly decrypt the passwords. (This includes the `stack` user as it has `sudo` access.)

Executing this script encrypts the passwords in the configuration file and appends "encrypted: true" to the end of the file (e.g. `ultram_cfg.yaml`encrypted: true) to indicate that the passwords have been encrypted.

Note

Do not rename the file once the filename has been changed.

If need be, you can make edits to parameters other than the passwords within the `ultram_cfg.yaml` file after encrypting the passwords.

For new installations, run the script to encrypt the passwords before applying the configuration and starting the Ultra M Manager service as described in Syslog Proxy, on page 62 and Event Aggregation, on page 66.

To encrypt passwords for existing installations:

1. **Stop the Ultra M Manager Service,** on page 78.
2. **Optional.** Installing an updated version of the Ultra M Manager RPM.
 a. Save a copy of your `ultram_cfg.yaml` file to alternate location outside of the Ultra M Manager installation.
 b. Uninstall the Ultra M Manager using the instructions in Uninstalling the Ultra M Manager, on page 79.
 c. Install the new Ultra M Manager version using the instructions in Install the Ultra M Manager RPM, on page 76.
 d. Copy your backed-up `ultram_cfg.yaml` file to the `/etc` directory.
3 Navigate to /opt/cisco/usp/ultram-manager/.
 cd /opt/cisco/usp/ultram-manager/
4 Encrypt the clear text passwords in the ultram_cfg.yaml file.
 utils.py --secure-cfg /etc/ultram_cfg.yaml

Note

Executing this script encrypts the passwords in the configuration file and appends "encrypted: true" to the end of the file (e.g. ultram_cfg.yaml:encrypted: true).

5 Start the Ultra M Manager Service, on page 79.
Encrypting Passwords in the ultram_cfg.yaml File
Network Definitions (Layer 2 and 3)

Table 31: Layer 2 and 3 Network Definition, on page 83 is intended to be used as a template for recording your Ultra M network Layer 2 and Layer 3 deployments.

Some of the Layer 2 and 3 networking parameters identified in Table 31: Layer 2 and 3 Network Definition, on page 83 are configured directly on the UCS hardware via CIMC. Other parameters are configured as part of the VIM Orchestrator or VIM configuration. This configuration is done through various configuration files depending on the parameter:

- undercloud.conf
- network.yaml
- layout.yaml

Table 31: Layer 2 and 3 Network Definition

<table>
<thead>
<tr>
<th>VLAN ID / Range</th>
<th>Network</th>
<th>Gateway</th>
<th>IP Range Start</th>
<th>IP Range End</th>
<th>Description</th>
<th>Where Configured</th>
<th>Routable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>External-Internet Meant for OSP-D Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>192.168.1.0/24</td>
<td>192.168.1.1</td>
<td></td>
<td></td>
<td>Internet access required: - 1 IP Address for OSP-D - 1 IP for default gateway</td>
<td>On Ultra M Manager Node hardware</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External – Floating IP Addresses (Virtio)*</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Ultra M Solutions Guide, Release 6.0
<table>
<thead>
<tr>
<th>VLAN ID / Range</th>
<th>Network</th>
<th>Gateway</th>
<th>IP Range Start</th>
<th>IP Range End</th>
<th>Description</th>
<th>Where Configured</th>
<th>Routable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>192.168.10.0 /24</td>
<td>192.168.10.1</td>
<td>192.168.10.1</td>
<td></td>
<td>Routable addresses required:</td>
<td>network.yaml and/or layout.yaml**</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 3 IP addresses for Controllers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1 VIP for master Controller Node</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 4:10 Floating IP Addresses per VNF assigned to management VMs (CF, VNF, UEM, and UAS software modules)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1 IP for default gateway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provisioning

| 105 | 192.0.0.0/8 | 192.200.0.100 | 192.200.0.254 | | Required to provision all configuration via PXE boot from OSP-D for Ceph, Controller and Compute. Intel-On-Board Port 1 (1G). | undercloud.conf | No |

IPMI-CIMC

| 105 | 192.0.0.0/8 | 192.100.0.100 | 192.100.0.254 | | On UCS servers through CIMC | | No |

Tenant (Virtio)
<table>
<thead>
<tr>
<th>VLAN ID / Range</th>
<th>Network</th>
<th>Gateway</th>
<th>IP Range Start</th>
<th>IP Range End</th>
<th>Description</th>
<th>Where Configured</th>
<th>Routable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>11.17.0.0/24</td>
<td></td>
<td></td>
<td></td>
<td>All Virtio based tenant networks. (MLOM)</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Storage (Virtio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11.18.0.0/24</td>
<td></td>
<td></td>
<td></td>
<td>Required for Controllers, Computes and Ceph for read/write from and to Ceph. (MLOM)</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Storage-MGMT (Virtio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11.19.0.0/24</td>
<td></td>
<td></td>
<td></td>
<td>Required for Controllers and Ceph only as Storage Cluster internal network. (MLOM)</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal-API (Virtio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11.20.0.0/24</td>
<td></td>
<td></td>
<td></td>
<td>Required for Controllers and Computes for openstack manageability. (MLOM)</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mgmt (Virtio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>172.16.181.0/24</td>
<td>172.16.181.100</td>
<td>172.16.181.254</td>
<td></td>
<td>Tenant based virtio network on openstack.</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other-Virtio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001: 1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenant based virtio networks on openstack.</td>
<td>network. yaml and/or layout.yaml**</td>
<td>No</td>
</tr>
<tr>
<td>VLAN ID / Range</td>
<td>Network</td>
<td>Gateway</td>
<td>IP Range Start</td>
<td>IP Range End</td>
<td>Description</td>
<td>Where Configured</td>
<td>Routable?</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SR-IOV (Phys-PCIe1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenant SRIOV network on openstack. (Intel NIC on PCIe1)</td>
<td>network.yaml and/or layout.yaml**</td>
<td>Yes</td>
</tr>
<tr>
<td>2101: 2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-IOV (Phys-PCIe4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tenant SRIOV network on openstack. (Intel NIC on PCIe4)</td>
<td>network.yaml and/or layout.yaml**</td>
<td>Yes</td>
</tr>
<tr>
<td>2501: 2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Bold underlined text is provided as example configuration information. Your deployment requirements will vary. The IP addresses in bold text are the recommended address used for internal routing between VNF components. All other IP addresses and VLAN IDs may be changed/assigned.

* You can ensure that the same floating IP address can assigned to the AutoVNF, CF, UEM, and VNFM after a VM restart by configuring parameters in the AutoDeploy configuration file or the UWS service delivery configuration file. Refer to Table 32: Floating IP address Reuse Parameters, on page 86 for details.

** For Hyper-converged Ultra M models based on OpenStack 10, these parameters must configured in the both the networks.yaml and the layout.yaml files unless the VIM installation automation feature is used. Refer to the Ultra Services Platform Deployment Automation Guide for details.

Caution IP address ranges used for the Tenant (Virtio), Storage (Virtio), and Internal-API (Virtio) in network.yaml cannot conflict with the IP addresses specified in layout.yaml for the corresponding networks. Address conflicts will prevent the VNF from functioning properly.

Table 32: Floating IP address Reuse Parameters

<table>
<thead>
<tr>
<th>Component</th>
<th>Construct</th>
<th>AutoDeploy Configuration File Parameters</th>
<th>UWS Service Deployment Configuration File</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoVNF</td>
<td>autovnf</td>
<td>networks management floating-ip true</td>
<td><management></td>
</tr>
<tr>
<td></td>
<td></td>
<td>networks management ha-vip<vip_address></td>
<td><---SNIP---></td>
</tr>
<tr>
<td></td>
<td></td>
<td>networks management floating-ip-address</td>
<td><floating-ip>true </floating-ip></td>
</tr>
<tr>
<td></td>
<td></td>
<td><ha-vip> vip_address</ha-vip></td>
<td><ha-vip> vip_address</ha-vip></td>
</tr>
<tr>
<td></td>
<td></td>
<td>floating_address</td>
<td><floating-ip-address> floating_address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></floating-ip-address></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></management></td>
</tr>
<tr>
<td>Component</td>
<td>Construct</td>
<td>AutoDeploy Configuration File Parameters</td>
<td>UWS Service Deployment Configuration File</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>VNFM</td>
<td>vnfnd</td>
<td><code>floating-ip true</code></td>
<td><code><management></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>ha-vip <vip_address></code></td>
<td><code><---SNIP---></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>floating-ip-address</code></td>
<td><code><floating-ip>true </floating-ip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><ha-vip> vip_address</ha-vip></code></td>
<td><code><---SNIP---></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>floating-ip-address></code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><floating_address></code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><---SNIP---></code></td>
<td><code></management></code></td>
</tr>
<tr>
<td>UEM</td>
<td>vnfd</td>
<td><code>vnf-em ha-vip <vip_address></code></td>
<td><code><vnf-em></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>vnf-em floating-ip true</code></td>
<td><code><---SNIP---></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>vnf-em floating-ip-address</code></td>
<td><code><ha-vip> vip_address</ha-vip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><---SNIP---></code></td>
<td><code><floating-ip>true </floating-ip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>floating-ip-address</code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><floating_address></code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><---SNIP---></code></td>
<td><code></vnf-em></code></td>
</tr>
<tr>
<td>CF</td>
<td>vnfd</td>
<td><code>interfaces mgmt</code></td>
<td><code><interfaces></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><---SNIP---></code></td>
<td><code><---SNIP---></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>enable-ha-vip <vip_address></code></td>
<td><code><enable-ha-vip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>floating-ip true</code></td>
<td><code><vip_address></enable-ha-vip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>floating-ip-address</code></td>
<td><code><floating-ip>true </floating-ip></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><floating_address></code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><floating_address></code></td>
<td><code><floating-ip-address></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code><---SNIP---></code></td>
<td><code></interfaces></code></td>
</tr>
</tbody>
</table>

Note
This functionality is disabled by default. Set the `floating-ip` and/or `<floating-ip>` parameters to `true` to enable this functionality.

Note
Prior to assigning floating and virtual IP addresses, make sure that they are not already allocated through OpenStack. If the addresses are already allocated, then they must be freed up for use or you must assign a new IP address that is available in the VIM.
Example ultram_cfg.yaml File

The ultram_cfg.yaml file is used to configure and enable syslog proxy and event aggregation functionality within the Ultra M Manager function. Refer to Event and Syslog Management Within the Ultra M Solution, on page 61 for details.

This is only a sample configuration file provided solely for your reference. You must create and modify your own configuration file according to the specific needs of your deployment.

```yaml
# Health check polling frequency 15min
# In order to ensure optimal performance, it is strongly recommended that
# you do not change the default polling-interval of 15 minutes (900 seconds).
polling-interval: 900

# under-cloud info, this is used to authenticate
# OSPD and mostly used to build inventory list (compute, controllers, OSDs)
under-cloud:
  environment:
    OS_AUTH_URL: http://192.200.0.1:5000/v2.0
    OS_USERNAME: admin
    OS_TENANT_NAME: admin
    OS_PASSWORD: *******
    prefix: neutron

# over-cloud info, to authenticate OpenStack Keystone endpoint
over-cloud:
  enabled: true
  environment:
    OS_AUTH_URL: http://172.21.201.217:5000/v2.0
    OS_TENANT_NAME: user1
    OS_USERNAME: user1
    OS_PASSWORD: *******
    OS_ENDPOINT_TYPE: publicURL
    OS_IDENTITY_API_VERSION: 2
    OS_REGION_NAME: regionOne

modules:
  - ceph
  - cinder
  - nova
  - pcs
  - rabbitmqctl
  - neutron
  - ntpdc
  - systemctl

core-services:
```
- aodh
- ceilometer
- cinder
- glance
- gnocchi
- heat
- nova
- swift
- ntpd
- mongod
- memcached
- neutron-dhcp-agent
- neutron-l3-agent
- neutron-metadata-agent
- neutron-openvswitch-agent
- neutron-server
- httpd
compute-services:
 - ceph-mon.target
 - ceph-radosgw.target
 - ceph.target
 - openvswitch.service
 - neutron-sriov-nic-agent
 - neutron-openvswitch-agent
 - ntpd
 - nova-compute
 - libvirtd
osd-compute-services:
 - ceph-mon.target
 - ceph-radosgw.target
 - ceph.target
 - openvswitch.service
 - neutron-sriov-nic-agent
 - neutron-openvswitch-agent
 - ntpd
 - nova-compute
 - libvirtd

SSH Key to be used to login without username/password
auth-key: /home/stack/.ssh/id_rsa

Number of OpenStack controller nodes
controller_count: 3

Number of osd-compute nodes
osd_compute_count: 3

Number of OSD disks per osd-compute node
osd_disk_count_per_osd_compute: 4

Mark "ceph df" down if raw usage exceeds this setting
ceph_df_use_threshold: 80.0

Max NTP skew limit in milliseconds
ntp_skew_limit: 100

snmp:
 severity: 5
 nms-server:
 10.105.248.149:
 community: public
 10.105.248.149:
 user:
 name: test
 auth-protocol: md5
 auth-key: admin12345
 priv-protocol: cbc-des
 priv-key: admin12345
 agent:
 community: public

ucs-cluster:
 enabled: true
user: admin
password: *******
data-dir: '/opt/cisco/ultram_health.data/ucs'
log-file: '/var/log/cisco/ultram_ucs.log'

uas-cluster:
 enabled: false
 log-file: '/var/log/cisco/ultram_uas.log'
 data-dir: '/opt/cisco/usp/ultram_health.data/uas'
 autovnf:
 172.21.201.53:
 autovnf:
 login:
 user: ubuntu
 password: *******
 netconf:
 user: admin
 password: admin
 em:
 login:
 user: ubuntu
 password: *******
 netconf:
 user: admin
 password: *******
 esc:
 login:
 user: admin
 password: *******
 172.21.201.54:
 autovnf:
 login:
 user: ubuntu
 password: *******
 netconf:
 user: admin
 password: *******
 em:
 login:
 user: ubuntu
 password: *******
 netconf:
 user: admin
 password: *******
 esc:
 login:
 user: admin
 password: *******

rsyslog configuration, here proxy-rsyslog is IP address of Ultra M Manager Node (NOT remote rsyslog):
rsyslog:
 level: 4,3,2,1,0
 proxy-rsyslog: 192.200.0.251
Ultra M MIB

Not all aspects of this MIB are supported in this release. Refer to Event and Syslog Management Within the Ultra M Solution, on page 61 for information on the capabilities supported in this release.

-- CISCO-ULTRAM-MIB.my
-- Copyright (c) 2017 by Cisco Systems Inc.
-- All rights reserved.
--
-- CISCO-ULTRAM-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY,
 OBJECT-TYPE,
 NOTIFICATION-TYPE,
 Unsigned32
 FROM SNMPv2-SMI
 MODULE-COMPLIANCE,
 NOTIFICATION-GROUP,
 OBJECT-GROUP
 FROM SNMPv2-CONF
 TEXTUAL-CONVENTION
 DateAndTime
 FROM SNMPv2-TC
ciscoMgmt
 FROM CISCO-SMI;
ciscoUltramMIB MODULE-IDENTITY
LAST-UPDATED "201707060000Z"
ORGANIZATION "Cisco Systems Inc."
CONTACT-INFO
 "Cisco Systems
 Customer Service
 Postal: 170 W Tasman Drive
 San Jose CA 95134
 USA
 Tel: +1 800 553-NETS"
DESCRIPTION
 "The MIB module to management of Cisco Ultra Services Platform (USP) also called Ultra-M Network Function Virtualization (NFV) platform. The Ultra-M platform is Cisco validated turnkey solution based on ETSI(European Telecommunications Standards Institute) NFV architecture.
 It comprises of following architectural domains:
 1. Management and Orchestration (MANO) these components enable infrastructure virtualization and life cycle management of Cisco Ultra Virtual Network Functions (VNFs).
 2. NFV Infrastructure (NFVI) set of physical resources to provide NFV infrastructure for example servers switch chassis
and so on.
3. Virtualized Infrastructure Manager (VIM)
4. One or more Ultra VNFs.
Ultra-M platform provides a single point of management (including SNMP APIs Web Console and CLI/Telnet Console) for the resources across these domains within NFV PoD (Point of Delivery).
This is also called Ultra-M manager throughout the context of this MIB.

REVISION "201707050000Z"
DESCRIPTION
"- cultramFaultDomain changed to read-only in compliance.
- Added a new fault code serviceFailure under 'CultramFaultCode'.
- Added a new notification cultramFaultClearNotif.
- Added new notification group ciscoUltramMIBNotifyGroupExt.
- Added new compliance group ciscoUltramMIBModuleComplianceRev01 which deprecates ciscoUltramMIBModuleCompliance."
ciscoUltramMIBObjects OBJECT IDENTIFIER
::= { ciscoUltramMIB 1 }
ciscoUltramMIBConform OBJECT IDENTIFIER
::= { ciscoUltramMIB 2 }
-- Conformance Information Definition

ciscoUltramMIBCompliances OBJECT IDENTIFIER
::= { ciscoUltramMIBConform 1 }
ciscoUltramMIBGroups OBJECT IDENTIFIER
::= { ciscoUltramMIBConform 2 }
ciscoUltramMIBModuleCompliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION "The compliance statement for entities that support the Cisco Ultra-M Fault Managed Objects"
MODULE -- this module
MANDATORY-GROUPS {
ciscoUltramMIBMainObjectGroup
ciscoUltramMIBNotifyGroup
}
::= { ciscoUltramMIBCompliances 1 }
ciscoUltramMIBModuleComplianceRev01 MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for entities that support the Cisco Ultra-M Fault Managed Objects."
MODULE -- this module
MANDATORY-GROUPS {
ciscoUltramMIBMainObjectGroup
ciscoUltramMIBNotifyGroup
ciscoUltramMIBNotifyGroupExt
}
OBJECT cultramFaultDomain
MIN-ACCESS read-only
DESCRIPTION "cultramFaultDomain is read-only."
::= { ciscoUltramMIBCompliances 2 }
ciscoUltramMIBMainObjectGroup OBJECT-GROUP
OBJECTS {
cultramNFVIdenity
cultramFaultDomain
cultramFaultSource
cultramFaultCreationTime
cultramFaultSeverity
cultramFaultCode
cultramFaultDescription
}
STATUS current
DESCRIPTION "A collection of objects providing Ultra-M fault information."
::= { ciscoUltramMIBGroups 1 }
ciscoUltramMIBNotifyGroup NOTIFICATION-GROUP
NOTIFICATIONS { cultramFaultActiveNotif }
STATUS current
DESCRIPTION "The set of Ultra-M notifications defined by this MIB"
::= { ciscoUltramMIBGroups 2 }
ciscoUltramMIBNotifyGroupExt NOTIFICATION-GROUP
NOTIFICATIONS { cultramFaultClearNotif }
STATUS current
DESCRIPTION "The set of Ultra-M notifications defined by this MIB"
::= { ciscoUltramMIBGroups 3 }
cultramFaultTable OBJECT-TYPE
SYNTAX SEQUENCE OF CUltramFaultEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "A table of Ultra-M faults. This table contains active faults."
::= { ciscoUltramMIBObjects 1 }
cultramFaultEntry OBJECT-TYPE
SYNTAX CUltramFaultEntry
MAX-ACCESS not-accessible
Ultra M MIB

STATUS current
DESCRIPTION
"An entry in the Ultra-M fault table."

INDEX
{ cultramFaultIndex }

::= { cultramFaultTable 1 }

CUltramFaultEntry ::= SEQUENCE {
 cultramFaultIndex Signed32
 cultramNFVIdenity OCTET STRING
 cultramFaultDomain CFaultDomain
 cultramFaultSource OCTET STRING
 cultramFaultCreationTime DateAndTime
 cultramFaultSeverity CFaultSeverity
 cultramFaultCode CFaultCode
 cultramFaultDescription OCTET STRING }

cultramFaultIndex OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object uniquely identifies a specific instance of a Ultra-M fault. For example if two separate computes have a service level failure then each compute will have a fault instance with a unique index."

 ::= { cultramFaultEntry 1 }

cultramNFVIdenity OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..512))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object uniquely identifies the Ultra-M PoD on which this fault is occurring. For example this identity can include host-name as well management IP where manager node is running 'Ultra-M-San-Francisco/172.10.185.100'."

 ::= { cultramFaultEntry 2 }

cultramFaultDomain OBJECT-TYPE
SYNTAX CFaultDomain
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A unique Fault Domain that has fault."

 ::= { cultramFaultEntry 3 }

cultramFaultSource OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..512))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object uniquely identifies the resource with the fault domain where this fault is occurring. For example this can include host-name as well management IP of the resource 'UCS-C240-Server-1/192.100.0.1'."

 ::= { cultramFaultEntry 4 }

cultramFaultCreationTime OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The date and time when the fault was occured."

 ::= { cultramFaultEntry 5 }

cultramFaultSeverity OBJECT-TYPE
SYNTAX CFaultSeverity
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A code identifying the perceived severity of the fault."

 ::= { cultramFaultEntry 6 }

cultramFaultCode OBJECT-TYPE
SYNTAX CFaultCode
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A code uniquely identifying the fault class."
::= { cultramFaultEntry 7 }
cultramFaultDescription OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..2048))
MAX-ACCESS read-only
STATUS current
DESCRIPTION "A human-readable message providing details about the fault."
::= { cultramFaultEntry 8 }
cultramFaultActiveNotif NOTIFICATION-TYPE
OBJECTS { cultramNFVIdentity cultramFaultDomain cultramFaultSource cultramFaultCreationTime cultramFaultSeverity cultramFaultCode cultramFaultDescription }
STATUS current
DESCRIPTION "This notification is generated by a Ultra-M manager whenever a fault is active."
::= { ciscoUltramMIBNotifs 1 }
cultramFaultClearNotif NOTIFICATION-TYPE
OBJECTS { cultramNFVIdentity cultramFaultDomain cultramFaultSource cultramFaultCreationTime cultramFaultSeverity cultramFaultCode cultramFaultDescription }
STATUS current
DESCRIPTION "This notification is generated by a Ultra-M manager whenever a fault is cleared."
::= { ciscoUltramMIBNotifs 2 }
END
Ultra M Component Event Severity and Fault Code Mappings

Events are assigned to one of the following severities (refer to CFaultSeverity in Ultra M MIB, on page 93):

- emergency(1), -- System level FAULT impacting multiple VNFs/Services
- critical(2), -- Critical Fault specific to VNF/Service
- major(3), -- component level failure within VNF/service.
- alert(4), -- warning condition for a service/VNF, may eventually impact service.
- informational(5) -- informational only, does not impact service

Events are also mapped to one of the following fault codes (refer to cFaultCode in the Ultra M MIB):

- other(1), -- Other events
- networkConnectivity(2), -- Network Connectivity -- Failure Events.
- resourceThreshold(4), -- Resource Threshold -- crossing alarms
- hardwareFailure(5), -- Hardware Failure Events
- securityViolation(6), -- Security Alerts
- configuration(7), -- Config Error Events serviceFailure(8) -- Process/Service failures

The Ultra M Manager Node serves as an aggregator for events received from the different Ultra M components. These severities and fault codes are mapped to those defined for the specific components. The information in this section provides severity mapping information for the following:

- OpenStack Events, page 100
- UCS Server Events, page 104
- UAS Events, page 105
- ESC VM Events, page 105
OpenStack Events

Component: Ceph

Table 33: Component: Ceph

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPH Status is not healthy</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>One or more CEPH monitors are down</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Disk usage exceeds threshold</td>
<td>Critical</td>
<td>resourceThreshold</td>
</tr>
<tr>
<td>One or more OSD nodes are down</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>One or more OSD disks are failed</td>
<td>Critical</td>
<td>resourceThreshold</td>
</tr>
<tr>
<td>One of the CEPH monitor is not healthy.</td>
<td>Major</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>One or more CEPH monitor restarted.</td>
<td>Major</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>OSD disk weights not even across the board.</td>
<td></td>
<td>resourceThreshold</td>
</tr>
</tbody>
</table>

Component: Cinder

Table 34: Component: Cinder

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinder Service is down</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>
Component: Neutron

Table 35: Component: Neutron

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of Neutron Agent Down</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>

Component: Nova

Table 36: Component: Nova

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute service down</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>

Component: NTP

Table 37: Component: NTP

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP skew limit exceeds configured threshold.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>

Component: PCS

Table 38: Component: PCS

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more controller nodes are down</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Ha-proxy is down on one of the node</td>
<td>Major</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Galera service is down on one of the node.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>
Component: Rabbitmqctl

Table 39: Component: Rabbitmqctl

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbitmq is down.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Radis Master is down.</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>One or more Radis Slaves are down.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>corosync/pacemaker/pcs - not all daemons active</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Cluster status changed.</td>
<td>Major</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Current DC not found.</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Not all PCDs are online.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>

Component: Services

Table 40: Component: Services

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service is disabled.</td>
<td>Critical</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Service is down.</td>
<td>Emergency</td>
<td>serviceFailure</td>
</tr>
<tr>
<td>Service Restarted.</td>
<td>Major</td>
<td>serviceFailure</td>
</tr>
</tbody>
</table>

The following OpenStack services are monitored:

- Controller Nodes:
 - httpd.service
 - memcached
* mongod.service
* neutron-dhcp-agent.service
* neutron-l3-agent.service
* neutron-metadata-agent.service
* neutron-openswitch-agent.service
* neutron-server.service
* ntpd.service
* openstack-aodh-evaluator.service
* openstack-aodh-listener.service
* openstack-aodh-notifier.service
* openstack-ceilometer-central.service
* openstack-ceilometer-collector.service
* openstack-ceilometer-notification.service
* openstack-cinder-api.service
* openstack-cinder-scheduler.service
* openstack-glance-api.service
* openstack-glance-registry.service
* openstack-gnocchi-metricd.service
* openstack-gnocchi-statsd.service
* openstack-heat-api-cfn.service
* openstack-heat-api-cloudwatch.service
* openstack-heat-api.service
* openstack-heat-engine.service
* openstack-nova-api.service
* openstack-nova-conductor.service
* openstack-nova-consoleauth.service
* openstack-nova-novncproxy.service
* openstack-nova-scheduler.service
* openstack-swift-account-auditor.service
* openstack-swift-account-reaper.service
* openstack-swift-account-replicator.service
* openstack-swift-account.service
* openstack-swift-container-auditor.service
- openstack-swift-container-replicator.service
- openstack-swift-container-updater.service
- openstack-swift-container.service
- openstack-swift-object-auditor.service
- openstack-swift-object-replicator.service
- openstack-swift-object-updater.service
- openstack-swift-object.service
- openstack-swift-proxy.service

• Compute Nodes:
 - ceph-mon.target
 - ceph-radosgw.target
 - ceph.target
 - libvirtd.service
 - neutron-sriov-nic-agent.service
 - neutron-openvswitch-agent.service
 - ntpd.service
 - openstack-nova-compute.service
 - openvswitch.service

• OSD Compute Nodes:
 - ceph-mon.target
 - ceph-radosgw.target
 - ceph.target
 - libvirtd.service
 - neutron-sriov-nic-agent.service
 - neutron-openvswitch-agent.service
 - ntpd.service
 - openstack-nova-compute.service
 - openvswitch.service

UCS Server Events

The following table maps the UCS severities to those within the Ultra M MIB.

Table 41: UCS Server Severities

<table>
<thead>
<tr>
<th>UCS Server Severity</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>Critical</td>
<td>hardwareFailure</td>
</tr>
<tr>
<td>Info</td>
<td>Informational</td>
<td>hardwareFailure</td>
</tr>
<tr>
<td>Major</td>
<td>Major</td>
<td>hardwareFailure</td>
</tr>
<tr>
<td>Warning</td>
<td>Alert</td>
<td>hardwareFailure</td>
</tr>
<tr>
<td>Alert</td>
<td>Alert</td>
<td>hardwareFailure</td>
</tr>
<tr>
<td>Cleared</td>
<td>Informational</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

UAS Events

Table 42: UAS Events

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS Service Failure</td>
<td>Critical</td>
<td>serviceFailure*</td>
</tr>
<tr>
<td>UAS Service Recovered</td>
<td>Informational</td>
<td>serviceFailure*</td>
</tr>
</tbody>
</table>

serviceFailure is used except where the Ultra M Health Monitor is unable to connect to any of the modules. In this case, the fault code is set to *networkConnectivity*.

ESC VM Events

By default, the Ultra M Manager continuously monitors and process VNF VM event notifications from ESC as reported through NETCONF.

Table 43: ESC VM Event Severities

<table>
<thead>
<tr>
<th>ESC Event</th>
<th>Ultra M Severity</th>
<th>Fault Code</th>
<th>VNFR State</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM_DEPLOYED</td>
<td>Major</td>
<td>Service Failure</td>
<td>deployed</td>
</tr>
<tr>
<td>VM_ALIVE</td>
<td>Info</td>
<td>Other</td>
<td>alive</td>
</tr>
<tr>
<td>ESC Event</td>
<td>Ultra M Severity</td>
<td>Fault Code</td>
<td>VNFR State</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>VM_UNDEPLOYED</td>
<td>Critical</td>
<td>Service Failure</td>
<td>offline</td>
</tr>
<tr>
<td>VM_REBOOTED</td>
<td>Major</td>
<td>Service Failure</td>
<td>rebooting</td>
</tr>
<tr>
<td>VM_RECOVERY_REBOOT</td>
<td>Major</td>
<td>Service Failure</td>
<td>If the event completion status is successful, then it is rebooting. If the event completion status is failure, then it is an error.</td>
</tr>
<tr>
<td>VM_RECOVERY_UNDEPLOYED</td>
<td>Critical</td>
<td>Service Failure</td>
<td>If the event completion status is successful, then it is offline. If the event completion status is failure, then it is an error.</td>
</tr>
<tr>
<td>VM_RECOVERY_DEPLOYED</td>
<td>Major</td>
<td>Service Failure</td>
<td>If the event completion status is successful, then it is rebooting. If the event completion status is failure, then it is an error.</td>
</tr>
<tr>
<td>VM_RECOVERY_COMPLETE</td>
<td>Info</td>
<td>Other</td>
<td>If the event completion status is successful, then it is alive. If the event completion status is failure, then it is an error.</td>
</tr>
<tr>
<td>VM_STOPPED</td>
<td>Alert</td>
<td>Service Failure</td>
<td>stop_requested</td>
</tr>
</tbody>
</table>
Ultra M Troubleshooting

- Ultra M Component Reference Documentation, page 107
- Collecting Support Information, page 109
- About Ultra M Manager Log Files, page 113

Ultra M Component Reference Documentation

The following sections provide links to troubleshooting information for the various components that comprise the Ultra M solution.

UCS C-Series Server

- Obtaining Showtech Support to TAC
- Display of system Event log events
- Display of CIMC Log
- Run Debug Firmware Utility
- Run Diagnostics CLI
- Common Troubleshooting Scenarios
- Troubleshooting Disk and Raid issues
- DIMM Memory Issues
- Troubleshooting Server and Memory Issues
- Troubleshooting Communication Issues

Nexus 9000 Series Switch

- Troubleshooting Installations, Upgrades, and Reboots
• Troubleshooting Licensing Issues
• Troubleshooting Ports
• Troubleshooting vPCs
• Troubleshooting VLANs
• Troubleshooting STP
• Troubleshooting Routing
• Troubleshooting Memory
• Troubleshooting Packet Flow Issues
• Troubleshooting PowerOn Auto Provisioning
• Troubleshooting the Python API
• Troubleshooting NX-API
• Troubleshooting Service Failures
• Before Contacting Technical Support
• Troubleshooting Tools and Methodology

Catalyst 2960 Switch

• Diagnosing Problems
• Switch POST Results
• Switch LEDs
• Switch Connections
• Bad or Damaged Cable
• Ethernet and Fiber-Optic Cables
• Link Status
• 10/100/1000 Port Connections
• 10/100/1000 PoE+ Port Connections
• SFP and SFP+ Module
• Interface Settings
• Ping End Device
• Spanning Tree Loops
• Switch Performance
• Speed, Duplex, and Autonegotiation
• Autonegotiation and Network Interface Cards
• Cabling Distance
• Clearing the Switch IP Address and Configuration
• Finding the Serial Number
• Replacing a Failed Stack Member

Red Hat

• Troubleshooting Director issue
• Backup and Restore Director Undercloud

OpenStack

• Red Hat Openstack Troubleshooting commands and scenarios

UAS

Refer to the USP Deployment Automation Guide.

UGP

Refer to the Ultra Gateway Platform System Administration Guide.

Collecting Support Information

From UCS:

• Collect support information:

 chassis show tech support
 show tech support (if applicable)

• Check which UCS MIBS are being polled (if applicable). Refer to https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/mib/c-series/b_UCS_Standalone_C-Series_MIBRef/b_UCS_Standalone_C-Series_MIBRef_chapter_0100.html

From Host/Server/Compute/Controller/Linux:

• Identify if Passthrough/SR-IOV is enabled.
• Run sosreport:
This functionality is enabled by default on Red Hat, but not on Ubuntu. It is recommended that you enable "sysstat" and "sosreport" on Ubuntu (run `apt-get install sysstat` and `apt-get install sosreport`). It is also recommended that you install sysstat on Red Hat (run `yum install sysstat`).

- Get and run the `os_ssd_pac` script from Cisco:
 - Compute (all):
    ```
    ./os_ssd_pac.sh -a
    ./os_ssd_pac.sh -k -s
    ```
 - Controller (all):
    ```
    ./os_ssd_pac.sh -f
    ./os_ssd_pac.sh -c -s
    ```

 * For initial collection, it is always recommended to include the `-s` option (sosreport). Run `./os_ssd_pac.sh -h` for more information.

 * For monitoring purposes, from `crontab` use option: `-m` (for example run every 5 or 10 minutes)

From Switches

From all switches connected to the Host/Servers. (This also includes other switches which have same vlans terminated on the Host/Servers.)

- `show tech-support`
- `syslogs`
- `snmp traps`

* It is recommended that mac-move notifications are enabled on all switches in network by running `mac address-table notification mac-move`.
From ESC (Active and Standby)


```
/opt/cisco/esc/esc-scripts/health.sh
/usr/bin/collect_esc_log.sh
/os_ssd_pac -a
```

From UAS

- Monitor ConFD:

  ```
  confd -status
  confd --debug-dump /tmp/confd_debug-dump
  confd --printlog /tmp/confd_debug-dump
  ```

 Note Once the file `/tmp/confd_debug-dump` is collected, it can be removed (`rm /tmp/confd_debug-dump`).

- Monitor UAS Components:

  ```
  source /opt/cisco/usp/uas/confd-6.1/confdrc
  confd_cli -u admin -C
  show uas
  show uas ha-vip
  show uas state
  show confd-state
  show running-config
  show transactions date-and-time
  show logs | display xml
  show errors display level 64
  show notification stream uas_notify last 1000
  show autovnf-oper:vnfm
  show autovnf-oper:vnf-em
  show autovnf-oper:vdu-catalog
  show autovnf-oper:transactions
  show autovnf-oper:network-catalog
  show autovnf-oper:errors
  show usp
  show confd-state internal callpoints
  show confd-state webui listen
  show netconf-state
  ```
• Monitor Zookeeper:

/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /config/control-function
/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /config/element-manager
/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /config/session-function
/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /
/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /stat
/opt/cisco/usp/packages/zookeeper/current/bin/zkCli.sh ls /log

• Collect Zookeeper data:

cd /tmp

tar zcfv zookeeper_data.tgz /var/lib/zookeeper/data/version-2/

ls -las /tmp/zookeeper_data.tgz

• Get support details

./os_ssd_pac -a

From UEM (Active and Standby)

• Collect logs

/opt/cisco/em-scripts/collect-em-logs.sh

• Monitor NCS:

ncs -status
ncs --debug-dump /tmp/ncs_debug-dump
ncs --printlog /tmp/ncs_debug-dump

Note Once the file /tmp/ncs_debug-dump is collected, it can be removed (rm /tmp/ncs_debug-dump).

• Collect support details:

./os_ssd_pac -a

From UGP (Through StarOS)

• Collect the multiple outputs of the show support details.

Note It is recommended to collect at least two samples, 60 minutes apart if possible.

• Collect raw bulkstats before and after events.

• Collect syslogs and snmp traps before and after events.
• Collect PCAP or sniffer traces of all relevant interfaces if possible.

Familiarize yourself with how running SPAN/RSPAN on Nexus and Catalyst switches. This is important for resolving Passthrough/SR-IOV issues.

• Collect console outputs from all nodes.

• Export CDRs and EDRs.

• Collect the outputs of monitor subscriber next-call or monitor protocol depending on the activity.

• Refer to https://supportforums.cisco.com/sites/default/files/cisco_asr5000_asr5500_troubleshooting_guide.pdf for more information.

About Ultra M Manager Log Files

All Ultra M Manager log files are created under "/var/log/cisco/ultram-manager".

cd /var/log/cisco/ultram-manager
ls -alrt
Example output:

```
total 116
-rw-r--r--. 1 root root 0 Sep 12 15:15 ultram_health_snmp.log
-rw-r--r--. 1 root root 448 Sep 12 15:16 ultram_health_uas.report
-rw-r--r--. 1 root root 188 Sep 12 15:16 ultram_health_uas.error
-rw-r--r--. 1 root root 580 Sep 12 15:16 ultram_health_uas.log
-rw-r--r--. 1 root root 24093 Sep 12 15:16 ultram_health_ucs.log
-rw-r--r--. 1 root root 8302 Sep 12 15:16 ultram_health_os.error
-rw-r--r--. 1 root root 51077 Sep 12 15:16 ultram_health_os.report
-rw-r--r--. 1 root root 6677 Sep 12 15:16 ultram_health_os.log
```

NOTES:

• The files are named according to the following conventions:
 - ultram_health_os: Contain information related to OpenStack
 - ultram_health_ucs: Contain information related to UCS
 - ultram_health_uas: Contain information related to UAS

• Files with the "*.log" extension contain debug/error outputs from different components. These files get added to over time and contain useful data for debugging in case of issues.

• Files with the "*.report" extension contain the current report. These files get created on every tun.

• Files with the "*.error" extension contain actual data received from the nodes as part of health monitoring. These are the events that causes the Ultra M health monitor to send traps out. These files are updated every time a component generates an event.
About Ultra M Manager Log Files
Using the UCS Utilities Within the Ultra M Manager

This appendix describes the UCS facilities within the Ultra M Manager.

- Overview, page 115
- Perform Pre-Upgrade Preparation, page 116
- Shutdown the ESC VMs, page 120
- Upgrade the Compute Node Server Software, page 120
- Upgrade the OSD Compute Node Server Software, page 122
- Restart the UAS and ESC (VNFM) VMs, page 125
- Upgrade the Controller Node Server Software, page 125
- Upgrade Firmware on UCS Bare Metal, page 128
- Upgrade Firmware on the OSP-D Server/Ultra M Manager Node, page 130
- Controlling UCS BIOS Parameters Using ultram_ucs_utils.py Script, page 131

Overview

Cisco UCS server BIOS, MLOM, and CIMC software updates may be made available from time to time. Utilities have been added to the Ultra M Manager software to simplify the process of upgrading the UCS server software (firmware) within the Ultra M solution.

These utilities are available through a script called ultram_ucs_utils.py located in the /opt/cisco/usp/ultram-health directory. Refer to ultram_ucs_utils.py Help, on page 135 for more information on this script.

NOTES:

- This functionality is currently supported only with Ultra M deployments based on OSP 10 and that leverage the Hyper-Converged architecture.
You should only upgrade your UCS server software to versions that have been validated for use within the Ultra M solution.

All UCS servers within the Ultra M solution stack should be upgraded to the same firmware versions.

Though it is highly recommended that all server upgrades be performed during a single maintenance window, it is possible to perform the upgrade across multiple maintenance windows based on Node type (e.g. Compute, OSD Compute, and Controller).

There are two upgrade scenarios:

- **Upgrading servers in an existing deployment.** In the scenario, the servers are already in use hosting the Ultra M solution stack. This upgrade procedure is designed to maintain the integrity of the stack.
 * Compute Nodes are upgraded in parallel.
 * OSD Compute Nodes are upgraded sequentially.
 * Controller Nodes are upgraded sequentially.

- **Upgrading bare metal servers.** In this scenario, the bare metal servers have not yet been deployed within the Ultra M solution stack. This upgrade procedure leverages the parallel upgrade capability within Ultra M Manager UCS utilities to upgrade the servers in parallel.

To use Ultra M Manager UCS utilities to upgrade software for UCS servers in an existing deployment:

1. Perform Pre-Upgrade Preparation.
2. Shutdown the ESC VMs, on page 120.
3. Upgrade the Compute Node Server Software.
4. Upgrade the OSD Compute Node Server Software, on page 122.
5. Restart the UAS and ESC (VNFM) VMs, on page 125.
6. Upgrade the Controller Node Server Software, on page 125.
7. Upgrade Firmware on the OSP-D Server/Ultra M Manager Node, on page 130.

To use Ultra M Manager UCS utilities to upgrade software for bare metal UCS servers:

1. Perform Pre-Upgrade Preparation.
2. Upgrade Firmware on UCS Bare Metal, on page 128.
3. Upgrade Firmware on the OSP-D Server/Ultra M Manager Node, on page 130.

Perform Pre-Upgrade Preparation

Prior to performing the actual UCS server software upgrade, you must perform the steps in this section to prepare your environment for the upgrade.

NOTES:

- These instructions assume that all hardware is fully installed, cabled, and operational.
- These instructions assume that the VIM Orchestrator and VIM have been successfully deployed.
• UCS server software is distributed separately from the USP software ISO.

To prepare your environment prior to upgrading the UCS server software:

1. Log on to the Ultra M Manager Node.
2. Create a directory called `/var/www/html/firmwares` to contain the upgrade files.
   ```bash
   mkdir -p /var/www/html/firmwares
   ```
3. Download the UCS software ISO to the directory you just created.
   ```bash
   UCS software is available for download from https://software.cisco.com/download/
   type.html?mdfid=286281356&flowid=71443
   ```
4. Extract the `bios.cap` file.
   ```bash
   mkdir /tmp/UCSISO
   sudo mount -t iso9660 -o loop ucs-c240m4-huu-<version>.iso UCSISO/
   mount: /dev/loop2 is write-protected, mounting read-only
   cd UCSISO/
   ls
   EFI GETFW isolinux Release-Notes-DN2.txt squashfs_img.md5
   tools.squashfs.enc huu-release.xml LiveOS squashfs_img.enc.md5 TOC_DELNORTE2.xml
   VIC_FIRMWARE
   cd GETFW/
   ls
getfw readme.txt
   mkdir -p /tmp/HUU
   sudo ./getfw-s /tmp/ucs-c240m4-huu-<version>.iso -d /tmp/HUU
   Nothing was selected hence getting only CIMC and BIOS FW/s available at '/tmp/HUU/ucs-c240m4-huu-<version>'
   cd /tmp/HUU/ucs-c240m4-huu-<version>/bios/
   ls
   bios.cap
   ```
5. Copy the `bios.cap` and `huu.iso` to the `/var/www/html/firmwares/` directory.
   ```bash
   sudo cp bios.cap /var/www/html/firmwares/
   ls -ltr /var/www/html/firmwares/
   ```
   ```bash
   total 692228
   -rw-r--r--. 1 root root 692060160 Sep 28 22:43 ucs-c240m4-huu-<version>.iso
   -rwxr-xr-x. 1 root root 16779416 Sep 28 23:55 bios.cap
   ```
6. Optional. If it is not already installed, install the Ultra M Manager using the information and instructions in Install the Ultra M Manager RPM, on page 76.

7. Navigate to the `/opt/cisco/usp/ultram-manager` directory.
   ```bash
   cd /opt/cisco/usp/ultram-manager
   ```
 Once this step is completed, if you are upgrading UCS servers in an existing Ultra M solution stack, proceed to 8, on page 118. If you are upgrading bare metal UCS servers, proceed to 9, on page 118.
8 Optional. If you are upgrading software for UCS servers in an existing Ultra M solution stack, then create UCS server node list configuration files for each node type as shown in the following table.

<table>
<thead>
<tr>
<th>Configuration File Name</th>
<th>File Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>compute.cfg</td>
<td>A list of the CIMC IP addresses for all of the Compute Nodes.</td>
</tr>
<tr>
<td>osd_compute_0.cfg</td>
<td>The CIMC IP address of the primary OSD Compute Node (osd-compute-0).</td>
</tr>
<tr>
<td>osd_compute_1.cfg</td>
<td>The CIMC IP address of the second OSD Compute Node (osd-compute-1).</td>
</tr>
<tr>
<td>osd_compute_2.cfg</td>
<td>The CIMC IP address of the third OSD Compute Node (osd-compute-2).</td>
</tr>
<tr>
<td>controller_0.cfg</td>
<td>The CIMC IP address of the primary Controller Node (controller-0).</td>
</tr>
<tr>
<td>controller_1.cfg</td>
<td>The CIMC IP address of the second Controller Node (controller-1).</td>
</tr>
<tr>
<td>controller_2.cfg</td>
<td>The CIMC IP address of the third Controller Node (controller-2).</td>
</tr>
</tbody>
</table>

Each address must be preceded by a dash and a space ("- "). The following is an example of the required format:

- 192.100.0.9
- 192.100.0.10
- 192.100.0.11
- 192.100.0.12

Note

Separate configuration files are required for each OSD Compute and Controller Node in order to maintain the integrity of the Ultra M solution stack throughout the upgrade process.

9 Optional. If you are upgrading software on bare metal UCS servers prior to deploying them as part of the Ultra M solution stack, then create a configuration file called hosts.cfg containing a list of the CIMC IP addresses for all of the servers to be used within the Ultra M solution stack except the OSP-D server/Ultra M Manager Node.

Note

Each address must be preceded by a dash and a space (-). The following is an example of the required format:

- 192.100.0.9
- 192.100.0.10
- 192.100.0.11
- 192.100.0.12
10 Create a configuration file called `ospd.cfg` containing the CIMC IP address of the OSP-D Server/Ultra M Manager Node.

Note
The address must be preceded by a dash and a space ("- "). The following is an example of the required format:

- 192.300.0.9

11 Validate your configuration files by performing a sample test of the script to pull existing firmware versions from all Controller, OSD Compute, and Compute Nodes in your Ultra M solution deployment.

```
./ultram_ucs_utils.py --cfg "<config_file_name>" --login <cimc_username> <cimc_user_password> --status 'firmwares'
```

The following is an example output for a `hosts.cfg` file with a single Compute Node (192.100.0.7):

```
2017-10-01 10:36:28,189 - Successfully logged out from the server: 192.100.0.7
2017-10-01 10:36:28,190 - ----------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Server IP</th>
<th>Component</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.100.0.7</td>
<td>bios/fw-boot-loader</td>
<td>C240M4.3.0.3c.0.0831170228</td>
</tr>
<tr>
<td></td>
<td>mgmt/fw-boot-loader</td>
<td>3.0(3e).36</td>
</tr>
<tr>
<td></td>
<td>mgmt/fw-system</td>
<td>3.0(3e)</td>
</tr>
<tr>
<td></td>
<td>adaptor-MLOM/mgmt/fw-boot-loader</td>
<td>4.1(2d)</td>
</tr>
<tr>
<td></td>
<td>adaptor-MLOM/mgmt/fw-system</td>
<td>4.1(3a)</td>
</tr>
<tr>
<td></td>
<td>board/storage-SAS-SLOT-HBA/fw-boot-loader</td>
<td>6.30.03.0_4.17.08.00_0xC6130202</td>
</tr>
<tr>
<td></td>
<td>sas-expander-1/mgmt/fw-system</td>
<td>65104100</td>
</tr>
<tr>
<td></td>
<td>Intel(R) I350 1 Gbps Network Controller</td>
<td>0x80000E75-1.810.8</td>
</tr>
<tr>
<td></td>
<td>Intel X520-DA2 10 Gbps 2 port NIC</td>
<td>0x800008A4-1.810.8</td>
</tr>
<tr>
<td></td>
<td>Intel X520-DA2 10 Gbps 2 port NIC</td>
<td>0x800008A4-1.810.8</td>
</tr>
<tr>
<td></td>
<td>UCS VIC 1227 10Gbps 2 port CNA SFP+</td>
<td>4.1(3a)</td>
</tr>
<tr>
<td></td>
<td>Cisco 12G SAS Modular Raid Controller</td>
<td>24.12.1-0203</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------------------------------------</td>
</tr>
</tbody>
</table>
```

If you receive errors when executing the script, ensure that the CIMC username and password are correct. Additionally, verify that all of the IP addresses have been entered properly in the configuration files.

Note
It is highly recommended that you save the data reported in the output for later reference and validation after performing the upgrades.

12 Take backups of the various configuration files, logs, and other relevant information using the information and instructions in the Backing Up Deployment Information appendix in the Ultra Services Platform Deployment Automation Guide.

13 Continue the upgrade process based on your deployment status.

- Proceed to **Shutdown the ESC VMs**, on page 120 if you are upgrading software for servers that were previously deployed as part of the Ultra M solution stack.

- Proceed to **Upgrade Firmware on UCS Bare Metal**, on page 128 if you are upgrading software for servers that have not yet been deployed as part of the Ultra M solution stack.
Shutdown the ESC VMs

The Cisco Elastic Services Controller (ESC) serves as the VNFM in Ultra M solution deployments. ESC is deployed on a redundant pair of VMs. These VMs must be shut down prior to performing software upgrades on the UCS servers in the solution deployment.

To shut down the ESC VMs:

1. Login to OSP-D and make sure to "su - stack" and "source stackrc".
2. Run Nova list to get the UUIDs of the ESC VMs.
 - **Command:**
     ```bash
     nova list --fields name,host,status | grep <vnf_deployment_name>
     ```
 - **Example output:**
     ```
     <--- SNIP --->
     | b470cfeb-20c6-4168-99f2-1592502c2057 | vnf1-ESC-ESC-0 | tb5-ultram-osd-compute-2.localdomain | ACTIVE |
     | 157d7bfb-1152-4138-b85f-79afa96ad97d | vnf1-ESC-ESC-1 | tb5-ultram-osd-compute-1.localdomain | ACTIVE |
     <--- SNIP --->
     ```
3. Stop the standby ESC VM.
 - **Command:**
     ```bash
     nova stop <standby_vm_uuid>
     ```
4. Stop the active ESC VM.
 - **Command:**
     ```bash
     nova stop <active_vm_uuid>
     ```
5. Verify that the VMs have been shut off.
 - **Command:**
     ```bash
     nova list --fields name,host,status | grep <vnf_deployment_name>
     ```
 - **Example output:**
     ```
     <--- SNIP --->
     | b470cfeb-20c6-4168-99f2-1592502c2057 | vnf1-ESC-ESC-0 | tb5-ultram-osd-compute-2.localdomain | SHUTOFF |
     | 157d7bfb-1152-4138-b85f-79afa96ad97d | vnf1-ESC-ESC-1 | tb5-ultram-osd-compute-1.localdomain | SHUTOFF |
     <--- SNIP --->
     ```
6. Proceed to Upgrade the Compute Node Server Software, on page 120.

Upgrade the Compute Node Server Software

NOTES:

- Ensure that the ESC VMs have been shutdown according to the procedure in Shutdown the ESC VMs, on page 120.
- This procedure assumes that you are already logged in to the Ultra M Manager Node.
- This procedure requires the `compute.cfg` file created as part of the procedure detailed in Perform Pre-Upgrade Preparation, on page 116.
It is highly recommended that all Compute Nodes be upgraded using this process during a single maintenance window.

To upgrade the UCS server software on the Compute Nodes:

1 Upgrade the BIOS on the UCS server-based Compute Nodes.

 `/ultram_ucs_utils.py --cfg "compute.cfg" --login <cime_username> <cime_user_password> --upgrade bios --server <ospd_server_cimc_ip_address> --timeout 30 --file /firmwares/bios.cap`

 Example output:

 2017-09-29 09:15:48.753 - Updating BIOS firmware on all the servers
 2017-09-29 09:15:48.753 - Logging on UCS Server: 192.100.0.7
 2017-09-29 09:15:48.753 - No session found, creating one on server: 192.100.0.7
 2017-09-29 09:15:50.194 - Login successful to server: 192.100.0.7
 2017-09-29 09:16:13.269 - 192.100.0.7 => updating | Image Download (5 %), OK
 2017-09-29 09:17:26.669 - 192.100.0.7 => updating | Write Host Flash (75 %), OK
 2017-09-29 09:18:34.524 - 192.100.0.7 => updating | Write Host Flash (75 %), OK
 2017-09-29 09:19:40.892 - 192.100.0.7 => Activating BIOS
 2017-09-29 09:19:55.011 -

 Server IP | Overall | Updated-on | Status
 192.100.0.7 | SUCCESS | NA | Status: success, Progress: Done, OK

 The Compute Nodes are automatically powered down after this process leaving only the CIMC interface available.

2 Upgrade the UCS server using the Host Upgrade Utility (HUU).

 `/ultram_ucs_utils.py --cfg "compute.cfg" --login <cime_username> <cime_user_password> --upgrade huu --server <ospd_server_cimc_ip_address> --file /firmwares/ucs_huu_iso_filename`

 If the HUU script times out before completing the upgrade, the process might still be running on the remote hosts. You can periodically check the upgrade process by entering:

 `/ultram_ucs_utils.py --cfg "compute.cfg" --login <cime_username> <cime_user_password> --status huu-upgrade`

 Example output:

 Server IP | Overall | Updated-on | Status
 192.100.0.7 | SUCCESS | 2017-10-20 07:10:11 | Update Complete CIMC Completed, SasExpDN Completed, I350 Completed, X520 Completed, X520 Completed, 3108AB-8i Completed, UCS VIC 1227 Completed, BIOS Completed,

3 Verify that the BIOS firmware and HUU upgrade was successful by checking the post-upgrade versions.

 `/ultram_ucs_utils.py --cfg "compute.cfg" --login <cime_username> <cime_user_password> --status firmwares`

4 Set the package-c-state-limit CIMC setting.

 `/ultram_ucs_utils.py --mgmtset-bios --bios-param biosVfPackageCStateLimit --bios-values vpPackageCStateLimit=C0/C1 --cfg compute.cfg --login <cime_username> <cime_user_password>`

5 Verify that the package-c-state-limit CIMC setting has been made.

 `/ultram_ucs_utils.py --status bios-settings --cfg compute.cfg --login <cime_username> <cime_user_password>`

 Look for PackageCStateLimit to be set to C0/C1.

6 Modify the Grub configuration on each Compute Node.
a Log into your first compute (compute-0) and update the grub setting with "processor.max_cstate=0 intel_idle.max_cstate=0".

```
sudo grubby --info=/boot/vmlinux-`uname -r`
sudo grubby --update-kernel=/boot/vmlinux-`uname -r` --args="processor.max_cstate=0 intel_idle.max_cstate=0"
```

b Verify that the update was successful.

```
sudo grubby --info=/boot/vmlinux-`uname -r`
```

Look for the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments in the output.

c Reboot the Compute Nodes.

```
sudo reboot
```

d Repeat steps 6.a, on page 122 through 6.c, on page 122 for all other Compute Nodes.

7 Recheck all CIMC and kernel settings.

a Log in to the Ultra M Manager Node.

b Verify CIMC settings

```
./ultram_ucs_utils.py --status bios-settings --cfg compute.cfg --login <cimc_username>
<cimc_user_password>
```

c Verify the processor c-state.

```
for ip in `nova list | grep -i compute | awk '{print $12}' | sed 's/ctlplane=//g'`; do ssh heat-admin@$ip 'sudo cat /sys/module/intel_idle/parameters/max_cstate'; done
done
```

c for ip in `nova list | grep -i compute | awk '{print $12}' | sed 's/ctlplane=//g'`; do ssh heat-admin@$ip 'sudo cpupower idle-info'; done

8 Proceed to Upgrade the OSD Compute Node Server Software.

Note

Other Node types can be upgraded at a later time. If you'll be upgrading them during a later maintenance window, proceed to Restart the UAS and ESC (VNFM) VMs, on page 125.

Upgrade the OSD Compute Node Server Software

NOTES:

- This procedure requires the `osd_compute_0.cfg`, `osd_compute_1.cfg`, and `osd_compute_2.cfg` files created as part of the procedure detailed in Perform Pre-Upgrade Preparation, on page 116.

- It is highly recommended that all OSD Compute Nodes be upgraded using this process during a single maintenance window.

To upgrade the UCS server software on the OSD Compute Nodes:

1 Move the Ceph storage to maintenance mode.

a Log on to the lead Controller Node (controller-0).
b Move the Ceph storage to maintenance mode.

```bash
sudo ceph status
sudo ceph osd set noout
sudo ceph osd set norebalance
sudo ceph status
```

2 Optional. If they've not already been shut down, shut down both ESC VMs using the instructions in Shutdown the ESC VMs, on page 120.

3 Log on to the Ultra M Manager Node.

4 Upgrade the BIOS on the initial UCS server-based OSD Compute Node (osd-compute-1).

```bash
./ultram_ucs_utils.py --cfg "osd_computes_0.cfg" --login <cimc_username> <cimc_user_password>
--upgrade bios --server <ospd_server_cimc_ip_address> --timeout 30 --file /firmwares/bios.cap
```

Example output:

```
2017-09-29 09:15:48,753 - Updating BIOS firmware on all the servers
2017-09-29 09:15:48,753 - Logging on UCS Server: 192.100.0.17
2017-09-29 09:15:48,758 - No session found, creating one on server: 192.100.0.17
2017-09-29 09:15:50,194 - Login successful to server: 192.100.0.17
2017-09-29 09:16:13,269 - 192.100.0.17 => updating | Image Download (5 %), OK
2017-09-29 09:17:26,669 - 192.100.0.17 => updating | Write Host Flash (75 %), OK
2017-09-29 09:18:34,524 - 192.100.0.17 => updating | Write Host Flash (75 %), OK
2017-09-29 09:19:40,892 - 192.100.0.17 => Activating BIOS
2017-09-29 09:19:55,011 -
```

<table>
<thead>
<tr>
<th>Server IP</th>
<th>Overall</th>
<th>Updated-on</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.100.0.17</td>
<td>SUCCESS</td>
<td>NA</td>
<td>Status: success, Progress: Done, OK</td>
</tr>
</tbody>
</table>

Note: The Compute Nodes are automatically powered down after this process leaving only the CIMC interface available.

5 Upgrade the UCS server using the Host Upgrade Utility (HUU).

```bash
./ultram_ucs_utils.py --cfg "osd_computes.cfg" --login <cimc_username> <cimc_user_password>
--upgrade huu --server <ospd_server_cimc_ip_address> --file /firmwares/ucs_huu_iso_filename
```

If the HUU script times out before completing the upgrade, the process might still be running on the remote hosts. You can periodically check the upgrade process by entering:

```bash
./ultram_ucs_utils.py --cfg "osd_computes.cfg" --login <cimc_username> <cimc_user_password>
--status huu-upgrade
```

Example output:

```
---------------------------------------------------------------------
Server IP  | Overall | Updated-on | Status
---------------------------------------------------------------------
192.100.0.17 | SUCCESS | 2017-10-20 07:10:11 | Update Complete CIMC Completed, SasExpDN Completed, I350 Completed, X520 Completed, X520 Completed, 3108AB-8i Completed, UCS VIC 1227 Completed, BIOS Completed,
---------------------------------------------------------------------
```

6 Verify that the BIOS firmware and HUU upgrade was successful by checking the post-upgrade versions.

```bash
./ultram_ucs_utils.py --cfg "osd_computes_0.cfg" --login <cimc_username> <cimc_user_password>
--status firmwares
```

7 Set the package-c-state-limit CIMC setting.

```bash
./ultram_ucs_utils.py --mgmt set-bios --bios-param biosVfPackageCStateLimit --bios-values vpPackageCStateLimit=C0/C1 --cfg osd_computes_0.cfg --login <cimc_username>
```

`<cimc_user_password>`
8 Verify that the package-c-state-limit CIMC setting has been made.

```
./ultram_ucs_utils.py --status bios-settings --cfg osd_compute_0.cfg --login <cimc_username>
<cimc_user_password>
```

Look for **PackageCStateLimit** to be set to C0/C1.

9 Modify the Grub configuration on the primary OSD Compute Node.

a Log on to the OSD Compute (osd-compute-0) and update the grub setting with "processor.max_cstate=0 intel_idle.max_cstate=0".

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
sudo grubby --update-kernel=/boot/vmlinuz-`uname -r` --args="processor.max_cstate=0 intel_idle.max_cstate=0"
```

b Verify that the update was successful.

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
```

Look for the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments in the output.

c Reboot the OSD Compute Nodes.

```
sudo reboot
```

10 Recheck all CIMC and kernel settings.

a Verify the processor c-state.

```
cat /sys/module/intel_idle/parameters/max_cstate
```

cpurw power idle-info

b Login to Ultra M Manager Node.

c Verify CIMC settings.

```
./ultram_ucs_utils.py --status bios-settings --cfg osd_compute_0.cfg --login <cimc_username>
<cimc_user_password>
```

11 Repeat steps 4, on page 123 through 10, on page 124 on the second OSD Compute Node (osd-compute-1).

Note Be sure to use the *osd_compute_1.cfg* file where needed.

12 Repeat steps 4, on page 123 through 10, on page 124 on the third OSD Compute Node (osd-compute-2).

Note Be sure to use the *osd_compute_2.cfg* file where needed.

13 Check the ironic node-list and restore any hosts that went into maintenance mode true state.

a Login to OSP-D and make sure to "su - stack" and "source stackrc".

b Perform the check and any required restorations.

```
ironic node-list
```

```
ironic node-set-maintenance $NODE_ <node_uuid> off
```

14 Move the Ceph storage out of maintenance mode.

a Log on to the lead Controller Node (controller-0).
b Move the Ceph storage to maintenance mode.

```
sudo ceph status
sudo ceph osd unset noout
sudo ceph osd unset norebalance
sudo ceph status
sudo pcs status
```

15 Proceed to Restart the UAS and ESC (VNFM) VMs, on page 125.

Restart the UAS and ESC (VNFM) VMs

Upon performing the UCS server software upgrades, VMs that were previously shutdown must be restarted.

To restart the VMs:

1. Login to OSP-D and make sure to "su - stack" and "source stackrc".
2. Run Nova list to get the UUIDs of the ESC VMs.
3. Start the AutoIT VM.
   ```
   nova start <autoit_vm_uuid>
   ```
4. Start the AutoDeploy VM.
   ```
   nova start <autodeploy_vm_uuid>
   ```
5. Start the standby ESC VM.
   ```
   nova start <standby_vm_uuid>
   ```
6. Start the active ESC VM.
   ```
   nova start <active_vm_uuid>
   ```
7. Verify that the VMs have been restarted and are ACTIVE.
   ```
   nova list --fields name,host,status | grep <vnf_deployment_name>
   ```
 Once ESC is up and running, it triggers the recovery of rest of the VMs (AutoVNF, UEMs, CFs and SFs).
8. Login to each of the VMs and verify that they are operational.

Upgrade the Controller Node Server Software

NOTES:

- This procedure requires the `controller_0.cfg`, `controller_1.cfg`, and `controller_2.cfg` files created as part of the procedure detailed in Perform Pre-Upgrade Preparation, on page 116.
- It is highly recommended that all Controller Nodes be upgraded using this process during a single maintenance window.

To upgrade the UCS server software on the Controller Nodes:

1. Check the Controller Node status and move the Pacemaker Cluster Stack (PCS) to maintenance mode.
 a. Login to the primary Controller Node (controller-0) from the OSP-D Server.
b Check the state of the Controller Node Pacemaker Cluster Stack (PCS).

```
sudo pcs status
```

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolve any issues prior to proceeding to the next step.</td>
</tr>
</tbody>
</table>

c Place the PCS cluster on the Controller Node into standby mode.

```
sudo pcs cluster standby <controller_name>
```

d Recheck the Controller Node status again and make sure that the Controller Node is in standby mode for the PCS cluster.

```
sudo pcs status
```

2 Log on to the Ultra M Manager Node.

3 Upgrade the BIOS on the primary UCS server-based Controller Node (controller-0).

```
./ultram_ucs_utils.py --cfg "controller_0.cfg" --login <cimc_username> <cimc_user_password> --upgrade bios --server <ospd_server_cimc_ip_address> --timeout 30 --file /firmwares/bios.cap
```

Example output:

```
2017-09-29 09:15:48,753 - Updating BIOS firmware on all the servers
2017-09-29 09:15:48,753 - Logging on UCS Server: 192.100.2.7
2017-09-29 09:15:48,758 - No session found, creating one on server: 192.100.2.7
2017-09-29 09:15:50,194 - Login successful to server: 192.100.2.7
2017-09-29 09:16:13,269 - 192.100.2.7 => updating | Image Download (5 %), OK
2017-09-29 09:17:26,669 - 192.100.2.7 => updating | Write Host Flash (75 %), OK
2017-09-29 09:18:34,524 - 192.100.2.7 => updating | Write Host Flash (75 %), OK
2017-09-29 09:19:40,892 - 192.100.2.7 => Activating BIOS
---------------------------------------------------------------------
Server IP | Overall | Updated-on | Status
---------------------------------------------------------------------
192.100.2.7 | SUCCESS | 2017-10-20 07:10:11 | Update Complete CIMC Completed, SasExpDN Completed, i350 Completed, X520 Completed, X520 Completed, 3108AB-8i Completed, UCS VIC 1227 Completed, BIOS Completed, |
---------------------------------------------------------------------
```

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Compute Nodes are automatically powered down after this process leaving only the CIMC interface available.</td>
</tr>
</tbody>
</table>

4 Upgrade the UCS server using the Host Upgrade Utility (HUU).

```
./ultram_ucs_utils.py --cfg "controller_0.cfg" --login <cimc_username> <cimc_user_password> --upgrade huu --server <ospd_server_cimc_ip_address> --file /firmwares/ucs_huu_iso_filename
```

If the HUU script times out before completing the upgrade, the process might still be running on the remote hosts. You can periodically check the upgrade process by entering:

```
./ultram_ucs_utils.py --cfg "controller_0.cfg" --login <cimc_username> <cimc_user_password> --status huu-upgrade
```

Example output:

```
```

<table>
<thead>
<tr>
<th>Server IP</th>
<th>Overall</th>
<th>Updated-on</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.100.2.7</td>
<td>SUCCESS</td>
<td>2017-10-20 07:10:11</td>
<td>Update Complete CIMC Completed, SasExpDN Completed, i350 Completed, X520 Completed, X520 Completed, 3108AB-8i Completed, UCS VIC 1227 Completed, BIOS Completed,</td>
</tr>
</tbody>
</table>

5 Verify that the BIOS firmware and HUU upgrade was successful by checking the post-upgrade versions.

```
./ultram_ucs_utils.py --cfg "controller_0.cfg" --login <cimc_username> <cimc_user_password> --status firmwares
```

6 Set the package-c-state-limit CIMC setting.

```
./ultram_ucs_utils.py --mgmt set-bios --bios-param biosVfPackageCStateLimit --bios-values vpPackageC-StateLimit=C0/C1 --cfg controller_0.cfg --login <cimc_username> <cime_user_password>
```

7 Verify that the package-c-state-limit CIMC setting has been made.

```
./ultram_ucs_utils.py --status bios-settings --cfg controller_0.cfg --login <cime_username>
```

Look for PackageCStateLimit to be set to C0/C1.

8 Modify the Grub configuration on the primary OSD Compute Node.

a Log on to the OSD Compute (osd-compute-0) and update the grub setting with "processor.max_cstate=0 intell_idle.max_cstate=0".

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
sudo grubby --update-kernel=/boot/vmlinuz-`uname -r` --args="processor.max_cstate=0 intell_idle.max_cstate=0"
```

b Verify that the update was successful.

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
```

Look for the "processor.max_cstate=0 intell_idle.max_cstate=0" arguments in the output.

c Reboot the OSD Compute Nodes.

```
sudo reboot
```

9 Recheck all CIMC and kernel settings.

a Verify the processor c-state.

```
cat /sys/module/intel_idle/parameters/max_cstate
cpupower idle-info
```

b Login to Ultra M Manager Node.

c Verify CIMC settings.

```
./ultram_ucs_utils.py --status bios-settings --cfg controller_0.cfg --login <cime_username>
```

10 Check the ironic node-list and restore the Controller Node if it went into maintenance mode true state.

a Login to OSP-D and make sure to "su - stack" and "source stackrc".

b Perform the check and any required restorations.

```
ironic node-list
ironic node-set-maintenance $NODE_<node_uuid> off
```

11 Take the Controller Node out of the PCS standby state.

```
sudo pcs cluster unstandby <controller-0-id>
```

12 Wait 5 to 10 minutes and check the state of the PCS cluster to verify that the Controller Node is ONLINE and all services are in good state.

```
sudo pcs status
```

13 Repeat steps 3, on page 126 through 11, on page 127 on the second Controller Node (controller-1).

Note Be sure to use the controller_1.cfg file where needed.
14 Repeat steps 3, on page 126 through 11, on page 127 on the third Controller Node (controller-2).

Note: Be sure to use the controller_2.cfg file where needed.

15 Proceed to Upgrade Firmware on the OSP-D Server/Ultra M Manager Node, on page 130.

Upgrade Firmware on UCS Bare Metal

NOTES:

• This procedure assumes that the UCS servers receiving the software (firmware) upgrade have not previously been deployed as part of an Ultra M solution stack.

• The instructions in this section pertain to all servers to be used as part of an Ultra M solution stack except the OSP-D Server/Ultra M Manager Node.

• This procedure requires the hosts.cfg file created as part of the procedure detailed in Perform Pre-Upgrade Preparation, on page 116.

To upgrade the software on the UCS servers:

1. Log on to the Ultra M Manager Node.

2. Upgrade the BIOS on the UCS servers.

   ```bash
   ./ultram_ucs_utils.py --cfg "hosts.cfg" --login <cimc_username> <cimc_user_password> --upgrade bios --server <ospd_server_cimc_ip_address> --timeout 30 --file /firmwares/bios.cap
   ```

 Example output:

   ```
   2017-09-29 09:15:48,753 - Updating BIOS firmware on all the servers
   2017-09-29 09:15:48,753 - Logging on UCS Server: 192.100.0.7
   2017-09-29 09:15:48,758 - No session found, creating one on server: 192.100.0.7
   2017-09-29 09:15:50,194 - Login successful to server: 192.100.0.7
   2017-09-29 09:16:13,269 - 192.100.0.7 => updating | Image Download (5 %), OK
   2017-09-29 09:17:26,669 - 192.100.0.7 => updating | Write Host Flash (75 %), OK
   2017-09-29 09:18:34,524 - 192.100.0.7 => updating | Write Host Flash (75 %), OK
   2017-09-29 09:19:40,892 - 192.100.0.7 => Activating BIOS
   2017-09-29 09:19:55,011 -
   ```

 Server IP | Overall | Updated-on | Status

 192.100.0.7 | SUCCESS | NA | Status: success, Progress: Done, OK

Note: The Compute Nodes are automatically powered down after this process leaving only the CIMC interface available.

3. Upgrade the UCS server using the Host Upgrade Utility (HUU).

   ```bash
   ./ultram_ucs_utils.py --cfg "hosts.cfg" --login <cimc_username> <cimc_user_password> --upgrade huu --server <ospd_server_cimc_ip_address> --file /firmwares/<ucs_huu_iso_filename>
   ```

 If the HUU script times out before completing the upgrade, the process might still be running on the remote hosts. You can periodically check the upgrade process by entering:

   ```bash
   ./ultram_ucs_utils.py --cfg "hosts.cfg" --login <cimc_username> <cimc_user_password> --status huu-upgrade
   ```
Example output:

```
<table>
<thead>
<tr>
<th>Server IP</th>
<th>Overall</th>
<th>Updated-on</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.100.0.7</td>
<td>SUCCESS</td>
<td>2017-10-20 07:10:11</td>
<td>Update Complete CIMC Completed, SasExpDN Completed, I350 Completed, X520 Completed, X520 Completed, 3108AB-8i Completed, UCS VIC 1227 Completed, BIOS Completed</td>
</tr>
</tbody>
</table>
```

4 Verify that the BIOS firmware and HUU upgrade was successful by checking the post-upgrade versions.

```
./ultram_ucs_utils.py --cfg "hosts.cfg" --login <cimc_username> <cimc_user_password> --status firmwares
```

5 Set the package-c-state-limit CIMC setting.

```
./ultram_ucs_utils.py --mgmt set-bios --bios-param biosVfPackageCStateLimit --bios-values vpPackageCStateLimit=C0/C1 --cfg hosts.cfg --login <cimc_username> <cimc_user_password>
```

6 Verify that the package-c-state-limit CIMC setting has been made.

```
./ultram_ucs_utils.py --status bios-settings --cfg hosts.cfg --login <cimc_username>
```

Look for `PackageCStateLimit` to be set to `C0/C1`.

7 Recheck all CIMC and BIOS settings.

a Log in to the Ultra M Manager Node.

b Verify CIMC settings.

```
./ultram_ucs_utils.py --status bios-settings --cfg hosts.cfg --login <cimc_username>
```

8 Modify the "ComputeKernelArgs" statement in the `network.yaml` with the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments.

```
v network.yaml
<---SNIP--->
ComputeKernelArgs: "intel_iommu=on default_hugepagesz=1GB hugepagesz=1G hugepages=12 processor.max_cstate=0 intel_idle.max_cstate=0"
```

9 Modify the Grub configuration on all Controller Nodes after the VIM (Overcloud) has been deployed.

a Log into your first Controller Node (controller-0).

```
ssh heat-admin@<controller_address>
```

b Check the grubby settings.

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
```

Example output:

```
index=0
kernel=/boot/vmlinuz-3.10.0-514.21.1.el7.x86_64
args="ro console=ttyS0 console=ttyS0,115200n8 crashkernel=auto rhgb quiet "
root=UUID=fa9e939e-9e3c-4f10-a07c-3f50579e67d7
initrd=/boot/initramfs-3.10.0-514.21.1.el7.x86_64.img
title=Red Hat Enterprise Linux Server (3.10.0-514.21.1.el7.x86_64) 7.3 (Maipo)
c
```

Modify the grub setting with the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments.

```
sudo grubby --update-kernel=/boot/vmlinuz-`uname -r` --args="processor.max_cstate=0 intel_idle.max_cstate=0"
```

c Update the grub setting with the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments.

d Verify that the update was successful.

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
```

Look for the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments in the output.
Example output:

```
index=0
kernel=/boot/vmlinuz-3.10.0-514.21.1.el7.x86_64
args="ro console=tty0 console=ttyS0,115200n8 crashkernel=auto rhgb quiet
processor.max_cstate=0 intel_idle.max_cstate=0"
root=UUID=fa9e939e-9e3c-4f1c-a07c-3f5b6756ad7b
initrd=/boot/initramfs-3.10.0-514.21.1.el7.x86_64.img
title=Red Hat Enterprise Linux Server (3.10.0-514.21.1.el7.x86_64) 7.3 (Maipo)
```

Reboot the Controller Node.
```
sudo reboot
```

Important
Do not proceed with the next step until the Controller Node is up and rejoins the cluster.

Repeat steps 9.a, on page 129 through 9.e, on page 130 for all other Controller Nodes.

10 Proceed to Upgrade Firmware on the OSP-D Server/Ultra M Manager Node, on page 130.

Upgrade Firmware on the OSP-D Server/Ultra M Manager Node

1 Open your web browser.

2 Enter the CIMC address of the OSP-D Server/Ultra M Manager Node in the URL field.

3 Login to the CIMC using the configured user credentials.

4 Click **Launch KVM Console**.

5 Click **Virtual Media**.

6 Click **Add Image** and select the HUU ISO file pertaining to the version you wish to upgrade to.

7 Select the ISO that you have added in the **Mapped** column of the **Client View**. Wait for the selected ISO to appear as a mapped device.

8 Boot the server and press F6 when prompted to open the **Boot Menu**.

9 Select the desired ISO.

10 Select **Cisco vKVM-Mapped vDVD1.22**, and press **Enter**. The server boots from the selected device.

11 Follow the onscreen instructions to update the desired software and reboot the server. Proceed to the next step once the server has rebooted.

12 Log on to the Ultra M Manager Node.

13 Set the package-c-state-limit CIMC setting.
```
./ultram_ucs_utils.py --mgmt set-bios --bios-param biosVfPackageCStateLimit --bios-values
  vpPackageC-StateLimit=C0/C1 --cfg ospd.cfg --login <cimc_username> <cimc_user_password>
```

14 Verify that the package-c-state-limit CIMC setting has been made.
```
./ultram_ucs_utils.py --status bios-settings --cfg controller.cfg --login <cimc_username>
  <cimc_user_password>
```
Look for **PackageCStateLimit** to be set to C0/C1.
15 Update the grub setting with "processor.max_cstate=0 intel_idle.max_cstate=0".

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
sudo grubby --update-kernel=/boot/vmlinuz-`uname -r` --args="processor.max_cstate=0 intel_idle.max_cstate=0"
```

16 Verify that the update was successful.

```
sudo grubby --info=/boot/vmlinuz-`uname -r`
```

Look for the "processor.max_cstate=0 intel_idle.max_cstate=0" arguments in the output.

17 Reboot the server.

```
sudo reboot
```

18 Recheck all CIMC and kernel settings upon reboot.

a Verify CIMC settings

```
./ultram_ucs_utils.py --status bios-settings --cfg ospd.cfg --login <cimc_username> <cimc_user_password>
```

b Verify the processor c-state.

```
cat/sys/module/intel_idle/parameters/max_cstate
cpupower idle-info
```

Controlling UCS BIOS Parameters Using `ultram_ucs_utils.py` Script

The `ultram_ucs_utils.py` script can be used to modify and verify parameters within the UCS server BIOS. This script is in the `/opt/cisco/usp/ultram-manager` directory.

Important

Refer to the UCS server documentation BIOS documentation for information on parameters and their respective values.

To configure UCS server BIOS parameters:

1 Log on to the Ultra M Manager Node.

2 Modify the desired BIOS parameters.

```
./ultram_ucs_utils.py --cfg "config_file_name" --login cimc_username cimc_user_password --mgmt 'set-bios' --bios-param bios_paramname --bios-values bios_value1 bios_value2
```

Example:

```
./ultram_ucs_utils.py --cfg cmp_17 --login admin abcabc --mgmt 'set-bios --bios-param biosVfUSBPortsConfig --bios-values vpAllUsbDevices-Disabled vpUsbPortRear-Disabled
```

Example output:

```
2017-10-06 19:48:39,241 - Set BIOS Parameters
2017-10-06 19:48:39,241 - Logging on UCS Server: 192.100.0.25
2017-10-06 19:48:39,243 - No session found, creating one on server: 192.100.0.25
2017-10-06 19:48:40,711 - Login successful to server: 192.100.0.25
2017-10-06 19:48:52,709 - Logging out from the server: 192.100.0.25
2017-10-06 19:48:53,893 - Successfully logged out from the server: 192.100.0.25
```

3 Verify that your settings have been incorporated.

```
./ultram_ucs_utils.py --cfg "config_file_name" --login cimc_username cimc_user_password --status bios-settings
```
Example output:

```
./ultram_ucs_utils.py --cfg cmp_17 --login admin abcabc --status bios-settings
2017-10-06 19:49:12,366 - Getting status information from all the servers
2017-10-06 19:49:12,366 - Logging on UCS Server: 192.100.0.25
2017-10-06 19:49:12,370 - No session found, creating one on server: 192.100.0.25
2017-10-06 19:49:13,752 - Login successful to server: 192.100.0.25
2017-10-06 19:49:19,739 - Logging out from the server: 192.100.0.25
2017-10-06 19:49:20,922 - Successfully logged out from the server: 192.100.0.25

<table>
<thead>
<tr>
<th>Server IP</th>
<th>BIOS Settings</th>
</tr>
</thead>
</table>
| 192.100.0.25 | - biosVFHWPMEnable: Disabled  
|            | vpHWPMEnable: Disabled  
|            | biosVFLegacyUSBSupport: enabled  
|            | biosVFpciRomClp: Disabled  
|            | biosVFSelectMemoryRASConfiguration: maximum-performance  
|            | biosVFEExtendedAPIC: XAPIC  
|            | biosVFOSBootWatchdogTimerPolicy: power-off  
|            | biosVFCoreMultiProcessing: enabled  
|            | biosVFQPIFrequency: auto  
|            | biosVFOutOfBandMgmtPort: Disabled  
|            | biosVFVgaPriority: Onboard  
|            | biosVFMemoryMappedIOMemory: enabled  
|            | biosVFMemoryMappedIOAbove4GB: enabled  
|            | biosVFEnhancedIntelSpeedStepTech: enabled  
|            | biosVFVcmciEnable: Enabled  
|            | biosVF_autonomousCstateEnable: Disabled  
|            | biosVFOSBootWatchdogTimer: disabled  
|            | biosVFAdjacentCachelineprefetch: enabled  
|            | biosVFPCISlotOptionROMEnable: enabled  
```

Using the UCS Utilities Within the Ultra M Manager
Controlling UCS BIOS Parameters Using ultram_ucs_utils.py Script
ultram_ucs_utils.py Help

Enter the following command to display help for the UCS utilities available through the Ultra M Manager:

```
./ultram_ucs_utils.py h
```

```
usage: ultram_ucs_utils.py [-h] --cfg CFG --login UC_LOGIN UC_LOGIN
                   (--upgrade | --mgmt | --status | --undercloud UC_RC)
                   (--mode) [--serial-delay SERIAL_DELAY]
                   [--server SERVER] [--file FILE]
                   [--protocol {http,https,tftp,sftp,ftp,scp}]
                   [--access ACCESS ACCESS] [--secure-boot]
                   [--update-type {immediate,delayed}] [--reboot]
                   [--timeout TIMEOUT] [--verify] [--stop-on-error]
                   [--bios-param BIOS_PARAM]
                   [--bios-values BIOS_VALUES [BIOS_VALUES ...]]
```

optional arguments:
-`h, --help` show this help message and exit
-`--cfg CFG` Configuration file to read servers
-`--login UC_LOGIN UC_LOGIN` Common Login UserName / Password to authenticate UCS servers
-`--upgrade` Firmware upgrade, choose one from:
 - 'bios': Upgrade BIOS firmware version
 - 'cimc': Upgrade CIMC firmware version
 - 'huu': Upgrade All Firmwares via HUU based on ISO
-`--mgmt` Server Management Tasks, choose one from:
 - 'power-up' : Power on the server immediately
 - 'power-down' : Power down the server (non-graceful)
 - 'soft-shut-down': Shutdown the server gracefully
 - 'power-cycle' : Power Cycle the server immediately
 - 'hard-reset' : Hard Reset the server
 - 'cimc-reset' : Reboot CIMC
 - 'cmos-reset': Reset CMOS
 - 'set-bios': Set BIOS Parameter
-`--status` Firmware Update Status:
 - 'bios-upgrade' : Last BIOS upgrade status
 - 'cimc-upgrade' : Last CIMC upgrade status
 - 'huu-upgrade' : Last ISO upgrade via Host Upgrade Utilities
 - 'firmwares' : List Current set of running firmware versions
-`--undercloud UC_RC` Get the list of servers from undercloud
-`--mode` Execute action in serial/parallel
 - `--serial-delay SERIAL_DELAY` Delay (seconds) in executing firmware upgrades on node in case of serial mode
-`--protocol {http,https,tftp,sftp,ftp,scp}`

Firmware Upgrade Options:
-`--server SERVER` Server IP hosting the file via selected protocol
-`--file FILE` Firmware file path for UCS server to access from file server
Protocol to get the firmware file on UCS server
--access ACCESS ACCESS User Name / Password to access the file from remote server using https, sftp, ftp, scp
--secure-boot Use CIMC Secure-Boot.
--update-type {immediate, delayed} Update type whether to send delayed update to server or immediate
--reboot Reboot CIMC before performing update
--timeout TIMEOUT Update timeout in mins should be more than 30 min and less than 200 min
--verify Use this option to verify update after reboot
--stop-on-error Stop the firmware update once an error is encountered

BIOS Parameters configuration:
--bios-param BIOS_PARAM BIOS Parameter Name to be set
--bios-values BIOS_VALUES [BIOS_VALUES ...] BIOS Parameter values in terms of key=value pair separated by space