
VPC-DI Installation Notes

This guide assumes that components of VPC-DI have been properly installed to run in virtual machines (VMs)
on commercial off-the shelf (COTS) servers. This chapter provides some installation notes that may assist in
the installation process.

• Creating a Boot Parameters File, on page 1
• VPC-DI Onboarding using ESC, on page 16
• Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack, on page 26
• VMware Installation Notes, on page 39
• Rules for VM Recovery, on page 39

Creating a Boot Parameters File
The boot parameters file provides a means to pass configuration items to StarOS before it boots. The parameters
are typically necessary to successfully load StarOS and specify items such as virtual slot number, VM type,
NIC assignment and network bonding configuration.

By default, VPC-DI assigns the vNIC interfaces in the order offered by the hypervisor. To configure your
vNICs manually according to a specific order, you need to create a boot parameters file. You also must create
a boot parameters file if you want to enable a VNFM interface.

The boot parameters are sourced in multiple ways, with all methods using the same parameter names and
usage. The first location for the boot parameters file is on the first partition of the first VM drive, for example,
/boot1/param.cfg. The second location searched is on the configuration drive, which is a virtual CD-ROM
drive. If you are using OpenStack, specify the target boot parameters file name as staros_param.cfg. If you
are not using OpenStack, create an ISO image with staros_param.cfg in the root directory and attach this ISO
to the first virtual CD-ROM drive of the VM.

As the VM boots, the param.cfg file is parsed first by the preboot environment known as CFE. Once the VM
starts Linux, the virtual CD-ROM drive is accessed to parse the staros_param.cfg file. If there are any conflicts
with values stored in the /boot1/param.cfg file, parameters in staros_param.cfg take precedence.

If you do not create a boot parameters file, the default file is used. If you create a boot parameters file, all
parameters described in Configuring Boot Parameters, on page 7 must be defined.

Format of the Boot Parameters File
The structure of the boot parameters file is:

VPC-DI Installation Notes
1

VARIABLE_NAME = VALUE

Specify one variable per line with a newline as the end of the line terminator (UNIX text file format). Variable
names and values are case insensitive. Invalid values are ignored and an error indication is displayed on the
VM console. If there are duplicate values for a variable (two different values specified for the same variable
name), the last value defined is used.

Numeric values do not need to be zero padded. For example a PCI_ID of 0:1:1.0 is treated the same as
0000:01:01.0.

Network Interface Roles
Network interfaces serve specific roles depending on whether the VM is used for a CF or SF.

All system VMs have a network interface connection to the DI internal network. This network links all the
VMs in a VPC-DI instance together. This network must be private to a VPC-DI instance and is configured
by the system software.

All VMs have the option of configuring a network interface that is connected to the virtual network function
(VNF) manager (VNFM) if it exists. This interface can be configured via DHCP or static IP assignment and
is used to talk to a VNFM or higher level orchestrator. This interface is enabled before the main application
starts.

On CFs, one additional interface connects to the management network interface. This interface is typically
configured in StarOS and should be part of the Day 0 configuration. The management interface supports static
address assignment through the main StarOS configuration file.

On SFs, an additional 0 to 12 network interfaces serve as service ports. These interfaces are configured by
StarOS. Typically these ports are configured as trunk ports in the VNF infrastructure (VNFI).

Table 1: Network Interface Roles

DescriptionInterface Role

Interface to the DI internal network, required for all VM typesDI_INTERFACE

Interface to the management port on the CF VMMGMT_INTERFACE

Service port number # on the SF VM, where # can be from 1 to 12.SERVICE#_INTERFACE

Optional network interface to the VNFM or orchestrator, valid for all VM
types

VNFM_INTERFACE

Although VIRTIO interfaces can be used for the DI_INTERFACE role and the SERVICE#_INTERFACE
roles, they are not recommended.

Note

Network Interface Identification
By default the first NIC found by a VPC-DI VM is assigned the DI internal network role. Additional ports
serve as either the management interface on the CF or service ports on the SF. No interface is used as the
VNFM interface by default.

VPC-DI Installation Notes
2

VPC-DI Installation Notes
Network Interface Roles

VPC-DI assigns the vNIC interfaces in the order offered by the hypervisor. You cannot be guaranteed that
the order of the vNICs as listed in the hypervisor CLI/GUI is the same as how the hypervisor offers them to
the VM.

The order that VPC-DI finds the vNICs is subject to the PCI bus enumeration order and even paravirtual
devices are represented on the PCI bus. The PCI bus is enumerated in a depth first manner where bridges are
explored before additional devices at the same level. If all the network interfaces are of the same type then
knowing the PCI topology is sufficient to get the vNIC order correct. If the network interfaces are of different
types, then the order is dependent on the PCI topology plus the device driver load order inside the VM. The
device driver load order is not guaranteed to be the same from software release to release but in general
paravirtual devices are prior to pass-through devices.

There are several methods available to identify NICs.

• MAC address: MAC address of the interface

• Virtual PCI ID

• Bonded interfaces: When using network device bonding, network interfaces are identified to serve as
the slave interface role. The slave interfaces in the bond are identified using MAC, PCI ID, or Interface
type.

• Interface type and instance number.

Virtual PCI ID

Devices on a PCI bus are identified by a unique tuple known as the domain, bus, device, and function numbers.
These identifiers can be identified in several ways.

Inside the guest, the lspci utility shows the bus configuration:

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer
00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device
00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

The domain, bus, device, and function numbers for this virtual bus are shown here:

Table 2: Virtual PCI IDs

FunctionDeviceBusDomainLine

000000:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC
[Natoma] (rev 02)

010000:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA
[Natoma/Triton II]

VPC-DI Installation Notes
3

VPC-DI Installation Notes
Network Interface Identification

FunctionDeviceBusDomainLine

110000:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE
[Natoma/Triton II]

210000:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB
[Natoma/Triton II] (rev 01)

310000:01.3 Bridge: Intel Corporation 82371AB/EB/MBPIIX4ACPI
(rev 03)

020000:02.0 VGA compatible controller: Cirrus Logic GD 5446

030000:03.0 System peripheral: Intel Corporation 6300ESBWatchdog
Timer

040000:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory
balloon

050000:05.0 Ethernet controller: Red Hat, Inc Virtio network device

060000:06.0 Ethernet controller: Red Hat, Inc Virtio network device

For libvirt-based virtual machines, you can get the virtual PCI bus topology from the virsh dumpxml command.
Note that the libvirt schema uses the term slot for the device number. This is a snippet of the xml description
of the virtual machine used in the previous example:

<interface type='bridge'>
<mac address='52:54:00:c2:d0:5f'/>
<source bridge='br3043'/>
<target dev='vnet0'/>
<model type='virtio'/>
<driver name='vhost' queues='8'/>
<alias name='net0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</interface>
<interface type='bridge'>
<mac address='52:54:00:c3:60:eb'/>
<source bridge='br0'/>
<target dev='vnet1'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>

Interface Type and Instance Number

Here the NIC is identified by its type using its Linux device driver name (virtio_net, vmxnet3, ixgbe, i40e,
etc) and its instance number. The instance number is based on PCI enumeration order for that type of interface
starting at instance number 1. The interface type is available to identify both paravirtual types as well as
pass-through interfaces and SR-IOV virtual functions. The PCI enumeration order of devices on the PCI bus
can be seen from the lspci utility, which is on the host OS.

For example, a CF with the following guest PCI topology indicates that virtio_net interface number1 is the
Ethernet controller at 00:05.0 and virtio_net interface number 2 is the Ethernet Controller at 00:06.0. The
output is from the lspci command executed in the guest:

VPC-DI Installation Notes
4

VPC-DI Installation Notes
Network Interface Identification

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer
00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device
00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

Here is the complete list of the supported Linux drivers:

Table 3: Supported Linux Drivers

Driver NamePCI Vendor / Device IDType

virtio_net0x10af / 0x1000VIRTIO (paravirtual NIC for KVM)

vmxnet30x15ad / 0x07b0VMXNET3 (paravirtual NIC for VMware)

VPC-DI Installation Notes
5

VPC-DI Installation Notes
Network Interface Identification

Driver NamePCI Vendor / Device IDType

ixgbe0x8086 / 0x10b6

0x8086 / 0x10c6

0x8086 / 0x10c7

0x8086 / 0x10c8

0x8086 / 0x150b

0x8086 / 0x10dd

0x8086 / 0x10ec

0x8086 / 0x10f1

0x8086 / 0x10e1

0x8086 / 0x10db

0x8086 / 0x1508

0x8086 / 0x10f7

0x8086 / 0x10fc

0x8086 / 0x1517

0x8086 / 0x10fb

0x8086 / 0x1507

0x8086 / 0x1514

0x8086 / 0x10f9

0x8086 / 0x152a

0x8086 / 0x1529

0x8086 / 0x151c

0x8086 / 0x10f8

0x8086 / 0x1528

0x8086 / 0x154d

0x8086 / 0x154f

0x8086 / 0x1557

Intel 10 Gigabit Ethernet

ixgbevf0x8086 / 0x10ed

0x8086 / 0x1515

Intel 10 Gigabit NIC virtual function

enic0x1137 / 0x0043

0x1137 / 0x0044

0x1137 / 0x0071

Cisco UCS NIC

VPC-DI Installation Notes
6

VPC-DI Installation Notes
Network Interface Identification

Driver NamePCI Vendor / Device IDType

mlx5_core0x15b3 / 0x1017

0x15b3 / 0x1018

Mellanox ConnectX-5

i40e**0x8086 / 0x1572 (40 gig)

0x8086 / 0x1574 (40 gig)

0x8086 / 0x1580 (40 gig)

0x8086 / 0x1581 (40 gig)

0x8086 / 0x1583 (40 gig)

0x8086 / 0x1584 (40 gig)

0x8086 / 0x1585 (40 gig)

0x8086 / 0x158a (25 gig)

0x8086 / 0x158b (25 gig)

Intel XL 710 family NIC (PF)

i40evf0x8086 / 0x154cIntel XL 710 family NIC virtual function

** Note: A known issue exists where MAC address assignment does not occur dynamically for SRIOV VFs
created on the host when using the i40e driver. MAC address assignment is necessary to boot the StarOS VM.
As a workaround, MAC address assignment must be configured from the host. Refer to the following link for
more information:https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/
xl710-sr-iov-config-guide-gbe-linux-brief.pdf

Configuring Boot Parameters
If you do not create a boot parameters file, the default file is used. If you create a boot parameters file, all
parameters described in this task must be defined.

Before you begin

Refer to Network Interface Roles, on page 2 and Network Interface Identification, on page 2 for more
information on determining the interface identifiers for your VM interfaces.

Step 1 CARDSLOT=slot-number

slot_number is an integer between 1 and 32 that indicates the slot number or VM. CF slots can be 1 or 2. SF slots can
range from 3 to 48.

Step 2 CARDTYPE=card-type

card-type identifies whether the VM is a CF or SF.

• Use 0x40010100 for Control Function.

• Use 0x42020100 for Service Function.

Step 3 interface-role_INTERFACE=interface-id

VPC-DI Installation Notes
7

VPC-DI Installation Notes
Configuring Boot Parameters

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf

Valid values for interface-role are:

• DI

• MGMT

• SERVICE#, where # can range from 1 to 12

• VNFM

For example, DI_INTERFACE=interface-id.

Refer to Network Interface Roles, on page 2 for more information on interface roles.

Valid values for interface-id are:

• MAC: xx:xx:xx:xx:xx:xx

• PCI_ID:xxxx:xx:xx.x (Domain:Bus:Device.Function)

• TYPE:drive-name–instance-number

• BOND: slave-interface-A,slave-interface-B

Refer to Network Interface Identification, on page 2 for information on determining the interface identifier.

Example:

This example identifies the interface by its MAC address:
DI_INTERFACE=MAC:00:01:02:03:04:05

This example identifies the interface by its guest PCI address:
DI_INTERFACE=PCI_ID:0000:01:02.0

This example identifies the interface by its interface type (1st virtio interface):
DI_INTERFACE=TYPE:enic-1

Example:

This example identifies the interfaces as a network bond interface. The example illustrates identifying the interface using
MAC address, PCI identifier and interface type:

DI_INTERFACE=BOND:MAC:00:01:02:03:04:05,MAC:00:01:02:03:04:06
or
DI_INTERFACE=BOND:PCI_ID:0000:01:01.0,PCI_ID:0000:01:02.0
or
DI_INTERFACE=BOND:TYPE:enic-1,TYPE:enic-2

Configuring Network Interface Bonding
The system supports configuring pairs of network interfaces into an active/standby bonded interface. Only
one interface is active at a time and failure detection is limited to the loss of the physical link. Use this task
to configure bonded interfaces.

VPC-DI Installation Notes
8

VPC-DI Installation Notes
Configuring Network Interface Bonding

All bonding variable names use the format interface-role_BOND. Refer to Network Interface Roles, on page
2 for information on interface roles.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

Step 1 interface-role_BOND_PRIMARY=interface-id

Configures the primary slave interface if you have a preference for a particular interface to be active the majority of the
time. The default bond configuration does not select a primary slave.

Refer to Network Interface Roles, on page 2 for information on interface roles; refer to Network Interface Identification,
on page 2 for information regarding interface identifiers.

By default, the reversion policy is that the bond only reverts back to the primary interface on a subsequent
failure of the new active link.

By default, the failure detection method is that the bond uses the driver state to poll link status of the underlying
interfaces.

Note

Example:

This example specifies the primary interface using a MAC address:
DI_INTERFACE_BOND_PRIMARY=MAC:00:01:02:03:04:05

This example specifies the primary interface using a PCI identifier:
DI_INTERFACE_BOND_PRIMARY=BOND:PCI_ID:0000:01:01.0

This example specifies the primary interface using an interface type identifier:

Example:

DI_INTERFACE_BOND_PRIMARY=BOND:TYPE:enic-1

Step 2 interface-role_BOND_MII_POLL = poll-interval

Specifies the poll interval, in milliseconds, to use when MII is used for link detection. The poll interval can range from
0 to 1000. The default is 100.

Step 3 interface-role_BOND_MII_UPDELAY=slave-enable-delay

Specifies how long to wait for the link to settle before enabling a slave interface after a link failure, when MII is used for
link detection. The link state can bounce when it is first detected. This delay allows the link to settle before trying to use
the interface and thereby avoids excessive flips in the active slave for the bond interface.

The slave enable delay must be a multiple of the MII poll interval. Values are in milliseconds and the default is 0.

Step 4 interface-role_BOND_MII_DOWNDELAY=slave-disable-delay

VPC-DI Installation Notes
9

VPC-DI Installation Notes
Configuring Network Interface Bonding

Optional. When used, it allows the bond to wait before declaring that the slave interface is down, when MII is used for
link detection. The slave disable delay must be a multiple of the MII poll interval. Values are in milliseconds and the
default is 0.

Configuring a VNFM Interface
A virtual network function management (VNFM) interface is designed to communicate between each VM
and a VNFM. This interface is brought up before the main application and can be configured only using the
boot parameters. The VNFM interface is disabled by default.

Use this task to configure a VNFM interface:

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

Step 1 VNFM_IPV4_ENABLE={true | false}

Enables the VNFM interface.

Step 2 VNFM_CARTRIDGE_AGENT={true | false}

Enables the cartridge agent. This must be enabled if the VNFM is using the cartridge agent.

Step 3 VNFM_IPV4_DHCP_ENABLE={true | false}

Enables DHCP on the VNFM.

Step 4 VNFM_IPV4_ADDRESS=x.x.x.x

Specifies the IP address for the VNFM where DHCP is not used.

Step 5 VNFM_IPV4_NETMASK=x.x.x.x

Specifies the netmask for the IP address of the VNFM where DHCP is not used.

Step 6 VNFM_IPV4_GATEWAY=x.x.x.x

Specifies the gateway for the IP address of the VNFM where DHCP is not used.

VNFM Interface Options

These configuration options are optional.Note

The virtual network functions manager (VNFM) interface is designed to communicate between each VM and
a VNFM. The VNFM interface initializes before the main application and only boot parameters can configure
the interface.

VPC-DI Installation Notes
10

VPC-DI Installation Notes
Configuring a VNFM Interface

The VNFM interface is disabled by default.

Enable VNFM IPv4 Interface

The default value is False (disabled).

Valid ValuesVariable

True or FalseVNFM_IPV4_ENABLE

Configure IPv4 DHCP Client

Valid ValuesVariable

True or FalseVNFM_IPV4_DHCP_ENABLE

Configure IPv4 Static IP

If IPv4 DHCP client is enabled, static configuration parameters are ignored.Note

Valid ValuesVariable

x.x.x.xVNFM_IPV4_ADDRESS

x.x.x.xVNFM_IPV4_NETMASK

x.x.x.xVNFM_IPV4_GATEWAY

Enable VNFM IPv6 Interface.

Valid ValuesVariable

True or FalseVNFM_IPV6_ENABLE

Enable IPv6 Static IP Configuration

Valid ValuesVariable

True or FalseVNFM_IPV6_STATIC_ENABLE

If set to true, static IP parameters configuration applies to the interface as shown in the following section. If
set to false, the interface attempts to use both stateless autoconfiguration (RFC4862) and DHCPv6 to configure
the address of the interface.

VPC-DI Installation Notes
11

VPC-DI Installation Notes
VNFM Interface Options

Configure IPv6 Static IP

If the "VNFM_IPV6_ENABLE" parameter value is set to false, the static configuration parameters are ignored.
The IPv6 address field should conform to RFC 5952. Prefix is fixed at /64.

Note

Valid ValuesVariable

x:x:x:x:x:x:x:xVNFM_IPV6_ADDRESS

x:x:x:x:x:x:x:xVNFM_IPV6_GATEWAY

Configuring the DI Network VLAN
TheDI network requires a unique and isolated network available for its use.When using pass-through interfaces,
a VLAN ID can be configured to allow for easier separation of the VPC-DI instances in the customer network.
Optionally, the DI Network VLAN can also be tagged on the host or even the L2 switch, if there are dedicated
ports on the host.

Use this task to configure the VLAN.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

DI_Internal_VLANID=vlan-id

Specifies a VLAN ID for the internal DI network. Values can range from 1 to 4094.

Example:
DI_INTERNAL_VLANID=10

Configuring IFTASK Tunable Parameters
By default, DPDK allocates 30% of the CPU cores to the Internal Forwarder Task (IFtask) process. You can
configure the resources allocated to IFTASK using these boot parameters. Use the show cpu info and show
cpu verbose commands to display information regarding the CPU core allocation for IFTASK.

These are optional parameters that should be set with extreme care.Note

Step 1 (Optional) IFTASK_CORES=percentage-of-cores

Specify the percentage of CPU cores to allocate to IFTASK. Values can range from 0 to 100 percent. The default is 30.

VPC-DI Installation Notes
12

VPC-DI Installation Notes
Configuring the DI Network VLAN

Step 2 (Optional) MCDMA_THREAD_DISABLE=percentage-of-iftask-cores

Set the MCDMA_THREAD_DISABLE parameter to 1 to run PMDs on all cores, rather than using an MCDMA - VNPU
split.

Step 3 (Optional) IFTASK_SERVICE_TYPE=value

Specifies the service type being deployed in order to calculate the service memory and enable service-specific features.
The following service types can be specified:

• 0 = VPC service type

• 1 = GiLAN service type

• 2 = ePDG service type

• 3 = CUPS controller service type

• 4 = CUPS forwarder service type

The default is 0.

Step 4 (Optional) IFTASK_CRYPTO_CORES=value

When IFTASK_SERVICE_TYPE is configured to "2" (EPDG), this parameter specifies the percentages of iftask cores
to allocate to crypto processing. Values can range from 0 to 50 percent, though the cores dedicate will be capped at 4.
The default is 0.

This parameter should only be used if the IFTASK_SERVICE_TYPE is set to "2" (EPDG). If it is set to any
other service type, then this parameter should be set to "0".

Note

Step 5 (Optional) IFTASK_DISABLE_NUMA_OPT=value

Use this setting to disable the NUMA optimizations, even though more than 1 NUMA node is presented to the VM by
the host. This option can be set when NUMA optimizations are not desirable for whatever reason.

• NO = enabled (default)

• YES = disabled

NUMA optimization is enabled by default, except for the following cases:

• The number of NUMA nodes/cells does not equal 2.

• Card type is Control Function (CF), Application Function (AF), or Network Function (NF). Only Service Function
(SF) VMs support NUMA.

• The service type of the VM is not VPC. NUMA is only supported for VPC service type.

• This setting is explicitly set to YES (IFTASK_DISABLE_NUMA_OPT=YES).

Step 6 (Optional) IFTASK_VNPU_TX_MODE=value

The compute nodes in an Ultra M deployment have 28 cores. Two of these cores are reserved for use by the host. When
26 cores are utilized, this results in an unequal distribution ofMCDMA channels across the cores used to performMCDMA
work.

When this setting is enabled, the MCDMA function cores in iftask are split equally as MCDMA cores and VNPU TX
lookup cores.

VPC-DI Installation Notes
13

VPC-DI Installation Notes
Configuring IFTASK Tunable Parameters

• 0 = disabled (Default)

• 1 = enabled

Step 7 (Optional) MULTI_SEG_MBUF_ENABLE=value

By default in release 21.6 and higher, the system enables the use of multi-segmented transmission/reception with smaller
size buffers in all memory pools for Ixgbe pf/vf drivers. This feature reduces the overall memory size of IFTASK and
makes it more suitable for small deployments.

• 1 = true (default for Ixgbe NICs).

• 0 = false (default for all other NICs).

Care must be taken when upgrading to 21.6 on systems which use Ixgbe NICs as this feature by default is
enabled.

This feature is automatically disabled for any system not using the Ixgbe vf/pf NICs NICs.

Important

Example

Use the StarOS command show cloud hardware iftask card_number to verify that the boot
parameters took effect:
[local]mySystem# show cloud hardware iftask 4
Card 4:
Total number of cores on VM: 24
Number of cores for PMD only: 0
Number of cores for VNPU only: 0
Number of cores for PMD and VNPU: 3
Number of cores for MCDMA: 4
Number of cores for Crypto 0

Hugepage size: 2048 kB
Total hugepages: 3670016 kB
NPUSHM hugepages: 0 kB
CPU flags: avx sse sse2 ssse3 sse4_1 sse4_2
Poll CPU's: 1 2 3 4 5 6 7
KNI reschedule interval: 5 us

Increased Maximum IFtask Thread Support

Feature Summary and Revision History

Summary Data

AllApplicable Product(s) or Functional
Area

VPC-DIApplicable Platform(s)

Enabled - Always-onFeature Default

Not applicableRelated Changes in This Release

VPC-DI Installation Notes
14

VPC-DI Installation Notes
Increased Maximum IFtask Thread Support

VPC-DI System Administration GuideRelated Documentation

Revision History

Revision history details are not provided for features introduced before releases 21.2 and N5.1.Important

ReleaseRevision Details

21.8From this release, the maximum number of IFtask threads configuration supported
is increased to 22 cores.

Pre 21.2First introduced.

Feature Changes

When the number of DPDK Internal Forwarder (IFTask) threads configured (in /tmp/iftask.cfg) are greater
than 14 cores, the IFTask drops packets or displays an error.

Previous Behavior: Currently, the maximum number of IFtask threads configuration is limited to only 14
cores.

New Behavior: From Release 21.8, the maximum number of IFtask threads configuration supported is
increased to 22 cores.

Configure MTU Size
By default, the IFTASK process sets the maximum interface MTU as follows:

• Service interfaces: 2100 bytes

• DI network interface: 7100 bytes

These default can be modified by setting the following parameters in the param.cfg file:

Table 4: MTU Size Parameters

Default ValueRangeParameter Name

7100576-9100DI_INTERFACE_MTU=

2100576-9100SERVICE_INTERFACE_MTU=

Refer to Configure Support for Traffic Above Supported MTU, on page 15 for configuring the MTU size for
a system which does not support jumbo frames.

Configure Support for Traffic Above Supported MTU
By default, jumbo frame support is required for the system to operate. If your infrastructure does not support
jumbo frames, you can still run the system, however you must specify the MTU for the DI internal network

VPC-DI Installation Notes
15

VPC-DI Installation Notes
Feature Changes

to be 1500 in the boot parameters file. This allows the IFTASK to process DI network traffic that is above
the supported MTU.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

DI_INTERFACE_MTU=1500

Specifies that the DI internal network does not support jumbo frames so that the software handles jumbo frames
appropriately.

Boot Parameters File Examples
This example shows a boot parameters file for a CF in slot 1 with two VIRTIO interfaces:

CARDSLOT=1
CARDTYPE=0x40010100
DI_INTERFACE=TYPE:enic-1
MGMT_INTERFACE=TYPE:virtio_net-2

This example shows a boot parameters file for an SF in slot 3 with three VIRTIO interfaces:

CARDSLOT=3
CARDTYPE=0x42020100
DI_INTERFACE=TYPE:enic-1
SERVICE1_INTERFACE=TYPE:enic-3
SERVICE2_INTERFACE=TYPE:enic-4

This example shows a boot parameters file for a CF with pass-through NICs, bonding configured and a DI
internal network on a VLAN:

CARDSLOT=1
CARDTYPE=0x40010100
DI_INTERFACE=BOND:TYPE:enic-1,TYPE:enic-2
MGMT_INTERFACE=BOND:TYPE:ixgbe-3,TYPE:ixgbe-4
DI_INTERNAL_VLANID=10

VPC-DI Onboarding using ESC
You can use ESC to start an instance of the VPC-DI.

Onboarding the VPC-DI with ESC on OpenStack
This procedure describes how to onboard the VPC-DI on an instance of ESC in an OpenStack environment.

VPC-DI Installation Notes
16

VPC-DI Installation Notes
Boot Parameters File Examples

Before you begin

This procedure assumes that you have ESC created in a functioning OpenStack environment running release
Juno or later with network access. For the detailed ESC installation procedure, refer to the Cisco Elastic
Services Controller 2.3 Install and Upgrade Guide: http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_
services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html. For
a description of the ESC configuration, refer to the Cisco Elastic Services Controller 2.3 User Guide :
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/user/guide/
Cisco-Elastic-Services-Controller-User-Guide-2-3.html

Refer to the Release Notes to determine the version of Elastic Services Controller supported for this release.

Step 1 Get the qcow images of the VPC-DI instances for CF and SF.

The tarball file with the images is named something similar to production.xxxxx.qvpc-di.qcow2.tgz,
depending on the release number. This archive includes two images for the CF and SF respectively: qvpc-di-cf.qcow2
and qvpc-di-xf.qcow2.

Step 2 Create the VPC-DI images in glance using the command glance image-create.

Example:

$ glance image-create --file qvpc-di-cf.qcow2 --container-format bare --disk-format
qcow2 --is-public true --name cisco-qvpc-cf

$ glance image-create --file qvpc-di-xf.qcow2 --container-format bare --disk-format
qcow2 --is-public true --name cisco-qvpc-xf

Step 3 Get the VPC-DI sample initialization tarball (vpc_esc_sample.tgz).
Step 4 Copy the VPC-DI sample initialization tarball to the ESC VM at the admin home (/home/admin/).
Step 5 Untar the VPC-DI sample initialization tarball to the vnf directory: opt/cisco/vnfs/cisco-qvpc/.
Step 6 Create the artifacts using the command line API command esc_nc_cli edit-config .

Example:
esc_nc_cli edit-config /opt/cisco/vnfs/cisco-qvpc/dep/artifacts.xml

Step 7 Deploy the VPC-DI using the command esc_nc_cli edit-config.

Make sure to delete an existing deployment before redeploying the ESC. See Step 10.Note

The VPC-DI is deployed using the dep.xml file located in /opt/cisco/vnfs/cisco-qvpc/dep/. In general,
you can use the default dep.xml file. If you need to customize the deployment, make any required changes to this file.
For example, you can edit the chassis key that is used to create the chassis ID for your VPC-DI by editing the appropriate
section in the dep.xml file:
<property>
<name>CHASSIS_KEY</name>
<value>164c03a0-eebb-44a8-87fa-20c791c0aa6d</value>

</property>

For a complete description of the dep.xml file, refer to: http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_
controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf

Example:

VPC-DI Installation Notes
17

VPC-DI Installation Notes
Onboarding the VPC-DI with ESC on OpenStack

http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/user/guide/Cisco-Elastic-Services-Controller-User-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/user/guide/Cisco-Elastic-Services-Controller-User-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf

esc_nc_cli edit-config /opt/cisco/vnfs/cisco-qvpc/dep/dep.xml

This command may create a new tenant Core, if it does not already exist. Depending on which dep*.xml is used, the
deployment might hit a "quota exceeded" error. If all SF and CFs do not boot, verify the default tenant quota and quota
for tenant Core in OpenStack. The command to do this is $ nova quota-defaults; nova quota-show --tenant

Core

Step 8 Verify the deployment status in the log file var/log/esc/yangesc.log.
Step 9 Wait for the VPC-DI to converge.
Step 10 To delete the VPC-DI deployment, use the ESC CLI command: esc_nc_cli delete-dep Tenant deployment-name

Example:
$./esc_nc_cli delete-dep Core cisco-qvpc

Step 11 (Optional) To use custom monitoring, before deploying the VPC-DI (Step 7) do the following:
a) Copy the mib file.

Example:
sudo cp /opt/cisco/vnfs/cisco-qvpc/config/starent.my /usr/share/snmp/mibs/

b) Add dynamic mapping metrics for the VPC-DI to any existing mappings. Merge the content of the file
/opt/cisco/vnfs/cisco-qvpc/config/dynamic_mappings_snippet.xml to
/opt/cisco/esc/esc-dynamic-mapping/dynamic_mappings.xml. Extra care should be taken for this step. For each
SF, there needs to be one dynamic mapping in /opt/cisco/esc/esc-dynamic-mapping/dynamic_mappings.xml.

Customizing the VPC-DI Onboarding with ESC
After onboarding theVPC-DIwith ESC, all VPC-DI files are located in the directory /opt/cisco/vnfs/cisco-qvpc/.
There are numerous changes that can be made to the installation of your VPC-DI system. The following files
can be altered as required.

VNF Deployment File

The deployment file is copied to your disk to the location: /opt/cisco/vnfs/cisco-qvpc/dep/.

You can create additional files as required.

Boot Parameter Files

You have several different boot parameter files for the various CF and SF VMs placed on your disk when
you onboard the VPC-DI with ESC. These files are copied to: /opt/cisco/vnfs/cisco-qvpc/config/.

• param.cfg

• param_sf.cfg

These can be customized according to your needs. Refer to Creating a Boot Parameters File, on page 1 for
more information on the boot parameters file format.

An example boot parameter file for a CF is shown here:

CARDSLOT=$SLOT_CARD_NUMBER
CPUID=0

VPC-DI Installation Notes
18

VPC-DI Installation Notes
Customizing the VPC-DI Onboarding with ESC

CARDTYPE=$CARD_TYPE_NUM

DI_INTERFACE=TYPE:enic-1
VNFM_INTERFACE=TYPE:virtio_net-2
MGMT_INTERFACE=TYPE:virtio_net-3

VNFM_IPV4_ENABLE=true
VNFM_IPV4_DHCP_ENABLE=true

An example boot parameter file for an SF is shown here:

CARDSLOT=$SLOT_CARD_NUMBER
CPUID=0
CARDTYPE=$CARD_TYPE_NUM

DI_INTERFACE=TYPE:enic-1
VNFM_INTERFACE=TYPE:enic-2
SERVICE1_INTERFACE=TYPE:enic-3

VNFM_IPV4_ENABLE=true
VNFM_IPV4_DHCP_ENABLE=true

Configuration File

You can customize the configuration file located at /cisco/images/system.cfg. An example of a standard
configuration file is shown here:

config
system hostname $VPC_HOSTNAME
clock timezone $TIMEZONE
context local
administrator admin password $ADMIN_PASS ftp

interface LOCAL1
ip address $CF_VIP_ADDR $CF_VIP_NETMASK
ip route 0.0.0.0 0.0.0.0 $NICID_1_GATEWAY LOCAL1
ip domain-lookup
ip domain-name $CF_DOMAIN_NAME
ip name-servers $CF_NAME_SERVER
ssh generate key
server sshd
subsystem sftp
port ethernet 1/1
bind interface LOCAL1 local
no shutdown
snmp community $SNMP_COMMUNITY read-only
end

Refer to Understanding Configuration Files for more information.

OpenStack Performance Optimizations
Cisco ESC allows a number of hypervisor optimizations using OpenStack Kilo release, such as non-uniform
memory access (NUMA) node configuration, support for huge pages and the pinning of guest vCPUs.

• vCPU pinning—ability for guest vCPUs to be strictly pinned to a set of host physical CPUs. This prevents
the potential wait by a vCPU for physical resources to become available.

VPC-DI Installation Notes
19

VPC-DI Installation Notes
OpenStack Performance Optimizations

21-23-vpc-di-sys-admin_chapter3.pdf#nameddest=unique_68

• Large pages—allocation of larger blocks of memory to virtual resources.

• PCI-based NUMA scheduling—ability to assign a PCI device to an instance in OpenStack.

These OpenStack performance optimizations are supported using OpenStack Kilo version only.Note

OpenStack Kilo exposes various hardware acceleration features using a variety of mechanisms. One such
mechanism involves the setting of key-value attributes on flavor objects. VM instantiation requests which
reference a given flavor effectively request the corresponding hardware acceleration features. Provided the
necessary OpenStack configuration is in place on the OpenStack control and compute nodes, the OpenStack
compute service ("nova") selects an appropriate compute node, and assigns the corresponding resources.

To use hardware acceleration on the VPC-DI you must create new flavors in Cisco ESC and add the required
metadata attributes using the NETCONF or REST interface. For information regarding flavors, refer to
Managing Flavors in theCisco Elastic Services Controller User Guide: http://www.cisco.com/c/en/us/support/
cloud-systems-management/elastic-services-controller-2-1/model.html. You may also require a number of
OpenStack configuration changes. The procedures for implementing hardware acceleration are described in
these tasks.

Adding metadata is only supported for new flavors, not for existing ones. If metadata attributes need to be
added to existing flavors, you must interact with OpenStack directly.

Note

Configuring CPU Pinning

Step 1 On each OpenStack control node, configure the scheduler.
a) Configure the scheduler filters to include the NUMAToplogy and AggregateInstanceExtraSpec filters:

Example:
$ sudo vim /etc/nova/nova.conf
...
scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,
ComputeCapabilitiesFilter,ImagePropertiesFilter,CoreFilter,NUMATopologyFilter,
AggregateInstanceExtraSpecsFilter

b) Restart the nova scheduler service.

Example:
$ sudo systemctl restart openstack-nova-scheduler.service

Step 2 On each relevant OpenStack compute node, configure which hypervisor processes are used for guests and which are not
to be used for guests.
a) Ensure that hypervisor processes do not run on cores reserved for guests.

For example, to reserve cores 2, 3, 6 and 7 for guests, update the grub bootloader and reboot.

Example:

VPC-DI Installation Notes
20

VPC-DI Installation Notes
Configuring CPU Pinning

http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-2-1/model.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-2-1/model.html

$ sudo grubby --update-kernel=ALL --args="isolcpus=2,3,6,7"
$ sudo grub2-install /dev/sda
$ sudo reboot

b) Verify the kernel command line reflects the change.

Example:
$ cat /proc/cmdline
... isolcpus=2,3,6,7 ...

c) Configure guest virtual machine instances so that they are only allowed to run on specific cores and reserve RAM
for hypervisor processes. For example, to use cores 2, 3, 6 and 7 and reserve 512 MB for hypervisor processes:

Example:
$ sudo vim /etc/nova/nova.conf
...
vcpu_pin_set=2,3,6,7
...
reserved_host_memory_mb=512
...

d) Restart the nova compute service.

Example:
$ sudo systemctl restart openstack-nova-compute.service

Step 3 Configure the global parameters.
a) Create a performance-pinned host aggregate for hosts that received pinning requests, and add an arbitrary attribute

pinned=true to identify it.

Example:
$ nova aggregate-create performance-pinned
$ nova aggregate-set-metadata performance-pinned pinned=true

b) Create the normal aggregate for all other hosts and add the same arbitrary attribute, but set pinned=false to identify
it.

Example:
$ nova aggregate-create normal
$ nova aggregate-set-metadata normal pinned=false

c) Add the previously enabled compute nodes to the performance-pinned host aggregate, and add all other compute
nodes to the normal host aggregate.

Example:
$ nova aggregate-add-host normal compute100.cloud.com
$ nova aggregate-add-host normal compute101.cloud.com
$ nova aggregate-add-host normal compute102.cloud.com
$ nova aggregate-add-host performance-pinned compute103.cloud.com
$ nova aggregate-add-host performance-pinned compute104.cloud.com
$ nova aggregate-add-host performance-pinned compute105.cloud.com

Step 4 Configure the flavor attributes using the Cisco ESC northbound API.

VPC-DI Installation Notes
21

VPC-DI Installation Notes
Configuring CPU Pinning

a) Set the flavor attributes.

• hw:cpu_policy=dedicated

• aggregate_instance_extra_specs:pinned=true

All instances created using this flavor are sent to hosts in host aggregates with pinned=true in their aggregate metadata.

Example:
version='1.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory_mb>2048</memory_mb>
<root_disk_mb>10240</root_disk_mb>
<ephemeral_disk_mb>0</ephemeral_disk_mb>
<swap_disk_mb>0</swap_disk_mb>
<properties>
<property>
<name>hw:cpu_policy</name><value>dedicated</value>
<name>aggregate_instance_extra_specs:pinned</name><value>true</value>

</property>
</properties>

</flavor>
</flavors>

</esc_datamodel>

b) Update all other flavors to so that their extra specifications match them to the compute hosts in the normal aggregate.

Example:
$ nova flavor-key <flavor_Id> set aggregate_instance_extra_specs:pinned=false

c) To verify: launch a VM instance using the modified flavor and locate the compute node where the VM instance was
started.

Example:
$ nova boot --image <test-image> --flavor <modified-flavor> test-instance
$ nova show test-instance | egrep
'OS-EXT-SRV-ATTR:hypervisor_hostname|OS-EXT-SRV-ATTR:instance_name'
| OS-EXT-SRV-ATTR:hypervisor_hostname | compute3.cloud.com
| OS-EXT-SRV-ATTR:instance_name | instance-00000cee

d) Log into the returned compute node and use the virsh tool to extract the XML of the returned instance.

Example:
$ ssh compute3.cloud.com
...
$ sudo virsh dumpxml instance-00000cee
...
<vcpu placement='static' cpuset='2-3,6-7'>1</vcpu>

VPC-DI Installation Notes
22

VPC-DI Installation Notes
Configuring CPU Pinning

Configuring Huge Pages
Use this procedure to configure huge pages on your OpenStack configuration.

Step 1 Edit /etc/sysctrl.conf to configure the number of pages.

Example:
vm.nr_hugepages = 32768

Step 2 Edit /proc/meminfo to set the page size.

Example:
Hugepagesize: 2048 kB

Step 3 Create a flavor with hw:mem_page_size=2048 using the Cisco ESC northbound API.

Example:
<?xml version='1.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory_mb>2048</memory_mb>
<root_disk_mb>10240</root_disk_mb>
<ephemeral_disk_mb>0</ephemeral_disk_mb>
<swap_disk_mb>0</swap_disk_mb>
<properties>
<property>
<name>hw:mem_page_size</name><value>2048</value>

</property>
</properties>

</flavor>
</flavors>

</esc_datamodel>

Configuring PCI Passthrough
The Intel VT-d extensions provide hardware support for directly assigning a physical device to a guest. This
allows virtual devices to avoid the throughput loss and reduced packet forwarding capacity that would be
involved in traversing multiple switches or bridges to reach a physical interface.

The VT-d extensions are required for PCI passthrough with Red Hat Enterprise Linux. The extensions must
be enabled in the BIOS. Some system manufacturers disable these extensions by default.

This procedure does not cover enabling VT-d from the BIOS perspective; refer to your server manufacture
BIOS configuration guide to enable VT-d. From the Linux kernel perspective, VT-d is enabled by adding
"intel_iommu=on" to grub config.

Before you begin

VT-d must be enabled on the Intel chipset to support PCI Passthrough.

VPC-DI Installation Notes
23

VPC-DI Installation Notes
Configuring Huge Pages

Step 1 Enable VT-d support on Red hat Enterprise Linux.
a) Edit "/etc/default/grub" and add "intel_iommu=on" to the end of the line: GRUB_CMDLINE_LINUX.

Example:
GRUB_TIMEOUT=5
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet
intel_iommu=on"
GRUB_DISABLE_RECOVERY="true"

b) Regenerate grub.conf and reboot your server by running the grub2-mkconfig command.

Example:
grub2-mkconfig -o /boot/grub2/grub.cfg on BIOS systems

or
grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg on UEFI systems

c) Check that IOMMU gets activated by running the command dmesg | grep -iE "dmar|iommu"

Example:

Sample output from the dmesg command with IOMMU enabled:
[0.000000] Kernel command line: BOOT_IMAGE=/vmlinuz-3.10.0-229.el7.x86_64
root=/dev/mapper/rhel-root
ro rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet intel_iommu=on
[0.000000] Intel-IOMMU: enabled

Step 2 Unbind the device from the Linux kernel.
a) For PCI passthrough to work, a device must be unbound from the Linux kernel driver. To accomplish this, pci_stub

module is used.

Example:
Load pci_stub module "modprobe pci_stub"

b) Locate the network adapter you want to use for PCI passthrough. Run lspci and note the PCI address of the desired
network card.

Example:

In this example, it is desired to use PCI device 15:00.0 for PCI passthrough.
12:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
13:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
14:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
15:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)

c) Identify the Vendor ID and Device ID. Run lspci -n.

Example:

In this partial output, the Vendor ID 1137 and Device ID 0071 are identified.

VPC-DI Installation Notes
24

VPC-DI Installation Notes
Configuring PCI Passthrough

11:00.0 0c04: 1137:0071 (rev a2)
12:00.0 0200: 1137:0071 (rev a2)
13:00.0 0200: 1137:0071 (rev a2)
14:00.0 0200: 1137:0071 (rev a2)
15:00.0 0200: 1137:0071 (rev a2)

d) Use this configuration to unbind the desired device from the Linux kernel driver.

Note that highlighted text must be changed for your device information.

Example:
echo "1137 0071" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:15:00.0 > /sys/bus/pci/devices/0000:15:00.0/driver/unbind
echo 0000:15:00.0 > /sys/bus/pci/drivers/pci-stub/bind

e) Verify the success of these command by running dmesg | grep stub.

Example:
[276.705315] pci-stub 0000:15:00.0: claimed by stub

f) To make the changes persistent, add the pci-stub.ids to grub CMDLINE, update grub and reboot the host.

Note that this code applies to all vNICs with the specifiedVender/Device ID (1137:0071 in this example).Note

Example:
edit /etc/default/grub
GRUB_CMDLINE_LINUX="..pci-stub.ids=1137:0071"
grub2-mkconfig -o /boot/grub2/grub.cfg
reboot

Step 3 Configure nova.conf in OpenStack.
a) Specify which PCI devices are available for PCI passthrough, either using (vendorID, productID) combinations to

allow any PCI device with that (vendorid, productid) combination to be passed through, or by specifying PCI addresses
of devices allowed to be passed through.
pci_passthrough_whitelist={"vendor_id": "1137", "product_id": "0071"}

or
pci_passthrough_whitelist = [{"address": "01:00.1"}, {"address": "02:00.1"}]

b) Specify the PCI alias to (product ID, vendor ID) combination mapping. Note that this setting does currently not
support PCI addresses, so all PCI devices on the whitelist have the same name.

Example:
pci_alias={"vendor_id":"1137", "product_id":"0071", "name":"nic1"}

c) Make the following additional changes to nova.conf

Example:
scheduler_driver=nova.scheduler.filter_scheduler.FilterScheduler
scheduler_available_filters=nova.scheduler.filters.all_filters
scheduler_available_filters=nova.scheduler.filters.pci_passthrough_filter.PciPassthroughFilter
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter

VPC-DI Installation Notes
25

VPC-DI Installation Notes
Configuring PCI Passthrough

d) Restart nova.

Example:
openstack-service restart nova

Step 4 Create a flavorwith the attribute pci_passthrough:alias set to <PCI_DEVICE_ALIAS>:<NUM_DEVICES_REQUESTED>.
The PCI_DEVICE_ALIAS references values from the pci_alias setting in /etc/nova/nova.conf.

Example:
$ cat fl.xml
<?xml version='1.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">

<flavors>
<flavor>

<name>testfl6</name>
<vcpus>1</vcpus>
<memory_mb>2048</memory_mb>
<root_disk_mb>10240</root_disk_mb>
<ephemeral_disk_mb>0</ephemeral_disk_mb>
<swap_disk_mb>0</swap_disk_mb>
<properties><property>

<name>pci_passthrough:alias</name><value>nic1g:1</value>
</property></properties>

</flavor>
</flavors>

</esc_datamodel>
$ sudo /opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli edit-config ./fl.xml

Onboarding the VPC-DI with Heat Orchestration Templates
(HOT) in OpenStack

VPC-DI can be deployed as a Virtual Network Function (VNF) in an Openstack environment. VPC-DI runs
as a collection of Virtual machines and the VMs have specific requirements with respect to storage, networking,
and configuration. In the Openstack environment, the Orchestrator is responsible for creating the objects
required to bring up the VPC-DI VMs. The orchestrator is also responsible for creating and terminating the
VMs and their associated objects. The orchestrator interfaces with Openstack services to create such entities
in Openstack.

Openstack provides a service called HEAT orchestration templates (HOT) which defines the network, compute
and storage topology of a VNF via a template. The HEAT template can be used as the blueprint for deploying
an instance of the VNF.

The format of the templates and an example of the ENV parameters file are provided later in this section.

Step 1 Get the qcow images of the VPC-DI instances for CF and SF.

VPC-DI Installation Notes
26

VPC-DI Installation Notes
Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack

The tarball file with the images is named something similar to production.xxxxx.qvpc-di.qcow2.tgz, depending on the
release number. When the tarball file is open there should be two images for the CF and SF: qvpc-di-cf.qcow2 and
qvpc-di-xf.qcow2.

Step 2 Create all VPC-DI images in glance using the command glance image-create.

Example:

$ glance image-create --file qvpc-di-cf.qcow2 --container-format bare --disk-format
qcow2 --is-public true --name cisco-qvpc-cf

$ glance image-create --file qvpc-di-sf.qcow2 --container-format bare --disk-format
qcow2 --is-public true --name cisco-qvpc-sf

Step 3 Get the VPC-DI sample initialization tarball for HOT (vpc_HOT_sample.tgz).
Step 4 Copy the VPC-DI sample initialization tarball to your local machine.
Step 5 Untar the VPC-DI sample initialization tarball to any directory. There are two files with extensions .yml and .env.
Step 6 Edit the ENV file according to your openstack deployment.

Provide the values for your networks, availability zone, etc.

Browse to your local directory and click the .yml file for Template source and .env file for Environment Source

Step 7 Perform one of these:

• Deploy the VPC-DI using the OpenStack Dashboard by navigating to Project>Orchestration>Stacks>Launch
Stack.

• Use the CLI to deploy the VPC-DI using HEAT with the command heat stack-create -f di.yml -e di.env.

Step 8 Verify the Status field is Complete, which indicates that there are Errors .
Step 9 Wait for the VPC-DI to converge.
Step 10 To delete the VPC-DI deployment, select the check box next to the stack name and click Delete Stack.

VPC-DI Heat Orchestration Templates
This section describes the format of the Heat templates. The VPC-DI HOT version is 2013-05-23. The template
has these four sections: parameter-groups, parameters, resources, and outputs.

VPC-DI HOT Parameter Groups
The parameter_groups section allows for specifying how the input parameters should be grouped and the
order to provide the parameters in. These groups are used to describe expected behavior for downstream user
interfaces.

VPC-DI Installation Notes
27

VPC-DI Installation Notes
VPC-DI Heat Orchestration Templates

Table 5: HOT Parameters

NotesParameter Definition in Template

List of images to be defined in the
template

- label: images
description: CF and SF images in qvpc-di
parameters:
- qvpc_image_cf
- qvpc_image_sf

List of networks to be defined in the
template

This example lists four
SF service ports. Up to
12 SF service portss can
be defined.

Note

- label: networks
description: network configuration for DI
parameters:
- network_di_mgmt
- network_di_internal
- network_public
- network_service1
- network_service2
- network_service3
- network_service4

VPC-DI HOT Parameters
The heat template defines a number of parameters for which you must provide values in an ENV file. Each
of these parameters is described here. Each parameter definition is contained within the parameters section
of the heat template. A sample ENV file follows the parameter descriptions.

Table 6: HOT Parameters

NotesParameter Definition in Template

The name of the flavor to be used to
create CFs. This can be one of the
five default flavors, or a custom
flavor that has been defined in
OpenStack.

flavor_cf:
type: string
description: Flavor for Control Function VM
default: m1.large

The name of the flavor to be used to
create SFs.

flavor_sf:
type: string
description: Flavor for Service Function VM
default: m1.large

Location in OpenStack where the
VNF is created.

availability_zone:
type: string
description: Availability_zone where the VNF

should be created
default: nova

Name of the VPC-DI image file for
the CFs. This file must have been
uploaded to glance.

qvpc_image_cf:
type: string
label: Active CF image file in glance
description: Active CF image ID or file in glance
default: qvpc-di-<version>-cf.qcow2
constraints:
- custom_constraint: glance.image

VPC-DI Installation Notes
28

VPC-DI Installation Notes
VPC-DI HOT Parameters

NotesParameter Definition in Template

Name of the VPC-DI image file for
the service function VMs, that has
been uploaded to glance.

qvpc_image_xf:
type: string
label: SF image file in glance
description: SF image ID or file in glance
default: qvpc-di-<version>-xf.qcow2
constraints:
- custom_constraint: glance.image

NotesParameter Definition in Template

Network ID or name of the external
network

network_public:
type: string
description: Network ID or Network Name of external network

default: public
constraints:
- custom_constraint: neutron.network

Name or identifier for the VPC-DI
management network.

network_cf_mgmt:
type: string
description: Management Network ID or Name
default: private
constraints:
- custom_constraint: neutron.network

Name or identifier of the DI internal
network. This is a private L2
network that interconnects the VMs
in the VPC-DI.

network_di_internal:
type: string
description: Unique QVPC-DI internal Network

associated with this VNF
default: private
constraints:
- custom_constraint: neutron.network

Name or identifier of the service
port. You can define between one
and 12 service ports in each SF,
where # represents this number.
Each service port can perform a
different service.

network_service#:
type: string
description: Network ID or Network Name of network

to use for SF service ports
default: cflocal
constraints:
- custom_constraint: neutron.network

Name or identifier of the core
network used for keepalive
messages.

network_core:
type: string
description: core network for keepalives
default: core
constraints:
- custom_constraint: neutron.network

Virtual IP address used between the
CFs.

qvpc_vip_addr:
type: string
description: OAM IP Address shared between CF01 and CF02

default: <value>
constraints:
- custom_constraint: ip_addr

VPC-DI Installation Notes
29

VPC-DI Installation Notes
VPC-DI HOT Parameters

NotesParameter Definition in Template

The default gateway for the
management network.

qvpc_vip_gateway:
type: string
description: IP Address of Default Gateway for OAM Network

default: <value>
constraints:

- custom_constraint: ip_addr

Unique name for this VNF instance.
This name is used to identify the
VNF.

vnf_name:
type: string
description: Unique name for this VNF instance
default: qvpc_di

ID for the VNF instance.vnf_id:
type: string
description: Unique ID for this VNF instance
default: 0

admin_password:
type: string
description: Default Administrator password for DI Access

default: Cisco123

snmp_community:
type: string
description: READ SNMP string for this VPC instance
default: public

timezone:
type: string
description: TimeZone for this VF instance
default: us-pacific

cf_domain_name:
type: string
description: Domain for this VF instance
default: localdomain

The availability zone for each of the
two CF instances.

az_cf<#>:
type: string
description: CF availability zone
default: <value>

The availability zone for each of the
SF instances.

az_sf<#>:
type: string
description: CF availability zone
default:<value>

Each of these parameters is defined for your VNF instance using an ENV file. An example ENV file is shown
here:

parameters:
flavor defined for CF and SF in AIC
flavor_cf: vsaegw_cf
flavor_sf: vsaegw_sf

availability zone where the VNF instance should be deployed
availability_zone: avzone-kvm-az01

VPC-DI Installation Notes
30

VPC-DI Installation Notes
VPC-DI HOT Parameters

vPC-DI glance images in qcow2
qvpc_image_cf01: QVPCCF
qvpc_image_sf: QVPCSF

Neutron Networks attached to vSAEGW instancenetwork_di_mgmt: oam_protected_net
network_di_internal: saegw_di_internal_active_net
network_service1: saegw_gn_net
network_service2: saegw_sgi_net
network_service3: saegw_support_net
network_service4: saegw_icsr_li_net

VNF Instance Name
vnf_name: qvpcDI_vsaegw

VNF Instance ID
vnf_id: 01

Administrator user password
admin_password: cisco123

parameters:
flavor_cf:
type: string
description: Flavor for Control Function VM
default: cisco-qvpc-cf

flavor_sf:
type: string
description: Flavor for Service Function VM
default: cisco-qvpc-xf

qvpc_image_cf:
type: string
label: CF image file in glance
description: CF image ID or file in glance
default: qvpc-di-68031-cf.qcow2
constraints:
- custom_constraint: glance.image

qvpc_image_sf:
type: string
label: SF image file in glance
description: SF image ID or file in glance
default: qvpc-di-68031-xf.qcow2
constraints:
- custom_constraint: glance.image

network_public:
type: string
description: Network ID or Network Name of external network
default: public
constraints:
- custom_constraint: neutron.network

network_cf_mgmt:
type: string
description: Management Network ID or Name
default: cf-mgmt
constraints:
- custom_constraint: neutron.network

network_di_internal:
type: string
description: Unique QVPC-DI internal Network associated with this VNF
default: di-internal
constraints:
- custom_constraint: neutron.network

network_service1:
type: string
description: Transport Interface (Gn/S11/S1-u/S5) in to SAEGW Context
default: service1

VPC-DI Installation Notes
31

VPC-DI Installation Notes
VPC-DI HOT Parameters

constraints:
- custom_constraint: neutron.network

network_service2:
type: string
description: Transport Interface (Data, Voice, LI VLANs) in SGi Context
default: service2
constraints:
- custom_constraint: neutron.network

network_core:
type: string
description: core network for keepalives
default: core
constraints:
- custom_constraint: neutron.network

vip_addr and vip_gateway are automatically retrieved from the management network
qvpc_vip_addr:
type: string
description: OAM IP Address shared between CF01 and CF02
default: 172.16.181.2
constraints:
- custom_constraint: ip_addr

qvpc_vip_gateway:
type: string
description: IP Address of Default Gateway for OAM Network
default: 172.16.181.1
constraints:

- custom_constraint: ip_addr
vnf_name:
type: string
description: Unique name for this VNF instance
default: qvpc_di

vnf_id:
type: string
description: Unique ID for this VNF instance
default: 0

admin_password:
type: string
description: Default Administrator password for DI Access
default: Cisco123

snmp_community:
type: string
description: READ SNMP string for this VPC instance
default: public

timezone:
type: string
description: TimeZone for this VF instance
default: us-pacific

cf_domain_name:
type: string
description: Domain for this VF instance
default: localdomain

az_cf1:
type: string
description: CF availability zone
default: conway1

az_cf2:
type: string
description: CF availability zone
default: conway2

az_sf3:
type: string
description: SF3 availability zone
default: conway3

VPC-DI Installation Notes
32

VPC-DI Installation Notes
VPC-DI HOT Parameters

az_sf4:
type: string
description: SF6 availability zone
default: conway4

VPC-DI HOT Resources
The resources section of the template defines the control function (CF) and service function (SF) VMs as well
as each of their ports.

Management Network

Create port on management network and reserve a virtual IP address
qvpc_vip_port:
type: OS::Neutron::Port
properties:

network: {get_param: network_di_mgmt}
fixed_ips:
- subnet_id: {get_param: subnet_id_di_mgmt}

Associate a floating IP address to the virutal port
qvpc_vip_floating_ip:
type: OS::Neutron::FloatingIP
properties:

floating_network: {get_param: network_public}
port_id: {get_resource: qvpc_vip_port}

The VIP port is the virtual IP port used to access the VPC-DI. The VIP port IP address is configurable in the
Day 0 configuration.

HOT Resources for CF

The heat template must define each of the two CF VMs being used by the VNF. This definition includes
configuring the port that connects to the DI internal network, as well as the port that connects to the CF
management network, specifying the StarOS boot parameter file and the StarOS Day 0 configuration file.
The definition of the first CF is shown here with an explanation; the second CF is defined in a similar way.

CF DI Internal Network

This section creates the CF DI internal network. Use this section twice, once for each of the two CFs that must
be configured. # is either 1 or 2.

Port connected to unique DI-network
qvpc_cf_0#_port_int:
type: OS::Neutron::Port
properties:
network: {get_param: network_di_internal}
allowed_address_pairs:
-ip_address: "172.16.0.0/18"

qvpc_cf_#_port_int is port connected to the DI internal network. The value of the network is extracted from
the parameter network_di_internal which is retrieved from the ENV file.

The property allowed_address_pairs must be in each di-internal port. Because the di_internal port is assigned
an IP address by the VPC-DI in the 17.16.0.0/18 network which is different from its address in neutron, we

VPC-DI Installation Notes
33

VPC-DI Installation Notes
VPC-DI HOT Resources

need to configure the allowed_address_pairs property to allow traffic on those address to pass through the
port. The allowed address pair extension extends the port attribute to enable you to specify arbitrary MAC
address or IP address (CIDR) pairs that are allowed to pass through a port regardless of the subnet associated
with the network.

CF Management Network

This section creates the CF management network. Use this section twice, once for each of the two CFs that
must be configured. # is either 1 or 2.

Port connected to the management network
qvpc_cf_0#_port_mgmt:
type: OS::Neutron::Port
properties:
network: {get_param: network_di_mgmt}
allowed_address_pairs:
- ip_address: {get_param: qvpc_vip_addr}

qvpc_cf_#_port_mgmt represents the port definition of the port connected to the OAM network. The value
is extracted from the parameter network_di_mgmt which is retrieved from the ENV file.

SSH Keys

DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
These keys are passed as part of the HEAT deployment. Public and private keys are required.

Generate the public and private SSH keys. Create a file called user_key.pub containing the public key. Create
a file called user_key containing the private key. Ensure that both of these files are stored on the configuration
drive. These files are referenced by HEAT:

personality:
"user_key.pub": |

ssh-rsa
<public_key>

"user_key": |
-----BEGIN RSA PRIVATE KEY-----

<private_key>
-----END RSA PRIVATE KEY-----

Create CF VM

This section creates the CF VM. Use this section twice, once for each of the two CFs that must be created. #
is either 1 or 2.

qvpc_cf_0#:
type: OS::Nova::Server
properties:
Create VM of format “<vnf_name>_cf_0#”
name:
str_replace:
template: ${VF_NAME}_cf_0#
params:
${VF_NAME}: {get_param: vnf_name}

Use active CF image and CF Flavor
image: {get_param: qvpc_image_cf1 }
flavor: {get_param: flavor_cf }
networks:

VPC-DI Installation Notes
34

VPC-DI Installation Notes
HOT Resources for CF

- port: {get_resource: qvpc_cf_0#_port_int}
- port: {get_resource: qvpc_cf_0#_port_mgmt}

config_drive: True

The CF VM (qvpc_cf_#) is created with the previously defined parameters and named according to the
convention "<vnf_name>_cf_#". The vnf_name is retrieved from the ENV file as are the image and flavor
to be used to create the VNF.

StarOS Day 0 Configuration

The Day 0 configuration provided here configures the DI interface, system hostname and enables SSH and
SFTP access using personality properties.

Metadata to provide cloud-init capability to VPC-DI
personality:
"staros_param.cfg":

str_replace:
template: |

CARDSLOT=$CARD_NUMBER
CARDTYPE=$CARD_TYPE
CPUID=$UUID
DI_INTERFACE_MTU=1500
DI_INTERFACE=TYPE:virtio_net-1
MGMT_INTERFACE=TYPE:virtio_net-2
VNFM_INTERFACE=TYPE:virtio_net-3
VNFM_IPV4_ENABLE=true
VNFM_IPV4_DHCP_ENABLE=true
VNFM_PROXY_ADDRS=192.168.180.92,192.168.180.91,192.168.180.93

params:
$CARD_NUMBER: 1
$CARD_TYPE: "0x40030100"
$UUID: 0

"staros_config.txt":
str_replace:

template: |
config

system hostname $VF_NAME-cf-$CARD_NUMBER
clock timezone $TIMEZONE
ssh key-gen wait-time 0
context local

administrator admin password $ADMIN_PASS ftp
interface LOCAL1

ip address $CF_VIP_ADDR 255.255.255.0
#exit
ip route 0.0.0.0 0.0.0.0 $CF_VIP_GATEWAY LOCAL1
ip domain-lookup
ip domain-name $CF_DOMAIN_NAME
ip name-servers $CF_VIP_GATEWAY
ssh generate key
server sshd

subsystem sftp
#exit
server confd

confd-user admin
#exit
port ethernet 1/1

bind interface LOCAL1 local
no shutdown

#exit
snmp community $SNMP_COMMUNITY read-only

end

VPC-DI Installation Notes
35

VPC-DI Installation Notes
HOT Resources for CF

params:
$CARD_NUMBER: 1
$VF_NAME: {get_param: vnf_name}
$TIMEZONE: {get_param: timezone}
$ADMIN_PASS: {get_param: admin_password}
$SNMP_COMMUNITY: {get_param: snmp_community}
$CF_DOMAIN_NAME: {get_param: cf_domain_name}
$SLOT_CARD_NUMBER: 1
#$CF_VIP_ADDR: {get_attr: [qvpc_vip_port, fixed_ips, 0, ip_address]}
$CF_VIP_ADDR: 172.16.181.2
#$CF_VIP_GATEWAY: { get_attr: [qvpc_vip_port, subnets, 0, gateway_ip]

}
$CF_VIP_GATEWAY: 172.16.181.1

"user_key.pub": |
ssh-rsa

<public_key>
"user_key": |

-----BEGIN RSA PRIVATE KEY-----
<private_key>

-----END RSA PRIVATE KEY-----

$CARD_NUMBER refers to the number of the slot, which here is 1 but is 2 for the second CF.

HOT Resources for SF

Use the heat template to define each of the service function (SF) VMs that you want to deploy in the VPC-DI.
For each SF you must configure the port to connect to the DI internal network as well as each of the service
ports that you need for the SF. You can configure up to 12 service ports. This example creates a single SF
that is used for an SAE gateway with four service ports. You must repeat a similar configuration for each SF
required.

Define The Ports in the SF

Create port for DI-Internal Network
qvpc_sf_03_port_int:
type: OS::Neutron::Port
properties:

network: {get_param: network_di_internal}
allowed_address_pairs:
- ip_address: "172.16.0.0/18"

qvpc_sf_#_port_int is the port that connects to the internal DI network. # is the number of the SF and can
range from 3 to the maximum number of SFs allowed. The value of the network is extracted from the parameter
network_di_internal which is retrieved from the ENV file.

Create first service port (document as per your use)
qvpc_sf_03_port_svc_01:
type: OS::Neutron::Port
properties:
network: {get_param: network_service1}

qvpc_sf_#_port_svc_01 is the first service port. Ports are numbered consecutively from 1 to 12. The value
of the network is extracted from the parameter network_service1 which is retrieved from the ENV file.

Create second service port (document as per your use)
qvpc_sf_03_port_svc_02:

VPC-DI Installation Notes
36

VPC-DI Installation Notes
HOT Resources for SF

type: OS::Neutron::Port
properties:
network: {get_param: network_service2}
allowed_address_pairs:
- ip_address: "192.168.10.0/24"

Create third service port (document as per your use)
qvpc_sf_03_port_svc_03:
type: OS::Neutron::Port
properties:
network: {get_param: network_service3}

Create forth service port (document as per your use)
qvpc_sf_03_port_svc_04:
type: OS::Neutron::Port
properties:
network: {get_param: network_service4}

The remaining three service ports are created - each retrieving the network information from the ENV file.
Additional service ports can be created as required.

Create SF VM

qvpc_sf_03:
type: OS::Nova::Server
properties:

Create VM name of format “<vnf_name>_sf_0<num>”
name:
str_replace:

template: ${VF_NAME}_sf_03
params:
${VF_NAME}: {get_param: vnf_name}

Use SF image and SF Flavor
image: { get_param: qvpc_image_sf }
flavor: { get_param: flavor_sf }
networks:
- port: {get_resource: qvpc_sf_03_port_int}
- port: {get_resource: qvpc_sf_03_port_svc_01}
- port: {get_resource: qvpc_sf_03_port_svc_02}
- port: {get_resource: qvpc_sf_03_port_svc_03}
- port: {get_resource: qvpc_sf_03_port_svc_04}

config_drive: True

The SF qvpc_sf_# is created with the name of the format 'vnf_name_sf_0#', where vnf_name is VNF name
value retrieved from the ENV file and # is the slot of the SF. The values of the service ports are previously
defined in the heat template. The image and flavor are also taken from the ENV file.

Each SF is defined similarly in the template.

Personality Configuration

Day 0 and Day 1 configurations are injected into the VNF using personality properties. The VPC-DI applies
personality properties to the system, and expects this metadata from the HEAT template as shown here.

The personality defines the boot parameters file. Refer to Configuring Boot Parameters, on page 7 for more
information on the boot parameters.

Associate VM to unique slot (>2) and identify that its a SF
config_drive: True
personality:
"staros_param.cfg":

VPC-DI Installation Notes
37

VPC-DI Installation Notes
HOT Resources for SF

str_replace:
template: |

CARDSLOT=$CARD_NUMBER
CARDTYPE=$CARD_TYPE
CPUID=$UUID
DI_INTERFACE_MTU=1500

params:
$CARD_NUMBER: 3
$CARD_TYPE: "0x42070100"
$UUID: 0

"user_key.pub": |
ssh-rsa

<public_key>
"user_key": |

-----BEGIN RSA PRIVATE KEY-----
<private_key>
-----END RSA PRIVATE KEY-----

DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
These keys are passed as part of the HEAT deployment. Public and private keys are required.

Generate the public and private SSH keys. Create a file called user_key.pub containing the public key. Create
a file called user_key containing the private key. Ensure that both of these files are stored on the configuration
drive. These files are referenced by HEAT as shown above.

VPC-DI HOT Outputs
The outputs section of the heat template defines the outputs from using the template. You can see the outputs
by going to Project>Orchestration>Stacks and selecting the heat stack that you deployed. In the Overview
tab you see any outputs from the heat stack.

You can also see output from the heat stack by running the heat stack-show $[stack_name] command at the
command line.

Examples of types of output you might define for the VPC-DI are shown here:

qvpc_floating_ip:
description: Floating IP of qvpc-di VIP
value: { get_attr: [qvpc_vip_floating_ip, floating_ip_address]}

CF1_networks:
description: The networks of the deployed CF-1
value: { get_attr: [qvpc_cf_01, networks] }

CF2_networks_2:
description: The networks of the deployed CF-2
value: { get_attr: [qvpc_cf_02, networks] }

port_1_int:
description: The port of the deployed server 1, di-internal
value: { get_attr: [qvpc_cf_01_port_int, mac_address] }

port_1_mgmt:
description: The port of the deployed server 1, cf-mgmt
value: { get_attr: [qvpc_cf_01_port_mgmt, mac_address] }

port_2_int:
description: The port of the deployed server 2, di-internal
value: { get_attr: [qvpc_cf_02_port_int, mac_address] }

port_2_mgmt:
description: The port of the deployed server 2, cf-mgmt
value: { get_attr: [qvpc_cf_02_port_mgmt, mac_address] }

VPC-DI Installation Notes
38

VPC-DI Installation Notes
VPC-DI HOT Outputs

VMware Installation Notes
DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
Public and private keys are required. These keys must be supplied prior to booting the VM as part of an ISO.

The keys must be generated on an external host and packaged in the ISO which must then be attached to the
VM. The keys and the ISO files are generated as follows:
$ mkdir iso
$ ssh-keygen –t rsa –N "" –C "root@localhost" –f iso/user_key
$ genisoimage –o vpcdi_keys.iso iso

Once the ISO file is generated, power-up the VM and map to the CD-DVD ROM. From within vSphere, this
is done by selecting the VM (CF or SF) from the list and clicking on the CD/DVD icon from the option bar
near the top. Then select Connect to ISO image on local disk and choose the ISO. Repeat this for all of the
VMs (CFs and SFs).

Once the keys are mapped, point the VPC-DI boot configuration to the image by setting the right boot priority
and reload the VPC-DI.

Rules for VM Recovery
When you create a spare VM by cloning an old VM, you will encounter a mac address mismatch issue. The
following are the VM Recovery rules for replacing to spare VM:

1. Do not use the VM suspend/resume.

2. You can shutdown/reboot the VM. It owns the slot as long as it is not deleted.

3. You can replace the faulty VM with the new one by recreating it only after deleting the faulty VM. The
new VM can use the slot of the faulty VM.

4. If you want to bring back the faulty VM, you can recreate it and assign a slot that is not currently in use.

VPC-DI Installation Notes
39

VPC-DI Installation Notes
VMware Installation Notes

VPC-DI Installation Notes
40

VPC-DI Installation Notes
Rules for VM Recovery

	VPC-DI Installation Notes
	Creating a Boot Parameters File
	Format of the Boot Parameters File
	Network Interface Roles
	Network Interface Identification
	Configuring Boot Parameters
	Configuring Network Interface Bonding
	Configuring a VNFM Interface
	VNFM Interface Options

	Configuring the DI Network VLAN
	Configuring IFTASK Tunable Parameters
	Increased Maximum IFtask Thread Support
	Feature Summary and Revision History
	Feature Changes

	Configure MTU Size
	Configure Support for Traffic Above Supported MTU
	Boot Parameters File Examples

	VPC-DI Onboarding using ESC
	Onboarding the VPC-DI with ESC on OpenStack
	Customizing the VPC-DI Onboarding with ESC
	OpenStack Performance Optimizations
	Configuring CPU Pinning
	Configuring Huge Pages
	Configuring PCI Passthrough

	Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack
	VPC-DI Heat Orchestration Templates
	VPC-DI HOT Parameter Groups
	VPC-DI HOT Parameters
	VPC-DI HOT Resources
	HOT Resources for CF
	HOT Resources for SF

	VPC-DI HOT Outputs

	VMware Installation Notes
	Rules for VM Recovery

