VPC-DI Installation Notes

This guide assumes that components of VPC-DI have been properly installed to run in virtual machines (VMs)
on commercial off-the shelf (COTS) servers. This chapter provides some installation notes that may assist in
the installation process.

* Creating a Boot Parameters File, on page 1

» VPC-DI Onboarding using ESC, on page 16

* Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack, on page 26
* VMware Installation Notes, on page 39

* Rules for VM Recovery, on page 39

Creating a Boot Parameters File

The boot parameters file provides a means to pass configuration items to StarOS before it boots. The parameters
are typically necessary to successfully load StarOS and specify items such as virtual slot number, VM type,
NIC assignment and network bonding configuration.

By default, VPC-DI assigns the vNIC interfaces in the order offered by the hypervisor. To configure your
vNICs manually according to a specific order, you need to create a boot parameters file. You also must create
a boot parameters file if you want to enable a VNFM interface.

The boot parameters are sourced in multiple ways, with all methods using the same parameter names and
usage. The first location for the boot parameters file is on the first partition of the first VM drive, for example,
/bootl/param.cfg. The second location searched is on the configuration drive, which is a virtual CD-ROM
drive. If you are using OpenStack, specify the target boot parameters file name as staros_param.cfg. If you
are not using OpenStack, create an ISO image with staros_param.cfg in the root directory and attach this ISO
to the first virtual CD-ROM drive of the VM.

As the VM boots, the param.cfg file is parsed first by the preboot environment known as CFE. Once the VM
starts Linux, the virtual CD-ROM drive is accessed to parse the staros_param.cfg file. If there are any conflicts
with values stored in the /bootl/param.cfg file, parameters in staros_param.cfg take precedence.

If you do not create a boot parameters file, the default file is used. If you create a boot parameters file, all
parameters described in Configuring Boot Parameters, on page 7 must be defined.

Format of the Boot Parameters File

The structure of the boot parameters file is:

VPC-DI Installation Notes .



VPC-DI Installation Notes |
. Network Interface Roles

VARIABLE NAME = VALUE

Specify one variable per line with a newline as the end of the line terminator (UNIX text file format). Variable
names and values are case insensitive. Invalid values are ignored and an error indication is displayed on the
VM console. If there are duplicate values for a variable (two different values specified for the same variable
name), the last value defined is used.

Numeric values do not need to be zero padded. For example a PCI_ID of 0:1:1.0 is treated the same as
0000:01:01.0.

Network Interface Roles

Network interfaces serve specific roles depending on whether the VM is used for a CF or SF.

All system VMs have a network interface connection to the DI internal network. This network links all the
VMs in a VPC-DI instance together. This network must be private to a VPC-DI instance and is configured
by the system software.

All VMs have the option of configuring a network interface that is connected to the virtual network function
(VNF) manager (VNFM) if it exists. This interface can be configured via DHCP or static IP assignment and
is used to talk to a VNFM or higher level orchestrator. This interface is enabled before the main application

starts.

On CFs, one additional interface connects to the management network interface. This interface is typically
configured in StarOS and should be part of the Day 0 configuration. The management interface supports static
address assignment through the main StarOS configuration file.

On SFs, an additional 0 to 12 network interfaces serve as service ports. These interfaces are configured by
StarOS. Typically these ports are configured as trunk ports in the VNF infrastructure (VNFI).

Table 1: Network Interface Roles

Interface Role Description

DI INTERFACE Interface to the DI internal network, required for all VM types

MGMT_INTERFACE Interface to the management port on the CF VM

SERVICE# INTERFACE Service port number # on the SF VM, where # can be from 1 to 12.

VNFM_INTERFACE Optional network interface to the VNFM or orchestrator, valid for all VM
types

\}

Note  Although VIRTIO interfaces can be used for the DI INTERFACE role and the SERVICE# INTERFACE
roles, they are not recommended.

Network Interface Identification

By default the first NIC found by a VPC-DI VM is assigned the DI internal network role. Additional ports
serve as either the management interface on the CF or service ports on the SF. No interface is used as the
VNFM interface by default.

. VPC-DI Installation Notes



| VPC-DI Installation Notes
Network Interface Identification .

VPC-DI assigns the vNIC interfaces in the order offered by the hypervisor. You cannot be guaranteed that
the order of the vNICs as listed in the hypervisor CLI/GUI is the same as how the hypervisor offers them to
the VM.

The order that VPC-DI finds the vNICs is subject to the PCI bus enumeration order and even paravirtual
devices are represented on the PCI bus. The PCI bus is enumerated in a depth first manner where bridges are
explored before additional devices at the same level. If all the network interfaces are of the same type then
knowing the PCI topology is sufficient to get the vNIC order correct. If the network interfaces are of different
types, then the order is dependent on the PCI topology plus the device driver load order inside the VM. The
device driver load order is not guaranteed to be the same from software release to release but in general
paravirtual devices are prior to pass-through devices.

There are several methods available to identify NICs.
* MAC address: MAC address of the interface
* Virtual PCI ID

* Bonded interfaces: When using network device bonding, network interfaces are identified to serve as
the slave interface role. The slave interfaces in the bond are identified using MAC, PCI ID, or Interface

type.

* Interface type and instance number.

Virtual PCI ID

Devices on a PCI bus are identified by a unique tuple known as the domain, bus, device, and function numbers.
These identifiers can be identified in several ways.

Inside the guest, the Ispci utility shows the bus configuration:

# lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)

00:02.0 VGA compatible controller: Cirrus Logic GD 5446

00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer

00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device

00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

The domain, bus, device, and function numbers for this virtual bus are shown here:

Table 2: Virtual PCI IDs

Line Domain |Bus Device |Function
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC | 0 0 0 0
[Natoma] (rev 02)

00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA 0 0 1 0
[Natoma/Triton II]

VPC-DI Installation Notes .



VPC-DI Installation Notes |
. Network Interface Identification

Line Domain |Bus Device |Function
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE |0 0 1 1
[Natoma/Triton II]

00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB | 0 0 1 2
[Natoma/Triton II] (rev 01)

00:01.3 Bridge: Intel Corporation 82371 AB/EB/MB PIIX4 ACPI | 0 0 1 3
(rev 03)

00:02.0 VGA compatible controller: Cirrus Logic GD 5446 0 0 2 0
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog | 0 0 3 0
Timer

00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory | 0 0 4 0
balloon

00:05.0 Ethernet controller: Red Hat, Inc Virtio network device | 0 0 5 0
00:06.0 Ethernet controller: Red Hat, Inc Virtio network device | 0 0 6 0

For libvirt-based virtual machines, you can get the virtual PCI bus topology from the vir sh dumpxml command.
Note that the libvirt schema uses the term slot for the device number. This is a snippet of the xml description
of the virtual machine used in the previous example:

<interface type='bridge'>

<mac address='52:54:00:c2:d0:5f"'/>

<source bridge='br3043'/>

<target dev='vnet0'/>

<model type='virtio'/>

<driver name='vhost' queues='8"'/>

<alias name='net0'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
</interface>
<interface type='bridge'>

<mac address='52:54:00:c3:60:eb'/>

<source bridge='br0'/>

<target dev='vnetl'/>

<model type='virtio'/>

<alias name='netl'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</interface>

Interface Type and Instance Number

Here the NIC is identified by its type using its Linux device driver name (virtio_net, vmxnet3, ixgbe, i40e,
etc) and its instance number. The instance number is based on PCI enumeration order for that type of interface
starting at instance number 1. The interface type is available to identify both paravirtual types as well as
pass-through interfaces and SR-IOV virtual functions. The PCI enumeration order of devices on the PCI bus
can be seen from the Ispci utility, which is on the host OS.

For example, a CF with the following guest PCI topology indicates that virtio_net interface number! is the
Ethernet controller at 00:05.0 and virtio_net interface number 2 is the Ethernet Controller at 00:06.0. The
output is from the Ispci command executed in the guest:

. VPC-DI Installation Notes



| VPC-DI Installation Notes

# lspci

00:
00:
00:
00:

00
00

00:
00:
00:
00:

00.
01.
01.
01.
:01.
:02.
03.
04.
05.
06.

OO OO WNEFE OO

Host bridge: Intel Corporation 440FX - 82441FX PMC
ISA bridge: Intel Corporation 82371SB PIIX3 ISA
IDE interface: Intel Corporation 82371SB PIIX3 IDE

Network Interface Identification .

[Natoma] (rev 02)

[Natoma/Triton II]

[Natoma/Triton II]

USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)

Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI
VGA compatible controller:

Cirrus Logic GD 5446

(rev 03)

System peripheral: Intel Corporation 6300ESB Watchdog Timer

Unclassified device
Ethernet controller:
Ethernet controller:

[00ff]: Red Hat,

Red Hat,
Red Hat,

Inc Virtio memory balloon

Inc Virtio network device
Inc Virtio network device

Here is the complete list of the supported Linux drivers:

Table 3: Supported Linux Drivers

Type PCI Vendor / Device ID Driver Name
VIRTIO (paravirtual NIC for KVM) 0x10af / 0x1000 virtio_net
VMXNETS3 (paravirtual NIC for VMware) | 0x15ad / 0x07b0 vmxnet3

VPC-DI Installation Notes .



. Network Interface Identification

VPC-DI Installation Notes |

Type

PCI Vendor / Device ID

Driver Name

Intel 10 Gigabit Ethernet

0x8086 / 0x10b6
0x8086 / 0x10c6
0x8086 / 0x10c7
0x8086 / 0x10c8
0x8086 / 0x150b
0x8086 / 0x10dd
0x8086 / 0x10ec
0x8086 / 0x10f1
0x8086 / 0x10el
0x8086 / 0x10db
0x8086 / 0x1508
0x8086 / 0x10£7
0x8086 / 0x10fc
0x8086 / 0x1517
0x8086 / 0x101b
0x8086 / 0x1507
0x8086 / 0x1514
0x8086 / 0x1019
0x8086 / 0x152a
0x8086 / 0x1529
0x8086 / 0x151c
0x8086 / 0x1018
0x8086 / 0x1528
0x8086 / 0x154d
0x8086 / 0x154f
0x8086 / 0x1557

ixgbe

Intel 10 Gigabit NIC virtual function

0x8086 / 0x10ed
0x8086 / 0x1515

ixgbevf

Cisco UCS NIC

0x1137 / 0x0043
0x1137 / 0x0044
0x1137/0x0071

enic

. VPC-DI Installation Notes



| VPC-DI Installation Notes
Configuring Boot Parameters .

Type PCI Vendor / Device ID Driver Name

Mellanox ConnectX-5 0x15b3 / 0x1017 mlx5 core
0x15b3 /0x1018

Intel XL 710 family NIC (PF) 0x8086 / 0x1572 (40 gig) 140e**
0x8086 / 0x1574 (40 gig)
0x8086 / 0x1580 (40 gig)

0x8086 / 0x1581 (40 gig)
0x8086 / 0x1583 (40 gig)
0x8086 / 0x1584 (40 gig)
0x8086 / 0x1585 (40 gig)
0x8086 / 0x158a (25 gig)
0x8086 / 0x158b (25 gig)

Intel XL 710 family NIC virtual function |0x8086 / 0x154c i40evf

** Note: A known issue exists where MAC address assignment does not occur dynamically for SRIOV VFs
created on the host when using the i40e driver. MAC address assignment is necessary to boot the StarOS VM.
As a workaround, MAC address assignment must be configured from the host. Refer to the following link for
more information:https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/
x1710-sr-iov-config-guide-gbe-linux-brief.pdf

Configuring Boot Parameters

If you do not create a boot parameters file, the default file is used. If you create a boot parameters file, all
parameters described in this task must be defined.

Before you begin

Refer to Network Interface Roles, on page 2 and Network Interface Identification, on page 2 for more
information on determining the interface identifiers for your VM interfaces.

Step 1 CARDSL OT=slot-number

slot_number is an integer between 1 and 32 that indicates the slot number or VM. CF slots can be 1 or 2. SF slots can
range from 3 to 48.

Step 2 CARDTY PE=card-type
card-type identifies whether the VM is a CF or SF.
*» Use 0x40010100 for Control Function.

» Use 0x42020100 for Service Function.

Step 3 interface-role_INTERFACE=interface-id

VPC-DI Installation Notes .


https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf

VPC-DI Installation Notes |
. Configuring Network Interface Bonding

Valid values for interface-role are:
* DI
* MGMT
» SERVICE#, where # can range from 1 to 12
* VNFM

For example, DI INTERFACE=interface-id.
Refer to Network Interface Roles, on page 2 for more information on interface roles.
Valid values for interface-id are:

* MAC: XXIXXIXX!XX:XX:XX

* PCIL_ID:xxxx:xx:xx.X (Domain:Bus:Device.Function)

* TYPE:drive-name-instance-number

« BOND: slave-interface-A,dave-interface-B

Refer to Network Interface Identification, on page 2 for information on determining the interface identifier.
Example:
This example identifies the interface by its MAC address:

DI_INTERFACE=MAC:00:01:02:03:04:05

This example identifies the interface by its guest PCI address:

DI_INTERFACE=PCI ID:0000:01:02.0

This example identifies the interface by its interface type (1st virtio interface):

DI_INTERFACE=TYPE:enic-1

Example:

This example identifies the interfaces as a network bond interface. The example illustrates identifying the interface using
MAC address, PCI identifier and interface type:

DI INTERFACE=BOND:MAC:00:01:02:03:04:05,MAC:00:01:02:03:04:06
# or
DIiINTERFACE=BOND:PCIiID:OOOO:01:01.0,PCIiID:OOOO:01:O2.0

# or

DIiINTERFACE=BOND:TYPE:enic—l,TYPE:enic—2

Configuring Network Interface Bonding

The system supports configuring pairs of network interfaces into an active/standby bonded interface. Only
one interface is active at a time and failure detection is limited to the loss of the physical link. Use this task
to configure bonded interfaces.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

Step 1

Step 2

Step 3

Step 4

Configuring Network Interface Bonding .

All bonding variable names use the format interface-role BOND. Refer to Network Interface Roles, on page
2 for information on interface roles.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

interface-role BOND PRIMARY=interface-id

Configures the primary slave interface if you have a preference for a particular interface to be active the majority of the
time. The default bond configuration does not select a primary slave.

Refer to Network Interface Roles, on page 2 for information on interface roles; refer to Network Interface Identification,
on page 2 for information regarding interface identifiers.

Note By default, the reversion policy is that the bond only reverts back to the primary interface on a subsequent
failure of the new active link.

By default, the failure detection method is that the bond uses the driver state to poll link status of the underlying

interfaces.

Example:
This example specifies the primary interface using a MAC address:

DI_INTERFACE BOND PRIMARY=MAC:00:01:02:03:04:05

This example specifies the primary interface using a PCI identifier:

DI_INTERFACE BOND PRIMARY=BOND:PCI ID:0000:01:01.0

This example specifies the primary interface using an interface type identifier:

Example:

DI INTERFACE BOND PRIMARY=BOND:TYPE:enic-1

interface-role BOND MII_POLL = poll-interval

Specifies the poll interval, in milliseconds, to use when MII is used for link detection. The poll interval can range from
0 to 1000. The default is 100.

interface-role BOND MII_UPDELAY=slave-enable-delay

Specifies how long to wait for the link to settle before enabling a slave interface after a link failure, when MII is used for
link detection. The link state can bounce when it is first detected. This delay allows the link to settle before trying to use
the interface and thereby avoids excessive flips in the active slave for the bond interface.

The slave enable delay must be a multiple of the MII poll interval. Values are in milliseconds and the default is 0.

interface-role BOND MII DOWNDELAY=slave-disable-delay

VPC-DI Installation Notes .



VPC-DI Installation Notes |

. Configuring a VNFM Interface

Optional. When used, it allows the bond to wait before declaring that the slave interface is down, when MII is used for
link detection. The slave disable delay must be a multiple of the MII poll interval. Values are in milliseconds and the
default is 0.

Configuring a VNFM Interface

A virtual network function management (VNFM) interface is designed to communicate between each VM
and a VNFM. This interface is brought up before the main application and can be configured only using the
boot parameters. The VNFM interface is disabled by default.

Use this task to configure a VNFM interface:

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

Step 1 VNFM_IPV4 ENABLE=({true | false}

Enables the VNFM interface.
Step2  VNFM_CARTRIDGE AGENT={true | false}

Enables the cartridge agent. This must be enabled if the VNFM is using the cartridge agent.
Step 3 VNFM _IPV4 DHCP_ENABLE={true | false}

Enables DHCP on the VNFM.
Step 4 VNFM_IPV4 ADDRESS=X.X.X.X

Specifies the IP address for the VNFM where DHCP is not used.
Step 5 VNFM_IPV4 NETMASK=X.X.X.X

Specifies the netmask for the IP address of the VNFM where DHCP is not used.
Step 6 VNFM_IPV4 GATEWAY=X.X.X.X

Specifies the gateway for the IP address of the VNFM where DHCP is not used.
VNFM Interface Options

)

Note These configuration options are optional.

The virtual network functions manager (VNFM) interface is designed to communicate between each VM and
a VNFM. The VNFM interface initializes before the main application and only boot parameters can configure
the interface.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

The VNFM interface is disabled by default.

Enable VNFM IPv4 Interface
The default value is False (disabled).

VNFM Interface Options .

Variable

Valid Values

VNFM_IPV4 ENABLE

True or False

Configure IPv4 DHCP Client

Variable

Valid Values

VNFM _1PV4 DHCP _ENABLE

True or False

Configure IPv4 Static IP

Note

If IPv4 DHCP client is enabled, static configuration parameters are ignored.

Variable Valid Values
VNFM_IPV4 ADDRESS X.X.X.X
VNFM_IPV4 NETMASK X.X.X.X
VNFM_IPV4 GATEWAY X.X.X.X
Enable VNFM IPv6 Interface.

Variable Valid Values

VNFM _IPV6 ENABLE

True or False

Enable IPv6 Static IP Configuration

Variable

Valid Values

VNFM_IPV6_STATIC_ENABLE

True or False

If set to true, static IP parameters configuration applies to the interface as shown in the following section. If
set to false, the interface attempts to use both stateless autoconfiguration (RFC4862) and DHCPv6 to configure

the address of the interface.

VPC-DI Installation Notes .



VPC-DI Installation Notes |

. Configuring the DI Network VLAN

\}

Configure IPv6 Static IP

Note

Ifthe "VNFM _IPV6_ENABLE" parameter value is set to false, the static configuration parameters are ignored.
The IPv6 address field should conform to RFC 5952. Prefix is fixed at /64.

Variable Valid Values
VNFM_IPV6 ADDRESS XIXIXIXIXIXIXIX
VNFM_IPV6_GATEWAY XIXIXIXIXIXIXIX

Configuring the DI Network VLAN

The DI network requires a unique and isolated network available for its use. When using pass-through interfaces,
a VLAN ID can be configured to allow for easier separation of the VPC-DI instances in the customer network.
Optionally, the DI Network VLAN can also be tagged on the host or even the L2 switch, if there are dedicated
ports on the host.

Use this task to configure the VLAN.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

DI Internal VLANID=vian-id

Specifies a VLAN ID for the internal DI network. Values can range from 1 to 4094.

Example:

DI INTERNAL VLANID=10

Configuring IFTASK Tunable Parameters

\}

By default, DPDK allocates 30% of the CPU cores to the Internal Forwarder Task (IFtask) process. You can
configure the resources allocated to IFTASK using these boot parameters. Use the show cpu info and show
cpu ver bose commands to display information regarding the CPU core allocation for IFTASK.

Note

These are optional parameters that should be set with extreme care.

Step 1 (Optional) IFTASK _CORES=percentage-of-cores

Specify the percentage of CPU cores to allocate to IFTASK. Values can range from 0 to 100 percent. The default is 30.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

Step 2

Step 3

Step 4

Step 5

Step 6

Configuring IFTASK Tunable Parameters .

(Optional) MCDMA_THREAD_DI SABL E=percentage-of-iftask-cores

Set the MCDMA THREAD DISABLE parameter to 1 to run PMDs on all cores, rather than using an MCDMA - VNPU
split.

(Optional) IFTASK_SERVICE_TYPE=value

Specifies the service type being deployed in order to calculate the service memory and enable service-specific features.
The following service types can be specified:

* 0 = VPC service type

* 1 = GiLAN service type

» 2 =ePDG service type

* 3 = CUPS controller service type

* 4 = CUPS forwarder service type

The default is 0.

(Optional) IFTASK_CRYPTO_CORES=value

When IFTASK_SERVICE_TYPE is configured to "2" (EPDG), this parameter specifies the percentages of iftask cores
to allocate to crypto processing. Values can range from 0 to 50 percent, though the cores dedicate will be capped at 4.
The default is 0.

Note This parameter should only be used if the IFTASK_SERVICE_TYPE is set to "2" (EPDG). If it is set to any
other service type, then this parameter should be set to "0".

(Optional) IFTASK_DISABLE_NUMA_OPT=value

Use this setting to disable the NUMA optimizations, even though more than 1 NUMA node is presented to the VM by
the host. This option can be set when NUMA optimizations are not desirable for whatever reason.

* NO = enabled (default)
* YES = disabled

NUMA optimization is enabled by default, except for the following cases:
* The number of NUMA nodes/cells does not equal 2.

* Card type is Control Function (CF), Application Function (AF), or Network Function (NF). Only Service Function
(SF) VMs support NUMA.

* The service type of the VM is not VPC. NUMA is only supported for VPC service type.
* This setting is explicitly set to YES (IFTASK_DISABLE_NUMA_OPT=YES).

(Optional) IFTASK_VNPU_TX_MODE=value

The compute nodes in an Ultra M deployment have 28 cores. Two of these cores are reserved for use by the host. When
26 cores are utilized, this results in an unequal distribution of MCDMA channels across the cores used to perform MCDMA
work.

When this setting is enabled, the MCDMA function cores in iftask are split equally as MCDMA cores and VNPU TX
lookup cores.

VPC-DI Installation Notes .



. Increased Maximum IFtask Thread Support

* 0 = disabled (Default)

* 1 = enabled

VPC-DI Installation Notes |

Step7  (Optional) MULTI_SEG_MBUF_ENABLE=value

By default in release 21.6 and higher, the system enables the use of multi-segmented transmission/reception with smaller
size buffers in all memory pools for Ixgbe pf/vf drivers. This feature reduces the overall memory size of IFTASK and
makes it more suitable for small deployments.

* 1 = true (default for Ixgbe NICs).

* 0 = false (default for all other NICs).

Important Care must be taken when upgrading to 21.6 on systems which use Ixgbe NICs as this feature by default is

enabled.

This feature is automatically disabled for any system not using the Ixgbe vf/pf NICs NICs.

Example

Use the StarOS command show cloud har dwareiftask card_number to verify that the boot
parameters took effect:

[local]lmySystem# show cloud hardware iftask 4

Card 4:

Total number of

Number
Number
Number
Number
Number
Hugepage

Poll CPU'

of
of
of
of
of

cores
cores
cores
cores
cores

size:

Total hugepages:
NPUSHM hugepages:
CPU flags: avx sse sse2 ssse3 ssed_ 1 ssed 2

S:

123

cores on VM: 4
for PMD only:

for VNPU only:
for PMD and VNPU:
for MCDMA:

for Crypto

O B> W o o N

2048 kB
3670016 kB
0 kB

45 6 7

KNI reschedule interval: 5 us

Increased Maximum IFtask Thread Support

Feature Summary and Revision History

Summary Data

Area

Applicable Product(s) or Functional | All

Applicable Platform(s) VPC-DI

Feature Default

Enabled - Always-on

Related Changes in This Release Not applicable

. VPC-DI Installation Notes



| VPC-DI Installation Notes
Feature Changes .

Related Documentation VPC-DI System Administration Guide

Revision History

| A

Important  Revision history details are not provided for features introduced before releases 21.2 and N5.1.

Revision Details Release

From this release, the maximum number of [Ftask threads configuration supported |21.8
is increased to 22 cores.

First introduced. Pre 21.2

Feature Changes

When the number of DPDK Internal Forwarder (IFTask) threads configured (in /tmp/iftask.cfg) are greater
than 14 cores, the IFTask drops packets or displays an error.

Previous Behavior: Currently, the maximum number of [Ftask threads configuration is limited to only 14
cores.

New Behavior: From Release 21.8, the maximum number of IFtask threads configuration supported is
increased to 22 cores.

Configure MTU Size

By default, the IFTASK process sets the maximum interface MTU as follows:
* Service interfaces: 2100 bytes

* DI network interface: 7100 bytes

These default can be modified by setting the following parameters in the param.cfg file:

Table 4: MTU Size Parameters

Parameter Name Range Default Value
DI_INTERFACE _MTU= 576-9100 7100
SERVICE_INTERFACE_MTU=|576-9100 2100

Refer to Configure Support for Traffic Above Supported MTU, on page 15 for configuring the MTU size for
a system which does not support jumbo frames.

Configure Support for Traffic Above Supported MTU

By default, jumbo frame support is required for the system to operate. If your infrastructure does not support
jumbo frames, you can still run the system, however you must specify the MTU for the DI internal network

VPC-DI Installation Notes .



VPC-DI Installation Notes |
. Boot Parameters File Examples

to be 1500 in the boot parameters file. This allows the IFTASK to process DI network traffic that is above
the supported MTU.

Before you begin

All boot parameters described in this task are optional. If these parameters are required, add them to the boot
parameters file together with the required parameters described in Configuring Boot Parameters, on page 7.

DI_INTERFACE_MTU=1500

Specifies that the DI internal network does not support jumbo frames so that the software handles jumbo frames
appropriately.

Boot Parameters File Examples

This example shows a boot parameters file for a CF in slot 1 with two VIRTIO interfaces:

CARDSLOT=1

CARDTYPE=0x40010100

DI INTERFACE=TYPE:enic-1

MGMT INTERFACE=TYPE:virtio net-2

This example shows a boot parameters file for an SF in slot 3 with three VIRTIO interfaces:

CARDSLOT=3

CARDTYPE=0x42020100

DI INTERFACE=TYPE:enic-1
SERVICEl INTERFACE=TYPE:enic-3
SERVICE2 INTERFACE=TYPE:enic-4

This example shows a boot parameters file for a CF with pass-through NICs, bonding configured and a DI
internal network on a VLAN:

CARDSLOT=1

CARDTYPE=0x40010100

DI INTERFACE=BOND:TYPE:enic-1,TYPE:enic-2
MGMT INTERFACE=BOND:TYPE:ixgbe-3, TYPE:ixgbe-4
DI _INTERNAL VLANID=10

VPC-DI Onboarding using ESC

You can use ESC to start an instance of the VPC-DI.

Onboarding the VPC-DI with ESC on OpenStack

This procedure describes how to onboard the VPC-DI on an instance of ESC in an OpenStack environment.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

Step 1

Step 2

Step 3
Step 4
Step 5
Step 6

Step 7

Onboarding the VPC-DI with ESC on OpenStack .

Before you begin

This procedure assumes that you have ESC created in a functioning OpenStack environment running release
Juno or later with network access. For the detailed ESC installation procedure, refer to the Cisco Elastic
Services Controller 2.3 Install and Upgrade Guide: http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic
services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html. For
a description of the ESC configuration, refer to the Cisco Elastic Services Controller 2.3 User Guide:
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services controller/2-3/user/guide/
Cisco-Elastic-Services-Controller-User-Guide-2-3.html

Refer to the Release Notesto determine the version of Elastic Services Controller supported for this release.

Get the qcow images of the VPC-DI instances for CF and SF.

The tarball file with the images is named something similar to production.xxxxx.qvpc-di.gcow2.tgz,
depending on the release number. This archive includes two images for the CF and SF respectively: qvpc-di-cf.qcow?2
and qvpc-di-xf.qcow?2.

Create the VPC-DI images in glance using the command glance image-cr eate.

Example:

$ glance image-create --file gvpc-di-cf.gcow2 --container-format bare --disk-format
gcow2 --is-public true --name cisco-gvpc-cf

$ glance image-create --file gvpc-di-xf.gcow2 --container-format bare --disk-format
gcow2 --is-public true --name cisco-gvpc-xf

Get the VPC-DI sample initialization tarball (vpc_esc_sample.tgz).

Copy the VPC-DI sample initialization tarball to the ESC VM at the admin home (/home/admin/).
Untar the VPC-DI sample initialization tarball to the vnf directory: opt/cisco/vnfs/cisco-qvpc/.
Create the artifacts using the command line API command esc_nc_cli edit-config .

Example:

esc_nc_cli edit-config /opt/cisco/vnfs/cisco-qvpc/dep/artifacts.xml

Deploy the VPC-DI using the command esc_nc_cli edit-config.

Note Make sure to delete an existing deployment before redeploying the ESC. See Step 10.

The VPC-DI is deployed using the dep.xml file located in /opt/cisco/vnfs/cisco-gvpc/dep/. In general,
you can use the default dep.xml file. If you need to customize the deployment, make any required changes to this file.
For example, you can edit the chassis key that is used to create the chassis ID for your VPC-DI by editing the appropriate
section in the dep.xml file:
<property>

<name>CHASSIS KEY</name>

<value>164c03a0-eebb-44a8-87fa-20c791claabd</value>
</property>

For a complete description of the dep.xml file, refer to: http://www.cisco.com/c/en/us/td/docs/net mgmt/elastic_services
controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf

Example:

VPC-DI Installation Notes .


http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/install/guide/Cisco-Elastic-Services-Controller-Install-Upgrade-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/user/guide/Cisco-Elastic-Services-Controller-User-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-3/user/guide/Cisco-Elastic-Services-Controller-User-Guide-2-3.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf
http://www.cisco.com/c/en/us/td/docs/net_mgmt/elastic_services_controller/2-2/deployment/Cisco-Elastic-Services-Controller-2-2-Deployment-Attributes.pdf

VPC-DI Installation Notes |

. Customizing the VPC-DI Onboarding with ESC

Step 8
Step 9
Step 10

Step 11

esc_nc_cli edit-config /opt/cisco/vnfs/cisco-qvpc/dep/dep.xml

This command may create a new tenant Core, if it does not already exist. Depending on which dep*.xml is used, the
deployment might hit a "quota exceeded" error. If all SF and CFs do not boot, verify the default tenant quota and quota
for tenant Core in OpenStack. The command to do this is $ nova quota-defaults; nova quota-show --tenant

Core

Verify the deployment status in the log file var/log/esc/yangesc.log.

Wait for the VPC-DI to converge.

To delete the VPC-DI deployment, use the ESC CLI command: esc_nc_cli delete-dep Tenant deployment-name
Example:

$ ./esc_nc_cli delete-dep Core cisco-gvpc

(Optional) To use custom monitoring, before deploying the VPC-DI (Step 7) do the following:
a) Copy the mib file.

Example:

sudo cp /opt/cisco/vnfs/cisco-qvpc/config/starent.my /usr/share/snmp/mibs/

b) Add dynamic mapping metrics for the VPC-DI to any existing mappings. Merge the content of the file
/opt/cisco/vnfs/cisco-qvpe/config/dynamic_mappings_snippet.xml to
/opt/cisco/esc/esc-dynamic-mapping/dynamic_mappings.xml. Extra care should be taken for this step. For each
SF, there needs to be one dynamic mapping in /opt/cisco/esc/esc-dynamic-mapping/dynamic_mappings.xml.

Customizing the VPC-DI Onboarding with ESC

After onboarding the VPC-DI with ESC, all VPC-DI files are located in the directory /opt/cisco/vnfs/cisco-qvpc/.
There are numerous changes that can be made to the installation of your VPC-DI system. The following files
can be altered as required.

VNF Deployment File
The deployment file is copied to your disk to the location: /opt/cisco/vnfs/cisco-qvpc/dep/.

You can create additional files as required.

Boot Parameter Files

You have several different boot parameter files for the various CF and SF VMs placed on your disk when
you onboard the VPC-DI with ESC. These files are copied to: /opt/cisco/vnfs/cisco-qvpc/config/.

* param.cfg

* param_sf.cfg

These can be customized according to your needs. Refer to Creating a Boot Parameters File, on page 1 for
more information on the boot parameters file format.

An example boot parameter file for a CF is shown here:

CARDSLOT=$SLOT_CARD NUMBER
CPUID=0

. VPC-DI Installation Notes



| VPC-DI Installation Notes
OpenStack Performance Optimizations .

CARDTYPE=SCARD TYPE NUM

DI_INTERFACE=TYPE:enic-1
VNFM_INTERFACE=TYPE:virtio_net-2
MGMT_INTERFACE=TYPE:virtio net-3

VNFM IPV4 ENABLE=true
VNFM IPV4 DHCP ENABLE=true

An example boot parameter file for an SF is shown here:

CARDSLOT=$SLOT_CARD NUMBER
CPUID=0
CARDTYPE=$CARD TYPE NUM

DI_INTERFACE=TYPE:enic-1
VNFM_INTERFACE=TYPE:enic-2
SERVICEl INTERFACE=TYPE:enic-3

VNFM IPV4 ENABLE=true
VNFM IPV4 DHCP ENABLE=true

Configuration File

You can customize the configuration file located at /cisco/images/system.cfg. An example of a standard
configuration file is shown here:

config

system hostname $VPC HOSTNAME

clock timezone S$TIMEZONE

context local

administrator admin password SADMIN PASS ftp

interface LOCAL1

ip address $CF_VIP ADDR $CF_VIP NETMASK
ip route 0.0.0.0 0.0.0.0 $NICID717GATEWAY LOCAL1
ip domain-lookup

ip domain-name $CF _DOMAIN NAME

ip name-servers $CF NAME SERVER

ssh generate key

server sshd

subsystem sftp

port ethernet 1/1

bind interface LOCALl local

no shutdown

snmp community $SNMP COMMUNITY read-only
end

Refer to Understanding Configuration Files for more information.

OpenStack Performance Optimizations

Cisco ESC allows a number of hypervisor optimizations using OpenStack Kilo release, such as non-uniform
memory access (NUMA) node configuration, support for huge pages and the pinning of guest vCPUs.

» vCPU pinning—ability for guest vCPUs to be strictly pinned to a set of host physical CPUs. This prevents
the potential wait by a vCPU for physical resources to become available.

VPC-DI Installation Notes .


21-22-vpc-di-sys-admin_chapter3.pdf#nameddest=unique_68

VPC-DI Installation Notes |

. Configuring CPU Pinning

N

* Large pages—allocation of larger blocks of memory to virtual resources.

* PCI-based NUMA scheduling—ability to assign a PCI device to an instance in OpenStack.

Note

\}

These OpenStack performance optimizations are supported using OpenStack Kilo version only.

OpenStack Kilo exposes various hardware acceleration features using a variety of mechanisms. One such
mechanism involves the setting of key-value attributes on flavor objects. VM instantiation requests which
reference a given flavor effectively request the corresponding hardware acceleration features. Provided the
necessary OpenStack configuration is in place on the OpenStack control and compute nodes, the OpenStack
compute service ("nova'") selects an appropriate compute node, and assigns the corresponding resources.

To use hardware acceleration on the VPC-DI you must create new flavors in Cisco ESC and add the required
metadata attributes using the NETCONF or REST interface. For information regarding flavors, refer to
Managing Flavorsin the Cisco Elastic Services Controller User Guide: http://www.cisco.com/c/en/us/support/
cloud-systems-management/elastic-services-controller-2-1/model.html. You may also require a number of
OpenStack configuration changes. The procedures for implementing hardware acceleration are described in
these tasks.

Note

Adding metadata is only supported for new flavors, not for existing ones. If metadata attributes need to be
added to existing flavors, you must interact with OpenStack directly.

Configuring CPU Pinning

Step 1

Step 2

On each OpenStack control node, configure the scheduler.

a) Configure the scheduler filters to include the NUMAToplogy and AggregatelnstanceExtraSpec filters:

b)

Example:

$ sudo vim /etc/nova/nova.conf

scheduler default filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,
ComputeCapabilitiesFilter, ImagePropertiesFilter,CoreFilter,NUMATopologyFilter,

AggregatelnstanceExtraSpecsFilter

Restart the nova scheduler service.

Example:

$ sudo systemctl restart openstack-nova-scheduler.service

On each relevant OpenStack compute node, configure which hypervisor processes are used for guests and which are not
to be used for guests.

a) Ensure that hypervisor processes do not run on cores reserved for guests.

For example, to reserve cores 2, 3, 6 and 7 for guests, update the grub bootloader and reboot.

Example:

. VPC-DI Installation Notes


http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-2-1/model.html
http://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-2-1/model.html

| VPC-DI Installation Notes

Step 3

Step 4

b)

d)

Configuring CPU Pinning .

$ sudo grubby --update-kernel=ALL --args="isolcpus=2,3,6,7"
$ sudo grub2-install /dev/sda
$ sudo reboot

Verify the kernel command line reflects the change.

Example:

$ cat /proc/cmdline
isolcpus=2,3,6,7

Configure guest virtual machine instances so that they are only allowed to run on specific cores and reserve RAM
for hypervisor processes. For example, to use cores 2, 3, 6 and 7 and reserve 512 MB for hypervisor processes:

Example:

$ sudo vim /etc/nova/nova.conf
vcpu pin set=2,3,6,7

reserved host memory mb=512

Restart the nova compute service.

Example:

$ sudo systemctl restart openstack-nova-compute.service

Configure the global parameters.

a)

b)

<)

Create a performance-pinned host aggregate for hosts that received pinning requests, and add an arbitrary attribute
pinned=true to identify it.
Example:

$ nova aggregate-create performance-pinned
$ nova aggregate-set-metadata performance-pinned pinned=true

Create the normal aggregate for all other hosts and add the same arbitrary attribute, but set pinned=false to identify
it.
Example:

$ nova aggregate-create normal
S nova aggregate-set-metadata normal pinned=false

Add the previously enabled compute nodes to the performance-pinned host aggregate, and add all other compute
nodes to the normal host aggregate.

Example:

$ nova aggregate-add-host normal computel00.cloud.com
$ nova aggregate-add-host normal computelOl.cloud.com
$ nova aggregate-add-host normal computel02.cloud.com
$ nova aggregate-add-host performance-pinned computelO3.cloud.com
$ nova aggregate-add-host performance-pinned computelO4.cloud.com
$ nova aggregate-add-host performance-pinned computelO5.cloud.com

Configure the flavor attributes using the Cisco ESC northbound API.

VPC-DI Installation Notes .



VPC-DI Installation Notes |

. Configuring CPU Pinning

a)

b)

<)

d)

Set the flavor attributes.
* hw:cpu_policy=dedicated

* aggregate instance extra_specs:pinned=true

All instances created using this flavor are sent to hosts in host aggregates with pinned=true in their aggregate metadata.

Example:

version='1.0' encoding="'ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory mb>2048</memory mb>
<root disk mb>10240</root disk mb>
<ephemeral disk mb>0</ephemeral disk mb>
<swap_disk mb>0</swap disk mb>
<properties>
<property>
<name>hw:cpu_policy</name><value>dedicated</value>
<name>aggregate_ instance_ extra specs:pinned</name><value>true</value>
</property>
</properties>
</flavor>
</flavors>
</esc_datamodel>

Update all other flavors to so that their extra specifications match them to the compute hosts in the normal aggregate.

Example:

$ nova flavor-key <flavor Id> set aggregate instance extra specs:pinned=false

To verify: launch a VM instance using the modified flavor and locate the compute node where the VM instance was
started.

Example:

$ nova boot --image <test-image> --flavor <modified-flavor> test-instance
$ nova show test-instance | egrep

'0OS-EXT-SRV-ATTR:hypervisor hostname|O0S-EXT-SRV-ATTR:instance name'

| OS-EXT-SRV-ATTR:hypervisor hostname | compute3.cloud.com

| OS-EXT-SRV-ATTR:instance name | instance-00000cee

Log into the returned compute node and use the virsh tool to extract the XML of the returned instance.

Example:

$ ssh compute3.cloud.com
$ sudo virsh dumpxml instance-00000cee

<vcpu placement='static' cpuset='2-3,6-7'>1</vcpu>

. VPC-DI Installation Notes



| VPC-DI Installation Notes
Configuring Huge Pages .

Configuring Huge Pages

Use this procedure to configure huge pages on your OpenStack configuration.

Step 1 Edit /etc/sysctrl.conf to configure the number of pages.

Example:
vm.nr hugepages = 32768

Step 2 Edit /proc/meminfo to set the page size.

Example:
Hugepagesize: 2048 kB

Step 3 Create a flavor with hw:mem page size=2048 using the Cisco ESC northbound API.

Example:

<?xml version='1l.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory mb>2048</memory_mb>
<root_disk mb>10240</root_disk mb>
<ephemeral disk mb>0</ephemeral disk mb>
<swap_disk mb>0</swap disk mb>
<properties>
<property>
<name>hw:mem_page_size</name><value>2048</value>
</property>
</properties>
</flavor>
</flavors>
</esc_datamodel>

Configuring PCI Passthrough

The Intel VT-d extensions provide hardware support for directly assigning a physical device to a guest. This
allows virtual devices to avoid the throughput loss and reduced packet forwarding capacity that would be
involved in traversing multiple switches or bridges to reach a physical interface.

The VT-d extensions are required for PCI passthrough with Red Hat Enterprise Linux. The extensions must
be enabled in the BIOS. Some system manufacturers disable these extensions by default.

This procedure does not cover enabling VT-d from the BIOS perspective; refer to your server manufacture
BIOS configuration guide to enable VT-d. From the Linux kernel perspective, VT-d is enabled by adding
"intel iommu=on" to grub config.

Before you begin

VT-d must be enabled on the Intel chipset to support PCI Passthrough.

VPC-DI Installation Notes .



VPC-DI Installation Notes |

. Configuring PCI Passthrough

Step 1 Enable VT-d support on Red hat Enterprise Linux.

a)

b)

Edit "/etc/default/grub" and add "intel iommu=on" to the end of the line: GRUB_CMDLINE LINUX.

Example:

GRUB_ TIMEOUT=5

GRUB DEFAULT=saved

GRUB DISABLE SUBMENU=true
GRUB_TERMINAL OUTPUT="console"

GRUB_CMDLINE LINUX="rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet
intel_iommu=on"
GRUB_DISABLE RECOVERY="true"

Regenerate grub.conf and reboot your server by running the grub2-mkconfig command.

Example:

grub2-mkconfig -o /boot/grub2/grub.cfg on BIOS systems

or

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg on UEFI systems

Check that IOMMU gets activated by running the command dmesg | grep -iE " dmar [iommu"
Example:
Sample output from the dmesg command with IOMMU enabled:

[ 0.000000] Kernel command line: BOOT IMAGE=/vmlinuz-3.10.0-229.el7.x86 64
root=/dev/mapper/rhel-root

ro rd.lvm.lv=rhel/swap crashkernel=auto rd.lvm.lv=rhel/root rhgb quiet intel iommu=on
[ 0.000000] Intel-IOMMU: enabled

Step 2 Unbind the device from the Linux kernel.

a)

b)

For PCI passthrough to work, a device must be unbound from the Linux kernel driver. To accomplish this, pci_stub
module is used.

Example:

Load pci stub module "modprobe pci stub"

Locate the network adapter you want to use for PCI passthrough. Run Ispci and note the PCI address of the desired
network card.

Example:
In this example, it is desired to use PCI device 15:00.0 for PCI passthrough.

12:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
13:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
14:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
15:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)

Identify the Vendor ID and Device ID. Run Ispci -n.
Example:
In this partial output, the Vendor ID 1137 and Device ID 0071 are identified.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

d)

Configuring PCI Passthrough .

11:00.0 0c04: 1137:0071 (rev a2)
12:00.0 0200: 1137:0071 (rev a2)
13:00.0 0200: 1137:0071 (rev a2)
14:00.0 0200: 1137:0071 (rev a2)
15:00.0 0200: 1137:0071 (rev a2)

Use this configuration to unbind the desired device from the Linux kernel driver.
Note that highlighted text must be changed for your device information.

Example:

echo "1137 0071" > /sys/bus/pci/drivers/pci-stub/new id
echo 0000:15:00.0 > /sys/bus/pci/devices/0000:15:00.0/driver/unbind
echo 0000:15:00.0 > /sys/bus/pci/drivers/pci-stub/bind

Verify the success of these command by running dmesg | grep stub.

Example:
[ 276.705315] pci-stub 0000:15:00.0: claimed by stub

To make the changes persistent, add the pci-stub.ids to grub CMDLINE, update grub and reboot the host.
Note Note that this code applies to all vNICs with the specifiedVender/Device ID (1137:0071 in this example).

Example:

edit /etc/default/grub

GRUB_CMDLINE LINUX=".. pci-stub.ids=1137:0071"
grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Step 3 Configure nova.conf in OpenStack.

a)

b)

©)

Specify which PCI devices are available for PCI passthrough, either using (vendorID, productID) combinations to
allow any PCI device with that (vendorid, productid) combination to be passed through, or by specifying PCI addresses
of devices allowed to be passed through.

pci passthrough whitelist={"vendor id": "1137", "product id": "0071"}
or
pci passthrough whitelist = [ {"address": "01:00.1"}, {"address": "02:00.1"} ]

Specify the PCI alias to (product ID, vendor ID) combination mapping. Note that this setting does currently not
support PCI addresses, so all PCI devices on the whitelist have the same name.

Example:

pci alias={"vendor id":"1137", "product id":"0071", "name":"nicl"}

Make the following additional changes to nova.conf

Example:

scheduler driver=nova.scheduler.filter scheduler.FilterScheduler

scheduler available filters=nova.scheduler.filters.all filters

scheduler available filters=nova.scheduler.filters.pci passthrough filter.PciPassthroughFilter
scheduler default filters=RamFilter,ComputeFilter,AvailabilityZoneFilter, ComputeCapabilitiesFilter, ImagePropertiesFilter

VPC-DI Installation Notes .



VPC-DI Installation Notes |
. Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack

d) Restart nova.

Example:

openstack-service restart nova

Step 4 Create a flavor with the attribute pci_passthrough:alias set to <PCI_ DEVICE ALIAS>:<NUM_DEVICES REQUESTED>.
The PCI_DEVICE_ALIAS references values from the pci_alias setting in /etc/nova/nova.conf.

Example:

$ cat fl.xml
<?xml version='1l.0' encoding='ASCII'?>
<esc_datamodel xmlns="http://www.cisco.com/esc/esc">
<flavors>
<flavor>
<name>testfl6</name>
<vcpus>1</vcpus>
<memory mb>2048</memory mb>
<root_disk mb>10240</root_disk mb>
<ephemeral disk mb>0</ephemeral disk mb>
<swap_disk mb>0</swap disk mb>
<properties><property>
<name>pci passthrough:alias</name><value>niclg:1</value>
</property></properties>
</flavor>
</flavors>
</esc_datamodel>
$ sudo /opt/cisco/esc/esc-confd/esc-cli/esc_nc_cli edit-config ./fl.xml

Onboarding the VPC-DI with Heat Orchestration Templates
(HOT) in OpenStack

VPC-DI can be deployed as a Virtual Network Function (VNF) in an Openstack environment. VPC-DI runs
as a collection of Virtual machines and the VMs have specific requirements with respect to storage, networking,
and configuration. In the Openstack environment, the Orchestrator is responsible for creating the objects
required to bring up the VPC-DI VMs. The orchestrator is also responsible for creating and terminating the
VMs and their associated objects. The orchestrator interfaces with Openstack services to create such entities
in Openstack.

Openstack provides a service called HEAT orchestration templates (HOT) which defines the network, compute
and storage topology of a VNF via a template. The HEAT template can be used as the blueprint for deploying
an instance of the VNF.

The format of the templates and an example of the ENV parameters file are provided later in this section.

Step 1 Get the qcow images of the VPC-DI instances for CF and SF.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

Step 2

Step 3
Step 4
Step 5
Step 6

Step 7

Step 8
Step 9
Step 10

VPC-DI Heat Orchestration Templates .

The tarball file with the images is named something similar to production.xxxxx.qvpc-di.qcow?2.tgz, depending on the
release number. When the tarball file is open there should be two images for the CF and SF: qvpc-di-cf.qcow2 and
qvpe-di-xf.qcow?2.

Create all VPC-DI images in glance using the command glance image-create.

Example:

$ glance image-create --file gvpc-di-cf.qcow2 --container-format bare --disk-format
qcow?2 --is-public true --name cisco-gvpc-cf

$ glance image-create --file qgvpc-di-sf.qcow2 --container-format bare --disk-format
qcow?2 --is-public true --name cisco-gvpc-sf

Get the VPC-DI sample initialization tarball for HOT (vpc_ HOT sample.tgz).
Copy the VPC-DI sample initialization tarball to your local machine.
Untar the VPC-DI sample initialization tarball to any directory. There are two files with extensions .yml and .env.

Edit the ENV file according to your openstack deployment.
Provide the values for your networks, availability zone, etc.

Browse to your local directory and click the .yml file for Template source and .env file for Environment Source

Perform one of these:

* Deploy the VPC-DI using the OpenStack Dashboard by navigating to Project>Or chestration>Stacks>L aunch
Stack.

* Use the CLI to deploy the VPC-DI using HEAT with the command heat stack-create -f di.yml -edi.env.

Verify the Status field is Complete, which indicates that there are Errors .
Wait for the VPC-DI to converge.
To delete the VPC-DI deployment, select the check box next to the stack name and click Delete Stack.

VPC-DI Heat Orchestration Templates

This section describes the format of the Heat templates. The VPC-DI HOT version is 2013-05-23. The template
has these four sections: parameter-groups, parameters, resources, and outputs.

VPC-DI HOT Parameter Groups

The parameter groups section allows for specifying how the input parameters should be grouped and the
order to provide the parameters in. These groups are used to describe expected behavior for downstream user
interfaces.

VPC-DI Installation Notes .



[l vPc-DIHOT Parameters

Table 5: HOT Parameters

VPC-DI Installation Notes |

Parameter Definition in Template

Notes

- label: images
description: CF and SF images in gvpc-di
parameters:
- gvpc_image cf
- gvpc_image sf

List of images to be defined in the
template

- label: networks
description: network configuration for DI
parameters:
- network di mgmt
- network di internal
- network public
- network servicel
- network service2
- network service3
- network serviced

List of networks to be defined in the
template

Note This example lists four
SF service ports. Up to
12 SF service portss can
be defined.

VPC-DI HOT Parameters

The heat template defines a number of parameters for which you must provide values in an ENV file. Each
of these parameters is described here. Each parameter definition is contained within the parameter s section
of the heat template. A sample ENV file follows the parameter descriptions.

Table 6: HOT Parameters

Parameter Definition in Template

Notes

flavor cf:
type: string
description: Flavor for Control Function VM
default: ml.large

The name of the flavor to be used to
create CFs. This can be one of the
five default flavors, or a custom
flavor that has been defined in
OpenStack.

flavor sf:
type: string
description: Flavor for Service Function VM
default: ml.large

The name of the flavor to be used to
create SFs.

availability zone:
type: string
description: Availability zone where the VNF
should be created
default: nova

Location in OpenStack where the
VNF is created.

gvpc_image cf:
type: string
label: Active CF image file in glance
description: Active CF image ID or file in glance
default: gvpc-di-<version>-cf.qgcow2
constraints:
- custom constraint: glance.image

Name of the VPC-DI image file for
the CFs. This file must have been
uploaded to glance.

. VPC-DI Installation Notes



| VPC-DI Installation Notes

VPC-DI HOT Parameters [JJ]

Parameter Definition in Template

Notes

gvpc_image xf:
type: string
label: SF image file in glance
description: SF image ID or file in glance
default: gvpc-di-<version>-xf.gcow2
constraints:
- custom constraint: glance.image

Name of the VPC-DI image file for
the service function VMs, that has
been uploaded to glance.

Parameter Definition in Template

Notes

network public:
type: string

description: Network ID or Network Name of external network|

default: public
constraints:
- custom_constraint: neutron.network

Network ID or name of the external
network

network cf mgmt:
type: string
description: Management Network ID or Name
default: private
constraints:
- custom_constraint: neutron.network

Name or identifier for the VPC-DI
management network.

network di internal:
type: string
description: Unique QVPC-DI internal Network
associated with this VNF
default: private
constraints:
- custom constraint: neutron.network

Name or identifier of the DI internal
network. This is a private L2
network that interconnects the VMs
in the VPC-DI.

network service#:
type: string
description: Network ID or Network Name of network
to use for SF service ports
default: cflocal
constraints:
- custom constraint: neutron.network

Name or identifier of the service
port. You can define between one
and 12 service ports in each SF,
where # represents this number.
Each service port can perform a
different service.

network core:
type: string
description:
default: core
constraints:
- custom constraint: neutron.network

core network for keepalives

Name or identifier of the core
network used for keepalive
messages.

gqvpc_vip_ addr:
type: string
description: OAM IP Address shared between CF01 and CF02

default: <value>
constraints:

- custom constraint: ip addr

Virtual IP address used between the
CFs.

VPC-DI Installation Notes .



VPC-DI Installation Notes |
[l vPc-DIHOT Parameters

Parameter Definition in Template Notes

gqvpc_vip_gateway: The default gateway for the

type: string management network.
description: IP Address of Default Gateway for OAM Network|

default: <value>
constraints:
- custom constraint: ip_ addr

vnf name: Unique name for this VNF instance.
type: string , , This name is used to identify the
description: Unique name for this VNF instance E
default: gvpc di :

vnf_id: ID for the VNF instance.

type: string
description: Unique ID for this VNF instance
default: O

admin_ password:
type: string
description: Default Administrator password for DI Access

default: Ciscol23

snmp_community:
type: string
description: READ SNMP string for this VPC instance
default: public

timezone:
type: string
description: TimeZone for this VF instance
default: us-pacific

cf_domain name:
type: string
description: Domain for this VF instance
default: localdomain

az_cf<#>: The availability zone for each of the

tYP61‘St?lﬂg ‘ o two CF instances.
description: CF availability zone

default: <value>

az_sf<#>: The availability zone for each of the

type: string o SF instances.
description: CF availability zone

default:<value>

Each of these parameters is defined for your VNF instance using an ENV file. An example ENV file is shown
here:

parameters:
# flavor defined for CF and SF in AIC
flavor_cf: vsaegw_cf
flavor_sf: vsaegw_sf

# availability zone where the VNF instance should be deployed
availability zone: avzone-kvm-az0l

. VPC-DI Installation Notes



| VPC-DI Installation Notes
VPC-DI HOT Parameters [JJ]

# vPC-DI glance images in gcow?2
qvpc_image cf0l: QVPCCF
qvpc_image sf: QVPCSF

# Neutron Networks attached to VSAEGW instancenetwork di mgmt: oam protected net
network di internal: saegw di_ internal active net

network servicel: saegw_gn net

network service2: saegw_sgi net

network service3: saegw_support net

network serviced: saegw_icsr_ 1li net

# VNF Instance Name
vnf name: qvpcDI_vsaegw

# VNF Instance ID
vnf id: 01

# Administrator user password
admin_ password: ciscol23

parameters:
flavor_cf:
type: string
description: Flavor for Control Function VM
default: cisco-gvpc-cf
flavor_sf:
type: string
description: Flavor for Service Function VM
default: cisco-gvpc-xf
qvpc_image cf:
type: string
label: CF image file in glance
description: CF image ID or file in glance
default: gvpc-di-68031-cf.gcow2
constraints:
- custom constraint: glance.image
qvpc_image sf:
type: string
label: SF image file in glance
description: SF image ID or file in glance
default: gvpc-di-68031-xf.qgcow2
constraints:
- custom constraint: glance.image
network public:
type: string
description: Network ID or Network Name of external network
default: public
constraints:
- custom constraint: neutron.network
network cf mgmt:
type: string
description: Management Network ID or Name
default: cf-mgmt
constraints:
- custom constraint: neutron.network
network di internal:
type: string
description: Unique QVPC-DI internal Network associated with this VNF
default: di-internal
constraints:
- custom constraint: neutron.network
network servicel:
type: string
description: Transport Interface (Gn/S11/S1-u/S5) in to SAEGW Context
default: servicel

VPC-DI Installation Notes .



VPC-DI Installation Notes |
VPC-DI HOT Parameters

constraints:
- custom constraint: neutron.network
network service2:
type: string
description: Transport Interface (Data, Voice, LI VLANs) in SGi Context
default: service?2
constraints:
- custom constraint: neutron.network
network core:
type: string
description: core network for keepalives
default: core
constraints:
- custom constraint: neutron.network

# vip addr and vip gateway are automatically retrieved from the management network
qvpc_vip_addr:
type: string
description: OAM IP Address shared between CFO0l1 and CFO02
default: 172.16.181.2
constraints:
- custom constraint: ip_addr
qvpc_vip_gateway:
type: string
description: IP Address of Default Gateway for OAM Network
default: 172.16.181.1
constraints:
- custom constraint: ip_addr
vnf_ name:
type: string
description: Unique name for this VNF instance
default: gvpc_di
vnf id:
type: string
description: Unique ID for this VNF instance
default: 0
admin password:
type: string
description: Default Administrator password for DI Access
default: Ciscol23
snmp_community:
type: string
description: READ SNMP string for this VPC instance
default: public
timezone:
type: string
description: TimeZone for this VF instance
default: us-pacific
cf domain name:
type: string
description: Domain for this VF instance
default: localdomain
az_cfl:
type: string
description: CF availability zone
default: conwayl
az_cf2:
type: string
description: CF availability zone
default: conway2
az_sf3:
type: string
description: SF3 availability =zone
default: conway3

. VPC-DI Installation Notes



| VPC-DI Installation Notes
VPC-DI HOT Resources [l

az_sf4:
type: string
description: SF6 availability =zone
default: conway4

VPC-DI HOT Resources

The resources section of the template defines the control function (CF) and service function (SF) VMs as well
as each of their ports.

Management Network

# Create port on management network and reserve a virtual IP address
qvpc_vip_port:
type: OS::Neutron::Port
properties:
network: {get param: network di mgmt}
fixed ips:
- subnet id: {get_param: subnet id di mgmt}

# Associate a floating IP address to the virutal port
qvpc_vip_ floating ip:
type: OS::Neutron::FloatingIP
properties:
floating network: {get param: network public}
port id: {get_resource: gvpc_vip_ port}

The VIP port is the virtual IP port used to access the VPC-DI. The VIP port IP address is configurable in the
Day 0 configuration.

HOT Resources for CF

The heat template must define each of the two CF VMs being used by the VNF. This definition includes
configuring the port that connects to the DI internal network, as well as the port that connects to the CF
management network, specifying the StarOS boot parameter file and the StarOS Day 0 configuration file.
The definition of the first CF is shown here with an explanation; the second CF is defined in a similar way.

CF DI Internal Network

This section creates the CF DI internal network. Use this section twice, once for each of the two CFs that must
be configured. # is either 1 or 2.

# Port connected to unique DI-network
gvpc_cf_ 0#_port_int:
type: OS::Neutron::Port
properties:
network: {get param: network di internal}
allowed address pairs:
-ip address: "172.16.0.0/18"

gvpc_cf_# port_int is port connected to the DI internal network. The value of the network is extracted from
the parameter network_di_internal which is retrieved from the ENV file.

The property allowed address pairs must be in each di-internal port. Because the di_internal port is assigned
an [P address by the VPC-DI in the 17.16.0.0/18 network which is different from its address in neutron, we

VPC-DI Installation Notes .



. HOT Resources for CF

VPC-DI Installation Notes |

need to configure the allowed address_pairs property to allow traffic on those address to pass through the
port. The allowed address pair extension extends the port attribute to enable you to specify arbitrary MAC
address or IP address (CIDR) pairs that are allowed to pass through a port regardless of the subnet associated
with the network.

CF Management Network

This section creates the CF management network. Use this section twice, once for each of the two CFs that
must be configured. # is either 1 or 2.

# Port connected to the management network
gvpc_cf_0#_port_mgmt:
type: OS::Neutron::Port
properties:
network: {get param: network di mgmt}
allowed address pairs:
- ip address: {get param: gvpc vip addr}

gvpc_cf_# port_mgmt represents the port definition of the port connected to the OAM network. The value
is extracted from the parameter networ k_di_mgmt which is retrieved from the ENV file.

SSH Keys

DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
These keys are passed as part of the HEAT deployment. Public and private keys are required.

Generate the public and private SSH keys. Create a file called user_key.pub containing the public key. Create
a file called user_key containing the private key. Ensure that both of these files are stored on the configuration
drive. These files are referenced by HEAT:

personality:
"user key.pub": |
ssh-rsa
<public key>
"user_ key": |

<private key>

Create CFVM

This section creates the CF VM. Use this section twice, once for each of the two CFs that must be created. #
is either 1 or 2.

gvpc_cf O#:
type: OS::Nova::Server
properties:
# Create VM of format “<vnf name> cf 0#”
name :

str replace:
template: ${VF NAME} cf O#
params:
S$S{VF_NAME}: {get param: vnf name}

# Use active CF image and CF Flavor
image: {get param: gvpc image cfl }
flavor: {get param: flavor cf }
networks:

. VPC-DI Installation Notes



| VPC-DI Installation Notes

HOT Resources for CF .

- port: {get resource: gvpc_cf O# port int}
- port: {get resource: gvpc_cf O# port mgmt}
config drive: True

The CF VM (gvpc_cf_#) is created with the previously defined parameters and named according to the
convention "<vnf name> cf #". The vnf_nameis retrieved from the ENV file as are the image and flavor
to be used to create the VNF.

Star0S Day 0 Configuration

The Day 0 configuration provided here configures the DI interface, system hostname and enables SSH and
SFTP access using personality properties.

# Metadata to provide cloud-init capability to VPC-DI
personality:
"staros param.cfg":
str_replace:
template: |
CARDSLOT:$CARD_NUMBER
CARDTYPE:$CARD_TYPE
CPUID=$UUID
DI_INTERFACE MTU=1500
DI_INTERFACE:TYPE:virtio_net—l
MGMT_INTERFACE:TYPE:virtio_net—Z
VNFM_INTERFACE:TYPE:virtio_net—3
VNEM IPV4 ENABLE=true
VNFM_IPV4 DHCP ENABLE=true
VNFM_PROXY ADDRS=192.168.180.92,192.168.180.91,192.168.180.93
params:
$CARD_NUMBER: 1
SCARD TYPE: "0x40030100"
$UUID: 0
"staros_config.txt":
str_replace:
template: |
config
system hostname S$VF_NAME-cf-SCARD NUMBER
clock timezone $TIMEZONE
ssh key-gen wait-time 0
context local
administrator admin password $SADMIN PASS ftp
interface LOCAL1
ip address S$SCF_VIP_ADDR 255.255.255.0
#exit
ip route 0.0.0.0 0.0.0.0 $CF_VIP_GATEWAY LOCAL1
ip domain-lookup
ip domain-name $CF_DOMAIN_NAME
ip name-servers SCF_VIP_ GATEWAY
ssh generate key
server sshd
subsystem sftp
#exit
server confd
confd-user admin
#exit
port ethernet 1/1
bind interface LOCAL1l local
no shutdown
#exit
snmp community $SNMP COMMUNITY read-only
end

VPC-DI Installation Notes .



. HOT Resources for SF

HOT Resources for SF

VPC-DI Installation Notes |

params:
$CARD_NUMBER: 1
SVF_NAME: {get param: vnf name}
STIMEZONE: {get param: timezone}
SADMIN PASS: {get param: admin password}
$SNMP_COMMUNITY: {get param: snmp_ community}
SCF_DOMAIN NAME: {get param: cf domain name}
$SLOT_CARD NUMBER: 1
#SCF_VIP ADDR: {get attr: [gqvpc_vip port, fixed ips, 0, ip_ address]}
$CF_VIP ADDR: 172.16.181.2
#SCF_VIP GATEWAY: { get_ attr: [qvpc vip port, subnets, 0, gateway ip]

$CF_VIP GATEWAY: 172.16.181.1
"user key.pub": |
ssh-rsa
<public key>
"user_ key": |

<private key>

$CARD_NUMBER refers to the number of the slot, which here is 1 but is 2 for the second CF.

Use the heat template to define each of the service function (SF) VMs that you want to deploy in the VPC-DI.
For each SF you must configure the port to connect to the DI internal network as well as each of the service
ports that you need for the SF. You can configure up to 12 service ports. This example creates a single SF
that is used for an SAE gateway with four service ports. You must repeat a similar configuration for each SF
required.

Define The Ports in the SF

# Create port for DI-Internal Network
gvpc_sf 03 port int:
type: OS::Neutron::Port
properties:
network: {get param: network di internal}
allowed address pairs:
- ip address: "172.16.0.0/18"

gvpc_sf_# port_int is the port that connects to the internal DI network. # is the number of the SF and can
range from 3 to the maximum number of SFs allowed. The value of the network is extracted from the parameter
network_di_internal which is retrieved from the ENV file.

# Create first service port (document as per your use)
qvpc_sf 03 port svc 01:
type: OS::Neutron::Port
properties:
network: {get param: network servicel}

gvpc_sf_# port_svc 01 is the first service port. Ports are numbered consecutively from 1 to 12. The value
of the network is extracted from the parameter networ k_servicel which is retrieved from the ENV file.

# Create second service port (document as per your use)
gvpc_sf 03 port svc 02:

. VPC-DI Installation Notes



| VPC-DI Installation Notes

HOT Resources for SF .

type: OS::Neutron::Port
properties:
network: {get param: network service2}
allowed address_pairs:
- ip address: "192.168.10.0/24"
# Create third service port (document as per your use)
qgvpc_sf 03 port svc 03:
type: OS::Neutron::Port
properties:
network: {get param: network service3}
# Create forth service port (document as per your use)
qgvpc_sf 03 port svc 04:
type: OS::Neutron::Port
properties:
network: {get param: network serviced}

The remaining three service ports are created - each retrieving the network information from the ENV file.
Additional service ports can be created as required.

Create SFVM

gvpc_sf 03:
type: OS::Nova::Server
properties:
# Create VM name of format “<vnf name> sf O<num>"
name:
str replace:
template: ${VF NAME} sf 03
params:
S{VF_NAME}: {get param: vnf name}
# Use SF image and SF Flavor
image: { get param: gvpc image sf }

flavor: { get param: flavor sf }
networks:
- port: {get resource: gvpc sf 03 port int}
- port: {get resource: gvpc_sf 03 port svc 01}
- port: {get resource: gvpc_sf 03 port svc 02}
- port: {get resource: gvpc_sf 03 port svc 03}
}

- port: {get resource: gvpc_sf 03 port svc 04
config drive: True

The SF gvpc_sf_# is created with the name of the format 'vaf name sf 0#', where vnf name is VNF name
value retrieved from the ENV file and # is the slot of the SF. The values of the service ports are previously
defined in the heat template. The image and flavor are also taken from the ENV file.

Each SF is defined similarly in the template.

Personality Configuration

Day 0 and Day 1 configurations are injected into the VNF using personality properties. The VPC-DI applies
personality properties to the system, and expects this metadata from the HEAT template as shown here.

The personality defines the boot parameters file. Refer to Configuring Boot Parameters, on page 7 for more
information on the boot parameters.

# Associate VM to unique slot (>2) and identify that its a SF
config drive: True
personality:
"staros param.cfg":

VPC-DI Installation Notes .



VPC-DI Installation Notes |
[l vPc-DiHOT Outputs

str_replace:
template: |
CARDSLOT:$CARD_NUMBER
CARDTYPE:$CARD_TYPE
CPUID=SUUID
DI_INTERFACE MTU=15 00
params:
$CARD_NUMBER: 3
$CARD_TYPE: "0x42070100"
SUUID: O
"user_ key.pub": |
ssh-rsa
<public key>
"user_ key": |

DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
These keys are passed as part of the HEAT deployment. Public and private keys are required.

Generate the public and private SSH keys. Create a file called user_key.pub containing the public key. Create
a file called user_key containing the private key. Ensure that both of these files are stored on the configuration
drive. These files are referenced by HEAT as shown above.

VPC-DI HOT Outputs

The outputs section of the heat template defines the outputs from using the template. You can see the outputs
by going to Project>0rchestration>Stacks and selecting the heat stack that you deployed. In the Overview
tab you see any outputs from the heat stack.

You can also see output from the heat stack by running the heat stack-show $[stack_name] command at the
command line.

Examples of types of output you might define for the VPC-DI are shown here:

gvpc_floating ip:
description: Floating IP of gvpc-di VIP
value: { get attr: [gvpc vip floating ip, floating ip address]}
CFl networks:
description: The networks of the deployed CF-1
value: { get attr: [gvpc cf 01, networks] }
CF2_networks 2:
description: The networks of the deployed CF-2
value: { get attr: [gvpc cf 02, networks] }
port 1 int:
description: The port of the deployed server 1, di-internal
value: { get attr: [gvpc cf 01 port int, mac address] }
port 1 mgmt:
description: The port of the deployed server 1, cf-mgmt
value: { get attr: [gvpc cf 01 port mgmt, mac_address] }
port 2 int:
description: The port of the deployed server 2, di-internal
value: { get attr: [gvpc cf 02 port int, mac address] }
port 2 mgmt:
description: The port of the deployed server 2, cf-mgmt
value: { get attr: [gvpc cf 02 port mgmt, mac_address] }

. VPC-DI Installation Notes



| VPC-DI Installation Notes

VMware Installation Notes .

VMware Installation Notes

DI inter-VM communication is now only possible via authentication through externally supplied SSH keys.
Public and private keys are required. These keys must be supplied prior to booting the VM as part of an ISO.

The keys must be generated on an external host and packaged in the ISO which must then be attached to the
VM. The keys and the ISO files are generated as follows:
$ mkdir iso

$ ssh-keygen -t rsa -N "" -C "root@localhost" -f iso/user key
$ genisoimage -o vpcdi keys.iso iso

Once the ISO file is generated, power-up the VM and map to the CD-DVD ROM. From within vSphere, this
is done by selecting the VM (CF or SF) from the list and clicking on the CD/DVD icon from the option bar
near the top. Then select Connect to | SO image on local disk and choose the ISO. Repeat this for all of the
VMs (CFs and SFs).

Once the keys are mapped, point the VPC-DI boot configuration to the image by setting the right boot priority
and reload the VPC-DI.

Rules for VM Recovery

When you create a spare VM by cloning an old VM, you will encounter a mac address mismatch issue. The
following are the VM Recovery rules for replacing to spare VM.:

1. Do not use the VM suspend/resume.
2. You can shutdown/reboot the VM. It owns the slot as long as it is not deleted.

3. You can replace the faulty VM with the new one by recreating it only after deleting the faulty VM. The
new VM can use the slot of the faulty VM.

4. If you want to bring back the faulty VM, you can recreate it and assign a slot that is not currently in use.

VPC-DI Installation Notes .



VPC-DI Installation Notes |
. Rules for VM Recovery

. VPC-DI Installation Notes



	VPC-DI Installation Notes
	Creating a Boot Parameters File
	Format of the Boot Parameters File
	Network Interface Roles
	Network Interface Identification
	Configuring Boot Parameters
	Configuring Network Interface Bonding
	Configuring a VNFM Interface
	VNFM Interface Options

	Configuring the DI Network VLAN
	Configuring IFTASK Tunable Parameters
	Increased Maximum IFtask Thread Support
	Feature Summary and Revision History
	Feature Changes


	Configure MTU Size
	Configure Support for Traffic Above Supported MTU
	Boot Parameters File Examples

	VPC-DI Onboarding using ESC
	Onboarding the VPC-DI with ESC on OpenStack
	Customizing the VPC-DI Onboarding with ESC
	OpenStack Performance Optimizations
	Configuring CPU Pinning
	Configuring Huge Pages
	Configuring PCI Passthrough


	Onboarding the VPC-DI with Heat Orchestration Templates (HOT) in OpenStack
	VPC-DI Heat Orchestration Templates
	VPC-DI HOT Parameter Groups
	VPC-DI HOT Parameters
	VPC-DI HOT Resources
	HOT Resources for CF
	HOT Resources for SF

	VPC-DI HOT Outputs


	VMware Installation Notes
	Rules for VM Recovery


