
Introduction to VPC-SI

This chapter introduces Cisco Virtualized Packet Core—Single Instance (VPC-SI). VPC-SI addresses the
need for virtualized cloud architectures that enable the accelerated deployment of new applications and services
in the mobile market.

• Product Description, on page 1
• Feature Set, on page 3
• Redundancy and Availability, on page 4
• Hypervisor Requirements, on page 5
• DPDK Internal Forwarder, on page 7
• Capacity, CEPS and Throughput, on page 10
• Diagnostics and Monitoring, on page 10
• Supported Cisco UCS Platforms, on page 11
• StarOS VPC-SI Build Components, on page 13
• VPC-SI Boot Parameters, on page 13
• Software Installation and Network Deployment, on page 26

Product Description
This chapter describes the StarOS VPC-SI architecture and interaction with external devices.

VPC-SI consolidates the operations of physical Cisco ASR 5500 chassis running StarOS into a single Virtual
Machine (VM) able to run on commercial off-the-shelf (COTS) servers. Each VPC-SI VM operates as an
independent StarOS instance, incorporating the management and session processing capabilities of a physical
chassis.

Virtualized Mobility Functions
VPC-SI consists of the set virtualized mobility functions that implement mobility specific services and
applications within the core of the network. These functions include the:

• Mobile Packet Core

• LTE MME (Mobile Management Entity), P-GW (PDN Gateway) and S-GW (Serving Gateway)
• GGSN Gateway GPRS Support Node
• PDSN Packet Data Serving Node
• HA Home Agent

Introduction to VPC-SI
1

• ePDG Evolved Packet Data Gateway
• SAE-GW System Architecture Evolution Gateway
• SGSN Serving GPRS Support Node (3G only)

• Mobile Control Plane PCRF (Policy and Charging Rule Function), application gateway, analytics, services
orchestration, abstraction and control functions

• Gi-LAN Service Functions HTTP Proxy, NAT, FW, Content Optimization, and other applicable services
• Small cell gateways

• HNBGW Home NodeB Gateway
• HeNBGW evolved Home NodeB Gateway
• eWAG Enhanced Wireless Access Gateway
• SAMOGS2aMobility over GTP combine CGW (Converged Access Gateway) and TrustedWLAN
AAA Proxy (TWAP) functions on a single service node

Mobile Cloud Network (MCN) is a network infrastructure that includes Infrastructure as a Service (IaaS), the
orchestration mechanisms, analytics mechanisms etc., upon which the VPC-SI as well as other services are
deployed.

VM Interconnect Architecture
This figure below shows basic L2/L3 interconnection as supported by VPC-SI.

In the figure above, a virtual switch is embedded within the hypervisor to support SDN L2 capabilities across
the data center. The virtual switch is interconnected to other virtual switches using 802.1Q trunks (VLANs).
Typically, the virtual switch is a dynamically loaded kernel module.

Standalone Instance
VPC-SI is essentially StarOS running within a Virtual Machine (VM) on a COTS platform. It can be used as
a stand-alone single VMwithin an enterprise, remote site, or customer data center. Alternatively, VPC-SI can
be integrated as a part of a larger service provider orchestration solution.

The Single Instance architecture is best suited for low capacity scenarios. Scaling the VPC-SI Virtual Network
Function (VNF) requires significant network level configurations for certain VNF types (such as, P-GW,
S-GW, MME, PCRF, Firewall and NAT). For example, if a new VPC-SI P-GW is added or removed, various
Diameter peers must be configured with this information DNS is provisioned or de-provisioned with this
information.

VPC-SI only interacts with supported hypervisors KVM (Kernel-based Virtual Machine) and VMware ESXi.
It has little or no knowledge of physical devices.

Typically, VPC-SI should be deployed in Interchassis Session Recovery (ICSR) pairs to provide physical
redundancy in case of hardware or hypervisor failure.

Each VPC-SI VM takes on the roles of an entire StarOS system. The only interfaces exposed outside the VM
are those for external management and service traffic. Each VM is managed independently.

Each VPC-SI VM performs the following StarOS functions:

• Controller tasks
• Out-of-band management for CLI and Logging (vSerial and vKVM)
• Local context vpnmgr

Introduction to VPC-SI
2

Introduction to VPC-SI
VM Interconnect Architecture

• Local context management (vNICs)
• System boot image and configuration storage on vHDD
• Record storage on vHDD
• NPU simulation via fastpath and slowpath
• Non-local context (vNICs, 1 to 12).
• Demux and vpnmgr for session processing
• Crypto processing

Feature Set

Interfaces and Addressing
The VM is represented as a virtual card with a single CPU subsystem. This makes many CLI commands, logs,
and functions work similarly to StarOS running on ASR 5500 platform.

Applications written for StarOS see VPC-SI as just another platformwith a one-slot virtual chassis supporting
a single virtual card.

StarOS concepts of contexts, services, pools, interfaces, cards, and ports exist on VPC-SI just as on existing
platforms.

When the VM boots, the vNICs configured in the VM profile are detected and an equivalent number of 'Virtual
Ethernet' type ports appear in the StarOS CLI.

• VPC-SI assigns the vNIC interfaces in the order offered by the hypervisor.

• First interface offered is 1/1 for VPC-SI management.
• Second interface offered is 1/10 for VPC-SI Services control and data traffic.
• Optional third interface offered is 1/11 for VPC-SI Services control and data traffic.
• Optional fourth and subsequent interfaces will be 1/12, 1/13

• It is critical to confirm that the interfaces listed in the supported hypervisors line up with the KVM BR
group or VMware vSwitch in the order in which you want them to match the VPC-SI interfaces.

You cannot be guaranteed that the order of the vNICs as listed in the hypervisor CLI/GUI is the same as how
the hypervisor offers them to VPC-SI. On initial setup you must use the show hardware CLI command to
walk through the MAC addresses shown on the hypervisor's vNIC configuration and match them up with the
MAC addresses learned by VPC-SI. This will confirm that the VPC-SI interfaces are connected to the intended
BR group/Vswitch.

Note

Encryption
VMs within a VPC-SI instance perform software-based encryption and tunneling of packets (as opposed to
the higher-throughput hardware-based services). Call models that make heavy use of encryption for bearer
packets or have significant PKI (Public Key Infrastructure) key generation rates may require significant
compute resources.

Introduction to VPC-SI
3

Introduction to VPC-SI
Feature Set

Security
Security of external traffic including tunneling, encryption, Access Control Lists (ACLs), context separation,
and user authentication function as on existing StarOS platforms. User ports and interfaces on the CFs and
SFs are protected through StarOS CLI configuration.

The virtual system adds additional security concerns on the customer because network communication travel
over the DI network on datacenter equipment.

The DI network must be isolated from other hosts within the datacenter by limiting membership in the system
network's VLAN to VMswithin that specific VPC-SI instance. Unauthorized access to the DI network through
other hosts being inadvertently added to that network or the compromise of a router, switch or hypervisor
could disrupt or circumvent the security measures of StarOS. Such disruptions can result in failures, loss of
service, and/or exposure of control and bearer packets. Properly securing access to the DI network is beyond
the control of StarOS.

Communication betweenDI network component (e.g. CF and SF) VMs is now only possibley via authentication
over externally supplied SSH keys. In addition, the system enforces public/private key-based SSH authentication
for logins within the DI network. No passwords, keys or LI information are stored or sent in clear text.

If an operator requires physical separation of networks, such as management versus bearer versus LI (Lawful
Intercept), then physical separation of the DI network should also be done since it carries sensitive data. In a
virtualized environment, the physical separation of networks may not be possible or practical. Operators that
have these requirements may need to qualify their hypervisor and infrastructure to confirm that it will provide
sufficient protection for their needs.

Licensing
For this release, VPC-SI employs chassis-independent (no chassis serial number) licenses of fixed duration.

By default the expiry date is 12 months from the software build date, regardless of the license expiry date. If
the license expiry date is earlier than the 12-month period, then the license expiry date will be used.

For additional information, contact your Cisco account representative.

Redundancy and Availability

Platform Requirements
The virtual system relies on the underlying hardware and hypervisor for overall resource redundancy and
availability. The StarOS handles the system redundancy on top of that.

The hardware and hypervisor should provide:

• Redundant hardware components where practical (such as power supplies, disks)

• Redundant network paths (dual fabric/NICs, with automatic failover)

• Redundant network uplinks (switches, routers, etc.)

High availability can only be achieved if the underlying infrastructure (hosts, hypervisor, and network) can
provide availability and reliability that exceeds expected values. The system is only as reliable as the
environment on which it runs.

Introduction to VPC-SI
4

Introduction to VPC-SI
Security

Interchassis Session Recovery (ICSR) is also recommended to improve availability and recovery time in the
case of a non-redundant hardware failure (such as CPU, memory, motherboard, hypervisor software). ICSR
provides redundancy at the session level for gateways only.

ICSR Support
VPC-SI supports ICSR between two instances for services that support ICSR in the StarOS software release.
When more than one service type is in use, only those services that support ICSR will be able to use ICSR.

The two VPC-DI instances must be on a different DI-Network.Note

ICSR supports redundancy for site/row/rack/host outages, andmajor software faults. To do so, the two instances
should be run on non-overlapping hosts and network interconnects. ICSR is supported only between
like-configured instances. ICSR between a VPC-SI instance and another type of platform is not supported.

L3 ICSR is supported.

For additional information, refer to the Interchassis Session Recovery chapter in this guide.

Iftask Redundancy
If Active standby task gets killed or stopped the transition to Standby Iftask takes place. This transition process
involves initialization of certain parameters on the standby Iftask to active Iftask. At the current heartbeat
interval, the initialization might take more than three seconds and leads to card reboot.

To avoid the card reboot, set the HAT HB interval to high value.
For example
configure

[deafult] high-availability fault-detection card hb-loss value

Hypervisor Requirements
VPC-SI has been qualified to run under the following hypervisors:

• Kernel-based Virtual Machine (KVM) - QEMU emulator 2.0. The VPC-SI StarOS installation build
includes a libvirt XML template and ssi_install.sh for VM creation under Ubuntu Server14.04.

• KVM - Red Hat Enterprise Linux 7.2: The VPC-SI StarOS installation build includes an install script
called qvpc-si_install.sh.

• VMware ESXi 6.0: The VPC-SI StarOS installation build includes OVF (Open Virtualization Format)
and OVA (Open Virtual Application) templates for VM creation via the ESXi GUI.

• VMware ESXi

• Version 6.0: The VPC-SI StarOS installation build includes OVF (Open Virtualization Format) and
OVA (Open Virtual Application) templates for VM creation via the ESXi GUI. This version is
supported in releases prior to Release 21.8

• Version 6.5: Supported in Release 21.8 and 21.9

Introduction to VPC-SI
5

Introduction to VPC-SI
ICSR Support

• Version 6.7: Supported from Release 21.10 onwards

VM Configuration
VPC-SI requires that the VM be configured with:

• X vCPUs (see vCPU and vRAM Options, on page 6)

• Y vRAM (see vCPU and vRAM Options, on page 6)

• First vNIC is the management port (see vNIC Options, on page 7)

• Second and subsequent vNICs are service ports; one vNIC is required and up to 12 are supported by the
VPC, but this number may be limited by the hypervisor

• First vHDD is for boot image and configuration storage (4 GB recommended)

• Second vHDD is for record storage [optional] (16 GB minimum)

vCPU and vRAM Options
ACPU is a single physical computer chip that can have more than one physical CPU core that is fully capable
of running the entire system and applications by itself. Virtual core technology supports multiple logical
processors (vCPUs) per physical core. The total number of vCPUs supported on a specific platform varies
based on the number of available physical cores and the type of virtual core technology implemented in each
core.

It is best practice to avoid spanning VM across NUMA nodes. The vCPU shall align with the underlying CPU.
A VM should not span across NUMA node for performance optimization.

CF and SF run within VMs that are assigned a number of vCPUs, each supporting one thread (sequence of
instructions). The number of available vCPUs supported by the platform CPU may exceed the maximum
number of vCPUs that can be assigned to the VM via the hypervisor.

The number vCPUs per VM should never exceed the maximum number of vCPUs supported by the platform
CPU.

Note

To maximize performance, it may be desirable to adjust the number of vCPUs or vRAM to align with the
underlying hardware. SF supports varied vCPU and vRAM combinations, however all SFs must share the
same combination within an instance.

Software will determine the optimal number of SESSMGR tasks per SF on startup of the SF based on the
number of vCPUs and amount of vRAM on that SF.

Dynamic resizing of vCPU count, vRAM size or vNIC type/count (via hotplug, ballooning, etc.) is not
supported. If these values need to be changed after provisioning, all VMsmust be shut down and reconfigured.
Reconfiguration can be performed only on all VMs at once. VMs cannot be reconfigured one at a time since
the CPUs and RAM would not match the other instances.

Note

Introduction to VPC-SI
6

Introduction to VPC-SI
VM Configuration

vNIC Options
In this release the supported vNIC options include:

• VMXNET3—Paravirtual NIC for VMware

• VIRTIO—Paravirtual NIC for KVM

• ixgbe—Intel 10 Gigabit NIC virtual function

• enic—Cisco UCS NIC

Hard Drive Storage
In additional to the mandatory /flash (non-RAID) drive, the system supports RAID1 under a virtual machine
(VM). For each VM, Virtual SCSI disks can be created, on CF only, matching the SCSI ID shown in this
table. The minimum disk size must be greater than 16 GB.

Table 1: Disk Mapping

Noteshd-local1/flash

(non-RAID)

Type

Raw disk hd-local1 uses
RAID1

SCSI 0:0:1:0SCSI 0:0:0:0KVM

Raw disk hd-local1 and
hd-remote1 use RAID1

SCSI 0:0:1:0SCSI 0:0:0:0VMware

For record storage (CDRs and UDRs) the CF VM should be provisioned with a second vHDD sized to meet
anticipated record requirements (minimum 16GB). Records will be written to /records on the second vHDD.

DPDK Internal Forwarder
The Intel Data Plane Development Kit (DPDK) is an integral part of the VPC-SI architecture and is used to
enhance performance of VPC-SI systems configured with 8 or more vCPUs. The DPDK Internal Forwarder
(IFTASK) is a software component that is responsible for packet input and output operations and provides a
fast path for packet processing in the user space by bypassing the Linux kernel. During the VPC-SI boot
process, a proportion of the vCPUs are allocated to IFTASK and the remainder are allocated to application
processing.

To determine which vCPUs are used by IFTASK and view their utilization, use the show npu utilization
table command as shown here:
[local]mySystem# show npu utilization table

******** show npu utilization table card 1 *******
5-Sec Avg: lcore00|lcore01|lcore02|lcore03|lcore04|lcore05|lcore06|lcore07|

IDLE: | 4%| 43%| 24%| 45%| 17%| |
|

QUEUE_PORT_RX: | 34%| 56%| | | | |
|

Introduction to VPC-SI
7

Introduction to VPC-SI
vNIC Options

QUEUE_PORT_TX: | | | | | | |
|

QUEUE_VNPU_RX: | | | | | | |
|

QUEUE_VNPU_TX: | | | | | | |
|

QUEUE_KNI_RX: | 57%| | | | | |
|

QUEUE_KNI_TX: | | | | | | |
|

QUEUE_THREAD_KNI: | 3%| | | | | |
|

QUEUE_MCDMA_RX: | | | 7%| | 5%| |
|

QUEUE_MCDMA_TX: | | | | | | |
|

QUEUE_THREAD_MCDMA: | | | 8%| | 24%| |
|

QUEUE_THREAD_VNPU: | | | | | | |
|

QUEUE_CRYPTO_RX: | | | | | | |
|

QUEUE_CRYPTO_TX: | | | | | | |
|

QUEUE_THREAD_IPC: | | | | | | |
|

MCDMA_FLUSH: | | | 59%| 54%| 51%| |
|
QUEUE_THREAD_TYPE_MAX: | | | | | | |

|
300-Sec Avg: lcore00|lcore01|lcore02|lcore03|lcore04|lcore05|lcore06|lcore07|

IDLE: | 99%| 100%| 31%| 30%| 32%| |
|

QUEUE_PORT_RX: | 0%| | | | | |
|

QUEUE_PORT_TX: | | | | | | |
|

QUEUE_VNPU_RX: | | | | | | |
|

QUEUE_VNPU_TX: | | | | | | |
|

QUEUE_KNI_RX: | | | | | | |
|

QUEUE_KNI_TX: | | | | | | |
|

QUEUE_THREAD_KNI: | | | | | | |
|

QUEUE_MCDMA_RX: | | | 0%| 0%| 0%| |
|

QUEUE_MCDMA_TX: | | | | | | |
|

QUEUE_THREAD_MCDMA: | | | | | | |
|

QUEUE_THREAD_VNPU: | | | | | | |
|

QUEUE_CRYPTO_RX: | | | | | | |
|

QUEUE_CRYPTO_TX: | | | | | | |
|

QUEUE_THREAD_IPC: | | | | | | |
|

MCDMA_FLUSH: | | | 68%| 69%| 67%| |
|

Introduction to VPC-SI
8

Introduction to VPC-SI
DPDK Internal Forwarder

QUEUE_THREAD_TYPE_MAX: | | | | | | |
|

900-Sec Avg: lcore00|lcore01|lcore02|lcore03|lcore04|lcore05|lcore06|lcore07|

IDLE: | 99%| 100%| 31%| 31%| 32%| |
|

QUEUE_PORT_RX: | 0%| | | | | |
|

QUEUE_PORT_TX: | | | | | | |
|

QUEUE_VNPU_RX: | | | | | | |
|

QUEUE_VNPU_TX: | | | | | | |
|

QUEUE_KNI_RX: | | | | | | |
|

QUEUE_KNI_TX: | | | | | | |
|

QUEUE_THREAD_KNI: | | | | | | |
|

QUEUE_MCDMA_RX: | | | 0%| 0%| 0%| |
|

QUEUE_MCDMA_TX: | | | | | | |
|

QUEUE_THREAD_MCDMA: | | | | | | |
|

QUEUE_THREAD_VNPU: | | | | | | |
|

QUEUE_CRYPTO_RX: | | | | | | |
|

QUEUE_CRYPTO_TX: | | | | | | |
|

QUEUE_THREAD_IPC: | | | | | | |
|

MCDMA_FLUSH: | | | 68%| 68%| 67%| |
|
QUEUE_THREAD_TYPE_MAX: | | | | | | |

|

thread 2 QUEUE_PORT_RX 77.22 %
thread 2 IDLE 22.78 %

thread 5 MCDMA_FLUSH 57.74 %
thread 5 IDLE 40.13 %
thread 5 QUEUE_THREAD_MCDMA 2.13 %

thread 1 QUEUE_KNI_RX 50.39 %
thread 1 QUEUE_PORT_RX 40.72 %
thread 1 IDLE 6.13 %
thread 1 QUEUE_THREAD_KNI 2.76 %

thread 3 QUEUE_THREAD_MCDMA 41.17 %
thread 3 MCDMA_FLUSH 38.31 %
thread 3 IDLE 16.28 %
thread 3 QUEUE_MCDMA_RX 4.24 %

thread 4 IDLE 56.03 %
thread 4 MCDMA_FLUSH 43.97 %

Introduction to VPC-SI
9

Introduction to VPC-SI
DPDK Internal Forwarder

To view CPU utilization for the VMwithout the IFTASK vCPUs, use the show cpu info command. For more
detailed information use the verbose keyword.
[local]mySystem# show cpu info
Card 1, CPU 0:
Status : Active, Kernel Running, Tasks Running
Load Average : 8.99, 9.50, 8.20 (11.89 max)
Total Memory : 16384M
Kernel Uptime : 0D 0H 49M
Last Reading:
CPU Usage : 16.6% user, 10.5% sys, 0.0% io, 4.6% irq, 68.3% idle
Poll CPUs : 5 (1, 2, 3, 4, 5)
Processes / Tasks : 234 processes / 54 tasks
Network : 353.452 kpps rx, 3612.279 mbps rx, 282.869 kpps tx, 2632.760 mbps

tx
File Usage : 2336 open files, 1631523 available
Memory Usage : 4280M 26.1% used, 42M 0.3% reclaimable

Maximum/Minimum:
CPU Usage : 23.2% user, 11.2% sys, 0.1% io, 5.5% irq, 61.5% idle
Poll CPUs : 5 (1, 2, 3, 4, 5)
Processes / Tasks : 244 processes / 54 tasks
Network : 453.449 kpps rx, 4635.918 mbps rx, 368.252 kpps tx, 3483.816 mbps

tx
File Usage : 3104 open files, 1630755 available
Memory Usage : 4318M 26.4% used, 46M 0.3% reclaimable

Capacity, CEPS and Throughput
Sizing a VPC-SI instance requires modeling of the expected call model.

Many service types require more resources than others. Packet size, throughput per session, CEPS (Call Events
per Second) rate, IPSec usage (site-to-site, subscriber, LI), contention with other VMs, and the underlying
hardware type (CPU speed, number of vCPUs) will further limit the effective number of maximum subscribers.
Qualification of a call model on equivalent hardware and hypervisor configuration is required.

Diagnostics and Monitoring
Because VPC-SI runs within VMs, no hardware diagnostics or monitoring are provided. Retrieval of hardware
sensor data (temperature, voltage, memory errors) are accomplished via the hypervisor and external monitoring
systems.

VPC-SI monitors and exports vCPU, vRAM, and vNIC usage through existing mechanisms including CLI
show commands, bulkstats and MIB traps. However, an operator may find that monitoring physical CPU,
RAM, and NIC values in the hypervisor is more useful.

Because vNICs have a variable max throughput (not defined as 1 Gbps or 10 Gbps for example), counters
and bulkstats that export utilization as a percentage of throughput may have little value. Absolute values (bps)
can be obtained from VPC-SI, but where possible physical infrastructure utilization should be obtained from
the hypervisor. This would not apply to pass-through PFNICs, as those will have a fixedmaximum throughput.

Introduction to VPC-SI
10

Introduction to VPC-SI
Capacity, CEPS and Throughput

Supported Cisco UCS Platforms
This section describes the various Cisco UCS hardware configuration supported for use with VPC-SI in this
release.

UCS C-Series NEBs
A single UCS C-series model has been NEBS qualified UCS C240 M3 NEBS (UCSC-C240-SNEBS).

At minimum this platform must include the following components:

• (2) Intel E5-2658 CPU [UCS-CPU-E5-2658]
• (8) 16GB DIMM [UCS-MR-1X162RY-A] (128GB total RAM, see Note below}
• (2) 300GB SAS HDD [UCS-HDD300GI2F105]
• (1) RAID Controller [UCS-RAID-9266CV]
• (1) Cisco VIC 1225 [UCSC-PCIE-CSC-02] {See Note below}
• Power Supplies

• (2) AC Power Supplies [UCSC-PSU-650W] or
• (2) -48VDC Power Supplies [UCSC-PSU-930WDC]

• (2) Power Cables {choose appropriate type AC or DC}

Notes:

• M3 systems should be configured with (8) 16GB or (16) 8GB DIMMs for best performance. See the
Memory Configuration Best Practice for UCS M3 EP Servers guide for more information.

• If considerable storage for CDRs or other VMs are needed, additional HDDs can be selected. SATA
SSDs are also available.

• If the C-series blade will be interconnected using a UCS FI (Fabric Interconnect) or FEX (Fabric Extender),
use of the Cisco VIC (Virtual Interface Card) is highly recommended. Careful attention should be paid
to selecting the type of NIC (if any) if the on-board LOM (LAN-on-motherboard) ports are insufficient.
Compatibility of the intended hypervisor should be checked prior to ordering.

• NEBS level 3 requires use of DC power supplies.
• The above component list does not include hypervisor software, UCS FI or FEX (if needed).

UCS B-Series NEBS
AUCSB-Series configuration varies based on the storage type (SAN, NAS, Local), number of chassis, number
of links between FI and FEX, number of FI uplinks and number of SAN uplinks. This analysis should be
performed in concert with Cisco Advanced Services.

A single UCS B-Series model has been NEBS qualified UCS B200 M3 (UCSB-B200-M3)

At minimum this platform must include the following components:

• (2) Intel E5-2658 CPU [UCS-CPU-E5-2658]
• (8) 16GB DIMM [UCS-MR-1X162RY-A] (128GB total RAM, see Note below}
• (2) 300GB SAS HDD [UCS-HDD300GI2F105] (Assumes no SAN)
• (1) Cisco VIC 1240 [UCSB-MLOM-40G-01] {See Note below}
• (2) Power Cables {choose appropriate type AC or DC}

Introduction to VPC-SI
11

Introduction to VPC-SI
Supported Cisco UCS Platforms

Notes:

• M3 systems should be configured with (8) 16GB or (16) 8GB DIMMs for best performance. See the
Memory Configuration Best Practice for UCS M3 EP Servers guide for more information.

• If using SAN, no HDDs are needed
• Use of the Cisco VIC (Virtual Interface Card) is highly recommended. Careful attention should be paid
to selecting the type of NIC. Compatibility with the intended hypervisor should be checked prior to
ordering. If analysis requires additional bandwidth, the Port expander mezzanine card
(UCSB-MLOM-PT-01) can be added to each blade.

• The above component list does not include hypervisor software.

This host can be used exclusively for a single VPC-SI VM or have other VMs co-located. In the single VM
case, the VM should be configured with up to 32 vCPUs and 64GB vRAM.

Note

UCS E-Series NEBS
VPC-SI will run on any of the following UCS E-Series blades:

• E140S A half-width blade with an Intel E3-1105C (4 core), up to 16GB RAM, 2 SD (Secure Digital)
cards, and 2 HDD bays.

• E140D - A full-width blade with an Intel E5-2418L (4 core), up to 48GB RAM, 2 SD cards, and 2 or 3
HDD bays.

• E160D - A full-width blade with an Intel E5-2428L (6 core), up to 48GB RAM, 2 SD cards, and 2 or 3
HDD bays.

A minimum of 4GB of vRAM should be provisioned for the VM (8GB recommended for complex
configurations). 16GB or more of physical RAM is highly recommended.

Refer to the UCS E series data sheets for ISR G2 compatibility.

The table below lists the recommended components of twoUCS E-Series configurations. One uses a half-width
blade, and the other uses a full-width blade.

Table 2: UCS E-Series Blade Configurations

NotesCisco PIDComponentQuan.

Half-Width Blade Configuration

Includes 8GBRAM, 2 SD
cards and CPU

UCS-E140S-M1UCS E140S - Single
width

1

Total RAM = 16GBE100S-MEM-UDIMM8G8GB Additional RAM1

RAID-1 HDD arrayE100S-HDD-SATA1T1TB SATA HDD2

DISK-MODE-RAID-1Configure as RAID 11

Full-Width Blade Configuration

Includes 8GBRAM, 2 SD
cards and CPU

UCS-E160DP-M1UCS E160DP Double
width with PCIe

1

Introduction to VPC-SI
12

Introduction to VPC-SI
UCS E-Series NEBS

NotesCisco PIDComponentQuan.

Total RAM = 48GBE100-8-16-MEM-UPGUpgrade DIMM 16GB1

E100D-MEM-RDIM16G32GB Additional RAM2

RAID-1 HDD arrayE100D-HDSASED600G600GB SAS SSD2

DISK-MODE-RAID-1Configure as RAID 11

E100-PCIE10GEFCOE1 Port 10Gbe Card1

StarOS VPC-SI Build Components
The following StarOS build filename types are associated with VPC-SI:

• qvpc-si-<version>.iso initial installation or startover ISO file.

• qvpc-si-<version>.bin update, upgrade or recovery file for a system that is already running. For additional
information refer to the StarOS Management Operations chapter.

• qvpc-si-template-libvirt-kvm-<version>.tgz KVM libvirt template plus ssi_install.sh.

• qvpc-si-template-vmware-<version>.ova VMware OVA template.

• qvpc-si-<version>.qcow2.gz KVM QCOW2 disk template.

VPC-SI Boot Parameters
The boot parameters file provides a means to pass configuration items to StarOS before it boots. These
parameters specify items such as themanagement, service, and VNFM interface details, as well as configuration
for the Internal Forwarder Task (iftask) created at StarOS start up.

The boot parameters are sourced in multiple ways, with all methods using the same parameter names and
usage. The first location for the boot parameters file is on the first partition of the first VM drive, for example,
/boot1/param.cfg. The second location searched is on the configuration drive, which is a virtual CD-ROM
drive. If you are using OpenStack, specify the target boot parameters file name as staros_param.cfg. If you
are not using OpenStack, create an ISO image with staros_param.cfg in the root directory and attach this ISO
to the first virtual CD-ROM drive of the VM.

As the VM boots, the param.cfg file is parsed first by the preboot environment known as CFE. Once the VM
starts Linux, the virtual CD-ROM drive is accessed to parse the staros_param.cfg file. If there are any conflicts
with values stored in the /boot1/param.cfg file, parameters in staros_param.cfg take precedence.

Format of the Boot Parameters File
The structure of the boot parameters file is:

VARIABLE_NAME = VALUE

Specify one variable per line with a newline as the end of the line terminator (UNIX text file format). Variable
names and values are case insensitive. Invalid values are ignored and an error indication is displayed on the

Introduction to VPC-SI
13

Introduction to VPC-SI
StarOS VPC-SI Build Components

VM console. If there are duplicate values for a variable (two different values specified for the same variable
name), the last value defined is used.

Numeric values do not need to be zero padded. For example a PCI_ID of 0:1:1.0 is treated the same as
0000:01:01.0.

Network Interface Identification
VPC-SI assigns the vNIC interfaces in the order offered by the hypervisor. You cannot be guaranteed that the
order of the vNICs as listed in the hypervisor CLI/GUI is the same as how the hypervisor offers them to the
VM.

The order that VPC-SI finds the vNICs is subject to the PCI bus enumeration order and even paravirtual
devices are represented on the PCI bus. The PCI bus is enumerated in a depth first manner where bridges are
explored before additional devices at the same level. If all the network interfaces are of the same type then
knowing the PCI topology is sufficient to get the vNIC order correct. If the network interfaces are of different
types, then the order is dependent on the PCI topology plus the device driver load order inside the VM. The
device driver load order is not guaranteed to be the same from software release to release but in general
paravirtual devices are prior to pass-through devices.

There are several methods available to identify NICs.

• MAC address: MAC address of the interface

• Virtual PCI ID

• Bonded interfaces: When using network device bonding, network interfaces are identified to serve as
the slave interface role. The slave interfaces in the bond are identified using MAC, PCI ID, or Interface
type.

• Interface type and instance number.

Virtual PCI ID

Devices on a PCI bus are identified by a unique tuple known as the domain, bus, device, and function numbers.
These identifiers can be identified in several ways.

Inside the guest, the lspci utility shows the bus configuration:

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer
00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device
00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

The domain, bus, device, and function numbers for this virtual bus are shown here:

Introduction to VPC-SI
14

Introduction to VPC-SI
Network Interface Identification

Table 3: Virtual PCI IDs

FunctionDeviceBusDomainLine

000000:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC
[Natoma] (rev 02)

010000:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA
[Natoma/Triton II]

110000:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE
[Natoma/Triton II]

210000:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB
[Natoma/Triton II] (rev 01)

310000:01.3 Bridge: Intel Corporation 82371AB/EB/MBPIIX4ACPI
(rev 03)

020000:02.0 VGA compatible controller: Cirrus Logic GD 5446

030000:03.0 System peripheral: Intel Corporation 6300ESBWatchdog
Timer

040000:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory
balloon

050000:05.0 Ethernet controller: Red Hat, Inc Virtio network device

060000:06.0 Ethernet controller: Red Hat, Inc Virtio network device

For libvirt-based virtual machines, you can get the virtual PCI bus topology from the virsh dumpxml command.
Note that the libvirt schema uses the term slot for the device number. This is a snippet of the xml description
of the virtual machine used in the previous example:

<interface type='bridge'>
<mac address='52:54:00:c2:d0:5f'/>
<source bridge='br3043'/>
<target dev='vnet0'/>
<model type='virtio'/>
<driver name='vhost' queues='8'/>
<alias name='net0'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</interface>
<interface type='bridge'>
<mac address='52:54:00:c3:60:eb'/>
<source bridge='br0'/>
<target dev='vnet1'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>

Introduction to VPC-SI
15

Introduction to VPC-SI
Network Interface Identification

Interface Type and Instance Number

Here the NIC is identified by its type using its Linux device driver name (virtio_net, vmxnet3, ixgbe, i40e,
etc) and its instance number. The instance number is based on PCI enumeration order for that type of interface
starting at instance number 1. The interface type is available to identify both paravirtual types as well as
pass-through interfaces and SR-IOV virtual functions. The PCI enumeration order of devices on the PCI bus
can be seen from the lspci utility, which is on the host OS.

For example, a CF with the following guest PCI topology indicates that virtio_net interface number1 is the
Ethernet controller at 00:05.0 and virtio_net interface number 2 is the Ethernet Controller at 00:06.0. The
output is from the lspci command executed in the guest:

lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
00:01.2 USB controller: Intel Corporation 82371SB PIIX3 USB [Natoma/Triton II] (rev 01)
00:01.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 03)
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
00:03.0 System peripheral: Intel Corporation 6300ESB Watchdog Timer
00:04.0 Unclassified device [00ff]: Red Hat, Inc Virtio memory balloon
00:05.0 Ethernet controller: Red Hat, Inc Virtio network device
00:06.0 Ethernet controller: Red Hat, Inc Virtio network device

Here is the complete list of the supported Linux drivers:

Table 4: Supported Linux Drivers

Driver NamePCI Vendor / Device IDType

virtio_net0x10af / 0x1000VIRTIO (paravirtual NIC for KVM)

vmxnet30x15ad / 0x07b0VMXNET3 (paravirtual NIC for VMware)

Introduction to VPC-SI
16

Introduction to VPC-SI
Network Interface Identification

Driver NamePCI Vendor / Device IDType

ixgbe0x8086 / 0x10b6

0x8086 / 0x10c6

0x8086 / 0x10c7

0x8086 / 0x10c8

0x8086 / 0x150b

0x8086 / 0x10dd

0x8086 / 0x10ec

0x8086 / 0x10f1

0x8086 / 0x10e1

0x8086 / 0x10db

0x8086 / 0x1508

0x8086 / 0x10f7

0x8086 / 0x10fc

0x8086 / 0x1517

0x8086 / 0x10fb

0x8086 / 0x1507

0x8086 / 0x1514

0x8086 / 0x10f9

0x8086 / 0x152a

0x8086 / 0x1529

0x8086 / 0x151c

0x8086 / 0x10f8

0x8086 / 0x1528

0x8086 / 0x154d

0x8086 / 0x154f

0x8086 / 0x1557

Intel 10 Gigabit Ethernet

ixgbevf0x8086 / 0x10ed

0x8086 / 0x1515

Intel 10 Gigabit NIC virtual function

enic0x1137 / 0x0043

0x1137 / 0x0044

0x1137 / 0x0071

Cisco UCS NIC

Introduction to VPC-SI
17

Introduction to VPC-SI
Network Interface Identification

Driver NamePCI Vendor / Device IDType

be2net0x19a2 / 0x0211

0x19a2 / 0x0221

0x19a2 / 0x0700

0x19a2 / 0x0710

0x10df / 0xe220

0x10df / 0xe228

0x10df / 0x0720

0x10df / 0x0730

0x10df / 0x0728

Emulex 10 Gig NIC

mlx5_core0x15b3 / 0x1017

0x15b3 / 0x1018

Mellanox ConnectX-5

i40e**0x8086 / 0x1572 (40 gig)

0x8086 / 0x1574 (40 gig)

0x8086 / 0x1580 (40 gig)

0x8086 / 0x1581 (40 gig)

0x8086 / 0x1583 (40 gig)

0x8086 / 0x1584 (40 gig)

0x8086 / 0x1585 (40 gig)

0x8086 / 0x158a (25 gig)

0x8086 / 0x158b (25 gig)

Intel XL 710 family NIC (PF)

i40evf0x8086 / 0x154cIntel XL 710 family NIC virtual function

** Note: A known issue exists where MAC address assignment does not occur dynamically for SRIOV VFs
created on the host when using the i40e driver. MAC address assignment is necessary to boot the StarOS VM.
As a workaround, MAC address assignment must be configured from the host. Refer to the following link for
more information:https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/
xl710-sr-iov-config-guide-gbe-linux-brief.pdf

Configuring VPC-SI Boot Parameters
VPC-SI VMs have one interface configured to connect to the management network. This interface is typically
configured in StarOS and should be part of the Day 0 configuration. The management interface supports static
address assignment through the main StarOS configuration file.

An additional 0 to 4 network interfaces serve as service ports. These interfaces are configured by StarOS.
Typically these ports are configured as trunk ports in the VNF infrastructure (VNFI).

VPC-SI VMs have the option of having a network interface that is connected to the virtual network function
(VNF) manager (VNFM) if it exists. This interface can be configured via DHCP or static IP assignment and

Introduction to VPC-SI
18

Introduction to VPC-SI
Configuring VPC-SI Boot Parameters

https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/xl710-sr-iov-config-guide-gbe-linux-brief.pdf

is used to talk to a VNFM or higher level orchestrator. This interface is enabled before the main application
starts.

Table 5: VPC-SI Boot Parameters

DescriptionParameter

Interface to the management port on the VPC-SI VM.
Valid values are:

• MAC: xx:xx:xx:xx:xx:xx

• PCI_ID: xxx:xx:xx.x
(Domain:Bus:Device.Function)

• TYPE: drive-name-instance-number

• BOND: slave-interface-A,slave-interface-B

Refer to Network Interface Identification, on page
14 for information on determining the interface
identifier.

MGMT_INTERFACE=value

Interface to a service port number #, where # can be
from 1 to 4.

Service interfaces support the same values listed above
for the MGMT_INTERFACE.

SERVICE#_INTERFACE=value

By default, the IFTASK process sets the maximum
interface MTU as 2100 bytes.

value must be an integer from 576 to 9100 bytes.

SERVICE_INTERFACE_MTU=value

Optional network interface to the Virtual Network
Function Manager (VNFM) or orchestrator.

VNFM interfaces support the same values listed above
for the MGMT_INTERFACE.

VNFM_INTERFACE=value

Enables the VNFM interface.VNFM_IPV4_ENABLE={true | false }

Enables DHCP to the VNFM.VNFM_IPV4_DHCP_ENABLE={true | false }

Specifies the IP address for the VNFM where DHCP
is not used.

VNFM_IPV4_ADDRESS=value

Specifies the netmask for the IP address of the VNFM
where DHCP is not used.

VNFM_IPV4_NETMASK=value

Specifies the gateway for the IP address of the VNFM
where DHCP is not used.

VNFM_IPV4_GATEWAY=value

Introduction to VPC-SI
19

Introduction to VPC-SI
Configuring VPC-SI Boot Parameters

DescriptionParameter

(Optional)

(Optional) IFTASK_CRYPTO_CORES

When IFTASK_SERVICE_TYPE is configured to
"2" (EPDG), this parameter specifies the percentages
of iftask cores

to allocate to crypto processing. Values can range
from 0 to 50 percent, though the cores dedicate will
be capped at 4.

The default is 0.

This parameter should only be used if the
IFTASK_SERVICE_TYPE is set to "2" (EPDG). If
it is set to any

other service type, then this parameter should be set
to "0".

IFTASK_CRYPTO_CORES=value

(Optional) Sets the number of cores assigned to
Multi-channel Direct Memory Access (MCDMA) to
be a percentage of total iftask cores. You must first
define IFTASK_CORES parameter above. NOTE:
When NUMA optimization is enabled and also this
MCDMA core count setting is configured you must
set IFTASK_CORES=percentage-of-cores to be an
even number. This ensures that the MCDMA threads
are evenly distributed across the NUMA nodes.

IFTASK_MCDMA_CORES=value

The chassis ID protects select commands in the CLI
configuration such as administrator credentials, snmp
community, radius/diameter data, and the
authentication data. It is required to save or load
configuration and is normally generated using random
data and a user seed from a CLI command. The
chassis ID is then saved on the “/flash” storage of the
system to be used later to load saved configurations.

Configuring this option loads the the chassis ID from
the parameters configuration files from /flash. The
chassis id on /flash will be ignored (i.e. support
upgrade from previous version) and generation of new
chassis id using the CLI commands will be prevented.
The chassis ID will no longer be stored on /flash if
provided using this method. This will also require
ESC (or another VNFM) to manage and provide the
chassis id to the VM.

CHASSIS_ID=value

Introduction to VPC-SI
20

Introduction to VPC-SI
Configuring VPC-SI Boot Parameters

DescriptionParameter

(Optional) Specifies the service type being deployed
in order to calculate the service memory and enable
service-specific features. The default is 0.

The following service types can be specified:

• 0 = VPC service type

• 1 = GiLAN service type

• 2 = ePDG service type

• 3 = CUPS controller service type

• 4 = CUPS forwarder service type

IFTASK_SERVICE_TYPE=value

Specifies the forwarder type as "vpp" or "iftask".

By default, the forwarder type is "iftask". The
forwarder type is VPP only when the
FORWARDER_TYPE is properly configured as VPP.

For example, FORWARDER_TYPE=vpp

FORWARDER_TYPE=value

Example params.cfg

MGMT_INTERFACE=MAC:00:01:02:03:04:05
SERVICE1_INTERFACE=PCI_ID:0000:01:02.0
SERVICE2_INTERFACE=PCI_ID:0000:01:03.0
VNFM_INTERFACE=MAC:00:01:02:03:04:AA
VNFM_IPV4_ENABLE=true
VNFM_IPV4_DHCP_ENABLE=false
VNFM_IPV4_ADDRESS=10.1.1.100
VNFM_IPV4_NETMASK=255.255.255.0
VNFM_IPV4_GATEWAY=10.1.1.1
IFTASK_MCDMA_CORES=20
CHASSIS_ID=2sg9x1wqbj
IFTASK_SERVICE_TYPE=0

Use the StarOS command show cloud hardware iftask to verify that the iftask boot parameters took effect.

Configuring VNFM Interface Options

These configuration options are optional.Note

The virtual network functions manager (VNFM) interface is designed to communicate between each VM and
a VNFM. The VNFM interface initializes before the main application and only boot parameters can configure
the interface.

The VNFM interface is disabled by default.

Introduction to VPC-SI
21

Introduction to VPC-SI
Configuring VNFM Interface Options

Enable VNFM IPv4 Interface

The default value is False (disabled).

Valid ValuesVariable

True or FalseVNFM_IPV4_ENABLE

Configure IPv4 DHCP Client

Valid ValuesVariable

True or FalseVNFM_IPV4_DHCP_ENABLE

Configure IPv4 Static IP

If IPv4 DHCP client is enabled, static configuration parameters are ignored.Note

Valid ValuesVariable

x.x.x.xVNFM_IPV4_ADDRESS

x.x.x.xVNFM_IPV4_NETMASK

x.x.x.xVNFM_IPV4_GATEWAY

Enable VNFM IPv6 Interface.

Valid ValuesVariable

True or FalseVNFM_IPV6_ENABLE

Enable IPv6 Static IP Configuration

Valid ValuesVariable

True or FalseVNFM_IPV6_STATIC_ENABLE

If set to true, static IP parameters configuration applies to the interface as shown in the following section. If
set to false, the interface attempts to use both stateless autoconfiguration (RFC4862) and DHCPv6 to configure
the address of the interface.

Configure IPv6 Static IP

If the "VNFM_IPV6_ENABLE" parameter value is set to false, the static configuration parameters are ignored.
The IPv6 address field should conform to RFC 5952. Prefix is fixed at /64.

Note

Introduction to VPC-SI
22

Introduction to VPC-SI
Configuring VNFM Interface Options

Valid ValuesVariable

x:x:x:x:x:x:x:xVNFM_IPV6_ADDRESS

x:x:x:x:x:x:x:xVNFM_IPV6_GATEWAY

VPP Configuration Parameters
The following sections list the parameters that are applicable only when the FORWARDER_TYPE selected
is VPP. These parameters enable a fine-grained control over the CPU of the VPP and the interface configuration.

Before overriding any of the VPP configuration parameters, ensure that you contact your Cisco account
representative to help identify the override values.

Note

VPP CPU Assignment

VPP workers are real-time threads that consume an entire CPU core. While the VPP main thread does not
consume an entire core, it can be busy. Therefore, assign it to avoid conflicts.

The following table lists the VPP-CPU parameters.

Table 6: VPP-CPU Parameters

DescriptionParameter

Specifies the Linux processor number, that is 0 –
(number of CPUs minus 1). The default value is 1.

Use the following example to set the main thread value
to the Linux processor number 1.
VPP_CPU_MAIN=1

VPP_CPU_MAIN=value

Specifies the number of worker threads set on the Linux
processor. The valid value is 0 – (number of CPUs
minus 3). The default value is 50% of the Linux CPUs
or number of CPUs in theVPP_CPU_WORKER_LIST.

Use the following example to set the number of worker
threads to 3.
VPP_CPU_WORKER_CNT=3

VPP_CPU_WORKER_CNT=value

Introduction to VPC-SI
23

Introduction to VPC-SI
VPP Configuration Parameters

DescriptionParameter

Specifies the worker threads set on the Linux processor.
The worker list is a comma-separated list of Linux
processor numbers. The valid value is 0 – (number of
CPUs minus 1). The default is a round-robin number
that is assigned across all sockets, skipping the first core
on all sockets and the second core on the first socket.

Use the following example to set the number of worker
threads to Linux processors 2, 9, and 10
VPP_CPU_WORKER_LIST=2,9,10

VPP_CPU_WORKER_LIST=value

Default DPDK Configuration

The following parameters that are listed in the table configure DPDK in general or set the interface defaults.

Table 7: DPDK Parameters

DescriptionParameter

Specifies the number of DPDK buffers. The minimum
buffer is 32,000 and the maximum is based on the VM
size. The default number of buffers is 128,000.

Use the following example to set the DPDK buffer to
200,000.
VPP_DPDK_BUFFERS=200000

VPP_DPDK_BUFFERS=value

Specifies the number of RX queues for all interfaces
that do not have a specific configuration. The valid
values range from 1 through 64 depending on the
interface type and host configuration. The default value
is calculated from the VPP_CPU_WORKER_COUNT
to minimize the overall number of queues while having
at least one queue assigned to each worker.

Use the following example to set the default number of
RX queues to 2.

Values that do not match can be set based on
the interface type and host configuration.

Note

VPP_DPDK_RX_QUEUES=2

VPP_DPDK_RX_QUEUES=value

Introduction to VPC-SI
24

Introduction to VPC-SI
VPP Configuration Parameters

DescriptionParameter

Specifies the number of TX queues for all interfaces that
do not have a specific configuration. The valid values
range from 1 through 64 depending on the interface type
and host configuration. The default value is
VPP_DPDK_RX_QUEUES.

Use the following example to set the default number of
TX queues to 4.

Values that do not match can be set based on
the interface type and host configuration.

Note

VPP_DPDK_TX_QUEUES=4

VPP_DPDK_TX_QUEUES=value

Specifies the number of RX descriptors for all interfaces
that do not have a specific configuration. The valid
values range from 128 through 128,000 depending on
the interface type and host configuration. The default
value is an unspecified driver-dependent value.

Use the following example to set the default number of
RX descriptors to 256.

Values that do not match can be set based on
the interface type and host configuration.

Note

VPP_DPDK_RX_DESCS=256

VPP_DPDK_RX_DESCS=value

Specifies the number of TX descriptors for all interfaces
that do not have a specific configuration. The valid
values range from 128 through 128,000 depending on
the interface type and host configuration. The default
value is VPP_DPDK_RX_DESCS or an unspecified
driver-dependent value.

Use the following example to set the default number of
TX descriptors to 512.

Values that do not match can be set based on
the interface type and host configuration.

Note

VPP_DPDK_TX_DESCS=512

VPP_DPDK_TX_DESCS=value

Interface-Specific Configuration

The following parameters that are listed in the table refine individual interfaces. These parameters also override
the default DPDK configuration, where applicable.

Introduction to VPC-SI
25

Introduction to VPC-SI
VPP Configuration Parameters

Table 8: Interface Parameters

DescriptionParameter

Specifies the number of RX queues for the interface
ROLE. The valid values range from 1 through 64
depending on the interface type and host configuration.
The default value is unspecified.

Use the following example to set the number of RX
queues for service port 1–2.
SERVICE1_INTERFACE_VPP_RX_QUEUES=2

<ROLE>_VPP_RX_QUEUES=value

Specifies the number of TX queues for the interface
ROLE. The valid values range from 1 through 64
depending on the interface type and host configuration.
The default value is <ROLE>_VPP_RX_QUEUES or
is unspecified.

<ROLE>_VPP_TX_QUEUES=value

Specifies the number of RX descriptors for the interface
ROLE. The valid values range from 128 through 128,000
depending on the interface type and host configuration.
The default value is unspecified.

Use the following example to set the number of RX
descriptors for service port 1 to 1024.
SERVICE1_INTERFACE_VPP_RX_DESCS=1024

<ROLE>_VPP_RX_DESCS=value

Specifies the number of RX descriptors for the interface
ROLE. The valid values range from 128 through 128,000
depending on the interface type and host configuration.
The default value is <ROLE>_VPP_RX_DESCS or is
unspecified.

<ROLE>_VPP_TX_DESCS=value

Specifies the worker threads for the interface ROLE.
The worker list is a comma-separated list of Linux
processor numbers. The valid value is 0 – (number of
CPUs minus 1). The default is a round-robin number
that is assigned across all sockets, skipping the first core
on all sockets and the second core on the first socket.

Use the following example to set the worker thread list
for service port 1 to Linux processors 2 and 3.
SERVICE1_INTERFACE_VPP_WORKER_LIST=2,3

<ROLE>_VPP_WORKER_LIST=value

Software Installation and Network Deployment
This guide assumes that VPC-SI has been properly installed to run in a virtual machine (VM) on a commercial
off-the shelf (COTS) server.

Introduction to VPC-SI
26

Introduction to VPC-SI
Software Installation and Network Deployment

For additional information on supported operating system and hypervisor packages, as well as platform
configurations, please contact your Cisco representative. The Cisco Advanced Services (AS) group offer
consultation, installation and network deployment services for the VPC-SI product.

Instructions for installing and initially configuring a VPC-DI instance are available in the form of a Method
Of Procedure (MOP) specific to your deployment requirements, platforms, operating system and hypervisor.
The MOP is developed by AS in response to customer inputs.

Introduction to VPC-SI
27

Introduction to VPC-SI
Software Installation and Network Deployment

Introduction to VPC-SI
28

Introduction to VPC-SI
Software Installation and Network Deployment

	Introduction to VPC-SI
	Product Description
	Virtualized Mobility Functions
	VM Interconnect Architecture
	Standalone Instance

	Feature Set
	Interfaces and Addressing
	Encryption
	Security
	Licensing

	Redundancy and Availability
	Platform Requirements
	ICSR Support
	Iftask Redundancy

	Hypervisor Requirements
	VM Configuration
	vCPU and vRAM Options
	vNIC Options
	Hard Drive Storage

	DPDK Internal Forwarder
	Capacity, CEPS and Throughput
	Diagnostics and Monitoring
	Supported Cisco UCS Platforms
	UCS C-Series NEBs
	UCS B-Series NEBS
	UCS E-Series NEBS

	StarOS VPC-SI Build Components
	VPC-SI Boot Parameters
	Format of the Boot Parameters File
	Network Interface Identification
	Configuring VPC-SI Boot Parameters
	Configuring VNFM Interface Options
	VPP Configuration Parameters

	Software Installation and Network Deployment

