Ethernet Interface Configuration Mode Commands

The Ethernet Interface Configuration Mode is used to create and manage Ethernet IP interface parameters within a specified context.

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:

[context_name]host_name(config-if-eth)#

Available commands or keywords/variables vary based on platform type, product version, and installed license(s).

- bfd, on page 2
- crypto-map, on page 3
- description, on page 4
- end, on page 5
- exit, on page 5
- ip access-group, on page 5
- ip address, on page 6
- ip igmp profile, on page 7
- ip mtu, on page 7
- ip ospf authentication-key, on page 8
- ip ospf authentication-type, on page 9
- ip ospf bfd, on page 10
- ip ospf cost, on page 10
- ip ospf dead-interval, on page 11
- ip ospf hello-interval, on page 11
- ip ospf message-digest-key, on page 12
- ip ospf network, on page 13
- ip ospf priority, on page 14
- ip ospf retransmit-interval, on page 15
bfd

Configures Bidirectional Forwarding Detection (BFD) interface parameters.

Product
All

Privilege
Security Administrator, Administrator

Command Modes
Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration
configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:

```
[context_name]host_name(config-if-eth)#
```

Syntax Description

```
[no] bfd { echo [echo-interval interval_num] | interval interval_num } 
    min_rx milliseconds multiplier value
```

no

Disables the specified option on this interface.

echo

Enables BFD echo mode.

BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process, therefore the number of BFD control packets that are sent out between two BFD neighbors is reduced.

Since the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.
echo-interval interval_num

Specifies the transmit interval between BFD echo packets. The default interval is 150 ms. The range is from 0 to 999 ms. (VPC only)

interval interval_num

Specifies the transmit interval (in milliseconds) between BFD packets.

- *For releases prior to 17.0, interval_num is an integer from 50 through 999. (Default 50)*
- *For release 17.0 onwards, interval_num is an integer from 50 through 10000. (Default 50)*

min_rx milliseconds

Specifies the receive interval in milliseconds for control packets.

- *For releases prior to 17.0, milliseconds is an integer from 50 through 999. (Default 50)*
- *For release 17.0 onwards, milliseconds is an integer from 50 through 10000. (Default 50)*

multiplier value

Specifies the value used to compute the hold-down time as a number from 3 to 50.

Usage Guidelines

Specify BFD parameters including echo mode and the transmit interval between BFD packets.

Example

To apply enable echo mode on this interface, use the following command:

```
bfd echo
```

The following command sets BFD interval parameters:

```
bfd interval 3000 min_rx 300 multiplier 3
```

crypto-map

Applies the specified IPSec crypto-map to this interface.

Product

All

Privilege

Security Administrator, Administrator

Syntax Description

```
crypto-map map_name [ secondary-address sec_ip_addr ]
no crypto-map map_name
```

```
no
```

Deletes the application of the crypto map on this interface.
map_name
Specifies the name of the crypto map being applied as an alphanumeric string of 1 through 127 characters that is case sensitive.

secondary-address sec_ip_addr
Applies the crypto map to the secondary address for this interface. sec_ip_addr must be specified using the IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

Usage Guidelines
In order for ISAKMP and/or manual crypto maps to work, they must be applied to a specific interface using this command. Dynamic crypto maps should **not** be applied to interfaces.

The crypto map must be configured in the same context as the interface.

Example
To apply the IPSec crypto map named cmap1 to this interface, use the following command:

```
crypto-map cmap1
```
end

Exits the current configuration mode and returns to the Exec mode.

Product
All

Privilege
Security Administrator, Administrator

Syntax Description
`end`

Usage Guidelines
Use this command to return to the Exec mode.

exit

Exits the current mode and returns to the parent configuration mode.

Product
All

Privilege
Security Administrator, Administrator

Syntax Description
`exit`

Usage Guidelines
Use this command to return to the parent configuration mode.

ip access-group

Specifies the name of the Access Control List (ACL) group to assign to the interface.

Product
All

Privilege
Security Administrator, Administrator

Syntax Description
```
[ no ] ip access-group group_name { in | out } priority
```

`no`
Removes the ACL group from this interface.

`group_name`
Specifies the name of an existing ACL group as an alphanumeric string of 1 through 47 characters.

Important
Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.
{ in | out }

Specifies whether the ACL group will apply to inbound or outbound traffic.

priority

If more than one ACL group is applied, `priority-value` specifies the priority in which they will be compared against the packet. If not specified, the priority is set to 0. `priority-value` must be an integer from 0 through 4294967295. If access groups in the list have the same priority, the last one entered is used first.

Usage Guidelines

Specify the name of the Access Control List (ACL) group to assign to the interface along with its directionality and priority.

Example

```
ip access-group acl-101 in 56
```

ip address

Specifies the primary and optional secondary IPv4 addresses and subnets for this interface.

Product

All

Privilege

Security Administrator, Administrator

Syntax Description

```
ip address ip_address { mask | /mask } [ secondary ip_address ] [ srp-activate ]
no ip address ip_address
```

no

Removes the IPv4 address from this interface.

```
-ip_address{ mask | /mask }
```

Configures the IPv4 address and mask for the interface. `ip_address` must be entered using IPv4 dotted-decimal notation. IPv4 dotted-decimal or CIDR notation is accepted for the mask.

Important

For IPv4 addresses, 31-bit subnet masks are supported per RFC 3021.

secondary ip_address

Configures a secondary IPv4 address on the interface.

Important

You must configure the primary IPv4 address before you will be allowed to configure a secondary address.
srp-activate
Activates the IP address for Interchassis Session Recovery (ICSR). Enable this IPv4 address when the Service Redundancy Protocol (SRP) determines that this chassis is ACTIVE. Requires an ICSR license on the chassis to activate.

Usage Guidelines
The following command specifies the primary IP address and subnets for this interface.

Example
The following example configures an IPv4 address for this interface:

```
ip address 192.154.3.5/24
```

ip igmp profile
Associates an Internet Group Management Protocol (IGMP) profile with this interface.

Product
All

Privilege
Security Administrator, Administrator

Syntax Description

```
[ no ] ip igmp profile profile_name
```

- **no**
 Removes the IGMP profile from this interface.

- **profile_name**
 Specifies the name of an existing IGMP profile as an alphanumeric string of 1 through 63 characters.
 If the name is not for an existing profile, you are prompted to create a new profile. You are then moved to the IGMP Profile Configuration mode.

Usage Guidelines
Associates an Internet Group Management Protocol (IGMP) profile with this interface.

Example

```
ip igmp profile default
```

ip mtu
Configures the Maximum Transmission Unit (MTU) for this interface.

Product
All

Privilege
Security Administrator, Administrator
Syntax Description
[no] ip mtu mtu-size

no
Removes the MTU value.

mtu-size
Specifies the MTU in bytes as an integer from 576 though 2048.

Usage Guidelines
IP MTU is supported for a normal interface and point-to-point interface (OLC ports).
The maximum MTU size allowed with an OLC port is 1600.
The maximum MTU size allowed with an Ethernet port is 2048. The default MTU size is 1500.
The maximum sizes for ethernet MTUs are:
• Un tagged traffic (non-VLAN) – ip MPU mtu-size + ethernet header (20 bytes)
• VLAN traffic – ip MPU mtu-size + ethernet header (20 bytes) + vlan header (4 bytes)

Example
The following command sets the MTU value to 2048.

ip mtu 2048

ip ospf authentication-key

Configures the password for authentication with neighboring Open Shortest Path First (OSPF) routers.

Product
PDSN
HA
GGSN

Privilege
Security Administrator, Administrator

Syntax Description
ip ospf authentication-key [encrypted] password auth_key
no ip ospf authentication-key

no
Deletes the authentication key.

encrypted
Use this keyword if you are pasting a previously encrypted authentication key into the CLI command.

password auth_key
Specifies the password to use for authentication as an alphanumeric string of 1 through 16 characters entered in clear text format.
Usage Guidelines
Use this command to set the authentication key used when authenticating with neighboring routers.

Example
To set the authentication key to 123abc, use the following command;

```
ip ospf authentication-key password 123abc
```
Use the following command to delete the authentication key;

```
no ip ospf authentication-key
```

ip ospf authentication-type

Confirms the OSPF authentication method to be used with OSPF neighbors over the logical interface.

Product
PDSN
HA
GGSN

Privilege
Security Administrator, Administrator

Syntax Description
```
ip ospf authentication-type { message-digest | null | text }
no ip ospf authentication-type { message-digest | null | text }

no
Disable this function.

message-digest
Uses the message digest (MD) authentication method.

null
Uses no authentication, thus disabling either MD or clear text methods.

text
Uses the clear text authentication method.

Usage Guidelines
Use this command to set the type of authentication to use when authenticating with neighboring routers.

Example
To set the authentication type to use clear text, enter the following command;

```
ip ospf authentication-type text
```
**ip ospf bfd**

Enables or disables OSPF Bidirectional Forwarding Detection (BFD) on this interface.

**Product**
PDSN
HA
GGSN

**Privilege**
Security Administrator, Administrator

**Syntax Description**

```
ip ospf bfd [disable]
no ip ospf cost
```

- **no**
  Disable this function.

- **disable**
  Disables OSPF BFD on this interface.

**Usage Guidelines**
Enable or disable OSPF Bidirectional Forwarding Detection (BFD) on this interface.

**Example**

Use the following command to enable OSPF BFD;

```
ip ospf bfd
```

**ip ospf cost**

Configures the cost associated with sending a packet over the OSPF logical interface.

**Product**
PDSN
HA
GGSN

**Privilege**
Security Administrator, Administrator

**Syntax Description**

```
ip ospf cost value
no ip ospf cost
```

- **no**
  Disable this function.
**Value**

Specifies the cost to assign to OSPF packets as an integer from 1 through 65535. Default: 10

**Usage Guidelines**

Use this command to set the cost associated with routes from the interface.

**Example**

Use the following command to set the cost to 20;

```
ip ospf cost 20
```

Use the following command to disable the cost setting;

```
no ip ospf cost
```

**ip ospf dead-interval**

Configures the interval that the router should wait, during which time no packets are received and after which the router considers a neighboring router to be off-line.

**Product**

PDSN
HA
GGSN

**Privilege**

Security Administrator, Administrator

**Syntax Description**

```
[no] ip ospf dead-interval seconds
```

**no**

Returns the value to its default of 40 seconds.

**seconds**

Specifies the interval (in seconds) as an integer from 1 through 65535. This number is typical four times the hello-interval. Default: 40

**Usage Guidelines**

Use this command to set the dead intervals for OSPF communications.

**Example**

To set the dead-interval to 100, use the following command;

```
ip ospf dead-interval 100
```

**ip ospf hello-interval**

Configures the interval (in seconds) between sending OSPF hello packets.
### ip ospf hello-interval

**Syntax Description**

- `ip ospf hello-interval seconds`
- `no ip ospf hello-interval`

- `seconds`

Returns the value to its default of 10 seconds.

- `seconds`

Specifies the number of seconds between sending hello packets as an integer from 1 through 65535. Default: 10

**Usage Guidelines**

Specify the interval (in seconds) between sending OSPF hello packets.

**Example**

To set the hello-interval to 25, use the following command:

```
ip ospf hello-interval 25
```

### ip ospf message-digest-key

**Syntax Description**

- `ip ospf message-digest-key key_id md5 [ encrypted ] password authentication_key`
- `no ip ospf message-digest-key key_id`

- `no`

Deletes the key.

- `message-digest-key key_id`

Specifies the key identifier number as an integer from 1 through 255.
encrypted
Use this if you are pasting a previously encrypted authentication key into the CLI command.

password authentication_key
Specifies the password to use for authentication as an alphanumeric string of 1 through 16 characters entered in clear text format.

Usage Guidelines
Use this command to create an authentication key that uses MD5-based OSPF authentication.

Example
To create a key with the ID of 25 and a password of 123abc, use the following command;

```
ip ospf message-digest-key 25 md5 password 123abc
```
To delete the same key, enter the following command;

```
no ip ospf message-digest-key 25
```

**ip ospf network**
Configures the Open Shortest path First (OSPF) network type.

**Product**
PDSN
HA
GGSN

**Privilege**
Security Administrator, Administrator

**Syntax Description**
```
ip ospf network { broadcast | non-broadcast | point-to-multipoint | point-to-point }
no ip ospf network

no
Disable this function.

broadcast
Sets the network type to broadcast.

non-broadcast
Sets the network type to non-broadcast multi access (NBMA).

point-to-multipoint
Sets the network type to point-to-multipoint.
point-to-point
Sets the network type to point-to-point.

Usage Guidelines
Use this command to specify the OSPF network type.

Example
To set the OSPF network type to broadcast, enter the following command:

```
ip ospf network broadcast
```
To disable the OSPF network type, enter the following command:

```
no ip ospf network
```

ip ospf priority
Designates the OSPF router priority.

Product
PDSN
HA
GGSN

Privilege
Security Administrator, Administrator

Syntax Description

- `ip ospf priority value`
- `no ip ospf priority value`

- `no`
Disable this function.

- `value`
Sets the priority value as an integer from 0 through 255.

Usage Guidelines
Use this command to set the OSPF router priority.

Example
To set the priority to 25, enter the following command:

```
ip ospf priority 25
```
To disable the priority, enter the following command:

```
no ip ospf priority
```
ip ospf retransmit-interval

Configures the interval in (seconds) between LSA (Link State Advertisement) retransmissions.

Product
- PDSN
- HA
- GGSN

Privilege
- Security Administrator, Administrator

Syntax Description

- `ip ospf retransmit-interval seconds`
- `no ip ospf retransmit-interval seconds`

- `no`
 - Returns the value to its default of 5 seconds.

- `seconds`
 - Specifies the number of seconds between LSA (Link State Advertisement) retransmissions as an integer from 1 through 65535. Default: 5

Usage Guidelines

Configure the interval in (seconds) between LSA (Link State Advertisement) retransmissions.

Example

To set the retransmit-interval to 10, use the following command;

```
ip ospf retransmit-interval 10
```

ip ospf transmit-delay

Configures the interval (in seconds) that the router should wait before transmitting an OSPF packet.

Product
- PDSN
- HA
- GGSN

Privilege
- Security Administrator, Administrator

Syntax Description

- `ip ospf transmit-delay seconds`
- `no ip ospf transmit-delay seconds`

- `no`
 - Returns the value to its default of 1 second.
seconds

Specifies the number of seconds that the router should wait before transmitting a packet as an integer from 1 through 65535. Default: 1

Usage Guidelines

Configure the interval (in seconds) that the router should wait before transmitting an OSPF packet.

Example

To set the transmit-delay to 5, use the following command:

```
ip ospf transmit-delay 5
```

ipv6 access-group

Specifies the name of the access control list (ACL) group to assign to this interface. You can filter for either inbound or outbound traffic.

Product

PDSN

HA

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

```
configure > context context_name > interface interface_name broadcast
```

Entering the above command sequence results in the following prompt:

```
[context_name]host_name(config-if-eth)#
```

Syntax Description

```
[ no ] ipv6 access-group group name { in | out } { priority-value priority_value }
```

- **no**

 Removes a previously configured access group association.

- **group_name**

 Specifies the name of the access group as an alphanumeric string of 1 to 79 characters.

- **in**

 Applies the filter to the inbound traffic.

- **out**

 Applies the filter to the outbound traffic.
priority-value
Specifies the priority of the access group as an integer from 0 to 4294967295. 0 is the highest priority. If priority-value is not specified, the priority is set to 0.
If access groups in the list have the same priority, the last one entered is used first.

Usage Guidelines
Use this command to specify the ACL group to assign the interface to. Specify an ACL group name with this command.

Important
Up to eight ACLs can be applied to a group provided that the number of rules configured within the ACL(s) does not exceed the 128-rule limit for the interface.

Example
Use the following command to associate the group_1 access group with the current IPv6 profile for inbound access:

```
ipv6 access-group group_1 in 1
```

ipv6 address
Specifies an IPv6 address and subnet mask.

Product
PDSN
HA

Privilege
Security Administrator, Administrator

Command Modes
Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

```
configure > context context_name > interface interface_name broadcast
```

Entering the above command sequence results in the following prompt:
```
[context_name]host_name(config-if-eth)#
```

Syntax Description
```
[ no ] ipv6 address ipv6_address/mask
```

no
Removes the IPv6 address from this interface.

```
ipv6_address/mask
```
Specifies an individual host IP address to add to this host pool in IPv6 colon-separated hexadecimal CIDR notation.
On the ASR 5000, routes with IPv6 prefix lengths less than /12 and between the range of /64 and /128 are not supported.

Usage Guidelines

Configures the IPv6 address and subnet mask for a specific interface.

Example

The following example configures an IPv6 address for this interface:

```
ipv6 address 2002:0:0:0:0:0:c014:101/128
```

ipv6 ospf

Enables Open Shortest Path First Version 3 (OSPFv3) functionality on this IPv6 interface.

Product

PDSN

HA

GGSN

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

```
configure > context context_name > interface interface_name broadcast
```

Entering the above command sequence results in the following prompt:

```
{context_name}host_name(config-if-eth)#
```

Syntax Description

```
[ no ] ipv6 ospf [ area { integer | ipv4-address } | cost cost-value |
dead-interval dead-intrv | hello-interval hello-intrvl | priority p-value |
retransmit-interval rex-interval | transmit-delay td-interval ]
```

- **no**
 - Removes a previously configured access group association.

- **area { integer | ipv4-address }**
 - Specifies an OSPFv3 area.
 - **decimal_value**: Specifies the identification number of the area as an integer from 0 through 4294967295.
 - **ipv4-address**: Specifies the IP address of the area in IPv4 dotted-decimal notation.

- **cost cost-value**
 - Specifies a link cost as an integer from 1 through 65535. The link cost is carried in the LSA updates for each link. The cost is an arbitrary number.
dead-interval \textit{dead-intrv}

Specifies the interval (in seconds) after which a neighbor is declared dead when no hello packets as an integer from 1 through 65535.

hello-interval \textit{hello-intrvl}

Specifies the interval (in seconds) between hello packets that OSPFv3 sends on an interface as an integer from 1 through 65535.

priority \textit{p-value}

Specifies the priority of the interface as an integer from 0 through 255.

retransmit-interval \textit{retx-interval}

Specifies the time (in seconds) between link-state advertisement (LSA) retransmissions for adjacencies belonging to the OSPFv3 interface as an integer from 1 through 65535.

transmit-delay \textit{td-interval}

Specifies the estimated time (in seconds) required to send a link-state update packet on the interface as an integer from 1 through 65535.

Usage Guidelines

Configure an OSPFv3 interface in this context.

Example

ipv6 ospf area 334 cost 555 dead-interval 40 hello-interval 10 priority 10 retransmit-interval 5 transmit-delay 10

ipv6 router advertisement

Enables or disables the system to send IPv6 router advertisements.

Product

PDSN

HA

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

\texttt{configure > context context_name > interface interface_name broadcast}

Entering the above command sequence results in the following prompt:

\texttt{[context_name]host_name(config-if-eth)\#}

Syntax Description

[no] ipv6 router advertisement

Usage Guidelines

Enables sending of router advertisements on the interface. All of the pool prefixes in the context (belonging to the interface) will be advertised in the router advertisement.
The router-lifetime in the advertisement is sent as 0 to indicate to the receiver that the sender cannot be a default-router. For all the prefixes (pools), the valid and preferred lifetime are sent as default. The router-advertisement is sent every 600 seconds.

If the pool-prefix is deleted, then router-advertisement is sent for that particular prefix with the valid and preferred time set to 0.

logical-port-statistics

Enables or disables the collection of logical port (VLAN and NPU) bulk statistics for the first 32 configured Ethernet or PVC interface types.

Product

All

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

```
configure > context context_name > interface interface_name broadcast
```

Entering the above command sequence results in the following prompt:

```
[context_name]host_name(config-if-eth)#
```

Syntax Description

```
[ no ] logical-port-statistics
```

no

Stops the collection of logical port statistics on this interface.

Usage Guidelines

Starts or stops the collection of logical port bulkstats. Default: This feature is not enabled. Statistics are collected for up to 32 logical ports. The system collects statistics on a per minute basis and maintains samples for the last 5-minute and 15-minute intervals when this feature is enabled.

Example

To start collection of logical port statistics on this interface, enter the following command:

```
logical-port-statistics
```

mpls ip

Enables or disables dynamic Multiprotocol Label Switching (MPLS) distribution and forwarding of IP packets on this interface.

Product

GGSN

HA

P-GW
Privilege
Security Administrator, Administrator

Command Modes
Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration
configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:
[context_name]host_name(config-if-eth)#

Syntax Description
[

no

mpls ip

no

Stops dynamic label distribution and forwarding on this interface.

Usage Guidelines
Starts label distribution and forwarding over an interface for a context that has MPLS enabled. For additional information, refer to the Context Configuration Mode Commands chapter. Default: This feature is not enabled.

Example
To start dynamic MPLS distribution and forwarding on this interface, enter the following command:

mpls ip

policy-forward

This command supports downlink IPv4 data packets received from the SGi that are forwarded/redirected to a configured next-hop address if the subscriber session does not exist in the P-GW.

Product
PDSN
P-GW

Privilege
Security Administrator, Administrator

Command Modes
Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration
configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:
[context_name]host_name(config-if-eth)#

Syntax Description
policy-forward { icmp unreachable next-hop ip_address | unconnected-address next-system ip_address }

no policy-forward unconnected-address

no

Deletes the policy forwarding configuration for unconnected address for the current interface.
icmp unreachable next-hop *ip_address*

Specifies routing of Internet Control Message Protocol (ICMP) unreachable is required in overlapping pool configuration. *ip_address* must be expressed in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

unconnected-address next-system *ip_address*

Specifies the IP address of the next system P-GW to handle processing during P-GW upgrade. *ip_address* must be an IP address expressed in IPv4 dotted-decimal or IPv6 colon-separated-hexadecimal notation.

Important

The **unconnected-address next-system ip_address** keyword enables IPv4 downlink data packet forwarding/redirection.

Usage Guidelines

Use this command to set the redirecting policy for IP packets from an existing P-GW to a new P-GW during upgrade. To configure this command both keywords will be in separate interface.

Important

This is a customer specific command.

Example

To configure existing P-GW system for redirecting the P-GW packets to new P-GW during existing P-GW upgrade enter the following commands:

```
policy-forward unconnected-address next-system *ip_address*
policy-forward icmp unreachable next-hop *ip_address*
```

pool-share-protocol

Configures the primary or secondary system for the IP pool sharing protocol and enter IPSP configuration mode.

Product

PDSN

HA

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

```
configure > context context_name > interface interface_name broadcast
```

Entering the above command sequence results in the following prompt:

```
[context_name]host_name(config-if-eth) #
```
Syntax Description

```
pool-share-protocol { primary ip_address | secondary ip_address } [ mode { active | inactive | check-config } ]
no pool-share-protocol
```

no

Deletes the IP pool sharing protocol information from the current interface.

primary address

On the secondary system, defines the IP address of an interface on the primary system that has identical IP pools configured for use with the IP pool sharing protocol. `ip_address` must be expressed in IP v4 dotted-decimal notation.

secondary ip_address

On the primary system, define the IP address of an interface on the secondary system that has identical IP pools configured for use with the IP pool sharing protocol. `ip_address` must be expressed in IP v4 dotted-decimal notation.

mode { active | inactive | check-config }

This is an optional command to manage the mode for IP pool sharing protocol for primary or secondary HA.

- **active**: Activates the IP pool sharing protocol mode.
- **inactive**: Inactivates the IP pool sharing protocol mode.
- **check-config**: Verifies the IP pool sharing protocol configuration.

Usage Guidelines

Use this command to set the IP address of the primary or secondary system for use with the IP pool sharing protocol and enter ipsp configuration mode. This command must be configured for an interface in each context that has IP pools configured. Refer to the *System Administration Guide* for information on configuring and using the IP pool sharing protocol.

Important

Both the primary and secondary systems must be in the same subnet.

Important

For information on configuring and using IP Pool Sharing Protocol (IPSP), refer to the *PDSN Administration Guide*.

Important

Reserve free addresses on the primary HA for this command via the `reserved-free-percentage` command as described in the *IPSP Configuration Mode Commands* chapter of this guide.

Example

To configure a secondary system with an IP address of 192.168.100.10 for use with the IP pool sharing protocol, enter the following command:
pool-share-protocol secondary 192.168.100.10

To inactivate a secondary system with an IP address of 192.168.100.10 for use with the IP pool sharing protocol, enter the following command:

pool-share-protocol secondary 192.168.100.10 mode inactive

port-switch-on-L3-fail

Causes the ASR 5500 MIO port to which the current interface is bound to switch over to the port on the redundant line card or MIO when connectivity to the specified IP address is lost.

Product

All

Privilege

Security Administrator, Administrator

Command Modes

Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration

configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:

[context_name]host_name(config-if-eth)#

Syntax Description

port-switch-on-L3-fail address { ip_address | ipv6_address } [minimum-switchover-period switch_time] [interval int_time] [timeout time_out] [num-retry number]

no port-switch-on-L3-fail

no

Disable port switchover on failure.

ip_address

The IP address to monitor for connectivity, entered in IPv4 dotted-decimal or IPv6 colon-separated hexadecimal notation.

minimum-switchover-period switch_time

After a switchover occurs, another switchover cannot occur until the specified amount of time (in seconds) has elapsed. The switch_time must be an integer from 1 through 3600. Default: 120

interval int_time

Specifies how often (in seconds) monitoring packets are sent to the IP address being monitored. The int_time must be an integer from 1 through 3600. Default: 60

timeout time_out

Specifies how long to wait (in seconds) without a reply before resending monitoring packets to the IP address being monitored. The time_out must be an integer from 1 through 10. Default: 3
num-retry number

Specifies how many times to retry sending monitor packets to the IP address being monitored before performing the switchover. The *number* must be an integer from 1 through 100. Default: 5

Usage Guidelines

Use this command to monitor a destination in your network to test for L3 connectivity. The destination being monitored should be reachable from both the active and standby line cards.

Example

The following command enables port switchover on connectivity failure to the IP address 192.168.10.100 using default values:

```
port-switch-on-L3-fail address 192.168.10.100
```

The following command disables port switchover on connectivity failure:

```
no port-switch-on-L3-fail
```

vlan-map

Sets a single next-hop IP address so that multiple VLANs can use a single next-hop gateway. The vlan-map is associated with a specific interface (ASR 5000 only).

Product
PDSN
HA
SGSN

Privilege
Security Administrator, Administrator

Command Modes
Exec > Global Configuration > Context Configuration > Ethernet Interface Configuration
configure > context context_name > interface interface_name broadcast

Entering the above command sequence results in the following prompt:

```
[context_name]host_name(config-if-eth)#
```

Syntax Description

```
vlan-map next-hop ip_address
```

next-hop ip_address

Specifies the IP address for the next-hop gateway in IPv4 dotted-decimal notation.

Usage Guidelines

Use this command to combine multiple VLAN links to go through a single IP address. This feature is used in conjunction with nexthop forwarding and overlapping IP pools.

After configuring the vlan-map, move to the Ethernet Port Configuration mode to attach the vlan-map to a specific VLAN.
Example

The following command sets an IPv4 address for a next-hop gateway.

```
vlan-map next-hop 123.123.123.1
```