Mobility Management Entity Configuration

This chapter provides configuration information for the Mobility Management Entity (MME).

Because each wireless network is unique, the system is designed with a variety of parameters allowing it to perform in various wireless network environments. In this chapter, only the minimum set of parameters are provided to make the system operational. Optional configuration commands specific to the MME product are located in the Command Line Interface Reference.

Important

At least one packet processing card must be made active prior to service configuration. Information and instructions for configuring a packet processing card to be active can be found in the System Settings chapter of the System Administration Guide.

Important

Before you plan or modify your MME's configuration, we recommend that you review Appendix A: Engineering Rules for the engineering rules and configuration limits hardcoded into the system.

Caution

While configuring any base-service or enhanced feature, it is highly recommended to avoid conflicting or blocked IP addresses and port numbers when binding or assigning these to your configuration. In association with some service steering or access control features, the use of inappropriate port numbers may result in communication loss. Refer to the respective feature configuration document carefully before assigning any port number or IP address for communication with internal or external networks.

Important

Information about all commands in this chapter can be found in the Command Line Interface Reference.

- Configuring the System as a Standalone MME (base configuration), on page 2
- Configuring Optional Features on the MME, on page 12
Configuring the System as a Standalone MME (base configuration)

This section provides a high-level series of steps and associated configuration file examples for configuring the system to perform as an MME in a test environment. This section also includes suggestions about the types of information that are needed to be able to configure the MME, as well as information about how the MME works based on some of the possible configurations.

The configurations in this section assume the following:

- A single context (other than the Local context) for all interfaces and services
- Static S-GW/P-GW selection (MME Policy configuration)

Information Required

The following sections describe the minimum amount of information required to configure and make the MME operational on the network. To make the process more efficient, it is recommended that this information be available prior to configuring the system.

There are additional configuration parameters that are not described in this section. These parameters deal mostly with fine-tuning the operation of the S-GW in the network. Information on these parameters can be found in the appropriate sections of the Command Line Interface Reference.

Required MME Context Configuration Information

The following table lists the information that is required to configure the MME context.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MME context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the MME context is recognized by the system.</td>
</tr>
<tr>
<td>S1-MME Interface Configuration (To/from eNodeB)</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>IP address and subnet</td>
<td>IPv4 or IPv6 address assigned to the S1-MME interface. This address will be used for binding the SCTP (local bind address(es)) to communicate with the eNodeBs using S1-AP. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
</tbody>
</table>
Required Information

<table>
<thead>
<tr>
<th>Physical port number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
<td></td>
</tr>
</tbody>
</table>

S11 Interface Configuration (To/from S-GW)

<table>
<thead>
<tr>
<th>Interface name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address and subnet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 address assigned to the S11 interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical port number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
<td></td>
</tr>
</tbody>
</table>

S6a Interface Configuration (To/from HSS)

<table>
<thead>
<tr>
<th>Interface name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP address and subnet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 or IPv6 addresses assigned to the S6a interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical port number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
<td></td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S6a Diameter Endpoint Configuration</td>
<td></td>
</tr>
<tr>
<td>End point name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the S6a Diameter endpoint configuration is recognized by the system.</td>
</tr>
<tr>
<td>Origin realm name</td>
<td>An identification string between 1 through 127 characters. The realm is the Diameter identity. The originator's realm is present in all Diameter messages and is typically the company or service name.</td>
</tr>
<tr>
<td>Origin host name</td>
<td>An identification string from 1 to 255 characters (alpha and/or numeric) by which the S6a origin host is recognized by the system.</td>
</tr>
<tr>
<td>Origin host address</td>
<td>The IP address of the S6a interface.</td>
</tr>
<tr>
<td>Peer name</td>
<td>The S6a endpoint name described above.</td>
</tr>
<tr>
<td>Peer realm name</td>
<td>The S6a origin realm name described above.</td>
</tr>
<tr>
<td>Peer address and port number</td>
<td>The IP address and port number of the HSS.</td>
</tr>
<tr>
<td>Route-entry peer</td>
<td>The S6a endpoint name described above.</td>
</tr>
<tr>
<td>S13 Interface Configuration (To/from EIR)</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>IP address and subnet</td>
<td>IPv4 or IPv6 addresses assigned to the S13 interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
<tr>
<td>S13 Diameter Endpoint Configuration</td>
<td></td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>End point name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the S13 Diameter endpoint configuration is recognized by the system.</td>
</tr>
<tr>
<td>Origin realm name</td>
<td>An identification string between 1 through 127 characters. The realm is the Diameter identity. The originator's realm is present in all Diameter messages and is typically the company or service name.</td>
</tr>
<tr>
<td>Origin host name</td>
<td>An identification string from 1 to 255 characters (alpha and/or numeric) by which the S13 origin host is recognized by the system.</td>
</tr>
<tr>
<td>Origin host address</td>
<td>The IP address of the S13 interface.</td>
</tr>
<tr>
<td>Peer name</td>
<td>The S13 endpoint name described above.</td>
</tr>
<tr>
<td>Peer realm name</td>
<td>The S13 origin realm name described above.</td>
</tr>
<tr>
<td>Peer address and port number</td>
<td>The IP address and port number of the EIR.</td>
</tr>
<tr>
<td>Route-entry peer</td>
<td>The S13 endpoint name described above.</td>
</tr>
</tbody>
</table>

MME Service Configuration

MME service name	An identification string from 1 to 63 characters (alpha and/or numeric) by which the MME service can be identified on the system. It is configured in the Context configuration mode. Multiple names are needed if multiple MME services will be configured.
PLMN identifier	The identifier of Public Land Mobile Network (PLMN) of which MME belongs to. PLMN identifier is consisting of MCC and MNC.
MME identifier	The identifier of MME node. The MME Id is consisting of MME group and MME code.
TAI management database name	An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management database service can be associated with the MME service. This is required for static S-GW selection. Refer to the Required MME Policy Configuration Information section below.
P-GW IP address	IPv4 or IPv6 address of a PDN Gateway (P-GW). This is required for static S-GW/P-GW selection.
eGTP Service Configuration

eGTP service name
An identification string from 1 to 63 characters (alpha and/or numeric) by which the eGTP service can be associated with MME system. Multiple names are needed if multiple eGTP services will be used.

Interface type
Identifies the type of interface to which the eGTP service is bound. This interface type is "interface-mme".

GTP-C binding IP address
The IPv4 address of the S11 interface.

HSS Peer Service Configuration

HSS peer service name
An identification string from 1 to 63 characters (alpha and/or numeric) by which the HSS peer service is recognized by the system. Multiple names are needed if multiple HSS peer services will be used.

Diameter HSS peer
The name for a pre-configured Diameter endpoint, configured on system to associate with this MME service to access an HSS and an EIR. This is the S6a Diameter endpoint name.

Required MME Policy Configuration Information

The following table lists the information that is required to configure the MME Policy on an MME.

Table 2: Required Information for MME Policy Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking Area Identifier (TAI) management database name</td>
<td>An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management database is recognized by the system.</td>
</tr>
<tr>
<td>Tracking Area Identifier (TAI) management object name</td>
<td>An identification string from 1 to 64 characters (alpha and/or numeric) by which the TAI management object is recognized by the system.</td>
</tr>
<tr>
<td>S-GW IP address</td>
<td>The IPv4 or IPv6 address of the S-GW this management object represents.</td>
</tr>
</tbody>
</table>
How This Configuration Works

The following figure and supporting text describe how this configuration with a single context is used by the system to process a subscriber call originating from the GTP LTE network.

1. The eNodeB forwards an Attach Request message from the UE to the MME containing the IMSI, last visited TAI (if available), the UE's core network capability, the PDN Type, and the Attach Type.

2. The MME service receives the Attach Request message and references the HSS peer service for authentication and location resolution.

3. The HSS peer service configuration specifies the Diameter configuration and S6a interface to use to communicate with the HSS and the Diameter configuration and S13 interface to use to communicate with the Equipment Identity Register (EIR).

4. Assuming that the MME has no previous security context, it sends an S6a Authentication Request to the HSS and uses the authentication vectors received in the response to complete the authentication procedure with UE.

5. After authentication, the MME proceeds to do a security setup with the UE. During this procedure, the ME identity is transferred to the MME which then queries the EIR.

6. The MME then sends an Update Location Request to the HSS and obtains relevant subscription data for the IMSI in the response.
7. The MME policy is accessed to determine the S-GW and P-GW to which the UE should be attached.
8. The MME uses the S11 interface bound to the eGTP service to communicate with the S-GW specified by the MME policy configuration.
9. The MME then sends a Create Session Request to S-GW which is also forwarded to the specified P-GW (assuming GTP-S5/S8) P-GW establishes the S5/S8 GTPU bearers and then responds with a Create-Session-response which is forwarded to the MME by the S-GW. The S-GW includes the relevant S1-U bearer information.
10. The MME then sends a NAS Attach Accept embedded in the S1 Init Ctxt Setup request to the eNodeB. The Attach Accept contains the IP address allocated to the PDN and the temporary identifier (GUTI) assigned to the UE. The MME waits for positive acknowledgment from both the eNodeB (Init Ctxt Setup response) and UE (Attach Complete). The Init Ctxt Setup Response contains the S1-U bearer endpoint information. The MME then uses the S11 Modify Bearer Request to update the eNodeB endpoints with the S-GW. The receipt of the S11 Modify Bearer Response completes the end-to-end bearer setup.
11. The MME then uses the S6a Notify Request to update the HSS with the APN and P-GW identity.

MME Configuration

To configure the system to perform as a standalone eGTP S-GW, review the following graphic and subsequent steps.

Step 1
Set system configuration parameters such as activating PSCs by applying the example configurations found in the *System Administration Guide*.

Step 2
Create the MME context, service, and all interfaces, and bind the S1-MME interface to an IP address by applying the example configuration in the section.

Step 3
Create the eGTP service and associate it with the S11 interface by applying the example configuration in the section.

Step 4
Create the HSS peer service and associate it with the S6a interface and S13 interface by applying the example configuration in the section.
Step 5

Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the `System Administration Guide` and the `Command Line Interface Reference`.

Creating and Configuring the MME Context and Service

Use the following example to configure the MME context and all supported interfaces:

```plaintext
configure
  context mme_context_name -noconfirm
  interface s1-mme_intf_name
    ip address ipv4_address
  exit
  interface s11_intf_name
    ip address ipv4_address
  exit
  interface s6a_intf_name
    ip address ipv4_address
  exit
  interface s13_intf_name
    ip address ipv4_address
  exit
  mme-service mme_svc_name -noconfirm
    mme-id group-id grp_id mme-code mme_code
    plmn-id mcc mcc_value mnc mnc_value
    network-sharing plmnid mcc mcc_value mnc mcc_value mme-id group-id id
    mme-code code
    associate egtp-service egtp-service_name context mme_context_name
   associate hss-peer-service hss_peer_service_name context mme_context_name

    policy attach imei-query-type imei-sv verify-equipment-identity
    pgw-address pgw_ip_address
    bind s1-mme ipv4-address ip_address
  exit

port ethernet slot_number/port_number
  no shutdown
  bind interface s1-mme_intf_name mme_context_name
end
```

Notes:

- All interfaces in this configuration can also be specified as IPv6 addresses using the `ipv6 address` command.
- Multi-homing is supported on the S1-MME and S6a interfaces. For more information on configuring multi-homing for the S1-MME and/or S6a interface(s), refer to Configuring SCTP Multi-homing Support, on page 25.
- A maximum of 256 services (regardless of type) can be configured per system.
- The `bind s1-mme` command can also be specified as an IPv6 address using the `ipv6-address` keyword.
- The `network-sharing` command is used to configure an additional PLMN ID for this MME service.
- The eGTP service is configured in the following section.
• The HSS peer service is configured in the configuration sequence for Creating and Configuring the HSS Peer Service and Interface Associations, on page 10.
• In the above example, the mobile equipment identity (IMEI) is checked during the attach procedure. This is configured in the policy attach command. Another option is to check IMEI during the tracking area update (TAU). This can be accomplished instead of, or in addition to, the EIR query during the attach procedure. To check during the TAU, use the policy tau command.
• The pgw-address command is used to statically configure P-GW discovery.

Creating and Configuring the eGTP Service and Interface Association

Use the following example to create an eGTP service and associate it with the S11 interface.

Important

If you modify the interface-type command, the parent service (service within which the eGTP/GTP-U service is configured) will automatically restart. Service restart results in dropping of active calls associated with the parent service.

configure
context mme_context_name
 egtp-service egtp_service_name
 interface-type interface-mme
 gtpc bind ipv4-address s11_infc_ip_address
 exit
 exit
port ethernet slot_number/port_number
no shutdown
bind interface s11_interface_name mme_context_name
end

Notes:
• The gtpc bind command can be specified as an IPv6 address using the ipv6-address keyword. The interface specified for S11 communication must also be the same IPv6 address.

Creating and Configuring the HSS Peer Service and Interface Associations

Use the following example to create and configure the HSS peer service:

configure
context mme_context_name
 hss-peer-service hss_peer_service_name
diameter hss-endpoint hss_endpoint_name eir-endpoint eir-endpoint_name
 exit
 exit
diameter endpoint hss-endpoint_name
 origin realm realm_name
 origin host name address S6a_interface_address
 peer peer_name realm realm_name address hss_ip_address
 route-entry realm realm_name peer peer_name
 exit
diameter endpoint eir-endpoint_name
 origin realm realm_name
origin host name address S13_interface_address
peer peer_name realm realm_name address eir_ip_address
route-entry realm realm_name peer peer_name
exit
port ethernet slot_number/port_number
no shutdown
bind interface s6a_interface_name mme_context_name
exit
port ethernet slot_number/port_number
no shutdown
bind interface s13_interface_name mme_context_name
end

Notes:

• The origin host and peer commands can accept multiple IP addresses supporting multi-homing on each endpoint. For information on configuring SCTP multi-homing for the S6a interface, refer to Configuring SCTP Multi-homing Support, on page 25.

Caution
On a PSC2 setup, all diamproxy tasks might go into a warning state if the number of hss-peer-services configured are more than 64 since the memory usage may exceed the allocated value.

Configuring Dynamic Destination Realm Construction for Foreign Subscribers

For a foreign subscriber, the MME does not know the HSS nodes in all the foreign PLMNs. In this case the MME routes S6a/S6d requests directed to foreign PLMNs via a Diameter Routing Agent (DRA) using only the destination realm. The DRA in turn routes the request to the correct HSS based on the destination realm. In order to accomplish this, the MME needs to dynamically construct requests to the DRA/HSS with a Destination Realm representing the foreign PLMN of the UE.

The MME can be configured to derive the EPC Home Network Realm/Domain based on the user's IMSI (MNC and MCC values) and use it as the Destination Realm in all diameter messages.

For home subscribers, the MME will always use the configured peer realm as destination-realm, regardless if dynamic-destination-realm is enabled.

Because MNCs can be 2 or 3 digits long, to provide the ability for an operator to configure the MCC and MNC of foreign PLMNs, the operator policy of the subscriber map is used to determine the MNC value and the length of the MNC. The following steps outline how this configuration can be implemented.

First, enable the dynamic destination realm functionality for the HSS Peer Service:

```plaintext
configure
context ctxt_name
  hss-peer-service HSS1
    dynamic-destination-realm
end
```

Then configure the foreign PLMNs in the LTE subscriber map. For example:

```plaintext
configure
lte-policy
  subscriber map SM1
    precedence 10 match-criteria imsi mcc 232 mnc 11
```
operator-policy-name OP.HOME
 precedence 20 match-criteria imsi mcc 374 mnc 130 msin first
 700000000 last 800000000 operator-policy-name OP.ROAMING
end

Then associate the subscriber map to the MME Service. For example:

```
configure
  context ingress
    mme-service mmesvc
      associate subscriber-map SM1
  end
```

A static route entry must also be added in the diameter endpoint configuration for each foreign realm. For example:

```
configure
  context ingress
    diameter endpoint s6a1
      peer HSS1 realm HSS-Realm1 address ip-address sctp
      route-entry realm epc.mnc045.mcc123.3gppnetwork.org peer HSS1
  end
```

With this sample configuration, an MNC of length 2 and value of 11 is matched with first operator policy (OP.HOME), and an MNC length of 3 and value of 130 is matched with the second operator policy (OP.ROAMING). With this configuration, the MME will find the MNC based on the operator policy for the foreign subscriber.

If there is no matching entry present in the operator policy, the MME will use the global static table to decide the MNC length and pass that information to Diameter layer to construct the dynamic realm. The following list of MCCs are all considered as 3 digit MNCs. All other MCCs are considered 2 digit MNCs.

<table>
<thead>
<tr>
<th>MCC</th>
<th>302</th>
<th>334</th>
<th>354</th>
<th>405</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>338</td>
<td>356</td>
<td></td>
<td>708</td>
</tr>
<tr>
<td>311</td>
<td>342</td>
<td>358</td>
<td></td>
<td>722</td>
</tr>
<tr>
<td>312</td>
<td>344</td>
<td>360</td>
<td></td>
<td>732</td>
</tr>
<tr>
<td>316</td>
<td>346</td>
<td>365</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>376</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The `show hss-peer-service service name` command displays this configuration in the **Destination Realm** field, either **Configured Peer Realm** (default), or **Dynamic Realm**.

- **Request Auth-vectors**: 1
- **Notify Request Message**: Enable
- **Destination Realm**: Dynamic Realm

Configuring Optional Features on the MME

The configuration examples in this section are optional and provided to cover the most common uses of the MME in a live network. The intent of these examples is to provide a base configuration for testing.
Configuring Differentiation Between HeNB-GW and eNodeBs

The MME can be configured to distinguish the Home eNodeB Gateway (HeNB-GW) from other eNodeBs. This is required to support S1 handovers to Home eNodeBs connected via a HeNB-GW.

As per 3GPP TS 36.300, section 4.6.2, the TAI used in a HeNB-GW should not be reused in another HeNB-GW. The global eNodeB id of the HeNB-GW can now be configured within the lte-policy configuration mode.

In case of S1-based handovers to Home eNodeBs served by a HeNB-GW, the lookup at MME for the target eNodeB based on global ENB id will fail, as MME is aware of only the HeNB-GW. In those cases additional lookup needs to be done based on TAI to find the HeNB-GW serving the Home eNodeB.

This feature allows operators to configure the global eNodeB ids of HeNB-GWs in the MME service. The MME uses this information to perform HeNB-GW related functions.

The following steps create an HeNB-GW management database, configures a single Global eNodeB ID and TAI within the management database, and associates the HeNB-GW management database with the MME service:

```
configure
    lte-policy
        mme henbgw mgmt-db db_name
        henbgw-global-enbid mcc mcc_value mnc mnc_value enbid enbid_value
    end
configure
    context ctxt_name
        mme-service svc_name
            associate henbgw-mgmt-db db_name
        end
    end
```

Notes:

- A maximum of 8 HeNB-GWs can be configured within the HeNB-GW management database.
- The `show lte-policy henbgw-mgmt-db name db_name` command displays configuration information about the specified HeNB-GW management database.
- The `show mme-service enodeb-association full` command displays whether the eNodeB is an HeNB-GW by including "(HeNB-GW)" in the output of the eNodeB Type field.

Configuring Dual Address Bearers

This example configures support for IPv4/v6 PDNs.

Use the following configuration example to enable support on the MME for dual-address bearers:

```
configure
    context mme_context_name -noconfirm
    mme-service mme_svc_name
        policy network dual-addressing-support
    end
```

Configuring Dynamic Peer Selection

The configuration in this section replaces static configurations on the MME for the following peer components: MME, P-GW, S-GW, SGSN.
Use the following example to configure dynamic P-GW, S-GW, and peer MME selection through a DNS interface:

```
configure
  context mme_context_name -noconfirm
  interface dns_intf_name
    ip address ipv4_address
  exit
  ip domain-lookup
  ip name-servers dns_ip_address
  dns-client name
    bind address dns_intf_ip_address
  exit
  mme-service mme_svc_name
    dns pgw
    dns sgw
    dns peer-mme
    dns peer-sgsn
end
```

Notes:

- For the `dns pgw`, `dns sgw`, `dns peer-mme`, and `dns peer-sgsn` commands, the DNS client service must exist in the same context as the MME service. If the DNS client resides in a different context, the `context` command and `ctx_name` variable must be added to the command(s).

- If you have associated a tai-mgmt-db with a call-control-profile, and DNS is to be used for S-GW lookups, the DNS configuration must be configured within the same call-control-profile using the `dns-sgw` command present within the call-control-profile configuration mode.

Configuring Emergency Session Support

The configuration example in this section enables emergency bearer session support on the MME.

Use the following configuration example to enable emergency bearer services on the MME:

```
configure
  lte-policy
    lte-emergency-profile profile_name
      ambr max-ul bitrate max-dl bitrate
      apn apn_name pdn-type type
      pgw ip-address address protocol type weight value
      qos qci qci arp arp_value preemption-capability capability vulnerability
      type
    ue-validation-level type
  exit
  mme-service mme_svc_name
    associate lte-emergency-profile profile_name
end
```

Notes:

- A maximum of four LTE emergency profiles can be configured on the system.

- In the `apn` command, the valid PDN types are: ipv4, ipv4v6, and ipv6.
• In the `pgw` command, the valid protocol types are: `both`, `gtp`, and `pmip`. A maximum of four P-GW IP addresses can be configured per profile. An FQDN can also be configured in place of the IP addresses but only one P-GW FQDN can be configured per profile.

• In the `qos` command, the valid preemption capabilities are: `may` and `shall not`. The valid vulnerability types are: `not-preemptable` and `preemptable`.

• The `ue-validation-level` types are: `auth-only`, `full`, `imsi`, and `none`.

• To configure the MME to ignore the IMEI validation of the equipment during the attach procedure in emergency cases, use the following command in the `mme-service` configuration mode:

  ```
  policy attach imei-query-type imei | imei-sv | none
  verify-equipment-identity verify-emergency
  ```

• To configure the MME to ignore the IMEI validation of the equipment during TAU procedures in emergency cases, use the following command in the `mme-service` configuration mode:

  ```
  policy tau imei-query-type imei | imei-sv | none
  verify-equipment-identity verify-emergency
  ```

Configuring ESM T3396 Timer

ESM T3396 Timer in APN Profile

Use the following configuration in the APN Profile configuration mode to configure the ESM T3396 timer to be sent to UE in ESM reject messages.

The T3396 timer can be configured only for ESM reject cause 'insufficient resources' and 'missing or unknown apn', under the ESM configuration in APN profile. The T3396 timer configuration in APN-profile will have precedence over the T3396 timer configuration in Call Control Profile and MME-service.

```
configure
  apn-profile profile_name
  esm t3396-timeout timeout_value cause cause_code_value
  [ remove ] esm t3396-timeout cause cause_code_value
end
```

ESM T3396 Timer in Call Control Profile

Use the following configuration in the Call Control Profile configuration mode to configure the ESM T3396 timer to be sent to UE in ESM reject messages.

The T3396 timer can be configured only for ESM reject cause 'insufficient resources' and 'missing or unknown apn', under the ESM configuration in APN profile. The T3396 timer configuration in APN-profile will have precedence over the T3396 timer configuration in MME-service.

```
configure
  call-control-profile profile_name
  esm t3396-timeout timeout_value cause cause_code_value
  [ remove ] esm t3396-timeout cause cause_code_value
end
```

Notes:
• **t3396-timeout timeout_value**: Configures the value for ESM backoff timer (in seconds) to be sent to UE for ESM reject cause 'insufficient resources' and 'missing or unknown apn'. The *timeout_value* is an integer from 0 to 11160.

• **cause cause_code_value**: Configures the cause code value as an integer that is either 26 or 27. If the configured value is present in the ESM reject messages, the T3396 back-off timer will be included.

The cause values supported are: 26 - Insufficient resources and 27 - Missing or Unknown AP

 • Only one cause value can be configured with the *cause* keyword. Multiple cause values cannot be configured.

 • To configure the T3396 timeout for different cause codes, the configuration must be done in multiple lines. For example:

    ```
    esm t3396-timeout 1100 cause 26
    esm t3396-timeout 1500 cause 27
    ```

 • The new configuration for T3396 timeout for a given cause code will override the previous configuration. For example:

    ```
    esm t3396-timeout 1500 cause 26
    esm t3396-timeout 1800 cause 26
    ```

 The final T3396 timeout that will be applied for cause code 26 is 1800 seconds.

 • There is no specified default value for T3396 timeout for a given cause code.

• **remove**: Removes the T3396 timeout configuration for the specified cause code from Call Control profile. The T3396 timeout will then be applied from the MME-service.

Configuring Gn/Gp Handover Capability

The example configuration in this section provides 3G to 4G handover capabilities between the MME and a Gn/Gp SGSN. The configuration creates the Gn interface used for control signaling during the handover.

Use the following configuration example to create a Gn interface and configure the control interface on the MME for Gn/Gp handovers:

```
configure
  context mme_context_name -noconfirm
  interface Gn_intf_name
    ip address ipv4_address
    exit
  sgtp-service sgtp_svc_name
    gtpc bind address Gn_intf_ip_address
    exit
  mme-service mme_svc_name
    associate sgtpc-service sgtp_svc_name
    peer-sgsn rai mcc mcc_value mnc mnc_value rac value lac value address
    ip_address capability gn
    nri length length plmn-id mcc mcc_value mnc mnc_value
  end
```

Notes:
• The `peer-sgsn` command is used to statically configure a peer SGSN. SGSN selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the Configuring Dynamic Peer Selection, on page 13 in this chapter.

• If dynamic peer-SGSN selection is configured, an additional `gtpc` command must be added to the SGTP service: `gtpc dns-sgsn context cntxt_name`

• In the absence of an NRI length configuration, the MME treats the NRI as invalid. The MME will use a plain RAI-based FQDN (and not an NRI-based FQDN) for DNS queries made to resolve the source SGSN.

Configuring Inter-MME Handover Support

Use the following example to configure inter-MME handover support:

```
configure
  context mme_context_name -noconfirm
  interface s10_intf_name
    ip address ipv4_address
  exit
  egtp-service egtp_service_name
  interface-type interface-mme
    gtpc bind ipv4-address s10_infc_ip_address
  exit
  exit
  mme-service mme_svc_name
    peer-mme gummei mcc number mnc number group-id id mme-code code address ipv4_address
  exit
  exit
  port ethernet slot_number/port_number
    no shutdown
    bind interface s10_interface_name mme_context_name
  end
```

Notes:

• The S10 IP address can also be specified as an IPv6 address. To support this, the `ip address` command can be changed to the `ipv6 address` command.

• The `peer-mme` command can also be configured to acquire a peer MME through the use of a TAI match as shown in this command example:

```
peer-mme tai-match priority value mcc number mnc number tac any address ipv4_address
```

• The `peer-mme` command is used to statically configure a peer MME. MME selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the Configuring Dynamic Peer Selection, on page 13 in this chapter.
• The peer MME IP address can also be specified as an IPv6 address.

Configuring X.509 Certificate-based Peer Authentication

The configuration example in this section enables X.509 certificate-based peer authentication, which can be used as the authentication method for IP Security on the MME.

Important

Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

The following configuration example enables X.509 certificate-based peer authentication on the MME.

In Global Configuration Mode, specify the name of the X.509 certificate and CA certificate, as follows:

```
configure
certificate name cert_name pem url cert_pem_url private-key pprivate-keyem
url private_key_url
ca-certificate name ca_cert_name pem url ca_cert_url
end
```

Notes:

• The `certificate name` and `ca-certificate list ca-cert-name` commands specify the X.509 certificate and CA certificate to be used.

• The PEM-formatted data for the certificate and CA certificate can be specified, or the information can be read from a file via a specified URL as shown in this example.

When creating the crypto template for IPSec in the Context Configuration Mode, bind the X.509 certificate and CA certificate to the crypto template and enable X.509 certificate-based peer authentication for the local and remote nodes, as follows:

```
configure
context mme_context_name
crypto template crypto_template_name ikev2-dynamic
certificate name cert_name
ca-certificate list ca-cert-name ca_cert_name
authentication local certificate
authentication remote certificate
end
```

Notes:

• A maximum of sixteen certificates and sixteen CA certificates are supported per system. One certificate is supported per service, and a maximum of four CA certificates can be bound to one crypto template.

• The `certificate name` and `ca-certificate list ca-cert-name` commands bind the certificate and CA certificate to the crypto template.

• The `authentication local certificate` and `authentication remote certificate` commands enable X.509 certificate-based peer authentication for the local and remote nodes.
Configuring Dynamic Node-to-Node IP Security on the S1-MME Interface

The configuration example in this section creates an IKEv2/IPSec dynamic node-to-node tunnel endpoint on the S1-MME interface.

Important
Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

Creating and Configuring an IPSec Transform Set

The following example configures an IPSec transform set which is used to define the security association that determines the protocols used to protect the data on the interface:

```
configure
    context <mme_context_name>
    ipsec transform-set <ipsec_transform-set_name>
        encryption aes-cbc-128
        group none
        hmac sha1-96
        mode tunnel
    end
```

Notes:

- The encryption algorithm, **aes-cbc-128**, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IPSec transform sets configured on the system.

- The **group none** command specifies that no crypto strength is included and that Perfect Forward Secrecy is disabled. This is the default setting for IPSec transform sets configured on the system.

- The **hmac** command configures the Encapsulating Security Payload (ESP) integrity algorithm. The **sha1-96** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IPSec transform sets configured on the system.

- The **mode tunnel** command specifies that the entire packet is to be encapsulated by the IPSec header including the IP header. This is the default setting for IPSec transform sets configured on the system.

Creating and Configuring an IKEv2 Transform Set

The following example configures an IKEv2 transform set:

```
configure
    context <mme_context_name>
    ikev2-ikesa transform-set <ikev2_transform-set_name>
        encryption aes-cbc-128
        group 2
        hmac sha1-96
        lifetime <sec>
        prf shal
    end
```

Notes:
The encryption algorithm, **aes-cbc-128**, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IKEv2 transform sets configured on the system.

The **group 2** command specifies the Diffie-Hellman algorithm as Group 2, indicating medium security. The Diffie-Hellman algorithm controls the strength of the crypto exponentials. This is the default setting for IKEv2 transform sets configured on the system.

The **hmac** command configures the Encapsulating Security Payload (ESP) integrity algorithm. The **sha1-96** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

The **lifetime** command configures the time the security key is allowed to exist, in seconds.

The **prf** command configures the IKE Pseudo-random Function, which produces a string of bits that cannot be distinguished from a random bit string without knowledge of the secret key. The **sha1** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

Creating and Configuring a Crypto Template

The following example configures an IKEv2 crypto template:

```
configure
crypto template <crypto_template_name> ikev2-dynamic
  authentication local pre-shared-key key <text>
  authentication remote pre-shared-key key <text>
  ikev2-ikesa transform-set list <name1> . . . <name6>
  ikevs-ikesa rekey
  payload <name> match childsa match ipv4
    ipsec transform-set list <name1> . . . <name4>
    rekey
end
```

Notes:

- The **ikev2-ikesa transform-set list** command specifies up to six IKEv2 transform sets.
- The **ipsec transform-set list** command specifies up to four IPSec transform sets.

Binding the S1-MME IP Address to the Crypto Template

The following example configures the binding of the S1-MME interface to the crypto template:

```
configure
  context <mme_context_name>
    mme-service <mme_svc_name>
      bind s1-mme ipv4-address <address> ipv4-address <address>
    crypto-template <enodeb_crypto_template>
end
```

Notes:

- The **bind** command in the MME service configuration can also be specified as an IPv6 address using the **ipv6-address** command.
• This example shows the `bind` command using multi-homed addresses. The multi-homing feature also supports the use of IPv6 addresses.

Configuring ACL-based Node-to-Node IP Security on the S1-MME Interface

The configuration example in this section creates an IKEv2/IPSec ACL-based node-to-node tunnel endpoint on the S1-MME interface.

Important

Use of the IP Security feature requires that a valid license key be installed. Contact your local Sales or Support representative for information on how to obtain a license.

Creating and Configuring a Crypto Access Control List

The following example configures a crypto ACL (Access Control List), which defines the matching criteria used for routing subscriber data packets over an IPSec tunnel:

```bash
class configure context <mme_context_name>
    ip access-list <acl_name>
        permit tcp host <source_host_address> host <dest_host_address>
    end

class Notes:
    • The `permit` command in this example routes IPv4 traffic from the server with the specified source host IPv4 address to the server with the specified destination host IPv4 address.
```

Creating and Configuring an IPSec Transform Set

The following example configures an IPSec transform set which is used to define the security association that determines the protocols used to protect the data on the interface:

```bash
class configure context <mme_context_name>
    ipsec transform-set <ipsec_transform-set_name>
        encryption aes-cbc-128
        group none
        hmac sha1-96
        mode tunnel
    end

class Notes:
    • The encryption algorithm, `aes-cbc-128`, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IPSec transform sets configured on the system.
    • The `group none` command specifies that no crypto strength is included and that Perfect Forward Secrecy is disabled. This is the default setting for IPSec transform sets configured on the system.
    • The `hmac` command configures the Encapsulating Security Payload (ESP) integrity algorithm. The `sha1-96` keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IPSec transform sets configured on the system.
```
• The **mode tunnel** command specifies that the entire packet is to be encapsulated by the IPsec header including the IP header. This is the default setting for IPsec transform sets configured on the system.

Creating and Configuring an IKEv2 Transform Set

The following example configures an IKEv2 transform set:

```
configure
 context <mme_context_name>
   ikev2-ikesa transform-set <ikev2_transform-set_name>
     encryption aes-cbc-128
     group 2
     hmac sha1-96
     lifetime <sec>
     prf sha1
   end
```

Notes:

• The encryption algorithm, **aes-cbc-128**, or Advanced Encryption Standard Cipher Block Chaining, is the default algorithm for IKEv2 transform sets configured on the system.

• The **group 2** command specifies the Diffie-Hellman algorithm as Group 2, indicating medium security. The Diffie-Hellman algorithm controls the strength of the crypto exponentials. This is the default setting for IKEv2 transform sets configured on the system.

• The **hmac** command configures the Encapsulating Security Payload (ESP) integrity algorithm. The **sha1-96** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

• The **lifetime** command configures the time the security key is allowed to exist, in seconds.

• The **prf** command configures the IKE Pseudo-random Function which produces a string of bits that cannot be distinguished from a random bit string without knowledge of the secret key. The **sha1** keyword uses a 160-bit secret key to produce a 160-bit authenticator value. This is the default setting for IKEv2 transform sets configured on the system.

Creating and Configuring a Crypto Map

The following example configures an IKEv2 crypto map:

```
configure
 context <mme_context_name>
   crypto map <crypto_map_name> ikev2-ipv4
     match address <acl_name>
     peer <ipv4_address>
     authentication local pre-shared-key key <text>
     authentication remote pre-shared-key key <text>
     ikev2-ikesa transform-set list <name1> . . . <name6>
     payload <name> match ipv4
       lifetime <seconds>
       ipsec transform-set list <name1> . . . <name4>
     exit
   exit
```

Mobility Management Entity Configuration

22

Mobility Management Entity Configuration
interface <s1-mme_intf_name>
ip address <ipv4_address>
crypto-map <crypto_map_name>
exit
exit
port ethernet <slot_number/port_number>
no shutdown
bind interface <s1-mme_intf_name> <mme_context_name>
end

Notes:

- The type of crypto map used in this example is IKEv2-IPv4 for IPv4 addressing. An IKEv2-IPv6 crypto map can also be used for IPv6 addressing.

- The `ipsec transform-set list` command specifies up to four IPSec transform sets.

Configuring Mobility Restriction Support

Mobility or handover restriction is performed by handover restriction lists configured on the MME. These lists restrict inter-RAT, 3G location area, and/or 4G tracking area handovers based on the configuration in the Handover Restriction List Configuration Mode.

Important

Mobility restriction support is only available through the operator policy configuration. For more information on operator policy, refer to the Operator Policy chapter in this guide.

Configuring Inter-RAT Handover Restrictions on the MME

Inter-RAT handover restriction configurations on the MME restrict subscribers from participating in handovers to defined radio access network types.

Use the following example to configure this feature:

```plaintext
configure
lte-policy
ho-restrict-list <name>
    forbidden inter-rat cdma2000
end
```

Notes:

- Other forbidden inter-RAT choices are: all, GERAN, and UNTRAN.

- This configuration will only become operational when it is associated with a call control profile. Only one handover restriction list can be associated with a call control profile.

Configuring Location Area Handover Restrictions on the MME

Location area handover restriction lists on the MME restrict subscribers from participating in handovers to specific 3G location area codes.

Use the following example to configure this feature:
Configure Tracking Area Handover Restrictions on the MME

Tracking area handover restriction lists on the MME restrict subscribers from participating in handovers to specific 4G tracking area codes.

Use the following example to configure this feature:

```plaintext
configure
lte-policy
  ho-restrict-list name
    forbidden location-area plmnid id
    lac area_code area_code area_code +
  end
end
```

Notes:

• Up to 16 forbidden location areas can be configured per handover restriction list.

• Up to 128 location area codes can be entered in a single lac command line.

• This configuration will only become operational when it is associated with a call control profile. Only one handover restriction list can be associated with a call control profile.

Configuring S4-SGSN Handover Capability

This configuration example configures an S3 interface supporting inter-RAT handovers between the MME and an S4-SGSN.

Use the following example to configure this feature:

```plaintext
configure
context mme_context_name -noconfirm
  interface s3_interface_name
    ip address ipv4_address
    exit
  mme-service mme_svc_name
    peer-sgsn rai mcc mcc_value mnc mnc_value rac value lac value address
    ip_address capability s3
    nri length length plmn-id mcc mcc_value mnc mnc_value
```
Notes:

- The S3 IP address can also be specified as an IPv6 address. To support this, the `ip address` command can be changed to the `ipv6 address` command.
- The `peer-sgsn` command is used to statically configure a peer SGSN. SGSN selection can also be performed dynamically through the DNS client. For more information about dynamic peer selection, refer to the Configuring Dynamic Peer Selection, on page 13 section in this chapter.
- In the absence of an NRI length configuration, the MME treats the NRI as invalid. The MME will use a plain RAI-based FQDN (and not an NRI-based FQDN) for DNS queries made to resolve the source SGSN.

Configuring SCTP Multi-homing Support

SCTP multi-homing can be configured on the S1-MME interface (to/from eNodeB), the S6a interface (to/from HLR/HSS), and the SGs interface (to/from the MSC/VLR).

Configuring SCTP Multi-homing on the S1-MME Interface

Up to two IPv4 or IPv6 addresses for the S1-MME interface can be entered to allow for SCTP multi-homing.

The configuration example in this section is intended as a replacement for the S1-MME interface configuration located in the section for Creating and Configuring the MME Context and Service, on page 9. Use the following example to configure S1-MME multi-homing between the MME and the eNodeB:

```
configure
  context mme_context_name -noconfirm
  interface s1-mme_intf_name
    ip address ipv4_address
    ip address secondary_ipv4_address
  exit
  mme-service mme_svc_name
    bind s1-mme ipv4-address ipv4_address secondary_ipv4_address
  exit
  exit
  port ethernet slot_number/port_number
  no shutdown
  bind interface s1-mme_intf_name mme_context_name
  end
```

Notes:

- The S1-MME IP addresses can also be specified as IPv6 addresses using the `ipv6 address` keyword.
- The IP addresses in the `bind s1-mme ipv4-address` command can also be specified as IPv6 addresses using the `ipv6-address` keyword.
Configuring SCTP Multi-homing on the S6a Interface

Up to four IPv4 or IPv6 addresses for the S6a interface can be configured to allow for SCTP multi-homing.

The configuration example in this section is intended as a replacement for the S6a interface configuration located in Creating and Configuring the MME Context and Service, on page 9 section and the Diameter configuration for the S6a interface located in Creating and Configuring the HSS Peer Service and Interface Associations, on page 10. Use the following example to configure S6a multi-homing between the MME and the HLR/HSS:

```
configure
  context mme_context_name
    interface s6a_intf_name
      ip address s6a_intf_primary_ip_addr ip_mask
      ip address s6a_intf_secondary_ip_addr2 ip_mask secondary
      ip address s6a_intf_secondary_ip_addr3 ip_mask secondary
    exit
  exit

  diameter endpoint hss-endpoint_name
    origin realm realm_name
    origin host name address s6a_intf_primary_ip_addr port number address
      s6a_intf_secondary_ip_addr2 port number address s6a_intf_secondary_ip_addr3 port number
    peer peer_name realm realm_name address hss_ip_addr1 port number address
      hss_ip_addr2 port number sctp
    route-entry realm realm_name peer peer_name
    exit

  port ethernet slot_number/port_number
    no shutdown
    bind interface s6a_intf_name mme_context_name
    exit
```

Notes:

- The S6a IP addresses can also be specified as IPv6 addresses using the `ipv6 address` keyword.

Configuring S6a SCTP and Application Timers for Multi-homing

In the event of a path failure, the SCTP multi-homing feature requires time to activate the alternate path. Timers associated with the SCTP heartbeat and the application in this instance, a Diameter watchdog request, must be tuned properly to ensure that the application does not timeout before the redundant SCTP path can be activated. The required calculation is based on the two paths configured between the MME and the HSS, the maximum retransmission configuration for the SCTP paths, and the SCTP heartbeat timeout configuration. The configuration of the timers must be identical on both peers.

The recommended SCTP timer values are provided below in the first row for the Diameter application default values that follow the typical case of two paths between the MME and HSS SCTP peers. SCTP HB interval can be in the range of 1 to 10 seconds, since (10 sec x 1 retx x 2 paths = 20 seconds) (30 sec watchdog timeout x 1 retry).

The second row displays the recommended configuration using the same Diameter defaults but providing a SCTP heartbeat timer that reduces heartbeat traffic.
Table 3: SCTP/Application Timer Configuration Values

<table>
<thead>
<tr>
<th>SCTP Heartbeat Timeout</th>
<th>SCTP Path Max Retransmissions</th>
<th>Diameter Device Watchdog Timeout</th>
<th>Diameter Watchdog Request Max Retries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 range</td>
<td>1</td>
<td>30 (default)</td>
<td>1 (default)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>30 (default)</td>
<td>1 (default)</td>
</tr>
</tbody>
</table>

The following example configures the SCTP and application timers for the S6a SCTP interface supporting multi-homing:

```config
configure
  sctp-param-template name
    sctp-max-path-retx value
    timeout sctp-heart-beat value
  exit
context name
  diameter endpoint endpoint_name
    associate sctp-parameter-template template_name
device-watchdog-request max-retries retry_count
  watchdog-timeout timeout
end
```

Notes:
- When no SCTP parameter template is associated with the Diameter endpoint, the following default values are used:
 - `sctp-max-path-retx` 10 (default in the parameter template is 5)
 - `timeout sctp-heart-beat` 30 (default for the parameter template as well)

Configuring SCTP Multi-homing on the SGs Interface

Up to two IPv4 or IPv6 addresses for the SGs interface can be entered to allow for SCTP multi-homing. Use the following example to configure SGs multi-homing between the MME and the MSC/VLR:

```config
configure
  context mme_context_name -noconfirm
  interface s1-mme_intf_name
    ip address ipv4_address
    ip address secondary_ipv4_address
  exit
  sgs-service mme_svc_name
    bind ipv4-address ipv4_address ipv4-address secondary_ipv4_address
  exit
  exit
  port ethernet slot_number/port_number
  no shutdown
  bind interface sgs_intf_name mme_context_name
end
```

Notes:
• The SGs IP addresses can also be specified as IPv6 addresses using the `ipv6 address` keyword.

• The IP addresses in the `bind ipv4-address` command can also be specified as IPv6 addresses using the `ipv6-address` keyword.

SCTP Parameters for MME

The details on the configurable values for SCTP parameters are provided in the table given below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTO.min</td>
<td>10ms</td>
<td>5s</td>
<td>10ms</td>
</tr>
<tr>
<td>RTO.max</td>
<td>500ms</td>
<td>120s</td>
<td>10ms</td>
</tr>
<tr>
<td>RTO.initial</td>
<td>RTO.min</td>
<td>RTO.max</td>
<td>10ms</td>
</tr>
<tr>
<td>RTO.alpha</td>
<td>1/8</td>
<td>1/8</td>
<td>-</td>
</tr>
<tr>
<td>RTO.beta</td>
<td>1/4</td>
<td>1/4</td>
<td>-</td>
</tr>
<tr>
<td>Valid.Cookie.Life</td>
<td>5s</td>
<td>120s</td>
<td>1s</td>
</tr>
<tr>
<td>HB.interval</td>
<td>1s</td>
<td>300s</td>
<td>1s</td>
</tr>
<tr>
<td>SACK period</td>
<td>0ms</td>
<td>500ms</td>
<td>10ms</td>
</tr>
<tr>
<td>SACK frequency</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>MTU size</td>
<td>508 bytes</td>
<td>65535 bytes</td>
<td>1 byte</td>
</tr>
</tbody>
</table>

The details on the default values for SCTP parameters are provided in the table given below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTO Alpha</td>
<td>5</td>
</tr>
<tr>
<td>RTO Beta</td>
<td>10</td>
</tr>
<tr>
<td>Valid Cookie Life</td>
<td>600</td>
</tr>
<tr>
<td>Max. associate retransmission value</td>
<td>10</td>
</tr>
<tr>
<td>Max. number of outgoing streams</td>
<td>16</td>
</tr>
<tr>
<td>Max. number of incoming streams</td>
<td>16</td>
</tr>
<tr>
<td>Max. retransmission initiations</td>
<td>5</td>
</tr>
<tr>
<td>Max. MTU size</td>
<td>1500</td>
</tr>
<tr>
<td>Min. MTU size</td>
<td>508</td>
</tr>
<tr>
<td>Start MTU</td>
<td>1500</td>
</tr>
<tr>
<td>Max. path retransmission</td>
<td>5</td>
</tr>
</tbody>
</table>
Configuring Static S-GW Pools

The MME supports static TAI list configuration which allows for the mapping of TAIs, TACs, and S-GWs to facilitate S-GW pooling for UEs moving between TAIs in their TAI lists.

Creating and Configuring a TAI Management Database and Object

This section provides configuration examples for creating and configuring the TAI/S-GW associations for S-GW pooling.

Use the following example to configure this feature on the MME:

```bash
configure  
  lte-policy  
    tai-mgmt-db db_name  
    tai-mgmt-obj object_name  
    tai mcc number mnc number tac value  
    sgw-address ipv4_address s5-s8-protocol gtp weight number  
  end
```

Notes:

- In releases prior to 21.2: Up to 4 TAI databases can be configured on the system.
 In 21.2 and later releases: Up to 32 TAI databases can be configured on the system.
- In releases prior to 21.2: Up to 500 TAI management objects can be configured per database.
 In 21.2 and later releases: Up to 4000 TAI management objects can be configured per database. The total number of TAI-Objects across all 32 TAI-DBs is limited to 16000.
- Up to 16 TAIs can be configured per management object.
- Up to 16 TACs can be configured per TAI.
- The `sgw-address` variable can also be specified as an IPv6 address.
• Up to 32 S-GW IP addresses can be configured per management object.
• Weights for IPv4 addresses are ignored if IPv6 addresses are present meaning only IPv6 addresses are load-balanced if present.
• The s5-s8-protocol can also be specified as pmip or both (GTP and PMIP).

Associating a TAI Management Database with an MME Service

In order for an MME service to use a statically configured S-GW pool, it must be associated with the TAI Management Database.

Use the following example to configure the TAI Management Database-to-MME service association:

```bash
configure
case mme_context_name
mme-service mme_svc_name
associate tai-mgmt-db database_name
end
```

Notes:

• Only one TAI Management Database can be configured per MME service.
• This association can also be performed in the Call Control Profile Configuration Mode supporting Operator Policy. If both associations are configured, the Operator Policy association is preferred by the system.

Associating a TAI Management Database with a Call Control Profile

MME service can access a statically configured S-GW pool through an Operator Policy instance, specifically through the Call Control Profile.

Use the following example to configure the TAI Management Database-to-MME service association:

```bash
configure
call-control-profile name
associate tai-mgmt-db database_name
end
```

Notes:

• Only one TAI Management Database can be configured per Call Control Profile.
• This association can also be performed in the MME Service Configuration Mode. If both associations are configured, the Operator Policy association is preferred by the system.
• If the tai-mgmt-db is associated with a call-control-profile, and DNS is to be used for S-GW lookups, the DNS configuration must be configured within the same call-control-profile using the dns-sgw command within the call-control-profile configuration mode.

Configuring UMTS to LTE ID Mapping

UMTS networks are configured with LACs allocated from the reserved space of 32K to 64K. In LTE networks, this space is typically reserved for MME group IDs. To overcome this issue during inter-RAT handovers, the MME can be configured with mappings between LACs and MME group IDs.
Use the following configuration example to map PLMN IDs to MME group IDs:

```bash
configure
  lte-policy
    network-global-mme-id-mgmt-db
      plmn mcc mcc_value mnc mnc_value mme-group-id-range first id last id
    exit
  context mme_service_context
    mme-service service_name
      associate network-global-mme-id-mgmt-db
    end
exit
```

Notes:
- Up to 32 mappings can be configured on the system.
- Overlapping ranges can be identified in the output of the `show configuration errors` command.

Configuring User Location Information Reporting Support

This feature allows the MME to query and receive UE location reports from an eNodeB.

Note

User Location Information Reporting is a licensed feature and requires the purchase of the ULI Reporting feature license to enable it.

Use the following example to configure User Location Information (ULI) reporting support on the MME:

```bash
configure
  context mme_context_name
    mme-service mme_svc_name
      location-reporting
    end
```
Configuring User Location Information Reporting Support