Configuring Ethernet over GRE

Ethernet over GRE (EoGRE), is a tunneling protocol that enables tunneling of Layer 2 packets encapsulated in GRE header over IP core networks. Generic Routing Encapsulation (GRE) is a tunneling protocol that encapsulates a wide variety of network layer protocols inside virtual point-to-point links over a Layer 3 IPv4 or Layer 3 IPv6 access network.

Prerequisites

The following are the prerequisites for configuring EoGRE:

- IP routing must be enabled. The following command enables IP routing:
  ```
  ip routing
  ```
- IP CEF must be enabled. The following command enables IP CEF:
  ```
  ip cef
  ```
- Sub-interfaces for VLANs must be created to tunnel Ethernet frames with the VLAN tag. The following commands create sub interfaces for VLANs:
  ```
  interface Dot11Radio interface number.sub-interface number
  encapsulation dot1Q vlan id
  bridge-group bridge id
  interface GigabitEthernet0.sub-interface number
  encapsulation dot1Q vlan id
  bridge-group bridge id
  ```

Note

The bridge ID on interfaces with the same VLAN ID, must be the same.

The following are not supported:

- SNMP, and GUI through ACS configurations
- Tunnel establishment using IPv6 address
Configuring EoGRE

Configuring a tunnel profile defines configurable parameters to create a tunnel. The following parameters are to be configured under the dot11 tunnel:

- Tunnel address mode
- Source address
- Destination address
- Maximum segment size (MSS)
- Maximum transmission unit (MTU)
- Type of service (ToS) or Differentiated Services Code Point (DSCP)

Beginning in privileged EXEC mode, follow these steps to configure a tunnel profile under the dot11 tunnel.

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode [ipv4</td>
<td>ipv6]</td>
</tr>
<tr>
<td>source address</td>
<td>Source address, default is AP’s BVI address</td>
</tr>
<tr>
<td>destination address</td>
<td>Tunnel destination address</td>
</tr>
<tr>
<td>mss size</td>
<td>Set TCP MSS value for incoming and outgoing TCP syn and syn/ack packets. Default size is 1360.</td>
</tr>
<tr>
<td>mtu size</td>
<td>Incoming IP packets will fragmented if the size of IP packet is larger than this value and then an ICMP Need Fragmentation error message is sent to the client. Default size is 1400.</td>
</tr>
<tr>
<td>tos value</td>
<td>To set a ToS or DSCP value in the transport IP address. Default value is zero (0).</td>
</tr>
</tbody>
</table>

Examples

```plaintext
ap(config)# dot11 tunnel sample
ap(config-dot11-tunnel)# mode ipv4
ap(config-dot11-tunnel)# destination 1.1.1.1
ap(config-dot11-tunnel)# mss 1360
ap(config-dot11-tunnel)# mtu 1400
ap(config-dot11-tunnel)# tos 5
ap(config-dot11-tunnel)# end
```

Mapping SSID to Tunnel

Mapping the tunnel to the WLAN is done by using the command `tunnel tunnel_profile` under the SSID configuration.

Beginning in privileged EXEC mode, follow these steps to map the SSID to the tunnel.
Configuring DHCP Snooping for EoGRE clients

DHCP snooping is a security feature that acts like a firewall between untrusted hosts and trusted DHCP servers. By enabling DHCP snooping on the AP, the AP inserts the relay agent information option (DHCP option 82) which contains two sub-options Circuit ID and Remote ID.

Note
DHCP Snooping is disabled by default.

Beginning in privileged EXEC mode, follow these steps to enable DHCP snooping for EoGRE clients under dot11 SSID.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>dot11 ssid ssid Specifies the SSID</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan vlan id Specifies the VLAN ID</td>
</tr>
<tr>
<td>Step 3</td>
<td>tunnel tunnel profile Specifies the tunnel profile to be used</td>
</tr>
<tr>
<td>Step 4</td>
<td>**authentication {open</td>
</tr>
</tbody>
</table>

Examples

```
ap(config)# dot11 ssid doc
ap(config-ssid)# tunnel sample
ap(config-ssid)# authentication open
ap(config-ssid)# end
```
Configuring DHCP Snooping for EoGRE clients

Examples

```plaintext
ap(config)# dot11 ssi
ap(config)# dot11 ssid doc
ap(config-ssid)# dhcp-snoop enable
ap(config-ssid)# dhcp-snoop circuit_id format ap-mac ssid type
ap(config-ssid)# dhcp-snoop circuit_id 00:10:A4:23:B6:C0;xfinityWiFi;s
ap(config-ssid)# dhcp-snoop remote_id format client-mac
ap(config-ssid)# dhcp-snoop remote_id 00:50:24:23:B7:D0
ap(config-ssid)# end
```

Additional Commands

The default DHCP Snooping encoding is in binary. You can set it to ASCII using the following command:

```plaintext
ap(config-ssid)# dhcp-snoop encoding ascii
```

The default DHCP Snooping string sequence delimiter is the single character ‘;’. To change this, use the following command:

```plaintext
ap(config-ssid)# dhcp-snoop delimiter single_character_or_string
```

The `single_character_or_string` can be up to 127 characters long.

Circuit ID and Remote ID Format and Strings

For both the Circuit ID and the Remote ID, you need to specify the format of the string sequence for each, before you assign the string for each.

The format and strings can be a combination of up to five out of eight values shown in the following table. When specifying the string sequence, the strings are separated by the delimiter character, the default being ‘;’.

<table>
<thead>
<tr>
<th>Format</th>
<th>Nature of corresponding string</th>
</tr>
</thead>
<tbody>
<tr>
<td>ap-mac</td>
<td>AP radio MAC address</td>
</tr>
<tr>
<td>client-mac</td>
<td>Client MAC address</td>
</tr>
<tr>
<td>eth-mac</td>
<td>AP Ethernet MAC address</td>
</tr>
<tr>
<td>name</td>
<td>AP name</td>
</tr>
<tr>
<td>raw word_string</td>
<td>Any string. If raw is specified in the format command, then the string to be entered is also specified alongside.</td>
</tr>
</tbody>
</table>
Configuring Ethernet over GRE

Chapter 24 Configuring Ethernet over GRE

Configuring Redundancy for Tunnel Gateway Address

Configuring a redundancy for the tunnel helps you to switchover from primary to secondary when the working gateway address fails or becomes unreachable.

The following parameters are to be configured under dot11 tunnel to configure redundancy:

- Backup destination
- Backup timeout
- Keep alive parameters

Beginning in privileged EXEC mode, follow these steps to configure redundancy address for the tunnel:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Backup destination</td>
<td>Specifies the backup destination address</td>
</tr>
<tr>
<td>Step 2 Backup timeout</td>
<td>Specifies the number of seconds after which the tunnel switches from backup to primary</td>
</tr>
<tr>
<td>Step 3 Keepalive count interval dead-count timeout</td>
<td>The count is the number of ping packets sent every interval seconds. After the dead-count pings fail, a tunnel endpoint is assumed to be dead. The timeout is the number of seconds the AP waits for ping replies after sending a ping. Default values for count, interval, dead-count, and timeout is 3, 60, 3, and 1 respectively.</td>
</tr>
</tbody>
</table>

Note

During the switchover from primary to secondary, or vice versa, all associated clients will be deauthenticated and will reassociate after the switchover. When both the primary and secondary are down, the SSIDs that are attached to the tunnel will also be down. Once either of the primary or secondary address can be reached by the AP, the SSID will come up and start serving clients.

Examples

```
ap(config)# dot11 tunnel sample
ap(config-dot11-tunnel)# backup destination 2.2.2.2
ap(config-dot11-tunnel)# backup timeout 60
ap(config-dot11-tunnel)# keepalive 3 60 3 3
ap(config-dot11-tunnel)# end
```