
Introduction

• Introduction, page 1

• Anatomy of an API Request, page 4

• Anatomy of an API Response, page 11

Introduction

API Introduction
Cisco Unified Communications Domain Manager introduces a completely new approach to Unified
Communications management that emphasizes the API as the common point of entry to the system. All Cisco
Unified Communications Domain Manager functionality is available through the API, including the Cisco
Unified Communications Domain Manager GUI itself, which uses the same API. Because the GUI uses the
same API that's available to partners externally, developers can use trace tools (such as Chrome developer
tools) to learn details on the API schema, how the API operates, how to create, update, and delete objects,
etc. Any operation performed by the Cisco Unified Communications Domain Manager GUI can be traced
and replicated by an external client.

The Cisco Unified Communications DomainManager API is a secure, normalized, and integrated REST-based
API. Secure in the sense that it supports HTTPS digest authentication. Normalized in the sense that all APIs
follow the same overall schema, semantics, and operations; only the detailed attribute schemas and authorized
operations differ with each object depending on the type of object and the user credentials used to access the
API. Integrated in the sense that the Cisco Unified Communications Domain Manager platform allows access
to the following HCS components with this normalized API:

• Cisco Unified Communications Domain Manager orchestrated workflows

• Cisco Hosted Collaboration Mediation Fulfillment database

• Cisco Unified Communications Manager cluster databases

• Cisco Unity Connection databases

• LDAP user data

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
1

The API uses a well defined JSON schema with consistent meta-data across all device types integrated by
Cisco Unified Communications Domain Manager , regardless of the devices native API format. For example,
the native Cisco Unified Communications Manager API is SOAP based XML but this is converted to
object-oriented REST-based JSON, consistent with all other APIs in the Cisco Unified Communications
Domain Manager system.

There are many APIs in the HCS system, including the native APIs for the devices integrated into Cisco
Unified Communications DomainManager (Cisco Hosted CollaborationMediation Fulfillment, Cisco Unified
Communications Domain Manager, Cisco Unity Connection), APIs for other devices not integrated in Cisco
Unified Communications DomainManager . These APIs are still available and can still be used for operations
that aren't supported by CiscoUnified CommunicationsDomainManager orchestratedworkflows. For example,
CiscoHosted CollaborationMediation Fulfillment supports PrimeCollaborationAssurance (PCA) configuration
via API, but Cisco Unified Communications Domain Manager 10.1 does not currently support configuring
PCA directly. Therefore, you can use the native Cisco Hosted Collaboration Mediation Fulfillment API for
configuring PCA on Cisco Hosted Collaboration Mediation Fulfillment directly.

Cisco HCS also includes the API Gateway Proxy, which was introduced in 9.1. This API will still be available
in 10.1.x, and will support the same devices it supported in 9.1 (Cisco Hosted Collaboration Mediation
Fulfillment, Cisco Unified Communications Domain Manager 8.1, Cisco Unified Communications Manager
IM and Presence Service, Cisco Unified Presence, Cisco Unity Connection), but will only support the 9.1
versions of those APIs. For more information, refer to the Cisco Hosted Collaboration Mediation Fulfillment
API Gateway Proxy Developer, Release 10.6(1) .

The Cisco Unified Communications Domain Manager API co-exists with all other APIs in the system and
does not interfere with existing use of these APIs. It is possible to access the same device through the Cisco
Unified Communications Domain Manager API, the API Gateway Proxy, and the native API concurrently.
For new development, CiscoUnified CommunicationsDomainManager is the recommendedAPI for operations
and devices which are integrated in the Cisco Unified Communications Domain Manager system.

API System Concepts
In order to understand the API, an understanding of two basic concepts is required:

• Models

• Hierarchy

The term "model" is used to describe the types of JSON objects fulfilling purposes such as defining data
structures, containing data, defining GUI forms, mapping data from devices or other models. The system
employs the following types of models:

• Data Models

• Device Models

• Domain Models

• Relations

• Views

Data in the system is represented using Data and Device models.

Device models are generated from the application API of entities that are provisioned on devices.

Domain models, relations and views wrap the Data or Device models by means of references to them.

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
2

Introduction
API System Concepts

Data models can be created and are stored in the database. Data models contain a JSON schema/metadata for
the entities exposed by the underlying database. The schemas for the data models are stored in the database
and represent the structure that instances of the data model conforms to.

Device models interface with devices and services on the system. For example:

• Unified CM device models interface with the Call Manager's AXL SOAP API.

• CUC device models interface with Unity Connection's RESTful API.

The ability to rapidly develop and deploy new device interfaces provides an extensible mechanism to add
support for additional provisioning tasks or additional southbound integration into other business systems.
Domain models act as "containers" of other data-, device- and domain models along with provisioning
workflows to represent the management of a created feature.

Relations do not store data on the system. Instead, they relate groups of resource types such as device models,
data models or other domain models.

Views provide a mechanism to define an arbitrary schema which can be used to define a user input screen.

Hierarchy
A system hierarchy node is present at first startup of the system. Each entity that is attached to the hierarchy
has an address represented by a pkid, that is defined as a standard URI. Hierarchies can be created under
the system hierarchy node, because the hierarchy is exposed as a RESTful API. API calls are made with
reference to the hierarchy.

For more information, refer to the Hierarchy section in the Cisco Unified Communications Domain Manager,
Release 10.6(1) Planning and Install Guide.

Basic REST
The system uses a REST (Representational State Transfer) API. For details on this type of API, see for example:

• http://en.wikipedia.org/wiki/Representational_state_transfer

API Traversal
The system represent the reference of an entity in the system as http://en.wikipedia.org/wiki/HATEOAS
(HATEOS). Each reference position is represented by an object pair pkid and href.

A client integrates with Cisco Unified Communications DomainManager 10.6(1) entirely through hypermedia
dynamically provided by the application and does not need any prior knowledge of how to interact with the
system other than a generic understanding of hypermedia. This means that no http://en.wikipedia.org/wiki/
Web_Application_Description_Language is provided. This also means that the client and the application can
be decoupled in a way that allows the application to evolve independently.

A client enters the the application through a simple fixed URL. All future actions the client may take are
discovered within resource representations returned from the server

The URL tree information is obtained in the form of a list response from the application endpoint:

GET /api/?format=json

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
3

Introduction
Hierarchy

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/Web_Application_Description_Language
http://en.wikipedia.org/wiki/Web_Application_Description_Language

This response emulates the HierarchyNode list response and utilizes the parent and children in the meta
references section of the response as discussed in Meta Data References.

Request and Response Patterns
The request and response patterns between service requester and Cisco Unified Communications Domain
Manager 10.6(1) is summarized below.

For synchronous operations:

1 Service Requestor sends an accessor (e.g. Get, List) request with request parameters.

2 Either:

a responds synchronously with a Get/List response.

b responds synchronously with a fault response.

For asynchronous operations:

1 Service Requestor sends a mutator (e.g. Add, Modify, Delete) request with parameters.

2 The Add/Update/Delete transaction is scheduled in the transaction queue with a transactionID.

3 Responds synchronously with either:

a An Add/Update/Delete response and a transactionID.

b A fault response.

4 The external system either:

a Polls the system to retrieve the status of the transaction as needed, or

b Specifies a callback URL (with an optional username and password if the interface is secured
(recommended)) and waits for a asynchronous transaction status callback (recommended).

When the transaction completes, Cisco Unified Communications Domain Manager 10.6(1) sends an
async transaction status callback message to the callback URL specified in the request.

Anatomy of an API Request

General Structure of the API
The Cisco Unified Communications Domain Manager 10.6(1) API accesses system resources or tools.

• Resources

The general structure of an API URL for accessing a system resource (an endpoint) is:

Method https://servername/api/Version/Resource/Action/?Parameters

Where:

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
4

Introduction
Request and Response Patterns

Method
[GET|POST|DELETE|PUT|PATCH]
Servername

The installation server determines the base URL, e.g. https://servername. In a cluster environment,
this is the address of the web proxy node. Refer to the Install Guide for cluster deployment information.

Version
(int:major[.int:minor])/
Resource
(str:modeltype/str:modelname)[/pkid]
Action
[add|create|list|update|remove|configuration_template|field_display_policy|
export_bulkload_template|bulk_update|clone|move|export|execute|translation|
migration|help|+tag|+tag_version|+[non-CRUD operation|CustomWF|
other custom actions (see API Reference Guides)]]
Parameters
[(str:api parameter)[&(str:api parameter)...]]
The HTTP methods and parameters are described in relevant sections. The different resources supported in
the system are described in the API Reference Guides.

• Tools

For tools, the general structure of the URL structure is for example:

[GET|POST] /api/tool/(str:tool_name)/

Format
The system API supports the following format HTTP headers when handling and responding to requests.

ValueDescriptionField
Name

application/jsonThe format type of the body of the request (used with POST and PUT
requests)

Content-Type

application/json-patch+jsonThe format type of the body of the request (used with PATCH
requests)

Content-Type

application/jsonContent-Types that are acceptable in responseAccept

Authentication
The system controls access to its service through HTTP basic authentication. The technique is defined in
section 11.1 of RFC1945 which is simple to implement, uses standard HTTP headers.

The HTTP Basic Access Authentication requires authorization credentials in the form of a user name and
password before granting access to resources in the system. The username and password are passed as Base64
encoded text in the header of API requests.

The HTTP header format for authentication is defined in the table below.

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
5

Introduction
Format

ValueDescriptionField Name

Basic [Base64 encoded credentials]Basic authentication is supported.Authorization

For example:

The Base64 encoded credentials for user name of joe and a password of bloggs.

For example, from a command line (note the removal of the new line in the echo command):
$ echo -n "joe:bloggs" | base64
am9lOmJsb2dncw==
the header will be:

Authorization: Basic am9lOmJsb2dncw==

For example, using curl:
curl -k -H "Authorization: Basic am9lOmJsb2dncw==" 'https://hostname/api/data/MyModel/'
It is required that all requests be conducted over a secure session, such as HTTPS or SSL.

A Cisco Unified Communications Domain Manager 10.6(1) self-signed certificate needs to be installed into
a local trust store of the client application.

Authorization
The access profile of a user determines whether he or she can perform a given operation on a model. The user
can also only access items below the position they are defined in the hierarchy.

HTTP Methods
The API supports the following HTTP methods:

GET

• Used to query a resource or a list of resource.

POST

• Used to create a new resource.

• The data is submitted as a JSON object.

• The return value is the pkid of the resource.

PUT

• Used to update the data of a resource.

• The resource URL includes the resource pkid.

• The data to be updated is submitted as a JSON object.

PATCH

• Used to update the data of a resource.

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
6

Introduction
Authorization

• PATCH request body in JSON Patch format

• Content-Type is "application/json-patch+json"

• JSON Patch: http://tools.ietf.org/html/rfc6902

DELETE

• Used to delete a resource.

• The resource URL includes the resource pkid.

• The DELETE method can also be used to delete multiple resources on one request as a "bulk delete".

PUT Versus PATCH
For PUTmethods the resource data is replaced with the data specified in the request. All fields of the resource
are replaced with the fields in the request.

This means that:

• Fields not present in the request that are present in the resource will be dropped
from the resource.

• Fields present in the request that are not present in the resource will be appended
to the resource.

• The data of fields present in the request is used to update fields that already exist
in the resource.

PATCH methods operate in two modes depending on the content type:

• Content type: application/json

• The values of data fields present in the request is used to update the corresponding resource fields. This
means that:

◦Fields present in the request but not in the resource is appended to the resource.

◦The value of each field that is already present in the resource is updated from the request data.

◦Field values that are set to null in the request is dropped from the resource.

◦Fields that are present in the resource but not in the request are left untouched.

• Content type: application/json-patch+json

◦Existing resource data is patched according to RFC6902.

Modifying data fields:

• To drop the field from a data model, specify null as the parameter value (i.e. {"field": null}).

• To blank out a string value set the parameter value to an empty string (i.e. {"field":""}).

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
7

Introduction
PUT Versus PATCH

http://tools.ietf.org/html/rfc6902

API Parameters
The hierarchy parameter is required for each API request and can be specified as any of the following:

• the pkid of the hierarchy node in the form of a UUID, for example 1c055772c0deab00da595101

• in dot notation, for example ProviderName.CustomerName.LocationName

To obtain the pkid of a hierarchy node, refer to the path element in the metadata of data/HierarchyNode
resource.

NOTE: For the purposes of simplifying the documentation, the hierarchy API parameter
&hierarchy=[hierarchy] is not included in all examples in this document. Specifying the hierarchy
is however required in all API requests where the instance pkid is not referenced. In the examples,
[hierarchy] is substituted with the caller's hierarchy id.

The system API supports the following request parameters for data format when handling requests.

ValueDescriptionKey

jsonThe format type of the body of the requestformat

A request of the following format returns HTML:
GET /api/(str:model_type)/(str:model_name)/help/
A parameter &format=json is not displayed in all examples, but it is required for all requests unless a
different format is specifically stated.

The Configuration Template can be specified in the POST request parameters for a resource as follows:
POST /api/(str:model_type)/(str:model_name)/&template_name=[CFG name]

ValueDescriptionKey

[CFG pkid]Apply the Configuration Template with pkid [CFG pkid] to the payload
of the POST request.

template

[CFG name]Apply the Configuration Template with name [CFG name] to the
payload of the POST request.

template_name

Field Display Policy can be specified in the GET request parameters for a resource as follows:
GET /api/(str:model_type)/(str:model_name)/add/

ValueDescriptionKey

[FDP pkid]Return a model form schema where the Field Display Policy with pkid
[FDP pkid] is applied to it. Use policy with the parameters schema
and format=json.

policy

[FDP name]Return a model form schema where the Field Display Policy with name
[FDP name] is applied to it. Use policy with the parameters schema
and format=json.

policy_name

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
8

Introduction
API Parameters

The API can return cached data from the system or data from devices, using the following format:
GET /api/(str:model_type)/(str:model_name)/[pkid]/

DefaultValueDescriptionKey

truetrue,
false

System will respond with resource information where the data was
obtained from cache. (Functionally only applicable to device models
and domain models containing device models)

cached

To identify a single resource, the API call contains the single resource (pkid) using the following format:
GET /api/(str:model_type)/(str:model_name)/(pkid)/
To obtain the schema or schema rules of a resource, use the following parameters to an API request:
GET /api/(str:model_type)/(str:model_name)/?
hierarchy=[hierarchy]&schema=true&schema_rules=true

ValueDescriptionKey

true, falseReturn the schema of the resource. Use with the parameter
format=json

schema

true, falseReturn the GUI Rules and Field Display Policies of the resource if
available. Use with the parameters format=json and schema to
see schema_rules in the response.

schema_rules

The systemAPI supports the following API request parameters for when specifying the format of and structure
of the resources to list.

DefaultValueDescriptionKey

0The list resource offsetskip

50The maximum number of resources returnedlimit

First summary
attribute

The summary attribute field to sort onorder_by

ascasc,
desc

The direction of the summary attribute field sort (asc:ascending,
desc: descending)

direction

truetrue,
false

Only summary data is returned in the data objectsummary

downup,
down,
local

The direction of the resource lookup of resources tied to the
hierarchy tree from the hierarchy node provided as parameter

traversal

It is possible to submit mutator type operations with API parameters to complete synchronously, in which
case the synchronous response to the transaction either includes the status of the transaction or a fault response.
This is not recommended as long-running transactions or a busy system may exceed the HTTP timeout.

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
9

Introduction
API Parameters

This is only available for models where the actions in the meta data contains support_async.

DefaultValueDescriptionKey

falsetrue,
false

Controls the API synchronous or asynchronous behavior for requests
resulting in transactions. Please refer to the support_async property
in the model schema undermeta -> actions, for an indication of support
per action.

nowait

Login and Authorization Tokens
The API includes as part of responses a X-CSRFToken response header that is set to the CSRF token, for
example to KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s. API clients should source the CSRF token from this header.

The API also includes as a part of responses a csrftoken cookie containing the CSRF token. This cookie is
marked httponly and as such is not readable by browser-based client scripts. API clients should not try to
source the CSRF token from this cookie.

The X-CSRFToken response header and csrftoken cookie values are identical.

When performing requests that require CSRF token validation, API clients should follow the general procedure:

1 Prior to performing the principal request, perform a request to the API and retrieve a CSRF token from
the resulting response’s X-CSRFToken response header. The CSRF token remains constant for the duration
of a session, so clients could perform this request once per session (post authentication), storing the CSRF
token and using it for subsequent requests.

Clients should also retrieve the csrftoken cookie from the response.

2 For the primary request, include a X-CSRFToken request header containing the CSRF token as sourced
from the response header, as well as the unchanged csrftoken cookie.

For example:
GET http://localhost:8000/login/

Raw response headers:
Cache-Control: max-age=0
Connection: keep-alive
Content-Encoding: gzip
Content-Language: en-us
Content-Type: text/html; charset=utf-8
Date: Mon, 20 Apr 2015 09:18:47 GMT
Expires: Mon, 20 Apr 2015 09:18:47 GMT
Last-Modified: Mon, 20 Apr 2015 09:18:47 GMT
Server: nginx/1.4.6 (Ubuntu)
Set-Cookie: csrftoken=KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s; httponly; Path=/
sessionid=5d1ccc96cbd7e7f290020aaedd64c1b3; httponly; Path=/
sso_login_url=; Path=/
Transfer-Encoding: chunked
Vary: Accept-Encoding, Cookie, Accept-Language, X-CSRFToken
X-CSRFToken: KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s

1 Source the CSRF token from response’s X-CSRFToken header.

2 Retain the CSRF cookie from response’s csrftoken cookie.

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
10

Introduction
Login and Authorization Tokens

3 Now perform the primary POST /login/ request to login, including the CSRF token as a X-CSRFToken
request header as well as the unchanged csrftoken cookie:

POST http://localhost:8000/login/

Raw request headers:
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:37.0) Gecko/20100101 Firefox/37.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:8000/login/
Cookie: sessionid=5d1ccc96cbd7e7f290020aaedd64c1b3;
csrftoken=KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s; sso_Connection: keep-alive
X-CSRFToken: KEMzraBRygy2ZJ7fLuvbfKhAEIPK9D4s
With for example payload as parameters:
&username=joe
&password=bloggs
&next=%2F

Anatomy of an API Response

API Response Overview
Below are the typical elements of an API response:

• meta - Meta data.

• data - Actual data contained in the model as name:value pairs.

• schema - Schema describing the structure of the data of the resource, in particular the data types of the
names in the name:value pairs in the data.

• resources - An object grouping a list of single resource's meta and data objects in an API list response

• pagination - an object containing pagination data in an API list response

Not all the elements above exist in each response. These differ depending on request parameters and whether
response contains a list of resource or a single resource.

Single Resource Response
A single resource response outline is as follows:
{
"meta": {
...

},
"data": {
...

},
"schema": {
...

}
}

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
11

Introduction
Anatomy of an API Response

Resource List Response
The response object outline is as follows:
{

"pagination": {
...

},
"meta": {

...
},
"resources": [{

"meta": {
...

},
"data": {

...
}

},
{

"meta": {
...

},
"data": {

...
}

}]
}

POST/PUT/DELETE/PATCH Response
Support for synchronous and asynchronous request resulting in transactions, is controlled by the nowait
parameter in the request URL. The support for asynchronous request handling is indicated in the API schema
structure actions with the support_async property.

The outline of the default synchronous transaction response of mutator transactions when the API parameter
nowait is set to be false, is as follows:
{
"pkid": "51f7e09bd0278d4b28e981da",
"model_type": "data/CallManager",
"meta": {
"parent_id": {
"pkid": "51f7d06ad0278d4b34e98134",
"uri": "/api/data/HierarchyNode/51f7d06ad0278d4b34e98134"

},
"summary_attrs": [
{
"name": "description",
"title": "Description"

},
{
"name": "host",
"title": "Host Name"

},
{
"name": "port",
"title": "Port"

}
],
"uri": "/api/data/CallManager/51f7e09bd0278d4b28e981da"

},
"success": true

}

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
12

Introduction
Resource List Response

The outline of the synchronous response to asynchronous mutator transactions when the API parameter
nowait is set to be true, is as follows:
{
"href": "/api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808",
"success": true,
"transaction_id": "cfe8a8fd-98e6-4290-b0c3-2dfa2224b808"

}
To retrieve (for example by polling) the transaction status of any mutator transactions, use the transaction_id
in the synchronous response to the asynchronous mutator transaction as follows:
GET /api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808
The response contains the status ad replay action URL, for example:
{
"meta": {

"model_type": "tool/Transaction",
"summary_attrs":
{
"name": "name",
"title": "Name"
},
"references": {}
"actions":
{
"replay": {
"class": "execute",
"href": "/api/tool/Transaction/cfe8a8fd-98e6-4290-b0c3-2dfa2224b808/
replay?format=json",

"method": "GET",
"title": "Replay"
}

}
}

"data": {
"status": "Completed",
"username": "sysadmin",
"resource": {
"hierarchy: "sys",
"after_transaction": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/?
cached=5268f2eba616540a736b926c Entity",

"current_state": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/ Entity",
"before_transaction": "/api/data/GeneralHelp/5268c7d3a616540a766b91f5/
?cached=5268c7d3a616540a766b91f7 Entity",

"pkid": "5268c7d3a616540a766b91f5",
"model_type": "data/GeneralHelp",
}

[...]
This mechanism can be used to retrieve the transaction status of any transaction or its sub-transaction, using
the pkid of the (sub) transaction.

Asynchronous Mutator Transaction Status Callback
When using the API parameter nowait=true, the service requester can submit optional request meta data
- containing a callback URL - with any mutator request by appending the request_meta tag to the normal
payload of the request.

In order to receive asynchronous transaction status notifications, the requesting system needs to publish an
HTTP service to service requests made by the callback URL. An example of a simple http service is provided
in a separate section.

The callback operation supports an optional username and password that Cisco Unified Communications
DomainManager 10.6(1) uses to performHTTP basic authentication on requests made to the callback service.

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
13

Introduction
Asynchronous Mutator Transaction Status Callback

The optional elements external_id and external_reference are explained in the section on
correlation identifiers.
{

<Actual request data goes here>,
"request_meta": {

"external_id": "3x4mpl3-3xtern4l-FF",
"external_reference": "Example External Reference-FF",
"callback_url": "http://my.callbackservice:8080",
"callback_username": "username",
"callback_password": "password"

}
}
The following details should be noted here:

• The schema of system resources or system tools do not include reference to the request meta data in the
schema definition of each resource in the system.

• The <Actual request data goes here> request data needed to for example add a
country_name instance for data/Countries would be similar to: "country_name": "South
Africa".

• The request data for deleting two countries for example would be
"hrefs":[

"/api/data/Countries/534fdf190dd19012066433ce",
"/api/data/Countries/534fda1d0dd1901206643397"

]

• For the callback service to function, the callback service needs to be accessible from the fulfillment
server.

Upon completion of the asynchronous mutator transaction posted with a callback URL, the application POSTs
an HTTP request (asynchronous transaction status callback) to the callback service specified by the callback
URL. The callback service needs to respond with a HTTP 200 ACK before internal processing of the callback.
The callback includes the transaction ID sent to the requesting system as part of the synchronous response.
To correlate the asynchronous transaction status callbacks with the original request, the requesting system
would need to record the transaction_id returned in the synchronous response.

The HTTP headers and the payload of the asynchronous transaction status callback includes the following
information:

HTTP headers:
{

'accept-encoding': 'identity',
'authorization': 'BasicdXNlcm5hbWU6cGFzc3dvcmQ=',
'content-length': '275',
'content-type': 'application/json',
'host': 'localhost: 8080'

}
Payload:
{

"external_id": "3x4mpl3-3xtern4l-FF",
"external_reference": "ExampleExternalReference",
"status": "Success",
"transaction": {

"href":
"http:

//my.fulfillmentserver/api/tool/Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b/",
"id": "e6ac7c1e-c63a-11e3-9af5-08002791605b"

}
}
The following details should be noted here:

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
14

Introduction
Asynchronous Mutator Transaction Status Callback

• Correlation identifiers (see correlation identifiers) are included in the payload if they are present.

• The status of the transaction is as in the transaction log: Fail or Success.

The transaction status is not affected by the response of the HTTP service published by the requesting system.
The transaction log information includes the callback request and the response returned by the callback service
published by the external system.

For transactions with multiple sub-transactions, a single transaction status callback request is made upon the
completion of the parent transaction. Transaction status callbacks are not supported for the parent transactions
tool/BulkLoad and tool/DataImport.

In the event that the transaction status callback is not received by the external system due to for example a
network outage, the external system can poll to retrieve the transaction status. For example:
GET /api/tool/Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b

Example of an Asynchronous Mutator Transaction with nowait=true
Request:
POST http://172.29.232.238/api/data/Countries/?hierarchy=1c0ffee2c0deab00da595101&nowait=true
Payload of the request:

{'country_name': 'Callback Created Example Country Name',
'request_meta': {'callback_password': 'password',

'callback_url': 'http://localhost:9365',
'callback_username': 'username',
'external_id': '3x4mpl3-3xt3rn4l-7d',
'external_reference': 'External Ref'}}

Synchronous response:
{
href: "/api/tool/Transaction/e6ac7c1e-c63a-11e3-9af5-08002791605b"
success: true
transaction_id: "e6ac7c1e-c63a-11e3-9af5-08002791605b"
}
HTTP 202 ACCEPTED
Asynchronous transaction status callback (console output of the simple http service provided in the separate
example section):
POST - 2014-04-17 16:16:43.737509

Headers:

{'accept-encoding': 'identity',
'authorization': 'Basic dXNlcm5hbWU6cGFzc3dvcmQ=',
'content-length': '275',
'content-type': 'application/json',
'host': 'localhost:8080'}

Raw Callback Body:

'{"status": "Fail", "transaction":
{"href":

"http://django.testserver/api/tool/Transaction/34866060-fd47-11e3-88dd-080027880ca6/",
"id": "34866060-fd47-11e3-88dd-080027880ca6"},
"resource": {"hierarchy": "1c0ffee2c0deab00da595101",

"model_type": "data/Countries",
"pkid": "53ac3d41c9527062809c0021"},
"external_reference": "External Ref",
"external_id": "3x4mpl3-3xt3rn4l-7d"}'

Pretty Callback Body:

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
15

Introduction
Example of an Asynchronous Mutator Transaction with nowait=true

{u'external_id': u'3x4mpl3-3xt3rn4l-7d',
u'external_reference': u'External Ref',
u'resource': {u'hierarchy': u'1c0ffee2c0deab00da595101',

u'model_type': u'data/Countries',
u'pkid': u'53ac3d41c9527062809c0021'},

u'status': u'Fail',
u'transaction': {u'href':
u'http://django.testserver/api/tool/Transaction/34866060-fd47-11e3-88dd-080027880ca6/',

u'id': u'34866060-fd47-11e3-88dd-080027880ca6'}}

localhost - - [17/Apr/2014 16:16:43] "POST / HTTP/1.1" 200 –

Correlation Identifiers
In order to allow an external system use its own identifiers to cross-reference transactions in the system, the
Cisco Unified Communications Domain Manager 10.6(1) API supports two external identifiers for all
transactions. This allows the external system to:

1 Tie together multiple transactions in the system (using for example an order number)

2 Track individual requests in the system using the external IDs.

External identifiers are not supported for the parent transactions tool/BulkLoad and tool/DataImport.

The transaction log will include these two IDs and the transaction log, as in the figure below called An example
transaction log showing IDs.

You can obtain the details of the parent transaction with a given ID by using the following API call:
GET http://my.fulfillmentserver/api/v0/tool/Transaction/?hierarchy=1c0ffee2c0deab00da595101&

filter_condition=contains&
format=json&
filter_text=3x4mpl3-3xtern4l-FF&
filter_field=external.id

You can obtain the details of transactions tied together using an external reference number using the following
API call:
GET http://my.fulfillmentserver/api/v0/tool/Transaction/?hierarchy=1c0ffee2c0deab00da595101&

filter_condition=contains&
format=json&

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
16

Introduction
Correlation Identifiers

filter_text=Example%20External%20Reference-FF&
filter_field=external.reference

Figure 1: An example transaction log showing IDs - snippet A.

Figure 2: An example transaction log showing IDs - snippet B.

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
17

Introduction
Correlation Identifiers

Example Of A Simple HTTP Server
The following code is an example of a simple HTTP server that can be used to test basic async transaction
status callback operations. The code is not intended for actual use.

Note that the HTTP 200 ACK is sent asynchronously before internal processing of the callback.
#!/usr/bin/env python
from datetime import datetime
import SimpleHTTPServer
import SocketServer
import logging
import cgi
import json
from pprint import pprint
PORT = 8080

class ServerHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):

def do_GET(self):
SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self)

def do_POST(self):
self.send_response(200)
self.wfile.write("ACK")

Insert internal processing here.
Below is an example of internal processing that simply prints out the
callback request.
print "\nPOST - {}".format(datetime.now())
print "Headers:"
pprint(dict(self.headers))
print "\nRaw Body:"
body = self.rfile.read(int(self.headers['Content-Length'])).decode('utf-8')
pprint(body)
print "\nPretty Body:"
pprint(json.loads(body))

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
18

Introduction
Example Of A Simple HTTP Server

Handler = ServerHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "Serving at port", PORT
httpd.serve_forever()

Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
19

Introduction
Example Of A Simple HTTP Server

 Cisco Unified Communications Domain Manager, Release 10.6(1) API Developer Guide
20

Introduction
Example Of A Simple HTTP Server

	Introduction
	Introduction
	API Introduction
	API System Concepts
	Hierarchy
	Basic REST
	API Traversal
	Request and Response Patterns

	Anatomy of an API Request
	General Structure of the API
	Format
	Authentication
	Authorization
	HTTP Methods
	PUT Versus PATCH
	API Parameters
	Login and Authorization Tokens

	Anatomy of an API Response
	API Response Overview
	Single Resource Response
	Resource List Response
	POST/PUT/DELETE/PATCH Response
	Asynchronous Mutator Transaction Status Callback
	Example of an Asynchronous Mutator Transaction with nowait=true
	Correlation Identifiers
	Example Of A Simple HTTP Server

