The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

Notwithstanding any other warranty herein, all document files and software of these suppliers are provided "AS IS" with all faults. Cisco and the above-named suppliers disclaim all warranties, expressed or implied, including, without limitation, those of merchantability, fitness for a particular purpose and noninfringement or arising from a course of dealing, usage, or trade practice.

In no event shall Cisco or its suppliers be liable for any indirect, special, consequential, or incidental damages, including, without limitation, lost profits or loss or damage to data arising out of the use or inability to use this manual, even if Cisco or its suppliers have been advised of the possibility of such damages.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2018 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface vii

Preface vii

About This Document vii

Audience vii

Change History viii

Related Documentation viii

For More Information and Support viii

Field Alerts and Field Notices ix

Documentation Feedback ix

Documentation Conventions ix

CHAPTER 1

Product Overview 1

Product Overview 1

CHAPTER 2

Characteristics and Features 3

Compliance Recording 3

Conferences and Transfers 5

Hold and Pause 5

Direct Inbound Recording 6

Direct Outbound Recording 6

Monitoring 7

Playback 7

Conversion and Download 8

Embedded Search and Play Application 8

Embedded Streaming Media Player 9

Uploaded Videos to Support ViQ, VoD and VoH Features 9

Integration with Cisco Unity Connection for Video Voice-Mail 10

Integration with Finesse and Unified CCX 11
Integration with Unified Communications Manager for Video on Hold and Native Queuing 12
Integration with Cisco Remote Expert 12
Incoming Call Handling Rules 12
Call Association 13
Archival 13
Unified Communications Manager Network-Based Recording 15

CHAPTER 3

Codecs Supported 19
Codecs Supported 19

CHAPTER 4

Metadata Database and the MediaSense API 23
Metadata Database 23
Tags 23
MediaSense API 24
Events 24
Metadata Differences Between Unified Border Element and Unified Communications Manager 25

CHAPTER 5

Disk Space Management 27

CHAPTER 6

System Resiliency and Overload Throttling 29
System Resiliency and Overload Throttling 29

CHAPTER 7

MediaSense-Specific Deployment Models 31
Server Models Supported 31
Server Types 31
Grow Your System 33
Very Large Deployments 34
Calls Managed by Unified Communications Manager 34
Calls Managed by Unified Border Element Dial Peer 35
Virtual Machine Configuration 35
Media Storage Alternatives 36
Deploy Multiple MediaSense Virtual Machines per Server 37
CHAPTER 8

Solution Overview and Call Flows 41

Solution Overview and Call Flows 43
General Flow - Unified Communications Manager (BiB) Calls 45
General Flow - Unified Communications Manager (Network-Based Recording) Calls 46
General Flow - Unified Border Element Dial Peer Calls 46
General Flow - Streaming Media 47
Solution-Level Deployment Models 49
Unified Communications Manager Deployments for BiB Forking 49
Unified Communications Manager Session Management Edition Deployment 50
Unified Communications Manager Deployments for Network-Based Recording 52
Basic Unified Border Element Deployment for Dial Peer Forking 53
Unified Border Element Deployments for Dial Peer Recording with Unified CVP 55
Additional Deployment Options and Considerations 60
Configuration Requirements for Other Solution Components 65

CHAPTER 9

High Availability 67

Recording Server Redundancy - New Recordings 67
Recording Server Redundancy - Recordings in Progress 68
Recording Server Redundancy - Saved Recordings 68
Metadata Database Redundancy 68
Database Server Failure 69
Event Redundancy 69
Uploaded Video Playback Redundancy 69
Unified Communications Manager Failure while Playing Uploaded Videos 70
MediaSense Cluster Redundancy 70
Backup, Restore, and Archival 72
Back Up MediaSense Node 73
 Restore MediaSense Node From Backup 73
Network Redundancy and NAT 74

CHAPTER 10

Security 75

Security 75
CHAPTER 11 Reporting and Call Correlation 77
 Reporting and Call Correlation 77

CHAPTER 12 Serviceability and Administration 79
 Serviceability and Administration 79

CHAPTER 13 Design Guidance 81
 Proactive Storage Management 81
 Media Storage Space Provisioning 82
 SIP Configuration 82
 Codec Configuration for Phones 82
 Network Provisioning 82
 Use Scalable Queries 83
 Distribute HTTP Download Requests Over Time 83
 Alarm Monitoring 83

CHAPTER 14 Compatibility Matrix 85
 Server Platforms 85
 Hypervisor 86
 Storage 86
 Other Solution Component Versions 86
 Phones 87
 Web Browsers 89
 MediaSense Upgrades 89

CHAPTER 15 Scalability and Sizing 91
 Performance 91
 Hardware Profiles 92
 Maximum Session Duration 93
 Storage 93
 Unified Border Element Capacity 93
 Network Bandwidth Provisioning 94
 Impact on Unified Communications Manager Sizing 94
Preface

- About This Document, page vii
- Audience, page vii
- Change History, page viii
- Related Documentation, page viii
- For More Information and Support, page viii
- Field Alerts and Field Notices, page ix
- Documentation Feedback, page ix
- Documentation Conventions, page ix

About This Document

The Design Guide for Cisco MediaSense provides the following information:

- MediaSense architecture
- Design considerations and guidelines
- Solution-level deployment models and provisioning requirements of MediaSense
- MediaSense database and APIs
- Compatibility Matrix

Audience

This document is intended for the system architects, designers, engineers, and Cisco channel partners who want to apply best design practices for Cisco MediaSense.
Change History

This document may be updated at any time without notice. Obtain the latest version of this document online at http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-implementation-design-guides-list.html.

Visit this Cisco.com website periodically and check for documentation updates by comparing the revision date (on the front title page) of your copy with the revision date of the online document.

The following table lists the change history for this document.

<table>
<thead>
<tr>
<th>Change</th>
<th>Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Release of Document for Release 10.5</td>
<td>09/18/14</td>
</tr>
<tr>
<td>Finesse AgentInfo Gadget</td>
<td></td>
</tr>
<tr>
<td>Updated In-Browser Playback</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation

<table>
<thead>
<tr>
<th>Document or Resource</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtualization for Cisco MediaSense</td>
<td>http://docwiki.cisco.com/wiki/Virtualization_for_Cisco_MediaSense</td>
</tr>
</tbody>
</table>

For More Information and Support

To download documentation, submit a service request, and find additional information, see What's New in Cisco Product Documentation at:

You can also subscribe to the *What's New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed to deliver updates directly to an RSS reader on your desktop. The RSS feeds are a free service. Cisco currently supports RSS Version 2.0.

Field Alerts and Field Notices

Note that Cisco products may be modified or key processes may be determined important. These are announced through use of the Cisco Field Alert and Cisco Field Notice notifications. You can register to receive Field Alerts and Field Notices through the Product Alert Tool on Cisco.com. This tool enables you to create a profile to receive announcements by selecting all products of interest.

Documentation Feedback

You can provide comments about this document by sending an email to the following address:

cbub_docfeedback@cisco.com

We appreciate your comments.

Documentation Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Boldface font is used to indicate commands, such as user entries, keys,</td>
</tr>
<tr>
<td></td>
<td>buttons, and folder and submenu names. For example:</td>
</tr>
<tr>
<td></td>
<td>• Choose Edit > Find.</td>
</tr>
<tr>
<td></td>
<td>• Click Finish.</td>
</tr>
<tr>
<td>italic font</td>
<td>Italic font is used to indicate the following:</td>
</tr>
<tr>
<td></td>
<td>• To introduce a new term. Example: A skill group is a collection</td>
</tr>
<tr>
<td></td>
<td>of agents who share similar skills.</td>
</tr>
<tr>
<td></td>
<td>• For emphasis. Example: Do not use the numerical naming</td>
</tr>
<tr>
<td></td>
<td>convention.</td>
</tr>
<tr>
<td></td>
<td>• A syntax value that the user must replace. Example: *IF (condition,</td>
</tr>
<tr>
<td></td>
<td>true-value, false-value)</td>
</tr>
<tr>
<td></td>
<td>• A book title. Example: See the Cisco CRS Installation Guide.</td>
</tr>
<tr>
<td>window font</td>
<td>Window font, such as Courier, is used for the following:</td>
</tr>
<tr>
<td></td>
<td>• Text as it appears in code or that the window displays. Example:</td>
</tr>
<tr>
<td></td>
<td><html><title>Cisco Systems,Inc. </title></html></td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets are used to indicate the following:</td>
</tr>
<tr>
<td></td>
<td>• For arguments where the context does not allow italic, such as ASCII output.</td>
</tr>
<tr>
<td></td>
<td>• A character string that the user enters but that does not appear on the window such as a password.</td>
</tr>
</tbody>
</table>
Product Overview

Cisco MediaSense is a SIP-based, network-level service that provides voice and video media recording capabilities for other network devices. Fully integrated into Cisco's Unified Communications architecture, MediaSense automatically captures and stores every Voice over IP (VoIP) conversation that transmits over appropriately configured Unified Communications Manager IP phones or Cisco Unified Border Element devices. In addition, an IP phone user or SIP endpoint device can call the MediaSense system directly in order to leave a recording consisting of media generated only by that user. These recordings can include video as well as audio, which offers a simple and easy method for recording video blogs and podcasts.

Because forked media can be recorded from either a Cisco IP phone or a Unified Border Element device, MediaSense allows you to record a conversation from different perspectives. Recordings forked by an IP phone are treated from the perspective of the phone itself—any media flowing to or from that phone gets recorded. If the call gets transferred to another phone however, the remainder of the conversation does not get recorded (unless the target phone has recording enabled as well). This perspective may work well for contact center supervisors whose focus is on a particular agent.

Recordings forked by Unified Border Element are treated from the perspective of the caller. All media flowing to or from the caller gets recorded, no matter how many times the call gets transferred inside the enterprise. Even interactions between the caller and an Interactive Voice Response (IVR) system where no actual phone is involved are recorded. The only part of the call that is not recorded is a consult call from one IP phone to another, for example, as part of a consult transfer. (That can be recorded if Unified Communications Manager is configured to route IP phone to IP phone calls through a Unified Border Element.) This perspective works well for dispute resolution or regulatory compliance purposes where the focus is on the caller.

With Cisco Unified Communications Manager 10.0 and later, a third option also is available, Unified Communications Manager Network-Based Recording (NBR). With this option, the media is forked from a Unified Border Element, managed by Unified Communications Manager. Unified Communications Manager also offers a fallback feature, by which Unified Communications Manager fallback to IP Phone forking if the Unified Border Element forking is unavailable. By pairing these features, both the caller's and the agent's perspectives can be captured with the exception of any part of the call that precedes delivery to a Unified Communications Manager phone.

No matter how they are captured, recordings can be accessed in several ways. While a recording is still in progress, it can be streamed live (monitored) through a computer that is equipped with a media player such
as VLC or RealPlayer, or one provided by a partner or third party. Once completed, recordings may be played back in the same way, or downloaded in raw form by using HTTP. They also may be converted into .mp4 or .wav files and downloaded in that format. All access to recordings, either in progress or completed, is through URLs. MediaSense also offers a web-based Search and Play application with a built-in media player. The application allows authorized users to select individual calls to monitor, playback, or download directly from a supported web browser.

In addition to its primary media recording functionality, MediaSense offers two other capabilities.

• Can play back specific video media files on demand on video phones or supported players.

This capability supports Video in Queue (ViQ), Video on Demand (VoD), or Video on Hold (VoH) use cases in which a separate call controller invites MediaSense into an existing video call in order to play a previously designated recording. An administrator can upload studio-recorded videos in MP4 format and then configure individual incoming dialed numbers to automatically play those uploaded videos. The call controller plays the video by sending a SIP invitation to MediaSense at the dialed number.

• Can integrate with Cisco Unity Connection to provide video voice-mail greetings.

Videos are recorded on MediaSense directly by Unity Connection subscribers and are then played back to their video-capable callers before they leave their messages.

Media recordings occupy a significant amount of disk space, so space management is a significant concern. MediaSense offers two modes of operation for space management: retention priority and recording priority. These modes address two opposing and incompatible use cases: one where all recording sessions must be retained until explicitly deleted (even if it means new recording sessions cannot be captured) and one where older recording sessions can be deleted if necessary to make room for new ones. A sophisticated set of events and APIs is provided for client software to automatically control and manage disk space.

MediaSense also maintains a metadata database where information about all recordings is maintained. A comprehensive Web 2.0 API is provided that allows client equipment to query and search the metadata in various ways, to control recordings that are in progress, to stream or download recordings, to bulk-delete recordings that meet certain criteria, and to apply custom tags to individual recording sessions. A Symmetric Web Services (SWS) eventing capability enables server-based clients to be notified when recordings start and stop, when disk space usage exceeds thresholds, and when meta-information about individual recording sessions is updated. Clients can use these events to keep track of system activities and to trigger their own actions.

These MediaSense capabilities target four basic use cases:

• Recording of conversations for regulatory compliance purposes (compliance recording).

• Capturing or forwarding media for transcription and speech analytics purposes.

• Capturing of individual recordings for podcasting and blogging purposes (video blogging).

• Playing back previously uploaded videos for ViQ, VoD, VoH, or video voice-mail greeting purposes.

Compliance recording may be required in any enterprise, but is of particular value in contact centers where all conversations conducted on designated agent phones or all calls from customers must be captured and retained, and where supervisors need an easy way to find, monitor, and play conversations for auditing, training, or resolving disputes purposes. Speech analytics engines are served by the fact that MediaSense maintains the two sides of a conversation as separate tracks and provides access to each track individually, which simplifies the analytics engine need to identify who is saying what.
Characteristics and Features

- Compliance Recording, page 3
- Conferences and Transfers, page 5
- Hold and Pause, page 5
- Direct Inbound Recording, page 6
- Direct Outbound Recording, page 6
- Monitoring, page 7
- Playback, page 7
- Conversion and Download, page 8
- Embedded Search and Play Application, page 8
- Embedded Streaming Media Player, page 9
- Uploaded Videos to Support ViQ, VoD and VoH Features, page 9
- Integration with Cisco Unity Connection for Video Voice-Mail, page 10
- Integration with Finesse and Unified CCX, page 11
- Integration with Unified Communications Manager for Video on Hold and Native Queuing, page 12
- Integration with Cisco Remote Expert, page 12
- Incoming Call Handling Rules, page 12
- Call Association, page 13
- Archival, page 13
- Unified Communications Manager Network-Based Recording, page 15

Compliance Recording

In compliance recording, calls are configured to always be recorded.
For Unified Communication Manager controlled recording, all calls received by or initiated by designated phones are recorded. Individual lines on individual phones are enabled for recording by configuring them with an appropriate recording profile in Unified Communications Manager. Each line can also be configured as either Network-Based Recording (NBR) preferred or Built-in-Bridge (BiB) recording preferred.

For Unified Border Element dial peer recording, all calls passing through the Unified Border Element that match particular dial peers (typically selected by dialed number pattern) are recorded. MediaSense itself does not control which calls are recorded (except to the limited extent described in Incoming Call Handling Rules, on page 12).

Compliance recording differs from selective recording because in selective recording, the recording server determines which calls it will record. MediaSense itself does not support selective recording, but the effect can be achieved by deploying MediaSense in combination with certain partner applications.

Recording is accomplished by media forking, where basically the phone or Unified Border Element sends a copy of the incoming and outgoing media streams to the MediaSense recording server. When a call originates or terminates at a recording-enabled phone, Unified Communications Manager sends a pair of SIP invitations to both the phone and the recording server. The recording server prepares to receive a pair of real-time transport protocol (RTP) streams from the phone. Similarly, when a call passes through a recording-enabled Unified Border Element, the Unified Border Element device sends a SIP invitation to the recording server and the recording server prepares to receive a pair of RTP streams from the Unified Border Element. Finally, under NBR, Communication Manager sends a pair of SIP invites to the recording server, and a special message to Unified Border Element, and a pair of RTP streams from the Unified Border Element to the recording server.

This procedure has several consequences:

- Each recording session consists of two media streams (one for media flowing in each direction). These two streams are captured separately on the recorder, though both streams (or tracks) end up on the same MediaSense recording server.

- Most Cisco IP phones support media forking. The IP phones that do not support media forking cannot be used for phone-based recording.

- Though the phones can fork copies of media, they cannot transcode. This means that whatever codec is negotiated by the phone during its initial call setup is the codec used in recording. MediaSense supports a limited set of codecs; if the phone negotiates a codec that is not supported by MediaSense, the call will not be recorded. The same is true for Unified Border Element recordings.

- The recording streams are set up only after the phone's primary conversation is fully established, which could take some time to complete. Therefore, there is a possibility of clipping at the beginning of each call. Clipping is typically limited to less than two seconds, but it can be affected by overall Unified Border Element, Unified Communications Manager, and MediaSense load; as well as by network performance characteristics along the signaling link between Unified Border Element or Unified Communications Manager and MediaSense. MediaSense carefully monitors this latency and raises alarms if it exceeds certain thresholds.

MediaSense does not initiate compliance recording. It only receives SIP invitations from Unified Communications Manager or Unified Border Element and is not involved in deciding which calls do or do not get recorded. The IP phone configuration and the Unified Border Element dial peer configuration determine whether media should be recorded. In some cases, calls may be recorded more than once, with neither Unified Border Element, Unified Communications Manager, nor MediaSense being aware that it is happening.

The above scenario might occur if all contact center agent IP phones are configured for recording and one agent calls another agent. It might also occur if a call passes through a Unified Border Element dial peer that is configured for recording and lands at a phone that is also configured for recording. The Unified Border
Element could end up creating two recordings of its own. However, MediaSense stores enough metadata that a client can invoke a query to locate duplicate calls and selectively delete the extra copy.

At this time, only audio streams can be forked under Unified Communications Manager control, either by BiB or NBR. Unified Border Element dial peer recording can be configured to fork both audio and video, or to fork only the audio tracks in a video call. Videos can also be recorded using the Direct Inbound or Outbound mechanisms of MediaSense.

MediaSense can record calls of up to eight hours in duration.

Conferences and Transfers

MediaSense recordings are made up of one or more sessions where each media forking session contains two media streams: one for incoming and one for outgoing data. A simple call consisting of a straightforward two-party conversation is represented entirely by a single session. MediaSense uses metadata to track which participants are recorded in which track of the session, as well as when they entered and exited the conversation. MediaSense cannot always track this data when conferences are involved.

When sessions included transfer and conference activities, MediaSense tries to retain the related information in its metadata. If a recording gets divided into multiple sessions, metadata is also available to help client applications correlate those sessions together.

Conferences

A multi-party conference is also represented by a single session with one stream in each direction, with the conference bridge combining all but one of the parties into a single MediaSense participant. There is metadata to identify that one of the streams represents a conference bridge, but MediaSense does not receive the full list of parties on the conference bridge.

Transfers

Transfers function differently depending on whether the call is forked from a Unified Communications Manager phone or from a Unified Border Element.

With Unified Communications Manager 10.0 and later, any transfer drops the current session and starts a new one. In earlier versions of Unified Communications Manager, if the forking phone is not transferring, then the sessions remains intact.

With Unified Border Element forking, the situation is more symmetric. Unified Border Element is an intermediary network element and neither party is an anchor. Transfers on either side of the device are usually accommodated within the same recording session. (For more information, see Solution-Level Deployment Models, on page 49.)

Hold and Pause

Hold and pause are two concepts that sound similar, but they are not the same.

- Hold (and resume) takes place as a result of a user pressing a key on his or her phone. MediaSense is a passive observer.
- Pause (and resume) takes place as a result of a client application issuing a MediaSense API request to temporarily stop recording while the conversation continues.
Hold

The Hold operation differs depending on which device is in control of the forking. In Unified Communications Manager deployments (BiB or NBR recording), one party places the call on hold, blocking all media to or from that party's phone while the other phone typically receives music (MOH). If the forking phone is the one that invokes the hold operation, Unified Communications Manager terminates the recording session and creates a new recording session once the call is resumed. Metadata fields allow client applications to gather together all of the sessions in a given conversation.

If the forking phone is not the one that invokes the hold operation, the recording session continues without a break and even includes the music on hold, if it is unicast (multicast MOH does not get recorded).

For deployments where Unified Communications Manager phones are configured for selective recording, there must be a CTI (TAPI or JTAPI) client that proactively requests Unified Communications Manager to begin recording any given call. The CTI client does not need to retrigger recording in the case of a hold and resume.

For Unified Border Element dial peer deployments, hold and resume are implemented as direct SIP operations and the SIP protocol has no direct concept of hold and resume. Instead, these operations are implemented in terms of media stream inactivity events. MediaSense captures these events in its metadata and makes it available to application clients, but the recording session continues uninterrupted.

Pause

The Pause feature allows applications such as Customer Relationship Management (CRM) systems or VoiceXML-driven IVR systems to automatically suppress recording of sensitive information based on the caller's position in a menu or scripted interaction. Pause is invoked by a MediaSense API client to temporarily stop recording, and the subsequent playback skips over the paused segment. MediaSense does store the information in its metadata and makes it available to application clients.

Pause functions identically for Unified Border Element and Unified Communications Manager recording.

Direct Inbound Recording

In addition to compliance recording controlled by a Unified Border Element or a Unified Communications Manager recording profile, recordings can be initiated by directly dialing a number associated with a MediaSense server configured for automatic recording. These recordings are not carried out through media forking technology and therefore are not limited to Unified Border Element or Cisco IP phones, nor are they limited to audio media. In this manner, video blogging is accomplished.

Direct Outbound Recording

Using the MediaSense API, a client requests MediaSense to call a phone number. When the recipient answers, the call is recorded similarly to the way it is recorded when a user dials the recording server in a direct inbound call. The client can be any device capable of issuing an HTTP request to MediaSense, such as a call me button on a web page. Any phone, even a non-IP phone (such as home phone), can be recorded if it is converted to IP using a supported codec. Supported IP video phones can also be recorded in this way.

Direct outbound recording is only supported if MediaSense can reach the target phone number through a Unified Communications Manager system. In Unified Border Element-only deployments where Unified Communications Manager is not used for call handling, direct outbound recording is not supported.
Monitoring

While a recording is in progress, the session is monitored by a third-party streaming-media player or by the built-in media player in MediaSense.

To monitor a call from a third-party streaming-media player, a client must specify a real-time streaming protocol (RTSP) URI that can supply HTTP-BASIC credentials and can handle a 302 redirect. The client can obtain the URI either by querying the metadata or by capturing session events.

MediaSense offers an HTTP query API that allows suitably authenticated clients to search for recorded sessions based on many criteria, including whether the recording is active. Alternatively, a client may subscribe for session events and receive MediaSense Symmetric Web Service (SWS) events whenever a recording is started (among other conditions). In either case, the body passed to the client includes a large amount of metadata about the recording, including the RTSP URI to be used for streaming.

The third-party streaming-media players that Cisco has tested for MediaSense are VLC and RealPlayer. Each of these players has advantages and disadvantages that should be taken into account when selecting which one to use.

Recording sessions are usually made up of two audio tracks. MediaSense receives and stores them that way and does not currently support real-time mixing.

VLC can only play one track at a time. The user can alternate between tracks but cannot hear both simultaneously. VLC is open source and is easy to embed into a browser page.

RealPlayer can play the two streams as stereo (one stream in each ear) but its buffering algorithms for slow connections sometimes results in misleading periods of silence for the listener. People are more or less used to such delays when playing recorded music or podcasts, but call monitoring is expected to be real time and significant buffering delays are inappropriate for that purpose.

None of these players can render AAC-LD, g.729 or g.722 audio. A custom application must be created in order to monitor or play streams in those forms.

MediaSense's built-in media player is accessed by a built-in Search and Play application. This player covers more codecs and can play both streams simultaneously, but it does not support the AAC-LD audio codec, or in some cases, the g.729 codec. These features apply to both playback of recorded calls and monitoring of active calls.

Only calls that are being recorded are available to be monitored. Customers who require live monitoring of unrecorded calls, or who cannot accept these other restrictions, may want to consider Unified Communications Manager's Silent Monitoring capability instead.

Playback

Once a recording session has completed, it can be played back on a third-party streaming-media player or through the built-in media player in the Search and Play application. Playing it back through a third-party streaming-media player is similar to monitoring—an RTSP URI must first be obtained either through a query or an event.

Silence Suppression

While recording a call, it is possible to create one or more segments of silence within the recording (for example, by invoking the pauseRecording API). Upon playback, there are various ways to represent that silence. The requesting client uses a set of custom header parameters on the RTSP PLAY command to specify one of the following:
• The RTP stream pauses for the full silent period, then continues with a subsequent packet whose mark bit is set and whose timestamp reflects the elapsed silent period.

• The RTP stream does not pause. The timestamp reflects the fact that there was no pause, but the RTP packets contain "TIME" padding which includes the absolute UTC time at which the packet was recorded.

• The RTP stream compresses the silent period to roughly half a second; in all other respects it acts exactly like bullet 1. This is the default behavior and is how the built-in media player works.

In all cases, the file duration returned by the RTSP DESCRIBE command reflects the original record time duration. It is the time the last packet ended minus the time the first packet began.

The session duration returned by the MediaSense API and session events may differ because these are based on SIP activity rather than on media streaming activity.

Commercial media players such as VLC and RealPlayer elicit the default behavior described in bullet 3. However, these players are designed to play music and podcasts, they are not designed to handle media streams that include silence so they may hang, disconnect, or not seek backward and forward in the stream.

Conversion and Download

Completed recording sessions can be converted on demand to .mp4 or .wav format by using an HTTP request. Files converted in this way carry two audio tracks not as a mixed stream, but as stereo. Alternatively, .mp4 files can also carry one audio and one video track.

After conversion, .mp4 and .wav files are stored for a period of time in MediaSense along with their raw counterparts and are accessible using their own URLs. (The files eventually get cleaned up automatically, but are recreated on demand the next time they are requested.) As with streaming, browser or server-based clients can get the URIs to these files by either querying the metadata or monitoring recording events. The URI is invoked by the client to play or download the file.

As with RTSP streaming, the client must provide HTTP-BASIC credentials and be prepared to handle a 302 redirect. In this way, conversion to .mp4 or .wav format provides a secure, convenient, and standards-compliant way to package and export recorded sessions.

However, large scale conversion to .mp4 or .wav takes a lot of processing power on the recording server and may impact performance and scalability. To meet the archiving needs of some organizations, as well as to serve the purposes of those speech analytics vendors who prefer to download recordings than stream them in real time, MediaSense offers a "low overhead" download capability.

This capability allows clients using specific URIs to download unmixed and unpackaged individual tracks in their raw g.722, g.711, or g.729 format. The transport is HTTP 1.1 chunked, which leaves it up to the client (and the developer’s programming expertise) to reconstitute and package the media into whatever format best meets its requirements. As with the other retrieval methods, the client must provide HTTP-BASIC credentials and be prepared to handle a 302 redirect. Note that video streams and AAC-LD encoded audio streams cannot currently be downloaded in this way.

Embedded Search and Play Application

MediaSense provides a web-based tool used to search, download, and playback recordings. This Search and Play application is accessed using the API user credentials.

The tool searches both active and past recordings based on metadata characteristics such as time frame and participant extension. Recordings can also be selected using call identifiers such as Cisco-GUID or Unified
Communications Manager call leg identifier. Once recordings are selected, they may be individually downloaded in mp4 or .wav format or played using the application's built-in media player.

The Search and Play tool is built using the MediaSense REST-based API. Customers and partners interested in building similar custom applications can access this API from the DevNet (formerly known as the Cisco Developer Network).

The Search and Play application works best for clusters that have a maximum of 400,000 recordings in the database. Performance may be negatively impacted when there are more than 400,000 recordings. Automatic pruning provides the capability to adjust the retention period to ensure that this limitation is respected using the following formula:

\[
\text{Retention Setting in Days} = \frac{400,000}{(\text{avg } \# \text{ agents } \times \text{avg } \# \text{ calls per hour } \times \text{avg } \# \text{ hours per day})}
\]

For example, if you have 100 agents taking 4 calls per hour, 8 hours per day every day, you can retain these sessions for 125 days before exceeding the 400,000 session limit. This is acceptable for most customers, but if you have 1000 agents taking 30 calls per hour, 24 hours per day every day, your retention period is about half a day. The Search and Play application cannot be used in this kind of environment.

Additional reasons for limiting the retention period are described in Scalability and Sizing, on page 91.

Embedded Streaming Media Player

Telephone recording uses a different set of codecs than those typically used for music and podcasts. As a result, most off-the-shelf media players are not well suited to playing the kind of media that MediaSense records. This is why partner applications generally provide their own media players, and why MediaSense has the built-in Search and Play application.

The embedded player supports g.729, g.711, and g.722 codecs, which applies to both playing back of recorded calls and monitoring of active calls. However, g.729 is not supported for Microsoft Windows-based 64-bit Java installations.

The embedded media player can be accessed through the Search and Play application or it can be used by a third party client application. This application can present a clickable link to the user that loads the recording-specific media player for the selected recording session into the user's browser. The link allows partners who do not have sophisticated user interface requirements to avoid the complexity of either developing their own media player or incorporating an off the shelf media player into their applications.

Uploaded Videos to Support ViQ, VoD and VoH Features

MediaSense supports the Cisco Contact Center Video in Queue, Video on Demand, and Video on Hold features by enabling administrators to upload .mp4 video files for playback on demand.

To use these features, users must perform the following steps:

1. Produce an .mp4 video that meets the technical specifications outlined in below steps.

2. Upload the .mp4 video to the MediaSense Primary node. The video is automatically converted into a form that can be played back to a supported video endpoint and distributed to all other nodes. Playback is automatically load balanced across the cluster.
3 Create an "incoming call handling rule" that maps a particular incoming dialed number to the uploaded video. You may also specify whether this video should be played once or repeated continuously.

Administrative user interfaces are provided for uploading the file to MediaSense and creating the incoming call-handling rule. These functions are not available through the MediaSense API.

An .mp4 file is a container that can contain many different content formats. MediaSense requires that the file content meet the following specifications:

- The file must contain one audio track and one video track.
- The video must be encoded using the H.264.
- The audio must be encoded using AAC-LC.
- The audio must be monaural.
- The entire .mp4 file size must not exceed 2GB.

The preceding information is known as the Studio Specification. It must be provided to any professional studio that is producing video content for this purpose. Most commonly available consumer video software products can also produce this format.

Note

Video resolution and aspect ratio are not enforced by MediaSense. MediaSense play back whatever resolution it finds in an uploaded file, so it is important to use a resolution that looks good on all the endpoints on which you expect the video to be played. Many endpoints are capable of up- or down-scaling videos as needed, but some (such as the Cisco 9971) are not. For the best compatibility with all supported endpoints, use standard VGA resolution (640x480).

Cisco endpoints do not support AAC-LC audio (which is the standard for .mp4), so MediaSense automatically converts the audio to g.711µlaw and g.722 (note that g.711law is not supported for ViQ/VoH). MediaSense automatically negotiates with the endpoint to determine which audio codec is most suitable. If MediaSense is asked to play an uploaded video to an endpoint which supports only audio, then only the audio track is played.

A Cisco IOS 3945E gateway with 4 GB RAM is required to run ViQ load (120 calls in a queue). The gateway will crash if RAM is less than 4 GB.

Video playback capability is supported on all supported MediaSense platforms, but there are varying capacity limits on some configurations. See Hardware Profiles, on page 92 for details.

MediaSense comes with a sample video preloaded and preconfigured for use directly out of the box. After successful installation or upgrade, dial the SIP URL sip:SampleVideo@<mediasense-hostname> from any supported endpoint or from Cisco Jabber Video to see the sample video.

Integration with Cisco Unity Connection for Video Voice-Mail

Beginning with Cisco Unity Connection release 10.0(1), configured subscribers have the option to record video greetings in addition to audio greetings. Subscribers who are configured to record video greetings and who are calling from a video-capable IP endpoint are presented with additional prompts to record their video greeting. These recordings (both the audio and video tracks) are stored and played back from MediaSense. A separate audio-only copy of the recording remains on Cisco Unity Connection as well.
If for any reason Cisco Unity Connection cannot play a video greeting from MediaSense, it reverts to its locally stored audio greeting.

This is an introductory implementation, and it contains these limitations:

- A single, dedicated MediaSense node may be connected to one Cisco Unity Connection node, where a node is a single instance of Cisco Unity Connection or a high availability pair. The MediaSense node may not be used for any other MediaSense purpose.
- The scale is limited to approximately 35 simultaneous video connections.
- Cisco 9971 and similar phones are supported and they must be configured to support g.711 audio. See http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/connection/10x/design/guide/10xcucdgx/10xcucdg070.html for a detailed list of supported phones.

More information about the Cisco Unity Connection integration, including deployment and configuration instructions, can be found in the Unity Connection documentation.

Integration with Finesse and Unified CCX

MediaSense is integrated with Cisco Finesse and Unified Contact Center Express (Unified CCX). The integration is both at the desktop level and at the MediaSense API level.

At the desktop level, MediaSense's Search and Play application has been adapted to work as an OpenSocial gadget that can be placed on a Finesse supervisor's desktop. In this configuration, MediaSense can be configured to authenticate against Finesse rather than against Unified Communications Manager. Therefore, any Finesse user who has been assigned a supervisor role can search and play recordings from MediaSense directly from his or her Finesse desktop. (A special automatic sign-on has been implemented so that when the supervisor signs in to Finesse, he or she is also automatically signed into the MediaSense Search and Play application.) Other than this sign-in requirement, there are currently no constraints on access to recordings. Any Finesse supervisor has access to any and all recordings.

At the API level, Unified CCX subscribes for MediaSense recording events and matches the participant information it receives with the known agent extensions. It then immediately tags those recordings in MediaSense with the agentId, teamId, and if it was an ICD call, with the contact service queue identifier (CSQId) of the call. This subscription allows the supervisor, through the Search and Play application, to find recordings that are associated with particular agents, teams, or CSQs without having to know the agent extensions.

This integration uses BiB or NBR forking, selectively invoked through JTAPI by Unified CCX. Because Unified CCX is in charge of starting recordings, it is also in charge of managing and enforcing Unified CCX agent recording licenses. However, other network recording sources (such as unmanaged BiB forking phones or Unified Border Element dial peer forking sources) could still be configured to direct their media streams to the same MediaSense cluster, which could negatively impact Unified CCX's license counting.

For example, Unified CCX might think it has 84 recording licenses to allocate to agent phones as it sees fit, but it may find that MediaSense is unable to accept 84 simultaneous recordings because other recording sources are also using MediaSense resources. This management also applies to playback and download activities—any activity that impacts MediaSense capacity. If you are planning to allow MediaSense to record other calls besides those that are managed by Unified CCX, then it is very important to size your MediaSense servers accordingly.

More information about this integration, including deployment and configuration instructions, can be found in the Unified CCX documentation.
Integration with Unified Communications Manager for Video on Hold and Native Queuing

Starting with Unified Communications Manager Release 10.0, customers can configure a Video on Hold source for video callers, similar to a Music on Hold source that is used for audio callers. The same facility is used to provide pre-recorded video to callers who are waiting for a member of a hunt group to answer. This is known as "Unified Communications Manager native queuing."

MediaSense can be used as the video media server for both purposes. To use MediaSense in this way, administrators make use of the product's generic ability to assign incoming dialed numbers to various uploaded videos, which are then played back when an invitation arrives on those dialed numbers. Unified Communications Manager causes one of these videos to play by temporarily transferring the call to the corresponding dialed number on MediaSense.

See Uploaded Videos to Support ViQ, VoD and VoH Features, on page 9 for more information.

Integration with Cisco Remote Expert

MediaSense integrates with the Cisco Remote Expert product in two areas:

- It can act as a video media server for ViQ, VoH, and Video IVR.
- It can record the audio portion of the video call, or the entire video call.

MediaSense's video media server capabilities satisfy Remote Expert's needs for ViQ, VoH, and Video IVR. See Uploaded Videos to Support ViQ, VoD and VoH Features, on page 9 for more information.

Calls that are to be recorded must be routed through a Unified Border Element device that is configured to fork its media streams to MediaSense (because most of the endpoints used for Remote Expert are not able to fork media themselves). All the codecs listed in the Codecs Supported section are supported. Refer the Compatibility Matrix section to ensure that your Unified Border Element is running a supported version of Cisco IOS, to ensure that you incorporate several bug fixes in this area.

Remote Expert provides its own user interface portal for finding and managing recordings, and for playing them back. For AAC-LD audio calls (most common when using EX-series endpoints), there are no known RTSP-based AAC-LD streaming media players, so those calls can only be converted to .mp4 and downloaded for playback. Live monitoring of such calls is not possible.

For more information about this integration, including deployment and configuration instructions, see the Remote Expert documentation.

Incoming Call Handling Rules

When MediaSense receives a call, it needs to know what action to take. MediaSense offers various options to configure what action it takes for a call type. The following actions are available:

- Record audio of the incoming calls
• Record audio and video of the incoming calls
• Play an outgoing media file once
• Play an outgoing media file continuously
• Reject incoming calls

If your application is to record calls forked by a Unified Border Element dial peer, then the dialed number in question is configured as the "destination-pattern" setting in the dial peer which points to MediaSense. If your application is to record calls forked by a Unified Communications Manager phone or NBR, then the dialed number in question is configured as the recording profile’s route pattern.

Call Association

MediaSense generates multiple sessions for a call being recorded in case of hold/resume or transfer, which makes it difficult for users (like Supervisors) to identify all the recording sessions in a single call. MediaSense 10.5 has a new **Expand Call** icon in the Search and Play application, to view, play, and download all the associated sessions of a call (both active and recent) in the **Associated Sessions** box. Currently, MediaSense groups only strongly associated calls which have at least one common xRefci value.

Note: MediaSense 10.5 supports call association for Built-in-Bridge recordings only.

Archival

Using MediaSense, you can archive audio recordings, video recordings, and video greeting’s recordings to an offline location. To archive the recordings, specify the archive configuration settings on the **MediaSense Archive Configuration window** (Cisco MediaSense Administration > Administration > Archive Configuration). As a result, you can save the recordings for a long duration and prevent the recordings from getting pruned automatically. For more information on archive configuration settings, see the MediaSense User Guide at http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-user-guide-list.html.

Figure 1: MediaSense Archive Configuration

Archival is performed in two steps:
1 Converting a session to .mp4 file
2 Copying .mp4 and metadata files to a specified SFTP server

Each recording session consists of two files, .mp4 and .json. The MP4 version of the recording is named as <SessionId>.mp4. The .mp4 file can be an audio, video, or video greeting. The JSON rendition of the metadata stored in the MediaSense database is named as <SessionId>.json. The .json file is a plain text file and text search tools can be used to search for these files.

JSON File

```json
{
  "callControllerIP": "10.126.135.41",
  "callControllerType": "Cisco-CUCM",
  "sessionDuration": 12319,
  "sessionId": "214ef2fbc3b41",
  "sessionStartDate": 1438595662982,
  "sessionState": "CLOSED_NORMAL",
  "tracks": [
    {
      "codec": "PCMA",
      "participants": [
        {
          "deviceId": "SEPF0292958FA6D",
          "deviceRef": "1013",
          "isConference": false,
          "participantDuration": 12319,
          "participantStartDate": 1438595662982,
          "xRefCi": "21528379"
        }
      ],
      "trackDuration": 12319,
      "trackMediaType": "AUDIO",
      "trackNumber": 1,
      "trackStartDate": 1438595662982
    },
    {
      "codec": "PCMA",
      "participants": [
        {
          "deviceId": "SEP0021CCCEEE2F",
          "deviceRef": "1438",
          "isConference": false,
          "participantDuration": 12319,
          "participantStartDate": 1438595662982,
          "xRefCi": "21528380"
        }
      ],
      "trackDuration": 12319,
      "trackMediaType": "AUDIO",
      "trackNumber": 0,
      "trackStartDate": 1438595662982
    }
  ],
  "urls": {
    "mp4Url": "https://10.126.135.58:8446/recordedMedia/oramedia/mp4/214ef2fbc3b41.mp4",
    "rtspUrl": "rtsp://10.126.135.58/archive/214ef2fbc3b41",
    "wavUrl": "https://10.126.135.58:8446/recordedMedia/oramedia/wav/214ef2fbc3b41.wav"
  }
}
```
Archival Directory Structure

MediaSense Archive directory structure is based on the date of the recording (in <yyyymmdd> format). MediaSense creates a directory for each day and archives the recordings in a chronological order.

Directory: /home/sftp/<hostname>/<yyyymmdd>

Contents: Directory 20150612 is created with two files for each recording.

-rw-rw-r-- 75860 Jun 12 03:56 314de63e83471.mp4
-rw-rw-r-- 1209 Jun 12 03:56 314de63e83471.json

File date and time show when the session was archived.

“314de63e83471” is the SessionId, a system-generated identifier for a session and is unique across all MediaSense servers.

Unified Communications Manager Network-Based Recording

With Unified Communications Manager Network-Based Recording (NBR), you can use a gateway to record calls. NBR allows the Unified Communications Manager to route recording calls, regardless of device, location, or geography. With NBR, call recording media can be sourced from either the IP phone or from a gateway that is connected to the Unified Communications Manager over a SIP trunk. Unified Communications Manager dynamically selects the right media source based on the call flow and call participants.

MediaSense supports Unified Communications Manager NBR for IP to IP media forking using a Unified Border Element.

Note

MediaSense does not support NBR for TDM to IP media forking and for calls treated by Unified CVP.

Unified Communications Manager configuration for NBR provides the fallback capability, especially in cases where a phone is configured to use the preferred source (either NBR or BiB) for a call recording. Unified Communications Manager attempts to follow the preference, however, in case it cannot do the preferred recording, it will fall back to the alternative automatically. So, it is simple to configure a phone to record both the caller's as well as the agent's perspective. With NBR-preferred recording, all the calls are forked from the router using NBR; however, agent-to-agent consult calls are also recorded by the BiB. All of these call segments can be associated together because both NBR and BiB use the xRefCi style of recording session identification.

NBR is the recommended forking feature, which provides these benefits:

- NBR offers both network-based Unified Border Element recording and simple BiB forking.
- NBR offers an automatic fallback to BiB when the Integrated Services Routers (ISR) are unavailable as no separate recording configuration is required. This is useful in cases where customers want to include agent-agent consult calls in the recording policies as Unified Border Element cannot record consult calls, so BiB needs to be enabled separately.
- Both NBR and BiB calls can be correlated using xRefci, which is available from Unified Communications Manager JTAPI; CISCO-GUID is not needed, which means neither CTI Server nor CTIOS connections are required.
- Because there is a single correlation identifier, correlation across components is stronger and can be done in a uniform way independent of the call flow.
- Using NBR, TDM gateway recording is automatically used without splitting the capacity of the router.
TDM gateway recording is not supported with MediaSense 10.5(1).

- Using NBR, directly-dialed as well as dialer-initiated outbound calls can be correlated with their appearance in other solution components.

Table 1: Differences Between NBR, BiB, and Unified Border Element Dial Peer Forking

<table>
<thead>
<tr>
<th></th>
<th>NBR Forking</th>
<th>BiB Forking</th>
<th>Unified Border Element Dial Peer Forking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Forking</td>
<td>Sends the media streams from an ISR to MediaSense</td>
<td>Sends media stream directly from the phone to</td>
<td>Sends the media streams from an ISR to MediaSense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MediaSense (significant in case of network</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bandwidth requirements)</td>
<td></td>
</tr>
<tr>
<td>SIP Signaling</td>
<td>Unified Communications Manager to MediaSense</td>
<td>Unified Communications Manager to MediaSense</td>
<td>ISR to MediaSense</td>
</tr>
<tr>
<td>Media Types</td>
<td>Fork only audio media.</td>
<td>Fork only audio media.</td>
<td>Fork, both audio and video media (specifically to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MediaSense 10.5).</td>
</tr>
<tr>
<td>Record IVR Interaction</td>
<td>Record calls that reach a Unified Communications</td>
<td>Record calls that reach a Unified Communications</td>
<td>Record calls as well as IVR interaction even if the</td>
</tr>
<tr>
<td></td>
<td>Manager phone.</td>
<td>Manager phone.</td>
<td>call never reaches a phone.</td>
</tr>
<tr>
<td>Recording Perspective</td>
<td>Record calls from the caller's perspective.</td>
<td>Record calls from the forking phone's perspective.</td>
<td>Record calls from the caller's perspective.</td>
</tr>
<tr>
<td>Recording a call as</td>
<td>New sessions for a call are triggered in case of</td>
<td>New sessions for a call are triggered in case of</td>
<td>An entire call is always recorded as a single</td>
</tr>
<tr>
<td>a single session or</td>
<td>hold/resume as well as transfer. Beginning with</td>
<td>hold/resume as well as transfer. Beginning with</td>
<td>session except in cases where the codec changes</td>
</tr>
<tr>
<td>multiple sessions</td>
<td>Unified Communications Manager 10.0, a new</td>
<td>Unified Communications Manager 10.0, a new</td>
<td>during the life of a call.</td>
</tr>
<tr>
<td>in case of hold/</td>
<td>session is also triggered if a call is</td>
<td>session is also triggered if a call is</td>
<td></td>
</tr>
<tr>
<td>resume, or transfer</td>
<td>transferred away from the far end phone which is</td>
<td>transferred away from the far end phone which is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not the one forking the media.</td>
<td>not the one forking the media.</td>
<td></td>
</tr>
</tbody>
</table>

Cisco MediaSense Design Guide, Release 10.5
NBR Forking

You should look in MediaSense for sessions that have an xRefCi value that matches the Unified Communications Manager Call ID for the various segments of the call in question. This value is available through Unified Communications Manager JTAPI and Unified Communications Manager CDR records.

BiB Forking

You should look in MediaSense for sessions that have an xRefCi value that matches the Unified Communications Manager Call ID for the various segments of the call in question. This value is available through Unified Communications Manager JTAPI and Unified Communications Manager CDR records.

Unified Border Element Dial Peer Forking

You should look in MediaSense for sessions that have a CCID value which matches the Cisco-GUID of the call in question.

NBR does not resolve the following issues:

- Unwanted duplicate recordings in agent-agent consult calls when both agents have recording enabled.
- A call splits into multiple recording sessions, and the number increases beginning with Unified Communications Manager 10.0.

NBR is not recommended in these cases:

- Recording the IVR activity (requires Unified Border Element Dial Peer forking)
- Recording the forked video (requires Unified Border Element Dial Peer forking)
- Customer does not want to upgrade to Unified Communications Manager 10.0
- Customer uses some other call controller instead of Unified Communications Manager
Codecs Supported

Basic Recordings
MediaSense can accept

- audio in
 - g.711 μLaw and aLaw
 - g.722
 - g.729, g.729a, g.729b
 - AAC-LD (also known as MP4A/LATM)
- and video in h.264 encoding.

In MediaSense, the following frame sizes are supported for the codecs.

<table>
<thead>
<tr>
<th>Codec</th>
<th>Frame Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.711</td>
<td>20 ms and 40 ms</td>
</tr>
<tr>
<td>g.722</td>
<td>20 ms</td>
</tr>
<tr>
<td>g.729</td>
<td>10 ms</td>
</tr>
</tbody>
</table>

Note: If a user uses a frame size other than the specified one, MediaSense will record the audio. However, the audio playback will be choppy.
Note that off-the-shelf streaming media players typically do not support the AAC-LD, g.722 and g.729 codecs, though the media player which is embedded in the built-in Search and Play application can support either g.722 or g.729 but neither it nor any commonly available media player can support AAC-LD. AAC-LD-based recordings must be converted to .mp4 or .wav format and played as downloaded files. Conversations that use AAC-LD cannot be monitored live.

Neither Unified Communications Manager nor Unified Border Element performs a full codec negotiation with MediaSense. They negotiate codecs among the conversation endpoints first and then initiate a connection to MediaSense. If they happen to select a codec which is not supported by MediaSense, the call is not recorded. Therefore, for all phones that need to be recorded, it is important to configure them so that the codec that gets selected for the phones is the codecs that MediaSense supports.

For Unified Communications Manager recording, some of the newer Cisco IP phones support iLBC or iSAC. For those phones, Unified Communications Manager may prefer to negotiate them (if possible). However, since MediaSense does not accept these codecs, they must be disabled for recording enabled devices in Unified Communications Manager's service parameter settings.

MediaSense is capable of recording the audio and video portion of Telepresence calls among EX-90 and SX-20 devices when the conversation traverses a Unified Border Element device. However, these endpoints must be configured to use a g.711 (aLaw or µLaw), g.722, or AAC-LD codec.

Mid-call codec changes may be implemented based on call flow activities—most notably when a call is transferred or conferenced with a phone which has different codec requirements than those which were negotiated during the initial invitation. This is particularly common in CVP-based contact center deployments where a call may be queued at a VXML gateway playing g.711 music, and is then delivered to a g.729 agent. The results of a mid-call codec change differ depending on whether Unified Border Element or Unified Communications Manager is providing the forked media. With Unified Communications Manager (BiB or NBR) forking, once the recording codec has been established, it cannot be changed. If a remote party transfers the call to a phone which cannot accept the previously selected codec, then Unified Communications Manager tries to insert a transcoder between the two phones so that the recording codec can remain constant. If no transcoder is available, Unified Communications Manager drops the transferred call and terminates the recording.

With Unified Border Element dial peer-based forking, the codec is allowed to change. If that happens, MediaSense terminates the existing recording session and begins a new one using the new codec. The conversation then appears in MediaSense in the form of two successive but separate sessions, with different session IDs, but sharing the same CCID call identifier.

For both Unified Border Element and Unified Communications Manager recording, it is not possible for the two audio tracks in a session to be assigned different codecs.

Video Greetings

Video voice-mail greetings (used with Unity Connection integration) are designed to work only with Cisco 9971 (or similar) phones using g.711 uLaw or aLaw and with h.264 video. These greetings can only be played back on phones that support these codecs and the video resolution at which the greeting was recorded. When an incompatible phone reaches a video-enabled mailbox, the caller does not see the video portion of the greeting. See http://www.cisco.com/en/US/docs/voice_ip_comm/connection/10x/design/guide/10xicucdg070.html for a detailed list of supported phones.

Uploaded Videos

Uploaded videos must be provided in .mp4 format using h.264 for video and AAC-LC for audio (see the exact Studio Specification below). The audio is converted to g.711 µLaw (not aLaw) and g.722 for streaming playback. Most media players (including the built-in one) and most endpoints (including Cisco 9971 video
phones, Jabber soft phones, and Cisco EX-60 and EX-90 Telepresence endpoints) can play at least one of these formats.
Metadata Database and the MediaSense API

- Metadata Database, page 23
- Tags, page 23
- MediaSense API, page 24
- Events, page 24
- Metadata Differences Between Unified Border Element and Unified Communications Manager, page 25

Metadata Database

MediaSense maintains a database containing extensive information about recorded sessions. The database is stored redundantly on the primary and secondary servers. The data includes:

- Various track, participant, call and session identifiers
- Timestamps and durations
- Real-time session state
- URIs for streaming and downloading recordings in various formats
- Server address where recorded files are stored

Tags

Along with the preceding information, MediaSense stores tags for each session.

Tags are brief, arbitrary, text strings that a client can specify and associate to individual sessions using the Web 2.0 APIs, and optionally, to specific time offsets within those sessions. Timed session tags are useful for identifying points in time when something significant happened, such as when a caller became upset or an agent gave erroneous information. Untimed session tags may be used to attach notes which are applicable to the entire session, such as a contact center agent ID or to mark or categorize some sessions with respect to other sessions.
MediaSense also uses the tagging facility to mark when certain actions occurred during the session (such as pause and resume) or when the media inactivity state changes as reported by the SIP signaling. These are known as system-defined tags.

While most tags are associated with an entire session, media inactivity state change tags are associated with a specific track in the session.

MediaSense API

The MediaSense API offers a number of methods to search and retrieve information in the metadata database. Authenticated clients perform simple queries such as finding all sessions that have been deleted by the automatic pruning function or finding all sessions within a particular time range that are tagged with a certain string. The API also supports much more complex queries as well as a sorting and paging scheme by which only a selected subset of the result set is returned.

The API provides access to a number of other MediaSense functions as well. Use the API to subscribe for events, to manage disk storage, to manipulate recording sessions that are in progress, to remove unneeded inactive sessions and recover their resources, and to invoke operations such as conversion to .mp4 or .wav. Lengthy operations are supported through a remote batch job control facility. The API is described in detail in the Cisco MediaSense Developer Guide.

MediaSense API interactions are conducted entirely over HTTPS and require that clients be authenticated. Depending on the type of request, clients use either POST or GET methods. Response bodies are always delivered in JSON format. HTTP version 1.1 is used, which allows TCP links to remain connected from request to request. For best performance, clients should be written to do the same.

API requests may be addressed to either the primary or the secondary server (the client needs to authenticate to each server separately), and must provide the HTTP session identifier that was previously obtained from the server being addressed.

Events

The MediaSense event feature provides server-based clients with immediate notification when actions of interest to them take place. The following types of events are supported:

- **Session events** — When recording sessions are started, ended, updated, deleted, or pruned.
- **Tag events** — When tags are attached to or removed from recorded sessions.
- **Storage threshold events** — When disk space occupancy rises above or falls below certain preconfigured thresholds.

Session events provide critical information about a session given its current state. For example, client could then use the URIs provided in these events to offer real-time monitoring and control buttons to an auditor or contact center supervisor. A client might also implement a form of selective recording (as opposed to compliance recording) by deleting (after the fact) sessions that it determines do not need to be recorded.

Tag events are used as a form of inter-client communication: when a session is tagged by one client, all other subscribed clients are informed about it.

Storage threshold events allow a server-based client application to manage disk usage. The client would subscribe to these events and selectively delete older recordings (when necessary) according to its own rules.
For example, the client might tag selected sessions for retention and then when a threshold event is received, delete all sessions older than a certain date except those tagged for retention.

Events are populated with JSON-formatted payloads and delivered to clients using a Symmetric Web Services protocol (SWS), which is essentially a predefined set of HTTP requests sent from MediaSense to the client (HTTPS is not currently supported for eventing).

When a client subscribes for event notifications, it provides a URL to which MediaSense addresses its events, as well as a list of event types or categories in which it has an interest. Any number of clients may subscribe and clients may even subscribe on behalf of other recipients (that is, the subscribing client may specify a host other than itself as the event recipient). The only restriction is that there cannot be more than one subscription to the same URL.

Events are always generated by either the primary or the secondary server. When both are deployed, each event is generated on one server or the other, but not both (which has implications for high availability). Customers must choose one of two modes of event delivery - one which favors reliability or one which favors convenience.

Metadata Differences Between Unified Border Element and Unified Communications Manager

At a high level, the metadata which is captured by MediaSense is call controller agnostic. Every recording is made up of one or more sessions, every session has a sessionId, and sessions can have tracks, participants, and tags and URIs associated with them. However, the details of the SIP-level interaction with MediaSense diverge somewhat depending on whether the call is controlled by a Unified Border Element dial peer or by a Unified Communications Manager recording configuration. This divergence leads to some differences in the metadata that MediaSense clients observe and in the real-time events that they receive.

- The first difference is in the topology. With Unified Communications Manager recording, the SIP dialog for recording comes from a Unified Communications Manager. With Unified Border Element dial peer recording, the SIP dialog for recording comes from the Unified Border Element itself. Therefore, the way participants are identified and the way they are associated with media tracks is different.

- More substantial differences in the metadata come from mid-call activities. For example, hold and resume trigger a new session for Unified Communications Manager managed calls, but they insert track level tags for Unified Border Element dial peer managed calls. Transfer of a forking phone terminates a recording session on Communications Manager recordings, but such an action is not possible with Unified Border Element calls.

- Conference detection also varies considerably. With Unified Communications Manager, this action appears as a transfer to a conference bridge with updated participants and a metadata flag identifying it as a conference. With Unified Border Element dial peer recording, the action also appears as a transfer, but the metadata flag is not supported and the participant data is erratic and unreliable.

- Another difference is with respect to call correlation. Unified Communications Manager and Unified Border Element use different methods for identifying calls.

Simple application clients can be agnostic to call controller type, but more sophisticated clients usually need to know whether a call was managed by a Unified Border Element or by a Unified Communications Manager. The **Cisco MediaSense Developers Guide** contains a full description of the differences between Unified Border Element and Unified Communications Manager deployments.
Disk Space Management

As on any recording device, disk space is a critical resource. MediaSense provides a number of features designed to meet various, sometimes conflicting, space management needs.

MediaSense has two different disk partitions for storing media files: one for recorded media, and one for uploaded media. The former is used for continuous recording and playback of conversations; the latter (which is usually much smaller) is used for ViQ, VoD, and VoH. Video voice-mail greetings are stored with recorded media. Both partitions are assigned their minimum size automatically at installation and both may be assigned additional space when needed.

The uploaded media partition must be managed entirely by the administrator. It is the administrator's job to keep track of the amount of space in use and available and manually deleting unneeded videos or adding new storage as required. Be aware that the amount of storage required for a single uploaded .mp4 file does not equal the size of that file. MediaSense automatically converts it upon upload into multiple formats and distributes it to all nodes in the cluster (so that the right video is ready to be played on the right node when a caller requires it). The only way to determine how much space a given video will occupy is to upload that video, wait for it to become ready, and then check the Media Partition Management page to see how much space was used.

The recorded media partition is much more dynamic and can be managed either automatically by MediaSense, or explicitly by a MediaSense API client application.

Recorded Media Partition

At a high level, two space management operating modes are available:

- Recording priority— For customers who would rather lose an old recording than miss a new one.
- Retention priority— For customers who would rather miss a new recording than lose an old one.

In recording priority mode, MediaSense automatically prunes recordings that age beyond a configurable number of days or when the percentage of available disk space falls to dangerous levels.

Retention priority mode focuses on media retention and MediaSense does not automatically prune recordings for any reason.

In either mode, MediaSense stops accepting new calls when necessary to protect the space remaining for calls that are currently in progress. Affected calls are automatically redirected to another MediaSense recording server (if one is available).

Retention priority operation
• No automatic pruning takes place.
• When a server enters the warning condition (75 percent), an alarm is raised.
• When a server enters the critical condition (90 percent), it redirects new calls.
• When a server enters the emergency condition (99 percent), it drops active recordings.
• When a server exits a critical condition (drops below 87 percent), it starts taking new calls.

Recording priority operation

• Automatic age-based pruning is in effect; recordings older than a configurable number of days are automatically pruned.
• When a server enters the warning condition (75 percent), an alarm is raised.
• When a server reaches the critical condition (90 percent), older recordings (even if younger than the age threshold) are pruned to make room for new ones.
• When a server enters the emergency condition (99 percent), it redirects new calls and drops ongoing recordings.
• When a server exits the emergency condition (drops below 97 percent), it starts taking new calls.

Any automatic pruning applies only to raw recording files. An administrative option determines whether MediaSense should automatically delete any .mp4 recordings that were created using the deprecated convertSession API, as well as any metadata associated with pruned recordings. If this option is not enabled, an API client must take responsibility for deleting them (.mp4 and .wav files that are created dynamically by the mp4url or wavUrl functions do get cleaned up automatically by the system, but the API client does not need to be responsible).

Clients also have the option of managing disk usage directly. MediaSense progressively takes more aggressive action when storage levels reach more dangerous levels, but as each stage is entered or exited, it publishes an event to subscribed clients. These events inform the client when space management actions are necessary. The MediaSense API offers a number of options to use for deleting recordings—including an option to issue a customized bulk delete operation that is then carried out without client involvement.

The capability to explicitly delete old recorded sessions is not limited to automatic operations performed by a server-based client. A customer can take a manual approach, for example, designing a web page that obtains and displays appropriate meta-information about older recordings, and allowing an administrator to selectively delete the recordings considered to be expendable. This web page would use the same API that the server-based client would use.
System Resiliency and Overload Throttling

MediaSense keeps track of a number of metrics and statistics about its own performance and raises alarms when certain thresholds are exceeded. The system also protects itself by rejecting requests that would cause it to exceed its critical capacity limits. When the node is at capacity, new recordings are redirected to other nodes (if available) or rejected and lost.

Since recording is always considered to be the highest priority operation, MediaSense reserves a certain amount of capacity specifically for that purpose, electing to reject media output requests while still continuing to accept new recording requests. Media output requests (such as live monitoring, playback, raw download and .mp4 or .wav conversion) result in 503 responses when the node is at capacity.

The relative weight of various media is also considered for overload throttling. For example, video takes significantly more capacity than audio.

Note however, that these are overload protection mechanisms only; they are not intended to enforce licensed or rated capacity. They reflect the levels at which the product has been tested and they exist so that MediaSense nodes can protect themselves and offer graceful service degradation in case of severe overuse. It is still the customer’s responsibility to engineer his or her deployment such that the overall rated node and cluster capacities are not exceeded.

MediaSense also protects itself with respect to media storage capacity. It raises alarms, redirects new calls to other nodes (if available), prunes older recordings to recover space (if permitted), and even drops existing calls (as a last resort) in order to maintain the integrity of existing recordings.

The Real Time Monitoring Tool (RTMT) provides a great deal of statistical information about use levels and throttling activities for each node.
In case total used audio ports exceed the capacity, RTMT generates a warning that the recording threshold has been achieved and addition of more recordings will lead to a critical condition. To avoid the critical condition, you should either add more recording capacity or reduce the recording load.
MediaSense-Specific Deployment Models

- Server Models Supported, page 31
- Grow Your System, page 33
- Very Large Deployments, page 34
- Virtual Machine Configuration, page 35
- Geographical Specifications, page 38

Server Models Supported

MediaSense can only be deployed on a VMware hypervisor, which must be running on the following:

- Cisco B-series or C-series server with Fiber Channel-attached SAN storage (for at least the first two disks) or with directly attached hard disk drives
- A UCS-E module running within a Cisco ISR-G2 router
- Other servers (subject to the stated minimum performance) (see Compatibility matrix below for versions and model numbers).

When ordering C-series servers, be sure to include either the battery backup or Super Cap RAID controller option. If one of these is not present or not operational, the write cache is disabled on these controllers. When the write cache is disabled, write throughput is significantly reduced. (See Compatibility matrix for detailed disk requirements.)

The primary and secondary servers must be based on identical hardware, or at least have identical specifications for CPU speed and disk I/O throughput. They must also be using the same version of VMware ESXi. Any asymmetry causes accumulating database latency in one server or the other. Expansion servers do not need to be running on the identical hardware.

Server Types

MediaSense is deployed on up to five rack-mounted servers or up to two UCS-E modules, depending on the capacity and degree of redundancy required. ("server" refers to a virtual machine, not necessarily a physical machine). There are three types of servers:
• Primary (required)— Supports all database operations as well as media operations.

• Secondary (optional)— Supports all database operations as well as media operations. Provides high-availability for the database.

• Expansion (optional)— Provides additional capacity for media operations, but not for database operations. Expansion servers are only used in 7-vCPU deployments, and are never used in UCS-E module deployments.

The following diagram shows a primary-only deployment model.

Figure 2: Primary-Only Deployment Model

![Primary Only Deployment Model Diagram]

Customers who require database redundancy can deploy a secondary server.

Figure 3: Secondary Server Deployment Model

![Secondary Server Deployment Model Diagram]
If additional recording capacity is required, expansion servers are deployed.

Figure 4: Expansion Servers Deployment Model

![Expansion Servers Deployment Model]

Note
Expansion servers are not supported in deployments which do not use the full 7-vCPU template.

All servers (including UCS-E servers) run the same installed software; they differ only in function and capacity. The primary server is always the first server to be installed and is identified as such during the installation process. Secondary and expansion servers are identified during the initial web-based setup process for those nodes (after installation is complete).

Recordings are always stored on the disks that are attached to the server which initially captured the media. UCS-E-based two-server clusters may be deployed with both blades in the same ISRG2 router or with one blade in each of two ISRG2 routers. The latter blade is typically preferred from a fault isolation perspective but is not required. A MediaSense cluster must be UCS-E-based or rack-mount server-based. It cannot consist of a combination of the two.

Grow Your System

There are two reasons for expanding system capacity: to be able to handle more simultaneous calls and to increase the retention period of your recordings.

If your goal is to handle more calls, then you can add nodes to your cluster. Each node adds both simultaneous activity capacity (the ability to perform more parallel recording, monitoring, download, and playback activities) and storage capacity. Servers may be added to a cluster at any time, but there is no ability to remove servers from a cluster.

Once your cluster has reached its maximum size (5 nodes for 7 vCPU systems, 2 nodes for everything else), your only option is to add a new cluster. If you do, you must arrange your clusters with approximately equal numbers of nodes. If that is not possible, then you should at least arrange the call distribution so that an approximately equal number of calls is directed to each cluster, possibly leaving the larger cluster underutilized. For more information, see Very Large Deployments, on page 34.

There is no capability to remove a node from a cluster once it has been added.

If your intention is to achieve a longer retention period for your recordings, you have two options. You can add nodes, as described above, or you can provision more storage space per node. Each node can handle up to 12 TB of recording storage provided that the underlying hardware can support it. UCS-B/C servers with
SAN can handle the storage capacity easily, but servers using direct attached storage (DAS) and low-end UCS-E servers are more limited.

As with nodes in a cluster, there is no capability to remove storage capacity from a node once it has been installed.

Very Large Deployments

Customers who require capacity that exceeds that of a single MediaSense cluster must deploy multiple independent MediaSense clusters. In such deployments, there is absolutely no interaction across clusters; no cluster is aware of the others. Load balancing of incoming calls does not extend across clusters. One cluster might reach capacity and block subsequent recording requests, even if another cluster has plenty of remaining space.

API clients need to be designed so that they can access all of the deployed clusters independently. They can issue queries and subscribe to events from multiple clusters simultaneously, and even specify that multiple clusters should send their events to the same SWS URL. This permits a single server application to receive all events from multiple clusters. Some MediaSense partner applications already have this capability. MediaSense's built-in Search and Play application does not have this capability.

This list describes whether multiple call controllers can share one MediaSense cluster and whether one call controller can share multiple MediaSense clusters:

- **Multiple Unified Communications Manager clusters to one MediaSense cluster:** Supported.

 Note You can have multiple Unified Communications Manager clusters to send recordings to MediaSense simultaneously. However, you can configure users of only one of the Unified Communications Manager clusters to access MediaSense Search and Play.

- **Multiple Unified Border Element devices to one MediaSense cluster:** Supported.

- **One Unified Communications Manager cluster to multiple MediaSense clusters:** Only supported with partitioned phones.

- **One Unified Border Element to multiple MediaSense clusters:** Supported.

Calls Managed by Unified Communications Manager

For Unified Communications Manager built-in-bridge or network-based recording, phones must be partitioned among MediaSense clusters so that any given phone is recorded by one specific MediaSense cluster only; its recordings are never captured by a server in another cluster. (But there is an option for full cluster failover, such as in case of a site failure. See **High Availability, on page 67**.)

In some deployments there is a need for multiple Unified Communications Manager clusters, possibly tied together in an SME network, to share one or a small number of MediaSense clusters. In this arrangement, there is a chance that two calls from different Unified Communications Manager clusters carry the same pair of xRefCi values when they reach MediaSense. This would cause those two calls to be incorrectly recorded or not recorded at all. (The statistical probability of this sort of collision is incredibly small and need not be considered.) This arrangement, therefore, is fully supported.
If your application uses the startRecord API function that asks MediaSense to make an outbound call to a specified phone number and begin recording it, only a single Unified Communications Manager node may be configured as the call controller for this type of outbound call.

Calls Managed by Unified Border Element Dial Peer

For Unified Border Element recording, the situation is more flexible. One or more Unified Border Element systems may direct their forked media to one or more MediaSense clusters. There is no chance of a call identifier collision because MediaSense uses Unified Border Element's Cisco-GUID for this purpose, and that GUID is globally unique.

Because MediaSense clusters do not share the load with each other, Unified Border Element must distribute the load with its recording invitations. This can be accomplished within each Unified Border Element by configuring multiple recording dial peers to different clusters so that each one is selected at random for each new call. Alternatively, each Unified Border Element can be configured with a preference for one particular MediaSense cluster, and other mechanisms (such as PSTN percentage allocation) can be used to distribute the calls among different Unified Border Element devices.

If your goal is to provide failover among MediaSense clusters rather than load balancing, see *High Availability*, on page 67.

Virtual Machine Configuration

Cisco provides an OVA virtual machine template in which the minimum size storage partitions and the required CPU and memory reservations are built in. VMware ESXi enforces these minimums and ensures that other VMs do not compete with MediaSense for these resources. However, ESXi does not enforce disk throughput minimums. Therefore, you must still ensure that your disks are engineered such that they can provide the specified IOPS and bandwidth to each MediaSense VM.

The Cisco-provided OVA template contains a drop-down list that allows you to select one of the supported VMware virtual machine template options in each release for MediaSense servers. These template options specify (among other things) the memory, CPU, and disk footprints for a virtual machine. For each virtual machine you install, you must select the appropriate template option on which to begin your installation. You are required to use the Cisco-provided templates in any production deployment. For low volume lab use, it is possible to deploy on lesser virtual equipment, but the system constrains its own capacity and displays warning banners that you are running on unsupported hardware.

Note

All disks must be "thick" provisioned. Thin provisioning is not supported.

Every MediaSense node has a 210GB media partition by default. Additional MediaSense vDisks can be added to increase storage up to the specified limit.

The following table summarizes the template options provided.
Media Storage Alternatives

On rack-mount servers, two storage alternatives for recorded data are currently supported:

- Physically attached disks
- Fibre Channel-attached SAN

<table>
<thead>
<tr>
<th>Template Option</th>
<th>vCPUs</th>
<th>Memory</th>
<th>Disk</th>
<th>CPU Reservation</th>
<th>Maximum Total Recording Space Supported</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary or secondary node</td>
<td>2</td>
<td>6 GB</td>
<td>80 GB for OS, 80 GB for DB, 210 GB for media</td>
<td>2200 MHz</td>
<td>8 TB either split across the cluster or localized to one node. No expansion nodes supported.</td>
<td>3</td>
</tr>
<tr>
<td>Primary or secondary node</td>
<td>4</td>
<td>8 GB</td>
<td>80 GB for OS, 80 GB for DB, 210 GB for media</td>
<td>3200 MHz</td>
<td>8 TB either split across the cluster or localized to one node. No expansion nodes supported.</td>
<td>Used for UCCX integration. 2,3</td>
</tr>
<tr>
<td>Primary or secondary node</td>
<td>7</td>
<td>16 GB</td>
<td>80 GB for OS, 600 GB for DB, 210 GB for media</td>
<td>15000 MHz</td>
<td>12 Terabytes per primary or secondary node.</td>
<td>2</td>
</tr>
<tr>
<td>Expansion node</td>
<td>7</td>
<td>16 GB</td>
<td>80 GB for OS, 80 GB for DB, 210 GB for media</td>
<td>10000 MHz</td>
<td>12 Terabytes per expansion node.</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Notes:

1. All rack-mount expansion servers must use the expansion template option.

2. The primary, secondary and expansion OVA template options provision the minimum 210 GB by default. Additional space may be added before or after MediaSense software installation. Once provisioned, recording space may never be reduced. The total amount of media storage across all nodes may not exceed 60 Terabytes on 5-node clusters or 24 Terabytes on 2-node clusters, and is further limited on UCS-E deployments depending on the available physical storage space.

3. The primary and secondary node 2 vCPU and 4 vCPU templates are suitable for UCS-E blade deployments, although they can also be used on larger systems. Most supported UCS-E blades have more physical disk space available than the VM template allocates; the unused space may be used for recorded media or uploaded media.
Network Attached Storage (NAS) is not supported in any MediaSense configuration and SAN storage is not supported on UCS-E configurations.

Depending on the hardware model and options purchased, any single node can offer up to 12 TB of storage with a maximum of 60 TB of storage across five servers. It is not necessary for all servers to be configured with the same number or type of virtual disks. (See Compatibility Matrix, on page 85 for detailed specifications and other storage configuration requirements.)

RAID Configurations

This section is applicable to UCS C-series servers only.

MediaSense must be configured with RAID-10 for the database and OS disks and either RAID-10 or RAID-5 for media storage. Using RAID-5 results in hardware savings. It is slower, but fast enough for media storage. All of the TRC configurations for UCS C-series servers include an internal SD card that is large enough to include the ESXi hypervisor. Therefore, Cisco supports installation of ESXi on the SD card and installation of the MediaSense application on the remaining disk drives.

The RAID-10 group would have to hold the ESXi hypervisor as well as the MediaSense application, which is not generally a recommended practice. All of the TRC configurations for UCS C-series servers do include an internal SD card that is large enough to contain ESXi. It is therefore required that ESXi be installed on the SD card and the MediaSense application be installed on the remaining disk drives.

Deploy Multiple MediaSense Virtual Machines per Server

As of Release 9.0(1), MediaSense is no longer required to be the only virtual machine running on a physical server. Other applications can share the server, as long as MediaSense is able to reserve the minimum resources that it requires.

You can also deploy multiple MediaSense VMs on a single host. When doing so, however, ensure that the primary and secondary nodes do not reside on the same physical host. For example, if your servers can support two MediaSense VMs, then you might lay out a 5-node cluster as shown in the figure.

Figure 5: Five Node Cluster
If your servers can support three MediaSense VMs, then you can lay them out as shown in this figure:

Figure 6: Three MediaSense Virtual Machines

You can determine how many MediaSense VMs a particular server model will support by referring to the UC Virtualization Wiki page and use the number of physical CPU cores as a guide. Models with 8 or more physical cores can support 1 MediaSense VM; models with 14 or more physical cores can support 2 MediaSense VMs, and models with 20 or more physical cores can support 3 MediaSense VMs.

Geographical Specifications

All MediaSense servers within a cluster must be in a single campus network. A campus network is defined as a network in which the maximum round-trip delay between any pair of MediaSense servers is less than 2 milliseconds. (Some Metropolitan Area Networks (MANs) may fit this definition as well.)

Other solution components, however, may connect to the MediaSense cluster over a WAN, with certain caveats:

- In Unified Communications Manager deployments, media forking phones may be connected to MediaSense over a WAN.
- SIP Trunks from Unified Communications Manager may also be routed over a WAN to MediaSense, but calls may evidence additional clipping at the beginning of recordings due to the increased round-trip delay.
- The connection between Unified Border Element and MediaSense can be routed over a WAN but affected calls may experience additional clipping at the beginning of recordings due to the increased round-trip delay.
- The AXL connection between Unified Communications Manager and MediaSense can be routed over a WAN, but API and administrator sign-in times may be delayed.
- From a high availability standpoint, API sign-in has a dependency on the AXL link. If that link traverses a WAN which is unstable, clients may have trouble signing in to the API service or performing media
output requests such as live monitoring, playback, and recording session download. This applies to remote branch deployments as well as centralized deployments, and to Unified Border Element deployments as well as Unified Communications Manager deployments.
Solution Overview and Call Flows

The following diagrams depict the MediaSense solution environment for Unified Communications Manager deployments and for Unified Border Element deployments:

Table 2: Solution Overview and Call Flows

Unified Communications Manager Solution Topology for Built-in-Bridge Recording
Though these diagrams each show only one MediaSense server and one Unified Communications Manager server or Unified Border Element, each should be considered as a cluster of such devices. That is, one cluster of MediaSense servers interacts with one cluster of Unified Communications Manager servers or with one or more Unified Border Element devices.

For Unified Communications Manager deployments, there is no concept of a hierarchy of recording servers. SIP Trunks should be configured to point to all MediaSense servers.

For Unified Border Element dial peer deployments, recording dial peers should be configured to point to one or two of the MediaSense servers (preferably avoiding the primary and secondary). High Availability, on page 67 discusses this in more detail.

UCS-E deployments are built with exactly the same topology. Physically, a UCS-E module is a blade inserted into a router rather than a separate rack-mounted server; but logically it functions no differently within the solution environment than does a rack-mounted server. A UCS-E-based MediaSense cluster can even record calls that are forked from Unified Communications Manager phones.
Notice that the Unified Border Element dial peer solution topology includes a Unified Communications Manager device. This is used only for authentication purposes and has no role in call flow.

- Solution Overview and Call Flows, page 43
- General Flow - Unified Communications Manager (BiB) Calls, page 45
- General Flow - Unified Communications Manager (Network-Based Recording) Calls, page 46
- General Flow - Unified Border Element Dial Peer Calls, page 46
- General Flow - Streaming Media, page 47
- Solution-Level Deployment Models, page 49
- Configuration Requirements for Other Solution Components, page 65

Solution Overview and Call Flows

The following diagrams depict the MediaSense solution environment for Unified Communications Manager deployments and for Unified Border Element deployments:

Table 3: Solution Overview and Call Flows
Though these diagrams each show only one MediaSense server and one Unified Communications Manager server or Unified Border Element, each should be considered as a cluster of such devices. That is, one cluster of MediaSense servers interacts with one cluster of Unified Communications Manager servers or with one or more Unified Border Element devices.

For Unified Communications Manager deployments, there is no concept of a hierarchy of recording servers. SIP Trunks should be configured to point to all MediaSense servers.

For Unified Border Element dial peer deployments, recording dial peers should be configured to point to one or two of the MediaSense servers (preferably avoiding the primary and secondary). High Availability, on page 67 discusses this in more detail.

UCS-E deployments are built with exactly the same topology. Physically, a UCS-E module is a blade inserted into a router rather than a separate rack-mounted server; but logically it functions no differently within the solution environment than does a rack-mounted server. A UCS-E-based MediaSense cluster can even record calls that are forked from Unified Communications Manager phones.
Notice that the Unified Border Element dial peer solution topology includes a Unified Communications Manager device. This is used only for authentication purposes and has no role in call flow.

General Flow - Unified Communications Manager (BiB) Calls

For compliance recording applications, call recordings are initiated via a pair of SIP invitations from Unified Communications Manager to MediaSense after the initial call has been established between two parties. Unified Communications Manager is involved in the call setup but media flows to MediaSense from one of the phones—not from Unified Communications Manager.

Inbound blog recordings are initiated in a similar way. A SIP invitation is sent from Unified Communications Manager to MediaSense. Outbound blog recordings are initiated with an API request ("startRecording") to MediaSense, which triggers an outbound SIP invitation from MediaSense to Unified Communications Manager. In all cases, the processing of the invitation results in one or more RTP media streams being established between the phone being recorded and MediaSense. These call flows are depicted in the following figures.

Note

These figures are for illustration purposes only and do not show the detailed message flow.
General Flow - Unified Communications Manager (Network-Based Recording) Calls

For compliance recording applications, call recordings are initiated by using a pair of SIP invitations from Unified Communications Manager to MediaSense after the initial call has been established between the two parties. Unified Communications Manager is involved in the call setup, but media flows to MediaSense from the ISRG2 router, not from Unified Communications Manager.

Table 4: Call Flow - Unified Communications Manager NBR

General Flow - Unified Border Element Dial Peer Calls

In Unified Border Element Dial Peer recording, applications have similar flows, but there are important differences. Call recordings are initiated with a single SIP invitation from Unified Border Element to
MediaSense containing two "m" lines, as opposed to two separate invitations that each contain one "m" line. As with Unified Communications Manager, the invitation is sent only after the initial call has been established between two parties. However, the media that flows to MediaSense comes from Unified Border Element as it does with Unified Communications Manager NBR, not from one of the endpoints as it does with Unified Communications Manager BiB.

Inbound blog recordings are initiated by directly dialing a call from an endpoint, through Unified Border Element, to MediaSense. In all cases, the processing of the invitation to MediaSense results in one or more RTP media streams being established between the Unified Border Element and MediaSense. These call flows are depicted in the following figures.

These figures are for illustration purposes only and do not show the detailed message flow. Also, outbound blog recordings are not supported with Unified Border Element deployments.

General Flow - Streaming Media

Live monitoring happens when a workstation running a streaming media player sends an RTSP:// URI to MediaSense specifying an active media address and an RTP media stream is established between MediaSense and the player. This stream is actually a copy of one of the streams that MediaSense is receiving from the phone; the media does not come from the disk.
Playback is initiated when a workstation running a streaming media player sends an RTSP:// URI to MediaSense specifying an archive media address. The resulting media stream between MediaSense and the player is read from the disk.

Live monitoring and playback call flows are illustrated in the figure (showing how authentication takes place, but not showing the detailed message flow). The MediaSense Media Service is the software component within each node that is responsible for handling streaming media.

Table 5: Live Monitoring and Playback Call Flows

<table>
<thead>
<tr>
<th>Live Monitoring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Player</td>
<td>Cisco MediaSense</td>
<td>Cisco MediaSense</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Media Established (2 streams)</td>
</tr>
<tr>
<td>2</td>
<td>RTSP://...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>API User credentials</td>
<td>Secure RTSP URL</td>
</tr>
<tr>
<td>4</td>
<td>302 Redirect</td>
<td>Secure RTSP URL</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>RTP Media Established (1 or 2 streams)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Playback</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Player</td>
<td>Cisco MediaSense</td>
<td>Cisco MediaSense</td>
</tr>
<tr>
<td>1</td>
<td>RTSP://...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>API User credentials</td>
<td>Secure RTSP URL</td>
</tr>
<tr>
<td>3</td>
<td>302 Redirect</td>
<td>Secure RTSP URL</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>RTP Media Established (1 or 2 streams)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Playback showing Authentication Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Player</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
The MediaSense API is accessed from either a server-based or a browser-based client. Server-based clients may subscribe for asynchronous events as well.

Solution-Level Deployment Models

This section summarizes the many ways in which MediaSense can be deployed as part of a solution.

Unified Communications Manager Deployments for BiB Forking

These deployment models cover scenarios in which Cisco IP phones are configured for media forking. Two versions are covered:

- Basic Unified Communications Manager deployment - internal-to-external
- Basic Unified Communications Manager deployment - internal-to-internal

From the perspective of MediaSense, there is actually no difference between the two basic Unified Communications Manager versions. In both cases, media forked by a phone is sent to the recording device where the forked streams are captured. They are distinguished here because there is a significant difference in their function at the solution level.

Unified Communications Manager Deployment - Internal-to-External

The preceding diagram shows a basic Unified Communications Manager deployment for BiB forking where calls with parties who are outside the enterprise are recorded. This deployment applies to both inbound and outbound calls, as long as the inside phone is configured with an appropriate recording profile.

Once the connection is established from a signaling perspective, media flows directly from the forking phone to the recording server.
If the call is transferred away from this phone, the recording session ends. Only if the phone that takes up the call is configured for recording will the next segment of the call be captured.

Unified Communications Manager Deployment - Internal-to-Internal

This diagram shows a basic Unified Communications Manager deployment for BiB forking where calls are with parties who are inside the enterprise. One of the phones must be configured for recording. If both phones are configured for recording, then two separate recording sessions are captured.

Unified Communications Manager Session Management Edition Deployment

In an Unified Communications Manager Session Management Edition (Unified CM SME) environment, all the phones that are to be recorded by a specific MediaSense cluster must be part of the same SME leaf cluster.
If phones from different leaf clusters need to be recorded, then a separate and independent MediaSense clusters must be deployed, as shown in the illustration.

Figure 7: Unified CM SME Deployment

The illustration demonstrates how MediaSense clusters must be connected to Unified CM SME leaf clusters, not to the Unified CM SME manager cluster. The diagram also shows the leaf clusters connecting to separate MediaSense clusters, which is a supported arrangement.
Unified Communications Manager Deployments for Network-Based Recording

This diagram shows that the recording calls using Network-Based Recording (NBR) is similar to recording calls using BiB, except that the media flows to MediaSense from the voice router rather than from the phone. The SIP signaling in both cases comes from Unified Communications Manager.

Figure 8: Unified Communications Manager Deployments for Network-Based Recording

As with BiB recordings, if the call is transferred away from the phone whose conversation is being recorded, the recording session ends, despite the fact that the media continues to flow through the same voice router. Only if the phone that takes up the call is configured for recording (either BiB or NBR) will the next segment of the call be captured.

Note

NBR is not yet supported for inbound calls to Unified CCE.
Basic Unified Border Element Deployment for Dial Peer Forking

The preceding diagram shows a very basic Unified Border Element deployment for dial peer forking where calls arrive on a SIP Trunk from the PSTN and are connected to a SIP phone inside the enterprise. The media forking is performed by the Unified Border Element device using a recorder profile configuration that is attached to one or more dial peers.

When a call passes through Unified Border Element (or any Cisco router), it matches two dial peers: one at the point where the call enters the Unified Border Element, and one at the point where it exits. In case of the Unified Border Element system, these are known as the inbound and outbound dial peers. These terms are relative to the direction of the call. On an inbound call, the inbound dial peer is the one that represents the outside of the enterprise and the outbound dial peer represents the inside of the enterprise. The assignment is reversed for an outbound call. In this document, we use the terms inside and outside dial peers to represent the inside and the outside of the enterprise, respectively.

Although there are a few exceptions, the best practice is to apply the recording profile to the outside dial peer: the inbound dial peer for inbound calls and the outbound dial peer for outbound calls. This is because the external leg of the call is typically quite stable, whereas the internal leg is often subject to complex call manipulations including various kinds of consults, conferences, and transfers. If any of those operations cause the Unified Border Element to trigger a new dial peer match, the recording session may be terminated prematurely. (If such an operation causes the prevailing codec to be changed, the recording session is terminated and a new one is initiated.)

This diagram also shows a Unified Communications Manager component. Though currently required for Unified Border Element deployments, Unified Communications Manager does not perform any call signaling, media, or record keeping. A single Unified Communications Manager server is required to manage and authenticate MediaSense API users. It can be any existing or specially installed Unified Communications Manager server on Release 8.5(1) or later. Ideally, the server selected should be one that is not itself loaded with calls.

The Unified Communications Manager server is omitted from the remaining Unified Border Element deployment model diagrams since it plays no part in call handling.

The basic Unified Border Element deployment is unlikely to ever be used in a production environment. More typically, a Unified Communications Manager, other Private Branch Exchange (PBX), or Automatic Call distributor (ACD) would be attached to the internal side of the Unified Border Element and phones would be
attached to that rather than to the Unified Border Element directly. However, all Unified Border Element deployments contain this configuration at their core. From the strict perspective of Unified Border Element and MediaSense, all the other models are no different from this one.

Basic Unified Border Element Deployment with Various PBXs for Dial Peer Recording

One of the great advantages of using Unified Border Element to fork media is its ability to capture the entire conversation from the caller perspective, no matter where the call goes inside the enterprise. This includes contact center agents, non-contact center personnel, IVR systems, and even users on non-Cisco ACD and PBX systems.

The preceding diagram shows three ways that MediaSense and Unified Border Element may be deployed in a heterogeneous enterprise environment. Any given call might experience one or a combination of these flows and the entire caller experience will be recorded. Additional combinations are possible as well; for example, a call may be handled by an IP-based or TDM-based IVR system.
Unified Border Element Deployment Variation Using TDM Ingress for Dial Peer Recording

In order to fork media, Unified Border Element must be dealing with a SIP to SIP call. If calls are arriving by TDM, then a separate TDM gateway is provisioned as shown in the diagram. Forking is then configured as usual on the outside dial peer of the Unified Border Element.

If your application is designed to transmit DTMF signals to the PSTN, such as to perform PSTN-controlled transfers (also known as *8 Transfer Connect), then you must ensure that both the Unified Border Element and the TDM gateway are configured to use the same method for DTMF signaling. You can do so by adding the same dtmf-relay configuration to the connecting dial peers in both devices. Relay type rtp-nte is the most standard, preferred method. The dial peer going to CVP should also be configured with rtp-nte.

Unified Border Element Deployments for Dial Peer Recording with Unified CVP

When Unified Border Element is connected to Unified Customer Voice Portal (Unified CVP), MediaSense can be used to record calls in a contact center. The following subsections describe these models:

- Unified Border Element deployments with Unified CVP - centralized, SIP trunks, no survivability
- Unified Border Element deployments with Unified CVP - centralized, SIP trunks, with survivability
- Unified Border Element deployments with Unified CVP - centralized, TDM trunks
- Unified Border Element deployments with Unified CVP - centralized, outbound dialer

Unified CVP deployments typically involve a VXML function and optionally a TDM to IP conversion function. Unified CVP deployment recommendations sometimes provide for combining those two functions on the same ISR. There are also Unified CVP deployments that involve incoming SIP trunks rather than TDM lines. These deployments can use Unified Border Element routers and they can also host the VXML function. Unified CVP also includes an optional component, Call Survivability, which allows branch routers to continue to provide a degraded level of service to callers even if the WAN connection between the router and Unified CVP is out of service. This component is implemented as a TCL-IVR application installed directly on each gateway and associated with a dial peer.

Unified CVP deployments with Unified Border Element media forking must manage up to four distinct activities:
• TDM to IP conversion
• Call survivability
• Media forking
• VXML browsing

Some of these activities conflict with each other at the dial peer level, and certain steps must be taken in order to ensure that they interact well together. For example, you must not configure both media forking and a TCL or VXML application on the same dial peer. Each activity uses resources on the router, so they must all be considered for sizing. You can technically configure one router to provide all four capabilities, which is acceptable in low call volume scenarios. But as call volume rises, you must move either VXML browsing or media forking to a separate device. These two functions must not be co-located.

The function to isolate depends on your needs. VXML takes the bulk of router resources (especially if Automatic Speech Recognition is being used) and its sizing calculation is based on a different (usually smaller) quantity of calls than are the other activities. For the convenience and simplicity of sizing calculations, isolating VXML is a good choice.

However, if your intent is to capture only the agent part of the call in your recordings (see the Additional Deployment Options and Considerations section), the required configuration is simpler if you perform media forking on a separate router. This configuration has an additional advantage in that co-locating TDM-to-IP, Call Survivability, and VXML browsing on a single router is the most common configuration for branch offices in a Unified CVP deployment.

In multisite ingress deployments, especially branch office deployments, you must use a combination of Significant Digits and Send To Originator functions in Unified CVP's call routing configuration in order to prevent calls from inadvertently traversing a WAN link.

See the Unified CVP documentation for more information about these techniques.

Note

During normal processing of SIP messages, Unified CVP inserts arbitrary data into the SIP content as a multi-part body. This format is currently not supported by MediaSense, nor is the content of interest to MediaSense. The recording dial peer in Unified Border Element must be configured to prevent this content from being forwarded to MediaSense by adding the command "signaling forward none" to the recording dial peer.

If the same physical router is being used for both MediaSense and Unified CVP, it must be running a version of Cisco IOS that has been qualified by both products.

Except in the simplest of scenarios, contact the ISR sales team for capacity planning.
In this scenario, Unified CVP manages all call control operations including an initial delivery to a VXML gateway for Music on Hold or other treatments, a subsequent delivery to a Unified Contact Center Enterprise (Unified CCE) agent, and possible further network transfers to other agents and devices. All segments of the call are recorded.

When properly configured, Unified CVP affects these transfers by issuing SIP invitations to the destination device rather than to Unified Border Element. This effectively re-routes the media without triggering a new dial peer match in Unified Border Element.

As with most scenarios, media forking is configured on the outside dial peer.
This scenario is identical to the preceding one except that the customer has elected to use the Unified CVP Survivability script to manage call failures and time-of-day routing. To use the Unified CVP Survivability script, place it on the outside dial peer in Unified Border Element. Cisco IOS does not allow a script and media forking to occur on the same dial peer, however, so use the inside dial peer for media forking (as shown in the diagram). Configuring recording on the inside dial peer is risky because of the possibility that call manipulation may inadvertently trigger Cisco IOS to start a new dial peer matching operation. This operation terminates the current recording session.

When properly configured, Unified CVP affects these transfers by issuing SIP invitations to the destination device rather than to Unified Border Element. This transfer prevents Unified Border Element from triggering a new dial peer match.

Note

If survivability is initiated to handle a mid-call failure of any kind, any audio played by that script (such as a technical difficulties message) cannot be recorded by MediaSense. But if the script transfers the call to a local phone, that conversation can be recorded if the local phone's dial peer is configured for media forking.

For information about REFER transfers, see the Additional Deployment Options and Considerations section.
A TDM MediaSense Unified Border Element deployment for Unified CVP is just like a SIP trunk deployment, except that a logically separate TDM gateway is placed ahead of the Unified Border Element. Unified Border Element still does the media forking on the outside dial peer and Unified Border Element still acts as the router that Unified CVP interacts with.

If survivability is used, it is placed on the POTS dial peer in the TDM gateway; not in the Unified Border Element. This placement keeps the media forking on the outside dial peer in Unified Border Element.

If Unified CVP is issuing DTMF tones to the PSTN (as in "*8 Transfer Connect" transfers), configure either dtmf-relay sip-kpml or dtmf-relay sip-notify on both ends of the call connection between the TDM gateway and the Unified Border Element.
Outbound campaigns using the Unified CCE SIP outbound dialer are configured to directly instruct the TDM gateway to call the target phone number. Once a party answers and the answering machine detection algorithm determines that the answering party is a real person, the dialer instructs the TDM gateway to connect the call using Unified Border Element to Unified CVP. From the perspective of Unified Border Element and MediaSense, this appears the same as any another inbound call.

The outbound dialer is connected to the TDM gateway; not to the Unified Border Element.

Additional Deployment Options and Considerations

Redundant Media Forking Using Unified Border Element Dial Peer

Normally, you would apply the recording profile to the outside dial peer, the one that represents the side of the call which is external to the enterprise. It is also possible to configure media forking on both dial peers in a given call, which results in two independent recording sessions. The dial peers must be configured to deliver recordings to two separate and independent MediaSense clusters, implementing true recording redundancy. However, doing so severely impacts the performance of the Unified Border Element. For sizing purposes, the Unified Border Element call-carrying capacity should be assumed to be cut in half.

Percentage Recording

Compliance recording, by definition, means that every call gets recorded. However, some applications do not require that 100 percent of calls be recorded; in some cases spot-checking is sufficient.

Using Unified Border Element, it is possible to record a pseudo-random sample of calls. This recording is accomplished by configuring multiple identical dial peers, and assigning them equal preference values, but only configuring a subset of them for media forking. For example, you could record roughly one out of every three calls by configuring three identical inbound dial peers at preference level 5 and configuring media forking for only one of them.
Omitting the VRU Segment From a Recording

This applies to contact center recording where Unified CVP is used for call routing.

By forking media from Unified Border Element, you can record the entirety of the caller's experience. This recording includes not only his or her conversation with one or more agents, but also any VRU or call-queuing activity that may occur before the call is ever delivered to an agent. Forking media from Unified Border Element can even be used to record the VRU activity if no agent is ever included in the call.

Some customers may want to omit the pre-agent VRU activity from the recording, particularly if it consists primarily of Music on Hold. One way to do this is by forking media from the agent's phone rather than from Unified Border Element. But, if you need to fork media from Unified Border Element for other reasons, you can accomplish this by causing Unified CVP to route the agent segment of the call back through the Unified Border Element. You need to separate the ingress and media forking function from one another to do this, which means that you must either route the call through the ingress router a second time, or route it through a second router.

Both routing approaches require more hardware, but using a second router makes the configuration considerably easier. If your PSTN connection is TDM-based, you must route calls through the router a second time (or route them though a second router) anyway. Therefore, the remainder of this section assumes that the media forking router is separate from the ingress router, that the ingress router can be either a TDM gateway, or an IP-only Unified Border Element, and that the VXML function is running on the ingress router.

With a normal Unified CVP configuration, when an agent becomes available, Unified CVP sends a SIP invitation to the Unified Communications Manager that controls that agent's phone. Unified Communications Manager negotiates with the ingress router to connect the media stream from the router to the agent's phone. The ingress router itself never gets involved in routing that segment of the call because it never needs to figure out what IP address handles the selected agent's extension.

This arrangement is shown in this diagram.

Unified CVP also can be configured so that the agent-segment invitation gets sent to the ingress router rather than to the Unified Communications Manager. The configuration can be done using Local Static Routes, an Outbound Proxy Server, or with Locally Resolved DNS SRV. You cannot configure the sending of the invitation by checking the Enable Send Calls to Originator box in Unified CVP's Dialed Number Pattern Configuration; that setting is only observed during the SendToVRU operation; not during the delivery to the agent. Once Unified CVP is configured, you can define a dial peer in the ingress router that is specifically for routes to agent extensions with Unified Communications Manager as the destination target.
This arrangement is shown in the following diagram.

To add media forking, insert a second router, a Unified Border Element, to do the media forking, as shown in the following diagram.

The situation becomes more complex when you have multiple ingress sites, but the goal is still achievable using a combination of Unified CVP's Send Call to Originator and Significant Digits capabilities to avoid hair-pinning calls across the WAN. Send Call to Originator allows Unified CVP to ensure that any given call's own ingress router is where its VXML activity is performed. Significant Digits can be used to ensure that when the call is delivered to an agent, it passes through a Unified Border Element that is in the same site as the call's own ingress router. Significant Digits can also be used to localize VXML activity to any VXML-capable router at the ingress router's site, rather than being limited to the ingress router itself. The following diagram shows the final arrangement in a multi-ingress site scenario. In one site, we show two ingress gateways and one Unified Border Element for media forking. The two ingress gateways are identical; both are performing TDM-to-IP conversion and VXML functions. In the other site, the same number of routers is shown, but one router is used for TDM-to-IP conversion and a second router is dedicated to VXML activity.
Regardless of the configuration, bandwidth usage must always be considered. In the design in the diagram, media flows twice over the WAN: once to and from the agent's phone, and a second time from the media forking Unified Border Element to the MediaSense cluster. If you co-locate MediaSense with the Unified Border Element, there is no problem. But if your deployment calls for centralizing MediaSense in a shared data center, then you must consider this extra bandwidth usage. In order to avoid the extra WAN traffic, you can also move the media forking Unified Border Element to the data center where MediaSense is located. This movement can only work if your Unified Communications Manager cluster and your agent's phones are all in the same WAN location. Otherwise, you will end up causing more WAN traffic rather than less, since you cannot force calls to pass through a Unified Border Element, which is co-located with the selected agent's phone. Media streams will frequently hairpin first through a Unified Border Element that is located where the agent is not. This technique also has the potential to confuse Unified Communication Manager's Call Admission Control (CAC) algorithm.

REFER Transfers

By default, Unified Border Element passes a REFER transfer from Unified CVP on to the next upstream user agent. Once that transfer succeeds, Unified Border Element is no longer in the signaling or media path and therefore cannot further record the call. If your deployment environment permits it, you can configure Unified Border Element to "consume" the REFER transfer rather than pass it on. This consumption results in Unified Border Element executing the transfer, taking Unified CVP out of the loop, but keeping Unified Border Element in the signaling and media path and recording the call. You can accomplish this by adding "voice service voip; no supplementary-service sip refer" to your Unified Border Element configuration.

- **Note**

 If the inside dial peer is doing the media forking, then a REFER will always terminate the recording because it forces Cisco IOS to perform a new dial peer match operation.

Combining Deployment Models

The deployment models described in this document are not exclusive of each other. Any typical installation may have some

- Inbound calls
- Outbound calls
• Calls that use Unified CVP
• Calls that are not part of a contact center
• Calls that use TDM trunks
• Calls that use SIP trunks
• Calls that fork media in Unified Border Element
• Calls that fork media at the phone

Generally speaking, the models here should be seen as describing the path that any one particular call may follow, while other calls may follow the paths that are covered in other deployment models. In that sense, all of these models may be combined indiscriminately, though usually any single call remains within one single model.

Combining TDM to IP Conversion with Dial Peer Media Forking

By definition, only a SIP-to-SIP call can fork media in a Unified Border Element. However, there is no reason that you cannot insert T1/E1 cards into an ISRG2 running Unified Border Element software. Calls that arrive on a TDM port can be recorded if they are routed through the device twice: once as a TDM-to-SIP call, and once as a SIP-to-SIP call. The recording of calls that arrive on the TDM port can be accomplished by configuring the device's outbound dial peer of the TDM-to-SIP call to specify itself in its session target parameter. By using some digit manipulation or other means of qualifying the call, the second time that the call arrives it matches a different (VoIP) dial peer and resembles a SIP-to-SIP call. On this second pass through the router, media forking can be enabled.

In this flow, the call gets handled by the router twice, and therefore counts as two calls from a capacity perspective. Put the other way around, calls which follow this flow will effectively halve the stated capacity of the router, which requires twice as much router capacity for the same number of calls. If you intended to use the full capacity of the router for calls, you need two routers. When you double the number of routers, you can either have all routers do both jobs (TDM and forking) or have half the routers do each job. Either approach may be used if engineered correctly.

For more information about ISR configuration, see https://supportforums.cisco.com/docs/DOC-23115.

Combining VXML with Unified Border Element Media Forking

In Unified CVP deployments without MediaSense, it is possible to run VXML voice browser functions on the same router as Unified Border Element, but Cisco does not support sharing media forking and VXML activities on the same router. VXML, especially with automatic speech recognition, uses a lot of the router's resources. Sizing also is a challenge because with media forking you must consider the total number of concurrent calls being handled, whereas for VXML you only consider the number of concurrent calls that are expected to be in queue or in IVR scripts.

In multisite ingress deployments, especially branch office deployments, this means that Unified CVP must be configured to use SigDigits functionality rather than SendToOriginator, in order to prevent calls that are in queue from inadvertently traversing a WAN link.

For more information about these techniques, see the [Unified CVP documentation](https://www.cisco.com/c/en/us/support/unified-collaboration/collaboration-network-adapters/20471104.html).
Configuration Requirements for Other Solution Components

This section lists any configuration requirements that may affect how a particular deployment is designed or how components are ordered. For detailed configuration instructions, see the Cisco MediaSense User Guide.

Unified Communications Manager

Unified Communications Manager must be configured appropriately to direct recordings to the MediaSense recording servers. To do this, you must configure a recording profile as well as various SIP parameters. Phone zones must be configured to avoid the use of iLBC, G.722.1, or iSAC codecs and the Unified Communications Manager AXL service must be enabled on at least one of its servers (because MediaSense uses AXL to authenticate users).

Note

SIP over UDP is not supported for MediaSense.

Cisco Unified Border Element

Unified Border Element software with media forking runs only on Cisco ISR G2 routers. Different models have different scalability specifications, but it is always advisable to provision these routers with the maximum amount of memory available. The 3945E in particular requires a minimum of 2 GB memory; 4 GB is preferred. Media forking is not supported on ASR routers.

Every MediaSense Unified Border Element deployment requires an AXL connection to a Unified Communications Manager for authentication purposes, even if it will not be processing calls. The connection can be to a Unified Communications Manager that is already installed and in use for other purposes, or it can be one that is installed specifically for use with MediaSense. The administrator configures one or more Unified Communications Manager end users and imports them into MediaSense as MediaSense API users.

Streaming Media Players

Examples of off-the-shelf media players include:

- VLC version 2.1.3
- QuickTime
- RealPlayer

Each of these media players has its own advantages and disadvantages. VLC, for example, can only play one media track at a time. Quicktime is sometimes not able to handle the necessary authenticated RTSP redirect. Also, be aware that none of these media players are designed to handle silence. Playback of recordings that include silent segments may produce unpredictable behavior.

None of these players support AAC-LD, g.729, or g.722 codecs. A custom media player is required in order to play media that was recorded using those codecs. The built-in MediaSense media player, accessible through the Search and Play application, can play all of these audio codecs except AAC-LD.

1 Some VLC versions have known defects, so check the documentation on the VideoLan website before selecting a version to use.
2 For QuickTime version 7.7.9, specifically install the QuickTime Web Plug-in by choosing Custom setup in the QuickTime 7 Setup wizard.
Cisco does not produce, recommend, or support the use of these or any other third-party media player. The only media player that Cisco supports is the one that is built in and provided by MediaSense.

SIP Proxy Servers

SIP proxy servers are currently not supported between MediaSense and Unified Communications Manager or Unified Border Element.

Cisco Unified Communications Manager Session Management Edition

In Cisco Unified Communications Manager Session Management Edition (Unified CM SME) deployments, MediaSense may only be placed at the Unified Communications Manager leaf cluster level. It is not currently supported at the centralized Unified CM SME level. This means that each leaf cluster requires its own MediaSense cluster, though multiple leaf clusters may share the same MediaSense cluster.

Contact Center Environments

- MediaSense does not explicitly interact with or support Unified Contact Center Enterprise (Unified CCE) or Unified Contact Center Express (Unified CCX). The recording functions that are available with the Agent and Supervisor Desktop clients on these products use different methods for initiating and capturing recordings and require their own established recording solutions.

- For the Whisper Announcement feature, MediaSense does not record the whisper call between agent and supervisor because the agent phone build-in-bridge normally does not include the supervisor-to-agent whisper in the forked media stream that it delivers to the recorder. If the supervisor phone is configured for forking, the whisper announcement is included in the supervisor phone recording.

- Equipment that monitors agent conversations by listening to a span port output and filtering on the agent phone MAC or IP address may not function properly when the phone is forking media for recording. This is because every RTP packet is emitted from the phone twice, and the listening device may not exclude those packets that are destined for the recording server from its capture. This results in the listener hearing an echo and needs to be taken into account for silent monitoring if the application calls for monitoring of conversations that are also being recorded.
High Availability

- Recording Server Redundancy - New Recordings, page 67
- Recording Server Redundancy - Recordings in Progress, page 68
- Recording Server Redundancy - Saved Recordings, page 68
- Metadata Database Redundancy, page 68
- Uploaded Video Playback Redundancy, page 69
- Backup, Restore, and Archival, page 72
- Network Redundancy and NAT, page 74

Recording Server Redundancy - New Recordings

A MediaSense cluster may contain up to five servers, each capable of recording up to a specific number of simultaneous calls. The method differs slightly for Unified Communications Manager and Unified Border Element calls.

Conceptually, there are two phases involved. First, the call controller (Unified Communications Manager or Unified Border Element) selects a MediaSense server (the pilot server) to send the initial invitation to. Second, the pilot server redirects the invitation to another server (the home server) to handle the call. Since any server may function as the pilot server for any call, the first phase is designed to prevent any single point of failure for the initial invitation.

The second phase allows MediaSense servers to balance the load among themselves without any active support from the call controller. The algorithm is aware of the state of all recording servers within the cluster and does not direct recordings to failed servers or servers with critically low disk space or other impacted conditions. It also ensures that the two media streams associated with a given call are recorded on the same server.

Unified Communications Manager is configured so that it sends invitations to each server in succession, in round-robin fashion. This ensures equal distribution of initial SIP invitation preference to all recording servers and avoids situations where one server receives the bulk of the invitations. Unified Border Element does not support a round-robin distribution, instead it is configured to always deliver invitations to one particular MediaSense server, with a second and perhaps a third server configured as lower preference alternatives. If possible, it is best to target an expansion server rather than a primary or secondary server for the pilot role because expansion servers are typically doing less work at any given time.
If any recording server is down or its network is disconnected, it cannot respond to the call controller's SIP invitation. The usual SIP processing for both Unified Communications Manager and Unified Border Element in this case is to deliver the invitation to the next server in the preference list. However, the call controller must wait for at least one timeout to expire before trying another server.

Because Unified Communications Manager and Unified Border Element only involve recording servers after the primary media path has already been established, these operations can take too long for the resulting recording to be useful. (Unified Communications Manager sets a time limit beyond which, if the recording has not begun, it will stop trying.)

The result is that if Unified Communications Manager selects a recording server that is not responding, the call in question will most likely not be recorded. Unified Border Element does not have a time limit, so these calls will be recorded, but a substantial initial segment of the call will be clipped.

To reduce the likelihood of lost recordings due to a recording server failure, MediaSense works with Unified Communications Manager and Unified Border Element to support a facility known as SIP Options Ping. This facility enables the call controller to periodically probe each recording server to make sure it is up and running without having to wait until a call is ready to be recorded. Once the call controller is aware that a MediaSense server is not running, it skips that server in the round-robin or sequential list of recording servers. However, in single-node deployments, SIP Options Ping is not recommended. Not only is it not helpful, but it can result in unnecessary failure recovery delays.

The MediaSense User Guide contains instructions for configuring the SIP Options Ping facility as well as other Unified Border Element and Unified Communications Manager SIP parameters.

In terms of sizing you should be sure to provision enough recording ports so that if one server fails, you still have enough capacity to capture all the expected concurrent calls and there is enough storage space for recording session retention.

Recording Server Redundancy - Recordings in Progress

If a recording server fails, all calls that are currently being captured on that server are changed from an ACTIVE state to an ERROR state, and the contents are discarded.

Note

The detection of the failure of the call and the subsequent state change to error may not occur for some time (in the order of an hour or two).

There is currently no capability to continue or transfer in-progress recordings to an alternate server.

Recording Server Redundancy - Saved Recordings

After a recording is complete, MediaSense retains the recording on the same server that captured it. If that server goes out of service, none of its recordings are available for playback, conversion, or download (even though information about them can still be found in the metadata).

Metadata Database Redundancy

The primary and secondary servers (the database servers in this section) each maintain a database for metadata and configuration data. They also each implement the MediaSense API and include the capability to publish
events to subscribed clients. Once deployed, the two database servers are fully symmetric; the databases are fully replicated so that writing to either one causes the other to be updated as well. Clients address their HTTP API requests to either server and use the alternate server as a fallback in case of failure.

Database Server Failure

If either the primary or secondary server fails, the surviving server remains available for use. Once the failed server returns to service, the data replication function automatically begins its catch-up operation without any user intervention.

Depending on the duration of the outage and the amount of churn that occurred, the catch-up operation might take some time. The actual duration depends on many factors, but in tests it has taken close to an hour to transfer 150,000 recording sessions.

If the failure lasts for an extended period of time, the system raises an alarm and disables replication completely, then reestablishes it when the failed server recovers.

During the recovery period, some irregularities and inconsistencies between the two servers may occur. Do not rely on the recovering server for API operations until the catch-up operation is complete. You can determine the state of the recovering server using CLI commands.

Event Redundancy

An event is generated by an individual database server when specific actions take place on the server. For example, when a recording server begins a recording, it initiates a session record in one of the database servers. Although the database update is replicated to its peer, only that one database server generates the event. This action applies to all types of events-- from recording session events to disk storage threshold events.

A client cannot know ahead of time which server will generate the events it is interested in. Each client must subscribe to both database servers in order to be sure it receives all events (the two subscriptions may designate the same target URI).

MediaSense also provides the capability for each database server to subscribe to events that are generated by the other database server and forward them together to subscribers (a flag is included in the event body that identifies these forwarded events). This capability is enabled in the MediaSense administration facility. If forwarding is enabled, a client only needs to subscribe to one database server, but may sacrifice reliability. If the client's chosen database server goes down, the client must quickly subscribe to the alternate server in order to avoid any missed events. This risk should not be underestimated, especially considering that there is no reliable way for the client to detect such a loss without periodically issuing subscription verification requests.

When a client receives an event, there is an implicit guarantee that the database update associated with that event has already been committed to the database on the server that generated the event. Clients that need to execute API queries should check the event forwarding flag to ensure that they are querying the database server that generated the event.

Event subscriptions do not persist across MediaSense server restarts.

Uploaded Video Playback Redundancy

The load balancing and redundancy operation that is used to distribute incoming recording calls is very similar to the one used to distribute incoming video playback calls. The calls arrive at a pilot node and are immediately
redirected to a home node. MediaSense can play an uploaded video as long as at least one of its nodes can play it.

Typically, all nodes in a cluster can handle a request, and uploaded videos are distributed to all nodes. However, it is possible for a node to encounter an error during the distribution or processing phases, or one node might be slower than the others in performing these duties. Therefore, incoming media playback calls get redirected to a node that is in service, has available capacity, and is ready to play the specific video selected by the appropriate incoming call handling rule.

Throttling of requests for video playback is also similar to throttling of requests for recording audio. Like an audio recording attempt, MediaSense treats incoming video playback requests at a higher priority than RTSP play and monitoring requests. Even though RTSP play and monitoring requests are subjected to a lower capacity throttling threshold than recording and video playback requests, it is possible for a given node to accept RTSP requests while recording, and video playback requests are redirected to other nodes.

Unified Communications Manager Failure while Playing Uploaded Videos

If Unified Communications Manager fails while MediaSense is playing back uploaded videos, the media stream remains active but SIP signaling is no longer available. With no SIP signaling, there is no way for MediaSense to know when the endpoint device hangs up; therefore, the video plays until it comes to the end and then it terminates and releases all resources.

However, in the case of videos configured to playback repetitively (if configured as such in an incoming call handling rule), the playback may never terminate. For those cases, Unified Communications Manager sends MediaSense a session keepalive message twice every 30 minutes by default. If MediaSense does not receive two of these timers in succession, it assumes that Unified Communications Manager has failed and terminates the playback and releases all resources.

As a result, repetitive video play-backs can remain active for up to 30 minutes following a Unified Communications Manager failure. MediaSense considers those media streaming resources to be in use, or unavailable, for the purposes of determining whether new incoming calls and streaming requests can be accepted.

The 30-minute figure is a default Unified Communications Manager service parameter that can be modified.

MediaSense Cluster Redundancy

The individual nodes within a MediaSense cluster function in a way so that if one node fails, the remaining nodes in the cluster automatically take part in recordings (assuming they have available capacity). MediaSense clusters can also be configured to take over for one another in the event of an entire cluster failure. There are two general topologies that can be used, however, in both situations, there is no load balancing across clusters.
These are strictly hot standby arrangements in order to satisfy cluster failover requirements. They do not, for example, allow calls to be taken by one cluster if another cluster reaches its capacity.

Figure 9: Ring with Spare Capacity

In this topology, two or more clusters are arranged in a failover ring. Normally, all calls meant to be handled by Cluster A are handled by Cluster A, and also for Cluster B and Cluster C. However, the call controller (Unified Border Element or Unified Communications Manager) is configured so that if it cannot send a call's recording to its usual target MediaSense cluster, it sends the recording instead to the next one in the ring. Calls for Cluster A go to Cluster B, calls for Cluster B go to Cluster C, and calls for Cluster C would go to Cluster A. This call transfer requires that each cluster be provisioned with enough excess capacity to handle its own load plus the load on the preceding cluster. It is possible, but complicated, to configure failed-over calls to be distributed across all the remaining clusters, rather than only to the next cluster in the ring.

Figure 10: Spare Cluster

In this topology, an entire extra cluster is provisioned and is not used except when one of the other clusters fails. Cluster D in this diagram is the spare one; Clusters A, B, and C are configured to fail over to Cluster D.

Configuration Methodology

These two failover topologies use the same technique. They rely on SIP Options Ping (or the lack of it) to let the call controller know when an entire cluster is down. The technique works for both Unified Border Element dial peer and Unified Communications Manager controlled forking, but the configuration differs slightly between the two.

For Unified Border Element dial peer forking, each Unified Border Element must be configured to fork recordings to two different nodes in the same cluster, followed by two different nodes in the designated failover cluster. Normally, all of the invitations first go to the targeted node in the first cluster and that node ensures that they get balanced evenly across all the nodes in the cluster. If the first targeted node goes down, it stops responding to SIP Options Pings. Unified Border Element then stops sending invitations to it and sends them instead to the second targeted node in the first cluster. That node then ensures that the invitations get balanced across all the remaining nodes in the cluster.
If the entire cluster fails, then both of the first two nodes stop responding to SIP Options Pings. Unified Border Element starts sending its invitations to the third targeted node, which is in the designated failover cluster. Whenever any node comes back online, it starts responding to SIP Options Pings again and Unified Border Element reverts to sending its invitations to that node, effectively restoring normal operation.

Note

Configuring recording profiles in a round-robin method (that is, successive invitations are delivered to successive configured nodes, with the first node in the sequence following the last) does not work for implementing cluster failover, but you can use Unified Communications Manager's top-down approach instead. You can configure the first two destinations as nodes in the first cluster, followed by two more nodes in the second cluster. Failover and recovery then will work just as they do in the Unified Border Element scenario.

Backup, Restore, and Archival

MediaSense does not provide its own built-in system-level backup and restore capability, instead it permits the use of VM backup methods for the system, metadata, and media disks. However, because of unpredictable performance impact, the VMWare virtual machine snapshot capability should not be employed with MediaSense except as part of the software upgrade process.

Note

When using VM backups for MediaSense, it is important to know that VMs are only backed up on a node-by-node basis, but MediaSense functions in a cluster model. Therefore, when you back up an expansion node, you are not capturing any of the metadata for recordings on that node because the metadata is stored on the primary and secondary nodes. Similarly, if you back up the primary node, you are only capturing those recordings that physically reside on that primary node.

As in other normal restore scenarios, you can only recover information captured up until the last backup of that node (information captured after the last backup is lost). With MediaSense, recordings captured on that node since the last backup of that node are lost, but not their metadata. The metadata stored on the primary or secondary nodes (even if it is the primary or secondary node being restored) remains intact.

At the level of individual recorded sessions, two options are available. First, MediaSense offers the Archival feature, which automatically delivers all recordings older than a configured age, together with their metadata, to an SFTP location of your choice in the mp4 format. MediaSense can archive up to about 14,000 sessions per node per day, based on 2-minutes average call duration, and assuming sufficient network bandwidth is available. Longer average session duration will reduce the archiving rate.

Second, you can selectively preserve individual recordings by explicitly converting them to mp4 or wav format and downloading them to a location of your choice. This is accomplished under the control of a custom MediaSense API client, which can apply any business-appropriate selection scheme to determine which recordings should be archived, and when.

Note

Mediasense is a VOS-based product. Unlike other VOS-based products, such as Unified Communications Manager and Unity Connection that provide internal Disaster Recovery System for backup and restore, MediaSense uses the VM backup methods for backup and restore.
Back Up MediaSense Node

Use this procedure, to back up a MediaSense node.

Before You Begin

Make sure that all CDs, DVDs, and floppies are disconnected from the virtual machine before exporting to OVF. The virtual machine should not be connected to the Install/Upgrade VMware tool.

Procedure

Step 1
Using the VMware vSphere Client, log in and connect to the VMware vSphere Hypervisor 5.1 server using the IP address or hostname of the vCenter Server, and entering the root username and password credentials. The vSphere Client window appears.

Step 2
Power off the virtual machine for which you want to back up. It can be done in two ways:

- Right-click the virtual machine and select **Power > Power Off**.
- On the Menu bar, select **Inventory > Virtual Machine > Power > Power Off**.

The system displays a confirmation message.

Step 3
Click **Yes**.
The selected virtual machine is powered off.

Step 4
On the Menu bar, select **File > Export > Export OVF Template**.
The Export OVF Template screen appears.

Step 5
In the Export OVF Template screen, do the following:

a) By default, the system displays the name of the selected virtual machine.

 Note We recommend you to keep the name of the virtual machine.

b) In the **Directory** text box, enter the path of the folder/directory at which you want to do the backup. You can also browse the location by clicking the Browse icon.

c) From the **Format** drop-down list, select **Folder of Files (OVF)**.

d) In the **Description** text box, enter description of the backup.

e) Click **OK** to proceed with the backup.

The **Exporting** dialog box appears displaying the progress percentage of the backup.

What to Do Next

After the backup is saved at the specified location, you can restore the virtual machine.

Restore MediaSense Node From Backup

Use this procedure to restore a MediaSense node from a backup.

Before You Begin

Before you restore virtual machine, you must have one backup from which to restore.
Procedure

Step 1 Using the VMware vSphere Client, log in and connect to the VMware vSphere Hypervisor 5.1 server using the IP address or hostname of the vCenter Server, and entering the root username and password credentials. The vSphere Client window appears.

Step 2 Select File > Deploy OVF Template. The Deploy OVF Template appears.

Step 3 Enter the path from where you want to restore the MediaSense, or browse to the path and click Next. The selected OVF Template Details appears.

Step 4 Enter the name and location of the deployed template and click Next.

Note The name should be unique within the inventory folder.

Step 5 Select the destination where you want to store the virtual machine files and click Next.

Step 6 Select the format in which you want to store the virtual disks and click Next. The deployment settings appears.

Step 7 Click Finish to start deployment. The Deploying Test screen appears showing the progress of the deployment.

Network Redundancy and NAT

Network redundancy capabilities (such as NIC Teaming) may be provided at the hardware level and be managed by the hypervisor. MediaSense itself plays no role in network redundancy and is completely unaware of it.

Network Address Translation (NAT) cannot be used between MediaSense and any peer device, including an API client machine such as a desktop running the MediaSense Search and Play application. A given MediaSense node may only be known by one IP address. Various API responses and redirections include full URLs for accessing internal media resources. URLs that embed IP addresses that are not known to the clients using them will not work properly.
Security

User Administration and Authentication

MediaSense supports three types of users: API users, application administrators, and platform administrators. There is only one application administrator and one platform administrator. Both of these users are configured during installation and the credentials for them are stored on MediaSense. Any number of API users can be configured after the installation process is complete.

For API users, MediaSense uses Unified Communications Manager's user administration. Any users configured as end users in Unified Communications Manager may be enabled as MediaSense API users. Once signed in to MediaSense, any such user can access all API functions. API clients sign in using a MediaSense API request, but MediaSense delegates the actual authentication of the user to Unified Communications Manager using the AXL service. API user passwords are maintained in Unified Communications Manager only and are not copied to MediaSense.

MediaSense does not currently support the notion of multiple roles and authorizations.

MediaSense APIs and Events

MediaSense API interactions are conducted entirely over secure HTTPS. All API requests must be issued within an authenticated session, denoted through a JSESSIONID header parameter. Authentication is accomplished through a special sign-in API request. However, SWS events are only delivered to clients using HTTP; HTTPS is not currently supported for eventing. By default, MediaSense uses self-signed certificates, but customers may install their own. When certificates are provided by clients, MediaSense always accepts them and does not verify their authenticity.

Internal Intracluster Communication

Components in a MediaSense cluster communicate with each other over unencrypted HTTP or Java Messaging Service (JMS) connections. The specifications for these interactions are not publicly documented, but they cannot be considered to be secure.

Media Output URIs

A number of HTTP, HTTPS, and RTSP URIs may be associated with each recorded session. HTTPS URIs are secure by definition, but their security extends only to the transport mechanism. The media content is downloaded securely over HTTPS. The URIs themselves can be transmitted insecurely by people or equipment.
To prevent unauthorized users from making inappropriate use of these media output URIs, MediaSense requires that HTTP-BASIC authentication credentials be provided every time such a URI is used. In other words, a client must authenticate itself as a valid API user before it is given access to the recorded media. This authentication is usually very fast, but it may occasionally take up to 4 seconds to complete.

Uploaded Media Files

Administrator credentials are required to upload videos for ViQ, VoH and VoD purposes. The administration interface includes links that can be used to download previously uploaded MP4 files. Although administrator credentials are required to access the interface, the download links do not require credentials, and therefore cannot be considered as secure.

Media Output

Media encryption in transit, using Secure RTP (sRTP) or other means, is currently not supported.

Media Storage

Media can be stored on an encrypted SAN, as long as disk throughput requirements are met. Provisioning and configuring SAN encryption is outside the scope of MediaSense information.
Reporting and Call Correlation

The information available in the MediaSense metadata database is limited to the following:

- Data provided in a Unified Border Element or Unified Communications Manager SIP invitation
- Tags that are inserted by client applications
- Information generated within MediaSense

Real-time correlation with other components uses an identifier known as the Cisco-Guid. This identifier is usually created by a Cisco IOS device (such as Unified Border Element or a gateway) or by the Customer Voice Portal (CVP) and is forwarded to other components that the call encounters. It is used to correlate calls across components either in real time or historically.

However, for Unified Communications Manager managed recordings, MediaSense does not receive the Cisco-Guid.

Other identifiers are used to correlate recordings in MediaSense with historical call records in other solution components, but the only way to correlate recordings in real time is to have a TAPI or JTAPI connection with the Unified Communications Manager.

The device extension, which is available in both MediaSense and Unified CCE, can be used to associate data. This can be problematic because lines are configured for recording in Unified Communications Manager, not devices or extensions, and there is not a one-to-one correspondence between the line and the extension. If a phone happens to have two lines or two extensions (or an extension happens to be assigned to two phones), then some ambiguity can result.

For more information about call correlation techniques, see the FAQs for Cisco MediaSense wiki page.
Serviceability and Administration

MediaSense offers a web-based user interface for administrative activities, such as adding and configuring MediaSense servers, managing users, and checking and configuring storage management parameters.

The interface also provides access to support system serviceability functions that are required to service the product. MediaSense offers most of these functions through the Real Time Monitoring Tool (RTMT), which is similar to Unified Communications Manager and other Cisco voice products. RTMT is a thick client that can be downloaded onto any Microsoft Windows system (other operating systems are not supported) from the MediaSense serviceability web pages.

RTMT provides the following capabilities:

- Collecting log files of specific types and specific time periods from MediaSense servers. Remote log browsing is also available so that logs can be viewed without having to download them.
- Displaying alerts (including system conditions). System conditions are service-impacting conditions, such as the temporary or permanent outage of a server or critical subsystem, an overload condition, or loss of connectivity to a dependent service. Events that raise or clear system conditions may also be sent to a SYSLOG server or trigger proactive notifications to be sent by email.
- Displaying and graphing a large array of both system and application level counters, statistics, and performance measurements including the amount of space in use on the media partitions and the number of recordings in progress at any given time. RTMT also allows thresholds to be configured for these values that when cross over create an entry on the Alerts screen. As with system conditions, these alerts can also be sent to a SYSLOG server or trigger proactive notifications to be sent by email.

Separate from RTMT, MediaSense provides a specialized browser-based Serviceability user interface that provides administrators with the following capabilities:

- Starting, stopping, activating, and deactivating individual services.
- Selecting the level and type of information that gets written to log files.
- Requesting heap memory and thread dumps.
- Accessing other MediaSense servers in the cluster.
• Downloading RTMT for Windows.

MediaSense also supports a command line interface (CLI) for many additional service functions. Administrators of the Unified Communications Manager will already be familiar with most of these functions. SNMP is not supported at this time.
Design Guidance

This section contains information intended to help plan for MediaSense deployment.

- Proactive Storage Management, page 81
- Media Storage Space Provisioning, page 82
- SIP Configuration, page 82
- Codec Configuration for Phones, page 82
- Network Provisioning, page 82
- Use Scalable Queries, page 83
- Distribute HTTP Download Requests Over Time, page 83
- Alarm Monitoring, page 83

Proactive Storage Management

MediaSense offers both retention priority and recording priority storage retention modes. Under retention priority, clients are required to manage the space available for recordings because the system will not perform any automatic pruning. Under recording priority, the system will automatically prune old recordings but the pruning operation does not necessarily delete metadata or generated mp4 files that were created using the deprecated convertSession API. MediaSense can be configured to automatically clean up these elements or clients can take proactive responsibility for managing their disk space.

When using recording priority, and you have not configured MediaSense to automatically delete pruned metadata, the client application must actively delete sessions that have been automatically pruned. Clients may either periodically issue an API request for pruned sessions or they may elect to receive session pruned events and explicitly delete those it no longer needs.

When using retention priority, there is no automatic pruning and the client is fully responsible for guaranteeing that enough disk space is available for new recordings.

Only if the system is configured for recording priority and automatic deletion of pruned recordings is turned on can the client avoid taking part in storage management.
These session management activities are invoked using the MediaSense API. (For more information, see the MediaSense Developer Guide.) If pruning activities are going to be performed regularly, schedule them for low-usage periods in order to minimize impact on normal operations.

Media Storage Space Provisioning

At the application level, MediaSense contains two kinds of media storage, which are each in its own directory location. Recording storage is located in a partition known as /recordedMedia and uploaded videos are located in a partition known as /uploadedMedia. These are logical partitions that are each made up of 1 to 16 virtual disks at the VM level. The virtual disks are mapped (using VMWare host configuration) to physical disks on the server or on a SAN. The physical disks are configured and managed using a RAID controller.

The physical disks must meet certain speed and throughput requirements that are described in the "Storage" section in the Compatibility matrix that follows. ESXi thin provisioning is not supported on any disk.

SIP Configuration

The following guidelines apply to Unified Border Element deployments:

- In Unified Border Element deployments, use SIP early offer on dial peers that go to MediaSense. This is the default setting. Only Unified Communications Manager implements delayed offer with no option.
- Use SIP over TCP on dial peers or trunks that go to MediaSense.
- Configure SIP options ping support for dial peers or trunks that go to MediaSense (except in single-node deployments). This feature greatly improves failover support for multiserver MediaSense deployments as well as for MediaSense cluster failover.

Codec Configuration for Phones

For Unified Communications Manager recording, some of the newer Cisco IP phones support iLBC or iSAC codecs and Unified Communications Manager may negotiate for them. However, because MediaSense does not yet accept these codecs, they must be disabled for recording enabled devices in the Unified Communications Manager service parameter settings.

Jabber endpoints also support a codec known as G.722.1, which is completely different from G.722 and is not supported by MediaSense. If you are using Jabber endpoints, you must prevent G.722.1 from being selected by moving it to the bottom of the codec preference list.

Network Provisioning

Unified Border Element interfaces that carry RTP media must be configured for these requirements:

- Be a fixed 1-gigabit speed or higher
- Be fully duplexed
- Not rely on auto-negotiation
Sometimes auto-negotiation fails when 100-megabit speeds are available. Even when 100-megabit speeds are properly negotiated, they are not fast enough to handle a heavy call load.

Recording servers such as MediaSense receive a lot of network traffic but generate relatively little of their own traffic. The asymmetric nature of this traffic can lead to the expiration of MAC address forwarding table entries on network switches, which can result in the network being flooded. Network administrators must take this possibility into consideration when configuring network switching equipment.

Use Scalable Queries

MediaSense offers an API for searching the metadata in a very flexible manner. While many queries will execute with little or no impact on the normal operation of the MediaSense servers, it is possible to formulate queries that have a significant impact. MediaSense limits the number of simultaneous queries it will process but does not consider the relative cost of each individual query. Customers who use the query APIs must read and adhere to the guidelines for writing scalable queries, which can be found in the MediaSense Developer Guide.

Distribute HTTP Download Requests Over Time

Some customers will use the HTTP Download facility to create copies of all recordings, using MediaSense more as a temporary location for these files than as a long-term archive. Customers may also batch these requests and issue them once a day or on some other periodic basis. In terms of resource usage, it is better to distribute these requests more evenly over time. For example, use the session ENDED event to trigger a download as soon as a call recording terminates.

Alarm Monitoring

Various situations that require administrator attention cause alarms to be raised (system conditions). These conditions are observed in the system logs as well as in RTMT’s alarms page. Using RTMT, you can configure these alarms to be sent to a SYSLOG server and to send email messages to a designated email address. MediaSense does not currently support SNMP alarms.

At least one of these methods should be used to actively monitor the state of the MediaSense servers.
Compatibility Matrix

• Server Platforms, page 85
• Hypervisor, page 86
• Storage, page 86
• Other Solution Component Versions, page 86
• Phones, page 87
• Web Browsers, page 89
• MediaSense Upgrades, page 89

Server Platforms

MediaSense supports specification-based virtualization. With this feature, Cisco extensively tests a number of specific hardware configurations (known as the tested reference configurations (TRC)), and then derives a set of specifications by which a partner or customer can select equivalent hardware models either from Cisco or from other vendors.

There are differences in the level of support that Cisco TAC provides for different hardware solutions. For more information, see the http://docwiki.cisco.com/wiki/UC_Virtualization_Supported_Hardware wiki page.

A detailed list of TRC models and supported server specifications can be found at the Virtualization for Cisco MediaSense wiki page.

Server configurations are divided into those that have direct attached disks (DAS) and those that do not. For diskless servers, you must provision Fibre Channel SAN. For DAS servers, Fibre Channel SAN is optional. It is important to ensure that the selected server can support sufficient disk space to store the amount of media storage required and that it meets the minimum disk configuration and performance specifications cited on the virtualization wiki.

When ordering C-series servers, be sure to include either battery backup or the Super Cap option for the write cache.
Hypervisor

A VMware hypervisor is required. MediaSense is not designed to run on bare metal hardware. For a list of supported hypervisors, see the Cisco MediaSense Compatibility Matrix wiki page.

Storage

MediaSense uses storage for two purposes: one set of disks holds the operating software and databases, and the other set is used for media storage. The two kinds of storage have very different performance and capacity requirements. Thin provisioning is not supported for any MediaSense disks.

Recorded Media Storage— Up to 60 terabytes is supported per cluster, divided into 12 TB in each of five servers. This is the theoretical maximum, which could only be attained if you are using SAN storage. If you are using Directly Attached Disks (DAS), then you are limited to the physical space available in the server.

Uploaded Media Storage— Uploaded media requires much less storage, but can also support up to 60 terabytes, divided into 12 TB in each of five servers.

If you are using Directly Attached Disks (DAS), then the first two disks (for operating software and database) must be configured as RAID 10.

If you are using SAN, note that only Fibre Channel-attached SAN is supported, and the SAN must be selected according to Cisco's specifications for supported SAN products (see "Cisco Unified Communications on the Cisco Unified Computing System" at http://www.cisco.com/go/swonly). SAN storage must be engineered to meet or exceed the disk performance specifications for each MediaSense virtual machine. These specifications are per node. If the nodes are sharing the same SAN, then the SAN must be engineered to support these specifications, times the number of nodes. For security purposes, you can use an encrypted SAN for media storage as long as the specifications at the link below can still be met.

For information about current disk performance specifications for MediaSense, see the Virtualization for Cisco MediaSense wiki page.

UCS-E router blade modules come with fixed disk hardware and MediaSense scalability limits for each type of module are designed according to their actual performance characteristics. You do not need to engineer their disk arrays to meet the specifications. However, all of the drives should be manually configured as RAID-1.

Also, for these modules, the required downloadable .OVA template automatically cuts the disks into two 80-GB drives and one 210-GB drive, formatted. For those modules that have additional disk space available, you can configure the additional space for either uploaded media or recorded media as best suits your application.

Other Solution Component Versions

MediaSense depends only on the versions of Unified Communications Manager and Cisco IOS. There is no particular dependency on Unified CVP or Unified CCE.

However, for deployments that include both MediaSense and Unified CVP where the two products will be sharing the same router, the Cisco IOS release running on that router must be one that is compatible with both products. It is important to verify this in the compatibility matrix for each product at deployment time.
For current compatibility matrix information about MediaSense, see the Cisco MediaSense Compatibility Matrix wiki page.

Phones

- For Unified Border Element dial peer forking, all Cisco phones are supported.

- For endpoint-based forking (also known as Built-in-Bridge, or BiB forking), all Cisco phones that support BiB technology are supported, but you must ensure there is enough bandwidth available. BiB forking can result in up to 5 media streams:
 - two audio streams involved in the conversation (in and out of the user's phone).
 - two audio streams sent from the phone to the recorder (copies of the in and out streams).
 - one audio stream if silent monitoring.

Note

- No Cisco phones are currently capable of forking video.

- For network-based recording, all phones supported by Cisco Unified Communications Manager are supported.

- For direct recording, all Cisco phones are supported for both audio and video media.

- For outbound streaming of uploaded videos, any Cisco phone that can handle the audio codecs shown in the table below is supported, as long as it can also handle the video resolution of the uploaded video (the same is true for recorded video greetings in the Unity Connection integration). Most Cisco endpoints can automatically scale whatever resolution they receive, but some (such as the Cisco 9971) cannot down-scale.

The following table is a partial list of supported devices and codecs.

Table 6: Supported Devices and Codecs

<table>
<thead>
<tr>
<th>Endpoint Category</th>
<th>Endpoint Forking</th>
<th>Unified Border Element Forking</th>
<th>Direct Recording</th>
<th>Outbound Streaming for ViQ and VoH</th>
<th>Unity Connection Video Greetings</th>
<th>Models Tested and Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio hard phones</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw, g.722)</td>
<td>Not applicable.</td>
<td>All Cisco phones that support BiB. An up to date list may be found under "Unified Communications Manager Silent Monitoring Recording Supported Device Matrix" at http://developer.cisco.com/web/sip/wikidocs.</td>
</tr>
<tr>
<td>Endpoint Category</td>
<td>Endpoint Forking</td>
<td>Unified Border Element Forking</td>
<td>Direct Recording</td>
<td>Outbound Streaming for ViQ and VoH</td>
<td>Unity Connection Video Greetings</td>
<td>Models Tested and Verified</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Cisco IP Communicator (CIPC)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw, g.722) Video</td>
<td>Not applicable.</td>
<td>Cisco IP Communicator (CIPC) v7.0(1) or later.</td>
</tr>
<tr>
<td>Cisco Jabber</td>
<td>Audio (g.729, g.711µLaw, and aLaw)</td>
<td>Audio (g.729 and g.711µLaw)</td>
<td>Audio (g.729 and g.711µLaw) Video</td>
<td>Audio (g.729 and g.711µLaw) Video</td>
<td>Cisco Jabber for Windows, Mac and iPad.</td>
<td></td>
</tr>
<tr>
<td>Video-capable phones</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw and aLaw, g.722)</td>
<td>Audio (g.729, g.711µLaw, g.722) Video</td>
<td>Audio (g.711µLaw) Video (at maximum 640x480 resolution)</td>
<td>9971, 9951 and 7985. Video greeting only works with Cisco 9971 (or similar) phones using g.711 (uLaw or aLaw) and with h.264. See http://www.cisco.com/c/en/us/td/docs/voice_ip_comm/connection/10x/design/guide/10xcucdg070.html for a detailed list of supported phones.</td>
</tr>
</tbody>
</table>
Web Browsers

Web browsers are used for accessing the Serviceability and Administration functions on MediaSense servers. For more information on browsers supported by MediaSense 10.5(1), see the Browser Compatibility Support table at:

http://docwiki.cisco.com/wiki/Cisco_MediaSense_Compatibility_Matrix

When running the Search and Play application through one of the browsers, a minimum version of the Java JDK or Java JRE must be installed, depending on the underlying operating system.

<table>
<thead>
<tr>
<th>Underlying OS</th>
<th>Minimum Java version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac OSX</td>
<td>JDK or JRE 7 update 25, 64-bit</td>
</tr>
<tr>
<td>Windows 32-bit</td>
<td>JDK or JRE 7 update 25, 32-bit</td>
</tr>
<tr>
<td>Windows 64-bit</td>
<td>JDK or JRE 7 update 25, 64-bit</td>
</tr>
</tbody>
</table>
| Note | MediaSense does not support g.729 codec.

MediaSense Upgrades

MediaSense can be upgraded from one previous release to the next. If you are upgrading from an earlier release, you will need to upgrade through each intervening version first. Upgrades from releases prior to 8.5(4) are not supported.
To check which releases can be directly upgraded to the current release, see the MediaSense Release Notes at http://www.cisco.com/c/en/us/support/customer-collaboration/mediasense/products-release-notes-list.html.

Note

Each successive release contains minor changes to the MediaSense API, that are always upward compatible, but with one exception. The exception is between Release 8.5(4) and 9.0(1), in which security enhancements were introduced. Those enhancements require that client software be modified in order to provide HTTP-BASIC credentials and to handle a 302 redirect. This applies to all RTSP streaming and HTTP download requests.

A new VMware VM template was provided in Release 9.1(1) that provisions 16 GB of memory rather than the 8 GB that was required in Release 9.0(1) and earlier. For any server being upgraded to 9.1(1), the VM configuration must be manually adjusted to reserve this increased amount of memory.

A new feature was added in Release 9.1(1) that permits recorded media storage to be increased in size after installation. However, this feature is not available in systems upgraded from prior releases; it only functions in systems that have been fresh-installed with Release 9.1(1) or later. The new uploaded media partition introduced in Release 9.1(1) is automatically created during upgrade and does support the capability to be increased in size after installation.

If you upgrade a MediaSense cluster from Release 9.0(1) to 9.1(1) or later, and then want to add nodes to your cluster, be aware that although the new nodes will be installed with expandable recorded media storage, Cisco does not support that flexibility. Provision approximately the same amount of recording space on each new node as is available on each upgraded node. Although storage space disparity across nodes in the cluster does not present a problem for MediaSense, it could result in pruning ahead of the configured retention period on smaller nodes. Administrators may find this behavior unpredictable.

Note

Upgrading MediaSense from versions prior to 10.5 to 10.5 (including its ES and SU releases) or 11.0 (including any ES & SU) will fail if the RecordingSession table has more than 2.5 million records unless a workaround is applied. For more information on the workaround, refer to https://bst.cloudapps.cisco.com/bugsearch/bug/CSCup30602/?refering_site=dumpcr

A node can take several hours to upgrade depending on the number and size of recordings it holds. Ensure that you are prepared to wait several hours to complete the upgrade. For MediaSense Release 10.5, when you upgrade a node with very large data sets, it takes around 90 additional minutes per 1 million recordings.

For the up-to-date specifics, see the following wiki locations:

Scalability and Sizing

- Performance, page 91
- Maximum Session Duration, page 93
- Storage, page 93
- Unified Border Element Capacity, page 93
- Network Bandwidth Provisioning, page 94
- Impact on Unified Communications Manager Sizing, page 94

Performance

The supported capacity for MediaSense is a function of the hardware profile that the system selects at startup time. The hardware profile depends on which VM template the node is deployed on, and the VM template depends partially on what type of hardware you are deploying. (See Virtual Machine Configuration, on page 35 for a full description of each template.) The Hardware Profiles, on page 92 section shows the actual capacity when using each type of VM template.

For example, for each 7 vCPU template node (the standard for large production deployments) the MediaSense server supports up to 400 media streams simultaneously (200 calls) at a sustained busy hour call arrival rate of two calls per second on up to 12 terabytes of disk space. The 400 represents all streams used for recording, live monitoring, playback, .mp4 or .wav conversion, and HTTP download; all of which may occur in any combination. Conversion and download are not specifically streaming activities, but they do use system resources in a similar way and are considered to have equal weight. Playback of a video track takes 9 times more resources than playback of an audio track. As a result, each uploaded video playback (one video track plus one audio track) has the weight of 10 audio tracks, leading to a maximum capacity of 40 simultaneous video playbacks per node.

In determining how many streams are in use at any given time, you need to predict the number of onsets for each activity per unit time as well as their durations. Recording, live monitoring, and playback have a duration that is equal to the length of the recording. Video playbacks, if configured to play once only, have a duration equal to the length of the video. Video playbacks for hold purposes must be estimated to last as long as each video caller typically remains on hold. The .mp4 conversions, .wav conversions, and HTTP download durations are estimated at about 5 seconds per minute of recording.

To determine the number of servers required, evaluate this data:
- The number simultaneous audio streams needed plus 10 times the number of videos being played, divided by the number of audio-weight media streams supported by each node
- The number of busy hour call arrivals divided by the maximum call arrival rate for each node
- The space required for retained recording sessions divided by the maximum media storage for each node.

The number of servers required is equal to the largest of the above three evaluations (rounded up).

Video playback for VoH, ViQ, and video messaging is further limited on 2- and 4-vCPU virtual hardware and depends on the type of physical hardware being used. See Hardware Profiles, on page 92 for details.

Another factor that significantly impacts performance is the number of MediaSense API requests in progress. This is limited to 15 at a time for 7-vCPU systems, with the capability to queue up to 10 more (the numbers are reduced for smaller systems). These numbers are per node, but they can be doubled for MediaSense clusters that contain both a primary and a secondary node. For more information, see System Resiliency and Overload Throttling, on page 29.

The media output and conversion operations (monitoring, playback, convert to MP4 or WAV, and HTTP download) are entirely under client control. The client enforces its own limits in these areas. The remaining operations (call recording and uploaded media file playback) are not under client control. The deployment can be sized so that the overall recording and video playback load will not exceed a desired maximum number cluster-wide (allowing for an enforceable number of monitoring, playback, and HTTP download operations). The recording and video playback load is balanced across all servers. (Perfect balance will not always be achieved, but each server has enough room to accommodate most disparities.)

Hardware Profiles

When MediaSense nodes are installed, they adjust their capacity expectations according to the hardware resources they discover from the underlying virtual machine. When the server is installed using one of the Cisco-provided OVA templates, the correct amount of CPU and memory are automatically provisioned and a matching hardware profile will be selected as a function of the number of vCPUs, CPU speed, and amount of memory provisioned. The hardware profile determines:

- Number of audio-equivalent calls supported
- Number of concurrent API requests supported
- Maximum call arrival rate supported
- Maximum number of nodes supported in the cluster
- Maximum amount of media storage available
- Cap on number of video playbacks supported
- Number of other internal parameters

If an incorrect OVA template is used, or if the virtual machine's configuration is changed after the OVA template is applied so that the virtual machine does not exactly match one of the existing hardware profiles, the server is considered to be unsupported and the capacities in the Unsupported category are used.

For more information, see the Hardware Profile table on the Virtualization for Cisco MediaSense wiki page.
Maximum Session Duration

MediaSense can record calls that are up to eight hours in duration. Beyond that duration, some sessions may end up being closed with an error status, and HTTP download and .mp4 or .wav conversion functions may not succeed.

Storage

MediaSense uses storage for two purposes: one set of disks holds the operating software and databases, and the other set is used for media storage. The two kinds of storage have very different performance and capacity requirements. Thin provisioning is not supported for any MediaSense disks.

Recorded Media Storage— Up to 60 terabytes is supported per cluster, divided into 12 TB in each of five servers. This is the theoretical maximum, which could only be attained if you are using SAN storage. If you are using Directly Attached Disks (DAS), then you are limited to the physical space available in the server.

Uploaded Media Storage— Uploaded media requires much less storage, but can also support up to 60 terabytes, divided into 12 TB in each of five servers.

If you are using Directly Attached Disks (DAS), then the first two disks (for operating software and database) must be configured as RAID 10.

If you are using SAN, note that only Fibre Channel-attached SAN is supported, and the SAN must be selected according to Cisco's specifications for supported SAN products (see "Cisco Unified Communications on the Cisco Unified Computing System" at http://www.cisco.com/go/swonly). SAN storage must be engineered to meet or exceed the disk performance specifications for each MediaSense virtual machine. These specifications are per node. If the nodes are sharing the same SAN, then the SAN must be engineered to support these specifications, times the number of nodes. For security purposes, you can use an encrypted SAN for media storage as long as the specifications at the link below can still be met.

For information about current disk performance specifications for MediaSense, see the Virtualization for Cisco MediaSense wiki page.

UCS-E router blade modules come with fixed disk hardware and MediaSense scalability limits for each type of module are designed according to their actual performance characteristics. You do not need to engineer their disk arrays to meet the specifications. However, all of the drives should be manually configured as RAID-1.

Also, for these modules, the required downloadable .OVA template automatically cuts the disks into two 80-GB drives and one 210-GB drive, formatted. For those modules that have additional disk space available, you can configure the additional space for either uploaded media or recorded media as best suits your application.

Unified Border Element Capacity

A Cisco 3945E ISR G2 router when running as a border element and supporting simple call flows has a capacity of about 1000 simultaneous calls (if equipped with at least 2 GB preferably 4 GB of memory). In many circumstances, with multiple call movements, the capacity will be lower in the range of 800 calls (due to the additional signaling overhead). In addition, the capacity will further be reduced when other ISR G2 functions (such as QoS, SNMP polling, or T1-based routing) are enabled.
Some customers will need to deploy multiple ISR G2 routers in order to handle the required call capacity. A single MediaSense cluster can handle recordings from any number of ISR G2 routers.

The above cases apply to both Unified Border Element dial peer recording and Unified Communications Manager network-based recording.

Network Bandwidth Provisioning

For Call Recording

If Call Admission Control (CAC) is enabled, Unified Communications Manager automatically estimates whether there is enough available bandwidth between the forking device and the recording server so that media quality for either the current recording or for any other media channel along that path is not impacted. If sufficient bandwidth does not appear to be available, then Unified Communications Manager does not record the call; however, the call itself does not get dropped. There is also no alarm raised in this scenario. The only way to determine why a call did not get recorded in this situation is to examine its logs and CDR records.

It is important to provision enough bandwidth so that this does not happen. In calculating the requirements, the Unified Communications Manager administrator must include enough bandwidth for 2 two-way media streams, even though the reverse direction of each stream is not actually being used. Bandwidth requirements also depend on the codecs in use and, in the case of video, on the frame rate, resolution, and dimensions of the image.

For Video Playback

Media connection negotiation is still bidirectional for video playback (even though MediaSense only sends data and does not receive it). This is an important consideration since the use of bidirectional media implies that you must provision double the bandwidth than what you might have otherwise expected.

Impact on Unified Communications Manager Sizing

MediaSense does not connect to any CTI engines, so the CTI scalability of Unified Communications Manager is not impacted. However, when MediaSense uses Cisco IP phone built-in-bridge recording, the Unified Communications Manager BHCA increases by two additional calls for each concurrent recording session.

For example, if the device busy hour call rate is six (6) without recording, then the BHCA with automatic recording enabled would be 18. To determine device BHCA with recording enabled, use this calculation:

\[(\text{Normal BHCA rate} + (2 \times \text{Normal BHCA rate}))\]

For more information, see "Cisco Unified CM Silent Monitoring & Recording Overview.ppt" under SIP Trunk documents at http://developer.cisco.com/web/sip/docs.