
Building Your Custom CTI Application

• System Requirements for Building Custom Applications, on page 1
• Environment Set Up for .NET, on page 2
• Integration Between Your Application and CTI OS via CIL, on page 3
• CTI Application Testing, on page 5
• Developer Sample Applications, on page 6
• CTI OS ActiveX Controls, on page 7
• COM CIL. in Visual Studio, on page 11
• C++ CIL and Static Libraries, on page 14
• Java CIL Libraries, on page 20
• .NET CIL Libraries, on page 20
• CTI OS Server Connection, on page 21
• Agent Login and Logout, on page 32
• Calls, on page 40
• Making Requests, on page 44
• Events, on page 45
• Agent Statistics, on page 46
• Skill Group Statistics, on page 51
• Silent Monitoring, on page 55
• Agent Greeting, on page 64
• Deployment of Custom CTI OS Applications, on page 64
• Supervisor Applications, on page 70
• Sample Code in CTI OS Toolkit, on page 83

System Requirements for Building Custom Applications
Use the following development tools for building custom applications:

VersionDevelopment Tool

2015Microsoft Visual Studio

4.7.1.NET Framework

1.8 Update 161Java

Building Your Custom CTI Application
1

Environment Set Up for .NET
The Cisco CTI OS Toolkit introduces support for application development using Microsoft Visual Studio and
.NET framework. You need not modify the existing .NET framework controls to run .NET CLR. Cisco CTI
OS Toolkit provides a native .NET class library (.NET CIL) and runtime callable wrappers (RCWs) for COM
CIL and the CTI OS ActiveX controls. The CTI OS Toolkit consists of a set of production ready desktops
and five software development kits.

The setup program installs the .NET CIL and the RCWs in the Global Assembly Cache (GAC) making all
the components available to the sample included in the toolkit and any new application in development. Use
the CTI OS toolkit for environment settings for building .NET applications. Additional configuration steps
are available for integration with the development environment.

The Production Ready Contact Center Desktop applications are the CTI OS Toolkit Agent Desktop, CTI OS
Toolkit IPCC Supervisor Desktop, the CTI OS Toolkit Outbound Option Desktop, and the default client
desktops for Cisco CTI OS used by call center agents and supervisors. These desktop applications are built
using the COM CIL and the CTI OS ActiveX controls. These applications are implemented using Visual
Basic .NET (VB.NET) and Microsoft Visual Studio.

Microsoft Visual Studio
Microsoft Visual Studio 2015 offers a wider spectrum of development possibilities and an advanced design
experience. In addition to Service Pack 3 it also provides:

• Microsoft .NET Framework 4.7.1 application development

• New processor support (for example, Core Duo) for code generation and profiling

• Additional support for project file based Web applications

• Secure C++ application development

To access the .NET CIL and the RCWs directly from Visual Studio, add the following configuration to your
environment.

Add CTI OS Toolkit Components to Add Reference Dialog Box
In Microsoft Visual Studio, you can select class libraries and assemblies from the .NET tab of the Add
Reference dialog box. This facilitates the development process and ensures you can always use the correct
version of the components.

To enable the .NET CIL class libraries to appear on theAdd References dialog box, follow the steps described
in https://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx.

Set a registry key that specifies the location of assemblies to appear.

To do this, add one of the following registry keys, where <AssemblyLocation> is the directory of the assemblies
that you want to appear in the Add Reference dialog box:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

Building Your Custom CTI Application
2

Building Your Custom CTI Application
Environment Set Up for .NET

https://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx

Creating the registry key under the HKEY_LOCAL_MACHINE node allows all users to see the assemblies
in the specified location in the Add Reference dialog box. Creating the registry key under the
HKEY_CURRENT_USER node affects only the setting for the current user.

For example, if you want to add:

• Cisco .NET CIL to the Add Reference dialog box

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\<version>\AssemblyFoldersEx\MyAss

emblies]@="<AssemblyLocation>"

• Cisco CTI OS RCWs to the Add Reference dialog box

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\v2.0.50727\AssemblyFoldersEx\Cisc

oCtiOsRCWs]@="C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\Win32

CIL\.NETInterops"

Add Cisco CTI OS ActiveX Controls to Toolbox
TheMicrosoft Visual Studio IDE allows visual editing ofWindows Forms based applications using the toolbox
of available visual components. Because Windows Forms applications are native, the visual components are
also native. You can still use ActiveX controls and include them in the toolbox.

Adding CTI OS ActiveX controls to the toolbox provides pre-packaged CTI functionality such as Agent
Login, Make Call, Transfer Call, Barge In, and so on. The ActiveX controls use COM CIL as the API to
provide call center and telephony services. These components are used in rapid software development. You
can drag and drop selected components into your project and immediately gain the selected CTI functionality.
These components are used in development environments such as: Microsoft Visual Studio, .Net Framework,
and Java.

To use the Cisco CTI OS ActiveX controls in Microsoft Visual Studio, you must configure the Cisco CTI OS
RCWs:

Procedure

Step 1 From Visual Studio's View menu, choose Add/Remove Toolbox Items.
Step 2 From the Customize Toolbox dialog box, select the .NET Framework Components tab.

If you click the COM Components tab from the Customize Toolbox dialog box or select the CTI
OSActiveX controls, you causeMicrosoft Visual Studio to automatically generate a set of private
RCWs that are not optimized and approved by Cisco, which can result in application failure.

Warning

Step 3 From the list, select the CTI OS RCW that corresponds to the CTI OS ActiveX Control you want to add to
the toolbox. For example, for the Agent State Control select AxAgentStateCtl.

Step 4 To add more CTI OS ActiveX controls, repeat steps 1 to 3.

Integration Between Your Application and CTI OS via CIL
Creating an integration between your application and CTI OS via the CIL is straightforward. The first step is
to articulate the desired behavior, and to create a complete design specification for the integration.

Building Your Custom CTI Application
3

Building Your Custom CTI Application
Add Cisco CTI OS ActiveX Controls to Toolbox

Integration Planning and Design
Good design depends on understanding how CTI fits into your application and workflow. Your requirements
analysis and design process should address the following points, as they relate to your specific application:

• Start with the call flow. What kind of call processing is done before calls are targeted for a specific
skill? Determine how you collect CTI data from the caller before the call arrives at an agent.

• Study agent workflow. What are the points where CTI can make the workflow easier and faster? Build
a business case for the CTI integration.

• Evaluate what CTI will do for your application. A good approach is to make a list based on the priority
(for example, screen pop, then call control) and then design and implement features in that order.

• Design how CTI should work within your application. What are the interaction points? Get
specifications as to which screens interact, and which data values should be sent between your application
and the CTI OS platform.

• Determine when the application should connect to the CTI OS Server. Some applications are
server-type integrations that connect at startup, specify a monitor-mode event filter, and stay connected
permanently. Agent-mode applications connect up when a specific agent begins the work shift.

• Clean up when you are done. When and how does the application stop? Some applications stay up and
running permanently, while others have a defined runtime, such as agent workday or shift. For server-type
applications without a specified stopping point, create an object lifetime model and procedure for
recovering no-longer-used resources. For applications with a specific stopping point, determine the kind
of clean up that needs to be done when the application closes (for example, disconnect from server,
release resources).

Language and Interface
The CTI OS Client Interface Library API comes in programming languages, each with benefits and costs.
The choice of interface is important to direct you through this developers guide, because this guide addresses
the CIL API for the C++ and COM programming environments.

The main decision point in choosing which API to use depends on your workstation operating system, your
existing applications, and the language skills of your developers.

• ActiveX Controls. The CTI OS ActiveX controls are the appropriate choice for creating a rapid drag
and drop integration of CTI and third-party call control with an existing desktop application. The CTI
OS ActiveX controls are an appropriate choice for developing a CTI integration with any fully
ActiveX-compliant container, or any other container that fully supports ActiveX features (for example,
Powerbuilder, Delphi, and many third-party CRM packages). The ActiveX controls are the easiest to
implement in graphical environments, and help achieve the fastest integrations by providing a complete
user interface. All CTI OS ActiveX components are distributed via dynamic link library files (.dll), which
you only have to register once to work on any Microsoft Windows platform. These components are not
appropriate for non-Windows environments. You can use the CTI OS ActiveX controls in Windows
Forms .NET applications only if the Runtime Callable Wrappers (RCWs) provided with the CTI OS
Toolkit are a part of the project. For more information, see CTI OS ActiveX Controls, on page 7.

• COM. The CTI OS Client Interface Library for Microsoft's Component Object Model (COM) is the
appropriate choice for developing a CTI integration with any COM-compliant container, or any other
container that supports COM features, such asMicrosoft Internet Explorer or Visual Basic for Applications
scripting languages. The COM CIL is the easiest to implement in scripting environments, and helps

Building Your Custom CTI Application
4

Building Your Custom CTI Application
Integration Planning and Design

achieve the fastest integrations requiring a custom or non-graphical user interface. All CTI OS components
are distributed via dynamic link library files (.dll), which you only have to register once to work on any
Microsoft Windows platform. These components are not appropriate for non-Windows environments.
You can use the COMCIL in Windows Forms .NET applications only if the Runtime Callable Wrappers
(RCWs) provided with the CTI OS Toolkit are a part of the project. For more information, see Hook for
Screenpops, on page 9.

• C++. The CTI OS Client Interface Library for C++ is the appropriate choice for building a
high-performance application running on a Windows platform in a C++ development environment. The
C++ CIL is distributed as a set of header files (.h) that specify the class interfaces to use and statically
linked libraries (.lib) that contain the compiled implementation code.

• Java. The CTI OS Java Client Interface Library (Java CIL) is an appropriate choice for non-Microsoft
(typically UNIX) operating systems, as well as for browser based applications.

• .NET Cil class libraries. This section covers the steps required to reference the .NET CIL components
in a C# and Visual Basic .NET project files.

CTI Application Testing
Testing is often characterized as the most time-consuming part of any application development process.

Test Plan Development
Testing CTI applications requires a detailed test plan, specific to the business requirements set forth in the
requirements gathering phase of the project. The test plan should list behaviors (test cases) and set requirements
to prove that each test case is successfully accomplished. If a test case fails, it should be investigated and
corrected (if appropriate) before proceeding to the next phase of testing.

Perform (at minimum) the following test phases:

• Unit Testing. In a unit test, you ensure that the new code units can run properly. Each component operates
correctly based on the input, and produces the correct output. An example of a unit test is to stub-in or
hardcode the expected screen-pop data and ensure that all the screens come up properly based on this
data.

• Integration Testing. In an integration test, you ensure that the new components work together properly.
The physical connections and data passing between the layers and servers involved in the system are
tested. An example of an integration test is testing your client application with the CTI OS server, to
ensure that you can pass data correctly through the components.

• System Testing. In a system test, you ensure that the correct application behavior is exhibited. An
example of a system test is to make a phone call to a VRU, collect the appropriate caller information,
transfer the call to an agent, and ensure that the screen pop arrives correctly.

• User Acceptance Testing. In a user acceptance test, you ensure that your application has met all business
requirements set by your analysis and design process. An example of a user acceptance test is to try your
new application with real agents and ensure that it satisfies their requirements.

Building Your Custom CTI Application
5

Building Your Custom CTI Application
CTI Application Testing

Test Environment
The CTI OS Software Development Toolkit (SDK) CD media includes a CTIServerSimulator that you can
use for application development and demonstration purposes. It can roughly simulate a Lucent PBX/ACD or
a Cisco Unified Contact Center environment. Documentation on how to configure and use the simulator is
available in the Tools\Simulator directory.

This simulator is appropriate only for preliminary testing of client applications. Because it does not fully
replicate the behavior of the actual switch environment, you should not use the simulator for any type of QA
testing. To ensure proper design conformance and ensure the correctness of the application, you must test the
CTI application with the actual telephony environment in which it will run. This enables the event flow and
third-party control components, which are driven by the switch- and implementation-specific call flow, to be
properly and thoroughly tested.

Note

Developer Sample Applications
The CTI OS Software Development Toolkit (SDK) is distributed with a rich set of Developer Sample
Applications (DSAs) for Cisco Unified CCE customers and similar Production Class Applications for Unified
ICM customers.

The DSAs are provided as tools for Unified CCE customers to accelerate development efforts. The DSAs
demonstrate several basic working applications that use varying implementations of the CTI OSClient Interface
Library API. The samples are organized by programming language and demonstrate the syntax and usage of
the API. For many developers, these DSAs form the foundation of your custom application. The samples are
available for you to customize and distribute as a part of your finished product.

For Unified ICM ACD types (such as Avaya, Aspect, and so on), you can deploy some DSAs as Production
Class Applications. Cisco certifies and supports the out-of-the-box CTI OS Agent Desktop application in a
production environment when used in conjunction with a supported Unified ICM ACD. Refer to the ACD
content in the Contact Center Enterprise Solution Compatibility Matrix for the current list of supported ACD
types.

For Unified CCE, these same DSAs are generally not intended for production use "as-is". They are neither
certified nor supported by Cisco as working out-of-the-box applications.

The following table lists the sample programs in the CTI OS Toolkit.

Table 1: CTI OS Toolkit Sample Programs

DescriptionLocationProgram Name

A softphone application that demonstrates
Outbound Option (formerly Blended Agent)
functionality.

CTIOSToolkit\Win32CIL\Samples\CTI
Toolkit Outbound Desktop

CTI Toolkit
Outbound Desktop

A Microsoft C# program demonstrating a
monitor mode application. This program lists
all agents in a grid along with current state
updates.

CTIOS Toolkit\dotNet CIL\Samples\All
Agents Sample.NET

All Agents Sample
.NET

Building Your Custom CTI Application
6

Building Your Custom CTI Application
Test Environment

https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-device-support-tables-list.html

DescriptionLocationProgram Name

Similar to AllAgents but lists calls instead
of agents.

CTIOS Toolkit\dotNet CIL\Samples\All
Calls Sample.NET

All Calls
Sample.NET

A Microsoft C# program that interfaces to
CTI OS via the .NET CIL interface. The
program demonstrates how to build a
multi-functional contact center desktop that
contains Agent, Supervisor and Outbound
Option features.

CTIOSToolkit\dotNet CIL\Samples\CTI
Toolkit Combo Desktop.NET

CTI Toolkit Combo
Desktop.NET

Microsoft C# program that implements a
Tabular Grid used by the CTI Toolkit Combo
Desktop.NET to show calls and statistics.

CTIOS Toolkit\dotNet
CIL\Samples\CtiOs Data Grid.NET

CtiOs Data
Grid.NET

AVisual Basic .NET program using the CTI
OS ActiveX controls. The application is the
source code used by the out of the box CTI
Toolkit Agent Desktop.

CTTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit AgentDesktop

CTI Toolkit Agent
Desktop

A Visual Basic .NET program using the CTI
OS ActiveX controls. The application is the
source code used by the out of the box CTI
Toolkit Supervisor Desktop.

CTTIOS Toolkit\Win32
CIL\Samples\CTI Toolkit
SupervisorDesktop

CTI Toolkit
Supervisor Desktop

A softphone written in C++ linking to the
static C++ libraries. Sending requests and
event handling as well as the use of the wait
object is demonstrated.

CTIOSToolkit\Win32CIL\Samples\CTI
Toolkit C++Phone

C++Phone

A Java counterpart to the C++phone sample
programs.

CTIOS Toolkit\Java CIL samplesJavaPhone

A Java counterpart to the C++ Agent
Desktop Application. TestPhone can be
launched as follows:

/testphone.bat /hosta <CTIOS
ServerA Hostname/IP> /porta
<port> /hostb <CTIOS ServerB
Hostname/IP> /portb <port> /hb
<interval>

CTIOS Toolkit\Java
CIL\Tools\TestPhone

TestPhone

A Java counterpart to the Visual Basic all
agents program.

CTIOS Toolkit\Java CILsamplesAllAgents

CTI OS ActiveX Controls
This section discusses the steps involved in building CTI OS Applications with Microsoft Visual Basic .NET
(VB.NET) using the CTI OS ActiveX controls.

Building Your Custom CTI Application
7

Building Your Custom CTI Application
CTI OS ActiveX Controls

Build Simple Softphone with ActiveX Controls
To use the CTI OS ActiveX controls, you must copy the ActiveX controls on the target system and register
withWindows. You accomplish this with the CTI OS toolkit install, as well as the CTI OSAgent and Supervisor
installs. For more information, see Deployment of Custom CTI OS Applications, on page 64.

After you launch Visual Basic .NET, you can use the ActiveX controls by selecting them via the Customized
Toolbox dialog (Tools > Add/Remove Toolbox Items via the menu).

Note: If the CTI OS ActiveX controls are not listed as shown in the following figure the files are either not
copied on the target system or the controls were not properly registered.

Note

Figure 1: Customize Toolbox in Visual Basic .Net Listing CTI OS ActiveX Controls Runtime Callable Wrappers

After you select the CTI OS ActiveX controls in the .NET Framework Components tab, you should see
them in the Visual Basic .NET ToolBox. You can now drag and drop the CTI OS ActiveX RCWs components
onto the Windows Form. For a softphone application, it is useful to start with the CallAppearanceCtl (see the
following figure).

Building Your Custom CTI Application
8

Building Your Custom CTI Application
Build Simple Softphone with ActiveX Controls

Figure 2: Microsoft Visual Basic .NET Screen with the CTI OS ActiveX Controls

On the very left, the Toolbox is visible showing some of the CTI OS ActiveX RCWs icons. On the form, the
AxCallGrid has been dragged and dropped.

For a complete description of the ActiveX controls see CTI OSActiveX Controls. The following figure shows
the CTI OS Toolkit Agent Desktop application, which is also included as a sample on the CTI OS CD.

Figure 3: CTI OS Toolkit Agent Desktop (See CD) Built with CTI OS ActiveX Controls

Once all ActiveX controls are placed on the phone, you can create an executable file in Visual Basic .NET
via Build > Build Solution or selecting <F7>.

Hook for Screenpops
This agent desktop application did not require any Visual Basic .NET coding. You can choose to add some
custom code to add a hook for screenpops. For example, you may want to retrieve CallVariables, which are
passed along with certain call events.

Building Your Custom CTI Application
9

Building Your Custom CTI Application
Hook for Screenpops

ucce_b_ctios-developer-guide_12_6_1_chapter5.pdf#nameddest=unique_85

CTI OS SessionResolver
A CTI OS Client application connects to CTI OS with a Session object (see Session Object). Depending on
the application, a client can use one or more Session objects. For most agent desktop applications, however,
it is useful to employ only a single Session object.

If you choose to write a program not using ActiveX controls, you can create a Session object and use it directly
(see CTI Toolkit AgentDesktop at the Win32 CIL samples).

However, in the case of an application built with the ActiveX controls, all ActiveX controls must use the same
session object. The ActiveX controls accomplish this by retrieving a pointer to the same session object via
the SessionResolver. The program hosting the ActiveX can obtain the Same session object by using the
SessionResolver.GetSession method to retrieve a session named “”.

VB .NET Code Sample to Retrieve Common Session
The following sample VB .NET code retrieves the common session and listens for a CallEstablishedEvent
occurring in that session. If a CallEstablishedEvent occurs, it retrieves CallVariable 1 and puts it in the
Windows Clipboard (from where you can retrieve it via CTRL-v or used by other applications).

This code uses the COMCIL Interfaces and therefore, needs the following references: Cisco.CTIOSCLIENTLib,
Cisco.CTIOSARGUMENTSLib, Cisco.CTIOSSESSIONRESOLVERLib. The references are shown in the
following figure (in Visual Basic .NET, select Project > Add Reference...).

Figure 4: CTI OS COM CIL RCWs References Needed for Visual Basic .NET COM Programming

' VB sample for a simple CTIOS phone
' needs references to Cisco.CTIOSCLIENTLib
Cisco.CTIOSSESSIONRESOLVERLib and Cisco.CTIOSARGUMENTSLib
'
' dim CTIOS session interface
' the session interface handles connect, setagent and others

Building Your Custom CTI Application
10

Building Your Custom CTI Application
CTI OS SessionResolver

ucce_b_ctios-developer-guide_12_6_1_chapter8.pdf#nameddest=unique_38

Dim WithEvents m_session As Cisco.CTIOSCLIENTLib.Session

' the sessionresolver is needed to retrieve the session pointer
Dim m_sessionresolver As Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

Private Sub Form_Initialize_Renamed()
' instantiate the sessionresolver
Set m_sessionresolver = New Cisco.CTIOSSESSIONRESOLVERLib.SessionResolver

' CTI OS ActiveX controls use the session named "" - blank
' since the CTI OS ActiveX controls do the connection and login,
' all we do is listen for events
Set m_session = m_sessionresolver.GetSession("")

End Sub

Private Sub Form_Terminate_Renamed()
Call m_sessionresolver.RemoveSession("")

End Sub

Private Sub m_Session_OnCallEstablished(ByVal pIArguments
As Cisco.CTIOSCLIENTLib.Arguments)
' Handles m_Session.OnCallEstablished

GetCallVariable1 pIArguments
End Sub

Function GetCallVariable1(ByVal pIArguments As CTIOSCLIENTLib.IArguments)

Dim m_uid As String
m_uid = pIArguments.GetValueString("Uniqueobjectid")
Dim m_call As Cisco.CTIOSCLIENTLib.Call
Set m_call = m_session.GetObjectFromObjectID(m_uid)

' retrieve callvar1
Dim m_callvar1 As String
m_callvar1 = m_call.GetValueString("Callvariable1")

'copy call variable1 to the clipboard
Clipboard.SetText m_callvar1

End Function

Visual Basic 6.0 is no longer supported.Note

COM CIL. in Visual Studio

COM CIL.
Use this API in development environments that support COM/DCOM and OLE Automation. Examples:
Microsoft Visual Studio, Borland Delphi, Power Builder, etc. COM CIL is an adaptor interface that uses C++
CIL as kernel. The API is deployed as a group of Dynamic Linked Libraries (DLLs).

You must use Microsoft Visual Studio to build C++ applications using COM CIL. Applications using
COM CIL built with Visual C++ 8.0(1) are not supported.

Note

Building Your Custom CTI Application
11

Building Your Custom CTI Application
COM CIL. in Visual Studio

For building a custom Win32 (Console or Windows) CTI application in Microsoft Visual Studio with COM,
you must create COM components in Microsoft Visual Studio.

Client applications of this type are more complex to build, and more powerful and faster in processing, than
scripting clients (for example, Visual Basic). CIL components for COM are distributed as COM Dynamic
Link Libraries (COM DLL).

COM components must be registered with Windows to be accessible to COM containers including Micsosoft
Visual Studio. The components required for programming in Microsoft Visual Studio are:

• CTI OS Client library (CTIOSClient.dll). This is the main CIL library for COM. The objects available
in this library are described in Chapters 8 through 11.

• CTI OS Arguments Library (arguments.dll). The Arguments helper class is used extensively in CTI
OS, and is described in Helper Classes.

• CTI OS Session Resolver (ctiossessionresolver.dll). This object allowsmultiple applications or controls
to use a single CTI OS Session object. You require this object when building an application that includes
the CTI OS ActiveX controls.

Add COM Support to Your Application
Your application must support COM to use these objects in your CTI application. To add COM support to
your application, you must use one of the following:

• Microsoft Foundation Classes (MFC). The following header files are required for MFC applications to
use COM: afxwin.h, afxext.h, afxdisp.h, and afxdtctl.h. If you build an application using the Microsoft
Visual C++ application wizard, these files are included automatically.

• Microsoft's ActiveX Template Library (ATL). To use ATL, include the standard COM header file:
atlbase.h.

Important Note About COM Method Syntax
In this manual, the syntax used to describe method calls in COM shows standard COM data types such as
BSTR, VARIANT and SAFEARRAY. Be aware that these data types can be encapsulated by wrapper classes
proper to the environment depending on the development environment, tools, and how the COM CIL is
included in your project application.

For example, in a Microsoft Visual C++ project a VARIANT type can be either a CComVariant or _variant_t,
and a BSTR type can be either a CComBSTR or _bstr_t.

For more information, see the documentation for your development environment.

Use CIL Dynamic Link Libraries
Next, you must import the COM Dynamic Link Libraries into your C++ application. The following code
sample (which you might put into your StdAfx.h file) depicts how to use a COM Dynamic Link Library in
C++:
#import "..\..\Distribution\COM\ctiossessionresolver.dll" using namespace
CTIOSSESSIONRESOLVERLib;

#import "..\..\Distribution\COM\ctiosclient.dll" using namespace CTIOSCLIENTLib;

Building Your Custom CTI Application
12

Building Your Custom CTI Application
Add COM Support to Your Application

ucce_b_ctios-developer-guide_12_6_1_chapter12.pdf#nameddest=unique_62

You must register three DLLs, but you do not need to import the arguments.dll into your project because it
is imported by the ctiosclient.dll type library.

Note

Create COM Object at Run Time

Only the apartment threading model is supported.Note

COM objects in C++ are created via the COM runtime library. To create a COM object at run time, your
program must use the CreateInstance() method call.

// Create SessionResolver and Session object
hRes = m_pSessionResolver.CreateInstance
(OLESTR("CTIOSSessionResolver.SessionResolver"));

if (m_pSessionResolver)
{

m_pSession = m_pSessionResolver->GetSession(_bstr_t(""));
}

Once the Session object is created, you can use it to make requests, and subscribe for events.

COM Events in C++
In this model, client applications subscribe for events by registering an instance of an event sink in the client
with the event source. The COM Session object publishes several event interfaces (event sources), and clients
can subscribe to any or all of them.

To receive COM events, you must first create an event sink class, which should derive from a COM event
sink class. The Comphone sample application uses the MFC class CCmdTarget.

class CEventSink : public CCmdTarget
{
//...
};

This class must implement the method signatures for the events it expects to receive. When an event is fired
from the event source, the corresponding method in your event sink class is invoked, and you can perform
your custom event handling code at that time.

To subscribe for an event, the client must call the AtlAdvise() method, specifying a pointer to the interface of
the event source:

// Add event sink as event listener for the _IallEvents interface

HRESULT hRes =
AtlAdvise(m_pSession, m_EventSink.GetIDispatch(FALSE),
__uuidof(_IAllEvents), &m_dwEventSinkAdvise);

Building Your Custom CTI Application
13

Building Your Custom CTI Application
Create COM Object at Run Time

When the program run is complete, the client must unsubscribe from the event source, using the AtlUnadvise()
method:

// Unsubscribe from the Session object for the _IAllEvents interface

HRESULT hRes =
AtlUnadvise(m_pSession, __uuidof(_IAllEvents), m_dwEventSinkAdvise);

Additional Information
• For more information about the CTI OS client start up and shut down sequence, see section Disconnect
from CTI OS Server Before Shutdown, on page 31.

• For more information about the CTI OS Client Interface Library objects, see Chapters 8 through 12.

The C++ Client Interface Library (C++ CIL.) application is a programming interface (API) you can use
to build high performance CTI enabled desktop or server-to-server integration that use Cisco CTI OS.
The API is deployed as a set of C++ static libraries that you can use to build Win 32 or console based
applications.

• For more information about a sample application that uses the CIL COM interface written in C++, see
the Comphone sample application on the CTI OS CD.

C++ CIL and Static Libraries
The CTI OS Client Interface Library for C++ is the most powerful, object-oriented CTI interface for C++
developers. It provides the same interface methods and events as the COM interface for C++, but is more
straightforward for C++ developers who are not experienced COM programmers, and provides faster code
processing.

The CIL interface for C++ is a set of C++ header files (.h), and static libraries compiled for theWin32 platform
(Windows 2010). The header files required to access the class definitions are located on the CTI OS SDK
media in the CTIOSToolkit\Include\ directory, and the static libraries are located in the CTI OS
Toolkit\Win32 CIL\Libs directory.

Use Microsoft Visual Studio to build C++ applications using C++ CIL Visual Studio. Applications that are
built using Visual Studio Enterprise 2015 are supported.

Note

Header Files and Libraries
The header files you most likely require are all included in the main CIL header file, CIL.h, which you would
include in your application:
#include <Cil.h>

To link your application code with the CIL for C++, you require the following C++ static libraries:

• ConnectionLibSpd.lib. This library contains the connection-layer services for CIL.

• ServiceLibSpd.lib. This library contains the service-layer services for CIL.

Building Your Custom CTI Application
14

Building Your Custom CTI Application
Additional Information

• SessionLib.lib. This library contains the object-interface services for CIL.

• UtilLibSpd.lib. This library contains helper classes for CIL.

• ArgumentsLibSpd.lib. This library contains the Arguments data structure for CIL.

• SilentMonitorLib.lib. This library contains all the services required to establish and control silent monitor
sessions.

• SecuritySpd.Lib. This library contains the services required to establish secure connections with CTI
OS Server.

• SilentMonitorClient.lib. This library is used by the CIL to communicate with the silent monitor service.

• SilentMonitorCommon.lib and ServiceEventHandler.lib. These libraries contain support classes for
SilentMonitorClient.lib.

The preceding are the release versions of the libraries. The Debug equivalent libraries use the same library
name with the appended “d” instead of Spd; for example, for ArgumentsLibSpd, the Debug library is
ArgumentsLibd.lib.

Note

In addition to the aforementioned CTI OS CIL libraries, your application requires:

• The standard Microsoft sockets library, Wsock32.lib

• The standard multimedia library, winmm.lib

• The OpenSSL standard libraries:

• libeay32d.lib

• ssleay32d.lib (Debug) and libeay32d.lib

• ssleay32r.lib (Release)

A console C++ application with C++ CIL needs to use the following in stdafx.h:
#pragma once
#define WIN32_LEAN_AND_MEAN // Exclude rarely-used stuff from Windows headers
#include <iostream>
#include <tchar.h>

Use the following libraries in linker in addition to the CIL libraries:

• ws2_32.lib

• Winmm.lib

• odbc32.lib

• odbccp32.lib

Configure Project Settings for Compiling and Linking
You must configure some program settings to set up your Visual C++ application.

Building Your Custom CTI Application
15

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Procedure

Step 1 You access the Program Setting in Visual C++ under the Project > Properties menu.
Step 2 In the Property Pages dialog box, under C/C++, select General and then select the Additional Include

Directories. Provide either the absolute or relative path to find the header files (.h) required for your application.
This path points to the CTIOSToolkit\Win32 CIL\Include directory, where the CIL header files are installed.

Step 3 Next, under C/C++, select Code Generation. For a Debug Mode program, the setting for Runtime Library
isMulti-threaded Debug DLL (/MDd). For a ReleaseMode program, the setting isMulti-threaded DLL (/MD).

Building Your Custom CTI Application
16

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 4 Under Preprocessor, set the Preprocessor Definitions. You need to provide the compiler with the following
define constants _USE_NUMERIC_KEYWORDS=0;_WIN32_WINNT=0x0500;
WIN32_LEAN_AND_MEAN in addition to the defaults.

Step 5 In the Preprocessor Definitions for the C++ compiler, add these macros:
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES=1
_CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT=1

Building Your Custom CTI Application
17

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 6 In the Language settings for the C++ compiler, set the parameter "Treat wchar_t as Built-in Type" to No
(/Zc:wchar_t-) .

Step 7 For the Precompile Headers for the C++ compiler, set to Not Using Precompile Headers.
Step 8 Under Linker, set the link settings for your project. You must list all the static libraries for your program to

link with the settings described in Configure Project Settings for Compiling and Linking. The libraries required
for CIL (in addition to the default libraries) are described in Header Files and Libraries, on page 14.

Step 9 Finally, expand Link , select General. Set the Additional Library Directories: to the location of the
CTIOSToolkit\Win32 CIL\Libs directory.

Building Your Custom CTI Application
18

Building Your Custom CTI Application
Configure Project Settings for Compiling and Linking

Step 10 After specifying all the Project Settings required for CTI OS, click OK, and save your project settings.

Event Subscription in C++
The publisher-subscriber model provides event interfaces in C++. To subscribe for events, you must create a
callback class (event sink), or implement the event interface in your main class. You can derive the callback
class from the Adapter classes that are defined in CIL.h, such as AllInOneEventsAdapter.h.

To register for an event, use the appropriate AddEventListener method on the Session object:
// Initialize the event sink
m_pEventSink = new CEventSink(&m_ctiSession, &m_ctiAgent, this);

// Add event sink as an event listener
m_ctiSession.AddAllInOneEventListener((IAllInOne *) m_pEventSink);

To remove an event listener (upon program termination), use the appropriate RemoveEventListener on the
Session object:
// Tell session object to remove our event sink
m_ctiSession.RemoveSessionEventListener((IAllInOne *) m_pEventSink);

Removal of STLPort Requirement
The Cisco CTI OS Toolkit no longer uses STLPort. The toolkit now uses Microsoft's version of STL, which
removes any special configuration of the build environment.

Building Your Custom CTI Application
19

Building Your Custom CTI Application
Event Subscription in C++

Additional Information
• For more information about the CTI OS client start up and shut down sequence, see the section Disconnect
from CTI OS Server Before Shutdown, on page 31.

• For more information about the CTI OS Client Interface Library objects, see Chapters 6 through 11.

• For a complete sample application that uses the CIL interface with C++ static libraries, see the C++
phone sample application on the CTI OS CD.

Java CIL Libraries
The Java CIL provides a library for developing Java CTI applications. This Java API allows the creation of
client application that you can run in Microsoft Windows. Java CIL is built using OpenJDK 1.8 . It is built
using a similar architecture to the C++ CIL. The interface is similar to C++with minor differences. A developer
porting a C++ CIL application to Java or working between a Java and C++ should find it easy to switch
between the two.

The Java CIL consists of two packages contained in a single JAR file called JavaCIL.jar. The packages are
com.cisco.cti.ctios.util and com.cisco.cti.ctios.cil. You can use CTI OS Client Installer to install the Java CIL
on Windows. The Java CIL also includes JavaDoc with the distribution. You can check the Java CIL version
by using the CheckVersion.bat program in Windows. This is in the same directory as the JAR file.

The Java CIL ships with a GUI TestPhone application that provides most of the functionalities found on the
CTI OSAgent and Supervisor Desktops. The distribution also includes samples that are Java versions of some
of the C++/COM/VB sample applications. For more information, see Developer Sample Applications, on
page 6.

The CTIOS client installer lays down OpenJDK JRE installer as a convenience for developers who obtain the
correct version of the JRE. OpenJDK JRE installer is available under the C:\Program Files
(x86)\Cisco Systems\CTIOS Client\CTIOS Toolkit\Java
CIL\OpenJDK_Distributables folder post installation. It is mandatory to define the environment
variable name as CCE_JAVA_HOME and set it to the installed JRE’s home directory path.

Additional Information
• For more information about differences between the C++ and Java event publishing, see Event Interfaces
and Events and Keywords.

• For more information about differences in method calls and syntax for those classes between C++ and
Java, see CtiOs Object.

• For more information about differences between C++ and Java tracing, see CTI OS Client Logs (COM
and C++).

.NET CIL Libraries
The .NET CIL provides native .NET class libraries for developing native .NET Framework applications. It
is built using the same architecture as the Java CIL and the interface is similar to C++. A developer porting

Building Your Custom CTI Application
20

Building Your Custom CTI Application
Additional Information

ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68
ucce_b_ctios-developer-guide_12_6_1_chapter14.pdf#nameddest=unique_105
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_appendix1.pdf#nameddest=unique_106
ucce_b_ctios-developer-guide_12_6_1_appendix1.pdf#nameddest=unique_106

a C++ CIL application to .NET CIL between a .NET and Win32 should find it easy to switch between the
two. The .NET Client Interface Library (.NET CIL.) API provides native support for the Microsoft .NET
Framework Common Language Runtime 4.7 (CLR). You can use the API with all major .NET Programming
languages (C#, VB.NET, Managed C++, ASP.NET, etc). The API is deployed as .NET Assemblies that are
registered in the system Global Assembly Cache (GAC).

The .NET CIL consists of two class libraries: NetCil.dll and NetUtil.dll that must be added as references on
the build project. See the CTI OS Toolkit Combo Desktop sample.

To deploy the client application, use the Global Assembly Cache Tool (gacutil.exe) that is included with
Microsoft Visual Studio. Use the Microsoft .NET Framework 4.7 Configuration Manager to install the
NetCil.dll and NetUtil.dll class libraries on the host Global Assembly Cache (GAC). The .NET CIL libraries
include sample programs that explain how to use APIs in a .NET programming environment. For more
information, see Developer Sample Applications, on page 6.

In addition to NetCil.dll and NetUtil.dll, the .NET Combo sample requires the CTIOSVideoCtl.dll, which is
in: C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet
CIL\Controls.

Note

Additional Information
• For more information about the differences between the C++, and .NET and Java event publishing, see
Event Interfaces and Events and CTI OS Client Logs (COM and C++).

• For more information about the differences in method calls and syntax for those classes between C++
and Java, see CtiOs Object.

CTI OS Server Connection
To connect a desktop application to the CTI OS server, you must:

1. Create a session instance, described below.

2. Set the event listener and subscribe to events, described below.

3. Set connection parameters, described below.

4. Call the Connect() method, described on Connect Session to CTI OS Server, on page 23.

5. Set the connection mode, described on Connection Mode, on page 25. This section also describes how
to deal with connection failures, on Connection Failures, on page 23.

Although the Cisco Security Agent (CSA) is now in end-of-life status and no longer supported, if your system
is a duplexed Unified CCE PG with a CSA installed and one side of the CTI OS server is not running, CSA
does not respond to login requests on the CTI OS server port. This triggers a time-out (20 second delay) before
you attempt to connect to the active CTIOS server in the CTI OS client machine TCP stack. On start-up or
login, the CTI OS client randomly chooses a CTI OS server side to connect and it may connect to the server
side that is not running.

To avoid this delay/time-out, you must:

Building Your Custom CTI Application
21

Building Your Custom CTI Application
Additional Information

ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68
ucce_b_ctios-developer-guide_12_6_1_appendix1.pdf#nameddest=unique_106
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47

• Start the inactive CTI OS server side.

• Disable CSA (temporarily) and reconfigure the CTI OS desktop for a simplex operation.

• Upgrade the version of the CTI OS server to CTI OS 12.0 (the desktop does not appear frozen though
the delay persists).

Connect to CTI OS Server
To connect to the CTI OS Server, you must first create an instance of the CtiOsSession object.

The following line shows this in Java:

CtiOsSession rSession = new CtiOsSession();

Session Object Lifetime (C++ Only)
In C++, you must create a Session object on the heap memory store so that it can exist beyond the scope of
the method creating it. (In COM, VB, and Java, this is handled automatically.)

For example:
CCtiOsSession * m_pSession = NULL;
m_pSession = new CCtiOsSession();

The client application holds a reference to the Session object as long as it is in use, but the client programmer
must release the last reference to the object to prevent a memory leak when the object is no longer needed.

During application cleanup, youmust dispose the Session object only by invoking the CCtiOsSession::Release()
method. This ensures proper memory cleanup.

For example:
m_pSession->Release();

Set Event Listener and Subscribe to Events
Before making any method calls with the Session instance, you must set the session as an event listener for
the desktop application and subscribe to events.

The following lines show this in Java:

rSession.AddEventListener(this, CtiOs_Enums.SubscriberList.eAllInOneList);

In this example, the session is adding the containing class, the desktop application as the listener, and using
the eAllInOneList field in the CtiOs_Enums.SubscriberList class to subscribe to all events.

Set Connection Parameters for Session
To set connection parameters:

Building Your Custom CTI Application
22

Building Your Custom CTI Application
Connect to CTI OS Server

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set values for the CTI OS servers, ports, and the heartbeat value.

When setting values, use the String key fields in the CtiOs_IKeywordIDs interface, as shown in
the example below.

Note

The following example demonstrates this task in Java:

/* 1. Create Arguments object.*/
Arguments rArgs = new Arguments();

/* 2. Set Connection values.*/
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSA, "CTIOSServerA");
rArgs.SetValue(CTIOS_enums.CTIOS_PORTA, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_CTIOSB, "CTIOSServerB");
rArgs.SetValue(CTIOS_enums.CTIOS_PORTB, 42408);
rArgs.SetValue(CTIOS_enums.CTIOS_HEARTBEAT, 100);

The Arguments.setValue() methods return a boolean value to indicate whether the method succeeded (true)
or not (false).

Note

Connect Session to CTI OS Server
After successfully creating the Session instance, you must connect it to the CTI OS Server using the
Session.Connect() method, using the Arguments instance you constructed when setting connection parameters,
as described in the previous section.

The following line shows this in Java:

int returnCode = session.Connect(rArgs);

For more information about the possible values and meanings of the int value returned by the Connect()
method in the Java CIL, see Connection Attempt Error Codes in Java and .NET CIL, on page 24.

When successful, the Connect() method generates the OnConnection() event. Code within the OnConnection()
event sets the connection mode, as described in the next section.

Connection Failures
This section contains the following information:

• Connection Failure Events, on page 24

• Connection Attempt Error Codes in Java and .NET CIL, on page 24

• Configure Agent to Automatically Log In After Failover, on page 25

Building Your Custom CTI Application
23

Building Your Custom CTI Application
Connect Session to CTI OS Server

• Stop Failover Procedure, on page 25

Also see Deal with Failover in Monitor Mode, on page 30.

Connection Failure Events
If the Connect() method does not succeed, one of the following events is generated:

• OnConnectionRejected() event indicates that an unsupported version mismatch was found.

• OnCTIOSFailure() indicates that the CTI OS Server requested in the Connect() method is down. If an
OnConnectionFailure() event is generated, the application is in Failover and the CIL continues to attempt
to connect until the connection succeeds or until the application calls Disconnect(). The Arguments
parameter for the event includes the following keywords:

• FailureCode

• SystemEventID

• SystemEventArg1

• ErrorMessage

For more information on the contents of the OnConnectionFailure() event, see the description in Chapter 6.

Connection Attempt Error Codes in Java and .NET CIL
The following field values can be returned by the Connect() method. See the documentation for the
CtiOs_Enums.CilError interface in the CIL JavaDoc for information on these fields.

• CIL_OK - The connection process has successfully begun. The CIL either fires the OnConnection()
event to indicate that the CIL successfully connected or fires the OnConnectionFailure() event and go
into failover mode. If the latter occurs, the CIL continues to attempt to connect, alternating between hosts
CTIOS_CTIOSA and CTIOS_CTIOSB, until the connection succeeds, at which point the CIL fires the
OnConnection() event.

• E_CTIOS_INVALID_ARGUMENT - A null Arguments parameter was passed to the Connect() method.
The connection failed. No events are fired.

• E_CTIOS_MISSING_ARGUMENT - The Arguments parameter did not contain values for both
CTIOS_CTIOSA and CTIOS_CTIOSB. At least one of these values must be provided. The connection
failed. No events are fired.

• E_CTIOS_IN_FAILOVER - A previous connection attempt failed and the CIL is currently in failover
and attempting to establish a connection. This continues until a connection is established, at which point
the CIL fires an OnConnection() event indicating that the previous Connect() method succeeded. To
attempt to connect again with different parameters, the applicationmust first use the Disconnect() method.

• E_CTIOS_SESSION_NOT_DISCONNECTED - The Session is not disconnected (i.e. a previous
Connect() method is in progress, or the Session is already connected). The application must call the
Disconnect() method before attempting to establish another connection. The CIL may fire an
OnConnection() event for the to previous call to the Connect() method if the connection was in progress,
but will not fire one corresponding to this method call.

• E_CTIOS_UNEXPECTED - There was an unanticipated error. The connection failed. No events are
fired.

Building Your Custom CTI Application
24

Building Your Custom CTI Application
Connection Failure Events

After the application receives a Connect return code of CIL_OK, it does not call Connect again on that session
until it receives an OnConnectionClosed event after a call to Disconnect.

Note

Configure Agent to Automatically Log In After Failover
If you are using CTI OS in an Unified Contact Center Enterprise (Unified CCE) environment, you can configure
the agent to automatically relogin in the event of a failover.

To configure the agent to log back in automatically, add the CTIOS_AUTOLOGIN keyword with the value
“1” to the Arguments instance used to configure the agent:

rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);

For more information on logging in an agent, see Log In an Agent, on page 32.

Stop Failover Procedure
To stop the failover procedure, call the Disconnect(args) method, with the Arguments instance containing the
CTIOS_FORCEDDISCONNECT keyword as a parameter.

Connection Mode
After you create the session, you must specify the connection mode for the session. You must use one of two
modes:

• Agent mode

• Monitor mode

Set Connection Mode in OnConnection() Event Handler
To ensure that you only try to set the connectionmode on valid connections, place the code to set the connection
mode within the OnConnection() event handler. The OnConnection() event is generated by a successful
Connect() method.

The application contains logic within the OnConnection() event handler to ensure it attempts to set the
connection mode only during the initial connection, and not in an OnConnection() event due to failover.

Caution

Agent Mode
You use Agent mode for connections when the client application must log in and control a specific agent.
When in Agent mode, the connection also receives call events for calls on that agent's instrument, as well as
system events.

Select Agent Mode
To select Agent mode for the connection, in the OnConnection() event:

Building Your Custom CTI Application
25

Building Your Custom CTI Application
Configure Agent to Automatically Log In After Failover

Procedure

Step 1 Set properties for the agent.

The properties required for the agent depend on the type of ACD you use. The following example
demonstrates the required properties for Unified CCE users.

Note

Step 2 Set the agent for the Session object to that Agent object.

In the Java CIL only: If the SetAgent() method is called on a session in which the current agent
is different than the agent parameter in the SetAgent() method, the Java CIL automatically calls
the Disconnect() method on the current session instance, generating an OnCloseConnection()
event, then attempts to reconnect, generating an OnConnection() event. Then the new agent is
set as the current agent.

Note

The following example, which assumes the Session object has been created and connected to the CTI OS
Server, demonstrates this task in Java:

void OnConnection(Arguments rArgs) {

/* 1. Create and agent and set the required properties. */
Agent agent = new Agent();
agent.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, "275");
agent.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, "5002");

/* 2. Set the session's agent */
int returnValue = session.SetAgent(agent);

}

When successful, the SetAgent() method generates the following events:

• OnQueryAgentStateConf()

• OnSetAgentModeConf()

• OnSnapshotDeviceConf(), if the agent is already logged in

• OnSnapshotCallConf(), if there is a call and the agent is already logged in

• OnCTIOSFailureEvent()

Monitor Mode
Use Monitor Mode for applications that need to receive all events that CTI OS Server publishes or a specified
subset of those events. Monitor Mode applications may receive events for calls, multiple agents, or statistics.
The session receives specific events based on the event filter specified when setting the session to Monitor
Mode.

Building Your Custom CTI Application
26

Building Your Custom CTI Application
Monitor Mode

Monitor Mode, as the name implies, is intended for use in applications that passively listen to CTI OS server
events. Monitor Mode is not intended for use in applications that actively control the state of calls or agents.
Such applications include but are not limited to the following:

• Applications that log in agents and change their state

• Applications that make or receive calls and change their state

• Applications that silently monitor agents

Caution

When a Monitor Mode session is initialized, the CTI OS Server performs a CPU intensive sequence of
operations to provide the application with a snapshot of the state of the system. A large number of Monitor
Mode applications connecting to CTI OS server at the same time, such as in a fail-over scenario, can cause
significant performance degradation on CTI OS Server. Therefore, minimize the number of Monitor Mode
applications connecting to CTI OS Server to two (2).

Caution

You can only use the button enablement feature in agent mode sessions and is not intended for Monitor Mode
applications.

Warning

Monitor Mode Filters

Overview Monitor Mode Filters

To set a connection to Monitor Mode, you must create a filter that specifies which events to monitor over that
connection. The filter is a String; that String is the value for the CtiOs_IKeywordIDs.CTIOS_FILTER key
in an Arguments instance. That Arguments instance is the argument for the SetMessageFilter() method.

By default the CTIOS server does a snapshotting which results in sending the info about all agents to the
monitormode connection.You control the behavior using theCTIOS_MONITORSESSIONSNAPSHOTMODE
argument in the messagefilter args.

Use filter arg Enum_CtiOs.CTIOS_MONITORSESSIONSNAPSHOTMODE, 1 to turn off the snapshot.

Note

Filter String Syntax

The filter String you create to specify events to monitor must adhere to a specific syntax to accurately instruct
the CTI OS Server to send the correct events.

The general syntax for the filter String is as follows:

“key1=value1, value2, value3;key2=value4, value5, value6”

Building Your Custom CTI Application
27

Building Your Custom CTI Application
Monitor Mode Filters

The filter String may also contain an asterisk (*), which is used as a wildcard to indicate any possible value.
In addition, you can use a prefix to * to narrow the results. For example, using 10* matches 1001, 1002,
10003. However, CTI OS ignores any characters that follow the asterisk. For example, using 10*1 matches
both 1001and 1002.

Note

The filter String must contain at least one key, and there must be at least one value for that key. However, a
key can take multiple values, and the filter String can contain multiple keys.

Multiple values for a single key must be separated by commas (,). Multiple keys must be separated by
semicolons (;).

Multiple keys in a single filter combine using a logical AND. That is, the filter is instructing CTI OS to send
to this connection only events that meet all the criteria included in the filter.

Note

For example, a filter String could be as follows:

S_MESSAGEID + "=" + CtiOs_Enums.EventID.eAgentStateEvent + ";" + S_AGENTID + "=5128";

This example works as follows:

• The first key-value pair, S_MESSAGEID + "=" + CtiOs_Enums.EventID.eAgentStateEvent, serves to
request events with a message ID equal to eAgentStateEvent; that is, it requests agent state events.

• The second key-value pair, S_AGENTID + "=5128", specifies that the request is for the agent with the ID
5128.

• The result of the filter then is that the connection receives agent state events for agent 5128.

Filter Keys

Filter keys can be any known key value used by CTI OS. These keys have corresponding fields in the
CtiOs_IKeywords interface.

When constructing the filter String, use the fields that begin with “S_”, as these are the String values for the
key.

Note

For example, in Java:

String sFilter = S_AGENTID + "=5128,5129,5130";

In this example, S_AGENTID is the String representation of the key indicating an Agent ID.

Filters for Events for Monitored Calls

If a client filter mode application wants to filter for events for monitored calls, the applications does the
following:

• Creates the filter

• Checks events to verify that the CTIOS _MONITORED parameter is present and is TRUE

Building Your Custom CTI Application
28

Building Your Custom CTI Application
Filter Keys

• Ignores events if the CTIOS_MONITORED parameter is missing or FALSE

Select Monitor Mode
To select Monitor mode for the connection:

Procedure

Step 1 Specify the filter String. See the previous section for filter details.
Step 2 Create an Arguments instance and add an item with CtiOs_IKeywordIDs.CTIOS_FILTER as the keyword

and the filter String as the value.
Step 3 Use the CtiOsSession.SetMessageFilterArgs(args) method to select Monitor mode and to set the event filter.

Always include the OnCtiOsFailure() event in the message filter so that the application can detect
when a system component is online or offline.

Note

AMonitor mode application that monitors any Call-related events must also monitor the OnCallEnd() event,
as described on OnCallEnd() Event Monitoring, on page 46.

Caution

The following example, which assumes the Session object has been created, demonstrates this task in Java:

/* 1. Constructing message filter string /

String filter = “messageid=” + eAgentStateEvent + “,” + eAgentInfoEvent
+ “,” + eCTIOSFailureEvent;

/* 2. Create the Arguments object*/
Arguments rArgs = new Arguments();

/* 3. Add the filter to the Arguments instance.*/
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);

/* 3. Set the message filter.*/
int returnValue = session.SetMessageFilter(rArgs);

When successful, the SetMessageFilter() method generates the following events:

• With Unified CCE only, OnQueryAgentStateConf() for each team and each agent logged in

• OnSnapshotDeviceConf() for each device

• OnSnapshotCallConf()

• OnMonitorModeEstablished()

Building Your Custom CTI Application
29

Building Your Custom CTI Application
Select Monitor Mode

Deal with Failover in Monitor Mode
The CTI OS CIL does not support failover for Monitor Mode. Agents in Monitor Mode cannot recover their
state after a failover. Furthermore, after a failover, the CTI OS CIL may leak Call objects.

To deal with failover in Monitor Mode:

Procedure

Step 1 When the application detects a failover, for example, in a CTIOSFailure() event indicating a connection failure
or an offline component, wait until the CIL has failed over and everything is back online and the CIL is
connected to CTI OS.

TheMonitorMode application determines when all required servers are online. You can do this by monitoring
OnCtiosFailure() events and keeping track of system status changes as they occur.

Step 2 Use the Disconnect() method to disconnect the session from CTI OS.
Step 3 Follow the steps starting at the beginning of the section Silent Monitoring, on page 55 to:

a) Create a session instance.
b) Set the event listener.
c) Set connection parameters.
d) Call the Connect() method.
e) Set the connection mode in the OnConnection() event handler.

Settings Download
One of the many useful features of CTI OS is the ability to configure Agent Desktop settings after what is on
the server and have them available to all agent desktops via the RequestDesktopSettings() method. You
canmake any changes after what is on the server instead of changing each and every desktop. Settings download
are considered as part of the process of setting up a connection that the client application uses.

Desktop settings are stored in the registries on the machines running CTI OS Server. Centralizing the desktop
settings on the server streamlines the process of changing or updating the agent desktop. A settings download
occurs every time a client application connects and ensures that all the desktops are based on the same settings.

You can downloading settings from CTI OS Server after connecting and setting the mode via the
RequestDesktopSettings() method on the Session object. The OnGlobalSettingsDownloadConf event
indicates success and also returns the settings which are now available to the client application in the form of
properties on the Session object. You can access these properties via the GetValue()methods. Refer to Chapter
9 for a list of all the properties of the Session object.

You can make the request for desktop settings either in the OnConnection event or in the
OnSetAgentModeEvent event (if Agent mode has been specified). Sample code:
Private Sub m_Session_OnConnection(ByVal pDispParam As Object)
'Issue a request to the server to send us all the Desktop 'Settings
m_Session.RequestDesktopSettings eAgentDesktop

End Sub

Building Your Custom CTI Application
30

Building Your Custom CTI Application
Deal with Failover in Monitor Mode

The OnGlobalSettingsDownloadConf event passes back the settings and you can access them via the Session
object. For example, the following snippet checks for Sound Preferences and specifically to see if the Dial
Tone is Mute or not:
Private Sub m_session_OnGlobalSettingsDownloadConf(ByVal pDispParam As Object)

Dim SoundArgs As CTIOSARGUMENTSLib.Arguments
' check if "SoundPreferences is a valid property

If m_session.IsValid("SoundPreferences ") = 1 Then
Set SoundArgs = m_session.GetValue("SoundPreferences")
Dim DialToneArgs As CTIOSARGUMENTSLib.Arguments
If Not SoundArgs Is Nothing Then

If SoundArgs.IsValid("DialTone") = 1 Then
Set DialToneArgs = SoundArgs.GetValue("DialTone")

End If
End If

Dim Mute As Integer
If Not DialToneArgs Is Nothing Then
If DialToneArgs.IsValid("Mute") = 1 Then
Mute = DialToneArgs.GetValueInt("Mute")
If Mute = 1 Then
MsgBox "Dial Tone MUTE"//Your logic here

Else
MsgBox "Dial Tone NOT MUTE"//Your logic here

End If
End If

End If
End If
End Sub

Disconnect from CTI OS Server Before Shutdown
Disconnecting from CTI OS Server (via the Disconnect()method) before shutting down is an important part
of the client application functionality. The Disconnect() method closes the socket connection between the
client application and CTI OS. On most switches, it does not log the agent out. If no logout request was issued
before the Disconnect(), then on most switches the agent stays logged into the instrument even after the
client application has shut down.

Disconnect is a higher priority method than all others. Before calling Disconnect, ensure that all prior requests
have completed lest the call to stop these requests. For example, calling Disconnect immediately after calling
Logout can result in an agent not being logged out.

Note

Upon Disconnect(), each object maintained by the Session (Call, Skillgroup,Wait) is released and no further
events are received. Cleaning up the Agent object is the developer's responsibility because it was handed to
the Session (via the SetAgent()) method.

Code sample:

In the C++ and COM CIL only, to disconnect from CTI OS Server when the session mode has not yet been
established bymeans of calling either CCtiOsSsession::SetAgent(...) or CCtiOsSsession::SetMessageFilter(...),
you must call for disconnect with an Arguments array containing the CTIOS_FORCEDDISCONNECT set
to True.
m_session.Disconnect
// Perform disconnect

Building Your Custom CTI Application
31

Building Your Custom CTI Application
Disconnect from CTI OS Server Before Shutdown

if(m_ctiSession->GetValueInt(CTIOS_CONNECTIONMODE) == eSessionModeNotSet)
{ // If the session mode has not yet been set by SetAgent or

// SetSessionMode at the time of the disconnect.
// we need to indicate the session that a disconnect needs to
// be forced
bool bAllocOk = true;
Arguments * pDisconnectArgs = NULL;
bAllocOk = Arguments::CreateInstance(&pDisconnectArgs);

if ((false==bAllocOk) || (pDisconnectArgs == NULL))
{

CDialog::OnClose();
argsWaitParams.Release();
return;

}

pDisconnectArgs->AddItem(CTIOS_FORCEDDISCONNECT,true);
m_ctiSession->Disconnect(*pDisconnectArgs);
pDisconnectArgs->Release();

}
else
{
m_ctiSession->Disconnect();

}

Agent Login and Logout

Log In an Agent
When the connection to the CTI OS Server is established and the mode set, you log in the agent.

Before attempting to log in an agent, you typically request global configuration data to correctly handle a
duplicate log in attempt. For more information, see Get Registry Configuration Values to Desktop Application,
on page 35.

Note

To log in the agent, in the SetAgentModeEvent() event:

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set log in values for the agent in the Arguments instance.

The properties required for the agent depend on the type of ACD you are using. The following
example demonstrates the required properties for Unified CCE.

Note

Step 3 Log in the agent.

The following example, which assumes the Agent object has been created, demonstrates this task in Java:
public void SetAgentMode(Arguments rArgs) {

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

Building Your Custom CTI Application
32

Building Your Custom CTI Application
Agent Login and Logout

/* 2. Set log in values.*/
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AUTOLOGIN, “1”);
/* 3. Log in the agent.*/
int returnValue = agent.Login(rArgs);

}

It is the client application's responsibility to keep track of whether the log in attempt is the first
attempt or during failover, and branch accordingly in the SetAgentMode() event to avoid calling
the Login() method during failover.

Note

The Login() method generates the following events:

• QueryAgentStateConf()

• AgentStateEvent(), if the agent is unknown or is logged out.

The client application receiving the these events must check both the ENABLE_LOGOUT and
ENABLE_LOGOUT_WITH_REASON bitmasks. For more information, see In the
OnButtonEnablementChange() Event, on page 42.

Note

When not successful, the Login() method generates the eControlFailureConf() event.

Duplicate Login Attempts

Overview of Duplicate Login Attempts
A duplicate log in attempt occurs when an agent who is already logged in tries to log in a second time using
the same ID. Desktop applications must account for such a possible situation and have a plan for dealing with
it.

You can handle duplicate log in attempts in three ways:

• Allow the Duplicate Log In with No Warning

• Allow the Duplicate Log In with a Warning

• Do not allow a duplicate log in

You control how duplicate log in attempts are handled in two ways:

• By configuring how duplicate log in attempts are handled on a global basis by creating custom values
in the CTI OS Server Registry. By using custom values in the CTI OS Server registry to control how
duplicate log in attempts are handled and downloading these settings to your desktop application as
described in Log Out an Agent, on page 37, you can enable flexibility without having to modify your
desktop application code.

• By implementing code in your desktop application to detect and to handle the duplicate log in attempt
error according to the custom values in the CTI OS Server Registry. You can write code to handle
duplicate log in attempts in each of the three ways listed above. When you need to change how such

Building Your Custom CTI Application
33

Building Your Custom CTI Application
Duplicate Login Attempts

attempts are handled, you simply change the registry settings; you would not have to change the desktop
application code.

Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts
You can create keys in the CTI OS Server Registry that instruct desktop applications to handle duplicate log
in attempts in a specific way.

The CTI OS CIL Two has keys that exist by default in the registry: WarnIfAlreadyLoggedIn and
RejectIfAlreadyLoggedIn. You must not use these keys in your desktop application. You must instead create
other keys as described in this section.

Warning

Create two custom values:

• custom_WarnIfAgentLoggedIn

• custom_RejectIfAgentLoggedIn

The custom keys you create can be set to 0 (False) or 1 (True).

The following table lists the settings to control how duplicate log in attempts are handled:

Table 2: CTI OS Server Registry Settings (to Control Duplicate Login)

custom_RejectIfAgentLoggedIncustom_WarnIfAgentLoggedInGoal

01To warn the agent of the duplicate log in attempt, but to allow
the agent to proceed.

00To allow the agent to proceed with the duplicate log in attempt
with no warning.

10 or 1To not allow the agent to proceed with a duplicate log in
attempt.

To create keys to control duplicate log in attempts:

Procedure

Step 1 Open the registry and navigate to: HKEY_LOCAL_MACHINE\Software\Cisco Systems,
Inc.\CTIOS\[CTI Instance
Name]\CTIOS1\EnterpriseDesktopSettings\AllDesktops\Login\ConnectionProfiles\Name\[Profile
Name].

Step 2 Right click in the registry window and select New > DWord Value. The new value appears in the window.
Step 3 Change the value name to custom_WarnIfAgentLoggedIn.
Step 4 Double-click the value to open the Edit DWORD Value dialog box.
Step 5 Enter 1 in the Value data field to set the value to true, or 0 to set it to false.

Building Your Custom CTI Application
34

Building Your Custom CTI Application
Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts

Step 6 Repeat steps 2 through 5 for the value custom_RejectIfAgentLoggedIn.

Agent Login with Incorrect Credentials
To prevent another agent log in with incorrect credentials, use the SendIdentifyClientRequest method to
identify and detect the log in request.

Set the Method Argument to Nil. To invoke this method, use the session object.

The following examples demonstrate the method in:

C++: int SendIdentifyClientRequest()

.NET: CilError SendIdentifyClientRequest()

Java: int SendIdentifyClientRequest()

Following is an example of how to use the method:
if (CIL_OK != SessionObj.SendIdentifyClientRequest())
{

LOG(CRITICAL, "CCtiOsSession::SetAgent(...), SendIdentifyClientRequest: authentication
will fail, aborting..");

ReportError(CIL_FAIL);
return CIL_FAIL;

}

Get Registry Configuration Values to Desktop Application
To get CTI OS registry configuration values to your desktop application to handle duplicate log in attempts
correctly, you must request global configuration settings, then extract the custom settings from the event. You
typically do this task before attempting to log in an agent, in the OnConnection() event.

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 In the Arguments instance, set the value for the CTIOS_DESKTOPTYPE key to either:

• CtiOs_Enums.DesktopType.eAgentDesktop

• CtiOs_Enums.DesktopType.eSupervisorDesktop

Although the Arguments object must have one of these fields as a value for the
CTIOS_DESKTOPTYPE key, this version of CTI OS does not utilize the desktop type
parameter when sending global configuration data to a desktop application. Regardless of
which field you use in defining the Arguments object, CTI OS returns all global configuration
data with the OnGlobalSettingsDownloadConf() event. The desktop type indicators, through
currently required, are reserved for future use.

Note

Step 3 Request desktop settings for the session using the RequestDesktopSettings() method. This results in a
OnGlobalSettingsDownloadConf() event.

Building Your Custom CTI Application
35

Building Your Custom CTI Application
Agent Login with Incorrect Credentials

The following example demonstrates steps 1 through 3 in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set the desktop type.*/
rArgs.SetValue(“CTIOS_DESKTOPTYPE”,
CtiOs_Enums.DesktopType.eAgentDesktop);

/* 3. Request desktop settings. This should cause CTI OS to send the
OnGlobalSettingsDownloadConf event.*/
int returnValue = session.RequestDesktopSettings(rArgs);

Step 4 In the OnGlobalSettingsDownloadConf() event, get the Arguments instance for Login configuration from the
event Arguments parameter. Use the S_LOGIN key from the CtiOs_IKeywordIDs interface.

Step 5 Get the Arguments instance for the correct switch from the Login Arguments instance. The example below
uses the “SoftACD” login configuration information, the key for which is established by the CTI OS Server
installation.

Step 6 Get the Integer instances for the custom values you established for the key in the CTI OS Server registry.
Step 7 For convenience, get the int values for those Integers to test with, as described in the section Duplicate Login

Attempts, on page 33.

The following example demonstrates steps 4 through 7 in Java:

void OnGlobalSettingsDownloadConf(Arguments rArgs) {

/* 4. Get the Arguments instance for the Login configuration
information from the event Arguments parameter.*/

Arguments logInArgs = rArgs.getValueArray(CTIOS_LOGIN);

/* 5. Get the Arguments instance for the Connection Profile
from the Login Arguments instance. */

Arguments connectionProfilesArgs = logInArgs.GetValueArray(CTIOS_CONNECTIONPROFILES);

/* 6. Get the Arguments instance for the specific switch from the Connection
Profiles instance */

Arguments IPCCLogInArgs = connectionProfilesArgs.GetValueArray(“SoftACD”)

/* 7. Get the Integer instances for the custom values you entered in the CTI OS Server
registry.*/

Integer warningIntObj = IPCCLogInArgs.GetValueIntObj(“custom_WarnIfAgentLoggedIn”);

Integer rejectIntObj =IPCCLogInArgs.GetValueIntObj(“custom_RejectIfAgentLoggedIn”);

/* 8. Get the int values for those object to test later.*/

custom_WarnIfAgentLoggedIn = warnIntObj.intValue();
custom_RejectIfAgentLoggedIn = rejectIntObj.intValue();

}

Building Your Custom CTI Application
36

Building Your Custom CTI Application
Get Registry Configuration Values to Desktop Application

Detect Duplicate Login Attempt in Desktop Application
You detect the duplicate log in attempt in the OnQueryAgentStateConf() event, which is sent after the
application calls SetAgent():

Procedure

Step 1 Get the agent state value from the Arguments instance passed to the event.
Step 2 Test the agent state value in the CtiOs_Enums.AgentState interface, as follows.

(state != eLogout) && (state != eUnknown)

Step 3 If the test is true, handle the duplicate log in attempt as described in the next section.

The following example demonstrates this task in Java:
public void eQueryAgentStateConf(Arguments rArgs) {

/* 1. Get the agent state value*/
Short agentState = rArgs.getValueShortObj(CTIOS_AGENTSTATE)

/*Test the agent state*/
if (agentState.intValue() != eLogout

&& agentState.intValue() != eUnknown) {

/*If the agent is logged in, handle duplicate log in attempt.*/
}

}

Handle Duplicate Login Attempts in Desktop Application
If you detect from the OnQueryAgentStateConf() event that the agent is already logged in as described in the
previous section, do the following:

• If your custom_WarnIfAgentLoggedIn = 1 and custom_RejectIfAgentLoggedIn = 0, notify the user that
the agent is already logged in and proceed with Login() depending on the user response.

• If your custom_RejectIfAgentLoggedIn = 1, notify the user that the agent is already logged in and
Disconnect.

Log Out an Agent
To log out an agent:

Procedure

Step 1 Create an instance of the Arguments class.
Step 2 Set log out values for the agent in the Arguments instance.

Unified CCE requires a reason code to log out. Other switches may have different requirements.Note

Step 3 Log out the agent.

Building Your Custom CTI Application
37

Building Your Custom CTI Application
Detect Duplicate Login Attempt in Desktop Application

The following example demonstrates this task in Java:

/* 1. Create Arguments object*/
Arguments rArgs = new Arguments();

/* 2. Set log out values.*/
rArgs.SetValue(CTIOS_EVENTREASONCODE, 1);

/* 3. Log out the agent.*/
int returnValue = agent.Logout(rArgs);

Typical Logout Procedure
When the Logout button is clicked the following actions need to happen:

1. Call Logout request on your current agent.

You need to call Logout and not use SetAgentState(eLogout), because Logout provides additional logic
to support pre-Logout notification, Logout failure notification, and resource cleanup.

Here is the sample code for the same:

if(m_ctiAgent)
{

Arguments &rArgAgentLogout = Arguments::CreateInstance();

//add reason code if needed
rArgAgentLogout.AddItem(CTIOS_EVENTREASONCODE, reasonCode);
int nRetVal = m_ctiAgent->Logout(rArgAgentLogout);
rArgAgentLogout.Release();

}

2. Receive a response for the Logout request.

You can expect the following events in response to a Logout request:

• OnAgentStateChange (with Logout agent state).

or

OnControlFailure (with the reason for the failure).

• OnPostLogout (you additionally receive this event if the Logout request succeeds).

You can disable statistics either prior to issuing the Logout request or upon receipt
of the OnAgentStateChange to logout state. Use the OnPostLogout event to trigger
session disconnect. This guarantee that all event listeners can make CTI OS server
requests in response to the logout OnAgentStateChange event.

Note

See the following example code:

void CMyAppEventSink::OnPostLogout(Arguments & rArguments)
{

// Do not Disconnect if the reason code is Forced Logout
// (particular failover case):

Building Your Custom CTI Application
38

Building Your Custom CTI Application
Typical Logout Procedure

int nAgentState = 0;
if (rArguments.GetValueInt(CTIOS_AGENTSTATE, &nAgentState))
{

if (nAgentState == eLogout)
{

int nReasonCode = 0;
if (rArguments.GetValueInt(CTIOS_EVENTREASONCODE,

&nReasonCode))
{

if (CTIOS_FORCED_LOGOUT_REASON_CODE ==
(unsigned short)nReasonCode)

{
return;

}
}

}
}

//Disconnect otherwise
if(IsConnected()) //if session is connected
{

if(m_ctiSession)
{

m_ctiSession->Disconnect();
}

}
}

3. If you are not concerned with whether the agent is successfully logged out prior to disconnect, issue a
session Disconnect request without a Logout request.

4. Additionally, you must wait for OnConnectionClosed before destroying Agent and Session objects. This
guarantee that the CIL has completed cleanup of the Session object prior to your calling Release on these
objects.

5. Ensure that the Agent Object is set to NULL in the session before you Release the session object. For
example, whenever your application is exiting and you are disconnecting the session object (for example,
when the user closes your application window) do something similar to the code below:

if (m_ctiSession)
{

m_ctiSession->Disconnect();

// stop all events for this session
int nRetVal =

m_pctiSession->RemoveAllInOneEventListener((IAllInOne *)
m_pmyEventSink);

//The application is closing, remove current agent from session
CAgent * pNullAgent = NULL;
m_Session->SetAgent(*pNullAgent);
m_Session->Release();
m_Session = NULL;

}

if(m_ctiAgent)
{

m_ctiAgent->Release();
m_ctiAgent = NULL;

}

Building Your Custom CTI Application
39

Building Your Custom CTI Application
Typical Logout Procedure

if (m_pmyEventSink)
{

m_pmyEventSink->Release();
m_pmyEventSink = NULL;

}

Calls

Multiple Call Handling
It is critical that you design an Agent Mode desktop application to store all the calls on the specific device to
do the following:

• Apply incoming events to the correct call

• Select the correct call on which to make method calls (for example, telephony requests)

It is not necessary to maintain a set of Call objects to do this. Instead, the application can store the string
UniqueObjectID of each call (keywordCTIOS_UNIQUEOBJECTID). CTIOS_UNIQUEOBJECTID is always
included in the args parameter for each call event. You can obtain the actual Call object with the Session
object's GetObjectFromObjectID() method to make a method call.

Current Call
The CIL maintains a concept of a Current Call, which is the call for which the last
OnButtonEnablementChange() event was fired. Knowing which call is the Current Call is useful when there
are multiple components which set and act on the Current Call, such as telephony ActiveX Controls.

The CTI OS ActiveX controls included in the CTI OS Toolkit use the concept of the Current Call. The
CallAppearance grid control sets the Current Call when the user clicks on a particular call in the grid. When
the user clicks the Answer control, this control must get the Current Call to call the Answer() method on the
correct call.

The Current Call is set according to the following rules:

• When there is only 1 call on a device, the CIL sets it to the Current Call.

• When there are multiple calls on a device and an application wants to act on a call that is not the Current
Call, it sets a different call to the Current Call with the SetCurrentCall() method.

• When the call which is the Current Call ends, leaving multiple calls on the device, the application must
set another call to be the Current Call.

• Whenever the Current Call is set to a different call, OnCurrentCallChanged() event is fired as well as an
OnButtonEnablementChange() event.

Get Call Object from Session
You can get the Call object from the session using the GetObjectFromObjectID() method.

The following code fragment, which assumes that existing Call Unique Identifiers are stored in an array called
UIDArray, shows how to get a specific Call object in Java:

Building Your Custom CTI Application
40

Building Your Custom CTI Application
Calls

String sThisUID = UIDArray[Index];
Call ThisCall = (Call) m_Session.GetObjectFromObjectID(sThisUID);

Set Current Call for Session
To set the current call you use the SetCurrentCall() method for the Session. The following code fragment,
which assumes you retrieved the Call object as described in the previous section, shows how to set the current
call.

The following line shows this in Java:
m_Session.SetCurrentCall(ThisCall);

Call Wrapup
The agent/supervisor desktop behaves differently at the end of a call depending on the following factors:

• The direction of the call (inbound or outbound)

• Configuration of Unified CCE or the ACD (whether wrapup data is required, optional, or not allowed)

• Configuration of CTI OS server

The CTI Toolkit Combo Desktop .NET sample shows how to use this information to display a wrapup dialog
box that allows the agent to select from a set of pre-configured wrapup strings after an inbound call goes into
wrapup state (see ProcessOnAgentStateEvent in SoftphoneForm.cs). On an agent state change event, if the
state changes toWorkReady orWorkNotready state, this indicates that the agent has transitioned to call wrapup
state. The CTI OS server provides the following key/value pairs in the event arguments to determine whether
wrapup data is associated with the call and whether that data is required or optional.

CTIOS_INCOMINGOROUTGOING indicates the direction of the call. The defined values are:

0 = the direction of the call is unknown

1 = the call is an incoming call and the agent may enter wrapup data

2 = the call is an outgoing call and the agent may not enter wrapup data

You can use the GetValueInt method to obtain this value on the Agent object.

CTIOS_WRAPUPOKENABLED indicates whether wrapup data is required for the recently ended call. A
value of false indicates that wrapup data is not required. A value of true indicates that wrapup data is required.
(In the Combo Desktop sample, this value is used as a boolean to determine whether the "Ok" button on the
wrapup dialog box is enabled when no wrapup information is selected.) You can use the GetValueBool method
to obtain this value on the Agent object.

The wrapup strings that are configured on CTI OS server are sent to the client during the login procedure and
are stored under the keyword CTIOS_INCOMINGWRAPUPSTRINGS as an Arguments array within the
Agent object. You can use the GetValueArray method to obtain the wrapup strings on the Agent object. For
more information about how to configure wrapup strings on CTI OS server see the CTI OS System Manager
Guide for Cisco Unified ICM.

Building Your Custom CTI Application
41

Building Your Custom CTI Application
Set Current Call for Session

Logout and NotReady Reason Codes
Depending on the configuration of Unified CC or the configuration of CTI OS server, the agent/supervisor
desktop may be required to supply a reason code when requesting an agent state change to Logout or NotReady
state. The CTI Toolkit Combo Desktop .NET sample provides examples of how to implement reason codes
in an agent/supervisor desktop. (See the btnLogout_Click and btnNotReady_Click methods in
SoftphoneForm.cs.)

CTI OS server informs the CTI OS client of this configuration during the login process and the information
is stored in the following properties on the Agent object:

CTIOS_LOGOUTREASONREQUIRED - This boolean value indicates whether a reason code is required
for logout. A value of true indicates that a reason code is required. A value of false indicates that a reason
code is not required. You can use the GetValueBool method to get this value on the Agent object.

CTIOS_LOGOUTREASONCODES - This Arguments array provides a list of the logout reason codes
configured on CTI OS server. You can use the GetValueArray method to get this value on the Agent object.

CTIOS_NOTREADYREASONREQUIRED - This boolean value indicates whether a reason code is required
when setting an agent to NotReady state. A value of true indicates that a reason code is required. A value of
false indicates that a reason code is not required. You can use the GetValueBool method to obtain the value
on the Agent object.

CTIOS_NOTREADYREASONCODES - This Arguments array provides a list of the not ready reason codes
configured on CTI OS server. You can use the GetValueArray method to obtain the value on the Agent object.

Applications and OnButtonEnablementChange() Event
An application receives an OnButtonEnablementChange() event in the following situations:

• When the Current Call is changed.

• When the call that is the Current Call receives an event, which includes a CTIOS_ENABLEMENTMASK
argument. Usually the included enablement mask is changed from what it was set to, but occasionally it
is the same. This mask is used to indicate which functions are allowed for this Call in its current state.

For example, when a Call receives an OnCallDelivered() event with a Connection State of
LCS_ALERTING, its enablement mask is changed to set the Answer bit. When this Call is answered,
and it receives the OnCallEstablished() event, the mask no longer sets the Answer bit, but instead enables
the Hold, Release, TransferInit and ConferenceInit bits.

In the OnButtonEnablementChange() Event
To see if a button should be enabled, do a bitwise “AND”with the appropriate value listed in the Table included
under the OnButtonEnablementChange event in Chapter 6.

The following examples shows this in Java:

Integer IMask = rArgs.GetValueIntObj(CTIOS_ENABLEMENTMASK);
if (null != IMask) {

int iMask = IMask.intValue();
if (iMask & ENABLE_ANSWER) {

//Enable the AnswerCall button
}

else {
//Disable the AnswerCall button

Building Your Custom CTI Application
42

Building Your Custom CTI Application
Logout and NotReady Reason Codes

}
}

// else do nothing

Not Ready Bitmasks in OnButtonEnablementChange() Event
A client application receiving the OnButtonEnablementChange() event must check both the
ENABLE_NOTREADY and ENABLE_NOTREADY_WITH_REASON bitmasks in the event.

Failure to check both the ENABLE_NOTREADY and ENABLE_NOTREADY_WITH_REASON bitmasks
can lead to problems properly displaying a NotReady control to the agent.

Caution

The following example shows this in Java:

void OnButtonEnablementChange(Arguments rArguments) {
m_appFrame.LogEvent("OnButtonEnablementChange", rArguments);

// Get mask from message
Long LMask = rArguments.GetValueUIntObj(CTIOS_ENABLEMENTMASK);
if (null==LMask)

return;

final long bitMask = LMask.longValue();

/* Transfer modification of the GUI objects to the
EventDispatchThread or we could have a thread sync issue. We're
currently on the CtiOsSession's event thread.*/

SwingUtilities.invokeLater(new Runnable() {
public void run() {

/* Enable a button if it's bit is
turned on. Disable it if not.*/

m_appFrame.m_btnAnswer.setEnabled (((bitMask & ENABLE_ANSWER) > 0));
m_appFrame.m_btnConference.setEnabled

(((bitMask & ENABLE_CONFERENCE_COMPLETE) > 0));
m_appFrame.m_btnCCConference.setEnabled

(((bitMask & ENABLE_CONFERENCE_INIT) > 0));
m_appFrame.m_btnHold.setEnabled (((bitMask & ENABLE_HOLD) > 0));
m_appFrame.m_btnLogin.setEnabled (((bitMask & ENABLE_LOGIN)> 0));
m_appFrame.m_btnLogout.setEnabled

(((bitMask & (ENABLE_LOGOUT |

CtiOs_Enums.ButtonEnablement.ENABLE_LOGOUT_WITH_REASON)) >
0));

m_appFrame.m_btnMakeCall.setEnabled
(((bitMask & ENABLE_MAKECALL) > 0));

m_appFrame.m_btnNotReady.setEnabled(((bitMask & (ENABLE_NOTREADY |
ENABLE_NOTREADY_WITH_REASON)) > 0));

m_appFrame.m_btnReady.setEnabled(((bitMask & ENABLE_READY) > 0));
m_appFrame.m_btnRelease.setEnabled(((bitMask & ENABLE_RELEASE)> 0));
m_appFrame.m_btnRetrieve.setEnabled

(((bitMask & ENABLE_RETRIEVE) > 0));
m_appFrame.m_btnSSTransfer.setEnabled

(((bitMask & ENABLE_SINGLE_STEP_TRANSFER)> 0));
m_appFrame.m_btnSSConference.setEnabled

(((bitMask & ENABLE_SINGLE_STEP_CONFERENCE) > 0));
m_appFrame.m_btnTransfer.setEnabled

Building Your Custom CTI Application
43

Building Your Custom CTI Application
Not Ready Bitmasks in OnButtonEnablementChange() Event

(((bitMask & ENABLE_TRANSFER_COMPLETE)> 0));
m_appFrame.m_btnCCTransfer.setEnabled

(((bitMask & ENABLE_TRANSFER_INIT) > 0));
}

});
} // OnButtonEnablementChange

OnButtonEnablementChange() Event in Supervisor Desktop Applications
When a supervisor desktop application processes an OnButtonEnablementChange() event, the application
checks for the CTIOS_MONITORED parameter and ignores this parameter if it is present and is TRUE. In
a supervisor desktop application, the OnButtonEnablementChange() event can reflect button enablement for
either a monitored team member or the supervisor.

Making Requests
Telephony requests are made through either an Agent object or a Call object by calling the appropriate API
methods listed in Chapters 9 and 10. It is important to ensure that a user cannot make multiple duplicate
requests before the first request has a chance to be sent to the switch and the appropriate events sent back to
the application, because this results in either multiple failures or unexpected results.

Multiple Duplicate Requests
Because it is important for a custom application to prevent a user frommaking a number of duplicate requests,
the user should not be able to click the same button multiple times. A custom application should disable a
clicked button until it is all right for the user to click it again.

Some examples of when Sample softphones re-enable a button that was clicked and disabled are listed below:

• Re-enable Connect/LoginBtn when:

• LoginDlg canceled

• ControlFailure or CTIOSFailure when login is in progress

• In ProcessOnConnectionClosed()

• Re-enable Logout/DisconnectBtn when:

• Logout ReasonCodes are required & Dlg pops up, but user clicks Cancel

• Re-enable NotReadyBtn when:

• NotReady ReasonCodes are required & Dlg pops up, but user clicks Cancel

• Re-enable DialBtn, TransferBtn or ConferenceBtn when:

• DialPad was closed with Cancel rather than Dial, depending on which was originally clicked

• Re-enable TransferBtn & ConferenceBtn when:

• Received ControlFailure with MessageType parameter set to eConsultationCallRequest

• Re-enable EmergencyBtn when:

Building Your Custom CTI Application
44

Building Your Custom CTI Application
OnButtonEnablementChange() Event in Supervisor Desktop Applications

• Received ControlFailure with MessageType parameter set to eEmergencyCallRequest

• Re-enable SupervisorAssistBtn when:

• Received ControlFailure with MessageType parameter set to eSupervisorAssistRequest

• Re-enable any AgentStateBtn when:

• Received ControlFailure with MessageType parameter set to eSetAgentStateRequest &
lastAgentStateBtnClicked was the appropriate one

• Re-enable any of the buttons when:

• Received OnButtonEnablementMaskChange indicating the button should be enabled.

Events

Event Order
A desktop application using the CTI OS API must handle events in the order they are sent by CTI OS.

Becausemany events include agent state data and button enablement data indicating valid agent state transitions,
if events are handled out of order agents may not be presented with valid options.

Warning

Coding Considerations for CIL Event Handling
The CTI OS CIL fires events to the application in a single thread. Keep the amount of time spent in a particular
CIL event handler to a minimum to ensure timely delivery of subsequent CIL events. If a screenpop based
on a call event (such as the OnCallDelivered event or the OnCallDataUpdate event) takes longer than a few
seconds (for example, remote database lookup), delegate this operation to a separate thread or separate process
so as not to block CTI OS event handling.

The order of arrival of CIL events is highly dependent on the ACD that is in use at the customer site. Therefore,
CIL event order is not guaranteed. Do not write your event handling code in a manner that relies on a particular
event order.

Note

If an application calls a CIL API method from a CIL event callback routine it must ensure that the method
call is made on the same thread as the CIL event callback. This rule applies to the following methods:

• SetCurrentCall

• SetAgent

This rule must be followed in order to guarantee that events are fired from the CIL to the application in the
proper sequence.

Building Your Custom CTI Application
45

Building Your Custom CTI Application
Events

When handling events in the browser using JavaScript, keep event processing time to a minimum because all
other JavaScript processing (e.g., handling of button clicks) may be blocked during handling of the event.

OnCallEnd() Event Monitoring
AMonitor Mode application that monitors any Call-related events must also monitor the OnCallEnd() event.

The Call object in the CTI OS CIL is only deleted when the OnCallEnd() event is received. If the OnCallEnd()
and OnCallDataUpdate() events are not monitored, Call objects accumulate and cause a memory leak.

Warning

Agent Statistics

Overview of Agent Statistics
This section describes how to work with agent statistics and contains the following subsections:

• Set Up Agent Application to Receive Agent Statistics, on page 46

• Set Up Monitor Mode Application to Receive Agent Statistics, on page 47

• Agent Statistics Access, on page 50

• Agent Statistics Configuration, on page 51

• Agent Statistics Computed by Sample CTI OS Desktop, on page 51

Set Up Agent Application to Receive Agent Statistics
To set up an Agent application to receive agent statistics:

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 22.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 22.

You must register to receive agent and session events; therefore, in the AddEventListener()
method you must use as parameters the field
CtiOs_Enums.SubscriberList.eAgentList and
CtiOs_Enums.SubscriberList.eSessionList. Or you can use the
CtiOs_Enums.SubscriberList.eAllInOneList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 22.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 23.

Building Your Custom CTI Application
46

Building Your Custom CTI Application
OnCallEnd() Event Monitoring

Step 5 In the OnConnection() event handler, set the Agent for the session, as described on Select Agent Mode, on
page 25.

Step 6 Log in the agent, as described on Log In an Agent, on page 32.
Step 7 Enable agents statistics using the EnableAgentStatistics() method.

Though the EnableAgentStatistics() method requires an Arguments parameter, there are no
parameters to set for agent statistics; you can therefore send an empty Arguments instance as a
parameter.

Note

The agent must be logged in before you can use the EnableAgentStatistics() method.Caution

Step 8 To disable agents statistics, use the DisableAgentStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
returnCode = rSession.Connect(rArgs);

public void OnConnection(Arguments rArgs) {

/*5. Set agent for the session. */
returnCode = rSession.SetAgent(agent);

/* 6. Log in the agent.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTID, “275”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, “5002”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTINSTRUMENT, “5002”)
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_AGENTPASSWORD, “********”);
returnCode = agent.Login(rArgs);

/* 7. Enable Agent statistics. */
if (returnCode == CIL_OK) {
agent.EnableAgentStatistics(new Arguments());
}

}

Set Up Monitor Mode Application to Receive Agent Statistics
To set up a Monitor-mode application to receive agent statistics, follow the instructions below.

Building Your Custom CTI Application
47

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

The agent to monitor must be logged in Agent mode before a Monitor-mode application can receive statistics
for that agent.

CTI OS has a limitation in providing monitor-mode support to build agent desktop call-control applications,
as well as having the ability to rely on button enablement messages.

Note

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 22.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 22.

You must register to receive agent events; therefore, in the AddEventListener() method you must
use as a parameter the field CtiOs_Enums.SubscriberList.eAgentList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 22.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 23.
Step 5 Set a String variable to store the ID of the agent for which you want statistics.

The application must be aware of the Agent ID and the agent's Peripheral ID for any agent to
monitor; the application cannot dynamically get these values from CTI OS Server.

Note

Step 6 Set the message filter as described on Filters for Events for Monitored Calls, on page 28.
a) Create String for the filter using the keyword CTIOS_MESSAGEID as the name, and “*;agentID” as the

value.

The “*;” indicates all events for that agent.Note

b) Create an instance of the Arguments class.
c) Set the value in the filter for the CTIOS_FILTER keyword to the String created in Step a.
d) Use the SetMessageFilter() method in the Session class to set the filter for the session, using the Arguments

instance you created in Step b as a parameter.

Step 7 Wait for any event for the agent, to ensure that the Agent instance exists for the Session.

The application must wait for the first event for this agent before continuing, to ensure that the
Agent instance is part of the current session.

Caution

This example uses a Wait object to wait.Note

Step 8 Get the Agent instance from the Session using GetObjectFromObjectID() method.
Step 9 Enable agents statistics using the EnableAgentStatistics() method.

Although the EnableAgentStatistics() method requires an Arguments parameter, there are no
parameters to set for agent statistics; you can therefore use an empty Arguments instance as a
parameter.

Note

The agent must be logged in before you can use the EnableAgentStatistics() method.Caution

Building Your Custom CTI Application
48

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

Step 10 To disable agents statistics, use the DisableAgentStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eAgentList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = rSession.Connect(rArgs);

/*5. Set String to AgentID*/
String UIDAgent = “agent.5000.5013”;

/*6. Set the message filter. */
String filter = "MessageId=*;AgentId=5013;
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = rSession.SetMessageFilter(rArgs);

/*7. Wait for agent events.*/

rArgs = new Arguments();

// Create a wait object in the session
WaitObject rWaitObj = rSession.CreateWaitObject(rArgs);

// Load the events into the Args for the wait object
rArgs.SetValue("Event1", eAgentStateEvent);
rArgs.SetValue("Event2", eQueryAgentStateConf);
rArgs.SetValue("Event3", eControlFailureConf);
rArgs.SetValue("Event4", eCTIOSFailureEvent);

// Set the mask for the WaitObject
rWaitObj.SetMask(rArgs);

// Wait for up to 9 seconds, and then give up
if (rWaitObj.WaitOnMultipleEvents(9000) != EVENT_SIGNALED)
{

// Handle error ...
return;

}

// Find out what triggered the wait
int iEventID = rWaitObj.GetTriggerEvent();
if (iEventID == eControlFailureConf|| iEventID == eCTIOSFailureEvent)
{

// Handle error ...
return;

}

Building Your Custom CTI Application
49

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Agent Statistics

Agent Statistics Access

Overview of Agent Statistics Access
After you set up the applications to receive agent statistics, as described in the preceding section, you can
access agent statistics in two ways:

• By implementing the eOnNewAgentStatisticsEvent() (in Java) or the OnAgentStatistics() event (in C++,
COM, or VB 6.0)

The name of the event to access agent statistics is different in Java when compared to other languages supported
by CTI OS.

Caution

• Through the Agent instance itself

The rest of this section describes these methods for accessing agent statistics.

eOnNewAgentStatisticsEvent() in Message Filter (JAVA)
To register to receive agent statistics, you must include the eOnNewAgentStatisticsEvent() in the message
filter.

For example, in Java, the message filter to receive agent statistics is:
String filter = S_MESSAGEID + “=” +

CtiOs_Enums.EventID.eNewAgentStatisticsEvent;

For more information about message filters, see Monitor Mode Filters, on page 27.

OnAgentStatistics() Event in Message Filter (C++ COM and VB)
To register to receive agent statistics, you must include the OnAgentStatistics() event in the message filter.

For more information about message filters, see Monitor Mode Filters, on page 27.

Get Agent Statistics Through Agent Instance
After you use the EnableAgentStatistics() method for the agent, agent statistics are available through that
Agent instance.

To get the agent statistics perform the following procedure:

Procedure

Step 1 Get the Arguments instance containing statistics from the Agent instance using the GetValueArray() method.
Step 2 Parse the Arguments instance as needed to get specific statistics.

The following example demonstrates this task in Java:

/* 1. Get Arguments instance.*/
Arguments rArgs = agent.GetValueArray(CtiOs_IKeywordIDs.CTIOS_STATISTICS);

Building Your Custom CTI Application
50

Building Your Custom CTI Application
Agent Statistics Access

/* 2. Parse as necessary. For example:*/
int availTimeSession = rArgs.GetValueIntObj(CtiOs_IKeywordIDs.CTIOS_AVAILTIMESESSION);

Agent Statistics Configuration
You can change which agent statistics are sent to applications by modifying the registry on the CTI OS Server.

For more information about how to change which agent statistics are sent to applications by default, see the
CTI OS System Manager Guide for Cisco Unified ICM.

Agent Statistics Computed by Sample CTI OS Desktop
The sample CTI OS Desktop computes many agent statistics from data received from CTI Server. You may
choose to develop applications that compute these same statistics. Therefore, these computed statistics (in
italics) and the data and formulas used to derive them are listed below:

• AvgTalkTimeToday = (AgentOutCallsTalkTimeToday + HandledCallsTalkTimeToday) /
(AgentOutCallsToday + HandledCallsToday)

• CallsHandledToday = AgentOutCallsToday + HandledCallsToday

• TimeLoggedInToday = LoggedOnTimeToday

• TimeTalkingToday = AgentOutCallsTalkTimeToday + HandledCallsTalkTimeToday

• TimeHoldingToday = AgentOutCallsHeldTimeToday + IncomingCallsHeldTimeToday

• TimeReadyToday = AvailTimeToday

• TimeNotReadyToday = NotReadyTimeToday

• AvgHoldTimeToday = (AgentOutCallsHeldTimeToday + IncomingCallsHeldTimeToday) /
(AgentOutCallsToday + HandledCallsToday)

• AvgHandleTimeToday = (AgentOutCallsTimeToday + HandledCallsTimeToday) / (AgentOutCallsToday
+ HandledCallsToday)

• AvgIdleTimeToday = NotReadyTimeToday / (AagentOutCallsToday + HandledCallsToday)

• PercentUtilitizationToday = (AgentOutCallsTimeToday + HandledCallsTimeToday) /
(LoggedOnTimeToday + NotReadyTimeToday)

Skill Group Statistics

Overview of Skill Group Statistics
This section describes how to receive and work with skill group statistics in a server-to-server integration
environment and contains the following subsections:

• Set Up Monitor Mode Application to Receive Skill Group Statistics, on page 52

Building Your Custom CTI Application
51

Building Your Custom CTI Application
Agent Statistics Configuration

• Skill Group Statistics Access, on page 54

• Skill Group Statistics Sent to Desktop Application, on page 54

• Skill Group Statistics Computed by Sample CTI OS Desktop, on page 54

Set Up Monitor Mode Application to Receive Skill Group Statistics
To set up a Monitor-mode application to receive skill group statistics:

Procedure

Step 1 Create an instance of the Session class, as described on Connect to CTI OS Server, on page 22.
Step 2 Subscribe for events for the session, as described on Set Event Listener and Subscribe to Events, on page 22.

You must register to receive session and skill group events. In the AddEventListener() method
youmust use as a parameter the fieldCtiOs_Enums.SubscriberList.eAllInOneList,
or you must call the method twice using the fields
CtiOs_Enums.SubscriberList.eSessionList and
CtiOs_Enums.SubscriberList.eSkillGroupList.

Note

Step 3 Set connection parameters, as described on Set Connection Parameters for Session, on page 22.
Step 4 Connect the desktop application to the CTI OS Server, as described on Connect Session to CTI OS Server,

on page 23.
Step 5 Set the message filter as described on Filters for Events for Monitored Calls, on page 28.

a) Create String for the filter using the keyword S_FILTERTARGET as the name and the event keyword
(enum or number) eOnNewSkillGroupStatisticsEvent (numeric value 536871027)
as the value.

b) Create an instance of the Arguments class.
c) Set the value in the filter for the CTIOS_FILTER keyword to the String created in Step a.
d) Use the SetMessageFilter() method in the Session class to set the filter for the session, using the Arguments

instance you created in Step b as a parameter.

Step 6 Enable individual statistics as needed.
a) Create an instance of the Arguments class.
b) Set values in the Arguments instance. You must provide the skill group number and the peripheral number

for each skill group for which you want to receive statistics. Use the SetValue(keyword, int) method
signature.

For example: use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber) where sgNumber is an integer
for the skill group for which you want to receive statistics, and SetValue(CTIOS_PERIPHERALID,
peripheralNumber) where sgNumber is an integer for the skill group for which you want to receive
statistics.

You must pass a value of "0" for the Skill Group Priority.Attention

The application must know the Skill Group ID, and the skill group's Peripheral ID, for any
skill group to monitor. The application cannot dynamically get these values from CTI OS
Server.

Caution

Building Your Custom CTI Application
52

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Skill Group Statistics

c) Use the Arguments instance as a parameter for the session's EnableSkillGroupStatistics() method.
d) Repeat steps b and c for each skill group for which you want to receive events.

Step 7 When the desktop application no longer requires the statistics for a certain skill group, the application can
disable those statistics.
a) Create an instance of the Arguments class.
b) Set values in the Arguments instance. You must provide the skill group number and the peripheral number

for each skill group for which you want to receive statistics. Use the SetValue(keyword, int) method
signature.

For example, use SetValue(CTIOS_SKILLGROUPNUMBER, sgNumber) where sgNumber is an integer
for the skill group for which you want to receive statistics, and SetValue(CTIOS_PERIPHERALID,
sgNumber) where sgNumber is an integer for the skill group for which you want to stop receiving statistics.

c) Use the Arguments instance as a parameter for the session's DisableSkillGroupStatistics() method.

The following example demonstrates this task in Java:

/* 1. Create session.*/
CtiOsSession rSession = new CtiOsSession();

/* 2. Add event listener.*/
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eSessionList);
rSession.AddEventListener(this,

CtiOs_Enums.SubscriberList.eSkillGroupList);

/* 3. Set Connection values.*/
Arguments rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSA, “CTIOSServerA”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTA, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_CTIOSB, “CTIOSServerB”);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PORTB, 42408);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_HEARTBEAT, 100);

/*4. Connect to server.*.
int returnCode = session.Connect(rArgs);

/*5. Set the message filter. */
String filter = S_FILTERTARGET + "=" + "SkillGroupStats";
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_FILTER, filter);
returnCode = session.SetMessageFilter(rArgs);

/*6. Enable statistics. */
rArgs = new Arguments();
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_SKILLGROUPNUMBER, sgNumber);
rArgs.SetValue(CtiOs_IKeywordIDs.CTIOS_PERIPHERALID, peripheralID);
rSession.EnableSkillGroupStatistics(rArgs);

Building Your Custom CTI Application
53

Building Your Custom CTI Application
Set Up Monitor Mode Application to Receive Skill Group Statistics

Skill Group Statistics Access

Overview of Skill Groups Statistics Access
After you set up the application to receive skill group statistics, as described in the preceding section, you
access skill group statistics through an event handler. The name of the event depends on the language of the
application:

• In Java, eOnNewSkillGroupStatisticsEvent()

• In C++, COM, or VB, OnSkillGroupStatisticsUpdated()

The name of the event through which to access skill group statistics is different in Java from other languages
supported by CTI OS.

Caution

eOnNewSkillGroupStatisticsEvent() in Message Filter (JAVA)
To register to receive skill group statistics, you must include the eOnNewSkillGroupStatisticsEvent() in the
message filter.

For example, in Java, the message filter to receive skill group statistics is:

String filter = S_MESSAGEID + “=” +

CtiOs_Enums.EventID.eNewSkillGroupStatisticsEvent;

For more information about message filters, see Monitor Mode Filters, on page 27.

eOnNewSkillGroupStatisticsEvent() in Message Filter (C++ COM and VB)
To register to receive skill group statistics, you must include the OnSkillGroupStatisticsUpdated() event in
the message filter.

For more information about message filters, see Monitor Mode Filters, on page 27.

Skill Group Statistics Sent to Desktop Application
You can change which skill group statistics are sent to desktop applications by modifying the registry on the
CTI OS Server.

For more information about how to change which skill group statistics are sent to desktop applications, see
the CTI OS System Manager Guide for Cisco Unified ICM.

Skill Group Statistics Computed by Sample CTI OS Desktop
The sample CTI OS Desktop computes many skill group statistics from data received from CTI Server. You
may choose to develop applications that compute these same statistics. These computed statistics (in italics)
and the data and formulas used to derive them are listed below:

• AvgCallsQTimeNow = CallsQTimeNow/CallsQNow

Building Your Custom CTI Application
54

Building Your Custom CTI Application
Skill Group Statistics Access

• AvgAgentOutCallsTalkTimeToHalf = AgentOutCallsTalkTimeToHalf/AgentOutCallsToHalf

• AvgAgentOutCallsTimeToHalf = AgentOutCallsTimeToHalf/AgentOutCallsToHalf

• AvgAgentOutCallsHeldTimeToHalf = AgentOutCallsHeldTimeToHalf/AgentOutCallsHeldToHalf

• AvgHandledCallsTalkTimeToHalf = HandledCallsTalkTimeToHalf/HandledCallsToHalf

• AvgHandledCallsAfterCallTimeToHalf = HandledCallsAfterCallTimeToHalf/HandledCallsToHalf

• AvgHandledCallsTimeToHalf = HandledCallsTimeToHalf/HandledCallsToHalf

• AvgIncomingCallsHeldTimeToHalf = IncomingCallsHeldTimeToHalf/IncomingCallsHeldToHalf

• AvgInternalCallsRcvdTimeToHalf = InternalCallsRcvdTimeToHalf/InternalCallsRcvdToHalf

• AvgInternalCallsHeldTimeToHalf = InternalCallsHeldTimeToHalf/InternalCallsHeldToHalf

• AvgCallsQTimeHalf = CallsQTimeHalf/CallsQHalf

• AvgAgentOutCallsTalkTimeToday = AgentOutCallsTalkTimeToday/AgentOutCallsToday

• AvgAgentOutCallsTimeToday = AgentOutCallsTimeToday/AgentOutCallsToday

• AvgAgentOutCallsHeldTimeToday = AgentOutCallsHeldTimeToday/AgentOutCallsHeldToday

• AvgHandledCallsTalkTimeToday = HandledCallsTalkTimeToday/HandledCallsToday

• AvgHandledCallsAfterCallTimeToday = HandledCallsAfterCallTimeToday/HandledCallsToday

• AvgHandledCallsTimeToday = HandledCallsTimeToday/HandledCallsToday

• AvgIncomingCallsHeldTimeToday = IncomingCallsHeldTimeToday/IncomingCallsHeldToday

• AvgInternalCallsRcvdTimeToday = InternalCallsRcvdTimeToday/InternalCallsRcvdToday

• AvgInternalCallsHeldTimeToday = InternalCallsHeldTimeToday/InternalCallsHeldToday

• AvgCallsQTimeToday = CallsQTimeToday/CallsQToday

Silent Monitoring
There are two (mutually exclusive) silent monitoring methods:

• CTI OS based silent monitoring

• Cisco Unified Communications Manager (Unified CM) based silent monitoring

For more information, see the CTI OS System Manager Guide for Cisco Unified ICM. For more information
about how to enable silent monitor in your application, see CTI OS Based Silent Monitoring, on page 56 or
Unified CM-Based Silent Monitoring in Your Application, on page 60, as applicable.

Building Your Custom CTI Application
55

Building Your Custom CTI Application
Silent Monitoring

CTI OS Based Silent Monitoring

CTI OS Silent Monitor functionality is only available in the C++ and COM CILs.Note

The silent monitor manager object is responsible for establishing and maintaining the state of a silent monitor
session.

The first thing a client application should do is to create a silent monitor object instance. The application
should then set this object instance as the current manager in the session object. The CIL provides the interface
to this functionality. A client application can work in one of two possible modes:

• Monitoring mode. The client receives audio from a remote monitored target (device/agent).

• Monitored mode. The client sends audio to a remote monitoring client.

Silent Monitor does not work until you set the session mode using one of the following function calls:

• Session.SetAgent() for an Agent mode application

• Session.SetMessageFilters() for a Monitor mode application

Note

Create a Silent Monitor Object
The first step towards setting up a silent monitor session is creating a SilentMonitorManager using the Session
object CreateSilentMonitorManager method. Then, set the new manager object as the current silent monitor
manager using the Session object SetCurrentSilentMonitor method.

The following VB 6.0 code sample demonstrates how to create a SilentMonitorManager object with COM
CIL and make it the current manager in the Session object:

Dim errorcode As Long
Dim m_nSMSessionKey As Integer
Dim m_SMManager As CTIOSCLIENTLib.SilentMonitorManager
Dim m_Args As New Arguments
'Create the silent monitor manager
Set m_SMManager = m_session.CreateSilentMonitorManager(m_Args)
'Make the object the current manager
errorcode = m_Session.SetCurrentSilentMonitor(m_SMManager)

Session Mode
After you set this new object as the current object, set themanager's workmode toMonitoring for themonitoring
client and Monitored for the monitored client. The following sections provide code examples. For more
information about syntax of the StartSMMonitoringMode and SMMonitoredMode methods, see
SilentMonitorManager Object.

Building Your Custom CTI Application
56

Building Your Custom CTI Application
CTI OS Based Silent Monitoring

ucce_b_ctios-developer-guide_12_6_1_chapter13.pdf#nameddest=unique_185

Monitoring Mode

In this mode, the client receives audio confirmation and session status events for a specific silent monitor
session. This mode is intended for use by client applications developed for Supervisor desktop functionality.
The StartSMMonitoringMode method on the SilentMonitorManager object selects this mode.

Following is a code sample for specifying the mode for the client application.

Dim m_Args As New Arguments
'Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
'Port number where audio will be listened for
m_Args.AddItem("MediaTerminationPort", 4000)
'Set the working mode to monitoring
m_SMManager.StartSMMonitoringMode(args)

Monitored Mode

In this mode, the client sends audio and status reports on silent monitor session and receives requests for start
and stop silent monitor session. This mode is intended for client applications developed for Agent desktop
functionality. The StartSMMonitoredMode method on the SilentMonitorManager object selects this mode.

Following is a code sample for specifying the mode for the client application:

Dim m_Args As New Arguments
'Assemble arguments to set the work mode
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)
'Address or hostname of the silent monitor service
m_Args.AddItem("SMSAddr", "localhost")
'Port on which silent monitor service is listening
m_Args.AddItem("SMSListenPort", 42228)
'QoS setting when sending messages to the silent monitor service
m_Args.AddItem("SMSTOS", 0)
'Milliseconds between heartbeats
m_Args.AddItem("SMSHeartbeats", 5000)
'Number of missed heartbeats before the connection to the
'silent monitor service is considered disconnected
m_Args.AddItem("SMSRetries", 3)
'Extension number of the IP Phone to monitor
m_Args.AddItem("MonitoringDeviceID", 1234)
'Set the working mode to monitored
m_silentMonitor.StartSMMonitoredMode(args)

Silent Monitor Session
Initiating a silent monitor session starts with the client in monitoring mode, calling the
StartSilentMonitorRequest method. This indicates that the CTI OS server send an

Building Your Custom CTI Application
57

Building Your Custom CTI Application
Monitoring Mode

OnSilentMonitorStartRequestedEvent to a remote client in monitored mode. The remote client, upon receiving
the OnSilentMonitorStartRequestedEvent, chooses whether or not accept the request. The remote client
acknowledges its approval or rejection by sending a status report back to the monitoring client. The monitoring
client receives the acceptance or rejection via the OnSilentMonitorStatusReportEvent. When the session is
accepted by the remote client, it immediately starts forwarding voice to the monitoring client. The monitoring
client can terminate the silent monitoring session only by calling the StopSilentMonitorRequest method. CTI
OS server issues the OnSilentMonitorStopRequestedEvent to the remote client. The monitored client stops
sending audio immediatelywhenOnSilentMonitorStopRequestedEvent is received by its SilentMonitorManager
object.

Following are code samples for initiating and ending a silent monitor session:

Monitoring Client Code Sample

Private Sub btnStartSM_OnClick()
Dim m_Args As New Arguments

'Agent to monitor
m_Args.AddItem("AgentID", "23840")
m_Args.AddItem("PeripheralID", "5000")
m_Args.AddItem("HeartbeatInterval", 5)
m_Args.AddItem("HeartbeatTimeout", 15)

'If MonitoringIPPort is not specified, port 39200 will be used by 'default.
m_Args.AddItem("MonitoringIPPort", 39200)

'Request silent monitor session to start
m_SMManager.StartSilentMonitorRequest(m_Args, m_nSMSessionKey)
End Sub

Private Sub m_session_OnSilentMonitorStatusReportEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments)

Dim strAgent As String
Dim nMode As Integer

nMode pIArguments.GetValueInt("StatusCode)

If nMode = eSMStatusMonitorStarted Then strAgent =
pIArguments.GetValueString("MonitoredUniqueObjectID")

MsgBox "Silent Monitor Status",,
"Started Monitoring Agent: " & strAgent

Else
MsgBox "Silent Monitor Status",,

"Request Failed with code = " & nMode
End If

End Sub

Private Sub tmrScreening_Timer()
'After listening the conversation for 30 sec, drop monitoring session

'Assemble arguments for stop request
'Agent to monitor
m_Args.AddItem "SMSessionKey", m_nSMSessionKey

'Request silent monitor session to stop
m_SMManager.StopSilentMonitorRequest(m_Args, m_nSMSessionKey)

End Sub

Building Your Custom CTI Application
58

Building Your Custom CTI Application
Monitoring Client Code Sample

Monitored Client Code Sample

Private Sub m_session_OnSilentMonitorStartRequestedEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments)

Dim strRequestInfo As String

strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Start Silent Monitor Received”,, strRequestInfo
End Sub

Private Sub m_session_OnSilentMonitorStopRequestedEvent(By Val pIArguments As
CTIOSCLIENTLib.IArguments, bDoDefaultProcessing)

Dim strRequestInfo As String

strRequestInfo = pIArguments.DumpArgs
MsgBox “Request to Stop Silent Monitor Received”,, strRequestInfo
End Sub

Silent Monitor Manager Shutdown
Shutting down the Silent monitor object requires that the monitoring client call the StopSilentMonitorMode
method when it is done monitoring an agent, and that the monitored client call the StopSilentMonitorMode
method during cleanup. Each client must then remove the silent monitor manager from the Session object by
calling SetMonitorCurrentSilentMonitor with a NULL pointer. Finally each client must destroy the silent
monitor object using Session's DestroySilentMonitorManager method.

Following is a code sample for initiating and ending a silent monitor session:

'Stop Silent Monitor ModeRequest
m_SMManager.StopSilentMonitorMode
'Remove silent monitor manager object from session
errorcode = m_session_SetCurrentSilentMonitor(Nothing)
'Destroy silent monitor manager object
errorcode = m_session.DestroySilentMonitorManager()

CTI OS Silent Monitor Management in Monitor Mode
CTI OS Silent Monitor is configured, initiated, and ended the same in monitor mode as it is in agent mode.
There is one additional step in monitor mode. Youmust include the OnCallRTPStarted and OnCallRTPStopped
events in the filter used by the monitor mode application. An example follows.

// 116 = OnCallRTPStarted
// 117 = OnCallRTPStopped
m_session.SetMessageFilter("MessageID = 116, 117")

For more information, see Session Modes.Note

Building Your Custom CTI Application
59

Building Your Custom CTI Application
Monitored Client Code Sample

ucce_b_ctios-developer-guide_12_6_1_chapter2.pdf#nameddest=unique_34

Unified CM-Based Silent Monitoring in Your Application

CCM-Based Silent Monitor Overview
CCM based silent monitor is the Call Manager implementation of silent monitor. When CCM based silent
monitor is used, silent monitor is implemented as a call. After initiating silent monitor, the supervisor is able
to hear agent conversations using their phone.

Agents can only be silent monitored by one supervisor at a time.

CCM based silent monitor is supported in all CILs.

The CTI Toolkit Combo Desktop .Net sample includes CCM based silent monitor source code.

The following section describes how to enable CCM based silent monitor in custom CTI OS applications.

CTI OS Monitor Mode Applications
CCM based silent monitor is not supported for CTI OS monitor mode applications.

CCM-Based Silent Monitor Request
Before you initiate CCM based silent monitor, ensure that you configure CCM based silent monitor. For more
information, see Determine if CCM-Based Silent Monitoring Is Enabled, on page 63.

CCM based silent monitoring is initiated through the SuperviseCall() method associated with the supervisor's
Agent object. To start silent monitor:

• Set the SupervisoryAction parameter to eSupervisorMonitor.

• Set the AgentReference parameter to the unique object ID of the agent to be silent monitored.

• Set the AgentCallReference parameter to the unique object ID of the call to be silent monitored.

When the request is successfully initiated and the silent monitor call is established, the supervisor and agent
applications receive the OnSilentMonitorStartedEvent. You can use this event to trigger application specific
logic.

The following figure illustrates the messaging that occurs between the CIL and CTI OS Server after an
application initiates a CCM based silent monitor request using Agent.SuperviseCall().

Building Your Custom CTI Application
60

Building Your Custom CTI Application
Unified CM-Based Silent Monitoring in Your Application

Figure 5: CIL-to-CTI OS Server Messaging When CCM-Based Silent Monitor Initiated Using Agent.SuperviseCall()

C# Code Sample for Initiating Silent Monitor Session

Agent curAgent = session.GetCurrentAgent() ;
Agent monAgent = curAgent.GetMonitoredAgent() ;
Call monCall = curAgent.GetMonitoredCall() ;

string monAgentID;
monAgent.GetValueString(

Enum_CtiOs.CTIOS_UNIQUEOBJECTID,
out monAgentID);

string monCallID;
monCall.GetValueString(

Enum_CtiOs.CTIOS_UNIQUEOBJECTID,
out monCallID);

Arguments args = new Arguments() ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTREFERENCE, monAgentID) ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTCALLREFERENCE, monCallID) ;
args.SetValue(

Enum_CtiOs.CTIOS_SUPERVISORYACTION,
SupervisoryAction.eSupervisorMonitor) ;

Building Your Custom CTI Application
61

Building Your Custom CTI Application
C# Code Sample for Initiating Silent Monitor Session

CilError ret = curAgent.SuperviseCall(args) ;

Current Agent Being Silently Monitored
If an application needs to determine if the current agent is being silently monitored, then compare the current
agent unique object ID against the silent monitor target agent unique ID carried in the
SilentMonitorStartedEvent.

Code Sample for Determining if Current Agent Is Target of Silent Monitor Call

The parameter args carries the payload of an OnSilentMonitorStartedEvent.Note

public bool IsCurrentAgentTargetAgent(Arguments args)
{

bool isTarget = false ;

if (m_ctiSession != null)
{

Agent rAgent = m_ctiSession.GetCurrentAgent() ;
if (rAgent != null)
{

string curAgentUID ;
rAgent.GetValueString(Enum_CtiOs.CTIOS_UNIQUEOBJECTID,

out curAgentUID) ;
if (curAgentUID != null)
{

string targetAgentUID ;

args.GetValueString(Enum_CtiOs.CTIOS_SILENTMONITOR_TARGET_AGENTUID,
out targetAgentUID) ;

if (targetAgentUID != null)
{

isTarget = curAgentUID == targetAgentUID;
}

}
}

}

return isTarget ;
}

CCM-Based Silent Monitor Request End
CCM based silent monitoring is stopped using the SuperviseCall method associated with the supervisor's
Agent object. To stop silent monitor, set the SupervisoryAction parameter to eSupervisorClear. Set the
AgentReference parameter to the unique object ID of the agent currently silent monitored. Set the
AgentCallReference parameter to the unique object ID of the call that resulted from the initiation of silent
monitor (Agent.SuperviseCall[eSupervisorMonitor]). The application receives the
SilentMonitorStopRequestedEvent event when the stop silent monitoring request is processed.

The following figure illustrates the message flow.

Building Your Custom CTI Application
62

Building Your Custom CTI Application
Current Agent Being Silently Monitored

Figure 6: Message Flow When Ending a CCM-Based Silent Monitor Request

You can also release the silent monitor call using the Call.Clear() method.

Code Sample for Ending Silent Monitor Session

Agent curAgent = session.GetCurrentAgent();

string monAgentID;
curAgent.GetValueString(

Enum_CtiOs.CTIOS_SILENTMONITOR_TARGET_AGENTUID,
out monAgentID);

string monCallID;
curAgent.GetValueString(

Enum_CtiOs.CTIOS_SILENTMONITOR_CALLUID,
out monCallID);

Arguments args = new Arguments() ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTREFERENCE, monAgentID) ;
args.SetValue(Enum_CtiOs.CTIOS_AGENTCALLREFERENCE, monCallID) ;

args.SetValue(
Enum_CtiOs.CTIOS_SUPERVISORYACTION,
SupervisoryAction.eSupervisorClear) ;

CilError ret = curAgent.SuperviseCall(args) ;

Determine if CCM-Based Silent Monitoring Is Enabled
To determine if CCM based silent monitoring is enabled, use the Session.IsCCMSilentMonitor() method if
the application uses the C++, Java, or .Net CIL. Use the CCMBasedSilentMonitor value stored in the session
object if the application uses the COM CIL:

/// <summary>
/// Determines if CCM Based Silent Monitor is enabled
/// </summary>
public bool IsCCMSilentMonitor()
{

if (m_ctiSession == null)
{

return false ;
}

Building Your Custom CTI Application
63

Building Your Custom CTI Application
Code Sample for Ending Silent Monitor Session

return m_ctiSession.IsCCMSilentMonitor() ;
}

Agent Greeting
There are several ways to control the behavior of the Agent Greeting feature. You can enable or disable Agent
Greeting for the duration of the Agent's login session. Note that when an Agent logs in, the feature is
automatically enabled.

Code example:

Arguments &rArgAgentAction = Arguments::CreateInstance();
rArgAgentAction.AddItem("AgentAction", commandRequested);
int nRetVal = m_pCtiAgent->SetAgentGreetingAction(rArgAgentAction);
rArgAgentAction.Release();

Where "commandRequested" is an int with the value 1 (to disable) or 2 (to enable).

Deployment of Custom CTI OS Applications
This section discusses the deployment of CTI OS applications in the various programming languages and
interfaces.

Application Deployment Using ActiveX Controls
ActiveX controls need all the components for COM deployment plus the components listed in the following
table.

Table 3: ActiveX Control DLLs

DescriptionDLL

AgentSelect ActiveX controlAgentselectctl

Agentstate ActiveX controlagentstatectl.dll

Alternate ActiveX controlAlternateCtl.dll

Answer/Release ActiveX controlanswerctl.dll

Arguments COM classarguments.dll

Badline ActiveX controlbadlinectl.dll

Basic Button ActiveX controlbuttoncontrol.dll

Cisco EVVBU Media Termination ActiveX controlccnsmt.dll

Chat ActiveX controlchatctl.dll

Conference ActiveX controlconferencectl.dll

Building Your Custom CTI Application
64

Building Your Custom CTI Application
Agent Greeting

DescriptionDLL

Common Dialogs utility COM objectcticommondlgs.dll

AgentStatistics ActiveX controlCTIOSAgentStatistics.dll

CallAppearance ActiveX controlctioscallappearance.dll

COM cil interfacesctiosclient.dll

COM sessionresolverctiossessionresolver.dll

SkillgroupStatistics ActiveX controlCTIOSSkillGroupStatistics.dll

StatusBar ActiveX controlctiosstatusbar.dll

EmergencyAssist ActiveX controlEmergencyAssistCtl.dll

GridControl ActiveX controlgridcontrol.dll

Hold/Retrieve ActiveX controlholdctl.dll

Internationalization COM objectIntlResourceLoader.dll

MakeCall ActiveX controlmakecallctl.dll

Reconnect ActiveX controlReconnectCtl.dll

Record ActiveX controlrecordctl.dll

Standalone Silent Monitor ActiveX controlSilentMonitorCtl.dll

COM utility controlSubclassForm.dll

Supervisor ActiveX controlSupervisorOnlyCtl.dll

Transfer ActiveX controltransferctl.dll

You must copy and register ActiveX controls using the regsvr32 Windows utility. Some ActiveX controls
are dependent on others. For example, all Button type controls (for example, AgentStatectl.dll) depend on
(buttoncontrol.dll) and all Grid type controls (for example, CtiosCallappearance.dll) depend on Gridcontrol.dll.
The following table means that for a dll listed in the left column to work properly, all dlls listed in the right
column (Dependencies) need to be available (copied and registered).

The following table lists the dependencies of CTI OS ActiveX controls.

Table 4: Dependencies of CTI OS ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AgentSelectCtl.dllInterop.AgentSelectCtl.dll

Note

Agentselectctl

Building Your Custom CTI Application
65

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.AgentStateCtl.dllInterop.AgentStateCtl.dll

Note

agentstatectl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AlternateCtl.dllInterop.AlternateCtl.dll

Note

AlternateCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.AnswerCtl.dllInterop.AnswerCtl.dll

Note

answerctl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSARGUMENTSLib.dll

Note

arguments.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.BadLineCtl.dllInterop.BadLineCtl.dll

Note

badlinectl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ButtonControl.dllInterop.ButtonControl.dll

Note

buttoncontrol.dll

Traceserver.dll, LIBG723.dllccnsmt.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ChatCtl.dllInterop.ChatCtl.dll

Note

chatctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.ConferenceCtl.dllInterop.ConferenceCtl.dll

Note

conferencectl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTICOMMONDLGSLib.dll

Note

cticommondlgs.dll

Building Your Custom CTI Application
66

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, Gridcontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSAgentStatistics.dllInterop.CTIOSAgentStatistics.dll

Note

CTIOSAgentStatistics.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSCallAppearance.dllInterop.CTIOSCallAppearance.dll

Note

ctioscallappearance.dll

ATL80.dll, arguments.dll, ctiosracetext.exe, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSCLIENTLib.dll

Note

If the client application uses silent monitoring in monitoring mode, ccnsmt.dll is
also a dependency.

If the client application uses silent monitoring in monitored mode, wpcap.dll is
also a dependency.

ctiosclient.dll

ATL80.dll, ctiosclient.dll, arguments.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.CTIOSSESSIONRESOLVERLib.dll

Note

ctiossessionresolver.dll

ATL80.dll, ctiosclient.dll, arguments.dll, Gridcontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSSkillGroupStatistics.dllInterop.CTIOSSkillGroupStatistics.dll

Note

CTIOSSkillGroupStatistics.dll

ATL80.dll, ctiosclient.dll, arguments.dll, cticommondlgs.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.CTIOSStatusBar.dllInterop.CTIOSStatusBar.dll

Note

ctiosstatusbar.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.EmergencyAssistCtl.dllInterop.EmergencyAssistCtl.dll

Note

EmergencyAssistCtl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.GridControl.dllInterop.GridControl.dll

Note

gridcontrol.dll

Building Your Custom CTI Application
67

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

DependenciesDLL File

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.HoldCtl.dllInterop.HoldCtl.dll

Note

holdctl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:Cisco.INTLRESOURCELOADERLib.dll

Note

IntlResourceLoader.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.MakeCallCtl.dllInterop.MakeCallCtl.dll

Note

makecallctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.ReconnectCtl.dllInterop.ReconnectCtl.dll

Note

ReconnectCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.RecordCtl.dllInterop.RecordCtl.dll

Note

recordctl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, ccnsmt.dll,MSVCP80.dll,MSVCR80.dll

When used in a.NET application must
include:AxInterop.SilentMonitorCtl.dllInterop.SilentMonitorCtl.dll

Note

SilentMonitorCtl.dll

ATL80.dll, MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.SubclassForm.dllInterop.SubclassForm.dll

Note

SubclassForm.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, MSVCP80.dll,
MSVCR80.dll

When used in a.NET application must
include:AxInterop.SupervisorOnlyCtl.dllInterop.SupervisorOnlyCtl.dll

Note

SupervisorOnlyCtl.dll

ATL80.dll, ctiosclient.dll, arguments.dll, buttoncontrol.dll, cticommondlgs.dll,
MSVCP80.dll, MSVCR80.dll

When used in a.NET application must
include:AxInterop.TransferCtl.dllInterop.TransferCtl.dll

Note

transferctl.dll

Building Your Custom CTI Application
68

Building Your Custom CTI Application
Application Deployment Using ActiveX Controls

Application Deployment Using COM (but Not ActiveX Controls)
Custom applications using COM from VB or C++ or any other Com supported development platform need
the following COM Dynamic Link Libraries:

• CTIOSClient.dll

When used in a.NET application must include: Cisco.CTIOSCLIENTLib.dll

•
• Arguments.dll

When used in a.NET application must include: Cisco.CTIOSARGUMENTSLib.dll

•
• CtiosSessionresolver.dll (only if used – see previous discussion)

When used in a.NET application must include: Cisco.CTIOSSESSIONRESOLVERLib.dll

•
• ATL80.dll (only if not already available on target system)

• If the client application uses silent monitoring in monitoring mode, ccnsmt.dll is needed. If the client
application uses silent monitoring in monitored mode, wpcap.dll is also a dependency.

You must copy and register the dll files on the target system. To register, use theWindows utility regsvr32.exe
providing the dll name (for example, regsvr32 ctiosclient.dll).

ATL80.dll is a Microsoft Dynamic Link Library implementing the Active Template Library used by CTI OS.
It is usually available on most Windows client systems in a windows system directory (for example,
\winnt\syste32 on Windows 2000). Because CTI OS depends on this DLL, you must copy and register it if it
is not already available at the target system.

Application Deployment Using C++ CIL
Custom C++ applications link to the static CTI OS libraries. With your custom application, you should also
distribute ctiostracetext.exe. For the tracing component to work, you need to register it on the system where
your application will run. To register the trace tool, run ctiostracetext /RegServer. Besides ctiostracetex.exe,
there is no need to ship additional components.

Application Deployment Using .NET CIL
Applications built with the .NET CIL class libraries require the following assemblies to be distributed with
the custom application.

Table 5: .NET CIL Libraries

DescriptionLibrary

.NET CIL Class library, contains the CTI OS object classesNetCil.dll

.NET Util Class library, contains helper and utility classes used in conjunction
with .NET CIL

NetUtil.dll

Building Your Custom CTI Application
69

Building Your Custom CTI Application
Application Deployment Using COM (but Not ActiveX Controls)

In addition to NetCil.dll and NetUtil.dll, the .NET Combo sample requires the CTIOSVideoCtl.dll, which is
located in C:\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Controls.

Note

You can install both assembly libraries in the Global Assembly Cache (GAC) at the application host computer
or they can be at the working directory of the custom client application.

Custom Application and CTI OS Security
A custom application that launches the SecuritySetupPackage.exe program to create CTI OS client certificate
request needs to add the InstallDir registry value under the following registry key:

SOFTWARE\Cisco Systems\CTI Desktop\CtiOs

If the InstallDir registry value does not exist, then the setup program fails and stops the installation process,
otherwise the program uses the InstallDir registry value to create and copy the security files to the right place
after it appends Security directory to it.

For example, if the InstallDir registry value is
<drive>:\Program Files\Cisco Systems\CTIOS Client

then the security files should be under
<drive>:\Program Files\Cisco Systems\CTIOS Client\Security

Supervisor Applications
This section describes how to build a supervisor desktop for Unified CCE. The following documentation
references the source of the CTI OS Toolkit Combo Desktop when describing how to build a supervisor
desktop. This section also references a class called CTIObject. The CTI OS Toolkit Combo Desktop uses this
class to wrap CIL functionality.

The source code for the Combo Desktop is found in the following directories.

• <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Samples\CTI
Toolkit Combo Desktop.NET

• <Install Drive>\Program Files\Cisco Systems\CTIOS Client\CTIOS Toolkit\dotNet CIL\Samples\CtiOs
Data Grid.NET

In the following section, string keys are used as keys to method calls. This is for the sake of readability. A
developer writing an application can use either string or integer based keys.

General Flow
The general flow of a supervisor application is as follows:

1. Request the supervisor's teams.

2. Start monitoring the supervisor's team.

Building Your Custom CTI Application
70

Building Your Custom CTI Application
Custom Application and CTI OS Security

3. Select a team member and start monitoring the selected team member's activity.

4. Perform supervisory actions on the currently monitored call.

These steps illustrate the layers of a supervisor application. First, the application gets the team. After the team
is retrieved, the supervisor application can monitor agents. This generates more events/information allowing
the supervisor application to monitor agent calls.

Monitored and Unmonitored Events
When writing a supervisor application, developers are confronted with two types of events: monitored events
and unmonitored events.

Unmonitored events are received for agent, call, and button enablement events associated with the supervisor.
Monitored events are received to notify the supervisor of agent, call, and button enablement events
corresponding to an agent or call that is currently monitored by the supervisor. These events carry a field
named CTIOS_ISMONITORED. This field is set to true.

For example, if a supervisor changes state to ready, the supervisor receives an AgentStateEvent. If a supervisor
is monitoring an agent and the monitored agent changes state, the supervisor receives an
OnMonitoredAgentState event. Call events behave in a similar manner. When the supervisor puts a call on
hold, the supervisor receives an OnCallHeld event. When the supervisor is monitoring an agent and that agent
puts a call on hold, the supervisor receives an OnMonitoredCallHeld event.

Button enablement events behave differently. When the supervisor is monitoring agents on the supervisor's
team, the agent receives OnButtonEnablementChange events for the monitored agent. It is important for the
application not to apply these events to elements of the application that control the supervisor's or any of the
supervisor's calls state. For example, if a monitored agent changes state to ready, the supervisor receives a
ButtonEnablementChange event. The supervisor should not apply this event since the event does not apply
to the supervisor's state.

To determine if an event is monitored, check the payload of the event for the “Monitored” field. If the field
exists and is set to true, the event is a monitored event.

Supervisor Application Flow to Request and Monitor Team
This section discusses steps 1 and 2 in the flow of a supervisor application. The methods and events listed
below are used to request and monitor the team.

Methods Called:

Agent.RequestAgentList(Arguments args)

Agent.StartMonitoringAgentTeams(Arguments args)

Events Processed:

OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfo

OnSkillInfo

The following diagram illustrates the flow of messages between the application and CTI OS Server when the
supervisor application requests its team and then requests to monitor the team. Because logging in a supervisor

Building Your Custom CTI Application
71

Building Your Custom CTI Application
Monitored and Unmonitored Events

is the same as logging in an agent, this diagram picks up at the first AgentStateEvent after the agent has logged
in.

Figure 7: Message Flow Between the Application and the CTI OS Server

The requests leading up to and includingAgent.StartMonitoringAgent() is in CTIObject.StartMonitoringAgent().
When writing a supervisor application, the developer should call Agent.RequestAgentTeamList() and
Agent.StartMonitoringAllAgentTeams(). The developer should call these methods after the supervisor logs
in. In the CTI OS Toolkit Combo Desktop, this is done when processing the eAgentStateEvent in the
SupervisorUIManager class' ProcessAgentStateEvent() method. SupervisorUIManager checks to see that the
current agent is a supervisor. If so and if CTIObject.StartMonitoringTeams() has not already been called,
CTIObject.StartMonitoringTeams() is called. CTIObject.StartMonitoringTeams() then calls
Agent.RequestAgentTeamList() and Agent.StartMonitoringAllAgentTeams().

If these requests are successful, the desktop begins receiving OnNewAgentTeamMember,
OnMonitoredAgentStateChange, and MonitoredAgentInfoEvent events. The next sections describe how to
handle each of these events.

OnNewAgentTeamMember Events
Process OnNewAgentTeamMember events as follows.

The OnNewAgentTeamMember event is received for two possible reasons:

Building Your Custom CTI Application
72

Building Your Custom CTI Application
OnNewAgentTeamMember Events

1. After the application calls Agent.RequestAgentTeamList(), OnNewAgentTeamMember events are sent
for each member of the supervisor's team.

2. An agent has been added or removed from the supervisor's team.

To address point 2 above, examine the field “ConfigOperation” in the payload of theOnNewAgentTeamMember
event. If this flag does not exist or exists and is set to TeamConfigFlag.CONFIG_OPERATION_ADDAGENT
(1), add the agent to the grid. If the flag exists and is not set to
TeamConfigFlag.CONFIG_OPERATION_ADDAGENT, remove the agent from the grid.

In supervisor applications, use the value in the UniqueObjectID field of the event to uniquely reference/track
each agent in the supervisor's team. This ID uniquely identifies each agent cached on the CIL.

OnNewAgentTeamMember Events and Supervisors

Because the supervisor is considered part of the team, an OnNewAgentTeamMember event is sent for the
supervisor logged in to the application. If the developer does not want to include the supervisor in the agent
team grid, compare the current agent ID to the ID of the agent carried in the OnNewAgentTeamMember
event. If the values are equal, do not add the supervisor to the grid.

Note

If the developer does not want to add primary supervisors to the grid, retrieve the Agent object stored in the
CIL using the Session.GetObjectFromObjectID() method. When calling Session.GetObjectFromObjectID(),
set the value in the “UniqueObjectID” (Enum_CtiOs.CTIOS_UNIQUEOBJECTID) field of the
OnNewAgentTeamMember event as the key (first parameter to this method). This method returns an Agent
object. Check the properties of the Agent object for the field “AgentFlags”
(Enum_CtiOs.CTIOS_AGENTFLAGS). If the field exists with the
TeamConfigFlag.AGENT_FLAG_PRIMARY_SUPERVISOR (0x01) bit set, the agent is a primary supervisor
and should not be added to the grid.

It is possible for an agent to be team supervisor while not being a member of the team. Some supervisor
applications, including the combo desktop, may not want to add this type of supervisor to the agent select
grid. This is tricky because supervisors that are not part of the team generate OnMonitoredAgentStateChange
events. The agent select grid normally updates when the OnMonitoredAgentStateChangeevent is received.
To prevent this, supervisors who are not members of the team that they are supervising need to be marked as
such. You can use this information to avoid updates when an OnMonitoredAgentStateChange event is received
for a supervisor that is not part of the team. To accomplish this, the application leverages the following:

1. OnNewAgentTeamMember events are not received for supervisors that are not part of the team.

2. The CIL keeps a cache of all the agents and supervisors that it knows about. Agents in this cache have
properties that can be modified by applications built on top of the CIL.

Knowing this, the application marks every agent that is included in a OnNewAgentTeamMember event as a
member of this supervisor's team.When OnMonitoredAgentStateChange events are received, the agent select
grid only updates when the agent that is represented by the event is marked as a member of the team. In short,
any agent that does not send a OnNewAgentTeamMember event to the CIL is not displayed in the agent select
grid. This is illustrated in the SupervisorUIManager.ProcessMonitoredAgentStateChange() method.

OnMonitoredAgentStateChange Events
OnMonitoredAgentStateChange events are sent when an agent in the supervisor's team changes state. Supervisor
applications, like the CTI OS Toolkit Combo Desktop, use this event to update structures that store the

Building Your Custom CTI Application
73

Building Your Custom CTI Application
OnNewAgentTeamMember Events and Supervisors

supervisor's team (the agent team grid). This event is processed similar to OnNewAgentTeamMember.
However, there is one subtle difference. Instead of using the Arguments object carried with the event, the
application uses the arguments associated with the Agent object cached by the CIL. This is done to correctly
handle skill group membership changes related to dynamic reskilling. The CIL contains logic that processes
the OnMonitoredAgentStateChange and determines whether or not an agent has been added or removed from
a skill group. The changes in the agent's skill group membership are reflected in the Agent object's properties.

OnMonitoredAgentInfo Event
You can use this event to populate the following agent information:

• AgentID

• AgentFirstName

• AgentLastName

• LoginName

Time in State
If your application needs to track an agent's time in state, it can be done as follows. The algorithm is contained
in AgentSelectGridHelper.cs. The first part of the algorithm resides in the AgentData.UpdateData() method.
This method decides if the agent's state duration is known or unknown. An agent's state duration is unknown
if the agent was just added to the grid or if the agent's state has not changed since being added to the grid. If
a state change is detected after the agent was added to the grid, the time of the state change is marked.

Second, there is a timer callback that the AgentSelectGridHelper class starts when the grid is initialized. The
timer callback fires every ten seconds. When the callback fires, the method
AgentSelectGridHelper.m_durationTimer_Tick() cycles through all of the rows in the grid. Each row whose
Time in State column is not unknown has its value set to the time the agent changed state minus the current
time.

OnSkillInfo Event
OnSkillInfo events are sent to the CIL when skillgroup statistics are enabled using the
Agent.EnableSkillGroupStatistics() method. These events are used to populate the fields in the Skill Name
column of the team grid. OnSkillInfo events carry the ID of a skill group and its corresponding name. The
AgentSelectGridHelper processes this event by storing a mapping of skill group IDs to skill group names.
After the map is updated, each field in the Skill Name column is updated to reflect the new skill name.

Agent Team Information Displayed in Grid Format
If your application would like to display agent team information in a grid similar to the one used by the CTI
OS Toolkit Combo Desktop, the following table illustrates which events supply information for each column.

Please refer to CtiOsDataGrid.AgentSelectGridHelper as an example of handling theOnNewAgentTeamMember
event.

Building Your Custom CTI Application
74

Building Your Custom CTI Application
OnMonitoredAgentInfo Event

Table 6: Agent Grid Data Population

FieldEventColumn

Enum_CtiOs.CTIOS_AGENTFIRSTNAME

Enum_CtiOs.CTIOS_AGENTLASTNAME

OnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Name

Enum_CtiOs.CTIOS_LOGINNAMEOnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Login Name

Enum_CtiOs.CTIOS_AGENTIDOnNewAgentTeamMember

OnMonitoredAgentStateChange

OnMonitoredAgentInfoEvent

Agent ID

Enum_CtiOs.CTIOS_STATEOnNewAgentTeamMember

OnMonitoredAgentStateChange

Agent State

For more information, see Time in State,
on page 74.

OnMonitoredAgentStateChangeTime in State

Enum_CtiOs.CTIOS_NUMSKILLGROUPSOnMonitoredAgentStateChangeSkill Group

For more information, see OnSkillInfo
Event, on page 74.

OnSkillInfoEventSkill Name

Enum_CtiOs.CTIOS_AGENTAVAILABILITYSTATUSOnNewAgentTeamMemberAvailable for Call

The Skill Group column lists the field from the Arguments object as CTIOS_NUMSKILLGROUPS. This
field tells the developer how many skill groups the agent belongs to. To obtain information about each of the
agent's skill groups the developer should construct the following loop to get information about each of the
agent's skill groups (code taken from the sample source file CtiOsDataGrid\AgentSelectGridHelper.cs).

Note

// Check to see if the event carries an array of skillgroups
// (OnNewAgentTeamMember)
//
int numGroups ;
if (args.GetValueInt(Enum_CtiOs.CTIOS_NUMSKILLGROUPS, out numGroups))
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_METHOD_AVG_LOGIC,
methodName,
"Found skillgroup numbers") ;

m_skillGroupNumbers.Clear() ;

for (int j = 1 ; j <= numGroups ; j++)
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_METHOD_AVG_LOGIC,

Building Your Custom CTI Application
75

Building Your Custom CTI Application
Agent Team Information Displayed in Grid Format

methodName,
string.Format("Looking for skillgroup at position {0}", j)) ;

string unknownStr = string.Format(
AgentSelectGridHelper.STRING_UNKNOWN_SG_FORMAT, j) ;

// Keys for individual skillgroups are formatted as SkillGroup[{index}]
//
string sgKey = string.Format(

AgentSelectGridHelper.STRING_SKILLGROUP_FORMAT, j) ;

// Each element of the array is an argument containing
// skillgroup information.
//
Arguments sgInfo ;
if (!args.GetValueArray(sgKey, out sgInfo))
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_WARNING,
methodName,
string.Format("No skillgroup info at position {0}", j)) ;

m_skillGroupNumbers.Add(unknownStr) ;
}
else
{

string sgStr ;
if (sgInfo.GetValueString(

Enum_CtiOs.CTIOS_SKILLGROUPNUMBER,
out sgStr))

{
CtiOsDataGrid.Trace(

Logger.TRACE_MASK_METHOD_AVG_LOGIC,
methodName,
string.Format(

"Found skillgroup number {0} at position {1}", sgStr, j)) ;

m_skillGroupNumbers.Add(sgStr) ;
}
else
{

CtiOsDataGrid.Trace(
Logger.TRACE_MASK_WARNING,
methodName,
string.Format("No skillgroup number at position {0}", j)) ;

m_skillGroupNumbers.Add(unknownStr) ;
}

}
}

}

Supervisor Application Flow to Monitor an Agent
This section discusses step 3 in the flow of a supervisor application. The methods and events listed below are
used to monitor an agent.

Methods Called:

Agent.StartMonitoringAgent(Arguments args)

Events Processed:

Building Your Custom CTI Application
76

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

OnSupervisorButtonChange

OnStopMonitoringAgent

OnMonitoredAgentStateChange

OnMonitoredCallBegin

OnMonitoredCallCleared

OnMonitoredCallConferenced

OnMonitoredCallConnectionCleared

OnMonitoredCallDataUpdate

OnMonitoredCallDelivered

OnMonitoredCallDequeued

OnMonitoredCallDiverted

OnMonitoredCallEstablished

OnMonitoredCallFailed

OnMonitoredCallHeld

OnMonitoredCallOriginated

OnMonitoredCallQueued

OnMonitoredCallReachedNetwork

OnMonitoredCallRetrieved

OnMonitoredCallServiceInitiated

OnMonitoredCallTransferred

OnMonitoredCallTranslationRoute

OnMonitoredCallEnd

After a supervisor application is informed of an agent teammember via the OnNewAgentTeamMember event,
the supervisor can monitor the agent via the Agent.StartMonitoringAgent() method. The following sequence
diagram illustrates the call to StartMonitoringAgent() and the events sent upon successful completion of the
call.

Building Your Custom CTI Application
77

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

Figure 8: Sequence Diagram for StartMonitoringAgent() and Successful Call Completion

The requests leading up to and including Agent.StartMonitoringAgent() is in the
CTIObject.StartMonitoringAgent() method.When calling the Agent.StopMonitoringAgent(), the Agent object
associated with the supervisor (the current agent) is the target of the method. The parameter is an Arguments
object set as follows:

Table 7: Agent.StopMonitoringagent Parameter

ValueKey

The UniqueObjectID of the currently monitored agent.AgentReference

When calling Agent.StartMonitoringAgent(), the Agent object associated with the supervisor (the current
agent) is the target of the method. The parameter is an Arguments object set as follows:

Table 8: Agent.StartMonitoringAgent Parameter

ValueKey

The UniqueObjectID of the agent to begin monitoring.AgentReference

Building Your Custom CTI Application
78

Building Your Custom CTI Application
Supervisor Application Flow to Monitor an Agent

OnSupervisorButtonChange
This event is delivered to define the operations that the supervisor can successfully run. The operations included
in this event are as follows:

• Log out an agent on the team

• Make an agent on the team ready

• Enable silent monitor

• Enable barge-in on agent

• Enable intercept call

The application uses the bitmask carried by this event to enable or disable the functionality listed above. The
ProcessSupervisorButtonChange() method in SupervisorUIManager illustrates how to process this event.

Monitored Call Events
The majority of events listed with StartMonitoringAgent() are monitored call events. These events inform the
supervisor of monitored agent calls beginning, ending, and changing. The combo desktop uses these events
to populate its monitored calls grid.

Supervisor Application Makes Agent Ready or Logs Agent Out
When StartMonitoringAgent() is called for a given agent, the supervisor application begins receiving
SupervisorButtonChange events. This event can indicate that the monitored agent is in a state where the
supervisor can make the agent ready or log the agent out. The following section describes how a supervisor
application can make an agent on the supervisor's team ready or log the agent out.

To make an agent ready, the desktop calls the method Agent.SetAgentState(). When calling this method, the
Agent object representing the monitored agent is used as the target of the method. The parameter is an
Arguments object populated with the following key/value pairs:

Table 9: Agent.SetAgentState Parameter

ValueKey

The ID of the supervisor who is making the agent ready. This value is the value
of the AgentID key associated with the current agent (the current agent is the
agent passed into the call to Session.SetAgent() when first logging in the agent).

SupervisorID

The state to which to set the agent. In this case, the state is ready (integer with
value 3).

AgentState

To log out an agent, the desktop calls the method Agent.SetAgentState().When calling this method, the Agent
object representing the monitored agent is used as the target of the method. The parameter is an Arguments
object populated with the following key/value pairs:

Building Your Custom CTI Application
79

Building Your Custom CTI Application
OnSupervisorButtonChange

Table 10: Agent.SetAgentState Parameter (Logout) A

ValueKey

The ID of the supervisor who is making the agent ready. This value is the value
of the AgentID key associated with the current agent (the current agent is the
agent passed into the call to Session.SetAgent() when first logging in the agent).

SupervisorID

The state to which to set the agent. In this case, the state is ready (integer with
value 3).

AgentState

The value associated with this key is 999. The value 999 indicates to the rest of
Unified CCE that the agent was logged out by their supervisor.

EventReasonCode

An agent involved in a call is not logged out until the agent is disconnected from the call. Both the
out-of-the-box desktop and the combo desktop warn the supervisor of this behavior. To do this, check the
state of the currently monitored agent. If the agent's state is talking, hold, or reserved, the monitored agent is
involved in one or more calls and is not logged out until the agent is disconnected from all calls. This is
illustrated in SupervisorUIManager.m_btnMonLogoutAgentClick().

Successfully calling Agent.SetAgentState() should be followed by one or more SupervisorButtonChange and
MonitoredAgentEvents reflecting the change in the monitored agent's state.

Supervisor Application Flow to Monitor a Call
This section discusses step 4 in the flow of a supervisor application. The methods and events listed below are
used to monitor a call.

Methods Called

Agent.StartMonitoringCall()

Agent.SuperviseCall()

Events Processed

Events Processed

OnSupervisorButtonChange

AgentStateEvents

CallEvents

MonitoredCallEvents

MonitoredCallEvents
As stated in the “Monitoring Agents” section, calling Agent.StartMonitoringAgent() triggers
MonitoredCallEvents for the agent specified in Agent.StartMonitoringAgent(). The MonitoredCallEvents
received by the supervisor desktop inform the desktop of the state of the monitored agent's calls. The combo
desktop uses these events to populate and update the monitored calls grid. For more information see the
SupervisorUIManager and CallAppearanceHelper classes.

To monitor a call, the supervisor calls the Agent.StartMonitoringCall() method. The target of the call is the
current agent (Agent object representing the supervisor). StartMonitoringCall() takes an Arguments object

Building Your Custom CTI Application
80

Building Your Custom CTI Application
Supervisor Application Flow to Monitor a Call

with the CallReference key set to the UniqueObjectID of the call to be monitored. This is illustrated in the
CTIObject.StartMonitoringCall()method.

Barging into Calls
The following sequence diagram illustrates a request to barge into an agent's call. In this sequence diagram,
the supervisor application is divided into four components to illustrate the different events that affect the
different pieces of a supervisor application.

Figure 9: Sequence Diagram for Barging into a Call

Figure 10:

After Agent.StartMonitoringCall() is called for a specific call, the application begins receiving
SupervisorButtonChange events. When a call is being monitored, the SupervisorButtonChange event can
carry a bitmask indicating that the call can be barged into. To barge-in on a call, the application calls the
Agent.SuperviseCall() method. The target of the SuperviseCall() method is the current agent (the Agent object
that represents the supervisor). The parameter to the method is an Arguments object with the following
key/value pairs:

Table 11: Agent.StartMonitoringCall Parameter

ValueKey

The UniqueObjectID of the currently monitored agentAgentReference

The UniqueObjectID of the currently monitored callCallReference

The value 3. For the .NET CIL, this is SupervisoryAction.eSupervisorBargeInSupervisoryAction

When successfully calling this method, the application receives many events because this method not only
changes the state of the monitored call, but also delivers a call to the supervisor which changes the supervisor's
state. When an OnButtonEnablementChange event is received, be sure to check the monitored flag. If the flag

Building Your Custom CTI Application
81

Building Your Custom CTI Application
Barging into Calls

does not exist or exists and is set to false, apply the event to any application specific logic or UI to control
the supervisor's state. This is illustrated in SoftphoneForm.OnEvent(). Notice that this method discards any
event that is monitored.

One or more OnSupervisorButtonChange events are received by the application. These events notify the
application that it is now possible to intercept the agent's call.

The trickiest piece of handling the events that result from a successful call to Agent.SuperviseCall() is handing
the resulting Call andMonitoredCall events. You should apply all CallEvents to whatever application specific
object and/or UI element is managing calls directly connected to the supervisor's device (SoftphoneForm in
the combo desktop). You should apply all MonitoredCallEvents to whatever application specific object and/or
UI element is managing calls connected to the supervisor's team members/monitored agents
(SupervisorUIManager in the combo desktop).

Calling SuperviseCall() with the SupervisoryAction set to barge-in initiates a consultative conference between
the caller, agent, and supervisor. This means that whatever UI elements and/or objects that handle monitored
calls has to be able to handle the set of events that set up a consultative conference. In general, this is not too
difficult. The consultative call is joined to the conference call by sending a MonitoredCallEndEvent to end
the consultative call. Then a MonitoredCallDataUpdateEvent is used to change the ID of the call to the
conference. The MonitoredCallEndEvent takes care of cleaning up the consultative call. The trick is to check
OnMonitoredCallDataUpdateEvents for the OldUniqueObjectID key. If this key exists, it means that the
UniqueObjectID of a call has changed. OldUniqueObjectID stores the old/obsolete ID of the call.
UniqueObjectID stores the new ID of the call. This new ID is carried in all future events for the call. Application
logic must be updated based on this information or new events for the call are not tracked correctly.

Intercepting Calls
After a supervisor has barged into an agent's call, the supervisor can intercept the call. This is done by calling
the Agent.SuperviseCall() method. The target of the SuperviseCall() method is the current agent (the Agent
object that represents the supervisor). The parameter to the method is an Arguments object with the following
key/value pairs:

Table 12: Agent.SuperviseCall Parameter

ValueKey

The UniqueObjectID of the currently monitored agentAgentReference

The UniqueObjectID of the currently monitored callCallReference

The value 4. For the .NET CIL, this is SupervisoryAction.eSupervisorInterceptSupervisoryAction

Calling this method removes the agent from the call. This means that OnMonitoredEndCall events are received
for the agent. Also, OnSupervisorButtonChange events are sent to reflect the current state of the monitored
agent.

Monitored Call Data
Setting monitored call data is similar to setting call data on an agent's call. The only difference is that the
monitored call is the target of the Call.SetCallData() method. You can retrieve the currently monitored call
by calling Agent.GetMonitoredCall() where the current agent (the Agent object that represents the supervisor)
is the target of the Agent.GetMonitoredCall() method.

Building Your Custom CTI Application
82

Building Your Custom CTI Application
Intercepting Calls

Sample Code in CTI OS Toolkit
The CTI OS Toolkit provides several samples that illustrate how to use the various CTI OS CILs in custom
applications. These samples are categorized according to the CIL (.NET, Java, or Win32) that they use.

.NET Samples

Of all the samples provided in the CTI OS toolkit, the .NET sample applications provide the most complete
set of coding examples. Therefore, use the .NET samples as the reference implementation for custom CTI OS
application development regardless of which language you plan to use in your custom development.

Use the Java and Win32 samples as secondary references to highlight syntactic differences as well as minor
implementation differences between the CILs.

Note

CTI Toolkit Combo Desktop.NET
The CTI Toolkit Combo Desktop.NET sample illustrates how to use the .NET CIL to build a fully functional
agent or supervisor desktop. Though this sample is written in C#, it is a good reference for how to make CIL
requests and handle CIL events in an agent mode CIL application. This sample illustrates the following CIL
programming concepts:

• Agent mode connection to CTI OS

• Agent desktop functionality (call control, agent state control, statistics)

• Supervisor desktop functionality (team state monitoring, barge-in, intercept)

• Outbound option functionality

• Button enablement

• Failover

CTI Toolkit Combo Desktop Configuration

The .NET CTI Combo desktop is configured via an XML file found in the current working directory of the
desktop.

The name of the file used to configure the CTI Toolkit ComboDesktop is “CTIOSSoftphoneCSharp.exe.config”.
The desktop attempts to find the file in the current directory. If the file is not found, the desktop creates the
file and displays the following error message.

The user can now edit the file to fill in the appropriate values.

Following is an example configuration file.

Building Your Custom CTI Application
83

Building Your Custom CTI Application
Sample Code in CTI OS Toolkit

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>

<section name="JoeUser" type="System.Configuration.SingleTagSectionHandler" />
<appSettings>

<add key="LogFilePath" value=".\CtiOsClientLog" />
<add key="CtiOsA" value="CtiOsServerA" />
<add key="CtiOsB" value="CtiOsServerB" />
<add key="PortA" value="42028" />
<add key="PortB" value="42028" />

</appSettings>
</configSections>
<JoeUser TraceMask="0xf" AgentID="1003" AgentInstrument="3009" PeripheralID="5000"

DialedNumbers="3011,3010" />
</configuration>

The configuration file is composed of the following elements. These elements are as follows:

configuration – This elements contains the configuration for the desktop.

appSettings – This section defines configuration settings that are shared by every Windows user that logs in
to the system. A system administrator needs to configure these values for the appropriate CTI OS Servers and
ports. Each of this element's sub-elements defines key value pairs used to configure the desktop.

• LogFilePath – The value for this key is the path to the log file as well as the prefix of the name of the
log file. The name of theWindows user, the log file's creation time, and the extension “.log” are appended
to form the complete name of the log file. For example, if the desktop was run at 11:58 AM on May 23,
2005, the log file would have the name CtiOsClientLog.JoeUser.050523.11.58.04.5032.log.

• CtiOsA – The name or IP address of one of the CTI OS Server peers.

• CtiOsB – The name or IP address of the other CTI OS Server peer.

• PortA – The port used to connect to the CTI OS Server specified by the CtiOsA key.

• PortB – The port used to connect to the CTI OS Server specified by the CtiOsB key.

• configSections – This section defines Windows user specific sections of the configuration file.

These sections are defined using the section element. Note that in the sample configuration file there is a
section element under configSections corresponding to the element tagged with the Window's user name
“JoeUser” under the configuration element. You should not have to manually modify this section. As different
Windows users use the desktop, this section is modified to include section elements for each of the users.

The rest of the configuration file comprises elements that define configuration specific to different Windows
users. For each section element in the configSections element, there is a corresponding element under the
configuration element. These elements are used to store information specific to given users such as trace mask,
agent login ID, dialed numbers, and so on. Most of the attributes in this element do not need to be modified.
The one attribute that may need modification is the TraceMask attribute. This attribute is used to control the
amount of information logged to the log file.

CtiOs Data Grid.NET
This sample is a set of helper classes that are used in other .NET CIL samples.

Building Your Custom CTI Application
84

Building Your Custom CTI Application
CtiOs Data Grid.NET

All Agents Sample.NET
This sample illustrates how to use the .NET CIL to build a monitor mode application that monitors agents.
Though this sample is written in C#, it is a good reference in general for how to create a monitor mode CIL
application. This sample illustrates the following CIL programming concepts:

• Monitor mode connection to CTI OS

• When to enable connect and disconnect buttons for a monitor mode application

• How to handle failover in monitor mode.

• Filtering for agent events

All Calls Sample.NET
This sample illustrates how to use the .NET CIL to build a monitor mode application that monitors calls. This
sample illustrates the following CIL programming concepts:

• Monitor mode connection to CTI OS

• Connect and Disconnect error handling

• Filtering for call events

• Filtering for silent monitor call events

For CCM based silent monitoring only. Filtering for silent monitor calls is only
applicable to CCM based silent monitoring.

Note

Java CIL Samples
AllAgents - This sample illustrates how to use the Java CIL to build a monitor mode application that monitors
calls.

JavaPhone - This sample illustrates how to use the Java CIL to create a rudimentary agent mode application.

Win32 Samples
CTI Toolkit AgentDesktop - This sample illustrates how to use the Win32 COM CIL's ActiveX controls to
create an agent desktop using VisualBasic .NET.

CTI Toolkit SupervisorDesktop - This sample illustrates how to use theWin32 COMCIL's ActiveX controls
to create a supervisor desktop using VisualBasic .NET.

CTI Toolkit Outbound Desktop - This sample illustrates how to use theWin32 COMCIL's ActiveX controls
to create an outbound option desktop using VisualBasic .NET.

CTI Toolkit C++Phone - This sample illustrates how to use the C++ CIL to create a rudimentary agent mode
application.

Building Your Custom CTI Application
85

Building Your Custom CTI Application
All Agents Sample.NET

Building Your Custom CTI Application
86

Building Your Custom CTI Application
Win32 Samples

	Building Your Custom CTI Application
	System Requirements for Building Custom Applications
	Environment Set Up for .NET
	Microsoft Visual Studio
	Add CTI OS Toolkit Components to Add Reference Dialog Box
	Add Cisco CTI OS ActiveX Controls to Toolbox

	Integration Between Your Application and CTI OS via CIL
	Integration Planning and Design
	Language and Interface

	CTI Application Testing
	Test Plan Development
	Test Environment

	Developer Sample Applications
	CTI OS ActiveX Controls
	Build Simple Softphone with ActiveX Controls
	Hook for Screenpops
	CTI OS SessionResolver
	VB .NET Code Sample to Retrieve Common Session

	COM CIL. in Visual Studio
	COM CIL.
	Add COM Support to Your Application
	Important Note About COM Method Syntax

	Use CIL Dynamic Link Libraries
	Create COM Object at Run Time
	COM Events in C++
	Additional Information

	C++ CIL and Static Libraries
	Header Files and Libraries
	Configure Project Settings for Compiling and Linking
	Event Subscription in C++
	Removal of STLPort Requirement
	Additional Information

	Java CIL Libraries
	Additional Information

	.NET CIL Libraries
	Additional Information

	CTI OS Server Connection
	Connect to CTI OS Server
	Session Object Lifetime (C++ Only)

	Set Event Listener and Subscribe to Events
	Set Connection Parameters for Session
	Connect Session to CTI OS Server
	Connection Failures
	Connection Failure Events
	Connection Attempt Error Codes in Java and .NET CIL
	Configure Agent to Automatically Log In After Failover
	Stop Failover Procedure

	Connection Mode
	Set Connection Mode in OnConnection() Event Handler
	Agent Mode
	Select Agent Mode
	Monitor Mode
	Monitor Mode Filters
	Overview Monitor Mode Filters
	Filter String Syntax
	Filter Keys
	Filters for Events for Monitored Calls

	Select Monitor Mode
	Deal with Failover in Monitor Mode

	Settings Download
	Disconnect from CTI OS Server Before Shutdown

	Agent Login and Logout
	Log In an Agent
	Duplicate Login Attempts
	Overview of Duplicate Login Attempts
	Create Values in CTI OS Server Registry to Control Duplicate Sign In Attempts
	Agent Login with Incorrect Credentials
	Get Registry Configuration Values to Desktop Application
	Detect Duplicate Login Attempt in Desktop Application
	Handle Duplicate Login Attempts in Desktop Application

	Log Out an Agent
	Typical Logout Procedure

	Calls
	Multiple Call Handling
	Current Call
	Get Call Object from Session
	Set Current Call for Session
	Call Wrapup
	Logout and NotReady Reason Codes
	Applications and OnButtonEnablementChange() Event
	In the OnButtonEnablementChange() Event
	Not Ready Bitmasks in OnButtonEnablementChange() Event
	OnButtonEnablementChange() Event in Supervisor Desktop Applications

	Making Requests
	Multiple Duplicate Requests

	Events
	Event Order
	Coding Considerations for CIL Event Handling
	OnCallEnd() Event Monitoring

	Agent Statistics
	Overview of Agent Statistics
	Set Up Agent Application to Receive Agent Statistics
	Set Up Monitor Mode Application to Receive Agent Statistics
	Agent Statistics Access
	Overview of Agent Statistics Access
	eOnNewAgentStatisticsEvent() in Message Filter (JAVA)
	OnAgentStatistics() Event in Message Filter (C++ COM and VB)
	Get Agent Statistics Through Agent Instance

	Agent Statistics Configuration
	Agent Statistics Computed by Sample CTI OS Desktop

	Skill Group Statistics
	Overview of Skill Group Statistics
	Set Up Monitor Mode Application to Receive Skill Group Statistics
	Skill Group Statistics Access
	Overview of Skill Groups Statistics Access
	eOnNewSkillGroupStatisticsEvent() in Message Filter (JAVA)
	eOnNewSkillGroupStatisticsEvent() in Message Filter (C++ COM and VB)

	Skill Group Statistics Sent to Desktop Application
	Skill Group Statistics Computed by Sample CTI OS Desktop

	Silent Monitoring
	CTI OS Based Silent Monitoring
	Create a Silent Monitor Object
	Session Mode
	Monitoring Mode
	Monitored Mode

	Silent Monitor Session
	Monitoring Client Code Sample
	Monitored Client Code Sample

	Silent Monitor Manager Shutdown
	CTI OS Silent Monitor Management in Monitor Mode

	Unified CM-Based Silent Monitoring in Your Application
	CCM-Based Silent Monitor Overview
	CTI OS Monitor Mode Applications
	CCM-Based Silent Monitor Request
	C# Code Sample for Initiating Silent Monitor Session

	Current Agent Being Silently Monitored
	Code Sample for Determining if Current Agent Is Target of Silent Monitor Call

	CCM-Based Silent Monitor Request End
	Code Sample for Ending Silent Monitor Session

	Determine if CCM-Based Silent Monitoring Is Enabled

	Agent Greeting
	Deployment of Custom CTI OS Applications
	Application Deployment Using ActiveX Controls
	Application Deployment Using COM (but Not ActiveX Controls)
	Application Deployment Using C++ CIL
	Application Deployment Using .NET CIL
	Custom Application and CTI OS Security

	Supervisor Applications
	General Flow
	Monitored and Unmonitored Events
	Supervisor Application Flow to Request and Monitor Team
	OnNewAgentTeamMember Events
	OnNewAgentTeamMember Events and Supervisors
	OnMonitoredAgentStateChange Events
	OnMonitoredAgentInfo Event
	Time in State
	OnSkillInfo Event
	Agent Team Information Displayed in Grid Format

	Supervisor Application Flow to Monitor an Agent
	OnSupervisorButtonChange
	Monitored Call Events
	Supervisor Application Makes Agent Ready or Logs Agent Out

	Supervisor Application Flow to Monitor a Call
	MonitoredCallEvents
	Barging into Calls
	Intercepting Calls
	Monitored Call Data

	Sample Code in CTI OS Toolkit
	.NET Samples
	CTI Toolkit Combo Desktop.NET
	CTI Toolkit Combo Desktop Configuration

	CtiOs Data Grid.NET
	All Agents Sample.NET
	All Calls Sample.NET

	Java CIL Samples
	Win32 Samples

