
Call Object

• Call Object, on page 1
• Current Call, on page 2
• ECC Variables, on page 2
• Passing Call Variables, on page 2
• ECC Variable Value Retrieval, on page 3
• ECC Values, on page 4
• Properties, on page 5
• Methods, on page 7

Call Object
The Call object provides developers using the CTI OS Client Interface Library with an interface to Call
behavior and control. The Call object enables you to perform all call behaviors, such as answering, hanging
up, or transferring a call. The Call object represents one call connection of a call. For a call between two
parties there are two call connections, and thus there are two distinct CIL Call objects.

The object stores specific call information as properties, including the ICMEnterpriseUniqueID, ANI, DNIS,
Call variables, and ExpandedCallContext variables. The Call object is created in response to call events
received at the CIL. The Call object properties and state are updated throughout the lifetime of the call
connection.

For more information about accessing Call and ECC variables via the GetValue mechanism, see CIL Coding
Conventions.

CTI server updates CTI clients with events corresponding to CALL_PARTY_UPDATE_IND
(CALL_DELIVERED_EVENT and CALL_ESTABLISHED_EVENT with EventCause 50
(CEC_CALL_PARTY_UPDATE_IND)). These events are sent to CTI_SERVICE_ALL_EVENTS to build
the call state properly on the CTI_SERVICE_ALL_EVENTS client after one side of CTI server/PG is gracefully
shut down. Any custom clients can handle extra events from the CTI OS server.

Note

Related Topics
CIL Coding Conventions

Call Object
1

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Current Call
The Client Interface Library uses the concept of a Current Call. The CTI OS Toolkit uses the Current Call
concept as a way for the controls and the application to communicate with each other regarding which call is
currently selected and is the one to act on. For example, if an agent has a call and receives a new Ringing call,
they might select the Talking call on the grid. At this click, CallAppearanceMgr control calls SetCurrentCall()
to make this call the Current Call. When the agent clicks the Hold control, this control calls GetCurrentCall()
to obtain a call pointer through which to call the Hold() method. The agent can then select the Ringing call,
which again causes the CallAppearanceMgr control to call SetCurrentCall() to make this new call the current
call. Then, when the agent clicks the Answer control, this control again calls GetCurrentCall() to obtain a call
pointer through which to call the Answer() method.

If your application uses Cisco's out-of-the-box button controls (for more information, see CTI OS ActiveX
Controls), but not the CallAppearanceMgr grid control, you need to use SetCurrentCall() and GetCurrentCall()
for the button controls to enable and disable correctly when switching between multiple calls.

The CurrentCall concept does not place any limitations on call control of non-current calls. All of the call
behaviors implemented by method calls on the Call object work on any Call object that is available at the
CIL, even if it is not the CurrentCall.

Note

ECC Variables
The Unified ICM provides a customer-defined data layout for sending call context data with a call. This
mechanism is called Expanded Call Context, or ECC. You define ECC variables in the Unified ICM
Configuration Manager. You send ECC variables between Unified ICM servers in ECC payloads. After
configuring an ECC variable, you must include it in an ECC payload before using it. The mechanism for
accessing ECC variables from CTI OS is similar to accessing all other call variables.

To simplify the organization of properties on the Call object, the ECC variables are stored in their own
Arguments structure which is nested in the Call object Arguments structure.

Passing Call Variables
• A consultative transfer is one in which the transferring or forwarding party either connects the caller to
a ringing phone or speaks with the third party before connecting the caller to the third party. In a
consultative transfer on the same peripheral gateway, if a variable is updated with data during the primary
call, and the same variable is then updated with data during the transferred call, the call data from the
initial call takes precedence and replaces the call data from the transferred call.

• For calls that are transferred between peripheral gateways, update call variables on the primary call before
transferring the call. Only call variable information from the primary call is included in the route request
to the other peripheral gateway. Any call variable information that you change after the call is transferred
is lost because the call variable information was not included in the route request when the call was
transferred.

Call Object
2

Call Object
Current Call

ucce_b_ctios-developer-guide_12_6_1_chapter5.pdf#nameddest=unique_85
ucce_b_ctios-developer-guide_12_6_1_chapter5.pdf#nameddest=unique_85

• The Unified ICM call control variable map is a string that describes the mappings of a peripheral's call
control variables to Unified ICM call control variables. You can edit this string to identify the call variables
that an agent can change.

ECC Variable Value Retrieval
To retrieve an ECC variable from the Call object, first retrieve the ECC (Arguments) structure from the Call
object using GetValueArray with keyword ECC. Then, retrieve the specific ECC variable required by using
its name as the keyword to GetValueInt, GetValueArray, or GetValueString, depending on its type. The
following is some sample code for C++ without COM:

Arguments * pECCData = NULL;string sMyECCVariable;
int nMyECCArrayVariable;

if (pCall->IsValid(CTIOS_ECC))
{
pCall->GetValueArray(CTIOS_ECC, &pECCData);

if (pECCData)
{
if (pECCData->IsValid("user.MyECC"))
pECCData->GetValueString->("user.MyECC", &sMyECCVariable);

if(pECCData->IsValid("user.MyArray[2]"))
pECCData->GetValueInt("user.MyArray[2]", &nMyECCArrayVariable);

pECCData->Release();
pECCData = NULL;
}
}

Sample code for VB without COM:

Dim MyECCData As CTIOSARGUMENTSLib.Arguments Dim MyECCVariable As String
Dim MyECCArrayVariable As Integer

If MyCall.IsValid(CTIOS_ECC) = True Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

If MyECCData.IsValid("user.MyECC") Then
MyECCVariable = MyECCData.GetValueString("user.MyECC")
End If

If MyECCData.IsValid("user.MyArray[2]") Then
MyECCArrayVariable = MyECCData.GetValueInt("user.MyArray[2]")
End If
End If

The same thing in Java is as follows:

if(Call != null){
Arguments rArgEcc = new Arguments();
rArgEcc = Call.GetValueArray(CTIOS_ECC);
if(null != rArgEcc)
{

Call Object
3

Call Object
ECC Variable Value Retrieval

rArgEcc.NumElements();
Integer intVal =
rArgEcc.GetValueIntObj("user.MyECC");
String strVal =
rArgEcc.GetValueString("userMyArray[2]");
}
}

ECC Values
If you want to add ECC values to a call without deleting ones that are already set in the call, retrieve the ECC
variables and then add the new ones as shown in C++ without COM:

Arguments & RequestArgs = Arguments::CreateInstance();
Arguments * pECCData = NULL;

// presumes that we have a Call object pointer in pCall
if (pCall->IsValid (CTIOS_ECC))
pCall->GetValueArray(CTIOS_ECC, &pECCData);

else
Arguments::CreateInstance(&pECCData);

pECCData->AddItem("user.MyECC", "FirstECCVariable");
pECCData->AddItem("user.MyArray[2]", 2222);

RequestArgs.AddItem(CTIOS_ECC, *pECCData);
pCall->SetCallData(RequestArgs);

RequestArgs.Release();
pECCData->Release();

The same thing in VB is as follows:

Dim MyRequestArgs As New CTIOSARGUMENTSLib.Arguments
Dim MyECCData As CTIOSARGUMENTSLib.Arguments

If MyCall.IsValid(CTIOS_ECC) Then
Set MyECCData = MyCall.GetValueArray(CTIOS_ECC)

Else
Set MyECCData = New CTIOSARGUMENTSLib.Arguments
End If

MyECCData.AddItem("user.MyECC", "FirstECCVariable")
MyECCData.AddItem("user.MyArray[2]", 2222)

MyRequestArgs.AddItem("ECC", MyECCData)

MyCall.SetCallData(MyRequestArgs)

The same thing in Java is as follows:

Call Object
4

Call Object
ECC Values

Arguments rRequestArgs = new Arguments();
if(Call != null)
{

Arguments rArgEcc = Call.GetValueArray(CTIOS_ECC);
if(null == rArgEcc)
{

rArgEcc = new Arguments();
}
rArgEcc.SetValue("user.MyEcc", 22222);
rArgEcc.SetValue("user.MyArray[3]", "new data");

rRequestArgs.SetValue(CTIOS_ECC, rArgEcc);

Call.SetCallData(rRequestArgs);
}

Properties
The following table lists the available Call object properties.

The data type listed for each keyword is the standardized data type discussed in CTI OS CIL Data Types. For
more information, see Table 1 for the appropriate language specific types for these keywords.

Note

Table 1: Call Object Properties

DescriptionTypeKeyword

The calling line ID of the caller.STRINGANI

The digits entered by the caller in response to
VRU prompting.

STRINGCallerEnteredDigits

The current status of the call.SHORTCallStatus

The general classification of the call type.SHORTCallType

Call-related variable data.STRINGCallVariable1

Call-related variable data.STRINGCallVariable2

Call-related variable data.STRINGCallVariable3

Call-related variable data.STRINGCallVariable4

Call-related variable data.STRINGCallVariable5

Call-related variable data.STRINGCallVariable6

Call-related variable data.STRINGCallVariable7

Call-related variable data.STRINGCallVariable8

Call-related variable data.STRINGCallVariable9

Call Object
5

Call Object
Properties

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_55
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_55/unique_55_Connect_42_cti_os_cil_data_type_table

DescriptionTypeKeyword

Call-related variable data.STRINGCallVariable10

Call-related variable data.STRINGCallWrapupData

Private; for internal use only.INTClassIdentifier

The number dialed.STRINGDialedNumber

The DNIS provided with the call.STRINGDNIS

Arguments structure of key-value pairs of ECC
variables.

ARGUMENTSECC

Required only when the call is pre-routed.STRINGICMEnterpriseUniqueID

Indicates the type of the teleset line.SHORTLineType

Number of seconds this call was in a local queue
before being delivered to the agent.

INTMeasuredCallQTime

The Unified ICM PeripheralID of the ACD
where the call activity occurred.

INTPeripheralID

The call key created by the Unified ICM. The
Unified ICM resets this counter at midnight .

INTRouterCallKeyCallID

Together with the RouterCall KeyCallID field
forms the unique 64-bit key for locating this
call's records in the Unified ICM database . Only
provided for Post-routed and Translation-routed
calls.

INTRouter CallKeyDay

The Unified ICM ServiceID of the service that
the call is attributed to. May contain the special
value NULL_SERVICE when not applicable or
not available.

INTServiceID

The service that the call is attributed to, as known
to the peripheral. May contain the special value
NULL_SERVICE when not applicable or not
available.

INTServiceNumber

The system-assigned identifier of the agent
SkillGroup the call is attributed to. May contain
the special value NULL_SKILL_GROUPwhen
not applicable or not available.

INTSkillGroupID

The optional, user-defined number of the agent
SkillGroup the call is attributed to, as known to
the peripheral. May contain the special value
NULL_ SKILL_GROUP when not applicable
or not available.

INTSkillGroupNumber

Call Object
6

Call Object
Properties

DescriptionTypeKeyword

An object ID that uniquely identifies the Call
object.

STRINGUniqueObjectID

The ISDN user-to-user information element.STRINGUserToUserInfo

Methods
The following table lists the available Call object methods.

Table 2: Call Object Methods

DescriptionMethod

Places the current call on hold and retrieves a previously held call.Alternate

Answers a call that is in the alerting or ringing state.Answer

Clears a call, dropping all parties to the call.Clear

Hangs up a call, leaving other parties in a conference call. If there are only
two parties on the call it clears the call.

ClearConnection

Either establishes a three party conference call or adds a new party to an
existing conference call.

Conference

For more information, see CtiOs ObjectDumpProperties

For more information, see CtiOs ObjectGetAllProperties

Gets data associated with the call other than call and expanded call context
(ECC) variables.

GetCallContext

Obtains call and expanded call context (ECC) variables.GetCallData

For more information, see CtiOs ObjectGetElement

Returns the last error that occurred on the calling thread.GetLastError (.NET only)

For more information, see CtiOs ObjectGetNumProperties

For more information, see CtiOs ObjectGetPropertyName

For more information, see CtiOs ObjectGetPropertyType

Retrieve a property from the Call object based on the property's name key.GetValue methods

Places a current call on hold.Hold

For more information, see CtiOs ObjectIsValid

Places a current call on hold and makes a new call.MakeConsultCall

Call Object
7

Call Object
Methods

ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47

DescriptionMethod

Clears the current call and then retrieves a held call.Reconnect

Retrieves a held call.Retrieve

Sets call and expanded call context (ECC) variables.SetCallData

Requests the ACD to send a sequence of DTMF tones.SendDTMFSignal

Performs a single step conference.SingleStepConference

Performs a single step transfer.SingleStepTransfer

Issues a server request to get the current call information, including call
data and a list of associated devices and the connection state for the call
of each device.

Snapshot

Starts recording of a call.StartRecord

Stops recording of a call.StopRecord

Transfers a call to a third party.Transfer

Argument Parameters
The following rules apply to the optional_args and reserved_args parameters in Call object methods:

• In VB, you can ignore these parameters altogether. For example, you can treat the line:

Answer([reserved_args As IArguments]) As Long

as follows:

Answer()

• To ignore these parameters in COM you must send a NULL, as shown:

Answer (NULL)

Alternate
The Alternate method combines the action of placing a talking call on hold and then retrieving a previously
held call at the same device. If there are only two calls at the device, this method can be called via either the
current or the held call.

Syntax

C++

int Alternate()
int Alternate(Arguments & reserved_args);

Call Object
8

Call Object
Argument Parameters

COM
HRESULT Alternate (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode);

VB
Alternate([reserved_args As IArguments]) As Long

Java
int Alternate(Arguments rArgs);

.NET
CilError Alternate(Arguments args)

Parameters

reserved_args

A valid Arguments object, which can be empty. Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

For switches that allow more than two calls at a device (for example G3), make this request only through the
desired held call, because of the ambiguity caused by multiple held calls at the device.

You must make the Alternate request via a call whose status is either LCS_CONNECT or LCS_HELD or it
fails.

The following events are received if this request is successful.

For the call making the Alternate request:

• OnAlternateCallConf event

For the originally current call:

• OnCallHeld event

For the originally held call:

• OnCallRetrieved event

The following events are received by the call making the Alternate request if this request fails:

• OnControlFailureConf event

Answer
The Answer method answers a call that is in the alerting or ringing state (i.e., call status of LCS_ALERTING).

Call Object
9

Call Object
Answer

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Syntax

C++

int Answer()
int Answer(Arguments & reserved_args)

COM
HRESULT Answer (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Answer([reserved_args As IArguments]) As Long

Java
int Answer(Arguments rArgs)

.NET
CilError Answer(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

You can answer a call after the OnCallDelivered event is received. You must make the Answer request via a
call whose call status LCS_ALERTING or it fails.

The following events are received if this request is successful:

• OnAnswerCallConf event

• OnCallEstablished event

The following events are received if this request fails:

• OnControlFailureConf event

Clear
The Clear method clears the call and drops all parties to the call.

Syntax

C++
int Clear()int Clear(Arguments & reserved_args);

Call Object
10

Call Object
Clear

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

COM
HRESULT Clear (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Clear([reserved_args As IArguments]) As Long

Java
int Clear(Arguments rArgs);

.NET
CilError Clear(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

In the case of a multi-party Conference call, calling Clear() results in all of the parties to the call being hung
up. (If this is not the desired behavior, see the ClearConnection method.) Under certain switches the Clear
request is made via a call whose status is LCS_CONNECT or LCS_INITIATE or it fails. Many other switches
allow the Clear method to be called via a call whose status is LCS_ALERTING or LCS_HOLD. It can never
be made via a call whose status is LCS_NULL indicating that it is already cleared.

The following events are received if this request is successful:

• OnClearCallConf event

• OnCallCleared event

The following events are received if this request fails:

• OnControlFailureConf event

The Clear method is not supported on Unified CCE. Use of the Clear method with Unified CCE results in
loss of third-party call control. To avoid this error, applications should use the ClearConnection method instead
of Clear to hang up a call.

Note

ClearConnection
If there are only two parties to the call, ClearConnection clears the call. However, for a multi-party conference
call, only one connection is dropped, which is its own connection.

Call Object
11

Call Object
ClearConnection

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Syntax

C++

int ClearConnection()
int ClearConnection(Arguments & reserved_args);

COM
HRESULT ClearConnection (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/

int * errorcode)

VB
ClearConnection([reserved_args As IArguments]) As Long

Java
int ClearConnection(Arguments rArgs);

.NET
CilError ClearConnection(Arguments args);

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Aswith the Clear method, under certain switches youmust make the ClearConnection request via a call whose
status is LCS_CONNECT or LCS_INITIATE or it fails. Many other switches allow the Clear method to be
called via a call whose status is LCS_ALERTING or LCS_HOLD. It can never be made via a call whose
status is LCS_NULL indicating that it is already cleared.

The following events are received if this request is successful:

• OnClearConnectionConf event

• OnCallConnectionlCleared event

If this is a two party call, these events are followed by:

• OnCallCleared event

The following events are received if this request fails:

• OnControlFailureConf event

Call Object
12

Call Object
ClearConnection

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Conference
The Conference method either begins a new conference call or adds an additional call to an existing conference
call. When it begins a new conference call, it combines an original two-party call with a two-party consult
call (where the two calls have a common party) into a single three party call. Only the common party (which
is called the “Conference Controller”) can call this method to make the new conference call. You can call this
method on either of the Conference Controller's calls.

Syntax

C++

int Conference();
int Conference(Arguments& optional_args)

COM
HRESULT Conference (/*[in, optional]*/ IArguments *optional_args, (/*[out, retval]*/

int * errorcode)

VB
Conference([optional_args As IArguments]) As Long

Java
int Conference(Arguments optional_args)

.NET
CilError Conference(Arguments optional_args)

Parameters

optional_args

An optional input parameter, which is a pointer or reference to an Arguments array that contains a member
with the string value that is the UniqueObjectID of the call to which this call is conferenced. If this argument
is used, add it to the Arguments parameter with the keyword of “CallReferenceObjectID”. This is only
necessary in an environment where there are multiple held calls and the request is made through the talking
call. If the request is made through a specific held call in this scenario, or if there are only two calls at the
device, this parameter is unnecessary.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Before making this request, the original call must be in the held state and the consult call in the talking state
or the request fails. Therefore, if the calls are alternated (see Alternate), they must be alternated again to return
the two calls to their appropriate states.

If there are only two calls at the device, you can call this method using either the current or held call. For
switches which allow more than two calls at a device (for example G3), make this request through the desired
held call to avoid the ambiguity caused by multiple held calls at the device. Otherwise, indicate the desired
held call using the optional parameter.

Call Object
13

Call Object
Conference

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

You must make the Conference request via a call whose call status is LCS_CONNECT or LCS_HELD or it
fails.

On certain switches (notably Unified CCE), only the Conference Controller (the party that first initiated the
conference call) can add additional parties to an existing conference call.

The following events are received if this request is successful:

• OnConferenceCallConf event

• OnCallConferenced event

The following events are received if this request fails:

• OnControlFailureConf event

GetCallContext
The GetCallContext method returns an Arguments array containing the values for call properties other than
CallVariables and ECC Variables, such as ANI, DNIS, and the other properties listed in the following table.

Syntax

C++
int GetCallContext(Arguments& args)

COM
HRESULT GetCallContext (/*[out,retval]*/ IArguments ** args)

VB
GetCallContext (CTIOSCLIENTLib.IArguments args)

Java
Arguments GetCallContext()

.NET
Arguments GetCallContext()

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a pointer to an Arguments array containing
any of the members in the following table that are present in the call.

Return Value

C++, COM, and VB: Default HRESULT return values. For more information, see CIL Coding Conventions.

Java/.NET: A reference to an Arguments array that, on return, holds name/value pairs from the following
table. You can access any of these parameters included from the Arguments array using the associated keyword.

Table 3: GetCallContext Arguments Array Contents

DescriptionTypeKeyword

The calling line ID of the caller.STRINGANI

Call Object
14

Call Object
GetCallContext

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

DescriptionTypeKeyword

The digits entered by the caller in response to VRU
prompting.

STRINGCallerEnteredDigits

The general classification of the call type.SHORTCallType

Call-related wrapup data.STRINGCallWrapupData

The Call ID value assigned to this call by the
peripheral or the Unified ICM.

UINTConnectionCallID

The number dialed.STRINGDialedNumber

The DNIS provided with the call.STRINGDNIS

A unique identifier for this contact throughout the
enterprise. This can track a single customer contact
across multiple sites, for example, when a call is
transferred between agents.

STRINGICMEnterpriseUniqueID

The Unified ICM identifier for the Service to which
this call was routed.

INTServiceID

The ACD number of the Service to which this call
was routed.

INTServiceNumber

The system-assigned identifier for the SkillGroup
to which this call was routed.

INTSkillGroupID

An optional, user-defined number of the SkillGroup
at the ACD to which this call was routed.

INTSkillGroupNumber

A unique object ID for the call.STRINGUniqueObjectID

The ISDN user-to-user information element.STRINGUserToUserInfo

Remarks

This is a convenience method to call and get all of a call's non-CallVariable data at one time. If only certain
data members are desired, call the appropriate GetValue method for each instead.

GetCallData
The GetCallData method returns the values ofCallVariable1 through CallVariable10 and all of the ECC
(Extended CallContext) variables.

Syntax

C++
int GetCallData(Arguments& args)

COM
HRESULT GetCallData (/*[out,retval]*/ IArguments ** args)

Call Object
15

Call Object
GetCallData

VB
GetCallData (CTIOSCLIENTLib.IArguments args)

Java
Arguments GetCallData()

.NET
Arguments GetCallData()

Parameters

args

C++, COM, and VB: An output parameter containing a reference or a pointer to an Arguments array containing
the call data, as described under Remarks.

Return Value

C++, COM, and VB: Default HRESULT return values. For more information, see CIL Coding Conventions.

Java/.NET: A reference to an Arguments array that, on return, holds parameters described under Remarks.

Remarks

This is a conveniencemethod to call and get all of a call's CallVariables (1 through 10) and ECCCall Variables
at one time. If only certain call variables are desired, call the appropriate GetValue method for each instead.

Access the data in the following way:

• To access the values for individual CallVariables from the arguments parameter, use GetValueString
with either the keywords of “CallVariable1” through “CallVariable10”.

To access ECC call data, use the following procedure:

• First, get the ECC variables as a whole from the arguments parameter, using GetValueArray with the
keyword “ECC”. This returns another Arguments array that is nested in the Arguments array returned
from GetCallData.

• To access an individual ECC scalar variable from this Arguments array, use the appropriate
GetValueString, GetValueInt, etc. depending on the variable's type, using the string keyword
“user.VariableName”.

• To access an individual ECC array variable from this Arguments array, use the appropriate GetValueString,
GetValueInt, etc. depending on the variable's type, using the string keyword “user.ArrayName[n]”, where
n is a zero based integer that notes the offset in the array.

Hold
The Hold method holds a current call.

Syntax

C++

int Hold()
int Hold(Arguments & reserved_args);

Call Object
16

Call Object
Hold

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

COM
HRESULT Hold (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int *

errorcode)

VB
Hold([reserved_args As IArguments]) As Long

Java
Arguments Hold(Arguments rArgs)

.NET
Arguments Hold(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

You must make the Hold request via a call whose call status is LCS_CONNECT or it fails.

The following events are received if this request is successful:

• OnHoldCallConf event

• OnCallHeld event

The following events are received if this request fails:

• OnControlFailureConf event

MakeConsultCall
The MakeConsultCall method initiates the combined action of placing the associated current call on hold and
then making a new call. By default, the call context data (including call variables) of the current call is used
to initialize the context data of the new consultation call. The application can override some or all of the
original call context in the consultation call by providing the desired values in this request.

The simplest form of the request only requires a dialed number and a consult type. The request can also include
optional parameters, as listed in the following table.

Syntax

C++
int MakeConsultCall (Arguments& args))

Call Object
17

Call Object
MakeConsultCall

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

COM
HRESULT MakeConsultCall (/*[in]*/ IArguments *args, /*[out, retval]*/ int * errorcode)

VB
MakeConsultCall (args As CTIOSCLIENTLib.IArguments) As Long

Java
int MakeConsultCall(Arguments args)

.NET
CilError MakeConsultCall(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array that contains parameters from
the following table. Any of these parameters included are added to the Arguments array using the associated
key word.

Table 4: MakeConsultCall Parameters

DescriptionTypeParameter

Dialed number; the number to be dialed to
establish the new call.

STRING, maximum
length 40

DialedNumber (required)

A value specifying whether this consult call
is in preparation for either a transfer or a
conference, as specified in the ConsultType
Table.

INTConsultType (required)

A value specifying how the call is to be placed
identified in Table 5: CallPlacementType
Values, on page 19.

STRING, maximum
length 40

CallPlacementType (optional)

A value specifying additional call processing
options identified in Table 6: CallMannerType
Values, on page 19.

INTCallMannerType (optional)

A value from Table 7: CallOption Values, on
page 20 specifying additional
peripheral-specific call options.

INTCallOption (optional)

A value from Table 8: FacilityType Values,
on page 20 indicating the type of facility to
be used.

INTFacilityType (optional)

Set this field to TRUE if the call should
receive priority handling.

BOOLPriority (optional)

When this field is set to TRUE, the
Post-Routing capabilities of the Unified ICM
determine the new call destination.

BOOLPostRoute (optional)

Call Object
18

Call Object
MakeConsultCall

DescriptionTypeParameter

The ISDN user-to-user information.STRING, maximum
length 40

UserToUserInfo (optional)

Call variable data that is set in the new call
in place of the corresponding data in the
current call.

STRING, maximum
length 40

CallVariable1 (optional)

.........

CallVariable10 (optional)

ECC data that is set in the new call in place
of the corresponding data in the current call.

ARGUMENTSECC

Call-related wrapup data.STRING, maximum
length 40

CallWrapupData (optional)

A trunk access code, split extension, or other
data needed to access the chosen facility.

STRING, maximum
length 40

FacilityCode (optional)

An authorization code needed to access the
resources required to initiate the call.

STRING, maximum
length 40

AuthorizationCode (optional)

A cost-accounting or client number used by
the peripheral for charge-back purposes.

STRING, maximum
length 40

AccountCode (optional)

Table 5: CallPlacementType Values

ValueDescriptionCallPlacementType

0Use default call placement.CPT_UNSPECIFIED

1An inside line call.CPT_LINE_CALL

2An outbound call.CPT_OUTBOUND

3An outbound call that does not require an access
code.

CPT_OUTBOUND_NO_
ACCESS_CODE

4A call placed directly to a specific position.CPT_DIRECT_POSITION

5A call placed directly to a specific agent.CPT_DIRECT_AGENT

6A call placed to a supervisor for call handling
assistance.

CPT_SUPERVISOR_ASSIST

Table 6: CallMannerType Values

ValueDescriptionCallMannerType

0Use default call manner.CMT_UNSPECIFIED

Call Object
19

Call Object
MakeConsultCall

ValueDescriptionCallMannerType

1Attempt the call only if the
originating device is idle.

CMT_POLITE

2Always attempt the call,
disconnecting any currently active
call.

CMT_BELLIGERENT

3Attempt the call only if the
originating device is idle or is
receiving dial tone.

CMT_SEMI_POLITE

Table 7: CallOption Values

ValueDescriptionCallOption

0No call options specified, use
defaults.

COPT_UNSPECIFIED

1Attempt the call only if the calling
agent is “online” (available to
interact with the destination party).

COPT_CALLING_
AGENT_ONLINE

2Attempt the call only if ACDNR
on the calling agent's set is
activated.

COPT_CALLING_
AGENT_RESERVED

3Attempt the call only if ACDNR
on the calling agent's set is not
activated.

COPT_CALLING_
AGENT_NOT_ RESERVED

4Applies a buzz to the base of the
telephone set as the call is initiated.

COPT_CALLING_
AGENT_BUZZ_BASE

5Applies a tone to the agent headset
as the call is initiated.

COPT_CALLING_
AGENT_BEEP_HSET

6Applies a call classifier to the call
(ACM ECS)

COPT_SERVICE_ CIRCUIT_ON

Table 8: FacilityType Values

ValueDescriptionFacilityType

0Use default facility type.FT_UNSPECIFIED

1Facility is a trunk group.FT_TRUNK_GROUP

2Facility is a skill group or split.FT_SKILL_GROUP

Call Object
20

Call Object
MakeConsultCall

Table 9: AnsweringMachine Values

ValueDescriptionAnsweringMachine

0Use default behavior.AM_UNSPECIFIED

1Connect call to agent when call is answered by an
answering machine.

AM_CONNECT

2Disconnect call when call is answered by an answering
machine.

AM_DISCONNECT

3Do not use answering machine detection.AM_NONE

4Do not use answering machine detection, but disconnect
call if answered by a modem.

AM_NONE_NO_ MODEM

5Connect call when call is answered by an answering
machine, disconnect call if answered by a modem.

AM_CONNECT_NO_MODEM

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Youmust make theMakeConsultCall request via a call whose call status is LCS_CONNECT or it fails. Calling
MakeConsultCall successfully results in the same events as a successful MakeCall called on the agent.

The following events are received if this request is successful:

For the call making the MakeConsultCallRequest:

• OnMakeConsultCallConf event

• OnCallHeld event

For the newly created outgoing consult call:

• OnBeginCall event

• OnServiceInitiated event

• OnCallOriginated event

• OnCallDelivered event

For the new connection that is ringing as a result of the consult call:

• OnBeginCall event

• OnCallDelivered event

The following events are received if this request fails:

Call Object
21

Call Object
MakeConsultCall

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

• OnControlFailureConf event

Reconnect
The Reconnect method combines the action of releasing a current call and then retrieving a previously held
call at the same device. If there are only two calls at the device, this method can be called via either the talking
or the held call.

Syntax

C++

int Reconnect()
int Reconnect(Arguments & reserved_args)

COM
HRESULT Reconnect (/*[in,optional]*/ IArguments * reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
Reconnect([reserved_args As IArguments]) As Long

Java
int Reconnect(Arguments rArgs)

.NET
CilError Reconnect(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

For switches that allow more than two calls at a device (for example G3), make this request only through the
desired held call because of the ambiguity caused by multiple held calls at the device.

You must make the Alternate request via a call whose status is either LCS_CONNECT or LCS_HELD or it
fails.

The following events are received if this request is successful:

For the call making the Reconnect request:

• OnReconnectCallConf event

For the originally current call:

Call Object
22

Call Object
Reconnect

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

• OnCallConnectionCleared event

• OnCallCleared event

• OnCallEnd event

For the originally held call:

• OnCallRetrieved event

The following events are received by the call making the Alternate request if this request fails:

• OnControlFailureConf event

Retrieve
The Retrieve method unholds a held call.

Syntax

C++

int Retrieve()
int Retrieve(Arguments & reserved_args)

COM
HRESULT Retrieve (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
Retrieve([reserved_args As IArguments]) As Long

Java
int Retrieve(Arguments rArgs)

.NET
CilError Retrieve(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

You must make the Retrieve request via a call whose call status is LCS_HELD or it fails.

The following events are received if this request is successful:

Call Object
23

Call Object
Retrieve

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

• OnRetrieveCallConf event

• OnCallRetrieved event

The following events are received if this request fails:

• OnControlFailureConf event

SendDTMFSignal
The SendDTMFSignal method requests that the ACD send a sequence of DTMF tones.

Syntax

C++
int SendDTMFSignal(Arguments& args)

COM
HRESULT SendDTMFSignal (/*[in]*/ args *arguments, /*[out, retval]*/ int * errorcode)

VB
SendDTMFSignal (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SendDTMFSignal(Arguments rArgs)

.NET
CilError SendDTMFSignal(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array containing parameters from
following table. You can add any of these parameters included to the Arguments array using the associated
key word.

Table 10: SendDTMFSignal Parameters

DescriptionTypeParameter

The sequence of tones to be
generated.

STRING. maximum length 32DTMFString (required)

Specifies the duration in
milliseconds of DTMF digit tones.
Use 0 to take the default. Can be
ignored if the peripheral is unable
to alter the DTMF tone timing.

INTToneDuration (optional)

Call Object
24

Call Object
SendDTMFSignal

DescriptionTypeParameter

Specifies the duration in
milliseconds of DTMF inter-digit
spacing. Use 0 to take the default.
Can be ignored if the peripheral is
unable to alter the DTMF tone
timing.

INTPauseDuration (optional)

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

• The OnSendDTMFSignalConf event is received if this request succeeds.

• The OnControlFailureConf event is received if this request fails.

SetCallData
The SetCallData method sets any or all of a call's CallVariables (1 through 10) and ECC data at one time.

• When writing a custom application, in any language, call variables are not blanked out if it they are set
to a NULL value. While the application attempts to clear any call variable using a NULL value, the CTI
OS server application ignores the NULL value call variables and does not pass them to the CTI Server
application. As a result, the call variables set to NULL are not reset.

• To clear the value of a call variable, set its value to a blank character. Setting the call variable to a single
space character places a space in the call variable's values for the duration of the call. This space is
considered a NULL value by the application.

Note

Syntax

C++
int SetCallData(Arguments& args)

COM
HRESULT SetCallData (/*[in]*/ args *arguments, /*[out]*/ int * errorcode)

VB
SetCallData (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SetCallData(Arguments rArgs)

Call Object
25

Call Object
SetCallData

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

.NET
CilError SetCallData(Arguments args)

Parameters

args

An input parameter of either a reference or a pointer to an Arguments array containing parameters
described under Remarks for GetCallData.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

You must specify the data for all elements in the Arguments array, not just those elements that you want to
change. Failure to do so causes the unchanged elements to disappear.

The following events are sent if this request succeeds:

• OnSetCallDataConf

• OnCallDataUpdate

The OnControlFailureConf event is sent if this request fails.

SingleStepConference
The SingleStepConference method initiates a one-step conference without the intermediate consultative call
so that when the called party answers, they are joined in the current call. This method requires a DialedNumber
argument. This method is not supported under all switches.

The SingleStepConference method is not supported for the Unified CCE .Note

Syntax

C++
int SingleStepConference(Arguments& args)

COM
HRESULT SingleStepConference (IArguments *args, int * errorcode)

VB
SingleStepConference (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SingleStepConference(Arguments rArgs)

Call Object
26

Call Object
SingleStepConference

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

.NET
CilError SingleStepConference(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array containing parameters from the
following table. You can add any of these parameters included to the Arguments array using the associated
keyword.

Table 11: SingleStepConference Parameters

DescriptionTypeParameter

Dialed number; the number to be dialed to
establish the new call.

STRING, maximum
length 40

DialedNumber (required)

A value specifying how the call is to be
placed identified in Table 5:
CallPlacementType Values, on page 19.

STRING, maximum
length 40

CallPlacementType (optional)

A value specifying additional call processing
options identified in Table 6:
CallMannerType Values, on page 19.

INTCallMannerType (optional)

The maximum amount of time that the call's
destination will remain alerting, specified as
an approximate number of rings. A zero value
indicates that the peripheral default (typically
10 rings) should be used.

INTAlertRings (optional)

A value from Table 7: CallOption Values, on
page 20 specifying additional
peripheral-specific call options.

INTCallOption (optional)

A value from Table 8: FacilityType Values,
on page 20 indicating the type of facility to
be used.

INTFacilityType (optional)

A value from Table 9: AnsweringMachine
Values, on page 21 specifying the action to
be taken if the call is answered by an
answering machine.

INTAnsweringMachine (optional)

Set this field to TRUE if the call should
receive priority handling.

BOOLPriority (optional)

When this field is set to TRUE, the
Post-Routing capabilities of the Unified ICM
determines the new call destination.

BOOLPostRoute (optional)

The ISDN user-to-user information.STRING, maximum
length 40

UserToUserInfo (optional)

Call Object
27

Call Object
SingleStepConference

DescriptionTypeParameter

Set call variable data in the new call in place
of the corresponding data in the current call.

STRING, maximum
length 40

CallVariable1 (optional)

.........

CallVariable10 (optional)

Set ECC data in the new call in place of the
corresponding data in the current call.

ARGUMENTSECC

A trunk access code, split extension, or other
data needed to access the chosen facility.

STRING, maximum
length 40

FacilityCode (optional)

An authorization code needed to access the
resources required to initiate the call.

STRING, maximum
length 40

AuthorizationCode (optional)

A cost-accounting or client number used by
the peripheral for charge-back purposes.

STRING, maximum
length 40

AccountCode (optional)

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

TheDialedNumber is the only requiredmember necessary in theArguments parameter. A SingleStepConference
request fails if the call's status is not LCS_CONNECT.

The following events are received if this request is successful:

• OnAgentStateChange event (Hold)

• OnCallHeld event

• OnAgentStateChange event (Talking)

• OnBeginCall event

• OnServiceInitiated event

• OnCallOriginated event

• OnCallDelivered event

• OnCallConferenced event

• OnCallEnd event

• ConferenceCallConf event

The OnControlFailureConf event is received if this request fails.

Call Object
28

Call Object
SingleStepConference

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

SingleStepTransfer
The SingleStepTransfer method initiates a one-step transfer without the intermediate consultative call. When
the called party answers the call, the called party is talking to the party to be transferred and the transferring
party drops out of the call. The method requires a DialedNumber argument.

Syntax

C++
int SingleStepTransfer(Arguments& args)

COM
HRESULT SingleStepTransfer (/*[in]*/ IArguments * args, /*[out, retval]*/ int * errorcode)

VB
SingleStepTransfer (args As CTIOSCLIENTLib.IArguments, errorcode As Long)

Java
int SingleStepTransfer(Arguments rASrgs)

.NET
CilError SingleStepTransfer(Arguments args)

Parameters

args

An output parameter of either a reference or a pointer to an Arguments array containing parameters from
Table 11: SingleStepConference Parameters, on page 27. You can add any of these parameters included to
the Arguments array using the associated keyword.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Snapshot
The Snapshot method issues a server request to retrieve the current call information. If values are passed in
the optional args parameter, the snapshot request returns the server's current call values for only the requested
arguments. Otherwise all call information is returned, including the fields described under GetCallContext
and GetCallData. For more information about OnCallDataUpdate, see OnCallDataUpdate in Event Interfaces
and Events.

Syntax

C++

int Snapshot()
int Snapshot(Arguments & optional_args)

Call Object
29

Call Object
SingleStepTransfer

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68

COM
HRESULT Snapshot (/*[in,optional]*/ IArguments * optional_args, (/*[out, retval]*/ int

* errorcode)

VB
Snapshot([optional_args As IArguments]) As Long

Java
int Snapshot(ArgumentsrArgs)

.NET
CilError Snapshot(ArgumentsArgs)

Parameters

optional_args

An input parameter of either a pointer or a reference to an Arguments array.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

The current information about the call is received in the OnCallDataUpdate event.

• The OnCallDataUpdate event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

StartRecord
The StartRecord method is used to start recording a call.

Syntax

C++

int StartRecord()
int StartRecord(Arguments & reserved_args);

COM
HRESULT StartRecord (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/

int * errorcode)

VB
StartRecord([reserved_args As IArguments]) As Long

Java
int StartRecord(Arguments rArgs)

.NET
CilError StartRecord(Arguments args)

Call Object
30

Call Object
StartRecord

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Calling this method causes the CTI Server to forward the request to one or more server applications that have
registered the “Cisco:CallRecording” service as described in the CTI Server Message Reference Guide
(Protocol Version 14) for Cisco Unified ICM/Contact Center Enterprise & Hosted (Protocol Version 14) for
Cisco Unified ICM/Contact Center Enterprise & Hosted. It fails if there is no recording server available to
CTIServer.

• The OnStartRecordingConf event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

StopRecord
The StopRecord method is used to stop recording a call.

Syntax

C++

int StopRecord()
int StopRecord(Arguments & reserved_args);

COM
HRESULT StopRecord (/*[in,optional]*/ IArguments *reserved_args, (/*[out, retval]*/ int

* errorcode)

VB
StopRecord([reserved_args As IArguments]) As Long

Java
int StopRecord(Arguments rArgs)

.NET
CilError StopRecord(Arguments args)

Parameters

reserved_args

Not currently used, reserved for future use.

errorcode

Call Object
31

Call Object
StopRecord

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Value

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Calling this method causes the CTIServer to forward the request to the server application with the SessionID
received in the OnStartRecordingConf event if non-zero, or if that SessionID is zero, to one or more server
applications that have registered the “Cisco:CallRecording” service as described in the CTI Server Message
Reference Guide (Protocol Version 14) for Cisco Unified ICM/Contact Center Enterprise & Hosted. It fails
if there is no recording server available to CTIServer.

• The OnStopRecordConf event is received if this request is successful.

• The OnControlFailureConf event is received if this request fails.

Transfer
The Transfer method transfers a call to a third party. You can call this method on either the held original call
or the current consult call. If the device has only these two calls, the optional parameter is not necessary. At
the end of a successful transfer, both of these calls are gone from the device. For more information, see the
Conference method.

Syntax

C++

int Transfer();
int Transfer(Arguments& optional_args)

COM
HRESULT Transfer ([in, optional] IArguments *optional_args, (/*[out, retval]*/ int *

errorcode)

VB
Transfer([optional_args As IArguments]) As Long

Java
int Transfer(Arguments rArgs)

.NET
CilError Transfer(Arguments args)

Parameters

optional_args

An optional input parameter containing a member with a string value that is the UniqueObjectID of the call
that is participating in the transfer. If this argument is used, add it to the Arguments parameter with the keyword
of “CallReferenceObjectID”. This is only necessary in an environment where there are multiple held calls
and the request is made through the current call. If the request is made through a specific held call in this
scenario, or if there are only two calls at the device, this parameter is unnecessary.

errorcode

Call Object
32

Call Object
Transfer

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

An output parameter (return parameter in VB) that contains an error code from Table 1.

Return Values

Default CTI OS return values. For more information, see CIL Coding Conventions.

Remarks

Before making this request, the original call must be in the held state and the consult call in the talking state
or the request fails. Therefore, if the calls are alternated (for more information, see Alternate), they must be
alternated again to return the two calls into their appropriate states.

If there are only two calls at the device, call this method using either the current or held call. For switches
that allow more than two calls at a device (for example G3), make this request only through the desired held
call to avoid the ambiguity caused by multiple held calls at the device. Otherwise, indicate the desired held
call by using the optional parameter.

You must make the Transfer request via a call whose call status is LCS_CONNECT or LCS_HELD or it fails.

The following events are received by the transfer initiator if this request is successful:

• OnCallTransferred event

• OnCallEnd event

• OnCallEnd event

• OnAgentStateChange event

• OnTransferCallConf event

The OnControlFailureConf event is received if this request fails.

Call Object
33

Call Object
Transfer

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_57/unique_57_Connect_42_table98
ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53

Call Object
34

Call Object
Transfer

	Call Object
	Call Object
	Current Call
	ECC Variables
	Passing Call Variables
	ECC Variable Value Retrieval
	ECC Values
	Properties
	Methods
	Argument Parameters
	Alternate
	Answer
	Clear
	ClearConnection
	Conference
	GetCallContext
	GetCallData
	Hold
	MakeConsultCall
	Reconnect
	Retrieve
	SendDTMFSignal
	SetCallData
	SingleStepConference
	SingleStepTransfer
	Snapshot
	StartRecord
	StopRecord
	Transfer

