
CIL Coding Conventions

• CTI OS CIL Data Types, on page 1
• Asynchronous Program Mode, on page 2
• CIL Error Codes, on page 3
• COM Error Codes, on page 7
• Generic Interfaces, on page 8
• UniqueObjectID Variable-Length String, on page 10
• UniqueObjectID to Obtain Pointer or Reference, on page 11
• Button Enablement Masks, on page 12

CTI OS CIL Data Types
The CTI OS Client Interface Library is designed to be a single interface, which you can use across multiple
languages and environments (e.g. C++, COM, Visual Basic, Java, and .NET). However, each programming
language has its own native data types. Throughout this document, the interface parameters are listed with
the following standardized data types:

• STRING: A variable-length string variable. If a maximum length exists, it is listed with the parameter
description.

• INT: A 32-bit wide integer.

• UNSIGNED INT: A 32-bit wide unsigned integer.

• SHORT: A 16-bit wide short integer.

• UNSIGNED SHORT: A 16-bit wide unsigned short integer.

• BOOL: A logical true or false variable. Different implementations use variables of different sizes to
represent this type. In COM, the VARIANT_BOOL is used. Tests of variables of this data type must be
against VARIANT_TRUE and VARIANT_FALSE and not simply against 0 or 1.

• ARGUMENTS: A custom data structure used by CTI OS, which holds a variable-length set of key-value
pairs.

• ARG: An individual element (value), which can be stored in an ARGUMENTS structure.

The following table describes the appropriate language specific types to which the documented type are
associated.

CIL Coding Conventions
1

Table 1: CTI OS CIL Data Type

ARGARGUMENTSBOOLUNSIGNED
SHORT

SHORTUNSIGNED
INT

INTSTRINGDocumented
Data Type

ArgArgumentsboolunsigned shortshortunsigned intlong or intstd::string
or const
char

C++ Type

ArgArgumentsBooleanIntegerIntegerNoneLongStringVisual Basic
6.0 Type

IArg*IArguments *VARIANT_BOOLunsigned shortshortunsigned intlong or intBSTRCOM Type

ArgArgumentsBooleanintshortlongintStringJava Type

ArgArgumentsSystem.BooleanSystem.Int32System.Int16System.Int64System.Int32System.String.NET Type

Asynchronous Program Mode
Themost common programming approach used by applications is synchronous mode. In a synchronous mode,
a method call runs all the code required to complete the request and provide return values as well as error
codes. Client-server programming can be synchronous (the client application makes a blocking request and
continues the processing when the request is completed) or asynchronous (the client application makes a
request and continues processing immediately, with the result of the request to follow at a later time).

CTI programming is unique in that requests are often serviced by third-party servers or applications, such as
a PBX/ACD in the contact center. The asynchronous nature of CTI programming requires developers to note
the distinction between an error code and the response to a request. In non-CTI programming, developers test
the error codes (return values from method calls) to determine whether a method request succeeded or failed.
However, in a distributed architecture such as CTI OS, success or failure is often determined by some external
server or component such as the PBX/ACD.

The CTI OS Client Interface Library API specifies error codes, which are return values for method calls.
These error codes relate to the success or failure of the method call, but not the success or failure of the
underlying operation. The success of the method call means that the parameters sent were of the correct format,
that internal memory allocations were successful, and that the request was put on the send queue to be
transmitted to the CTI OS Server. Generally, the CIL error code returned from method calls is CIL_OK,
indicating that the method call was successful. However, this does not indicate that the request was actually
serviced by the CTI OS Server or successfully completed at the PBX/ACD.

To determine the success or failure of the underlying telephony operation requested, the CTI programmer
must wait for an event confirming the success or failure of the request. To generalize the message flow model,
most requests made at the CTI OS CIL are answered with a confirmation message and/or an event message.
See the object interface reference in Chapters 8-12 for details on each particular request. This type of response
is called asynchronous—it can arrive at any time after the request is made, but typically requests are services
in sub-second timeframes.

The expected event sequence is described for each method request in the programmer's interface sections of
this document so that programmers know which events to expect. In the event of a request failure, an
eControlFailureConf message is sent to the client; the eControlFailureConf message has a parameter called

CIL Coding Conventions
2

CIL Coding Conventions
Asynchronous Program Mode

MessageType indicating which request failed, and a parameter called ErrorMessage, with a description of the
failure cause.

For example, when sending a MakeCall request, the method typically returns CIL_OK, which means that the
method call was successful. If the underlyingmake call request is successful, the CIL receives several follow-on
events, such as eBeginCallEvent and eServiceInitiatedEvent. If the request fails, the CIL receives the
eControlFailureConf message.

A commonmistake is that developers who have not previously programmedwith asynchronous events mistake
the error code returned from a method call for the actual result of the request. The correct semantics are to
interpret the error code as being indicative of the result of the method call, and to interpret the follow-on
events to determine the actual result of the requested operation.

CIL Error Codes
Whenever a method call is invoked by a custom application using the CIL, an error code is returned. The error
codes returned only indicate success or failure of the method call, as indicated in the previous section.

The possible values of the error code returned from C++ and Java CIL methods are defined in the following
table.

The numeric values listed in the following table are subject to change. Use the error code enumerations to
check a given error code, rather than rely on a specific numeric value.

Note

Table 2: CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The method succeeded. The request to
silent monitor the call was successfully
initiated.

1CIL_OK

The method failed.0CIL_FAIL

There is no implementation available for
this method.

-99E_CTIOS_METHOD_NO_ IMPLEMENTED

One or more properties are invalid.-100E_CTIOS_INVALID_ PROPERTY

A conflict when setting session mode.-101E_CTIOS_MODE_CONFLICT

The Event ID is not valid.-102E_CTIOS_INVALID_ EVENTID

The Argument is not valid.-103E_CTIOS_INVALID_ ARGUMENT

The Session is not valid.-104E_CTIOS_INVALID_ SESSION

An unexpected error has occurred.-105E_CTIOS_UNEXPECTED

CIL Coding Conventions
3

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

There is not enoughmemory available and
the creation of CCtiOsObject failed.

-106E_CTIOS_OBJ_ALLOCATION_FAILED

There is not enoughmemory available and
the creation of an array of references to
objects of type CCtiOsObject failed.

-107E_CTIOS_ARRAYREF_ ALLOCATION_FAILED

There is not enoughmemory available and
the creation of an object of type Arguments
failed.

-108E_CTIOS_ARGUMENT_ALLOCATION_FAILED

There are no CTI OS Objects capable of
processing an incoming event.

-109E_CTIOS_TARGET_ OBJECT_ NOT_FOUND

An error occurred while accessing a
property's attributes, System may be
running out of memory.

-110E_CTIOS_PROP_ ATTRIBUTES_ACCESS_
FAILED

The object type is not one of the following
predefined types CAgent, CCall,
CSkillGroups, or CWaitObject.

-111E_CTIOS_INVALID_ OBJECT_TYPE

No valid agent.-112E_CTIOS_INVALID_AGENT

No valid call.-113E_CTIOS_INVALID_CALL

The session is recovering from a
connection failure and started the Fail Over
procedure.

-114E_CTIOS_IN_FAILOVER

Indicates that the desktop type specified in
the request for DeskSettings download is
neither Agent or Supervisor.

-115E_CTIOS_INVALID_ DESKTOP_TYPE

Missing a required argument.-116E_CTIOS_MISSING_ ARGUMENT

Call is not on hold.-117E_CTIOS_CALL_NOT_ON_ HOLD

Call is already on hold.-118E_CTIOS_CALL_ALREADY_ ON_HOLD

Call is not in alert state, it can not be
answered.

-119E_CTIOS_CALL_NOT_ ALERTING

Agent is not logged in.-120E_CTIOS_AGENT_NOT_ LOGIN

The input parameter is invalid.-121E_CTIOS_INVALID_ METHOD_PARAMETER

The cause of this error is unknown.-122E_CTIOS_UNKNOWN

Failed to allocate new memory.-123E_CTIOS_OUT_OF_ MEMORY

The specified port is not available for use.-124E_CTIOS_PORT_ UNAVAILABLE

CIL Coding Conventions
4

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The SilentMonitor session was terminated
abnormally.

-125E_CTIOS_SM_SESSION_ TERMINATED_
ABNORMALLY

The request was rejected because there is
an active silent monitor session in progress.

-126E_CTIOS_SM_REJECTED_
ALREADY_IN_SESSION

The packet sniffer is not present in the
system; verify installation.

-127E_CTIOS_SM_PACKET_
SNIFFER_NOT_INSTALLED

An error occurred in the packet sniffer.-128E_CTIOS_PACKET_ SNIFFER_FAILED

A CTI OS socket call failed.-129E_CTIOS_SOCKET_CALL_ FAILED

EVVBU Media Termination component
in the system, verify installation.

-130E_CTIOS_MEDIA_ TERMINATION_NOT_
INSTALLED

Specified CODEC is not supported.-131E_CTIOS_MT_UNKNOWN_ CODEC

An error occurred in the Media
Termination Packet Decoder.

-132E_CTIOS_MEDIA_ TERMINATION_FAILED

The Sniffer has not received any IP
packets.

-133E_CTIOS_SNIFFER_NO_ PACKETS_RECEIVED

The Sniffer failed to open the networking
device.

-134E_CTIOS_SNIFFER_FAILED_TO_OPEN_DEVICE

The Sniffer failed when setting the packet
filter.

-135E_CTIOS_SNIFFER_ FAILED_TO_SET_FILTER

The packet filter expression is incorrect.-136E_CTIOS_ERROR_IN_ PACKET_FILTER

The IP Address specified for the monitored
device (IP Phone) is not valid.

-137E_CTIOS_INVALID_MONITORED_IP_ADDRESS

Invalid Sniffer object.-138E_CTIOS_INVALID_ SNIFFER_OBJECT

Invalid Decoder object.-139E_CTIOS_INVALID_ DECODER_OBJECT

There are no Silent Monitor Sessions in
progress.

-140E_CTIOS_NO_SM_ SESSION_IN_PROGRESS

The specified Silent Monitor session does
not exist.

-141E_CTIOS_INVALID_ SILENT_MONITOR_
SESSION

Silent Monitor Session was not removed
from the collection.

-142E_CTIOS_FAILED_ REMOVING_SILENT_
MONITOR_SESSION

There is no information available about the
IP Phone.

-143E_CTIOS_IP_PHONE_ INFORMATION_NOT_
AVAILABLE

CIL Coding Conventions
5

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

The peer application is not enabled for
Silent Monitor.

-144E_CTIOS_PEER_NOT_ENABLED_FOR_SILENT_
MONITOR

This application is not enabled for Silent
Monitor.

-145E_CTIOS_NOT_ENABLED_
FOR_SILENT_MONITOR

There are no pending requests to be
processed.

-146E_CTIOS_NO_PENDING_REQUEST

There is already an established session.-147E_CTIOS_ALREADY_IN_SESSION

The session mode is already set.-148E_CTIOS_MODE_SET_ALREADY

The session mode is not set yet.-149E_CTIOS_MODE_NOT_SET

The object is not in the correct state.-150E_CTIOS_INVALID_OBJECT_STATE

This error occurs when a request to initiate
CTI OS silent monitor is made and CTI
OS is configured to use CCM silent
monitor. This error also occurs when a
request to initiate CCM silent monitor is
made and CTI OS is configured to use CTI
OS silent monitor.

-151E_CTIOS_INVALID_SILENT_MONITOR_MODE

CoCreateInstance failed to create a COM
object wrapper for a CIL Object (Session,
Agent, Call, Skill, etc.).

-200E_CTIOS_COM_OBJ_ ALLOCATION_FAILED

A COM component failed to access data
from the registry.

-201E_CTIOS_COM_ CORRUPTED_REGISTRY

The Dial Pad common dialog was not
created and CoCreateInstance failed.

-202E_CTIOS_COM_DIALPAD_ FAIL_TO_LOAD

Failed converting COM pointer to C++
pointer.

-203E_CTIOS_COM_CONV_COMPTR_TO_CPPPTR_
FAILED

The MS COM library is not initialized.
Invoke CoInitialize(...).

-204E_CTIOS_COM_NOT_ INITIALIZED

A disconnect is already pending.-300E_CTIOS_SESSION_ DISCONNECT_PENDING

The session is not connected.-301E_CTIOS_SESSION_NOT_ CONNECTED

The call to Connect failed because the
session is not in a disconnected state. The
session may be connected or a previous
call to Disconnect may not yet be
complete.

-351E_CTIOS_SESSION_NOT_DISCONNECTED

CIL Coding Conventions
6

CIL Coding Conventions
CIL Error Codes

DescriptionNumeric
Value

CIL Error Code

An object for this agent already exists in
the session.

-900E_CTIOS_AGENT_ ALREADY_IN_SESSION

Session must be disconnected before
operation.

-901E_CTIOS_SET_AGENT_
SESSION_DISCONNECT_ REQUIRED

Could not send message. Session may not
be connected.

-902E_CTIOS_SERVICE_SEND_MESSAGE_FAILED

An object for this call is already set as
current in the session.

-903E_CTIOS_CALL_ALREADY_CURRENT_IN_SESSION

TheAgentID and/or PeripheralID provided
to a Login call do not match the properties
set on the Agent object when SetAgent()
was called.

-904E_CTIOS_LOGIN_ INCONSISTENT_
ARGUMENTS

If a method that is supposed to trigger an event returns an error code, check this return value before continuing
to wait for events. Depending on the error code, the event you were waiting for may not be triggered.

Note

COM Error Codes
For applications using the CTI OS CIL for COM, the Microsoft COM layer adds a level of error detection
and provides additional error codes, called HRESULTs. For COM method calls in C++, the HRESULT is
returned from the method call, and indicates success or failure of the method call. The CIL error code is also
returned, but as an [out, retval] parameter. For example:

// COM Example in C++
int errorCode = 0;
HRESULT hr = pCall->Answer(&errorCode);
if (errorCode=CIL_FAILED)

printf(“An error has occurred while answering the call.”)

In Visual Basic, HRESULT values are hidden under the covers.When an error occurs, a Visual Basic exception
is thrown, which can be caught using the On Error: construct. The CIL error code is returned as the result of
the method call:

' VB example:
On Error GoTo Error_handler
Dim errorCode as Long

ErrorCode = pCall.Answer
If ErrorCode = CIL_FAILED
Debug.print “An error has occurred.”

The complete set of HRESULT values is defined byMicrosoft in the header filewinerror.h. Themost common
HRESULT values that CTI OS developers see are listed in the following table:

CIL Coding Conventions
7

CIL Coding Conventions
COM Error Codes

Table 3: COM Error Codes

DescriptionNumeric ValueCOM Error Code

The method succeeded.0x00000000S_OK

The method succeeded, but something
unusual happened.

0x00000001S_FALSE

The method failed.0x80000008E_FAILED

The class was not found in the registry.
You must run regsvr32.exe on the DLL
file to register it.

0x80040143REG_DB_E_ CLASSNOTREG

Generic Interfaces
One of the main design goals of CTI OS was to enable future enhancements to the CTI OS feature set without
breaking existing interfaces. To accomplish this, a parameter for almost everymethod and event is an Arguments
array containing the actual parameters needed. Therefore, parameters can be added or deleted in future versions
without affecting the signature of the method or event. This provides the benefit to developers that code
developed to work with one version of the CTI OS developer toolkit works with future versions without
requiring any code changes on the client side (except to take advantage of new features). For example, CTI
OS automatically sends a new parameter in the Arguments array for an event, without requiring an interface
or library code change. The dilemma of creating a generic interface is solved by using generic mechanisms
to send parameters with events and request, and to access properties.

Arguments
The CTI OS developer's toolkit makes extensive use of a new data structure (class) called Arguments.
Arguments is a structure of key-value pairs that supports a variable number of parameters and accepts any
user-defined parameter names. For any given event, the Arguments structure allows the CTI OS Server to
send the CIL any new parameters without requiring client side changes. Similarly, for any request, the
programmer can send any new parameters without any changes to the underlying layers.

Example of using Arguments in a Visual Basic MakeCall request:

Dim args As New Arguments
args.AddItem "DialedNumber", dialthis.Text

If Not 0 = Len(callvar1.Text) Then
' set callvar1
args.AddItem "CallVariable1", callvar1.Text
End If

' send makecall request
m_Agent.MakeCall args, errorcode

Java example:

Arguments args = new Arguments();
args.SetValue(CtiOs_IkeywordIDs.CTIOS_DIALEDNUMBER, "12345");

CIL Coding Conventions
8

CIL Coding Conventions
Generic Interfaces

args.SetValue(CtiOs_IkeywordIDs.CTIOS_CALLVARIABLE1, "MyData");
int iRet = m_Agent.MakeCall(args);

The Arguments structure can store and retrieve all native C/C++, Visual Basic, and .NET, and Java types, as
well as nested Arguments structures.

GetValue Method to Access Properties and Parameters
CTI OS makes extensive use of generic data abstraction. The CTI OS CIL objects, as well as the Arguments
structure, store all data by key-value pair. Properties and data values in CTI OS are accessible through a
generic mechanism called GetValue. For a list of the different GetValue methods, see CtiOs Object or Helper
Classes The GetValue mechanism provides for the retrieval of any data element based on its name. This
enables the future enhancement of the data set provided for event parameters and object properties without
requiring any interface changes to support new parameters or properties. GetValue supports use of string
keywords, as shown in the following examples:

// C++string sAgentID;
args.GetValueString("AgentID", &sAgentID);

`Visual Basic
Dim sAgentID As String
sAgentID = args.GetValueString "AgentID"

//Java
String sID = args.GetValueString(CtiOs_IkeywordIDs.CTIOS_AGENTID);
Integer IPeriph = args.GetValueIntObj(CtiOs_IkeywordIDs.CTIOS_PERIPHERALID);

if (IPeriph == null)
// Error accessing Peripheral ID! Handle Error here
else

iPeriph = IPeriph.intValue();

CTI OS defines a set of well-known keywords for event parameters and properties. The well-known keywords
are of type string and are listed throughout this document with the methods and events for which they are
valid. The complete set of valid keywords are listed in the C++ header file, ctioskeywords.h, and are provided
in the COM (Visual Basic) type library as well. Java CIL keywords are listed in the Javadoc in the description
of the CtiOs_IKeywordIDs interface.

SetValue Method to Set Object Properties and Request Parameters
The CIL also provides an extensible mechanism to set properties on CTI OS Client Interface Objects. The
SetValue mechanism, available on the CIL Interface Objects (as well as the CTI OSArguments class), enables
setting properties of any known type to the object as a key-value pair.

SetValue, similar to GetValue and AddItem, supports string keywords and enumerated names:

// C++
Agent a;
a.SetValue("AgentID", "22866");
a.SetValue(CTIOS_AGENTID, "22866"); // alternative
a.SetValue(ekwAgentID, "22866"); // alternative

`Visual Basic
Dim a As Agent

CIL Coding Conventions
9

CIL Coding Conventions
GetValue Method to Access Properties and Parameters

ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter12.pdf#nameddest=unique_62
ucce_b_ctios-developer-guide_12_6_1_chapter12.pdf#nameddest=unique_62

a.SetValue "AgentID", "22866"

//Java. Note use of the CTIOS_AGENTID version of keywords.
String sAgentID = "22866";
Args.SetValue("AgentID", sAgentID);
Args.SetValue(CtiOs_IkeywordIDs.CTIOS_AGENTID, sAgentID); // alternative
Args.SetValue(ekwAgentID, sAgentID);

The complete syntax and usage of the GetValue, AddItem, and SetValue methods is detailed in CtiOs Object
The Arguments structure is detailed in Helper Classes

UniqueObjectID Variable-Length String
The CTI OS Server creates and manages the CTI OS objects, representing all interactions for the contact
center. The CTI OS Server and CIL use the UniqueObjectID field to match up a CTI OS object on the CIL
with the corresponding object on the Server.

The UniqueObjectID is a variable-length string that can uniquely identify the object within the current context
of the CTI OS Server and the Unified CCE and CTI Interlink Advanced. The UniqueObjectID comprises an
object type (for example, call, agent, skillgroup, and so on), and two or more additional identifying fields.
The following table explains the composition of the UniqueObjectID.

Table 4: UniqueObjectID Components

ExplanationSample UniqueObjectIDObject Type

The Call object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), ConnectionCallID (202,
generated by the PBX/ACD), and its
ConnectionDeviceID (23901, generated
by the PBX/ACD).

call.5000.202.23901Call Object

The Agent object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its agent ID.

agent.5000.22866Agent Object

The device object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its instrument number
(configured by the PBX/ACD).

device.5000.23901Device Object (for events only; no
CIL object)

The skill group object is uniquely
identified by its PeripheralID (5000,
generated by Unified ICM), and its
SkillGroupNumber (configured by the
PBX/ACD).

skillgroup.5000.77SkillGroup Object

The team object is uniquely identified by
its PeripheralID (5000, generated by
Unified ICM), and its TeamID (5001, also
generated by Unified ICM).

team.5000.5001Team Object (for events only; no
CIL object)

CIL Coding Conventions
10

CIL Coding Conventions
UniqueObjectID Variable-Length String

ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47
ucce_b_ctios-developer-guide_12_6_1_chapter12.pdf#nameddest=unique_62

The CTI OS UniqueObjectID is not the same as the Unified ICM globally unique 64 bit key used in the ICM
historical databases (called the ICMEnterpriseUniqueID), which exists only for calls. The
ICMEnterpriseUniqueID stays with the call even when the call is transferred between call center sites, while
the UniqueObjectID for a call is specific to its site (by PeripheralID, ConnectionCallID, and
ConnectionDeviceID).

Note

The ICMEnterpriseUniqueID in CTI OS is a variable-length string with the form

“icm.routercallkeyday.routercallkeycallid”

where routercallkeyday is the field Day in the Unified ICM Route_Call_Detail and Termination_Call_Detail
tables, and routercallkeycallid is the field RouterCallKey in the Unified ICM Route_Call_Detail and
Termination_Call_Detail tables.

The CTI OS server enables certain types of monitor mode applications that track the pre-call notification event
(eTranslationRouteEvent or eAgentPrecallEvent) and seeks to match the call data with the arrival of an
eCallBeginEvent.

To do so, the application receives the pre-call notification for calls routed by Unified ICM, (either pre-route,
post-route, or translation route), and creates a record (object) using the ICMEnterpriseUniqueID field as the
unique key. Later, when the call arrives at the ACD, and is queued or targeted (by the ACD) for a specific
agent, the application canmatch the saved record (object) with the incoming call by the ICMEnterpriseUniqueID
field. The following events contain the ICMEnterpriseUniqueID that can associate a call with the saved call
information:

• eCallBeginEvent

• eCallDataUpdateEvent

• eSnapshotCallConf

• eCallEndEvent

UniqueObjectID to Obtain Pointer or Reference
Client applications written to take advantage of the CIL can use the UniqueObjectID to obtain a pointer (in
C++ or COM for C++) or a reference (in other languages) to the underlying object.

The CIL Session object provides easy access to the object collections via several methods, including
GetObjectFromObjectID. GetObjectFromObjectID takes as a parameter the string UniqueObjectID of the
desired object, and returns a pointer to the object. Because this mechanism is generic and does not contain
specific information about the object type retrieved, the pointer (or reference) returned is a pointer or reference
to the base class: a CCtiosObject* in C++, an Object in Visual Basic, an IDispatch* in COM for C++, or
CtiOsObject in .NET and Java.

The GetObjectFromObjectID method performs an AddRef() on the pointer before it is returned to the
programmer.

Note

CIL Coding Conventions
11

CIL Coding Conventions
UniqueObjectID to Obtain Pointer or Reference

C++ example:

string sUniqueObjectID = "call.5000.101.23901";
Ccall * pCall = NULL;
m_pSession->GetObjectFromObjectID(sUniqueObjectID,

(CCtiOsObject**)&pCall);

pCall->Clear();
pCall->Release(); // release our reference to this object
pCall = NULL;

Java example:

String sUID = "call.5000.101.23901";
Call rCall = (Call) m_Session.GetObjectFromObjectID(sUID);

Button Enablement Masks
The CTI OS Server provides a rich object-level interface to the CTI interactions of the contact center. One of
the features the CTI OS Server provides is to evaluate all of the telephony events, and map them to the features
permitted by the Cisco CallManager implementation. The CTI OS Server provides a peripheral-independent
mechanism for clients to determine which requests are valid at any given time by using a bitmask to indicate
which requests are permitted.

For example, the only valid time to answer a call is when the ENABLE_ANSWER bit in the enablement mask
is set to the on position. The following C++ example depicts this case:

void EventSink::OnCallDeliveredEvent(Arguments& args)
{

unsigned int unBitMask = 0;
if (args.IsValid(“EnablementMask”))
{

args.GetValueInt(“EnablementMask”, & unBitMask)
//do bitwise comparison
If(unBitMask & ENABLE_ANSWER)

m_AnswerButton.Enable();
}

}

Visual Basic.NET Example

Private Sub m_session_OnAgentStateChange(ByVal pIArguments As
Cisco.CTIOSCLIENTLib.Arguments) Handles m_session.OnAgentStateChange

Dim bitmask As Integer

'Determine the agent's button enablement and update the buttons on the
form

bitmask = m_Agent.GetValueInt("EnablementMask")

btnReady.Enabled = False
btnNotReady.Enabled = False
btnLogout.Enabled = False
btnStartMonitoring.Enabled = False

CIL Coding Conventions
12

CIL Coding Conventions
Button Enablement Masks

If bitmask And Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_READY
Then

btnReady.Enabled = True
End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_NOTREADY Then
btnNotReady.Enabled = True

End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_NOTREADY_WITH_REASON Then
btnNotReady.Enabled = True

End If
If bitmask And Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_LOGOUT

Then
btnLogout.Enabled = True

End If
If bitmask And

Cisco.CTIOSCLIENTLib.enumCTIOS_EnablementMasks.ENABLE_LOGOUT_WITH_REASON Then
btnLogout.Enabled = True

End If

End Sub

The advantage of using this approach is that all of the peripheral-specific details of enabling and disabling
buttons is determined in a central location—at the CTI OS Server. This allows future new features to be
enabled, and software bugs to be corrected in a central location, which is a great benefit for deploying future
releases.

• You must use the button enablement mask generated by CTI OS Server in all cases where Cisco provides
button enablement masks. This prevents application impact if changes are made to the event flow.

• Cisco makes no guarantees that the event flow will remain consistent across versions of software.

Note

The button enablement feature is intended for use in agent mode applications and not for monitor mode
applications.

Warning

For any given event, the CTI OS Server calculates the appropriate button enablement bitmask and sends it to
the CIL with the event parameters. The button enablement bit masks are discussed in detail in Event Interfaces
and Events You can use these masks to write a custom softphone-type application without writing custom
code to enable and disable buttons. This approach is also used internally for the CTI OS ActiveX softphone
controls.

CIL Coding Conventions
13

CIL Coding Conventions
Visual Basic.NET Example

ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_68

CIL Coding Conventions
14

CIL Coding Conventions
Visual Basic.NET Example

	CIL Coding Conventions
	CTI OS CIL Data Types
	Asynchronous Program Mode
	CIL Error Codes
	COM Error Codes
	Generic Interfaces
	Arguments
	GetValue Method to Access Properties and Parameters
	SetValue Method to Set Object Properties and Request Parameters

	UniqueObjectID Variable-Length String
	UniqueObjectID to Obtain Pointer or Reference
	Button Enablement Masks
	Visual Basic.NET Example

