
CTI OS Client Interface Library Architecture

• Object Server Architecture, on page 1
• Client Interface Library Architecture, on page 1
• CIL Object Model Object Interfaces, on page 3
• Where to Go from Here, on page 11

Object Server Architecture
CTI OS is a server-based integration solution that enables all objects to exist on the CTI OS server. The
client-side objects, through which the developer can interact with the CTI OS CIL, is conceptually thought
of as a thin proxy for server-side objects.

All objects are identified by a UniqueObjectID. The UniqueObjectID is the key that maps a server-side object
and the client-side proxy (or proxies). Requests made on a client-side object are sent to the CTI OS Server,
and the corresponding server-side object services the request (see the following figure).

Figure 1: CTI OS Object Server and Client Object Sharing

Client Interface Library Architecture
The Client Interface Library has a three-tiered architecture (see figure below), which implements the
functionality provided to developers. The CIL architecture comprises the Connection Layer, the Service Layer
and Object Interface Layer. The CIL architecture also includes the custom application, which the customer
develops to use the Client interface Library services.

CTI OS Client Interface Library Architecture
1



Figure 2: Client Interface Library Three-Tiered Architecture

Related Topics
Client Interface Library Architecture, on page 1
Advantages of CTI OS as a CTI Development Interface

Connection Layer
The Connection Layer provides basic communication and connection recovery facilities to the CIL. It creates
the foundation, or bottom tier of the CIL's layered architecture, and decouples the higher-level event and
message architecture from the low-level communication link (TCP/IP sockets). The Connection Layer sends
and receives socket messages to the CTI OS Server, where it connects to a server-side Connection Layer.

In addition to basic communication facilities, the Connection Layer provides fault tolerance to the CIL by
automatically detecting and recovering from a variety of network failures. The Connection Layer uses a
heartbeat-by-exceptionmechanism, sending heartbeats to detect network-level failures onlywhen the connection
is silent for a period of time.

The C++ CIL connection objects offered a parameter for setting QoSmarkings (DSCP packet markings). This
mechanism does not work when the desktop is deployed onWindows 7. If you require QoS markings on these
platforms, manage QoS across the enterprise with a Group Policy. Group Policies are administered using
Active Directory, but that information is beyond the scope of this document.

For more information about C++ CIL connection objects, see ISessionEvents Interface.

For additional information about QoS and DSCP, see the Solution Design Guide for Cisco Unified Contact
Center Enterprise.

For additional information about CTI OS QoS support, see the CTI OS System Manager Guide for Cisco
Unified ICM.

Related Topics
ISessionEvents Interface

Service Layer
The Service Layer sits between the Connection Layer and the Object Interface Layer. Its main purpose is to
translate the low-level network packets the Connection Layer sends and receives and the high-level command
and event messages the Object Interface Layer uses. The Service Layer implements a generic message
serialization protocol which translates key-value pairs into a byte stream for network transmission and
deserializes the messages back to key-value pairs on the receiving side. This generic serialization mechanism

CTI OS Client Interface Library Architecture
2

CTI OS Client Interface Library Architecture
Connection Layer

ucce_b_ctios-developer-guide_12_6_1_chapter1.pdf#nameddest=unique_21
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_28
ucce_b_ctios-developer-guide_12_6_1_chapter6.pdf#nameddest=unique_28


ensures forward-compatibility, because future enhancements to the message set do not require any changes
at the Connection or Service Layers.

A secondary purpose of the Service Layer is to isolate the client from the network, so that network issues do
not block the client and vice versa. This is done via a multi-threading model that allows user-program to run
without having to block on network message sending or receiving. This prevents client applications from
getting stuck when a message is not immediately dispatched across the network, and allows messages to be
received from the network even if the client application is temporarily blocked.

Object Interface Layer
The CTI Object Interface Layer is the topmost layer on the CIL architecture. It consists a group of objects
(classes) that enable application developers to write robust applications for CTI in a short time. You can extend
the framework to accommodate special requirements by subclassing one or more of the CTI OS object classes.

Custom Application
The custom application is the business application that is developed to integrate with the CTI OS Client
Interface Library. The custom application uses the CIL in the two following ways:

• The CIL provides the object-based interface for interacting with CTI OS, to send requests for agent and
call control.

• The CIL provides an events subscription service, which the custom application takes advantage of to
receive events from CTI OS.

For example, a custom application can use the Agent object to send a MakeCallRequest, and then receive a
OnCallBeginEvent (and others) from the CIL's events interfaces.

CIL Object Model Object Interfaces
The Client Interface Library's Object Interface layer provides a set of objects that create abstractions for all
of the call center interactions supported. Client programs interact with the CIL objects by making requests
from the objects, and querying the objects to retrieve properties. The following figure illustrates the CIL
Object Model Object Interfaces.

Figure 3: CIL Object Model Object Interfaces

CTI OS Client Interface Library Architecture
3

CTI OS Client Interface Library Architecture
Object Interface Layer



Session Object
The Session object is the main object in the CIL. It controls the logical session between the client application
and the CTI OS server. The Session object provides the interface to the lower layers of the CIL architecture
(the Service and Connection layers), and also encapsulates the functions required to dispatch messages to all
the other objects in the CIL.

The Session object provides object management (creation, collection management, and deletion), and is the
publisher for all CIL events. In addition, the Session object provides automatic fault tolerance and failover
recovery.

Session Modes
You can set a Session object to work in one of two modes: Agent Mode or Monitor Mode. The Session object
maintains the state of the Session mode, and recovers the session mode during failover. The client application
must set the session mode after it connects to the CTI OS Server; the Session mode remains active until the
connection to the CTI OS Server is closed.

Agent Mode

A client connects to CTI OS Server in Agent Mode when it wants to receive events for a specific agent or
supervisor. After you set the Agent Mode, the CIL receives the events for the specified agent, as well as all
call events for that agent's calls. If you also configure the agent as a Supervisor in Unified ICM, the CIL
receives events for all agents in the Supervisor's team.

Monitor Mode

A client connects to the CTI OS Server in Monitor Mode when it wants to receive a programmer-specified
set of events, such as all agent state events. For more information about setting up aMonitor Mode connection,
see Select Monitor Mode.

For the complete interface specification of the Session object, see Session Object

Related Topics
Select Monitor Mode

Agent Object
The Agent object provides an interface to Agent functionality, including changing agent states and making
calls. The Agent object also provides access to many properties, including agent statistics. Depending on the
Session Mode, a CIL application can have zero to many Agent objects.

For the complete interface specification of the Agent object, see Agent Object

Related Topics
Agent Object

Call Object
The Call object provides an interface to Call functionality, including call control and accessing call data
properties. Depending on the Session Mode, a CIL application can have any number of Call objects.

For the complete interface specification of the Call object, see Call Object

CTI OS Client Interface Library Architecture
4

CTI OS Client Interface Library Architecture
Session Object

ucce_b_ctios-developer-guide_12_6_1_chapter4.pdf#nameddest=unique_37
ucce_b_ctios-developer-guide_12_6_1_chapter8.pdf#nameddest=unique_38
ucce_b_ctios-developer-guide_12_6_1_chapter4.pdf#nameddest=unique_37
ucce_b_ctios-developer-guide_12_6_1_chapter9.pdf#nameddest=unique_40
ucce_b_ctios-developer-guide_12_6_1_chapter9.pdf#nameddest=unique_40
ucce_b_ctios-developer-guide_12_6_1_chapter10.pdf#nameddest=unique_42


Related Topics
Call Object

SkillGroup Object
The SkillGroup object provides an interface to SkillGroup properties, specifically skill group statistics.
Depending on the Session Mode, a CIL application can have zero to many SkillGroup objects.

For the complete interface specification of the SkillGroup object, see SkillGroup Object

Object Creation
The Session object maintains a collection for each class of objects it manages (for example, Agents, Calls,
SkillGroups).

Objects are created either by the programmer or by the Session object as required to support the event flow
received from the CTI OS Server. In Agent Mode, the programmer creates a single Agent object with which
to log in; in Monitor Mode, Agent objects are created as required by the event flow. Call and SkillGroup
objects are always created by the Session object.

An Agent, Call, or SkillGroup object is created (by the Session) when the Session receives an event for an
object (identified by its UniqueObjectID) that is not yet present at the CIL. This ensures that the CIL always
has the appropriate collection of proxy objects, one for each object on the CTI OS Server that it is using.
When a new object is created, it is added to the Session object's collection, and is accessible from the Session
via the GetValue mechanism. See Session Object

Reference Counting
Object lifetime is controlled using reference counting. Reference counts determine if an object is still in use;
that is, if a pointer or reference to it still exists in some collection or member variable. When all references
to the object are released, the object is deleted.

An application or object that holds a reference to a CIL object must use the AddRef method to add to its
reference count. When the reference is no longer required, the application or object holding that reference
must use the Release() method to decrement the reference count. Reference counting is discussed further in
CtiOs Object.

Reference counting must be done explicitly in C++ applications (COM or non-COM). Visual Basic, Java,
and the .NET framework perform automatic reference counting.

Note

Call Object Lifetime
Call objects are created at the CIL in response to events from the CTI OS server. Usually, a Call object is
created in response to the OnCallBegin event, but in certain failover recovery scenarios a Call object is created
in response to an OnSnapshotCallConf event. Any call data available for the call is passed in the event, and
is used to set up the Call object's initial state and properties.

The Call object remains valid at the CIL until the receipt of the OnCallEnd event. When the OnCallEnd event
is received, the Session object publishes the event to any subscribers to the event interfaces. Applications and
objects must release any remaining references to the Call object within their event handler for OnCallEnd to

CTI OS Client Interface Library Architecture
5

CTI OS Client Interface Library Architecture
SkillGroup Object

ucce_b_ctios-developer-guide_12_6_1_chapter10.pdf#nameddest=unique_42
ucce_b_ctios-developer-guide_12_6_1_chapter11.pdf#nameddest=unique_44
ucce_b_ctios-developer-guide_12_6_1_chapter8.pdf#nameddest=unique_38
ucce_b_ctios-developer-guide_12_6_1_chapter7.pdf#nameddest=unique_47


delete the Call object. When the Call object's OnEvent method returns after handling OnCallEnd, the Session
checks the reference count for zero; if any references remain, the Call object is removed from the Call object
collection but is not deleted until the last reference to it is released.

Agent Object Lifetime
In Agent Mode, the client programmer must create an Agent object, which causes its reference count to be
incremented to one, and must pass it to the Session in the SetAgent method.

In C++, you must create the object on the heap memory store so that it can exist beyond the scope of the
method creating it. For clients using other CILs, this is handled automatically.

Note

The Session holds a reference to the Agent object as long as it is in use, but the client programmer must release
the last reference to the object to prevent a memory leak.

In Monitor Mode, objects are created at the CIL when the CIL receives an event for that agent for the first
time (for example, in an OnAgentStateChange event). When the Session receives an event for an unrecognized
Agent, that new Agent is added to the Session's collection of agents.

During application clean-up, the Session object releases its references to all agents in the Agent collection.
To ensure proper memory clean-up, the programmer must release all reference to Agent objects.

SkillGroup Object Lifetime
A SkillGroup object is created at the CIL the first time an OnNewSkillGroupStatisticsEvent event occurs for
that SkillGroup. It is added to the SkillGroup collection, and it is subsequently updated by follow-on
OnNewSkillGroupStatisticsEvent events.

During application clean-up, the Session object releases its references to all skill groups in the SkillGroup
collection. To ensure proper memory clean-up, the programmer must release all reference to SkillGroup
objects.

Methods That Call AddRef()
The following tables detail the various methods that call AddRef(). To prevent memory leaks, C++ and COM
application developers that call these methods in their applications must be aware of the impact of these
methods on the reference count and must appropriately release the reference when no longer using the object:

Table 1: SessionLib (C++)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object when
the object is no longer needed.

GetSkillGroups(),

GetMonitoredCall()

CAgent

The client application must call
Release() on the returned object when
the object is no longer needed.

CreateInstance(),

GetValue()

CILRefArg

CTI OS Client Interface Library Architecture
6

CTI OS Client Interface Library Architecture
Agent Object Lifetime



ExplanationMethod NameObject Name

These methods increment the
reference count on the passed in
object. When the CilRefArg is
deleted the reference count of the
enclosed object is decremented.

SetValue(),

operator=

CILRefArg

Thismethod increments the reference
count on the passed in object. The
previous "current" call's reference
count is decremented. If an end call
event is received for the current call,
its reference count is decremented
one extra time.

SetCurrentCall()CCtiOsSession

This method call decrements the
reference count on the passed in
object.

DestroyWaitObject()CCtiOsSession

The client application must call
DestroyWaitObject() on the returned
object when the object is no longer
needed.

CreateWaitObject()CCtiOsSession

This method decrements the
reference count of the passed in
object.

DestroySilentMonitorManager()CCtiOsSession

The client application must call
DestroySilentMonitorManager () on
the returned object when it is no
longer needed.

CreateSilentMonitorManager()CCtiOsSession

This method increments the reference
count on the passed in object. The
previous "current" silent monitor's
reference count is decremented.

SetCurrentSilentMonitor()CCtiOsSession

The client application must call
Release() on the returned object when
it is no longer needed.

GetCurrentCall(),

GetCurrentSilentMonitorManager(),

GetAllCalls(),

GetAllSkillGroups(),

GetAllAgents(),

GetCurrentAgent(),

GetValue(),

GetObjectFromObjectID()

CCtiOsSession

CTI OS Client Interface Library Architecture
7

CTI OS Client Interface Library Architecture
Methods That Call AddRef()



ExplanationMethod NameObject Name

Thismethod increments the reference
count on the passed in object. If the
passed in object is NULL, then this
method decrements the current Agent
object's reference count.

SetAgent()CCtiOsSession

The client application must call
Release() on the returned object when
it is no longer needed.

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList()

CSilentMonitorManager

Table 2: CtiosClient.dll (COM)

ExplanationMethod NameObject Name

This method increments the reference
count for every SkillGroup object,
adds them to a safe array and then
returns the safe array.

GetSkillGroups()IAgent

The client application must call
Release() on the returned object when
it is no longer needed.

GetMonitoredAgent(),

GetMonitoredCall()

IAgent

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

IAgent

The client application must call
Release() on the returned object (first
argument) when it is no longer needed.

GetAllProperties()IAgent

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

ISkillGroup

The client application must call
Release() on the returned object (first
argument) when it is no longer needed.

GetAllProperties()ISkillGroup

The client application must call
Release() on the returned object when
it is no longer needed.

GetCallContext(),

GetCallData()

ICall

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue(),

GetValueArray(),

GetElement()

ICall

CTI OS Client Interface Library Architecture
8

CTI OS Client Interface Library Architecture
Methods That Call AddRef()



ExplanationMethod NameObject Name

The client application must call
Release() on the returned object (first
argument) when it is no longer needed.

GetAllProperties()ICall

This method increments the reference
count of the passed in object and
decrements the reference count of the
previous monitor.

SetMonitor()ISilentMonitorManager

The client application must call
Release() on the returned object when
it is no longer needed.

GetMonitor()ISilentMonitorManager

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetSessionInfo(),

GetIPPhoneInfo(),

GetSMSessionList(),

GetValue(),

GetValueArray(),

GetElement()

ISilentMonitorManager

The client application must call
Release() on the returned object (first
argument) when it is no longer needed.

GetAllProperties()ISilentMonitorManager

This method increments the reference
count on the passed in object. If the
passed in object is NULL, then this
method decrements the current Agent
object's reference count.

SetAgent()ISession

The client application must call
Release() on the returned object when
it is no longer needed.

GetCurrentAgent(),

GetCurrentCall()

ISession

This method increments the reference
count for every Call object, adds them
to a safe array and then returns the
safe array.

GetAllCalls()ISession

This method increments the reference
count for every Agent object, adds
them to a safe array and then returns
the safe array.

GetAllAgents()ISession

This method increments the reference
count for every SkillGroup object,
adds them to a safe array and then
returns the safe array.

GetAllSkillGroups()ISession

CTI OS Client Interface Library Architecture
9

CTI OS Client Interface Library Architecture
Methods That Call AddRef()



ExplanationMethod NameObject Name

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValue()

GetValueArray(),

GetElement()

ISession

The client application must call
Release() on the returned object (first
argument) when it is no longer needed.

GetAllProperties()ISession

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetObjectFromObjectID()ISession

The client application must call
DestroySilentMonitorManager() on
the returned object when it is no
longer needed.

CreateSilentMonitorManager()ISession

This method call decrements the
reference count on the passed in
object.

DestroySilentMonitorManager()ISession

The client application must call
Release() on the returned object when
it is no longer needed.

GetCurrentSilentMonitorManager()ISession

Table 3: CtiosComArguments.dll (COM)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object when
it is no longer needed.

Clone()IArg

The client application must call
Release() on the returned object when
it is no longer needed.

GetValueArray()IArg

If ARG_TYPE = ARG_ARRAY, the
client application must call Release()
on the returned object when it is no
longer needed.

GetValue()IArg

The client application must call
Release() on the returned object
(second argument) when it is no
longer needed.

GetValueArray(),

GetValue(),

GetElement()

IArguments

CTI OS Client Interface Library Architecture
10

CTI OS Client Interface Library Architecture
Methods That Call AddRef()



ExplanationMethod NameObject Name

The client application must call
Release() on the returned object when
it is no longer needed.

Clone()IArguments

Table 4: ArgumentsLib (C++)

ExplanationMethod NameObject Name

The client application must call
Release() on the returned object when
it is no longer needed.

CreateInstance(),

GetValueArray(),

operator=

Arg

The client application must call
Release() on the returned object when
it is no longer needed.

CreateInstance(),

Clone(),

GetValue(),

GetValueArg,

GetValueArray(),

GetElement(),

GetElementArg()

Arguments

If the returned object is of type Arg or
of typeArguments, the client application
must call Release() on the returned
object when it is no longer needed.

SetValue()Arguments

If the returned object is of type Arg or
of typeArguments, the client application
must call Release() on the returned
object when it is no longer needed.

SetElement()Arguments

Where to Go from Here
Subsequent chapters in this manual contain the following information:

• For information about CIL coding conventions, see CIL Coding Conventions

• For information about building an application using the CIL, see Building Your Custom CTI Application

• For a description and syntax of the CIL programming interfaces, see Chapters 8 through 13.

CTI OS Client Interface Library Architecture
11

CTI OS Client Interface Library Architecture
Where to Go from Here

ucce_b_ctios-developer-guide_12_6_1_chapter3.pdf#nameddest=unique_53
ucce_b_ctios-developer-guide_12_6_1_chapter4.pdf#nameddest=unique_54


CTI OS Client Interface Library Architecture
12

CTI OS Client Interface Library Architecture
Where to Go from Here


	CTI OS Client Interface Library Architecture
	Object Server Architecture
	Client Interface Library Architecture
	Connection Layer
	Service Layer
	Object Interface Layer
	Custom Application

	CIL Object Model Object Interfaces
	Session Object
	Session Modes
	Agent Mode
	Monitor Mode


	Agent Object
	Call Object
	SkillGroup Object
	Object Creation
	Reference Counting
	Call Object Lifetime
	Agent Object Lifetime
	SkillGroup Object Lifetime
	Methods That Call AddRef()


	Where to Go from Here


