
CTI OS Logging

• CTI OS Client Logs (COM and C++), on page 1
• Set Trace Levels (COM and C++), on page 2
• Trace Configuration (COM and C++), on page 2
• Java CIL Logging Utilities, on page 3
• Logging and tracing (Java), on page 5
• Logging and tracing (.NET), on page 5

CTI OS Client Logs (COM and C++)
If you install the tracing mechanism, the COM and C++ CILs automatically create a log file and trace to it.
The trace log file name and location for client processes is found under the following Windows registry key:

HKEY_LOCAL_MACHINE\Software\Cisco Systems, Inc.\CTIOS Tracing

The default filename is CtiosClientLog. Log files are created using the convention <TraceFileName>.<Windows
user name>.mmdd.hhmmss.log. The files are created in the current directory of the running program, such as
the directory into which you install the Agent Desktop. You can provide a fully qualified path for the
TraceFileName if you wish to store the files in a different location. For example, setting the following value
stores the log files in the directory C:\Temp, using the naming convention CtiosClientLog.<Windows user
name>.mmdd.hhmmss.log.

C:\Temp\CtiosClientLog

Client trace files are formatted in ASCII text that you can open them with a conventional text editor such as
Notepad.

Install Tracing Mechanism (COM and C++)
To install the tracing mechanism:

Procedure

Step 1 Copy the tracing executable file, ctiostracetext.exe, from the distribution media to the folder in which your
application is located.

CTI OS Logging
1

Step 2 Open a command window and register the tracing mechanism:
Step 3 ctiostracetext.exe /regserver

Set Trace Levels (COM and C++)
You must set the trace level in the registry by creating a TraceMask registry value within the
HKEY_LOCAL_MACHINE\Software\Cisco Systems, Inc.\CTIOS Tracing key and setting its value to
0x40000307.

[HKEY_CURRENT_USER\Software\Cisco Systems, Inc.\CTIOS Tracing]"TraceMask"=dword:40000307

Trace levels for client processes, such as the Agent Desktop phone, are stored under the following registry
key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc.\CTIOS Tracing]

"TraceFileName"="%HOMEPATH%\\CtiOsClientLog" "TraceMask"=dword:00000000

"MaxDaysBeforeExpire"=dword:00000007 "MaxFiles"=dword:00000005 "MaxFileSizeKb"=dword:00000800

"FlushIntervalSeconds"=dword:0000001e "TraceServer"="C:\\Program Files\\Cisco Systems\\CTIOS

Client\\CTIOS Toolkit\\Win32 CIL\\Trace\\CTIOSTraceText.exe"

For CTIOS server versions 7.5(10), 8.0(3) and later the default trace level will not print the call variable in
CTIOS sever logs. This has been done as an enhancement to reduce the log size in these two versions and
above. To get the call variable in CTIOS logs you need to set the trace level to 0x400000.

You can configure CTI OS Tracing globally for the entire machine (using the TraceMask setting on HKLM)
and per user (using the TraceMask setting on HKCU).

Note

If the TraceMask is not set or if it is set incorrectly, the application's performance can be negatively affected.
The preferred setting for normal operation is 0x40000307.

Warning

Trace Configuration (COM and C++)
You can set C++ and COM client trace configuration parameters in the Windows registry at the following
key. For more information about configuring tracing for the Java CIL, see Java CIL Logging Utilities, on
page 3. For more information about configuring tracing for the .NET CIL, see Logging and tracing (.NET),
on page 5.
HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems\CTIOS Tracing

These settings are defined as follows:

CTI OS Logging
2

CTI OS Logging
Set Trace Levels (COM and C++)

Table 1: Configuring Tracing Settings

Optimal ValueDescriptionParameter

30Maximum number of seconds before the trace
mechanism transfers data to the log file.

FlushIntervalSeconds

7Maximum number of days before a log file is rolled
over into a new log file regardless of the size of the
file.

MaxDaysBeforeExpire

5Maximum number of log files that can exist in the log
file directory before the logging mechanism starts
overwriting old files.

MaxFiles

2048Maximum size of a log file in kilobytes. When a log
file reaches themaximum size, a new log file is created.

MaxFileSizeKb

0x40000307Bit mask that determines the categories of events that
are traced.

TraceMask

Java CIL Logging Utilities
The Java CIL provides a different logging facility than the C++ CIL. This gives the customer application
more flexibility in how trace messages are handled. It also limits the number of special privileges the browser
would need to give the applet using the CIL; the Java CIL only needs to access the network and not the file
system. For that reason, the Java CIL does its tracing through the firing of special events called “LogEvents”
that the custom application can trap and handle in however way it sees fit.

The Java CIL provides the following objects for logging as part of the utilities package.

ILogEvents
This interface must be implemented by a class interested in receiving Java CIL LogEvents. It has only one
method.

void processLogEvent(LogEvent event)

LogEvent
A custom application that is interested in receiving LogEvents receives an object of this type whenever a log
message is generated. This class extends the Java “EventObject”, and has one public method.

DescriptionMethod

Returns the text description to write somewhere.getDescription

CTI OS Logging
3

CTI OS Logging
Java CIL Logging Utilities

Syntax

String getDescription()

Logger
A custom application that is interested in firing or handling its own LogEvents can create an instance of this
class.

DescriptionMethod

Public constructor of the Logger object.Logger

Lets the custom app fire a LogEvent.Trace

Gets the trace mask.GetTraceMask

Determines if a certain trace mask is set.IsTraceMaskEnabled

Subscribes to receive LogEvents.addLogListener

Unsubscribes from receiving LogEvents.removeLogListener

Syntax

Logger()
int Trace(long nMsgTraceMask, String message)
long GetTraceMask()
boolean IsTraceMaskEnabled(long nMsgTraceMask)
void addLogListener(ILogEvents logEvents

where logEvents implements the ILogEvents interface.
void removeLogListener(ILogEvents logEvents)

where logEvents implements the ILogEvents interface.

LogEventsAdapter
This is a wrapper class around the Logger facility. A custom application that is interested in tracing but does
not want to implement its own ILogEvents interface can create an instance of this class. The adapter class
provides two constructors, a default one that automatically logs to the Java console and one that takes in an
output filename.

DescriptionMethod

Public constructor.LogEventsAdapter

Starts receiving LogEvents.startLogging

Stops receiving LogEvents.stopLogging

Handles a LogEvent.processLogEvent

Does some cleanup.finalize

CTI OS Logging
4

CTI OS Logging
Logger

Syntax

LogEventsAdapter()LogEventsAdapter(String fileName)
void startLogging()
void stopLogging()
void processLogEvent(LogEvent e)
void finalize()

Logging and tracing (Java)
The Java CIL tracing mechanism behaves differently from that of the COM and C++ CILs. The Java CIL
does not automatically create a log file and trace to it. You must develop the custom application to create and
maintain the log file.

The Java CIL provides classes that allow you to write tracing messages from CTI applications. You can create
a class that implements ILogListener, register it with the LogManager, and write the trace events to a log file.

The Java CIL also includes the LogWrapper class, which implements the ILogListener interface and provides
a default logging mechanism.

The LogWrapper class has three constructors:

• LogWrapper() - Creates a new LogWrapper object that writes tracing messages to System.out.

• LogWrapper(string sFileName) - Creates a new LogWrapper object that writes trace messages to the file
specified in sFileName.

• LogWrapper(string sFileName, long iMaxSize, int iArchives, int iExpires, int iFlushIntervalMs) - Creates
a new LogWrapper object that traces to the file specified in sFileName and sets all the tracing properties
provided:

• The maximum size of a single trace file (the default is 2048 Kb).

• The maximum number of trace files before LoggerManager deletes the oldest file (the default is 4).

If a developer deploys an application and then wants to debug it in the field, they need a way to change the
trace mask from the default level if necessary to provide more information for debugging.

You also need to provide a way to adjust the trace mask at runtime. If you encounter problems, Cisco personnel
need to see this log file to assist you with your problem.

Note

For more information about the LogWrapper class and its associated methods, see the Java CIL Javadoc file.

Logging and tracing (.NET)
The .NET CIL tracing mechanism behaves differently from that of the COM and C++ CILs. The .NET CIL
does not automatically create a log file and trace to it. You must develop the custom application to create and
maintain the log file.

CTI OS Logging
5

CTI OS Logging
Logging and tracing (Java)

The .NET CIL provides classes that allow you to write tracing messages from CTI applications. Custom
applications can either create their own logging mechanism or use the default logging mechanism provided
in the .NET CIL.

Default Logging Mechanism
You can use the .NET CIL LogWrapper class to implement logging to the system console or to a file. The
LogWrapper class registers itself as an event listener and creates a log file.

Log Trace Events with LogWrapper Class
To log trace events using the LogWrapper class:

Procedure

Step 1 Create an instance of the LogWrapper class, passing the following arguments:

• logFileName - Name of file in which to write trace events.

• fileMaxSize - The maximum size of the log file.

• numberArchivesFiles - Maximum number of log files that can exist in the log file directory before the
logging mechanism starts overwriting old files.

• numberDaysBeforeFileExpired - Maximum number of days before a log file is rolled over into a new
log file regardless of the size of the file.

The following code snippet creates an instance of the LogWrapper class that writes trace events to
MyLogFile.txt.WhenMyLogFile.txt reaches 2048KB, a new log file is created. The Logger creates amaximum
of 20 log files in the log file directory before overwriting existing files. After 10 days, the log file is rolled
over into a new log file regardless of its size.

// Create a LogWrapper. This will create a file and start // listening for log
events to write to the file.
String logFileName = "MyLogFile.txt";
int fileMaxSize = 2048;
int numberArchivesFiles = 20;
int numberDaysBeforeFileExpired = 10;
m_logWrapper = new LogWrapper(logFileName, fileMaxSize, numberArchivesFiles,
numberDaysBeforeFileExpired);

Step 2 In your application, write trace events. The following example traces a message at the given trace level for
the given method. Set the trace level to the desired trace mask. Trace masks are defined in the Logger class.
For more information about available trace mask values, see the following table.

protected internal static void MyTrace (int traceLevel,
string methodName,
string msg)
{
if (m_logger.IsTraceMaskEnabled(traceLevel))
{
string tracsMsg = string.Format("{0}: {1}", methodName,
msg) ;

CTI OS Logging
6

CTI OS Logging
Default Logging Mechanism

m_logger.Trace(traceLevel, msg) ;
}
}

The CTI Toolkit Combo Desktop .NET sample application included with the CTI OS toolkit shows how to
use the CIL's LogWrapper class in the context of a complex softphone application.

The following table lists the trace masks available in the .NET CIL.

Table 2: Trace Masks in .NET CIL

PurposeValueTraceMask Bit

Mask for major events.0x000000ffTRACE_LEVEL_MAJOR

Mask for general events and requests.0x0000ff00TRACE_LEVEL_EVENT_REQ

Mask for method entry and exit.0x00ff0000TRACE_LEVEL_METHOD

Mask for very low level operations.0xff000000TRACE_LEVEL_MEMORY

Individual Trace Mask

Lowest Order Byte Mask: Events

Always print.0x00TRACE_MASK_ALWAYS

Critical error.0x01TRACE_MASK_CRITICAL

Warning.0x02TRACE_MASK_WARNING

High important events/requests.0x04TRACE_MASK_EVT_REQ_HIGH

High important events/requests.0x08TRACE_MASK_EVT_REQ_HIGH_PARM

Average important events/requests.0x10TRACE_MASK_EVT_REQ_AVG

Average important events/requests.0x20TRACE_MASK_EVT_REQ_AVG_PARM

Low important events/requests.0x40TRACE_MASK_EVT_REQ_LOW

Low important events/requests.0x80TRACE_MASK_EVT_REQ_LOW_PARM

Second Lowest Order Byte: Method Tracing

High visibility method entry/exit trace.0x0100TRACE_MASK_METHOD_HIGH

High visibility method logic trace.0x0200TRACE_MASK_METHOD_HIGH_LOGIC

Internal visibility method entry/exit trace.0x0400TRACE_MASK_METHOD_HIGH_LOGIC

Internal visibility method logic trace.0x0800TRACE_MASK_METHOD_AVG_LOGIC

Helper object visibility method entry/exit
trace.

0x1000TRACE_MASK_METHOD_LOW

CTI OS Logging
7

CTI OS Logging
CTI OS Logging

PurposeValueTraceMask Bit

Helper object visibility method logic trace.0x2000TRACE_MASK_METHOD_LOW_LOGIC

Map access.0x4000TRACE_MASK_METHOD_MAP

Highest Order Byte: Communications and Processing

Method entry/exit for Arguments objects.0x01000000TRACE_MASK_ARGS_METHODS

Logic trace for Arguments objects.0x02000000TRACE_MASK_ARGS_LOGIC

Method entry/exit for packets objects.0x04000000TRACE_MASK_PACKETS_METHODS

Logic trace for packets objects.0x08000000TRACE_MASK_PACKETS_LOGIC

Memory dump of serialize buffer.0x10000000TRACE_MASK_SERIALIZE_DUMP

Memory dump of sockets buffer.0x20000000TRACE_MASK_SOCKETS_DUMP

Threading tracing on or off.0x40000000TRACE_MASK_THREADING

Connection tracing on or off.0x80000000TRACE_MASK_CONNECTION

Custom Logging Mechanism
The LogManager class within the .NET CIL implements all CIL logging functions. This singleton class has
only one instance of LogManager, which provides a global point of access. The LogManager object defines
a LogEventHandler delegate that custom applications must implement:

public delegate void LogEventHandler(object eventSender, LogEventArgs args);

Log Trace Events with Logger Class
To log trace events from a custom application to a file, perform the following steps:

Procedure

Step 1 Create a Logger object. For example:

m_log = new Logger();

Step 2 Write a method to handle log events. This method can trace the log events to a file, if desired. For example:

public virtual void ProcessLogEvent(Object eventSender, LogEventArgs Evt){
// Output the trace
String traceLine = Evt.Description;
// Check that tracing is enabled for this tracelevel

CTI OS Logging
8

CTI OS Logging
Custom Logging Mechanism

if (m_logger.IsTraceMaskEnabled(traceLevel))
{
WriteTraceLineToFile(traceLine);
}
}

Step 3 Create a log listener to handle trace events. In the following example, the AddLogListener method registers
the LogEventHandler delegate as a listener for trace events. The LogManager sends trace events to the method
that you pass to the LogEventHandler.

In the following example, the LogManager sends trace events to the ProcessLogEvent method created in Step
2.

m_log.AddLogListener(new LogManager.LogEventHandler(ProcessLogEvent));

The LogManager only calls the method passed as a parameter to the LogEventHandler for a
particular trace if the trace level for that trace is enabled. You can use the IsTraceMaskEnabled
method in the Logger class to determine whether or not a trace level is enabled.

Note

Trace Configuration (Java and .NET)
For the Java and .NET CILs, you can configure tracing either programmatically by using the LogWrapper
class or by editing the TraceConfig.cfg file. Settings in TraceConfig.cfg do not take effect until
LogWrapper.ProcessConfigFile is called. Your application must call ProcessConfigFile if you have edited
the configuration settings in the TraceConfig.cfg file.

The All Agents Sample .NET code in the .NET CIL includes a sample TraceConfig.cfg file and shows you
how to process that file.

Log file configuration settings are defined as follows:

Table 3: Configuration Settings

Optimal ValueDescriptionParameter

1Maximum number of days
before a log file is rolled over
into a new log file regardless
of the size of the file.

NumberDaysBeforeFileExpired

5Maximum number of log files
that may exist in the log file
directory before the logging
mechanism starts overwriting
old files.

NumberArchivesFiles

2048Maximum size of a log file in
kilobytes. When a log file
reaches the maximum size, a
new log file is created.

FileMaxSize

CTI OS Logging
9

CTI OS Logging
Trace Configuration (Java and .NET)

Optimal ValueDescriptionParameter

0x40000307Bit mask that determines the
categories of events that are
traced.

TraceMask

CTI OS Logging
10

CTI OS Logging
CTI OS Logging

	CTI OS Logging
	CTI OS Client Logs (COM and C++)
	Install Tracing Mechanism (COM and C++)

	Set Trace Levels (COM and C++)
	Trace Configuration (COM and C++)
	Java CIL Logging Utilities
	ILogEvents
	LogEvent
	Logger
	LogEventsAdapter

	Logging and tracing (Java)
	Logging and tracing (.NET)
	Default Logging Mechanism
	Log Trace Events with LogWrapper Class

	Custom Logging Mechanism
	Log Trace Events with Logger Class

	Trace Configuration (Java and .NET)

