
Reverse-Proxy Configuration

• Introduction, on page 1
• Prerequisites, on page 1
• Background Information, on page 2
• Reverse-Proxy Configuration, on page 4
• Verifying Reverse-Proxy Configuration, on page 27
• Brute Force Attack Prevention Configuration, on page 28
• Troubleshoot, on page 30

Introduction
This section describes how to configure a reverse-proxy and access the Cisco Finesse desktop without
connecting to a VPN based on 12.6 ES03 and above versions of Cisco Finesse, Cisco Unified Intelligence
Center (CUIC), and Cisco Identity Service (IdS).

• The content in this chapter is provided as a guidance for customers to install and configure reverse-proxy.
Cisco does not support requests for reverse-proxy installation and configuration issues. Queries that are
related to this subject can be discussed onCisco community forums.

• For ES04 deployments of VPN-less Finesse, see the Cisco Finesse 12.6 ES04 Readme.

Note

The OpenResty® Nginx configurations provided as part of Release 12.5(1) SU2 need to be manually edited
and applied to match your deployment, along with requiring a manual install of the OpenResty® Nginx.

Note

Prerequisites

Requirements
Cisco recommends that you have knowledge of the following:

Reverse-Proxy Configuration
1

https://community.cisco.com/t5/custom/page/page-id/customFilteredByMultiLabel?board=j-disc-dev-contact-center&labels=VPN%20Less%20Finesse
https://www.cisco.com/web/software/284259728/161359/ReadMe_Finesse_12_6_1_ES04.pdf

• Cisco Unified Contact Center Enterprise (Unified CCE) Release

• Cisco Finesse

• Linux administration

• Network administration and Linux network administration

Components Used
The information in this section is based on the following software and hardware versions:

• Cisco Finesse - 12.6 ES03

• Cisco Unified Intelligence Center - 12.6 ES03

• IdS - 12.6 ES03

• Unified CCE - 11.6 or later

• Packaged CCCE - 12.0 or later

Related Topics
Performance

Background Information
This deployment model is supported for the Unified CCE and Packaged CCE solutions.

Deployment of a reverse-proxy is supported (available from 12.6 ES01) as an option to access the Cisco
Finesse desktop without connecting to a VPN.

To enable this feature, a reverse-proxy pair must be deployed in the Demilitarized Zone (DMZ).

Media access remains unchanged in reverse-proxy deployments. To connect to the media, agents can use
Cisco Jabber over MRA solution or the Mobile Agent capability of Unified CCE with a Public Switched
Telephone Network (PSTN) or mobile endpoint. This diagram shows how the network deployment will look
like when you access two Finesse clusters and two Cisco Unified Intelligence Center nodes through a single
HA pair of reverse-proxy nodes.

Concurrent access from agents on the Internet and agents who connect from LAN is supported as shown in
the following image:

Reverse-Proxy Configuration
2

Reverse-Proxy Configuration
Components Used

For more information on how to select an appropriate reverse-proxy that supports this deployment, see the
section Reverse-Proxy Selection Criteria at Security Guide for Cisco Unified ICM/Contact Center Enterprise,
Release 12.6(1).

Before you read this section, it is suggested to refer to VPN-less Access to Finesse Desktop. Also, see the
Security Considerations for Mobile Agent Deployments section in Security Guide for Cisco Unified ICM/Contact
Center Enterprise, Release 12.6(1).

Note

Related Topics
Components Used

Upgrade Notes for ES01-Based VPN-less Configurations
• Nginx ES03-based configuration requires Nginx installation with Lua support.

• Certificate Requirements

• Cisco Finesse, Cisco Unified Intelligence Center, and IdS require the Nginx or OpenResty host
certificate to be added to the Tomcat trust store and restart the system. This enables Nginx ES02-based
configuration to successfully connect to the component servers.

• Cisco Finesse, Cisco Unified Intelligence Center, and IdS upstream server certificates need to be
configured in the Nginx server to use the ES03-based configuration.

It is recommended to remove the existing ES01-based Nginx configuration before you install the ES03-based
Nginx configurations.

Note

Nginx ES03-based configuration scripts require the corresponding ES03 COP installation in Cisco Finesse,
Cisco Unified Intelligence Center, and IdS.

Note

Reverse-Proxy Configuration
3

Reverse-Proxy Configuration
Upgrade Notes for ES01-Based VPN-less Configurations

https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_315

Validating Unauthenticated Static Resources
All valid endpoints that can be accessed without any authentication are actively tracked in the ES04 scripts .
Requests to these unauthenticated paths are rejected without sending these requests to the components servers,
if an invalid URI is requested.

Brute Force Attack Prevention
Finesse 12.6 ES02 and above authentication scripts actively prevent brute force attacks that can be used to
guess the user password. The scripts do this by blocking the IP address used to access the service, after a
certain number of failed attempts in a short time. These requests will be rejected by 418 client error. The
number of failed requests, time interval, and blocking duration are configurable.

For more information, see the Brute Force Attack Prevention Details section.

Caching CORS Headers
When the first options request is successful, the response headers access-control-allow-headers,
access-control-allow-origin, access-control-allow-methods, access-control-expose-headers, and
access-control-allow-credentials are cached at the proxy for five minutes. These headers are cached for each
respective upstream server.

Reverse-Proxy Configuration

Install OpenResty as a Reverse-Proxy in DMZ
This section details the OpenResty-based proxy installation steps. The reverse-proxy is typically configured
as a dedicated device in the network demilitarized zone (DMZ) as shown in the deployment diagram in
Background Information.

1. Install the OS of your choice with the required hardware specification. Kernel and IPv4 parameter tweaks
might differ depending on the OS selected. Users are advised to reverify these aspects if the chosen OS
version is different from CentOS 8.0.

2. Configure two network interfaces. One interface will be required for public access from the Internet clients
and another to communicate with the servers in the internal network.

3. Install OpenResty.

Any of the following Nginx versions can be used for this purpose, as long as they are based on Nginx 1.19+
and support Lua:

• Nginx Plus

• Nginx Open Source (Nginx open source must be compiled along with OpenResty-based Lua modules)

• OpenResty

• GetPageSpeed Extras

Reverse-Proxy Configuration
4

Reverse-Proxy Configuration
Validating Unauthenticated Static Resources

ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_323
https://openresty.org/en/installation.html

The configuration provided has been testedwith OpenResty 1.19 and is expected to workwith other distributions
with only minor updates, if any.

Note

Install OpenResty

Procedure

PurposeCommand or Action

As part of the OpenResty installation, Nginx
will be installed in this location. Add the

Install OpenResty. See OpenResty Linux
Packages.

Step 1

OpenResty path to the PATH variable by
adding the following line in the ~/.bashrc file.
export
PATH=/usr/local/openresty/bin:$PATH

Start or stop OpenResty NginxStep 2 • To start OpenResty Nginx, enter
openresty.

• To stop OpenResty Nginx, enter
openresty -s stop.

Configure OpenResty Nginx
The configuration is explained for anOpenResty-basedNginx installation. The default directories for OpenResty
are:

• <nginx-install-directory> = /usr/local/openresty/nginx

• <Openresty-install-directory> = /usr/local/openresty

1. Download and extract the 12.6-ES04-reverse-proxy-config.zip file that contains the reverse-proxy
configuration for Nginx. This file is available on the Finesse Release 12.6(1)ES04 software download
page.

2. Copy nginx.conf, nginx/conf.d/, and nginx/html/ from the extracted reverse-proxy configuration
directory to <nginx-install-directory>/conf, <nginx-install-directory>/conf/conf.d/, and
<nginx-install-directory>/html/ respectively.

3. Copy the nginx/lua directory from the extracted reverse-proxy configuration directory inside the
<nginx-install-directory>.

4. Copy the contents of lualib to <Openresty-install-directory>/lualib/resty.

5. Configure OpenResty Nginx log rotation by copying the nginx/logrotate/saproxy file to the
<nginx-install-directory>/logrotate/ folder. Modify the file contents to point to the correct log
directories if OpenResty Nginx defaults are not used.

Reverse-Proxy Configuration
5

Reverse-Proxy Configuration
Install OpenResty

https://openresty.org/en/linux-packages.html
https://openresty.org/en/linux-packages.html
https://software.cisco.com/download/home/283613135/type/284259728/release/12.6(1)ES3
https://software.cisco.com/download/home/283613135/type/284259728/release/12.6(1)ES3

6. OpenResty Nginx must be run with a dedicated non-privileged service account, which must be locked
and have an invalid shell (or as applicable for the chosen OS).

7. Find the Must-change string in the files under the extracted folders named html and conf.d and replace
the indicated values with the appropriate entries.

8. Ensure that all mandatory replacements are done, which are described with the Must-change comments
in the config files.

9. Make sure that the cache directories configured for Cisco Unified Intelligence Center and Finesse are
created under <nginx-install-directory>/cache along with these temporary directories.

• <nginx-install-directory>/cache/client_temp

• <nginx-install-directory>/cache/proxy_temp

The configuration provided is for a sample 2000 Agent deployment and has to be expanded appropriately for
a larger deployment.

Note

Configure the OpenResty Nginx Cache
By default, the proxy cache paths are stored in the file system. We recommend changing them to in-memory
drives by creating a cache location in tmpfs as shown here.

1. Create directories for the different proxy cache paths under /home.

As an example, these directories must be created for the primary Finesse server. The same steps should
be followed for the secondary Finesse and Cisco Unified Intelligence Center servers.
mkdir -p /home/primaryFinesse/rest
mkdir -p /home/primaryFinesse/desktop
mkdir -p /home/primaryFinesse/shindig
mkdir -p /home/primaryFinesse/openfire
mkdir -p /home/primaryCUIC/cuic
mkdir -p /home/primaryCUIC/cuicdoc
mkdir -p /home/client_temp
mkdir -p /home/proxy_temp

echo "tmpfs /home/primaryFinesse/rest tmpfs
size=1510M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/primaryFinesse/desktop tmpfs
size=20M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/primaryFinesse/shindig tmpfs
size=500M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/primaryFinesse/openfire tmpfs
size=10M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/primaryCUIC/cuic tmpfs
size=100M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/primaryCUIC/cuicdoc tmpfs
size=100M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/client_temp tmpfs
size=2048M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >>
/etc/fstab echo "tmpfs /home/proxy_temp tmpfs
size=2048M,rw,auto,noexec,nodev,nosuid,gid=root,uid=root,mode=1700 0 0" >> /etc/fstab

Reverse-Proxy Configuration
6

Reverse-Proxy Configuration
Configure the OpenResty Nginx Cache

Increase the client and proxy_temp caches by 1 GB for each new Finesse cluster added to the configuration.Note

2. Mount the new mount points with the mount -av command.

3. Use the df -h command to validate if the file system has mounted the new mount points.

4. Change the proxy_cache_path locations in the Finesse and Cisco Unified Intelligence Center cache
configuration files. For example, to change the paths for the Finesse primary, go to
<nginx-install-directory>conf/conf.d/finesse/caches and change the existing cache location
/usr/local/openresty/nginx/cache/finesse25/ to the newly created filesystem location
/home/primaryFinesse.

##Must-change /usr/local/openresty/nginx/cache/finesse25 location would change depending
on folder extraction
proxy_cache_path /home/primaryFinesse/desktop levels=1:2 use_temp_path=on
keys_zone=desktop_cache_fin25:10m max_size=15m inactive=3y use_temp_path=off;
proxy_cache_path /home/primaryFinesse/shindig levels=1:2 use_temp_path=on
keys_zone=shindig_cache_fin25:10m max_size=500m inactive=3y use_temp_path=off;
proxy_cache_path /home/primaryFinesse/openfire levels=1:2 use_temp_path=on
keys_zone=openfire_cache_fin25:10m max_size=10m inactive=3y use_temp_path=off;
proxy_cache_path /home/primaryFinesse/rest levels=1:2 use_temp_path=on
keys_zone=rest_cache_fin25:10m max_size=1500m inactive=40m use_temp_path=off;

5. Follow the same steps for the Finesse secondary server and Cisco Unified Intelligence Center server.

Ensure that the sum of all the tmpfs drive sizings created in all the previous steps are added to the final memory
sizing for the deployment. This is because these drives are memory blocks that are configured to look like
disks to the application and they consume memory.

Note

Configure Log Rotation
Nginx reverse-proxy produces many logs. Configure log rotation to ensure optimum use of disk space, else
the logs fill up the disk. The steps to configure log rotation is as follows:

1. Copy the configuration file from /usr/local/openresty/nginx/logrotate/saproxy to
/etc/logrotate.d/reverseproxy.

2. Ensure that there’s a file in the /etc/cron.daily/logrotate. This does the log rotation daily
based on the configuration in the /etc/logrotate.d/reverseproxy.

If log rotation has to be done more frequently, such as every hour, copy the configuration file from
/etc/cron.daily/logrotate to /etc/cron.hourly/logrotate.

Note

3. Log files under /usr/local/openresty/nginx/logs/ are rotated based on the configuration in
/etc/logrotate.d/reverseproxy. That is, rotate the log when the file size exceeds 100 MB
and keep no more than 20 most recently rotated files.

The status of the log rotation is available in the /var/lib/logrotate/logrotate.status log file.

Reverse-Proxy Configuration
7

Reverse-Proxy Configuration
Configure Log Rotation

Use Self-Signed Certificates—Test Deployments
Use self-signed certificates until the reverse-proxy is ready to be rolled out into production. On a production
deployment, use only a Certificate Authority-signed (CA-signed) certificate.

1. Generate OpenResty Nginx certificates for SSL folder content. Before you generate certificates, you must
create a folder called ssl under /usr/local/openresty/nginx. Generate two certificates (one for
<reverseproxy_primary_fqdn> and another for <reverseproxy_secondary_fqdn>) with the help of the
following commands:

a. sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout

/usr/local/openresty/nginx/ssl/nginx.key -out /usr/local/openresty/nginx/ssl/nginx.crt

(pass hostname as: <reverseproxy_primary_fqdn>)

b. sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout

/usr/local/openresty/nginx/ssl/nginxnode2.key -out

/usr/local/openresty/nginx/ssl/nginxnode2.crt (pass hostname as:
<reverseproxy_secondary_fqdn>)

c. Ensure that the certificate path is /usr/local/openresty/nginx/ssl/nginx.crt and
/usr/local/openresty/nginx/ssl/nginxnode2.crt, because these are already configured in Finesse
Nginx configuration files.

2. Change the permission of the private key 400 (r--------).

3. Configure the firewall and iptables on the reverse-proxy to enable the firewall to communicate with the
ports that are configured to listen to the OpenResty Nginx server.

4. Add the IP address and hostname of all the configured servers in the/etc/hosts file of the reverse-proxy
server.

The provided configuration is for a sample 2000 Agent deployment and must be expanded appropriately for
larger deployments.

Note

Use CA-Signed Certificate—Production Deployments
A CA-signed certificate can be installed on the reverse-proxy with these steps:

1. Generate the certificate signing request (CSR).

To generate the CSR and private key, enter openssl req -new -newkey rsa:4096 -keyout nginx.key

-out nginx.csr after you log in to the proxy. Follow the prompt, and provide the details. This generates
the CSR (nginx.csr in the example) and the RSA private key (nginx.key in the example) of 4096 bits.

For example:

[root@reverseproxyhost.companyname.com ssl]# openssl req -new -newkey rsa:4096 -keyout
nginx.key -out nginx.csr
Generating a RSA private key
.....+++++
...+++++
writing new private key to 'nginx.key'
Enter PEM pass phrase:passphrase
Verifying - Enter PEM pass phrase:passphrase

Reverse-Proxy Configuration
8

Reverse-Proxy Configuration
Use Self-Signed Certificates—Test Deployments

https://www.digitalocean.com/community/tutorials/iptables-essentials-common-firewall-rules-and-commands

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:CA
Locality Name (eg, city) [Default City]:Orange County
Organization Name (eg, company) [Default Company Ltd]:CompanyName
Organizational Unit Name (eg, section) []:BusinessUnit
Common Name (eg, your name or your server's hostname)
[]:reverseproxyhostname.companydomain.com
Email Address []:john.doe@comapnydomain.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:challengePWD
An optional company name []:CompanyName

Write down the PEM passphrase. This is used to decrypt the private key during the deployment.

2. Obtain the signed certificate from the CA.

Send the CSR to the certificate authority and obtain the signed certificate.

If the certificate received from the CA is not a certificate chain containing all the respective certificates,
compose all the relevant certificates into a single certificate chain file.

Note

3. Deploy the certificate and key.

Decrypt the key generated in the first step with the openssl rsa -in nginx.key -out

nginx_decrypted.key command. Place the CA-signed certificate and the decrypted key inside the folder
/usr/local/openresty/nginx/ssl in the reverse-proxy machine. Update or add the following
SSL configurations related to the certificate in the OpenResty Nginx configurations in the following file:
/usr/local/openresty/nginx/conf/conf.d/ssl/ssl.conf:

ssl_certificate /usr/local/openresty/nginx/ssl/ca_signed_cert.crt;
ssl_certificate_key/usr/local/openresty/nginx/ssl/nginx_decrypted.key;

4. Configure permissions for the certificates.

Enter chmod 400 /usr/local/openresty/nginx/ssl/ca_signed_cert.crt and chmod 400

/usr/local/openresty/nginx/ssl/nginx_decrypted.key, so that the certificate has read-only permission
and is restricted to the owner.

5. Reload OpenResty Nginx.

Create Custom Diffie-Hellman Parameter
1. Create a custom Diffie-Hellman parameter by using the following commands:

openssl dhparam -out /usr/local/openresty/nginx/ssl/dhparam.pem 2048

chmod 400 /usr/local/openresty/nginx/ssl/dhparam.pem

Reverse-Proxy Configuration
9

Reverse-Proxy Configuration
Create Custom Diffie-Hellman Parameter

2. Modify the server configuration to use the new parameters in the file
/usr/local/openresty/nginx/conf/conf.d/ssl/ssl.conf by using the following
command:
ssl_dhparam /usr/local/openresty/nginx/ssl/dhparam.pem;

Enable OCSP Stapling

In order to enable the Online Certificate Status Protocol (OCSP) stapling, the server should be using a CA-signed
certificate and the server should have access to the CA which signed the certificate.

Note

Add or update this configuration in the file:
/usr/local/openresty/nginx/conf/conf.d/ssl/ssl.conf:

• ssl_stapling on;

• ssl_stapling_verify on;

Modify the Common OpenResty Nginx Configuration
The default OpenResty Nginx configuration file
(/usr/local/openresty/nginx/conf/nginx.conf) has to bemodified to contain the following
entries to enforce security and enhance performance. The following content should be used to modify the
default configuration file (nginx.conf) which is created during the OpenResty Nginx installation:
Increasing number of worker processes will not increase the processing the request. The
number of worker process will be same as number of cores
in system CPU. OpenResty Nginx provides "auto" option to automate this, which will spawn
one worker for each CPU core.
worker_processes auto;

Process id file location
pid /usr/local/openresty/nginx/logs/nginx.pid;

Binds each worker process to a separate CPU
worker_cpu_affinity auto;

#Defines the scheduling priority for worker processes. This should be calculated by "nice"
command. In our proxy set up the value is 0
worker_priority 0;

error_log /usr/local/openresty/nginx/logs/error.log info;

#user root root;

current limit on the maximum number of open files by worker processes, keeping 10 times
of worker_connections

worker_rlimit_nofile 102400;

events {
multi_accept on;

Sets the maximum number of simultaneous connections that can be opened by a worker
process.

Reverse-Proxy Configuration
10

Reverse-Proxy Configuration
Enable OCSP Stapling

This should not be more the current limit on the maximum number of open files i.e.
hard limit of the maximum number of open files for the user (ulimit -Hn)

The appropriate setting depends on the size of the server and the nature of the
traffic, and can be discovered through testing.

worker_connections 10240;
#debug_connection 10.78.95.21

}

http {

include mime.types;

default_type text/plain;

Must-change Change with DNS resolver ip in deployment
resolver 192.168.1.3;

Must-change change lua package path to load lua libraries
lua_package_path

"/usr/local/openresty/lualib/resty/?.lua;/usr/local/openresty/nginx/lua/?.lua;;"

Must-change change proxy_temp folder as per cache directory configurations
proxy_temp_path /usr/local/openresty/nginx/cache/proxy_temp 1 2 ;
Must-change change client_temp folder as per cache directory configurations
client_body_temp_path /usr/local/openresty/nginx/cache/client_temp 1 2 ;

lua_shared_dict userlist 50m;
lua_shared_dict credentialsstore 100m;
lua_shared_dict userscount 100k;
lua_shared_dict clientstorage 100m;
lua_shared_dict blockingresources 100m;
lua_shared_dict tokencache_saproxy 10M;
lua_shared_dict tokencache_saproxy125 10M;
lua_shared_dict ipstore 10m;
lua_shared_dict desktopurllist 10m;
lua_shared_dict desktopurlcount 100k;
lua_shared_dict thirdpartygadgeturllist 10m;
lua_shared_dict thirdpartygadgeturlcount 100k;
lua_shared_dict corsheadersstore 100k;

init_worker_by_lua_block {
local UsersListManager = require('users_list_manager')
local UnauthenticatedDesktopResourcesManager =

require("unauthenticated_desktopresources_manager")
local UnauthenticatedResourcesManager =

require("unauthenticated_thirdpartyresources_manager")
-- Must-change Replace saproxy.cisco.com with reverseproxy fqdn

if ngx.worker.id() == 0 then
UsersListManager.getUserList("saproxy.cisco.com",

"https://saproxy.cisco.com:8445/finesse/api/Users")
UnauthenticatedDesktopResourcesManager.getDesktopResources("saproxy.cisco.com",

"https://saproxy.cisco.com:8445/desktop/api/urls?type=desktop")
UnauthenticatedResourcesManager.getThirdPartyGadgetResources("saproxy.cisco.com",

"https://saproxy.cisco.com:8445/desktop/api/urls?type=3rdParty")
end

}

Reverse-Proxy Configuration
11

Reverse-Proxy Configuration
Reverse-Proxy Configuration

include conf.d/*.conf;

sendfile on;

tcp_nopush on;

server_names_hash_bucket_size 512;

Configure Reverse-Proxy Port
By default, the Nginx configuration for Finesse requests on port 8445. At a time, only one port can be enabled
from a reverse-proxy to support Finesse requests. If port 443 needs to be supported, edit the
<nginx-install-directory>conf/conf.d/finesse.conf file to enable listening on 443 and
disable listening on 8445.

Configure Mutual TLS Authentication Between Reverse-Proxy and Components
Client SSL certificate authentication for connections from reverse-proxy hosts can be enabled on Cisco Unified
Intelligence Center, Finesse, IdS, and LiveData by using the new CVOS CLI option utils system

reverse-proxy client-auth enable/disable/status.

By default this is disabled and has to be enabled by the administrator by executing the CLI on each upstream
server independently. After this option is enabled, Cisco Web proxy Service running on upstream host will
start authenticating client certificates in TLS handshake for connections originating from trusted reverse-proxy
hosts added by using the CLI utils system reverse-proxy allowed-hosts add <proxy-host>.

The following is the configuration block for the same in proxy config files named ssl.conf and ssl2.conf.
#Must-change /usr/local/openresty/nginx/ssl/nginx.crt change this location accordingly
proxy_ssl_certificate /usr/local/openresty/nginx/ssl/nginx.crt;
#Must-change /usr/local/openresty/nginx/ssl/nginx.key change this location accordingly
proxy_ssl_certificate_key /usr/local/openresty/nginx/ssl/nginx.key;

The SSL certificate used for outbound traffic (proxy to upstream) can be the same as the SSL certificate that
is configured for inbound traffic (SSL connector for component server blocks). If self-signed certificate is
used as proxy_ssl_certificate, it has to be uploaded to the tomcat trust store of the upstream components
(Finesse/IdS/Cisco Unified Intelligence Center/Livedata) for it to be authenticated successfully.

Upstream server certificate validation by reverse-proxy is optional and disabled by default. If you wish to
achieve full TLS mutual auth between reverse-proxy and upstream hosts, the following configuration has to
be uncommented in the ssl.conf and ssl2.conf files.
#Enforce upstream server certificate validation at proxy ->
#this is not mandated as per CIS buit definitely adds to security.
#It requires the administrator to upload all upstream server certificates to the proxy
certificate store
#Must-Change Uncomment below lines IF need to enforce upstream server certificate validation
at proxy
#proxy_ssl_verify on;
#proxy_ssl_trusted_certificate /usr/local/openresty/nginx/ssl/finesse25.crt;
proxy_ssl_trusted_certificate: This file should contain the all upstream certificate enteries
concatenated together

mutual TLS (mTLS) is a standard security requirement for connections established from DMZ into the data
center. For more information, see Nginx CIS behcmarks-https://www.cisecurity.org/benchmark/nginx

mTLS requires that both the server and client be pre-configured with mutual information about each other,
as well as that the mutual certificates be properly verified. Hence the termMutual TLS. A properly configured
proxy server will be able to circumvent TCP rate limits and provide the client IP to the server for logging

Reverse-Proxy Configuration
12

Reverse-Proxy Configuration
Configure Reverse-Proxy Port

https://www.cisecurity.org/benchmark/nginx

purposes. As a result, it is critical that the proxy identity be verified before connecting as a reverse-proxy. For
security reasons, it is therefore recommended that this feature be used and turned on.

This requires the upstream component certificates to be made available to the proxy and vice-versa.
Reverse-proxy by default establishes verified TLS connections to the upstream server and it is the proxy
verification at the client which is optional. Therefore this needs to be enabled at the upstream client server.

Enabling mutual TLS

The mutual TLS needs to be enabled at the upstream component servers using the provided CLI.

Use the utils system reverse-proxy client-auth enable CLI to enable proxy certificate verification at the
upstream component server.

After running the CLI, upload the proxy SSL certificate corresponding to the reverse-proxy hostname used
to connect to the same server. This can be used to verify TLS connections when the reverse-proxy attempts
to establish an upstream connection.

Clear Cache
The reverse-proxy cache can be cleared with the <NGINX_HOME>/clearCache.sh command.

Standard Guidelines
This section briefly describes the standard guidelines that must be followed when you set up OpenResty Nginx
as a proxy server. The guidelines for the OpenResty Nginx server software is derived from the Center for
Internet Security.

1. Use the latest stable versions of OpenResty and OpenSSL version.

2. Install OpenResty Nginx in a separate disk mount.

3. The OpenResty Nginx process id must be owned by the root user (or as applicable for the chosen OS)
and must have permission 644 (rw-------) or stricter.

4. OpenResty Nginx must block requests for unknown hosts. Ensure that each server block contains the
server_name directive explicitly defined. To verify, search all server blocks in the nginx.conf and
nginx/conf.d files and verify that all server blocks contain the server_name.

5. OpenResty Nginx must listen only on the authorized ports. Search all server blocks in the nginx.conf
and nginx/conf.d files and check for the listen directives to verify that only the authorized ports are
open for requests.

6. Block the proxy server HTTP port, because Cisco Finesse does not support HTTP.

7. The OpenResty Nginx SSL protocol must be TLS 1.2. Remove support for legacy SSL protocols. Disable
weak SSL ciphers.

8. Send the OpenResty Nginx error and access logs to the remote syslog server.

9. Install the mod_security module that works as a web application firewall. See the ModSecurity manual
for more information. Note that OpenResty Nginx load has not been verified within the mod_security
module in place.

Reverse-Proxy Configuration
13

Reverse-Proxy Configuration
Clear Cache

https://www.cisecurity.org/benchmark/nginx/
https://www.cisecurity.org/benchmark/nginx/
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

Configure the Mapping File
Refer to Host Mapping File for Network Translation.

Related Topics
Host Mapping File for Network Translation

Use Reverse-Proxy as the Mapping File Server

This appendix has the configuration details, for more information about the pre-requisites, refer to Use
Reverse-Proxy as the Mapping File Server.

Note

These steps are required only if the reverse-proxy is also used as the proxy mapping file host.

1. Configure the reverse-proxy hostname in the domain controller used by the Finesse, Cisco Unified
Intelligence Center and IdS hosts such that its IP address can be resolved.

2. Upload the generated OpenResty® Nginx signed certificates on both the nodes under tomcat-trust of
cmplatform and restart the server.

3. Update the Must-change values in <NGINX_HOME>/html/proxymap.txt.

4. Reload OpenResty® Nginx configurations with the nginx -s reload command.

5. Use the curl command to validate if the configuration file is accessible from another network host.

CentOS 8 Kernel Hardening
If the operating system is Cent OS 8 and the installations use a dedicated server for hosting the proxy, harden
the kernel by using these sysctl configurations:
Configurations for kernel hardening - CentOS8. The file path is /etc/sysctl.conf
Note that the commented configurations denote that CentOS 8's default value matches
the recommended/tested value, and are not security related configurations.

Avoid a smurf attack
net.ipv4.icmp_echo_ignore_broadcasts = 1
Turn on protection for bad icmp error messages
net.ipv4.icmp_ignore_bogus_error_responses = 1

Turn on syncookies for SYN flood attack protection
net.ipv4.tcp_syncookies = 1

Turn on and log spoofed, source routed, and redirect packets
net.ipv4.conf.all.log_martians = 1
net.ipv4.conf.default.log_martians = 1

Turn off routing
net.ipv4.ip_forward = 0
net.ipv4.conf.all.forwarding = 0
net.ipv6.conf.all.forwarding = 0

net.ipv4.conf.all.mc_forwarding = 0
net.ipv6.conf.all.mc_forwarding = 0

Block routed packets
net.ipv4.conf.all.accept_source_route = 0

Reverse-Proxy Configuration
14

Reverse-Proxy Configuration
Configure the Mapping File

ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_342
ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_342

net.ipv4.conf.default.accept_source_route = 0
net.ipv6.conf.all.accept_source_route = 0
net.ipv6.conf.default.accept_source_route = 0

Block ICMP redirects
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.default.accept_redirects = 0
net.ipv6.conf.all.accept_redirects = 0
net.ipv6.conf.default.accept_redirects = 0
net.ipv4.conf.all.secure_redirects = 0
net.ipv4.conf.default.secure_redirects = 0
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.default.send_redirects = 0

Filter routing packets with inward-outward path mismatch(reverse path filtering)
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.rp_filter = 1

Router solicitations & advertisements related.
net.ipv6.conf.default.router_solicitations = 0
net.ipv6.conf.default.accept_ra_rtr_pref = 0
net.ipv6.conf.default.accept_ra_pinfo = 0
net.ipv6.conf.default.accept_ra_defrtr = 0
net.ipv6.conf.default.autoconf = 0
net.ipv6.conf.default.dad_transmits = 0
net.ipv6.conf.default.max_addresses = 1
net.ipv6.conf.all.accept_ra = 0
net.ipv6.conf.default.accept_ra = 0

Backlog - increased from default 1000 to 5000.
net.core.netdev_max_backlog = 5000

Setting syn/syn-ack retries to zero, so that they don't stay in the queue.
net.ipv4.tcp_syn_retries = 0
net.ipv4.tcp_synack_retries = 0

Max tcp listen backlog. Setting it to 511 to match nginx config
net.core.somaxconn = 511

Reduce the duration of connections held in TIME_WAIT(seconds)
net.ipv4.tcp_fin_timeout = 6

Maximum resources allotted
fs.file-max = 2019273
kernel.pid_max = 4194304
net.ipv4.ip_local_port_range = 32768 60999

TCP window size tuning
net.ipv4.tcp_window_scaling = 1
net.core.rmem_default = 212992
net.core.rmem_max = 212992
net.ipv4.tcp_rmem = 4096 87380 6291456
net.ipv4.udp_rmem_min = 4096
net.core.wmem_default = 212992
net.core.wmem_max = 212992
net.ipv4.tcp_wmem = 4096 16384 4194304
net.ipv4.udp_wmem_min = 4096
vm.lowmem_reserve_ratio = 256 256 32 0 0
net.ipv4.tcp_mem = 236373 315167 472746

Randomize virtual address space
kernel.randomize_va_space = 2

Congestion control

Reverse-Proxy Configuration
15

Reverse-Proxy Configuration
Reverse-Proxy Configuration

net.core.default_qdisc = fq_codel
net.ipv4.tcp_congestion_control = cubic

Disable SysReq
kernel.sysrq = 0

Controls the maximum size of a message, in bytes
kernel.msgmnb = 65536

Controls the default maximum size of a message queue
kernel.msgmax = 65536

Controls the eagerness of the kernel to swap.
vm.swappiness = 1

Reboot after you make the recommended changes.

IPtables Hardening
IPtables is an application that allows a system administrator to configure the IPv4 and IPv6 tables, chains,
and rules provided by the Linux kernel firewall.

The IPtables rules are configured to secure the proxy application from brute force attacks by restricting the
access in the Linux kernel firewall.

The comments in the configuration indicate which service is being rate-limited by using the rules.

If administrators use a different port or expand access to multiple servers using the same ports, they must do
appropriate sizing for these ports accordingly.

Note

A sample IPtable is as follows:
Configuration for iptables service
The file path is /etc/sysconfig/iptables
Make a note for must-change values to be replaced.
Restart of the iptable service is required after applying following rules

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

Ensure loopback traffic is configured
-A INPUT -i lo -j ACCEPT
-A OUTPUT -o lo -j ACCEPT
-A INPUT -s 127.0.0.0/8 -j DROP

Ensure ping openeded only for the particular source and blocked for rest
Must-Change: Replace the x.x.x.x with valid ip address
-A INPUT -p ICMP --icmp-type 8 -s x.x.x.x -j ACCEPT

Ensure outbound and established connections are configured
-A INPUT -p tcp -m state --state RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -p tcp -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT

Block ssh for external interface
Must-Change: Replace the ens224 with valid ethernet interface
-A INPUT -p tcp -i ens224 --dport 22 -j DROP
Open inbound ssh(tcp port 22) connections
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

Reverse-Proxy Configuration
16

Reverse-Proxy Configuration
IPtables Hardening

Configuration for ccp 8445 port
-A INPUT -p tcp -m tcp --dport 8445 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " Connections to 8445 exceeded connlimit "
-A INPUT -p tcp -m tcp --dport 8445 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 8445 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 6/sec
--hashlimit-burst 8 --hashlimit-mode srcip,dstport --hashlimit-name TCP_8445_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 8445 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 8445 hashlimit "
-A INPUT -p tcp -m tcp --dport 8445 --tcp-flags SYN SYN -j DROP

Configuration for IdS 8553 port
-A INPUT -p tcp -m tcp --dport 8553 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " IdS connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 8553 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 8553 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 2/sec
--hashlimit-burst 4 --hashlimit-mode srcip,dstport --hashlimit-name TCP_8553_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 8553 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 8553 hashlimit "
-A INPUT -p tcp -m tcp --dport 8553 --tcp-flags SYN SYN -j DROP

Configuration for IdP 443 port
-A INPUT -p tcp -m tcp --dport 443 --tcp-flags SYN SYN -m connlimit --connlimit-above 8
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " IdP connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 443 --tcp-flags SYN SYN -m connlimit --connlimit-above 8
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 443 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 4/sec
--hashlimit-burst 6 --hashlimit-mode srcip,dstport --hashlimit-name TCP_443_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 443 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 443 hashlimit "
-A INPUT -p tcp -m tcp --dport 443 --tcp-flags SYN SYN -j DROP

Must-Change: A2A file transfer has not been considered for below IMNP configuration.
For A2A for support, these configuration must be recalculated to cater different file
transfer scenarios.

Configuration for IMNP 5280 port
-A INPUT -p tcp -m tcp --dport 5280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " IMNP connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 5280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 5280 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 20/sec
--hashlimit-burst 25 --hashlimit-mode srcip,dstport --hashlimit-name TCP_5280_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 5280 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 5280 hashlimit "
-A INPUT -p tcp -m tcp --dport 5280 --tcp-flags SYN SYN -j DROP

Configuration for IMNP 15280 port
-A INPUT -p tcp -m tcp --dport 15280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " IMNP connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 15280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 15280 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto
20/sec --hashlimit-burst 25 --hashlimit-mode srcip,dstport --hashlimit-name TCP_15280_DOS
-j ACCEPT

Reverse-Proxy Configuration
17

Reverse-Proxy Configuration
Reverse-Proxy Configuration

-A INPUT -p tcp -m tcp --dport 15280 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 15280 hashlimit "
-A INPUT -p tcp -m tcp --dport 15280 --tcp-flags SYN SYN -j DROP

Configuration for IMNP 25280 port
-A INPUT -p tcp -m tcp --dport 25280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " IMNP connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 25280 --tcp-flags SYN SYN -m connlimit --connlimit-above 30
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 25280 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto
20/sec --hashlimit-burst 25 --hashlimit-mode srcip,dstport --hashlimit-name TCP_25280_DOS
-j ACCEPT
-A INPUT -p tcp -m tcp --dport 25280 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 25280 hashlimit "
-A INPUT -p tcp -m tcp --dport 25280 --tcp-flags SYN SYN -j DROP

Configuration for CUIC 8444 port
-A INPUT -p tcp -m tcp --dport 8444 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " CUIC connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 8444 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 8444 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 2/sec
--hashlimit-burst 4 --hashlimit-mode srcip,dstport --hashlimit-name TCP_8444_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 8444 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 8444 hashlimit "
-A INPUT -p tcp -m tcp --dport 8444 --tcp-flags SYN SYN -j DROP

Configuration for CUIC 8447 port
-A INPUT -p tcp -m tcp --dport 8447 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " CUIC connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 8447 --tcp-flags SYN SYN -m connlimit --connlimit-above 6
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 8447 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 2/sec
--hashlimit-burst 4 --hashlimit-mode srcip,dstport --hashlimit-name TCP_8447_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 8447 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 8447 hashlimit "
-A INPUT -p tcp -m tcp --dport 8447 --tcp-flags SYN SYN -j DROP

Configuration for LiveData 12005 port
-A INPUT -p tcp -m tcp --dport 12005 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " LD connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 12005 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 12005 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 6/sec
--hashlimit-burst 8 --hashlimit-mode srcip,dstport --hashlimit-name TCP_12005_DOS -j ACCEPT
-A INPUT -p tcp -m tcp --dport 12005 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 12005 hashlimit "
-A INPUT -p tcp -m tcp --dport 12005 --tcp-flags SYN SYN -j DROP

Configuration for LiveData 12008 port
-A INPUT -p tcp -m tcp --dport 12008 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -m limit --limit 1/min --limit-burst 1 -j LOG
--log-prefix " LD connection limit exceeded"
-A INPUT -p tcp -m tcp --dport 12008 --tcp-flags SYN SYN -m connlimit --connlimit-above 10
--connlimit-mask 32 --connlimit-saddr -j DROP
-A INPUT -p tcp -m tcp --dport 12008 --tcp-flags SYN SYN -m hashlimit --hashlimit-upto 6/sec
--hashlimit-burst 8 --hashlimit-mode srcip,dstport --hashlimit-name TCP_12008_DOS -j
ACCEPT

Reverse-Proxy Configuration
18

Reverse-Proxy Configuration
Reverse-Proxy Configuration

-A INPUT -p tcp -m tcp --dport 12008 --tcp-flags SYN SYN -m limit --limit 1/min --limit-burst
1 -j LOG --log-prefix " Exceeded 12008 hashlimit "
-A INPUT -p tcp -m tcp --dport 12008 --tcp-flags SYN SYN -j DROP

Block all other ports
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

The rules that are provided block the DNS resolution at the proxy. So, all the hostnames of the components
that are configured in the proxy must be explicitly added to the host resolution file /etc/hosts.

Interface level rules must be added to restrict access to only users accessing via LAN and to block public
access to port 10000, which is used for accessing the proxy map file. For example,

-A INPUT -p tcp -m tcp -i <PRIVATE_INTERFACE> --dport 10000 --tcp-flags SYN SYN -m hashlimit

--hashlimit-upto 35/sec --hashlimit-burst 2000 --hashlimit-mode srcip,dstport --hashlimit-name

TCP_10000_DOS -j ACCEPT -A INPUT -p tcp -m tcp -i <PRIVATE_INTERFACE> --dport 10000

--tcp-flags SYN SYN -m limit --limit 1/min --limit-burst 1 -j LOG --log-prefix " Exceeded

hashlimit " -A INPUT -p tcp -m tcp -i <PRIVATE_INTERFACE> --dport 10000 --tcp-flags SYN SYN

-j DROP

Note

These rules could be applied directly by editing the /etc/sysconfig/iptables file manually. Alternatively,
save the configuration into a file such as iptables.conf and run cat iptables.conf
>>/etc/sysconfig/iptables to apply the rules.

Restart the IPtables service after you apply the rules. To restart the IPtables service, enter systemctl restart

iptables.

Restrict Client Connections
In addition to the previous IPtables configuration, installations that know the address range for clients who
use the proxy must use this knowledge to secure the proxy access rules. This helps to secure the proxy from
malicious botnets which are often created in the IP address range of countries that have more lax rules with
regards to online security. Restrict the IP address ranges to country-based, state-based, or ISP-based IP ranges
if you are sure of the access patterns.

Block Client Connections
Block the specific range of addresses when an attack is identified to be made from an IP address or a range
of IP addresses. In such cases, the requests from those IP addresses can be blocked with iptable rules.

Block Distinct IP Addresses

To block multiple distinct IP addresses, add a line to the IPTables configuration file for each IP address.

For example, to block the addresses 192.0.2.3 and 192.0.2.4, enter:
iptables -A INPUT -s 192.0.2.3 -j DROP iptables -A INPUT -s 192.0.2.4 - j DROP.

Reverse-Proxy Configuration
19

Reverse-Proxy Configuration
Restrict Client Connections

Block a Range of IP Addresses

Block multiple IP addresses in a range and add a single line to the IPTables configuration file with the IP
address range.

For example, to block the addresses from 192.0.2.3 to 192.0.2.35, enter:
iptables -A INPUT -m iprange --src-range 192.0.2.3-192.0.2.35 -j DROP.

Block All IP Addresses in a Subnet

Block all IP addresses in an entire subnet by adding a single line to the IPTables configuration file by using
the classless inter-domain routing notation for the IP address range. For example, to block all classC addresses,
enter:
iptables -A INPUT -s 192.0.0.0/16 -j DROP.

SELinux
Security-Enhanced Linux (SELinux) is a platform security framework integrated as an enhancement into the
Linux OS. The procedure to install and add SELinux policies to run OpenResty as the reverse-proxy is provided
next.

1. Stop the process with the openresty -s stop command.

2. Configure and start or stop OpenResty Nginx server with the systemctl command so that during boot
up the OpenResty process will start automatically. Enter these commands as root user.

a. Go to /usr/lib/systemd/system.

b. Open the file called openresty.service.

c. Update the content of the file as per PIDFile location.
[Unit]
Description=The OpenResty Application Platform
After=syslog.target network-online.target remote-fs.target nss-lookup.target
Wants=network-online.target

[Service]
Type=forking
PIDFile=/usr/local/openresty/nginx/logs/nginx.pid
ExecStartPre=/usr/local/openresty/nginx/sbin/nginx -t
ExecStart=/usr/local/openresty/nginx/sbin/nginx
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

d. As root user, enter sudo systemctl enable openresty.

e. Start or stop the OpenResty service with the systemctl start openresty / systemctl stop

openresty command and ensure that the process starts or stops as root user.

1. Install SElinux

• By default, only some SELinux packages will be installed in CentOS.

Reverse-Proxy Configuration
20

Reverse-Proxy Configuration
SELinux

• The policycoreutils-devel package and its dependencies must be installed in order to generate the
SELinux policy.

• Enter the following command to install policycoreutils-devel

yum install policycoreutils-devel

• Ensure that after you install the package, the sepolicy command works.
usage: sepolicy [-h] [-P POLICY]

{booleans,communicate,generate,gui,interface,manpage,network,transition}
...

SELinux Policy Inspection Tool

2. Create a New Linux User and Map with SElinux User

a. Enter semanage login -l to view the mapping between Linux users and SELinux users.
[root@loadproxy-cisco-com ~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 * *
root unconfined_u s0-s0:c0.c1023 *

b. As root, create a new Linux user (nginx user) that is mapped to the SELinux user_u user.
useradd -Z user_u nginxuser
[root@loadproxy-cisco-com ~]# passwd nginxuser
Changing password for user nginxuser.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

c. In order to view the mapping between nginxuser and user_u, enter this command as root:
[root@loadproxy-cisco-com ~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
nginxuser user_u s0 *
root unconfined_u s0-s0:c0.c1023 *

d. SELinux __default__ login is by default mapped to the SELinux unconfined_u user. By default, it
is required to confine user_u by using the following command:
semanage login -m -s user_u -r s0 __default__

In order to check if the command worked properly, enter semanage login -l. It should produce this
output:

e. Modify nginx.conf and perform change ownership for nginxuser.

Reverse-Proxy Configuration
21

Reverse-Proxy Configuration
Reverse-Proxy Configuration

1. Enter chown -R nginxuser:nginxuser * in the <Openresty-install-directory>
directory.

2. Modify the nginx.conf file to include nginxuser as the user for running worker processes.
........

user nginxuser nginxuser;

..........

3. Write the SELinux Policy for OpenResty Nginx

a. Instead of generating a new default custom policy for OpenResty Nginx with the sepolicy generate

--init /usr/bin/nginx command, start with an existing policy.

The nginx.fc file (File Contexts file) and nginx.te (Type Enforcement file) files, that are downloaded
from the following location, are modified for reverse-proxy usage:

This modified version can be used as a reference because it is updated for a particular use case.

b. Download the selinux-nginx-rhel-master-modified.tar file from the Software Download .

c. Extract the .tar file and navigate to the nginx directory within it.

d. Open the .fc file and verify the required file paths of Nginx installer, cache, and pid files.

e. Compile the configuration with the make command.

f. The nginx.pp file is generated.

g. Load the policy with the semodule command.
semodule -i nginx.pp

h. Go to /root and create an empty file called touch /.autorelabel.

i. Reboot the system.

j. Enter the following command to verify that the policy is loaded successfully:
semodule --list-modules=full

Reverse-Proxy Configuration
22

Reverse-Proxy Configuration
Reverse-Proxy Configuration

https://software.cisco.com/download/home/283613135/type/284259728/release/12.6(1)ES3

k. OpenResty Nginx should run without any violation. (Violation logs will be available in
/var/log/messages and /var/log/audit/audit.log).

l. Enter the following command to check the status of OpenResty Nginx:
ps -aefZ | grep nginx

m. Now the Finesse agent desktop or supervisor desktop should be accessible.

Load Balancer, WAF, and Proxy support for reverse-proxy deployments
The reverse-proxy configurations have security features that are dependent on the information of the actual
client IP. Requesting rate limits, logging of client activity, blocking the users due to multiple wrong credentials
require the configuration to track the client IP to appropriately rate-limit, block, or log the actual users' access.

No specific configurations are required for deployments which directly terminate the agent connections on
the reverse-proxy. The reverse-proxy has the information of the client IP due to the connections directly
reaching the reverse-proxy. However, when other network devices are used to terminate the client connections,
before forwarding them as fresh requests to the reverse-proxy, the client IPs are no longer visible to the
reverse-proxy.

Reverse-Proxy Configuration
23

Reverse-Proxy Configuration
Load Balancer, WAF, and Proxy support for reverse-proxy deployments

This happens when there are Load Balancers, Web Application Firewall (WAF), or other proxies deployed
in front of a reverse-proxy. The CDN deployments work as an intermediary reverse-proxy/WAF and fall into
the same deployment category.

Such deployments MUST add certain reverse-proxy configurations to enable the reverse-proxy to identify
the actual client IP. The configurations that are required for such deployments are as follows:

1. The public IPs and private IPs of the devices which will forward the requests to the reverse-proxy must
be to be added in nginx.conf http block and maps.conf geo block as mentioned in the ##Must-change
comment.

2. The new requests originating from the intermediary devices,MUST populate HTTP request header fields
with the end-client IP to communicate the same to the reverse-proxy.

The name of the request header field is configured in nginx.conf file using real_ip_header directive.
For example: real_ip_header X-REAL-IP;

All CDN deployments provide a mechanism to extract the client IP as a HTTP header containing a single-client
IP as part of the request payload. A custom header is often recommended to avoid conflict with the standard
X-FORWARDED-FOR header. The VPN-less reverse-proxy deployments are also recommended to provide the
client IP using a custom header for similar reasons.

Note

3. For security purpose, the devices which are front ending the reverse-proxyMUST replace X-FORWARDED-FOR
and X-REAL-IP headers provided by the client with the actual client IP or drop them if the deployment
does not need these headers.

4. If the deployment is using a custom HTTP header for communicating to the client IP, the particular field
MUST be replaced with the client IP before forwarding them upstream to the reverse-proxy.

5. Verify the configuration by transmitting a high rate of requests to a Finesse API such as
SystemInfo/DesktopConfig from an external client. Verify through the Load Balancer or WAF to ensure
that the client is blocked while the Load Balancer or intermediate devices are not blocked or rate limited.
Ensure that the configurations are working as expected before going live.

Refer to the Logging section for instructions on how to check whether a client is blocked or rate limited.

6. Deployments that employWAF or other security devices must ensure that the desktop API traffic patterns
are compatible with them before going live with the deployment. CertainWAF rules can be too restrictive
and may need some modifications before they can be deployed.

Reverse-Proxy Configuration
24

Reverse-Proxy Configuration
Reverse-Proxy Configuration

ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_349

The reverse-proxy configurations provided have no protection against layer-3 attacks such as IP address
spoofing or flooding. The proxy provides only rate limiting, brute force attack detection, and restricting of
requests to the allowed destinations. The operating system IP configurations are hardened to a certain level
but there are no further protections that are available. It is assumed that the relevant operating system hardening
and traffic protection devices are employed to secure the deployment Cisco Contact Center.

For more details refer to the Security Guidelines for Reverse-Proxy Deployment section in the Security Guide
for Cisco Unified ICM/Contact Center Enterprise, Release 12.6(1) guide.

Load Balancers and other devices which does not have the HTTP header support can skip second and third
points that are mentioned above. However, this causes a sub-optimal deployment which will be functional
but loses certain features such as client IP logging for debugging purposes and blocking users attempting to
brute force guess passwords.

The websocket authentications will also be not effective at the reverse-proxy, which will not cause any loss
in functionality but will allow all websocket request to reach the upstream component before authentication
can be enforced.

Note

Related Topics
Logging
Troubleshooting

Access VPN-Less proxy through Forward proxy and NAT
The VPN-less configuration assumes that the proxy is accessed by clients/agents from the internet, who have
separate individual IP's which can be used for enforcing security features. However, not all deployments
dedicatedly use agents from the internet with their own unique IP addresses. Most deployments will have
agents accessing the reverse-proxy deployments both from the internet as well as from LAN using the same
reverse-proxy access URI.

So, if you have a deployment which uses agents behind a proxy or a NAT that looks like what is shown above,
certain configuration changes have to be made to ensure that the end-user IP's are correctly communicated to
the reverse-proxy. The steps to configure are as follows:

1. The Forward proxy (device A in the diagram above) has to be well-known in advance.

2. The Forward proxy device has to transmit the agent IP’s in a predefined header. For example, X-REAL-IP
as shown above.

3. If there are other intermediary devices such as a Load Balancer or WAF at the network where Finesse is
deployed, before the requests reach the reverse-proxy, these devices must be able to allow the Forward
proxy by its IP address and then transmit the HTTP header without any changes.

Reverse-Proxy Configuration
25

Reverse-Proxy Configuration
Access VPN-Less proxy through Forward proxy and NAT

https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-installation-and-configuration-guides-list.html
ucce_b_features-guide-1261_chapter18.pdf#nameddest=unique_349

It is crucial that the Forward proxy IP address is identified and only requests from this IP should be allowed
to have the X-REAL-IP transmitted.

Note

4. The nginx.conf http block and maps.conf geo block files should be updated with the list of Forward
proxies' private and public IPs as mentioned in the ##Must-change comments.

Deployments that do not have the HTTP header support can skip the steps 2 to 4. However, this causes a
sub-optimal deployment which will be functional but loses certain security features listed above, which are
dependent on client IP knowledge and these deployments are therefore not suggested.

Ensure that the deployment cannot support multiple HTTP header names to transmit the client IP corresponding
to different Forward proxies that the network is interacting with.

Note

Deployments such as these, should transmit or detect the final client IP of the users who are connecting from
behind the Forward proxy A and this would be an agreement between Load Balancer and the Forward Proxy.

The Load Balancer or the final intermediary devices that forward requests to the VPN-less reverse-proxy
should transmit the required headers and will need configuration as described in the section above. The Forward
proxy information is not required to be added to the VPN-less configuration, if the intermediary device is able
to identify the correct client IPs and transmit them to the reverse-proxy using the steps mentioned above.

However, if the actual client IP resolution is not setup between the Forward proxy and the Load Balancer, the
reverse-proxy considers the IP of the Forward proxy as the actual client IP.

In this case, to avoid rate limiting to block the Forward proxy, its private and public IP addresses must be
configured in nginx.conf http block and maps.conf geo block files. Both the files must be updated with the
list of Forward-proxies' IP as mentioned in the ##Must-change comments, so that the proxy is not blocked
or rate limited. This would be a sub-optimal deployment and transmitting the actual client IP is recommended
for a more effective deployment.

Reverse-Proxy Configuration
26

Reverse-Proxy Configuration
Reverse-Proxy Configuration

Verifying Reverse-Proxy Configuration

Finesse

Procedure

Step 1 From the DMZ, open https://<reverseproxy:port>/finesse/api/SystemInfo and check if it’s reachable.
Step 2 Check if the <host> values in both <primaryNode> and <secondaryNode> are valid in reverse-proxy

hostnames. It shouldn’t be Finesse hostnames.

• If CORS status is "enabled", you must explicitly add the reverse-proxy domain name to the
list of CORS trusted domain names.

• Reverse-proxy supports a maximum of 8000 folders (including subdirectories) in the
finesse/3rdpartygadget folder.

Note

Cisco Unified Intelligence Center and LiveData

Procedure

Step 1 If the Finesse hostnames are seen in the response instead of reverse-proxy hostnames, validate the
proxy-mapping configurations and check if the allowed hosts are properly added in Finesse servers as described
in the section Populate Network Translation Data.

Step 2 If LiveData gadgets load properly in Finesse Desktop, then CUIC and LiveData proxy configurations are
proper.

Step 3 To validate the Cisco Unified Intelligence Center and LiveData configurations, make the HTTP requests from
the DMZ to the following URLs and check if they are reachable:

• https://<reverseproxy:cuic_port>/cuic/rest/about

• https://<reverseproxy:ldweb_port>/livedata/security

• https://<reverseproxy:ldsocketio_port>/security

Cisco Identity Service
To validate Cisco IdS configuration, perform the following steps:

Reverse-Proxy Configuration
27

Reverse-Proxy Configuration
Verifying Reverse-Proxy Configuration

Procedure

Step 1 Log in to the IdSAdmin interface at https://<ids_LAN_host:ids_port>:8553/idsadmin from the LAN because
the admin interface is not exposed over reverse-proxy.

Step 2 Choose Settings > IdS Trust.
Step 3 Validate that the proxy cluster publisher node is listed on Download SP metadata page, and click Next.
Step 4 Validate that the IDP proxy is correctly displayed if configured on Upload IDPmetadata page, and clickNext.
Step 5 Initiate test SSO via all proxy cluster nodes from the Test SSO page and validate that all are successful. This

requires client machine connectivity to reverse-proxy nodes.

Brute Force Attack Prevention Configuration
Finesse 12.6 ES02 and above authentication scripts actively prevent brute force attacks that can be used to
guess the user password. The scripts do this by blocking the IP address used to access the service, after a
certain number of failed attempts in a short time. These requests will be rejected by 418 client error. The
number of failed requests, time interval, and blocking duration are configurable.

Attack Detection Parameters
Configurations are present in the <nginx-install-directory>/conf/conf.d/maps.conf file.

These two constants indicate five auth failures from a client can be allowed in thirty
seconds.
if the threshold is crossed,client ip will be blocked.
map $host $auth_failure_threshold_for_lock {
Must-change Replace below two parameters as per requirement
default 5 ;
}
map $host $auth_failure_counting_window_secs {
Must-change Replace below two parameters as per requirement
default 30;
}
This indicates duration of blocking a client to avoid brute force attack
map $host $ip_blocking_duration {
Must-change Replace below parameter as per requirement
default 1800;
}

Logging
The details of the blocked IP addresses can be accessed from the files
<nginx-install-directory>/logs/blocking.log and <nginx-install-directory>/logs/error.log. To find the IP
addresses that are blocked, run the following commands from the directory <nginx-install-directory>/logs.

grep "will be blocked for" blocking.log
grep "IP is already blocked." error.log
2021/10/29 17:30:59 [emerg] 1181750#1181750: *19 [lua] block_unauthorized_users.lua:153:
_redirectAndSendError(): 10.68.218.190
will be blocked for 30 minutes for exceeding retry limit., client: 10.68.218.190, server:
saproxy.cisco.com, request: "GET

Reverse-Proxy Configuration
28

Reverse-Proxy Configuration
Brute Force Attack Prevention Configuration

/finesse/api/SystemInfo?nocache=1636456574482 HTTP/2.0", host: "saproxy.cisco.com:8445",
referrer:
"https://saproxy.cisco.com:8445/desktop/container/?locale=en_US&"

2021/10/29 19:21:00 [error] 943068#943068: *43 [lua] block_unauthorized_users.lua:53:
10.70.235.30 :: IP is already blocked...,
client: 10.70.235.30, server: saproxy.cisco.com, request: "GET
/finesse/api/SystemInfo?nocache=1635591686497 HTTP/2.0", host:
"saproxy.cisco.com:8445", referrer:
"https://saproxy.cisco.com:8445/desktop/container/?locale=en_US"

It is recommended that customers integrate with Fail2ban or a similar intrusion prevention system to add the
blocked IP addresses to the IPtable or firewall rules.

Install and Configure Fail2ban
Fail2ban can be configured to monitor the blocking.log to identify the IP addresses that are blocked by
OpenResty Nginx on detecting brute force attacks, and ban the IP addresses for a configurable duration. Do
the following to install and configure Fail2ban on a CentOS reverse-proxy:

Procedure

Step 1 Install Fail2ban using yum

yum update && yum install epel-release yum install fail2ban

Step 2 Create a local jail

Jail configurations allow the administrator to configure various properties such as the ports that are to be
banned from being accessed by any blocked IP address, the duration for which the IP address stays blocked,
the filter configuration used for identifying the blocked IP address from the log file monitored, and so on.
Steps to add a custom configuration for banning IP addresses that are blocked from accessing the upstream
servers are as follows:

a. Go to Fail2ban installation directory (in this example /etc/fail2ban)

cd /etc/fail2ban

b. Make a copy of jail.conf into jail.local to keep the local changes isolated.

cp jail.conf jail.local

c. Add the following jail configurations to the end of the file jail.local, and substitute the ports in the template
with the actual ones. Update ban time configurations as required.
Jail configurations for HTTP connections.
[finesse-http-auth]
enabled = true
The ports to be blocked. Add any additional ports.
port = http,https,<finesse-ports>,<cuic-ports>,<any-other-ports-to-be-blocked>
Path to nginx blocking logs.
logpath = /usr/local/openresty/nginx/logs/blocking.log
The filter configuration.
filter = finesseban
Block the IP from accessing the port, once the IP is blocked by lua.
maxretry= 1
Duration for retry set to 3 mins. Doesn't count as the maxretry is 1
findtime= 180

Reverse-Proxy Configuration
29

Reverse-Proxy Configuration
Install and Configure Fail2ban

Lock time is set to 3 mins. Change as per requirements.
bantime = 180

Step 3 Configure a filter

A filter tells Fail2ban what to look for in the logs to identify the host to be banned. The steps to create a filter
is as follows:

a. Create filter.d/finesseban.conf

touch filter.d/finesseban.conf

b. Add the following lines into the file filter.d/finesseban.conf

[Definition] # The regex match that would cause blocking of the host. failregex = <HOST>

will be blocked for

Step 4 Start Fail2ban

Run the following command to start fail2ban:

fail2ban-client start

Open fail2ban log files and verify that there are no errors. By default, logs for fail2ban go into the file
/var/log/fail2ban.log.

Troubleshoot

Troubleshoot SELinux

Procedure

Step 1 If OpenResty Nginx is not started by default or the Finesse Agent Desktop is not accessible, set SELinux to
permissive mode with this command:
setenforce 0

Step 2 Try to restart OpenResty Nginx with the systemctl restart nginx command.
Step 3 All the violations will be available in /var/log/messages and /var/log/audit/audit.log.
Step 4 You are required to regenerate the .te file with allow rules for addressing those violations by executing any

one of the following commands:

• cat /var/log/audit/audit.log | audit2allow -m nginx1 > nginx1.te. # this will create
nginx1.te file

• ausearch -c 'nginx' --raw | audit2allow -M my-nginx # this will create my-nginx.te
file

Step 5 Update the original nginx.te file present in the selinux-nginx-rhel-master-modified/nginx directory with
the newly generated allow rules.

Reverse-Proxy Configuration
30

Reverse-Proxy Configuration
Troubleshoot

Step 6 Compile the nginx.te file by using the make command.
Step 7 The nginx.pp file is regenerated.
Step 8 Load the policy by using the semodule command.

semodule -i nginx.pp

Step 9 Change SELinux to enforce mode by using the setenforce command.
Step 10 Reboot the system.
Step 11 Repeat this procedure until all the violations are fixed.

Reverse-Proxy Configuration
31

Reverse-Proxy Configuration
Reverse-Proxy Configuration

Reverse-Proxy Configuration
32

Reverse-Proxy Configuration
Reverse-Proxy Configuration

	Reverse-Proxy Configuration
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Upgrade Notes for ES01-Based VPN-less Configurations
	Validating Unauthenticated Static Resources
	Brute Force Attack Prevention
	Caching CORS Headers

	Reverse-Proxy Configuration
	Install OpenResty as a Reverse-Proxy in DMZ
	Install OpenResty
	Configure OpenResty Nginx
	Configure the OpenResty Nginx Cache
	Configure Log Rotation
	Use Self-Signed Certificates—Test Deployments
	Use CA-Signed Certificate—Production Deployments
	Create Custom Diffie-Hellman Parameter
	Enable OCSP Stapling
	Modify the Common OpenResty Nginx Configuration
	Configure Reverse-Proxy Port
	Configure Mutual TLS Authentication Between Reverse-Proxy and Components

	Clear Cache
	Standard Guidelines
	Configure the Mapping File
	Use Reverse-Proxy as the Mapping File Server
	CentOS 8 Kernel Hardening
	IPtables Hardening

	Restrict Client Connections
	Block Client Connections
	SELinux
	Load Balancer, WAF, and Proxy support for reverse-proxy deployments
	Access VPN-Less proxy through Forward proxy and NAT

	Verifying Reverse-Proxy Configuration
	Finesse
	Cisco Unified Intelligence Center and LiveData
	Cisco Identity Service

	Brute Force Attack Prevention Configuration
	Attack Detection Parameters
	Logging
	Install and Configure Fail2ban

	Troubleshoot
	Troubleshoot SELinux

