
Use of Formulas

• Formula Usage, on page 1
• Formula Example, on page 1
• Variables, on page 2
• Operators, on page 10
• Built-in functions, on page 12
• Custom Functions, on page 16
• Dynamic Formula for PQ, on page 18

Formula Usage
A formula consists of one or more expressions that the scripting environment evaluates to produce a value
that it can use for subsequent script processing. You define expressions—made up of variables, constants,
operators, and functions—as part of custom selection rules or distribution criteria in scripts. (See the sections
on variable usage, selection of targets by rules, and distribution of contacts to targets.)

Formula Example
This is an example of a simple formula:

CallerEnteredDigits == 1

In this example:

• The left value, CallerEnteredDigits, is a variable. More specifically, it is a call control variable.

• The operator is the "Equal To" equality operator.

• The right value is the number 1.

If the value of CallerEnteredDigits is 1, the formula returns true; otherwise, the formula returns false.

Use of Formulas
1

Variables

Variable Usage
A variable is a named object that holds a value. You use variables in formulas to select targets and help in
call tracking.

Variable Syntax
Following is the syntax for using a variable in a formula:

object-type.object-name.variable-name

Where:

• The object-type is an object category, such as Service.

• The object-name is the name of an object contained in Unified ICM database, such as the name of a
service (for example, BosSales).

• The variable-name is the name of an object that can hold a value, such as a call control variable (for
example, (CallerEnteredDigits).

• Each component in the variable is separated by a period (.).

Passing of internationalized characters throughMedia Routing interface is not supported. The application that
interacts with ICM through the Media Routing interface must send any call related data in English only.

Note

Single-Target Variables
A single-target variable examines data for one specified routing target. For example, the variable:

Service.BosSales.ExpectedDelay: Examines the expected delay for the BosSales service.

Multiple-Target Variables
A multiple-target variable examines data across multiple routing targets. For example, the function:

Max(SkillGroup.*.LongestAvailable): Finds the skill group, from all skill groups defined in the target set for
the script node that calls the function, with the longest available agent.

You use an asterisk (*) as the object-name value to indicate that the variable is to examine data across multiple
targets.

Use of Formulas
2

Use of Formulas
Variables

Call Control Variables
Call control variables provide information about the current contact that is being routed by the script. Call
control variables include information about where the route request came from, contact classification data,
and data to be passed to the peripheral that receives the contact.

Can be Set by the UserDescriptionData TypeVariable

YesDigits caller entered in response to prompts.StringCallerEnteredDigits

NoBilling telephone number of the caller.StringCallingLineID

Set in Unified ICM
Configuration Manager.
Open Tools >
Miscellaneous Tools >
System Information.
Check Enabled in the
CLID Masking section of
the screen to turn on.

If 1, CLID presentation should be restricted. If 0, CLID
presentation should not be restricted.

IntegerCLIDRestricted

YesDigits to be passed to the routing client for forwarding to
the call recipient.

StringCustomerProvidedDigits

NoTelephone number dialed by the caller.StringDialedNumberString

YesExpanded Call Context (ECC) variable value assigned in
scripts and passed with contact.

StringExpCallVarName

YesIf 1, network transfer is enabled. If 0, network transfer is
not enabled.

IntegerNetworkTransferEnabled

YesValues passed to and from the peripheral.StringPeripheralVariable1-

PeripheralVariable10

NoProvides the ability to test the error path of the Label,
Queue, RouteSelect, and Select nodes to determine the
specific network cause of failure and conditionally retry
the attempt as necessary.

IntegerRequeryStatus

NoAn encoded value that indicates the date on which Unified
ICM processes the call.

IntegerRouterCallDay

NoA value that is unique among all calls Unified ICM has
processed since midnight. RouterCallDay and
RouterCallKey combine to form a unique call identifier.

IntegerRouterCallKey

NoThe name of the routing client that made the route request.StringRoutingClient

NoNumber of seconds a call has been queued.IntegerTimeInQueue

YesISDN private network User to User informationStringUserToUserInfo

NoIndicates the result of a previous VRU node.IntegerVruStatus

Use of Formulas
3

Use of Formulas
Call Control Variables

Can be Set by the UserDescriptionData TypeVariable

NoGlobally unique call identifier.varchar
(32)

CallGUID

NoLocation name.varchar(50)LocationParamName

NoThe Trunk Group ID on which the call arrived on IOS
Gateway.

varchar(32)PstnTrunkGroupID

NoThe Trunk Group Channel Number on which the call
arrived on IOS Gateway.

IntegerPstnTrunkGroupChannelNumber

For a Post-Routing® request from an Aspect ACD, PeripheralVariable1 through PeripheralVariable5 map to
the Aspect variables A through E. The Aspect routing client passes these variables to the Unified ICM as part
of the request and the Unified ICM returns them with the response. Other routing clients might use some of
these variables for other purposes. The values of these variables are also stored in the Route_Call_Detail table
of the database.

Note

The Call Variables can be used in a "SET" node in an Admin Script as temporary placeholders for complex
calculation. However, because any call context is only existent as long as the call itself, the Variables cease
to exist after the Route Request (a.k.a Call) is complete (be it by virtue of a successful Routing Script Execute
Completion or an Administrative Script Execute Completion). They cannot be used to store values, so as to
be re-used in Routing Scripts, as the Routing Scripts themselves will have a new set of CallVariables created
for the Route Request.

Note

When comparing two Call Variables of Numeric string, you must use the Built-In Function "value()" in the
IF Node to perform Numeric comparison, otherwise there is a String comparison. Example:
value(Call.PeripheralVariable1)>=value(Call.PeripheralVariable2) where Call.PeripheralVariable1 and
Call.PeripheralVariable2 are given as Numeric string.

Note

Expanded Call Context (ECC) Variables
Expanded call context (ECC) variables store values associated with the contact.

ECC values are written to Termination Call Detail records only if, and when, an ECC value is explicitly set.
You can set the variables in several ways, such as using a script, a VRU, a NIC, CTI, and so on. This applies
to null values as well as non-null values.

If an ECC variable is defined, but never assigned a value, it does not have a row in the Termination Call
Variable table when a Termination Call Detail record is written.

The Latin 1 Character set for expanded call context variables and peripheral call variables is supported when
used with Unified CVP, Cisco Finesse, and Cisco SocialMiner, among others.

Use of Formulas
4

Use of Formulas
Expanded Call Context (ECC) Variables

The use of multi-byte character sets in limited usage for ECC and peripheral call variables is also supported,
when:

• Setting them in the Script Editor using double quotes.

• Stored in Termination Call Variables with an appropriate SQL collation.

• Setting and receiving them through agent desktops.

ECC values are generally passed from leg to leg on the call. After a value is assigned, the value is recorded
in the Termination Call Variable for every Termination Call Detail Segment. However, this depends on how
each new call segment is created. If it does not involve translation routes or the Unified CCE, and is outside
the original peripheral, then the solution cannot propagate ECC variables, like all call variables.

The solution comes with some predefined ECC variables. You can create others througn the Configuration
Manager.

Persistent vs. Non-persistent Call Variables
When the Unified CCE/Unified ICM writes call data records to its historical database, it can store the values
of all call variables. Storing excessive call variable data can degrade historical database performance. When
you define a call variable (in the Configuration Manager), you can tag it as either persistent or non-persistent.
Only persistent call variables are written to the historical database. You can use non-persistent variables in
routing scripts, but they are not written to the database.

Expanded Call Context Variables for Web Callback
You must create several ECC variables if you intend to use Enterprise Chat and Email and/or Voice Media
Routing Domains to route Delayed Callback requests. The ECC variables are:

• user.ece.activity.id - used to send the CIM activity ID to Unified ICM.

• user.ece.customer.name - used to pass the customer name from the entry point to Unified ICM.

Do not overwrite reserved ECC variables in a script. Overwriting these variables may cause the application
to route tasks to agents in an incorrect manner.

Warning

For more information about configuring ECC variables, see the Configuration Guide for Cisco Unified
ICM/Contact Center Enterprise.

User Variables
User variables are variables you create to serve as temporary storage for values you can test with an If node.
For example, you could create a user variable called usertemp to serve as a temporary storage area for a string
value used by an If node.

You create user variables through the ConfigurationManager. For more information, seeConfiguration Guide
for Cisco Unified ICM/Contact Center Enterprise.

Each user variable must:

• Have a name that begins with user.

Use of Formulas
5

Use of Formulas
Persistent vs. Non-persistent Call Variables

• Be associated with an object type, for example, service. (This enables the Unified ICM to maintain an
instance of that variable for each object of that type in the system.)

• Store a value up to 40 characters long.

After you have define a variable, you can use the Formula Editor to access the variable and reference it in
expressions, just as you would with a built-in variable.

Set Variable Node Usage
Figure 1: Set Properties Window

You can set the value of a variable with the Set Variable node:

• Object type - Choose the type of object the variable is associated with.

• Object - Choose the specific object the variable is associated with.

If you choose Call as the Object Type, this field does not apply.Note

• Variable - The specific variable you want to set.

The variables that are available are determined by the value you choose in the
Object Type field.

Note

Define all integer fields in tables accessed by a Set Variables node as NOTNULL.Note

Use of Formulas
6

Use of Formulas
Set Variable Node Usage

• Array index - Enter an integer or an expression that evaluates to an integer. For example, if the Array
Index expression evaluates to 2, then the Set Variable node sets the second element of the variable array.

This field is only available if you select an array variable in the Variable field.Note

• Value - Enter the value to assign to the variable. The value can be:

• A constant

• A reference to another variable

• An expression

SkillGroup.Avail and SkillGroup.ICMAvailable Variables
When the Unified ICM system includes only the voice channel, the value of the SkillGroup.Avail variable is
the number of agents in the available state, meaning that the agents are able to accept new calls.

However, when the web or e-mail channel is used with non-voice Media Routing Domains and agents log in
to multiple domains, the value of the SkillGroup.Avail variable is calculated differently. There is also a
SkillGroup.ICMAvail variable.

The following table describes the difference between the SkillGroup.Avail and the SkillGroup.ICMAvail
variables:

SkillGroup.ICMAvailableSkillGroup.AvailCase

SameNumber of agents in the Available state.Only voice domain is
used

Number of agents who can actually
handle an additional task or call in
the domain.

Number of agents in the Available state,
regardless of what theymay be doing in this
or other domains.

Multiple Domains are
used

SkillGroup.ICMAvailable Variable
The value of the SkillGroup.ICMAvailable variable is the actual number of agents logged in to the skill group
who can take new calls or tasks. Such agents must meet all the following criteria:

1. They are routable in the domain.

2. The agent's state in the domain is something other than "Not-Ready".

3. The agent is below the maximum task limit.

For most domains (that is, if the agent is not a Enterprise Chat and Email Multi-session agent), the maximum
task limit is 1, and an agent is below the maximum only when the agent is not working on any call or task.

Note

4. The agent is not working on another task in a non-interruptible domain.

Use of Formulas
7

Use of Formulas
SkillGroup.Avail and SkillGroup.ICMAvailable Variables

SkillGroup.Avail Variable
SkillGroup.Avail is the number of agents in the skill group who are not doing anything in the domain. An
agent who is logged in to two domains can be counted as Avail in one domain even though that agent is
handling a task in another non-interruptible domain. An agent in a domain that handles multiple tasks (such
as chat) is not counted as Avail if that agent is handling a task, even though the agent has additional capacity
for more tasks.

The following table shows some possible values for these variables. Assume three agents are logged in to a
voice skill group, and the same three agents are also logged in to another non-interruptible domain, such as
a chat domain. This table shows the voice skill group states and the number of agents available in that state.

SkillGroup.ICMAvailableSkillGroup.AvailCase

33Initial state

22First agent handles a call

1 (because there is only one agent
left to handle voice calls)

2 (because there are two agents
doing nothing in the domain)

Second agent handles a chat session

23Voice call ends

33Chat ends

If a routing script needs to check the number of available agents, using SkillGroup.Avail produces effective
results as it uses an extrapolation mechanism in determining the available agent.

Following is another example showing agents handling non-interruptible chat tasks. Assume three agents are
logged in to a chat skill group, each allowed to handle two chats. This table shows states for the chat skill
group.

SkillGroup.ICMAvailableSkillGroup.TalkingInSkillGroup.AvailCase

303Initial state

3 (because all three agents can
still handle additional chats)

12 (because the
agent is now in the
talking state)

First agent handles a chat
session

321Second agent handles a chat
session

330Third agent handles a chat
session

2 (because only the second and
third agents can handle an
additional chat)

3 (even though a total of
4 chats are in progress,
only 3 agents are doing
the work)

0First agent handles second
chat session

By default, Script Editor shows the ICMAvailable value instead of Avail value when displaying skill group
real-time data.

Use of Formulas
8

Use of Formulas
SkillGroup.Avail Variable

Closed Variables
Closed variables are available for use for skill groups, peripherals, and Media Routing Domains. Closed
variables allow administration scripts to turn dequeuing to these objects on and off. The Closed variables
default to 0, meaning that the object is open. A script (usually an administration script) can change the state
of the Closed variables.

If a Closed flag is set to a non-zero integer, then calls are not dequeued to affected agents, regardless of their
state.

When closed variables are set to zero, the queued calls do not go to the available agents immediately, and
continue to be in the queue. When the agent state changes from "Not Ready" to "Ready" state, the new calls
are sent to the available agents (agents in the "Ready" state) only, and not the queued calls.

Operator Precedence
The following table shows the order in which operators are evaluated.

The operators with priority 1 are evaluated first, then those with priority 2, and so on. The order of evaluation
within each priority level can also be important. Prefix operators are evaluated from right-to-left in an
expression. Assignment operators are also evaluated from right-to-left. In all other cases where operators have
equal priority, they are evaluated left-to-right.

Note

OperatorsOperator typePriority

+ - ! ~Prefix (unary)1

* /Multiplication and
division

2

+ -Addition and subtraction3

>> <<Shift right and shift left4

< > <=
>=

Relational5

== !=Equality6

&Bitwise And7

^Bitwise exclusive Or8

|Bitwise inclusive Or9

&&And10

||Or11

?Conditional12

,Sequential13

Use of Formulas
9

Use of Formulas
Closed Variables

Operators

Prefix Operators
The Prefix Operators in the following table take a single operand:

Comments/ExamplesMeaningOperator

Numeric values are positive by default, so the positive operator (+) is optional.
Example: 2 and +2 represent the same value.

Positive+

The negative operator (-) changes the sign of a value. Example: 2 represents a
positive value; -2 represents a negative value.

Negative-

A logical expression is any expression that evaluates to true or false. The logical
negation operator (!) changes the value of a logical expression. Note: Numerically,
a false value equates to 0 and a true value equates to a non-zero value. Example:
If the current value of SkillGroup.Sales.Avail is 3, then SkillGroup.Sales.Avail
> 0 is true and (SkillGroup.Sales.Avail > 0) is false.

Logical negation!

Operates on a bit value, changing each 1 bit to 0 and each 0 bit to 1. Note: This
operator is rarely used.

One's
complement

~

Arithmetic Operators
The Arithmetic Operators in the following table take two operands:

Comments/ExamplesMeaningOperator

Arithmetic operators perform the basic operations of addition, subtraction,
multiplication and division. You can use them in making calculations for a skill
group, service, or route. Note: Multiplication (*) and division (/) operators are
evaluated before addition (+) and subtraction (-) operators.

Multiplication*

Division/

Addition+

Subtraction-

Equality Operators
The Equality Operators in the following table take two operands:

Comments/ExamplesMeaningOperator

Equality operators allow you to determine whether two values are equivalent or not.Equal to==

Not Equal
To

!=

Use of Formulas
10

Use of Formulas
Operators

Relational Operators
The Relational Operators in the following table take two operands:

Comments/ExamplesMeaningOperator

Relational operators allow you to perform a more sophisticated
comparison than the equality operators.

Greater than>

Less than<

Greater Than or Equal
To

>=

Less Than or Equal To<=

Logical Operators
The Logical Operators in the following table take two operands. Logical operators examine the values of
different logical expressions:

Comments/ExamplesMeaningOperator

The expression is true if both of the operands are true. If either is false, the overall
expression is false.

And&&

The expression is true if either or both of the operands is true. If both are false, the overall
expression is false.

Or||

The equality (==) and relational (>) operators are evaluated before the logical operators (&& and ||).Note

Bitwise Operators
The Bitwise Operators in the following table take two operands.

Comments/ExamplesMeaningOperator

The & Bitwise Operator turns specific bits in a value on or off.And&

Inclusive Or and Exclusive Or differ in the way they handle the case where bits in
both values are 1: Inclusive Or evaluates the result as true and sets a 1 bit in the result.
Exclusive Or evaluates the result as false and sets a 0 bit in the result. (An Exclusive
Or applies the rule "one or the other, but not both").

Inclusive
Or

|

Exclusive
Or

^

Use of Formulas
11

Use of Formulas
Relational Operators

Miscellaneous Operators
The following table lists miscellaneous operators:

Comments/ExamplesMeaningOperator

The conditional operator (?) takes three operands and its syntax is as follows:

The Unified ICM evaluates the expression by first examining the logical expression
condition and then tests the following condition: If the result is true, then the overall
expression evaluates to the value of the expression true-result. If the result is false,
then the overall expression evaluates to the expression false-result.

Conditional?

The concatenation operator (&) joins two strings end-to-end. returns the value.Concatenation&

The sequential or comma operator (,) takes two operands, each of which is an
expression. Unified ICM evaluates the left expression first and then the right
expression. The value of the overall expression is the value of the right expression.
The first expression typically affects the valuation of the second.

Sequential,

The shift left (<<) and shift right (>>) operators shift the bits within a value.Shift left

Shift right

<<

>>

Built-in functions

Date and Time Functions
The following table lists the built-in date and time functions:

Return Value/ExampleData
Type

Function

Returns the current system date or the date portion of a given date-time value.
The given date can be a floating point value (as returned by the now function),
a string of the form mm/dd/yy, or three integers: yyyy, mm, dd. date (with no
arguments) returns the current date. For example, = date (2001, 7, 15) tests
whether the current date is July 15, 2001.

Do not use the slash (/) character in defining a date function.
Because it is the division operator, the function would not return
the results you are looking for. You can enclose the argument
within a string.

Note

Integerdate [(date)]

Returns the day of month (1-31) for the current date or a given date. The given
date must be an integer or a floating-point value, as returned by the date or now
function.

Integerday [(date)]

Returns the hour (0-23) of the current time or a given time. The given timemust
be a floating-point value, as returned by the now function.

Integerhour [(time)]

Use of Formulas
12

Use of Formulas
Miscellaneous Operators

Return Value/ExampleData
Type

Function

Returns the minutes (0-59) of the current time or a given time. The given time
must be a floating-point value as returned by the time function.

Integerminute [(time)]

Returns the month (1-12) of the current month or a given date. The given date
must be a floating-point value, as returned by the date or now function.

Integermonth [(date)]

Returns the current date and time, with the date represented as an integer and
the time represented as a fraction. Note: You can use the date or time functions
without any arguments to return just the current date or time. This function is
useful for comparing the current date and time to a specific point in time.

Floatnow

Returns the seconds (0-59) of the current time or a given time. The given time
must be a floating-point value, as returned by the time function.

Integersecond [(time)]

Returns the current system time or the time portion of a date-time value. The
given time can be a floating point value, a string of the form hh:mm:ss, or two
or three numeric values: hh, mm [, ss]. (with no arguments) returns the current
time.

For example, = time (20:05:00) tests whether the current time is 08:05:00

Floattime [(time)]

Returns the current day of week (Sunday=1, Monday=2, etc.) of the current
date or given date. The given date must be an integer or floating-point value,
as returned by the date or now function.

Integerweekday [(date)
]

Returns the year of the current year or given date. The given date must be a
floating-point value, as returned by the date or now function.

Andyear [(date)]

Mathematical Functions
The following table lists the built-in mathematical functions:

Return Value/ExampleData TypeFunction

Returns the absolute value of n (the number with no sign).Floating Point or
Integer

abs(n)

Returns the largest of the operands. Each operand must be
numeric.

Floating Point or
Integer

max(n1, n2 [,n3] . .
.)

Returns the smallest of the operands. Each operand must be
numeric.

Integermin(n1, n2 [,n3] . .
.)

Returns the integer remainder of n1 divided by n2.Floating Point or
Integer

mod(n1,n2)

Returns a random value between 0 and 1.Floating Point or
Integer

random()

Use of Formulas
13

Use of Formulas
Mathematical Functions

Return Value/ExampleData TypeFunction

Returns the square root of n. (The operand n must be numeric
and non-negative).

Floating Point or
Integer

sqrt(n)

Returns the value of n truncated to an integer.Floating Point or
Integer

trunc(n)

Miscellaneous Functions
The following table lists the built-in miscellaneous functions:

Return Value/ExampleData TypeFunction

That portion of string2 following the first occurrence of
string1. If string1 does not occur in string2, the null string
is returned. If string1 is the null string, string2 is returned.

Stringafter(string1,string2)

That portion of string2 that precedes the first occurrence
of string1. If string1 does not occur in string2, string2 is
returned. If string1 is the null string, the null string is
returned.

Stringbefore(string1,string2)

Returns the format required for CVP to run the post call
survey.

StringCallTypeSurvey

Indicates whether the CLID for the current contact is in
the geographical region specified by string. The value
string must be the name of a defined region. You can use
the Name variable of a region to avoid entering a literal
value.

LogicalClidInRegion

Returns the concatenation of the arguments. The function
takes up to eight arguments.

Stringconcatenate(string1,string2, . . .)

Returns the minimum estimated wait time for each of the
queues against which the call is queued (skill group(s) or
precision queue(s)). Queue to Agent(s) is not supported.
If no data is available, returns -1. The estimated wait time
is calculated once, when the call enters the queue.

The default estimated wait time algorithm is based on a
running five minute window of the rate of calls leaving
the queue. Any calls which are routed or abandoned
during the previous 5 minutes are taken into account as
part of the rate leaving queue. For precision queues, the
rate leaving queue represents the rate at which calls are
delivered or abandoned from the entire precision queue,
not any individual precision queue steps.

IntegerEstimatedWaitTime

Use of Formulas
14

Use of Formulas
Miscellaneous Functions

Return Value/ExampleData TypeFunction

Returns the starting location of string1 within string2. If
you specify an index value, searching starts with the
specified character of string2.

Integerfind(string1, string2 [,index])

Returns a value of true-value if the condition is true;
false-value if the condition is false. Returns the current
hour in 12-hour format rather than 24-hour format.

Logicalif(condition,true-value,false-value)

Returns the left-most n characters of the string.Stringleft(string,n)

Returns the number of characters in the string.Integerlen(string)

Returns a substring of the string, beginning with the
specified start character and continuing for the specified
number of characters.

Stringmid(string,start,length)

Returns the result of the current Select node. (This
function is valid only in a Select node.) If you are using
the LAA rule in the Select node, the result function returns
the number of seconds the selected agent has been
available.

Floating Point
or Integer

result

Returns the right-most n characters of the string.Stringright(string,n)

Returns a substring of the string, beginning with the
specified start character and continuing for the specified
number of characters.

Stringsubstr(string,start [, length])

Converts a numeric value into a string.Stringtext(n)

Returns whether the variable has a valid value.Logicalvalid(variable)

If the variable has a valid value, returns that value;
otherwise, returns "value". Returns either a name from
the database or the string value None.

Use the following formula for the Enterprise
Skillgroup that may not contain any
Skillgroups:

ValidValue(EntSkill.

Default\EnterpriseSkill

groupPri.Loggedon,0)

Note

StringValidValue(variable,value)

Converts a string into a numeric value.Floating Point
or Integer

value(string)

Use of Formulas
15

Use of Formulas
Miscellaneous Functions

Custom Functions
Custom functions are those functions you create for use within scripts, as opposed to built-in functions.

Add Custom Functions

Procedure

Step 1 In Script Editor, from the Script menu, choose Custom Functions. The Custom Functions dialog box opens,
listing all the custom functions currently defined.

Step 2 Click Add to open the Add Custom Function dialog box.
Step 3 Specify the following:

a) Function name. All custom function names must begin with user.
b) Number of Parameters. The number of parameters to be passed to the function. A function may take 0,

1, or more parameters.
c) Function definition. The expression to be evaluated when the function is called.When entering the function

definition, keep the following in mind:

The parameters to a function are numbered beginning with 1. To reference a parameter within the
expression, surround it with percent signs (%). For example, %3% is a reference to the third parameter.

The lower portion of the dialog box is just like the Formula Editor. You can use it to help build the
expression.

When you import the custom functions, the pattern #[0-9]+# is replaced with corresponding
object name. The digits between "#" characters represent object ID. The # characters which are
not the part of this pattern are not removed or replaced.

Note

Step 4 When finished, click Test. The Test Function dialog box opens.
Step 5 Test the function by entering an example of how you might reference the function. Include a specific value

for each parameter.
Step 6 Click Evaluate to see how the Script Editor interprets the function call and click Close to return to the Add

Custom Function dialog box.
Step 7 Use one of the Validate buttons to validate the scripts that reference a selection function. (The Validate All

button lets you validate all the scripts that reference any custom function.)
Step 8 When finished, click OK to apply changes and to close the dialog box.

Import Custom Functions

Procedure

Step 1 In Script Editor, from the Script menu, choose Custom Functions. The Custom Functions dialog box opens,
listing all the custom functions currently defined.

Use of Formulas
16

Use of Formulas
Custom Functions

Step 2 Click Import. The Import Custom Function dialog box opens.
Step 3 Choose a file name with an ICMF extension (.ICMF) and click Open. The Script Editor examines the file for

naming conflicts. If a conflict is found, a dialog box appears listing options for resolving the conflict.
Step 4 Choose one of the options and click OK.

If you choose to rename the function, the new name must begin with user.Note

The Script Editor performs automapping and the following happens:

• If all imported objects were successfully auto-mapped, a message window appears prompting you to
review the mappings. Click OK to access the Object Mapping dialog box.

• If some imported objects were not successfully auto-mapped, the Object Mapping dialog box appears,
with all unmapped objects labeled Unmapped.

The Object Mapping dialog box contains three columns:

• Object Types. The type of imported objects.

• Imported Object. Name of imported object.

• Mapped To. What this imported object will be mapped to.

• (Optional.) Click an Imported Object value. The Mapped To column displays all the valid objects on the
target system.

• (Optional.) Choose an object from the Mapped To columns drop-down list on the target system that you
want to map the imported object to.

Multiple objects may be mapped to the same target. Objects may be left unmapped; however, the resulting
custom function are not valid until all objects are mapped.

Note

When the mapping is complete, click Apply and Finish.

Export Custom Functions

Procedure

Step 1 In Script Editor, from the Script menu, choose Custom Functions. The Custom Functions dialog box opens,
listing all the custom functions currently defined.

Step 2 Choose the custom function(s) from the list and clickExport. The Export Custom Function dialog box opens.

If you selected a single function, that functions name appears in the File Name field. If you
selected more than one function, the File Name field is blank.

Note

Step 3 (Optional.) Change the File Name.

You cannot change the file type; you can save the script only in .ICMF format.Note

Use of Formulas
17

Use of Formulas
Export Custom Functions

Step 4 Click Save. If the file name already exists, the system prompts you to confirm the save.
Step 5 If prompted, click OK. The custom function(s) are saved to the specified file in text format.

Dynamic Formula for PQ
You can pass the PQ name or ID dynamically while creating a formula in the IF node. Whenever a call
encounters the IF node after you create a formula, the router evaluates the formula based on the PQ name or
ID that is given in the Peripheral or ECC variable. This feature is implemented to check the real time statistics
of the PQ before the call is queued to that PQ.

For example: Consider a formula PQ.{Call.PeripheralVariable1}.LoggedOn > 0. In this formula,
{Call.PeripheralVariable1} is the variable that picks the PQ based on the PQ Name or ID dynamically.
When a call comes in, the router evaluates the formula and determines the numbers of agents that are logged
in the particular PQ that is given in the Peripheral or ECC variable . After the formula is evaluated, and if an
agent is logged in, the call is routed to the agent.

Dynamic formula for PQ is only supported in the IF node.Note

Only Peripheral Variables and User defined ECCVariables are allowedwithin the curly brackets of a Dynamic
Expression.

Note

Evaluation of dynamic expression is done first by using name and then by ID of the PQ. If no PQ is found in
system based on name specified in Set variable, then PQ is searched based on ID.

Ensure PQ names are unique and doesn't match with other PQ's ID configured in system. In case ID is used
for dynamic expression and it matched with any other name, then wrong PQ is picked up during expression
evaluation.

Note

Procedure

Step 1 Place an If object in the workspace; right-click to open the Properties dialog box.
Step 2 Click Formula Editor.
Step 3 Select the Variables tab, and in the Object types list, select PQ.

The variables that can be selected for the object are listed.
Step 4 In the Objects list, select {}.

The variables that can be selected for the object are listed.
Step 5 From the Variables list, select the variable that you want to include in the formula.
Step 6 Click Paste to view the selected elements in the Formula box.
Step 7 To add a Peripheral or an ECC variable, place the cursor inside the curly brackets.

Use of Formulas
18

Use of Formulas
Dynamic Formula for PQ

The options in the Object types and Variables lists change.
Step 8 In the Object types list, select Call

Step 9 In the Variables list, select the variable that you want to include in the formula.
Step 10 Optional: Add a relational operator to complete the expression
Step 11 Click OK to close the Formula Editor dialog box.
Step 12 Click OK to close the IF Properties dialog box.
Step 13 Click Save.

Use of Formulas
19

Use of Formulas
Dynamic Formula for PQ

Use of Formulas
20

Use of Formulas
Dynamic Formula for PQ

	Use of Formulas
	Formula Usage
	Formula Example
	Variables
	Variable Usage
	Variable Syntax
	Single-Target Variables
	Multiple-Target Variables
	Call Control Variables
	Expanded Call Context (ECC) Variables
	Persistent vs. Non-persistent Call Variables
	Expanded Call Context Variables for Web Callback
	User Variables
	Set Variable Node Usage
	SkillGroup.Avail and SkillGroup.ICMAvailable Variables
	SkillGroup.ICMAvailable Variable
	SkillGroup.Avail Variable
	Closed Variables
	Operator Precedence

	Operators
	Prefix Operators
	Arithmetic Operators
	Equality Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Miscellaneous Operators

	Built-in functions
	Date and Time Functions
	Mathematical Functions
	Miscellaneous Functions

	Custom Functions
	Add Custom Functions
	Import Custom Functions
	Export Custom Functions

	Dynamic Formula for PQ

