
VXML Server Logging

Logging plays an important part in voice application development, maintenance, and improvement. During
development, logs help identify and describe errors and problems with the system. Voice applications relying
heavily on speech recognition require frequent tuning in order to maximize recognition effectiveness. Voice
application design may also be changed often, taking into account the behaviors of callers over time. The
more information an application designer has about how callers interact with the voice application, the more
that can be done to modify the application to help callers perform their tasks faster and easier.

For example, a developer could determine the most popular part of the voice application and make that easier
to reach for callers. If a large proportion of callers ask for help in a certain part of the application, the prompt
might need to be rewritten to be clearer. After analyzing the declaration of various callers, the effectiveness
of grammars can be determined so that additional words or phrases can be added or removed. None of this is
possible without detailed logs of caller behavior. While each component of a complete VRU system, such as
the voice browser and speech recognition system provide their own logs, VXML Server provides logs that
combine all this information with the application logic. This chapter explains the details of logging on VXML
Server.

Because of the importance of logging, VXML Server has been designed to offer the maximum flexibility with
regards to what can be logged, how it is logged, and where it is logged. The logs generated by VXML Server
by default can be customized to fit the needs of a deployment. In addition, a Java API exists that allows
developers to create their own ways of handling logging for better integration with the deployed environment
or tailored specifically for special needs.

• Loggers, on page 1
• Global Loggers, on page 2
• Application Loggers, on page 7
• Correlating Unified CVP Call Server Logs with VXML Server Logs, on page 24

Loggers
VXML Server handles all logging activity through the use of loggers. Loggers are plug-ins to VXML Server
that listen for certain logging events and handle them in a custom manner, from storing the information in log
files, sending the information to a database, or even to interface with a reporting system. Any number of
loggers can be used, even multiple instances of the same logger. A logger may or may not require a
configuration that will allow the designer to customize how the logger performs.

VXML Server comes with several loggers that provide all necessary information in text log files. Some provide
configurations to allow for a level of customization in how the loggers perform. VXML Server exposes a Java
API to allow developers the flexibility of creating their own loggers to allow for even more customization.

VXML Server Logging
1

See the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for detailed
information on how to build custom loggers.

VXML Server communicates with loggers by triggering logging events that the loggers listen for and then
deal with. VXML Server activates loggers in a fully multithreaded environment to maximize performance.

Loggers are divided into two categories: global loggers and application loggers. Global loggers are activated
by logging events that apply to VXML Server as a whole and that is not directly related to any particular
application (for example, a record of all calls made to the VXML Server instance). Application loggers are
activated by logging events that apply to a particular application running on VXML Server (for example, a
call visiting an element). Each logger type is constructed using separate Java APIs and deals with a separate
list of possible logging events . Each logger type is also given a separate area to store logs, although a logger
may choose to ignore this area if it does not log to files.

Global Loggers
The global_config.xml file found in the conf directory of %CVP_HOME%\VXMLServer is used to define the
global loggers VXML Server is to use. The administrator can define any number of global loggers to be
simultaneously active, even multiple instances of the same logger class. This file also lists the names of the
configuration files for these loggers, if they are configurable. The configuration files must be placed in the
same conf directory as the global_config.xml file. The global_config.xml file and any configuration files
must be edited by hand, there is no interface for editing them. Refer to VXML Server Configuration for more
details about this file and how to define global loggers within it.

Global loggers are loaded by VXML Server when it starts up and remain in memory until it is shut down.
Any change made to the global_config.xml file is not loaded until VXML Server is restarted.

VXML Server provides the logs folder of %CVP_HOME%\VXMLServer for log file storage if the Global Loggers
require it. To keep each logger instance’s logs separate, a subfolder with the name of the logger instance is
created, and all logs generated by the logger instance are stored there.

By default, VXML Server utilizes three loggers to create text log files containing VXML Server-specific
information: a log that keeps track of calls made to the system, a log for tracking VXMLServer administration
activity, and an log that shows errors that occur on the VXML Server level (as opposed to the application
level). The global error logger requires a configuration that allows for detailed control over how the logger
operates.

The following sections describe these three prebuilt global loggers, their configurations (if any), and the
information stored in their logs.

Global Call Logger
The global call logger records a single line for every application visit handled by VXML Server into a text
call log. Most calls will begin and end in a single application so in that case a line in the call log is equivalent
to a physical phone call. For situations where one application performs an application transfer to another
application, a separate line will be added to the call log for each application visit despite the fact that they all
occur in the same physical call. Because each application visit is logged separately in each application’s own
log file, the call log provides a way to stitch together a call session that spans multiple applications.

The call log file names are in the format call_logYYYY-MM-DD.txt where YYYY, MM, and DD are the year,
month, and day when the call log was first created. By default, the log folder for is named GlobalCallLogger
(though the name is set in the global_config.xml file and can be changed by the administrator). Call log
files are rotated daily. The file is organized in a comma-delimited format with 6 columns:

VXML Server Logging
2

VXML Server Logging
Global Loggers

ccvp_b_1261-user-guide-for-cisco-unified-cvp-vxml-server-and-call-studio_chapter6.pdf#nameddest=unique_82

• CallID—This is a nonrepeating value generated by VXMLServer to uniquely identify calls. It is designed
to be unique even across machines, because the log files of multiple machines running the same
applications may be combined for analyses. The format of the session ID is IP.SECS.INCR where IP is
the IP address of the VXML Server instance on which the call originated, SECS is a large integer number
representing the time the application visit was made and INCR is an automatically incremented number
managed by VXML Server. Each part is delimited by dots and contains no spaces. For example:
192.168.1.100.1024931901079.1.

If a voice application uses a Subdialog Invoke element to transfer across multiple
VXML Server instances, the IP address included in the CallID is the IP address
of the instance the call started on. Because of this, it is possible that a CallID in
log files on one machine may contain an IP address for another machine. This
allows a physical call to be traced across multiple servers (from a logging
standpoint), even if Subdialog Invoke is used to transfer to between various voice
applications.

Note

• SessionID—The session ID is used to track a visit to a specific application. Therefore, with application
transfers, one call ID may be associated with multiple session IDs. For this reason, session IDs are
basically the call ID with the application name appended to the end. For example:
192.168.1.100.1024931901079.1.MyApp.

• callers—This integer represents the total number of callers interacting with the system at the time the
call was received (excluding the current call).

• order—A number indicating the order of each application visited in a call. The order begins at 1. This
column exists to report the order in which a caller visited each application should the data be imported
to a database.

• Application—The name of the application visited.

• Time—A timestamp of the application visit in the format MM/DD/YYYY HH:MM:SS.MMM where the
hour is in 24-hour time and MMM represents a 3-digit millisecond value. This represents when the call
was received or the application transfer occurred.

Global Error Logger
TheGlobal Error Logger records errors that occur outside the realm of a particular application. Application-level
errors are logged by application-level loggers, which are described later in this chapter. Another type of error
that the Global Error Logger receives is an application-level error that encountered trouble with its logging.
In order to prevent the loss of the data, VXML Server activates a global logger event with the original
application error as a backup.

The error log file names are in the form error_logYYYY-MM-DD.txt where YYYY, MM, and DD are the year,
month, and day when the error log was first created. By default, the log folder is named GlobalErrorLogger
(though the name is set in the global_config.xml file and can be changed by the administrator). Global error
log files are rotated daily.

If no error occurred on a particular day, no error log is created.Note

VXML Server Logging
3

VXML Server Logging
Global Error Logger

The file is organized in a comma-delimited format with 2 columns:

• Time—The time the error occurred.

• Description—The error description. One possible value can be max_ports, indicating the caller was put
on hold because all the Unified CVP license ports were taken. While the call was eventually handled
correctly, this is placed here as a notice that the license may not have enough Unified CVP ports to match
caller volume. Another value is bad_url:[URL], indicating that a request was made to VXML Server for
a URL that could not be recognized. This most likely will occur if the voice browser refers to an application
that does not exist. The last description is error, indicating that some other error occurred.

The global error log is not designed to be parsed, even though the columns are separated with commas. This
is because when the error log reports a Java-related error, it may include what is called a Java stack trace,
which contains multiple lines of output.

Note

The Global Error Logger utilizes a configuration to control how it logs certain types of errors and how often
the log files should be purged. The configuration is specified as an XML file created by the designer and
placed in the conf directory of %CVP_HOME%\VXMLServer.

Figure 1: Global Error Log Configuration

The Global Error Log Configuration diagram displays the format for the XML Global Error Logger
configuration file. The main tag for the configuration, configuration, has two attributes, name and version.
Name is expected to contain the logger instance name. The version is expected to include the version of the
configuration, which is currently 1.0. The subsequent sections describe the functionality of the various tags
in the configuration.

Global Error Logger Configuration: Log Details

The <log_details> tag controls which errors to log and what information to include about those errors. The
possible child tags are:

• <stacktraces>—Indicates that any Java errors that occur should also have their stack traces printed in
the log. The absence of this tag indicates not to include stack traces.

VXML Server Logging
4

VXML Server Logging
Global Error Logger

• <on_hold_calls>—Indicates that a call that was put on hold should be logged. The application_name
attribute can have the values true and false, true being to include the name of the application the caller
attempted to reach when being put on hold and false to not include the application name.

• <http_parameters>—Indicates that an error caused by an unrecognized URL (such as a request for an
application that does not exist) should include the HTTP parameters passed to the URL. This tag can be
helpful to know since it could help determine why the request was made. The length attribute provides
a limit, in a number of characters, to be included in the log. This prevents the log from being filled up
with too much parameter data.

The parameter data appears on one line, no matter how long.Note

• <http_headers>—Indicates that an error caused by an unrecognized URL (such as a request for an
application that does not exist) should include the HTTP headers passed to the URL. This can be helpful
to know since it could help determine why the request was made. The length attribute provides a limit,
in a number of characters, to be included in the log. This tag prevents the log from being filled up with
too much header data.

The header data appears on one line, no matter how long.Note

• <http_session_data>—Helps debug situations where the VXML Server receives HTTP requests that it
does not expect or understand. When this tag is used, the JSession ID (if known) and its association with
the VXML Server Call ID (if known) are displayed in the global error logger. This tag is helpful in
debugging bad_url errors. Bad_url errors are generally displayed when the VXML Server receives a
HTTP request that cannot be recognized. Use of this option increases the amount of memory used by
the VXML Server. Use this feature only for debugging situations.

Global Error Logger Configuration: File Purging

The Global Error Logger can be configured to automatically delete files that conform to certain criteria.
Properly configured, this allows an administrator to avoid having the system’s hard drive fill up with logs,
which would prevent new calls from being logged.

Note the following information about file purging:

• Because loggers are activated only when events occur in a call, the file-purging activity only takes place
when an error event occurs. As a result, a system that encounters no errors will not automatically delete
files until a new error occurs.

• When the Global Error Logger starts up for the first time, it applies the purging strategy on any files that
exist in the logger directory. Therefore, if an application server is shut down with files in the logger
directory and then restarted a long time later, these files might be deleted when the application server
starts up and the logger initializes.

• The Global Error Logger applies its purging strategy to any files found in its logger directory, including
non-error log files. Other files added to the logger folder after the application server has started could be
deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging will take place. The tag can contain one of the following child tags:

VXML Server Logging
5

VXML Server Logging
Global Error Logger

• file_age—The Global Error Logger will delete error log files older than X days, where X is an integer
greater than 0 specified in the older_than attribute.

• file_count—The Global Error Logger will delete error log files if the logger folder contains greater than
X files, where X is an integer greater than 0 specified in the greater_than attribute. When the files are
deleted, the oldest ones are deleted first until the folder reaches the desired file count.

Global Error Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger1">
<log_details>
<stacktraces/>
<http_parameters length="100"/>
<http_headers length="300"/>

</log_details>
<purge>
<file_age older_than="14"/>

</purge>
</configuration>

This configuration has the following features:

• Java stack traces will appear in the error logs.

Because stack traces span multiple lines, including stack traces may complicate
the process of importing the error logs into spreadsheets or databases. This is
rarely done for error logs.

Note

• If there is a bad URL error message, it will include 100 characters of the URL input parameters and 300
characters of the HTTP headers, all on one line in the log file.

• Nothing is logged for a call that is put on hold.

• When a new file is added to logger instance’s dedicated directory by the Global Error Logger, if the
directory contains files that are older than 14 days (2 weeks), the files will be deleted.

Error Logger Configuration Example #2

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger2">
<log_details>
<on_hold_calls application_name="true"/>

</log_details>
<purge>
<file_count greater_than="100"/>

</purge>
</configuration>

This configuration has the following features:

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the error message
itself will appear in the error log without the stack trace.

• When a call is put on hold, that fact will be logged along with the application name that the caller was
attempting to visit.

VXML Server Logging
6

VXML Server Logging
Global Error Logger

• If there is a bad URL error message, only the URL itself will be logged without any HTTP parameters
or headers.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

Global Administration History Logger
The Global Administration History Logger records administration events that occur on VXML Server itself.
Application-level administration history is logged by application-level loggers, which are described later in
this chapter. These events are triggered by an administrator running administration script (see Administration
for more on administering VXML Server).

The administration log file names begin with admin_historyYYYY-MM-DD.txt where YYYY, MM, and DD
are the year, month, and day when the administration log was first created. By default, the log folder is named
GlobalAdminLogger (though the name is set in the global_config.xml file and can be changed by the
administrator). Administration history log files are rotated daily.

If no administration activity occurred on a particular day, no administration history log will be created.Note

The file contains three columns: the time, what script was run, and its result, separated by commas. The result
is usually success and if not, contains the description of the error encountered. The possible values of the
result are:

• server_start—Listed when the VXML Server web application archive initializes. This occurs if the Java
application server on which VXML Server is installed starts up or the administrator of the application
server explicitly started up the VXML Server web application archive.

• server_stop—Listed when the VXML Server web application archive is stopped. This occurs if the Java
application server on which VXML Server is installed shuts down or the administrator of the application
server explicitly stops the VXML Server web application archive.

• deploy_all_new_apps—Listed when the deployAllNewApps script is run.

• flush_all_old_apps—Listed when the flushAllOldApps script is run.

• suspend_server—Listed when the suspendServer script is run.

• resume_server—Listed when the resumeServer script is run.

• update_common_classes—Listed when the updateCommonClasses script is run.

Running the status script does not trigger an administration event and thus does not update the history log.Note

Application Loggers
Application loggers are defined in the settings for that application. The application designer can choose any
number of application loggers they want to listen to events for a particular application, giving each instance
a name. A logger may or may not require a configuration that will allow the designer to customize how the

VXML Server Logging
7

VXML Server Logging
Global Administration History Logger

ccvp_b_1261-user-guide-for-cisco-unified-cvp-vxml-server-and-call-studio_chapter3.pdf#nameddest=unique_75

logger performs. The configuration files must be placed in the data/application directory of the deployed
application.

Unique to application loggers is the ability for one to specify that all logging events for a call be passed to the
logger it in the order in which they occurred in the call. Some application loggers may even require this
functionality to be turned on as their functionality depends on the events arriving in order. The application
designer can choose to ensure this functionality is the case even for application loggers that do not explicitly
require it to have logs appear orderly. There is some performance degradation as a result of this functionality
so an application logger that does not require this should not enable it.

VXML Server provides the logs folder of a particular application for log file storage should the loggers
require it. To keep each application logger instance’s logs separate, a subfolder with the name of the instance
is created and all logs created by the logger instance are stored there.

By default, VXML Server includes four loggers that provide various application-specific information: an
activity logger that records caller behavior, an application administration history logger that records
administration activities, an error logger that lists errors that occur within calls to the application, and a debug
logger that provides additional information useful when creating and debugging a new application. The activity
logger and error logger require configurations that allow for detailed control over how the loggers operate.

The following sections describe these four prebuilt application loggers, their configurations (if any), and the
information stored in their logs.

Application Activity Logger
The Activity Logger is the main application logger included with VXML Server. It records into text log files
all of the activity taken by callers when they visit an application. It stores information about the call itself
such as its ANI, what elements the caller encountered and in what order, and even detailed actions such as
the values entered by the caller or the confidences of their declaration. The names of the log files created by
the Activity Logger begin with activity_log and are delimited for easy importing into spreadsheets and
databases. These logs have a fixed number of columns:

• SessionID—The session ID of the application visit as described in the VXML Server Call Log section.

• Time—A timestamp of the event in a readable format.

• [Element name]—The name of the current element the activity belongs to. Only functional elements
(voice elements, action elements, decision elements, and insert elements) can appear here. This column
would be empty if the activity does not apply to an element.

• Category—The category of the action:

• start—Information on new visits to the application.

• end—Information on how the application visit ended.

• element—Information on the element visited and how the element was exited. The element column
is empty for the start and end categories.

• interaction—Detailed information about what a caller did within a voice element.

• data—Element data to be logged.

• custom—Custom developer-specified data to log.

• Action—A keyword indicating the action taken. A list of actions is given in the following table.

VXML Server Logging
8

VXML Server Logging
Application Activity Logger

• Description—Some qualifier or description of the action.

The following table lists all of possible category and actions that can appear in the activity log and descriptions
on what they represent.

DescriptionActionCategory

newcall is used when the application visit is a new call. The description
is empty. source is used when another application transferred to this

newcall or sourcestart

application. The name of the application transferred from is listed in
the description.

The description is the ANI of the caller. NA if the ANI is not sent.anistart

The area code of the ANI. NA if the ANI is not sent.areacodestart

The exchange of the ANI. NA if the ANI is not sent.exchangestart

The description is the DNIS of the call. NA if the DNIS is not sent.dnisstart

The description is the IIDIGITS of the call. NA if the IIDIGITS is not
sent.

iidigitsstart

The description is the UUI of the call. NA if the UUI is not sent.uuistart

The application visit is associated with a user. The UID is listed in the
description.

uidstart

An HTTP parameter attached to the initial URL that starts a Unified
CVP application. The description lists the parameter name followed

parameterstart

by an “=” followed by the value. A separate line will appear for each
parameter passed.

An error occurred in the on-call start action (either a Java class or
XML-over-HTTP). The description is the error message.

errorstart

How the call ended. The description is either hangup to indicate the
caller hung up, disconnect to indicate the system hung up on the caller,

howend

application_transfer:APPNAME to indicate a transfer to another Unified
CVP application occurred (where APPNAME stands for the name of
the destination application), call_transfer to indicate a telephony blind
transfer occurred, or app_session_complete to indicate that the call
session ended by another means such as a timeout or the call being sent
to an VRU system outside of Unified CVP.

The description explains why the call ended. normal indicates the call
ended ordinarily, suspended indicates the application is suspended,

resultend

error indicates an error occurred, timeout indicates that the VXML
Server session timed out, and invalidated indicates the application itself
invalidated the session.

The duration of the call, in seconds.durationend

VXML Server Logging
9

VXML Server Logging
Application Activity Logger

An error occurred in the on call end action (either a Java class or
XML-over-HTTP). The description is the error message.

errorend

The element was entered. The description is empty. This is always the
first action for an element.

enterelement

A hotlink was activated while in the element. This can be either a global
or local hotlink. The description lists the hotlink name.

hotlinkelement

A hotevent was activated while in the element. The description lists
the hotevent name.

hoteventelement

An error occurred while in the element. The description lists the error
message.

errorelement

A flag was triggered. The description lists the flag name.flagelement

The element was exited. The description lists the exit state of the
element or is empty if a hotlink, hotevent or error occurred within the
element.

exitelement

An audio group was played to the caller. The description is the audio
group name.

audio_groupinteraction

How the caller entered data. The description can be dtmf or speech.inputmodeinteraction

The caller said something that was matched by the speech recognition
engine. The description lists the match it made of the utterance. This
action will always appear with the interpretation and confidence actions.

utteranceinteraction

In a grammar, each utterance is mapped to a certain interpretation value.
The description holds the interpretation value for the caller’s utterance.

interpretationinteraction

This action will always appear with the utterance and confidence
actions.

The confidence of the caller's matched utterance. This is a decimal
value from 0.0 to 1.0. DTMF entries will always have a confidence of

confidenceinteraction

1.0. This action will always appear with the utterance and interpretation
actions.

The caller said something that did not match anything in the grammar.nomatchinteraction

The caller did not say anything after a certain time period.noinputinteraction

When an element creates element data, one can specify if to log the
element data. Element data slated to be logged will appear here with
the element data name as the action and the value as the description.

[NAME]data

Anywhere the developer adds custom name/value information to the
log will have the name appear as the action and the value stored within
as the description.

[NAME]custom

Note the following guidelines about the Activity Logger:

VXML Server Logging
10

VXML Server Logging
Application Activity Logger

• Due to its complexity, the Activity Logger requires that the enforce call event order option to be set for
the logger instance using it and will throw an error if it is not set.

• When one Unified CVP application performs an application transfer to another application, the reported
timestamps of the end category of the source application and the start category of the destination
application could be imprecise when the source application ends with the playing of audio content. This
is due to the fact that voice browsers typically request VoiceXML pages in advance if the current page
contains only audio and a submit to the next page. In other words, the browser could be playing audio
to the caller while making a request for the next VoiceXML page. If that page were the last of an
application, the subsequent request would begin the process of entering the new application including
having the Activity Logger handle start and end of call logging for the two applications. It would then
report the end time for the source application as being before the time the caller actually experienced the
destination application by hearing its audio.

The Activity Logger utilizes a configuration to control the finer details of the information it stores in its log
files. The configuration controls five different aspects of the Activity Logger:

• Format of the files

• How much data to store in them

• How often to rotate the files

• How caching should work

• How often should log files be purged

This configuration is specified as an XML file created by the designer in Builder for Call Studio. The following
figure shows the format for the XML Activity Logger configuration file.

Figure 2: Activity Logger Configuration File Format

VXML Server Logging
11

VXML Server Logging
Application Activity Logger

The main tag for the configuration, configuration, has two attributes, name and version. Name is expected to
contain the logger instance name although can be given any name desired. The version is expected to include
the version of the configuration, which is currently 1.0. The subsequent sections describe the functionality of
the various tags in the configuration.

Activity Logger Configuration: Format

The <format> tag allows for the modification of how the activity log files are formatted. All Activity Logger
configurations are required to define a format. The possible attributes are:

• delimiter—This required attribute defines the delimiter to use to separate columns on a line. Delimiters
can be any string value, though typically will be a comma or tab. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• remove_delimiter_from_content—When this required attribute is set to true, the Activity Logger
attempts to eliminate the delimiter from any content appearing in the logs to ensure that the log file can
be imported flawlessly. For example, if the delimiter is a comma and the configuration is set to remove
the delimiter, when it is to log the content This, is the description, it will appear in the log as This is the
description so that it does not affect the accuracy of the importing process. This extra step, though, does
incur a slight performance hit. This step will not be performed if this attribute is set to false.

• end_of_line—This optional attribute controls the delimiter used to separate lines. When this optional
attribute is set to true, the Activity Logger will separate lines appropriate to the operating system on
which VXML Server is running. Set the attribute to explicitly set the new line delimiter. Delimiters can
be any string value, though typically will be a white space character. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• date_format and date_granularity—These required attributes set how the second column of the activity
log references a date when the event occurred. The format and granularity are specified.

There are three possible values for the date_format attribute:

• standard—This is a standard readable date format in the formMM/DD/YYYY HH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance is based on the
date_granularity attribute. For a date_granularity attribute set to minutes, just the hours and
minutes of the time will be displayed. For a granularity set to seconds, just the hours, minutes and
seconds will be displayed. For a granularity set to milliseconds, all components will be displayed.

VXML Server Logging
12

VXML Server Logging
Application Activity Logger

• minimal—This is a minimal time value that omits the date and is in the formHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance are based on the
date_granularity attribute. For a date_granularity attribute set to minutes, just the hours and
minutes will be displayed. For a granularity set to seconds, just the hours, minutes and seconds will
be displayed. For a granularity set to milliseconds, all components will be displayed.

• number—This displays a large integer number representing the full date and time as an elapsed
time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute set to minutes, the
number will be 8 digits in length (representing the number of minutes elapsed since that date). For
a granularity set to seconds, the number will be 10 digits in length (representing the number of
seconds elapsed since that date). For a granularity set to milliseconds, the number will be 13 digits
in length (representing the number of milliseconds elapsed since that date).

Activity Logger Configuration: Scope

The Activity Logger configuration provides the administrator the ability to control what is logged based on
their own needs. This configuration is done by defining logging levels and the events that each level contains.
During the debugging stage, for example, the logging level can be set to record all events and once in production,
the logging level can be set to record more important events.

The <scope> tag defines the logging level to use in the logging_level attribute. The child tag <definitions>
encapsulates all possible logging levels. All Activity Logger configurations are required to define a scope
with at least one logging level.

To define a logging level, a separate <level> tag is added within the <definitions> tag and given a name
in the name attribute. This tag will include a separate <event> tag for each event the logging level includes.
The id attribute defines the name of the event. The following table lists all possible event IDs and describes
when that event occurs.

At minimum, the start and end events are required for any logging level as these events are used by the Activity
Logger to maintain information about its log files and which calls are using them.

Note

Event DescriptionEvent ID

This event occurs when a new visit is made to the application (could be a new call
or visit using an application transfer). This event is required in all logging levels.

start

This event occurs when an application visit ends. This event is required in all
logging levels.

end

This event occurs when an element is entered. This applies to both standard and
configurable elements as well as VoiceXML Insert elements.

elementEnter

This event occurs when an element exits (either ordinarily or due to something
occurring within it that took the call flow elsewhere).

elementExit

This event occurs when a flag element is visited by a caller.elementFlag

This event occurs when a voice element returns interaction logging content as a
result of caller activity within a VoiceXML page.

defaultInteraction

VXML Server Logging
13

VXML Server Logging
Application Activity Logger

This event occurs when element data is created that has been configured to be
stored in the log.

elementData

This event occurs when custom content is to be added to the log, either by visiting
an element whose configuration specified content to add or by running custom
code using either the Java or XML APIs that specifies to add to the log.

custom

This event occurs when a global or local hotlink that points to an exit state (as
opposed to throwing a VoiceXML event) is activated by the caller.

hotlink

This event occurs when a hotevent that has an exit state is activated in the call.hotevent

This event occurs when a warning is encountered.warning

This event occurs when VXML Server encounters an internal error (that is, an
error that does not originate from a custom component). This event will include
a stack trace.

systemError

This event occurs when a custom component created with the Unified CVP Java
API encounters an error. This event will include a stack trace.

javaApiError

This event occurs when a custom component created with the Unified CVP XML
API encounters an error. This event will not include a stack trace.

xmlApiError

This event occurs when an error event is received from the voice browser. This
event will not include a stack trace.

vxmlError

Activity Logger Configuration: File Rotation

In any system that stores information in log files, high volume can cause these files to become very large. The
goal is to have a strategy for creating new log files in order to avoid files that are too large. Additionally, file
rotation strategies can help separate the log files into more logical parts. The Activity Logger defines several
rotation strategies to choose from.

To ensure that the information for a single call is not split across multiple log files, the Activity Logger ensures
that all call information appears in the log that was active when the call was received. As a result, it is possible
for calls to be updating both pre- and post-rotation log files simultaneously.

Note

Each rotation strategy determines how the log files are named (though all activity log filenames begin with
activity_log). The <rotation> tag defines the rotation strategy to use by containing one of the following tags:

• <by_day>—Creates a new log file every X days where X is an integer value greater than 0 specified in
the every attribute. Typically this value is 1, meaning that every day at midnight, a new log file is created.
For low volume systems, the value can be given a larger value. For example, when set to 7, a new log
file is created once a week. The log files are named activity_logYYYY-MM-DD.txt where YYYY is the
year, MM is the month, and DD is the day that the file is created.

• <by_hour>—Creates a new log file every X hours where X is an integer value greater than 0 specified
in the every attribute. There is no upper bound on this value, so it can be greater than 24. The log files
are named activity_logYYYY-MM-DD-HH.txt where YYYY is the year, MM is the month, DD is the day,
and HH is the hour that the file is created.

VXML Server Logging
14

VXML Server Logging
Application Activity Logger

The hour is measured in 24-hour time (0 - 23).Note

In locales that use Daylight Saving Time (DST), calls that are placed after the
clock is turned back an hour will continue to be logged in the current log file for
the one a.m hour (the current log file). A new log file is not created when the
clock is turned back for DST for the one a.m hour.

Note

• <by_call>—Creates a separate log file for each call made to the application. The log files are named
activity_logYYYY-MM-DD-HH-SESSIONID.txt where YYYY is the year, MM is the month, DD is the
day, and HH is the hour that the file is created (in 24-hour time) and SESSIONID is the VXML Server
session ID (for example, activity_log2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt). The
session ID is included in the filename to ensure uniqueness of the files.

Care must be taken before using this log file rotation strategy on systems with
high load as this will create a very large number of files.

Note

• <by_size>—Creates a separate log file once the previous log file has reached X megabytes in size where
X is an integer value greater than 0 specified in the mb_limit attribute.

Due to the fact that multiple calls will be updating the same file and that the
Activity Logger will ensure that all data for a single call appear in the same log
file, the final log file may be slightly larger than the limit.

Note

The log files are named activity_logYYYY-MM-DD-HH-MM-SS.txt where YYYY is the year, the first MM
is the month, DD is the day, HH is the hour (in 24-hour time), the second MM is the minute, and SS is
the second that the file is created. The time information is included in the file name in order to ensure
uniqueness.

Activity Logger Configuration: Caching

The Activity Logger has the ability to use a memory cache to store information to log until either the cache
fills or the call ends. Using a cache has several advantages. The first is that it increases performance by waiting
until the end of the call to perform the file IO. Without a cache, the log file would be updated each time an
event occurred. Another advantage is that with caching on, the log file will be more readable by grouping the
activities belonging to a single phone call together. Without the cache, the events for all calls being handled
by every application running on VXML Server would be intermingled. While one can still sort the calls after
the log is imported to a spreadsheet or database, it is much more difficult to track a single call when simply
reading the log file without the cache. The one disadvantage of using a cache is that the log file is not updated
in real-time, only after a call has completed. If there is a desire to have the logs updated immediately after the
events occur, then caching should be left out of the configuration.

The <cache> tag has only one child tag: <per_call>, indicating that the cache’s lifetime is a single call to an
application. <per_call> defines two attributes: kb_limit, an integer value greater than 0 that defines the size
of the cache in kilobytes, and allocate that defines the cache allocation strategy.

VXML Server Logging
15

VXML Server Logging
Application Activity Logger

The attribute can be set to two values:

• once—The Activity Logger will allocate the full memory needed for the cache once and then fill it up
with logging information.When filled, the cache is flushed to the log file and the same section of memory
is cleared and then refilled.

• as_needed—The Activity Logger will allocate memory as events arrive in the call until the total amount
of memory has been allocated. When it is to be flushed, the memory is released and then the allocation
begins again.

The advantage of allocating the memory at once is that since a contiguous section of memory is being used,
the updating, maintenance, and flushing of that memory will be slightly faster. Additionally, with only one
area of memory per call fewer memory allocations take place, which can affect how often Java garbage
collection runs. A disadvantage is that the cache size needs to be chosen carefully. A cache incurs too small
performance hits as the cache fills up and is logged multiple times within a call. A cache means too large that
a large amount of memory is allocated and then never used, potentially starving the rest of the system. A good
cache size would be approximately the size of a log for a typical call to the application. Because the cache is
flushed at the end of a call, there is little reason to make the cache much larger.

The advantage to allocating the memory as needed is that this minimizes the memory used since only the
memory needed to store the information is used. The cache size is not as important, and making it larger will
not affect the overall memory usage as drastically as if the cache was allocated all at once because the memory
would not be allocated unless needed.

Configure the cache to be allocated once for performance and as needed if memory on the system is limited.

Activity Logger Configuration: File Purging

The Activity Logger can be configured to automatically delete files that conform to certain criteria. Properly
configured, this logger allow an administrator to avoid having the system’s hard drive fill up with logs, which
prevents new calls from being logged.

Note the following information about file purging:

• A logger has control only over the files appearing under the logger instance’s dedicated log folder and
cannot control those files managed by other logger instances. This logger even applies to multiple instances
of the same logger since each logger instance is given its own unique folder within the logs folder of
the application. Activity Logger file purging therefore applies only to those files appearing under the
logger instance’s folder.

• Because loggers are activated only when events occur in a call, the file-purging activity will only take
place when a call ends. As a result, a system that receives no calls at all will not automatically delete
files until a new call is received and completes.

• When the Activity Logger starts up for the first time, it will apply the purging strategy on any files that
exist in the logger directory. Therefore, if an application server is shut down with files in the logger
directory and then restarted a long time later, these files could be deleted when the application server
starts up and the logger initializes. This applies to any file appearing in the logger directory, not just
activity logs.

• The Activity Logger keeps information about the activity log files in memory and acts on that to determine
whether to delete them rather than by monitoring the remaining hard drive space on the system. This is
done to avoid having to do file IO to determine if a file is to be purged and so minimizes overhead
(although there still is overhead in deleting files). One consequence is that the logger keeps track only
of those files it is managing. The logger is unaware of any files added to the directory after the application
server initializes, so the purging strategy will affect those files only.

VXML Server Logging
16

VXML Server Logging
Application Activity Logger

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging takes place. The tag can contain one of the following child tags:

• file_age—The Activity Logger deletes activity log files older than X days, where X is an integer greater
than 0 specified in the older_than attribute.

• file_count—The Activity Logger deletes activity log files if the logger folder contains greater than X
files, where X is an integer greater than 0 specified in the greater_than attribute. When the files are
deleted, the oldest ones are deleted first until the folder reaches the desired file count.

Activity Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger1">

<format delimiter="\t" remove_delimiter_from_content="true" end_of_line="\n"
date_format="standard" date_granularity="milliseconds"/>

<scope logging_level="Complete">
<definitions>

<level name="Minimal">
<event id="start"/>
<event id="end"/>

</level>
<level name="Complete">

<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementExit"/>
<event id="elementFlag"/>
<event id="defaultInteraction"/>
<event id="elementData"/>
<event id="custom"/>
<event id="hotlink"/>
<event id="hotevent"/>
<event id="warning"/>

</level>
</definitions>

</scope>
<rotation>

<by_day every="2"/>
</rotation>
<cache>

<per_call kb_limit="10" allocate="once"/>
</cache>
<purge>

<file_age older_than="3"/>
</purge>

</configuration>

This configuration has the following features:

• The activity logs will be delimited with a tab (“\t”) and will have any tabs that appear in the content
removed.

• The activity logs will use a Unix-style new line character (“\n”) to delimit lines. As a result, these log
files would not appear orderly on Windows Notepad because it does not recognize these new line
characters.

• Dates in the activity logs will appear in the standard format with millisecond granularity. For example,
05/09/2006 15:45:02.654

VXML Server Logging
17

VXML Server Logging
Application Activity Logger

• Two logging levels are defined:Minimal, which logs only when a caller entered and exited an application,
and Complete, which logs all events. The Complete logging level is the one that will be used.

• The activity log files will be rotated every two days, meaning each log file will contain two days worth
of calls before a new file is created.

• The cache is set to 10 K or 5000 characters and is allocated once at the start of a call.

• Files that are older than three days that appear in the logger instance’s dedicated directory will be purged.

Activity Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger2">

<format delimiter="," remove_delimiter_from_content="false" date_format="minimal"
date_granularity="minutes"/>

<scope logging_level="MyLoggingLevel">
<definitions>

<level name="MyLoggingLevel">
<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementFlag"/>
<event id="elementExit"/>

</level>
</definitions>

</scope>
<rotation>

<by_size mb_limit="100"/>
</rotation>

</configuration>

This configuration has the following features:

• The activity logs will be delimited with a comma and will not remove any commas that appear in the
content potentially complicating any importing of these logs into spreadsheets or databases.

• The activity logs will end each line with the character appropriate for the operating system on which it
is generated. If this system is running under Windows, the activity logs can be viewed in Notepad and
if this system is running under Unix, the activity logs can use the Unix end of line characters that would
not be recognized if opened by Windows Notepad.

• Dates in the activity logs will appear in the minimal format with minute granularity. For example, 15:45.

• Only one logging level is defined that logs when calls enter and exit an application, enter and exit an
element, and when a flag element is visited.

• A new activity log is created when the previous one has reached approximately 100MB in size, regardless
on whether the calls spanned weeks or hours.

• No logging cache is used, meaning that when a logging event occurs in a call, it is placed into the activity
log immediately. It allows for real-time logging but incurs a performance overhead in managing much
more IO operations.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

VXML Server Logging
18

VXML Server Logging
Application Activity Logger

Application Error Logger
During the voice application development process, errors can be introduced by configuring elements incorrectly,
spelling mistakes in audio filenames, or by Java coding bugs. In each of these cases, errors occur while running
the application. While the Activity Logger does report errors, it is preferable to isolate errors in a separate file
so that they are easily found and addressed. Additionally, when reporting Java errors, a stack trace is desired.
The application Error Logger provides a place for these errors to appear. The error log file names are in the
form error_logYYYY-MM-DD.txt where YYYY, MM, and DD are the year, month, and day when the error
log was first created and is rotated daily.

The application Error Logger will report information on errors that are affiliated with the application in which
it is configured. It can even report errors encountered by other loggers in the same application only if the Error
Logger is listed before other loggers in the application. If another logger is loaded before the Error Logger,
any errors it encounters will be logged instead to the VXML Server Call Error Log. It is for this reason that
by default Builder for Call Studio puts the Error Logger at the top of the list of loggers to use for a new
application.

Note

Starting in Release 8.0(1), the application error log now reports on application timeout events. Previously,
timeout events were not located in the application activity logs.

The columns of the error log are:

• SessionID—The session ID of the application visit described in the VXML Server Call Log section.

• Time—The time the error occurred.

• Description—The error description including a Java stack trace if applicable.

The Error Logger utilizes a configuration to control two different aspects of the error logs: the format of the
files and how often should log files be purged. This configuration is specified as an XML file created by the
designer in Builder for Call Studio, as shown in the following figure.

Figure 3: Error Logger Configuration Format

The main tag for the configuration, configuration, has two attributes, name and version. Name is expected
to contain the logger instance name. The version is expected to include the version of the configuration,
which is currently 1.0. The subsequent sections describe the functionality of the various tags in the configuration.

Error Logger Configuration: Format

The <format> tag allows for the modification of how the error log files are formatted. All Error Logger
configurations are required to define a format. The possible attributes are:

VXML Server Logging
19

VXML Server Logging
Application Error Logger

• delimiter—This required attribute defines the delimiter to use to separate columns on a line. Delimiters
can be any string value, though typically will be a comma or tab. To use a special white space character
such as a new line or tab, use the escaped version.

The possible values are:

• \n (denoting a new line)

• \t (denoting a tab)

• \r (denoting a return)

• \f (denoting a line feed)

• remove_delimiter_from_content—When this required attribute is set to true, the Activity Logger will
attempt to eliminate the delimiter from any content appearing in the logs to ensure that the log file can
be imported flawlessly. For example, if the delimiter is a comma and the configuration is set to remove
the delimiter, when it is to log the content This, is the description, it will appear in the log as This is the
description so as not to affect the accuracy of the importing process. This extra step, though, does incur
a slight performance hit. This step will not be performed if this attribute is set to false.

If the error log contains Java stack traces, the error logs might be difficult to
import as stack traces fill multiple lines (though their content will be cleaned of
the delimiter if desired).

Note

• date_format and date_granularity—These required attributes set how the second column of the activity
log references a date when the event occurred. The format and granularity are specified.

There are three possible values for the date_format attribute:

• standard—This is a standard readable date format in the formMM/DD/YYYY HH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance is based on the
date_granularity attribute. For a date_granularity attribute set tominutes,only hours andminutes
of the time will be displayed. For a granularity set to seconds, only hours, minutes and seconds will
be displayed. For a granularity set to milliseconds, all components will be displayed.

• minimal—This is a minimal time value that omits the date and is in the formHH:MM[:SS][.MMM]
where the hour is in 24-hour time and the last three digits are the milliseconds. The seconds and
milliseconds are displayed with brackets to indicate that their appearance are based on the
date_granularity attribute. For a date_granularity attribute set tominutes,only hours andminutes
will be displayed. For a granularity set to seconds, only hours, minutes and seconds will be displayed.
For a granularity set to milliseconds, all components will be displayed.

• number—This displays a large integer number representing the full date and time as an elapsed
time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute set to minutes, the
number will be 8 digits in length (representing the number of minutes elapsed since that date). For
a granularity set to seconds, the number will be 10 digits in length (representing the number of
seconds elapsed since that date). For a granularity set to milliseconds, the number will be 13 digits
in length (representing the number of milliseconds elapsed since that date).

VXML Server Logging
20

VXML Server Logging
Application Error Logger

• print_stack_traces—This required attribute is set to either true or false and determines whether the
error log will contain Java stack traces. Stack traces are very useful to a developer in tracking down the
cause of a Java error. You must keep this option on.

Error Logger Configuration: File Purging

The Error Logger can be configured to automatically delete files that conform to certain criteria. Properly
configured, this allows an administrator to avoid having the system’s hard drive fill up with logs, which would
prevent new calls from being logged.

Note the following information about file purging:

• Becasue loggers are activated only when events occur in a call, the file purging activity will only take
place when an error event occurs. As a result, a system that encounters no errors will not automatically
delete files until a new error occurs.

• When the Error Logger starts up for the first time, it will apply the purging strategy on any files that exist
in the logger directory. Therefore, if an application server is shut down with files in the logger directory
and then restarted a long time later, these files can be deleted when the application server starts up and
the logger initializes.

• Unlike the Activity Logger, the Error Logger applies its purging strategy to any files found in its logger
directory, including non-error log files. If other files are added to the logger folder after the application
server has started, they might be deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the configuration, no file
purging will take place. The tag can contain one of the following child tags:

• file_age—The Error Logger deletes error log files older than X days, where X is an integer greater than
0 specified in the older_than attribute.

• file_count—The Error Logger deletes error log files if the logger folder contains greater than X files,
where X is an integer greater than 0 specified in the greater_than attribute. When the files are deleted,
the oldest ones are deleted first until the folder reaches the desired file count.

Error Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger1">

<format delimiter="," remove_delimiter_from_content="true" date_format="standard"
date_granularity="seconds" print_stack_traces="true"/>

<purge>
<file_count greater_than="10"/>

</purge>
</configuration>

This configuration has the following features:

• The error logs will be delimited with a comma and will have any commas that appear in the content
removed.

• Dates in the error logs will appear in the standard format with seconds granularity. For example:
05/09/2006 15:45:02.

• Java stack traces will appear in the error logs.

VXML Server Logging
21

VXML Server Logging
Application Error Logger

Because stack traces span multiple lines, including stack traces may complicate
the process of importing the error logs into spreadsheets or databases. This process
is rarely done for error logs.

Note

• When a new file is added to logger instance’s dedicated directory by the Error Logger, if the directory
contains more than 10 files the oldest file will be deleted.

With a large application or a large number of applications, it is possible to fill all available disk space with
logs. For this reason, all applications have a default log retention set to 10 GB (100 logs). Customers should
review this setting as needed and modify it to suit their situation.

Note

Error Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger2">

<format delimiter="***" remove_delimiter_from_content="false" date_format="minimal"
date_granularity="seconds" print_stack_traces="false"/>
</configuration>

This configuration has the following features:

• The error logs will be delimited with the string “***” and will not attempt to remove that string from the
content.

The delimiter does not need to be limited to a single character and can be a
multicharacter string. Usually, a single character makes importing into
spreadsheets and databases straightforward.

Note

• Dates in the error logs will appear in the minimal format with seconds granularity. For example, 15:45:02.

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the error message
itself will appear in the error log without the stack trace.

• No file purging will take place. The administrator is responsible for maintaining the logs on the system.

Application Administration History Logger
Whenever an application-specific administration script is run, a log file is updated with information on the
script that was run. The administration log filenames are in the form admin_historyYYYY-MM-DD.txt where
YYYY, MM, and DD are the year, month, and day when the administration history log was first created and is
rotated daily. The file contains three columns: the time the script was run, what script was run, and its result.
The result is usually success and if not contains the description of the error encountered.

The possible values are:

• server_start—Each application’s history log contains records of each time the application server starts.

VXML Server Logging
22

VXML Server Logging
Application Administration History Logger

• deploy_app—Listed when the deployApp script is run.

• suspend_app—Listed when the suspendApp script is run.

• resume_app—Listed when the resumeApp script is run.

• update_app—Listed when the updateApp script is run.

• release_app—Listed when the releaseApp script is run.

• update_common_classes—Listed when the global updateCommonClasses script is run. The reason this
global admin event is logged by the Application Administration History Logger is because elements that
appear in the common directory are reloaded by this command, causing those elements to reload their
application-specific configurations.

Running the status script does not update the history log. The Administration History Logger does not use
a configuration.

Application Debug Logger
At times when debugging an application, it is advantageous to see information concerning the HTTP requests
made by the voice browser and the corresponding HTTP responses of VXML Server. The Debug Logger
creates a single file per call that contains all HTTP requests and responses that occurred within that call session.
The log files are named debug_logYYYY-MM-DD-HH-SESSIONID.txt where YYYY is the year, MM is the
month, DD is the day, and HH is the hour (in 24-hour time) that the file is created and SESSIONID is the
VXMLServer session ID (for example, debug_log2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt).
The Session ID is included in the filename to ensure uniqueness of the files.

The debug log contains:

• A timestamp of when each HTTP request was received from the voice browser as well as when the
response was sent back by VXML Server.

• All headers of the HTTP request.

• All arguments passed with the HTTP request, whether they be set with GET or POST.

• The entire VoiceXML page returned in the HTTP response.

• We recommend that you use the Debug Logger only when performing debugging and not in a production
environment because it incurs overhead on the system in creating and managing file IO and replicating
the HTTP response, which must be generated once for the voice browser and once for each Debug Logger
instance.

The Debug Logger does not require the enforce call event order to be turned on,
however, without it there could be situations where under load the HTTP requests
and responses are out of order or mixed together in the file.

Note

VXML Server Logging
23

VXML Server Logging
Application Debug Logger

Correlating Unified CVP Call Server Logs with VXML Server
Logs

Starting in Release 8.0(1), VXML Server (by default) receives callid (which contains the call GUID), _dnis,
and _ani as session variables in comprehensive mode even if the variables are not explicitly configured as
parameters in the ToExtVXML array. If the variables are configured in ToExtVXML then those values are
used. These variables are available to VXML applications as session variables and they are displayed in the
VXML server log.

VXML Server Logging
24

VXML Server Logging
Correlating Unified CVP Call Server Logs with VXML Server Logs

	VXML Server Logging
	Loggers
	Global Loggers
	Global Call Logger
	Global Error Logger
	Global Administration History Logger

	Application Loggers
	Application Activity Logger
	Application Error Logger
	Application Administration History Logger
	Application Debug Logger

	Correlating Unified CVP Call Server Logs with VXML Server Logs

