
Dynamic Element Configurations

Configurable voice, action, and decision elements used in an application must have configurations. Usually,
the configuration will be fixed, that is, it acts the same every time a caller visits it. In this case, the configuration
itself exists as an XML file stored on the system. Builder for Call Studio creates this file when the application
is deployed. Programming is required when a dynamic element configuration is desired, that is, one which is
thrown at runtime each time a caller visits it.

The manner in which configurations are used warrants closer examination. A configuration functions based
on its pre-built elements. Since configurable elements are constructed with Java, the configuration for the
element must be given to it in the form of a Java class. The API provides a set of Java classes that encapsulate
an entire element configuration. The Java classes are Java expressions of the visual Builder for Call Studio’s
Configuration Pane consisting of three tabs: General, Settings, and Data for action and decision elements,
and a fourth tab, Audio, for voice elements.

When a static configuration is used, this information is stored as an XML file thrown by Builder for Call
Studio. VXML Server converts this XML file to one of the Java configuration classes and then passed it on
to the element.

A dynamic configuration adds an additional step in this process. Once VXML Server loads the static
representation of the configuration (known as the base configuration), it will pass this to the dynamic
configuration Java class or URI for modification, instead of passing it directly to the element. The class or
URI adds to or changes the base configuration depending on the application business logic and returns a
complete configuration. VXML Server then passes this new configuration to the element.

• Java API Use, on page 1
• XML API Use, on page 2

Java API Use
Dynamic voice, action, and decision element configurations are constructed in the Java API by implementing
the Java interfaces VoiceElementInterface, ActionConfigInterface and DecisionConfigInterface

respectively, all found in the com.audium.server.proxy package.

The name of the voice element interface is not consistent with the others due to backwards compatibility
concerns. Each of these interfaces contains a single method named getConfig that receives three arguments:

Note

• The name of the element as a String.

Dynamic Element Configurations
1



• An instance of ElementAPI or ActionAPI (for dynamic action element configurations). These classes
belong to the Session API and are used to access session information. (See Session API for more
information on this API.)

• An instance of VoiceElementConfig, ActionElementConfig or DecisionElementConfig (found in the
com.audium.server.xml package) that contains the base configuration for the element (or null if there
is no base configuration).

The methodmust return an instance of the configuration object (VoiceElementConfig, ActionElementConfig
or DecisionElementConfig). This can be a modified version of the object passed as input to the method or
one built from scratch. It is expected that should an unrecoverable error occur, the dynamic configuration
class should throw an AudiumException.

Due to the fact that most dynamic configurations involve only a few changes to the static configuration,
obtaining a base configuration as input to the execution method saves significant coding effort since the
dynamic configuration class simply needs to modify this object in order to create the final configuration object
then return it.

All three configuration classes extend a common base class, ElementConfig. This class defines those features
common to all three element configurations: settings, element and session data created, custom log content,
and associating the call with a UID. ActionElementConfig and DecisionElementConfig are essentially
identical, separate classes are used for design considerations and for possible future differentiation.
VoiceElementConfig, however, expands upon the ElementConfig class by introducing voice element only
features: local hotlinks, VoiceXML properties and audio groups. The three configuration classes allow the
developer to obtain everything about a configuration as well as change or add to the configuration in any way.

To handle audio groups, VoiceElementConfig introduces inner classes that define an audio group (AudioGroup)
and a generic audio item (AudioItem). Two additional inner classes define audio item types that extend the
AudioItem class to define a Say It Smart audio item (SayItSmart) and a static audio item (StaticAudio). The
AudioGroup class encapsulates any number of AudioItem objects of either type. A developer can create new
audio groups separately and call a method in VoiceElementConfig to add the audio group to the configuration,
or an existing AudioGroup object can be obtained, modified, and then reinserted into the configuration.

To handle local hotlinks, which are supported on voice elements only and add page-scoped VoiceXML links
to the pages generated by the voice element, VoiceElementConfig introduces an inner class called
LocalHotlink.

The Javadocs provide much more detail regarding these classes and their methods.

XML API Use
Dynamic element configurations using the XML API send four HTTP POST arguments to the URI specified:

• name – The name of the element whose configuration is dynamic as a string.

• inputs – One of the standard arguments passed to all components utilizing the XML API as described
in Session API.

• settings – One of the standard arguments passed to all components utilizing the XML API as described
in Session API.

• defaults – The base configuration for the element represented as an XML document. If there is no base
configuration, this argument is not included. There are two possible DTDs for this argument. One is used

Dynamic Element Configurations
2

Dynamic Element Configurations
XML API Use

ccvp_b_programming-guide-for-cisco-unified-12-0_chapter3.pdf#nameddest=unique_19
ccvp_b_programming-guide-for-cisco-unified-12-0_chapter3.pdf#nameddest=unique_19
ccvp_b_programming-guide-for-cisco-unified-12-0_chapter3.pdf#nameddest=unique_19


if the dynamic configuration is for a voice element and the other is if the dynamic configuration is for
decision and action elements.

The responsemust contain the final configuration to use, which follows the sameDTD as the base configuration
XML document. Incidentally, this DTD is the same one used for the fixed element configuration XML files
created by Builder for Call Studio.

Decision and Action Element Configuration DTD
The following figure shows the DTD for decision and action element configurations sent in the argument
defaults. The DTD for decision element configurations is defined in the file
DecisionElementConfiguration.dtd and the DTD for action element configurations is defined in the file
ActionElementConfiguration.dtd, both located in the VXML Server dtds folder. Each DTD is stored as a
separate file despite being syntactically identical, to allow for future divergence.
Figure 1: Decision and Action DTD

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the configurable action
or decision element whose configuration is being dynamically produced. Refer to the Element
Specifications for Cisco Unified CVP VXML Server and Unified Call Studio document for the full Java
class names of all Unified CVP elements. The serial attribute is used by Call Studio and can be safely
ignored here.

• error – This tag reports to VXMLServer that an error occurred while executing the dynamic configuration.
VXML Server will then throw an exception whose message is contained in the <error> tag. This allows
the XML API to throw exceptions just as the Java API does.

Dynamic Element Configurations
3

Dynamic Element Configurations
Decision and Action Element Configuration DTD

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html


• setting – This tag holds an element setting, the name appearing in the name attribute and the value of
the setting contained within the <setting> tag. It is repeated for each setting included in the base
configuration. No <setting> tags appear if the base configuration contains no settings or the element
itself defines no settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and since static and dynamic configuration XML documents share the same DTDs, it
appears here. Substitution would not normally be used with dynamic configurations. The substitution
tag contents are fully described in Substitution XML Format, on page 7.

• new_data – This tag holds the element and session data this dynamic element configuration is to create.
Any number of <set_element> and <set_session> tags can appear, one for each element and session
data variable to be created. The log attribute of <set_element> sets whether the value of the variable is
stored in the activity log. The optional type attribute is used to specify the data type of the variable and
can be string, int, float, or boolean. The create attribute found in both tags determines when the variable
is created, before the element is entered (before_enter), or after the element exits (after_exit).

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• log – This tag is used to trigger logger events when this dynamic configuration is executed. Any number
of <custom> tags can appear, denoting the triggering of a custom event. The name attribute holds the
name of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can appear,
denoting the triggering of a warning event. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag enables the encoding and language settings for the application to be
changed for this call. The <language> tag content is formatted according to the specification for using
languages in VoiceXML (for example, en-US). The <encoding> tag content is formatted according to
the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the execution method of the dynamic
configuration is completed. This tag is rarely used and would be needed in a few circumstances where
some external process takes the call away from VXML Server such as when using a CTI system to
transfer the call to an agent.

Voice Element Configuration DTD
The following figure shows the DTD diagram for the voice element configuration XML document sent in the
argument defaults. The DTD is defined in the file VoiceElementConfiguration.dtd found in the VXML
Server dtds folder.

Dynamic Element Configurations
4

Dynamic Element Configurations
Voice Element Configuration DTD



Figure 2: Voice Element Configuration DTD

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the configurable voice
element whose configuration is being dynamically produced. Refer to the Element Specifications for
Cisco Unified CVP VXML Server and Unified Call Studio document for the full Java class names of all
Unified CVP elements. The serial attribute is used by Call Studio and can be safely ignored here.

• error – This tag reports to VXMLServer that an error occurred while executing the dynamic configuration.
VXML Server will then throw an exception whose message is contained in the <error> tag. This allows
the XML API to throw exceptions just as the Java API does.

Dynamic Element Configurations
5

Dynamic Element Configurations
Voice Element Configuration DTD

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_programming_reference_guides_list.html


• setting – This tag holds an element setting, the name appearing in the name attribute and the value of the
setting containedwithin the <setting> tag. It is repeated for each setting included in the base configuration.
No <setting> tags appear if the base configuration contains no settings or the element itself defines no
settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and since static and dynamic configuration XML documents share the same DTDs, it
appears here. Substitution would not normally be used with dynamic configurations. The substitution
tag contents are fully described in the section entitled Substitution XML Format at the end of this chapter.

• vxml_property – This tag holds a VoiceXML property, the name appearing in the name attribute and
the value of the property contained within the <vxml_property> tag. It is repeated for each VoiceXML
property referred to in the base configuration.

• audio_group – This tag holds all the audio items for a single audio group. Attributes to <audio_group>

set its name, bargein preference and count (for those audio groups that can have counts greater than 1),
and the language that it encapsulates. Each audio item is represented as a single <audio> or
<say_it_smart> tag.

• The <audio> tag defines a name for the audio item, the source of the audio file (optional if no audio
file is being referenced), whether to use the default audio path (the use_default_path attribute may
be true or false), and encapsulates the TTS backup message.

• The <say_it_smart> tag’s attributes define the name of the audio item, the output format to represent
the data, and Java class name of the Say It Smart plugin. Its contents encapsulate a <value> tag
representing either a static value or a value from a variable. The format attribute of <value> defines
the input format of the data. The <variable> tag contains tags for obtaining the data from element
data, session data or call data. The var_name attribute can contain the following values: ani, dnis,
iidigits, uui, start_date, start_time, and application_name.

You can avoid using the <variable> tag by referring to a substitution string in
the contents of the <value> tag. This also allows for the substitution of content
in addition to element, session, and call data. The <variable> tag remains for
backwards compatibility and for those not willing to use substitution.

Note

• new_data – This tag holds the element and session data this dynamic element configuration is to create.
Any number of <set_element> and <set_session> tags can appear, one for each element and session
data variable to be created. The log attribute of <set_element> sets whether the value of the variable is
stored in the activity log. The optional type attribute is used to specify the data type of the variable and
can be string, int, float, or boolean. The create attribute found in both tags determines when the variable
is created, before the element is entered (before_enter), or after the element exits (after_exit).

• local_hotlink – This tag is used for local hotlink configurations. The name attribute defines the local
hotlink’s name and must be unique within the element configuration.

• The child <speech> tag indicates whether the inline or external speech grammar was set for this
hotlink. The <external> tag should contain the URI to the external speech grammar. The
<inline_component> tags encapsulate each utterance that activates the hotlink.

• The child <keypad> tag indicates whether the inline or external DTMF grammar was set for this
hotlink. The <external> tag should contain the URI to the external DTMF grammar. The
<inline_component> tags encapsulate each DTMF entry that activates the hotlink.

Dynamic Element Configurations
6

Dynamic Element Configurations
Voice Element Configuration DTD



• The optional child <throw_event> tag is used if this hotlink throws an event.

• set_uid – This tag is used to associate the call with a UID in the user management system. The content
of the tag should be the integer UID.

• log – This tag is used to trigger logger events when this dynamic configuration is executed. Any number
of <custom> tags can appear, denoting the triggering of a custom event. The name attribute holds the
name of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can appear,
denoting the triggering of a warning event. The <warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards for this
call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point onwards for
this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The contents of the
tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the application to be
changed from this point onwards for this call. The <language> tag content is formatted according to the
specification for using languages in VoiceXML (for example, en-US). The <encoding> tag content is
formatted according to the specification for encoding XML pages (for example, UTF-8).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to invalidate the call
session it retains in memory, call the end of call class or URI (if defined), and free up the VXML Server
port utilized by the call. The session is invalidated only after the execution method of the dynamic
configuration is completed. This tag is rarely used and would be needed in a few circumstances where
some external process takes the call away from VXML Server such as when using a CTI system to
transfer the call to an agent.

Substitution XML Format
The DTD for element configuration XML documents contain a tag <substitute> that is used to define
substitution. Substitution is the process of constructing a value from a combination of static and dynamic
content. It is used as a way for a developer to use dynamic content in an element configuration without having
to resort to a dynamic configuration. Substitution can be used throughout an element’s configuration such as
settings, audio, VoiceXML properties, etc.

See User Guide for Cisco Unified CVP VXML Server and Unified Call Studio for more information on
substitution.

Since the DTDs of the documents returned by the XML API are the same as those for static element
configurations produced by Builder for Call Studio, dynamic configurations may also utilize substitution.
Using substitution in dynamic configurations, however, makes little sense as the dynamic configuration is
produced by programming code which could just as easily set the appropriate value rather explicitly rather
than assemble it using substitution. To be comprehensive, this section briefly describes the contents of the
<substitute> tag.

A value for a setting, audio source, audio TTS or any other configuration option that supports substitution
contains static content combined with integer values encapsulated by braces. When this format is detected,
VXML Server knows to replace (substitute) the parts encapsulated in braces with the dynamic data. For
example, http://{0}/grammar/{1} as a value for a setting indicates to substitute some dynamic content for

Dynamic Element Configurations
7

Dynamic Element Configurations
Substitution XML Format

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html


“{0}” and “{1}”, where the indices are used for uniqueness (the same index can be used multiple times in the
same value or in separate values if applicable).

This is where the <substitute> tag comes in. Each <substitute> tag specifies what dynamic data to substitute
for a particular number surrounded by braces. The index attribute must be an integer that matches the number
to substitute. A diagram of what it can contain is shown in the following figure.
Figure 3: Content for the Substitute Tag

The content to substitute can be one of the six possible tags:

• call_data – Represents call information such as the ANI.

• data – Represents element or session data.

• user_info – Represents information about the user associated with the call (available only when the user
management system is turned on and the call is associated with a particular UID).

• general_date_time – Represents the current time or the start of the call.

• caller_activity – Represents the activity taken by the caller in this call.

• historical_data – Represents past actions taken by the user associated with this call (available only when
the user management system is turned on and the call is associated with a particular UID).

These tags are identical to tags of the same name used within the XML decision format. These tags are
described in the User Guide for Cisco Unified CVP VXML Server and Unified Call Studio.

For example, in the above situation where a setting has the value http://{0}/grammar/{1}, the following
substitute tag can represent index 0 coming from element data:
<substitute index="0">

<data>
<element name="AnElementName" variable="SomeValue"/>

</data>
</substitute>

Dynamic Element Configurations
8

Dynamic Element Configurations
Substitution XML Format

http://www.cisco.com/en/US/products/sw/custcosw/ps1006/products_user_guide_list.html

	Dynamic Element Configurations
	Java API Use
	XML API Use
	Decision and Action Element Configuration DTD
	Voice Element Configuration DTD
	Substitution XML Format



