
Voice Foundation Classes

The Unified CVPVoice Foundation Classes are a Java API for generating VoiceXML. Any custom component
wishing to produce VoiceXMLmust use the VFCs because their main purpose is to act as an abstraction layer
between VoiceXML and the component. The VFCs handle the vagaries of VoiceXML and especially the
differences in the VoiceXML interpreted by various voice browsers. This allows the developer to simply
focus on the functionality desired without worrying about the details of writing VoiceXML or the quirks of
their chosen voice browser. The VFCs are primarily used to construct voice elements, though hotevents and
on call end classes use the VFCs as well.

• VFC Design, on page 1
• VFC Classes, on page 3

VFC Design
The high level design of the VFCs is to simulate standard VoiceXML in Java. The behavior of these classes
directly matches the VoiceXML specifications (both versions 1 and 2). This, however, acts only as a basis
from which supporting a particular voice browser begins, since no two browsers have exactly the same
compliance. The software provides voice browser compatibility by extending these base VFCs to create a
layer that produces the VoiceXML compatible with a particular voice browser. Most of the functionality is
still defined in the base VFC classes and only the browser-specific functionality needs to be included in the
subclasses. The classes for a particular voice browser are encapsulated in a separate plugin or driver, called
a Gateway Adapter. Installing a newGateway Adapter will add support for a new voice browser and a Unified
CVP application can be deployed on a new browser by simply selecting the Gateway Adapter to use.

The design of the base VFCs follows roughly the design of VoiceXML, utilizing similar concepts and naming,
so prior knowledge of VoiceXML is beneficial for understanding the VFC design. The VFCs allow full
compatibility with VoiceXML in that anything you can do in VoiceXML you can do in the VFCs, including
using proprietary tags and/or attributes introduced by supported browsers.

Many times, a single VoiceXML tag maps to a single VFC that is similarly named. The class VForm, for
example, deals with VoiceXML <form> tags and the class VField with <field> tags. Some tags, however,
have been combined into a single VFC for ease of use. For example, the VAction class encapsulates tags from
<var> and <assign> to <break> and <submit>. As a result, there are fewer VFCs than VoiceXML tags. The
VFCs also help the developer by producing some VoiceXML automatically. The developer will quickly find
that using the VFCs is very much like coding in VoiceXML, except in Java.

There are a few concepts that need to be described before delving into the individual VFCs. First, each VFC
class extends a common base class, VRoot. The purpose for this is similar to having all Java classes extend

Voice Foundation Classes
1

Object, it is a way to help define common functionality of the VFCs as well as being able to identify if a Java
class is a VFC.

The second concept involves the hierarchy of the VFCs. There are, in fact, several layers of abstraction in the
VFCs that separate not only differences between various voice browsers but also versions of the VoiceXML
standard. There are separate VFCs for VoiceXML version 1.0 and version 2.0, and the similarities are
encapsulated in a common base class. The following figure, shows this graphically with the VForm class. The
main VForm class extends the VRoot class and is itself extended by VFormV1 and VFormV2, representing
VoiceXML 1.0 and 2.0 compliances. Luckily, there are only a few differences between these versions, so the
developer can still do most coding to the base VForm class. The Gateway Adapters introduce VFCs that extend
VFormV1 or VFormV2 depending on whether the voice browser it supports is compatible with VoiceXML 1.0
or 2.0.
Figure 1: VForm and Its Extensions

The last concept is that VFC objects are not instantiated using the new keyword. A static factory method named
getNew is used instead. The reason for this is related to the abstraction of the voice browser differences. As
mentioned previously, a developer need only code using the base VFC classes. At runtime, the factory methods
used to instantiate VFC classes actually returns the appropriate voice browser-specific VFC (for example,
VFormFoo in the illustration). But since the developer treats the return object as the base VFC, that object is
downcasted. This is the heart of the VFC abstraction design. Since all VFC derivative classes extend their
base VFCs, a developer need only code to the base VFCs and that automatically makes their code compatible
with any voice browser represented by a Gateway Adapter.

In order to identify which voice browser VFC to return, every factory methodmust include as its first argument
an instance of VPreference. VPreference, while a VFC class, does not match to a VoiceXML tag, it is used
instead to hold preferences made by the user in Builder for Call Studio for the application, such as the voice
browser and default audio path. By passing this object to all factory methods, the appropriate object can be

Voice Foundation Classes
2

Voice Foundation Classes
Voice Foundation Classes

returned. The VPreference instance is automatically created for the developer and made available through
the Session API passed to voice elements, hotevents, or call end classes.

The following Java code demonstrates the concepts described above:
VPreference pref = ved.getPreference();
VForm form = VForm.getNew(pref, "start");

Here, the VPreference object is obtained from the VoiceElementData object passed as input to a voice element.
It is used to create a VForm object. Assuming the application is using the voice browser Foo, that choice is
reflected in the VPreference object and therefore the getNew factory method returns a VFormFoo object, which
is automatically downcasted to a VForm object. The developer then uses the form object as desired.

This ability to treat all objects returned as a root VFC object is not available when the developer wishes to
use functionality that exists either in a particular version of VoiceXML or a particular voice browser. The
developer must understand that doing so would prevent their code from functioning on all voice browsers. In
this case, the developer simply treats the return of the factory method as a class higher in the class hierarchy
(VFormV2 or VFormFoo in the illustration).

The following Java code demonstrates this:
VGrammar myGrammar = VGrammar.getNew(pref);
((VGrammarV2) myGrammar).setMaxage(1000);

The setMaxagemethod exists only in the VGrammarV2 class since this is a feature that exists only in VoiceXML
2.0. To call this method, one must first upcast the previously downcasted object back to VGrammarV2. If this
is not done, an exception will be thrown indicating that VGrammar does not have a method named setMaxage.

If the user in the Builder chose a voice browser that was compatible with VoiceXML 1.0 only, a runtime
exception would be thrown when this code is encountered because that browser would be unable to understand
VoiceXML referring to maxage.

Note

VFC Classes
The following lists all the VFC classes (with full package names) and briefly explains what they are responsible
for. The Javadocs for the VFCs provide significantly more detail about the classes, their methods, and how
they are used.

• com.audium.core.vfc.util.VMain – This object is the container for a complete VoiceXML document.
It includes methods for managing information about the page such as the meta tags, the doc type, and
the value to put in the <vxml> tag’s xml:lang attribute. It includes methods for adding document-scope
data such as links, variables, and VoiceXML properties. VForm objects are added to this object to create
the VoiceXML page. VXML Server uses the VMain object to handle the printing of the VoiceXML page.
Voice elements receive an instantiated VMain object as input and the developer need only worry about
filling the object with the appropriate content.

• com.audium.core.vfc.form.VForm – This class is a container for all the content in a VoiceXML page
not handled by the VMain class. It is a direct mapping of the <form> tag, though it also produces other
form-level tags such as <var> or <filled>.

• com.audium.core.vfc.list.VList – This class is used to encapsulate a list of items that can be deployed
as either a traverse list or a streaming list. A traverse list presents a menu after an item is presented that
allows the caller to move forwards and backwards through the list. A streaming list is one where all the

Voice Foundation Classes
3

Voice Foundation Classes
VFC Classes

items are played one after the other. This VFC class does not reflect any VoiceXML tags, it was produced
by Unified CVP to facilitate the creation of lists within VoiceXML. The class outputs a set of forms that
implement the list.

• Form Items – The VForm classes encapsulate most of the content of a VoiceXML page, and each form
has any number of form items added to it. These form items span the range of capturing input from the
caller to performing a telephony transfer. Each form item has a different purpose, though many form
items share features in common. The VFCs relate the classes that handle each form item by creating a
hierarchy starting with the simplest form items, with features common to all, to more complex form items
that add features through each successive class extension. The following figure shows this class hierarchy
and a description of each branch is listed after the figure.
Figure 2: VForm Class Hierarchy

VForm Hierarchy branches and descriptions:

• com.audium.core.vfc.form.VFormItemRoot – This class is the base class for all form items. It
defines the ability to include audio, which every form item shares.

com.audium.core.vfc.form.VInitial – This class is used when performing mixed initiative data
capture. Mixed initiative data capture is a way of capturing multiple inputs in one utterance, such
as a person’s first and last names together rather than having to prompt for each individually. It is
a direct mapping of the <initial> tag.

• com.audium.core.vfc.form.VFormItem – This class defines a standard form item. It defines the
ability to perform actions within the form item (some form items do this within a <filled> tag).

com.audium.core.vfc.form.VBlock – This class deals with producing a block in which any action
and/or audio can be placed. It is a direct mapping of the <block> tag.

• com.audium.core.vfc.form.VFormProcessItem – This class defines form items that process data
from the caller or an external source. Process form items define the ability to catch and handle
VoiceXML events and refer to VoiceXML properties.

Voice Foundation Classes
4

Voice Foundation Classes
Voice Foundation Classes

com.audium.core.vfc.form.VSubdialog – This class is used to make a call to a VoiceXML
subdialog. A subdialog acts very much like a function call in VoiceXML, performing some
encapsulated task and then returning to the calling context. It is a direct mapping of the <subdialog>
tag.

com.audium.core.vfc.form.VObject – This class is used to produce VoiceXML that calls an
external data object. It is a direct mapping of the <object> tag.

• com.audium.core.vfc.form.VFormInputItem – This class defines form items that take input from
the caller. Input form items define a grammar to capture the data.

com.audium.core.vfc.call.VTransfer – This class deals with performing a telephony transfer. It
is a direct mapping of the <transfer> tag.

The reason this is considered an input form item is because theoretically according
to the VoiceXML specification, a grammar can be active within a call transfer.
This, though, is rarely used or supported.

Note

com.audium.core.vfc.audio.VRecord – This class deals with performing a recording of the caller’s
voice. It is a direct mapping of the <record> tag.

• com.audium.core.vfc.form.VField – This class defines field form items, which deal with capturing
utterances from the caller and converting them into information. Fields define the ability to specify
utterance links.

com.audium.core.vfc.form.VBuiltInField – This class deals with producing fields that capture
data specified by grammars built into the voice browser. Any voice browser supporting VoiceXML
is required to support data capture of numbers, dates, times, currency values, phone numbers,
digit-by-digit values, and boolean values (yes / no). The class produces <field> tags as well as
other field-related tags such as <prompt> and <filled>.

• com.audium.core.vfc.form.VMenuField – This class is used when a menu is desired in the
VoiceXML document. The class produces <field> tags with <option> tags defining each menu
option. The <menu> and <choice> tags in VoiceXML are just shortcuts for this and cannot be
produced with the VFCs.

• com.audium.core.vfc.form.VListField – This class is a special kind of menu that is used by the
VList class when it is configured to act as a traverse list. The menu is pre-built to support options
to go forwards and backwards.

• com.audium.core.vfc.util.VAction – This VFC class encapsulates multiple VoiceXML tags that represent
taking certain actions. All the VoiceXML tags produced by this class have the same parent tags and so
can be used in the same locations. Combining these tags into one class reduces the complexity of the
VFCs since special handlers are not needed for each tag. The following lists the actions that the VAction
tag encapsulates and the corresponding VoiceXML tag: variable declarations (<var>), variable assignment
(<assign>), gotos (<goto>), HTTP submits (<submit>), clearing forms and fields (<clear>), scripts
(<script>), logging (<log>), throwing events (<throw>), reprompting (<reprompt>), returning from
subdialogs (<return>), disconnects (<disconnect>) and exits (<exit>).

• com.audium.core.vfc.audio.VAudio – This class deals with audio, both TTS and through audio files.
A single VAudio object can contain any number of audio items (so an entire voice element audio group
can be encapsulated in one VAudio object). The class also deals with playing back a recording, managing
bargein, adding pauses to the playback.

Voice Foundation Classes
5

Voice Foundation Classes
Voice Foundation Classes

SSML (Speech Synthesis Markup Language) that is entered by the application
designer in Builder for Call Studio is handled correctly by this class.

Note

• com.audium.core.vfc.util.VEvent – This class handles VoiceXML events and what to do when they
occur. Events may be user-triggered such as nomatch or noinput events, or custom events thrown by the
developer or voice browser. Hotevents are basically VEvent classes that VXML Server adds to the
VoiceXML root document. It is a direct mapping of the <catch> tag.

The <noinput>, <nomatch>, and <help> tags are all shortcuts for variations of
the <catch> tag so are not produced by the VFCs.

Note

• com.audium.core.vfc.util.VGrammar – This class deals with specifying either an inline or external
DTMF or speech grammar. It is a direct mapping of the <grammar> tag.

• com.audium.core.vfc.util.VIfGroup – This class deals with producing an if statement within VoiceXML.
It is a direct mapping of the <if>, <elseif>, and <else> tags.

• com.audium.core.vfc.util.VLink – This class deals with creating an utterance-activated link within the
VoiceXML page. It is a direct mapping of the <link> tag.

• com.audium.core.vfc.util.VProperty – This class deals with including VoiceXML properties in the
VoiceXML page. It is a direct mapping of the <property> tag.

• com.audium.core.vfc.VException – This exception class is thrown when a VFC class encounters an
error.

• Utility Classes – These classes are used by the VFCs to aid in the organization of data they require. The
following lists those classes:

• com.audium.core.vfc.util.VoiceInput – This class is used to encapsulate how input is to be expected
from the caller. It can encapsulate voice only input, DTMF only input, or both. It is also used to
specify what data to look for, which can be a single or multiple keywords or keypresses. This class
is typically used with menus and forms.

• com.audium.core.vfc.util.IfCondition – This class is used to specify an expression to put inside
an if statement. It handles standard numerical and string operations and can support expressions
contains ands (&&) and ors (||).

• com.audium.core.vfc.form.UsedInFilled – This class is a Java interface that is used to identify
all the VFCs that can be used inside a <filled> tag. It is used simply as a marker for those VFCs.

Voice Foundation Classes
6

Voice Foundation Classes
Voice Foundation Classes

	Voice Foundation Classes
	VFC Design
	VFC Classes

