
Application Management API

VXMLServer comeswith an applicationmanagement facility to provide visibility into the runtime environment
and provides control over the platform together with its components and services. This comprehensive feature
set allows an administrator to operate, administrate and manage (OA&M) the health of the platform as well
as obtain statistics and performance measurements.

This chapter describes in detail how to the management server system has been designed and how to create
custom management support based on the API provided with the VXML Server platform.

• Design, on page 1
• Management Bean Samples, on page 4
• Application Management Interfaces, on page 4

Design
All the OA&M features on VXML Server are built with JMX management standards. Applications and
components on VXML Server are instrumented using Managed Beans (MBeans). MBeans expose their
management interfaces, composed of attributes, operations and event notifications, through a JMX agent for
remote management and monitoring.

Managed resources are categorized at levels of application, global configuration and command, and platform.
Each level may facilitate three typical JMXmanagements: lookup and modify configuration, collect and avail
application statistics, notify of state changes and erroneous conditions.

At the application level, administrators can operate the following:

• Get/set default audio path

• Get/set suspended audio

• Get/set session timeout

• Get gateway adapter

• Application release

• Application resume

• Runtime status

• Application update

Application Management API
1



• Suspend/resume application

• Retrieve application administration history

• Get application data

• Set and remove application data

• Remove all application data

• Get application data names

The global level manages VXML Server as a web application. It allows:

• Read logger event queue size

• Read/write maximum logger thread pool size

• Read/write minimum logger thread pool size

• Read/write logger thread keep alive time

• Read/write session invalidation delay

• Get global status

• Deploy all new applications. This command assumes all the deployable applications have been updated
to the AudiumHome. All this command does is to deploy these applications.

• List all new applications. This command lists the names of all new applications (that is, those which have
yet to be deployed).

• Deploy new application. This command deploys the specified application. To retrieve a list of new
application names, use List all new applications (above) first.

• Flush all old applications

• Update all applications

• Update common classes

• Suspend/resume VXML Server

• Retrieve global administration history

• Get/set global data

• Get all global data names

• Remove all global data

At the same level, the management system also provides information regarding metrics collection:

• The total number of calls since VXML Server starts up.

• Maximum and average number of concurrent calls, the timestamp when it reaches the maximum calls.

• Maximum and average response time.

• Number of calls that time out.

• Number of calls that encounter errors.

Application Management API
2

Application Management API
Design



• Transfer/zero-out rate. The number of calls transferring to an operator or live agent.

• Abandon rate. The number of calls that end as hang up.

• Call completion rate. The number of calls that are completed as expected through the callflow.

• Maximum logger event queue size.

• Maximum loggers thread count.

The platform level consists of information for VXML Server as a product:

• Product Name

• Product Version

• Installation Key

• Licensed Ports

• License Expiration Date

• Licensed GW Adapters

VXML Server MBeans implement a Java API set that is defined for management interfaces. Developers can
create custom management beans that use the API. The following figure depicts the relationship among the
management API packages: com.audium.server.management and the built-in beans (which use the package
com.audium.server.management.mbean) and custom beans.
Figure 1: Management Relationship Example: MBeans

When VXML Server starts, all the beans that are deployed to management directory would be loaded and
registered to the JMX server. Depending on the base class it extends, a bean is grouped in VoiceApplication,
Global or Info under the domainCisco VXML Server ApplicationManagement API. For an application-scoped
bean that extends AbstractApplicationCommand, AbstractApplicationConfig or AbstractApplicationData,
a bean instance will be created for each application. For instance, if bean A extends
AbstractApplicationCommand and there are currently two applications deployed: appA and appB, then two
instances of bean A class will be created, one for appA, the other for appB.

For a logger that has been deployed with an application, a management bean will be dynamically generated
and registered for it. Currently there is no extra requirement for a logger to become manageable. However,
the following operations are excluded from logger beans due to their irrelevance with respect to manageability:
log(), init(), equals(), destroy(), initialize(), hasCode(), getClass(), wait(), notify(), notifyAll(),
and toString().

Application Management API
3

Application Management API
Design



Custom beans that directly implement AudiumManagementBeanInterface but do not extend any of the following
abstract classes will be loaded but not registered when VXMLServer starts up: AbstractApplicationCommand,
AbstractApplicationConfig, AbstractApplicationData, AbstractGlobalCommand, AbstractGlobalConfig,
AbstractGlobalData, and AbstractCallServicesInfo.

This type of bean should register itself to the management server and will not have access to the information
provided by VXML Server. VXML Server only loads these beans.

The standard VXML Server logging mechanism does not pick up errors or exceptions that happen in a custom
bean and the developer is responsible for handling the errors themselves or let them propagate to the JMX
console.

Note

Management Bean Samples
This section describes how typical bean can be created based on the VXML Server management system API.

1. Create the bean interface where it defines the attributes and operations it will manage. For example:
public interface ApplicationConfigMBean {

public String getDefaultAudioPath();
public void setDefaultAudioPath(String path);
public String getSuspendedAudioFile();
public void setSuspendedAudioFile(String file);

}

2. Create the bean class that implements the interface and extend the predefined abstract class.
public class ApplicationConfig extends AbstractApplicationConfig implements
ApplicationConfigMBean{

public String getDefaultAudioPath() {
return super.getDefaultAudioPath();

}
public void setDefaultAudioPath(String path) {

super.setDefaultAudioPath(path);
}

public String getSuspendedAudioFile() {
return super.getSuspendedAudioFile();

}
public void setSuspendedAudioFile(String file) {

super.setSuspendedAudioFile(file);
}
}

3. By extending the predefined abstract class, a custom bean gets access to the information provided by
VXML Server. For example, a bean class that extends AbstractGlobalData can call getAllDataNames(),
removeAllData(), getData(), and so on. These methods are made accessible when the bean gets loaded.

Application Management Interfaces
When writing custom management beans, the public APIs are used to gain access to the runtime information
that will be provided by VXML Server. We now discuss each of these interfaces and abstract classes in details.
The following figure displays the static class structure which corresponds to the three levels of the

Application Management API
4

Application Management API
Management Bean Samples



aforementioned information structure. The built-in management beans are also included in the diagram to
show the relationship between the APIs and the beans.
Figure 2: Application Management Static Class Structure

The following list describes the elements in the figure:

• AudiumManagementBeanInterface – This is a marker interface for any JMX MBeans to load at the
server startup. All the management beans must implement this interface or its subinterfaces.

• AbstractApplicationCommand – This abstract class encapsulates all the application commands. The
JMX beans that extend this class will have access to all these operations.

• AbstractApplicationConfig – This class can be used to set and get application configuration attributes.

• AbstractApplicationData – MBeans that extend this class will have access to application data and can
manipulate this data by adding or removing them. Application data is typically used to store
application-specific information that is available to all calls.

• AbstractGlobalCommand – This abstract class encapsulates all the global commands. The JMX beans
that extend this class will have access to all these operations.

• AbstractGlobalConfig – This class can be used to set and get global configuration attributes.

Application Management API
5

Application Management API
Application Management Interfaces



• AbstractGlobalData – Subclasses of this class will have access to global data and can manipulate these
data by adding or removing them. Global data is typically used to store static information that needs to
be available to all components, no matter which application they reside in.

• AbstractMetricsCollection – This class can be used to access all the metrics information at the global
level.

• AbstractMetricsObserver – This is a marker class. When VXML Server starts up, subclasses of this
class will be added as listeners to application activity events, logging management events and global
events. Although a subclass will be notified when any of these events occurs, it only needs to react to
the interested events. Events are supposed to be handled by overwriting the update() method.

Application Management API
6

Application Management API
Application Management Interfaces


	Application Management API
	Design
	Management Bean Samples
	Application Management Interfaces


