Setting Up Cisco Unified IP Phones using SIP

Session Initiation Protocol (SIP) registrar functionality in Cisco IOS software is an essential part of Cisco Unified SIP Survivable Remote Site Telephony (SRST). According to RFC 3261, a SIP registrar is a server that accepts Register requests and is typically collocated with a proxy or redirect server. A SIP registrar may also offer location services.

Contents

• Prerequisites for Configuring the SIP Registrar, page 165
• Restrictions for Configuring the SIP Registrar, page 165
• Information About Configuring the SIP Registrar, page 165
• How to Configure the SIP Registrar, page 166
• Where to Go Next, page 180

Prerequisites for Configuring the SIP Registrar

Complete the prerequisites documented in the “Prerequisites for Configuring Cisco Unified SIP SRST” section on page 9 section in “Cisco Unified SRST Feature Overview” section on page 1.

Restrictions for Configuring the SIP Registrar

See the restrictions documented in the “Restrictions for Configuring Cisco Unified SIP SRST” section on page 10 section in “Cisco Unified SRST Feature Overview” section on page 1.

Information About Configuring the SIP Registrar

Cisco Unified SIP SRST provides backup to an external SIP call control (IP-PBX) by providing basic registrar and call handling services. These services are used by a SIP IP phone in the event of a WAN connection outage when the SIP phone is unable to communicate with its primary SIP proxy. The Cisco Unified SIP SRST device also provides PSTN gateway access for placing and receiving PSTN calls.

Cisco Unified SIP SRST works for the following types of calls:
• Local SIP IP phone to local SIP phone, if the main proxy is unavailable.
• Additional services like class of restriction (COR) for local SIP IP phones to the outgoing PSTN. For example, to block outgoing 1-900 numbers.

How to Configure the SIP Registrar

This section contains the following procedures:
• Configuring the SIP Registrar, page 166 (required)
• Configuring Backup Registrar Service to SIP Phones, page 168 (required)
• Configuring Backup Registrar Service to SIP Phones (Using Optional Commands), page 172 (optional)
• Verifying SIP Registrar Configuration, page 175 (optional)
• Verifying Proxy Dial-Peer Configuration, page 177 (optional)

Configuring the SIP Registrar

The local SIP gateway that becomes the SIP registrar acts as a backup SIP proxy and accepts SIP Register messages from SIP phones. It becomes a location database of local SIP IP phones.

A registrar accepts SIP Register requests and dynamically builds VoIP dial peers, allowing the Cisco IOS voice gateway software to route calls to SIP phones.

If a SIP Register request has a Contact header that includes a DNS address, the Contact header is resolved before the contact is added to the SIP registrar database. This is done because during a WAN failure (and the resulting Cisco Unified SIP SRST functionality), DNS servers may not be available.

SIP registrar functionality is enabled with the following configuration. By default, Cisco Unified SIP SRST is not enabled and cannot accept SIP Register messages. The following configuration must be set up to accept incoming SIP Register messages.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. allow-connections sip to sip
5. sip
6. registrar server [expires [max sec] [min sec]]
How to Configure the SIP Registrar

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
</tr>
<tr>
<td>Step 4 allow-connections sip to sip</td>
<td>Allows connections from SIP to SIP endpoints.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-srv)# allow-connections sip to sip</td>
</tr>
<tr>
<td>Step 5 sip</td>
<td>Enters SIP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-srv)# sip</td>
</tr>
</tbody>
</table>
How to Configure the SIP Registrar

What to Do Next

For incoming SIP Register messages to be successfully accepted, users must also set up a voice register pool. See the “Configuring Backup Registrar Service to SIP Phones” section on page 168.

Configuring Backup Registrar Service to SIP Phones

Backup registrar service to SIP IP phones can be provided by configuring a voice register pool on SIP gateways. The voice register pool configuration provides registration permission control and can also be used to configure some dial-peer attributes that are applied to the dynamically created VoIP dial peers when SIP phone registrations match the pool. The following call types are supported:

- SIP IP phone to or from:
 - Local PSTN
 - Local analog FXS phones
 - Local SIP IP phone

The commands in the configuration below provide registration permission control and set up a basic voice register pool. The pool gives users control over which registrations are accepted by a Cisco Unified SIP SRST device and which can be rejected. Registrations that match this pool create VoIP SIP dial peers with the dial-peer attributes set to these configurations. Although only the `id` command is mandatory, this configuration example shows basic functionality.

For command-level information, see the appropriate command page in Cisco Unified SRST and Cisco Unified SIP SRST Command Reference (All Versions).
Prerequisites

- The SIP registrar must be configured before a voice register pool is set up. See the “Configuring the SIP Registrar” section on page 166 for complete instructions.

Restrictions

- The `id` command identifies the individual SIP IP phone or sets of SIP IP phones that are to be configured. Thus, the `id` command configured in Step 5 is required and must be configured before any other voice register pool commands. When the `mac address` keyword and argument are used, the IP phone must be in the same subnet as that of the router’s LAN interface, such that the phone’s MAC address is visible in the router’s Address Resolution Protocol (ARP) cache. Once a MAC address is configured for a specific voice register pool, remove the existing MAC address before changing to a new MAC address.

- Proxy dial peers are autogenerated dial peers that route all calls from the PSTN to Cisco Unified SIP SRST. When a SIP phone registers to Cisco Unified SIP SRST and the `proxy` command is enabled, two dial peers are automatically created. The first dial peer routes to the proxy, and the second (or fallback) dial peer routes to the SIP phone. The same functionality can also be achieved with the appropriate creation of static dial peers (manually creating dial peers that point to the proxy). Proxy dial peers can be monitored to one proxy IP address, only. That is, only one proxy from a voice registration pool can be monitored at a time. If more than one proxy address needs to be monitored, you must manually create and configure additional dial peers.

Note

To monitor SIP proxies, the `call fallback active` command must be configured, as described in Step 3.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `call fallback active`
4. `voice register pool tag`
5. `id { network address mask | ip address mask | mac address }`
6. `preference preference-order`
7. `proxy ip-address [preference value] [monitor probe { icmp-ping | rtr } [alternate-ip-address]]`
8. `voice-class codec tag`
9. `application application-name`
10. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:**
 Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
 Router# configure terminal | |
| **Step 3** call fallback active | (Optional) Enables a call request to fall back to alternate dial peers in case of network congestion.
 • This command is used if you want to monitor the proxy dial peer and fallback to the next preferred dial peer. For full information on the **call fallback active** command, see PSTN Fallback Feature. |
| **Example:**
 Router(config)# call fallback active | |
| **Step 4** voice register pool tag | Enters voice register pool configuration mode for SIP phones.
 • Use this command to control which registrations are accepted or rejected by a Cisco Unified SIP SRST device. |
| **Example:**
 Router(config)# voice register pool 12 | |
| **Step 5** id {network address mask mask | ip address mask mask | mac address} | Explicitly identifies a locally available individual or set of SIP IP phones. The keywords and arguments are defined as follows:
 • **network address mask mask**: The **network address mask mask** keyword/argument combination is used to accept SIP Register messages for the indicated phone numbers from any IP phone within the indicated IP subnet.
 • **ip address mask mask**: The **ip address mask mask** keyword/argument combination is used to identify an individual phone.
 • **mac address**: MAC address of a particular Cisco Unified IP Phone. |
| **Example:**
 Router(config-register-pool)# id network 172.16.0.0 mask 255.255.0.0 | |
| **Step 6** preference preference-order | Sets the preference order for the VoIP dial peers to be created. Range is from 0 to 10. Default is 0, which is the highest preference.
 • The preference must be greater (lower priority) than the preference configured with the **preference** keyword in the **proxy** command. |
| **Example:**
 Router(config-register-pool)# preference 2 | |
Chapter 7 Setting Up Cisco Unified IP Phones using SIP

How to Configure the SIP Registrar

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Autogenerates additional VoIP dial peers to reach the main SIP proxy whenever a Cisco Unified SIP IP Phone registers with a Cisco Unified SIP SRST gateway. The keywords and arguments are defined as follows:</td>
</tr>
<tr>
<td>`proxy ip-address [preference value] [monitor probe {icmp-ping</td>
<td>rtr} [alternate-ip-address]]`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# proxy 10.2.161.187 preference 1</td>
</tr>
<tr>
<td>Step 8</td>
<td>Sets the voice class codec parameters. The tag argument is a codec group number between 1 and 10000.</td>
</tr>
<tr>
<td><code>voice-class codec tag</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# voice-class codec 15</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Selects the session-level application on the VoIP dial peer. Use the application-name argument to define a specific interactive voice response (IVR) application.</td>
</tr>
<tr>
<td><code>application application-name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# application SIP.App</td>
</tr>
<tr>
<td>Step 10</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# end</td>
</tr>
</tbody>
</table>

What to Do Next

There are several more voice register pool commands that add functionality, but that are not required. See the “Configuring Backup Registrar Service to SIP Phones (Using Optional Commands)” section on page 172 for these commands.
Configuring Backup Registrar Service to SIP Phones (Using Optional Commands)

The prior configurations set up a basic voice register pool. The configuration in this procedure adds optional attributes to increase functionality.

Prerequisites

- Prerequisites as described in the “Configuring Backup Registrar Service to SIP Phones” section on page 168.
- Configuration of the required commands as described in the “Configuring Backup Registrar Service to SIP Phones” section on page 168.
- Before configuring the 'alias' command, translation rules must be set using the translate-outgoing (voice register pool) command.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool tag
4. translation-profile outgoing profile-tag
5. alias tag pattern to target [preference value]
6. cor {incoming | outgoing} cor-list-name {cor-list-number starting-number [- ending-number]} | default
7. incoming called-number [number]
8. number tag number-pattern {preference value} [huntstop]
9. dtmf-relay [cisco-rtp] [rtp-nte] [sip-notify]
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
Chapter 7 Setting Up Cisco Unified IP Phones using SIP

How to Configure the SIP Registrar

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3
voice register pool tag</td>
<td>Enters voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 12</td>
<td>- Use this command to control which registrations are accepted or rejected by a Cisco Unified SIP SRST device.</td>
</tr>
<tr>
<td>Step 4
translation-profile outgoing profile-tag</td>
<td>Use this command to apply the translation profile to a specific directory number or to all directory numbers on a SIP phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)#
voice translation-rule 1
 rule 1 /1000/ /1006/ !
!
voice translation-profile 1
 translate called 1 !
voice register pool xxx
translation-profile outgoing 1</td>
<td>- Profile-tag: Translation profile name to handle translation to outgoing calls.</td>
</tr>
<tr>
<td>Step 5
alias tag pattern to target [preference value]</td>
<td>Allows Cisco Unified SIP IP Phones to handle inbound PSTN calls to telephone numbers that are unavailable when the main proxy is not available. The keywords and arguments are defined as follows:</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# alias 1 94... to 91011 preference 8</td>
<td>- tag: Number from 1 to 5 and the distinguishing factor when there are multiple alias commands.</td>
</tr>
<tr>
<td></td>
<td>- pattern: The prefix number; matches the incoming telephone number and may include wildcards.</td>
</tr>
<tr>
<td></td>
<td>- to: Connects the tag number pattern to the alternate number.</td>
</tr>
<tr>
<td></td>
<td>- target: The target number; an alternate telephone number to route incoming calls to match the number pattern.</td>
</tr>
<tr>
<td></td>
<td>- preference value: (Optional) Assigns a dial-peer preference value to the alias. The value argument is the value of the associated dial peer, and the range is from 1 to 10. There is no default.</td>
</tr>
</tbody>
</table>
Command or Action

Step 6

```
cor {incoming | outgoing} cor-list-name
{cor-list-number starting-number [-
ending-number] | default}
```

Example:

```
Router(config-register-pool)# cor incoming
call91 1 91011
```

Configures a class of restriction (COR) on the VoIP dial peers associated with directory numbers. COR specifies which incoming dial peers can use which outgoing dial peers to make a call. Each dial peer can be provisioned with an incoming and outgoing COR list. The keywords and arguments are defined as follows:

- **incoming**: COR list to be used by incoming dial peers.
- **outgoing**: COR list to be used by outgoing dial peers.
- **cor-list-name**: COR list name.
- **cor-list-number**: COR list identifier. The maximum number of COR lists that can be created is four, comprised of incoming or outgoing dial peers.
- **starting-number**: Start of a directory number range, if an ending number is included. Can also be a standalone number.
- **(Optional) Indicator that a full range is configured.**
- **ending-number**: (Optional) End of a directory number range.
- **default**: Instructs the router to use an existing default COR list.

Step 7

```
incoming called-number [number]
```

Example:

```
Router(config-register-pool)# incoming
called-number 308
```

Applies incoming called parameters to dynamically created dial peers. The `number` argument is optional and indicates a sequence of digits that represent a phone number prefix.

Step 8

```
number tag number-pattern {preference value}
[huntstop]
```

Example:

```
Router(config-register-pool)# number 1 50..
preference 2
```

Indicates the E.164 phone numbers that the registrar permits to handle the Register message from the Cisco Unified SIP IP Phone. The keywords and arguments are defined as follows:

- **tag**: Number from 1 to 10 and the distinguishing factor when there are multiple `number` commands.
- **number-pattern**: Phone numbers (including wildcards and patterns) that are permitted by the registrar to handle the Register message from the SIP IP phone.
- **preference value**: (Optional) Defines the number list preference order.
- **huntstop**: (Optional) Stops hunting if the dial peer is busy.
How to Configure the SIP Registrar

Examples

The following partial output from the `show running-config` command shows that voice register pool 12 is configured to accept all registrations from SIP IP phones with extension number 50xx from the 172.16.0.0/16 network. Autogenerated dial peers for registrations that match pool 12 have attributes configured in this pool.

```
voice register pool 12
  id network 172.16.0.0 mask 255.255.0.0
  number 1 50.. preference 2
  application SIP.app
  preference 2
  incoming called-number
  cor incoming allowall default
  translate-outgoing called 1
  voice-class codec 1
```

Verifying SIP Registrar Configuration

To help you troubleshoot a SIP registrar and voice register pool, perform the following steps.

SUMMARY STEPS

1. debug voice register errors
2. debug voice register events
3. show sip-ua status registrar
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 debug voice register errors</td>
<td>Use this command to debug errors that happen during registration. If there are no voice register pools configured for a particular registration request, the message “Contact doesn’t match any pools” is displayed.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| Router# debug voice register errors
*Apr 22 11:52:54.523 PDT: VOICE_REG_POOL: Contact doesn’t match any pools
*Apr 22 11:52:54.539 PDT: VOICE_REG_POOL: Register request for (33015) from (10.2.152.39)
*Apr 22 11:52:54.539 PDT: VOICE_REG_POOL: Contact doesn’t match any pools.
*Apr 22 11:52:54.559 PDT: VOICE_REG_POOL: Register request for (33017) from (10.2.152.39)
*Apr 22 11:53:04.559 PDT: VOICE_REG_POOL: Maximum registration threshold for pool(3) hit | |
| **Step 2** debug voice register events | Using the **debug voice register events** command should suffice to display registration activity. Registration activity includes matching of pools, registration creation, and automatic creation of dial peers. For more details and error conditions, you can use the **debug voice register errors** command. The phone number 91011 registered successfully, and type 1 is reported, which means there is a pre-existing VoIP dial peer. |
| **Example:** | |
| Router# debug voice register events
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: Contact matches pool 1
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: key(91011) contact(192.168.0.2) add to contact table
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: key(91011) exists in contact table
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: contact(192.168.0.2) exists in contact table, ref updated
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: Created dial-peer entry of type 1
Apr 22 10:50:21.731 PDT: VOICE_REG_POOL: Registration successful for 91011, registration id is 257 | |
| **Step 3** show sip-ua status registrar | Use this command to display all the SIP endpoints currently registered with the contact address. |
| **Example:** | |
| Router# show sip-ua status registrar
<table>
<thead>
<tr>
<th>Line</th>
<th>destination</th>
<th>expires(sec)</th>
<th>contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>91021</td>
<td>192.168.0.3</td>
<td>227</td>
<td>192.168.0.3</td>
</tr>
<tr>
<td>91011</td>
<td>192.168.0.2</td>
<td>176</td>
<td>192.168.0.2</td>
</tr>
<tr>
<td>95021</td>
<td>10.2.161.50</td>
<td>419</td>
<td>10.2.161.50</td>
</tr>
<tr>
<td>95012</td>
<td>10.2.161.50</td>
<td>419</td>
<td>10.2.161.50</td>
</tr>
<tr>
<td>95011</td>
<td>10.2.161.50</td>
<td>420</td>
<td>10.2.161.50</td>
</tr>
<tr>
<td>95000</td>
<td>10.2.161.50</td>
<td>420</td>
<td>10.2.161.50</td>
</tr>
<tr>
<td>94011</td>
<td>10.2.161.40</td>
<td>128</td>
<td>10.2.161.40</td>
</tr>
<tr>
<td>94500</td>
<td>10.2.161.40</td>
<td>129</td>
<td>10.2.161.40</td>
</tr>
</tbody>
</table>
Verifying Proxy Dial-Peer Configuration

To use the `icmp-ping` keyword with the `proxy` command to assist in troubleshooting proxy dial peers, perform the following steps.

SUMMARY STEPS

1. `configure terminal`
2. `voice register pool tag`
3. `proxy ip-address [preference value] [monitor probe {icmp-ping | rtr}] [alternate-ip-address]`
4. `end`
5. `show voice register dial-peers`
6. `show dial-peer voice`
How to Configure the SIP Registrar

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Use this command to enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 voice register pool tag</td>
<td>Use this command to enter voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register pool 1</td>
<td></td>
</tr>
<tr>
<td>Step 3 proxy ip-address [preference value] [monitor probe [icmp-ping</td>
<td>Set the proxy command to monitor with icmp-ping.</td>
</tr>
<tr>
<td>rtr] [alternate-ip-address]]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)# proxy 10.2.161.187 preference 1 monitor probe icmp-ping</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show voice register dial-peers</td>
<td>Use this command to verify dial-peer configurations, and notice that icmp-ping monitoring is set.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show voice register dial-peers</td>
<td></td>
</tr>
<tr>
<td>dial-peer voice 40035 voip</td>
<td></td>
</tr>
<tr>
<td>preference 5</td>
<td></td>
</tr>
<tr>
<td>destination-pattern 91011</td>
<td></td>
</tr>
<tr>
<td>session target ipv4:192.168.0.2</td>
<td></td>
</tr>
<tr>
<td>session protocol sipv2</td>
<td></td>
</tr>
<tr>
<td>voice-class codec 1</td>
<td></td>
</tr>
<tr>
<td>dial-peer voice 40036 voip</td>
<td></td>
</tr>
<tr>
<td>preference 1</td>
<td></td>
</tr>
<tr>
<td>destination-pattern 91011</td>
<td></td>
</tr>
<tr>
<td>session target ipv4:10.2.161.187</td>
<td></td>
</tr>
<tr>
<td>session protocol sipv2</td>
<td></td>
</tr>
<tr>
<td>voice-class codec 1</td>
<td></td>
</tr>
<tr>
<td>monitor probe icmp-ping 10.2.161.187</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7 Setting Up Cisco Unified IP Phones using SIP

How to Configure the SIP Registrar

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 <code>show dial-peer voice</code></td>
<td>Use the <code>show dial-peer voice</code> command on dial peer 40036, and notice the monitor probe status.</td>
</tr>
</tbody>
</table>

Example:

```bash
Router# show dial-peer voice
VoiceOverIpPeer40036
peer type = voice, information type = voice,
description = '',
tag = 40036, destination-pattern = '91011',
answer-address = '', preference=1,
CLID Restriction = None
CLID Network Number = '
CLID Second Number sent
source carrier-id = '', target carrier-id = '',
source trunk-group-label = '', target
trunk-group-label = '',
numbering Type = 'unknown'
group = 40036, Admin state is up, Operation state is
up,
incoming called-number = '', connections/maximum = 0/unlimited,
! Default output for incoming called-number command
DTMF Relay = disabled,
modem transport = system,
huntstop = disabled,
in bound application associated: 'DEFAULT'
out bound application associated: '
dnis-map =
permission :both
incoming COR list:maximum capability
! Default output for cor command
outgoing COR list:minimum requirement
! Default output for cor command
Translation profile (Incoming):
Translation profile (Outgoing):
incoming call blocking:
translation-profile = ''
disconnect-cause = 'no-service'
advertise 0x40 capacity_update_timer 25 addrFamily 4
oldAddrFamily 4
type = voip, session-target = 'ipv4:10.2.161.187',
technology prefix:
settle-call = disabled
ip media DSCP = ef, ip signaling DSCP = af31,
ip video rsvp-none DSCP = af41,ip video rsvp-pass
DSCP = af41
ip video rsvp-fail DSCP = af41,
UDP checksum = disabled,
session-protocol = sipv2, session-transport = system,
req-qos = best-effort, acc-qos = best-effort,
req-qos video = best-effort, acc-qos video = best-effort,
req-qos audio def bandwidth = 64, req-qos audio max
bandwidth = 0,
req-qos video def bandwidth = 384, req-qos video max
bandwidth = 0,
```

Note Also highlighted is the output of the <code>cor</code> and incoming called-number commands.
Where to Go Next

The next step is configuring incoming and outgoing calls for Cisco Unified SRST. For more information, see the “Configuring Call Handling” section on page 183.

For additional information, see the “Additional References” section on page 29 in the “Cisco Unified SRST Feature Overview” section on page 1 chapter.