
API Specification

• About This Specification, on page 1
• Barcode API, on page 2
• Button API, on page 9
• Miscellaneous, on page 13

About This Specification
This guide specifies CiscoWireless Phone Application Programming Interfaces (APIs) which expose wireless
phone platform capabilities not available through standard Android Open Source Project (AOSP) application
APIs, such as access to scanned barcode data and so on.

This guide is only for reference on the capabilities of PhoneWebAccess APIs. See https://developer.cisco.com
for more information on Software Development Kit (SDK) such as scripts and sample applications for your
reference before developing the web application.

Note

The specification is for native Android application (app) developers and assumes Android application
programming competency.

As more API platform capabilities become available or as existing APIs are revised, the API version and the
guide will be updated.

All Cisco Wireless Phone models are covered in these guides:

• Cisco Wireless Phone 840/840S

• Cisco Wireless Phone 860/860S

Both Cisco Wireless Phone 860 Series and 840 Series running Firmware Release 1.1 are compatible with
SDK 2.4.

Note

API Specification
1

https://developer.cisco.com

The Cisco Library
To use Cisco-specific APIs in your Android project, you must include the Cisco libraries in your project:
com.spectralink.sdk.jar.

As the Cisco API changes over time, such as adding new capabilities, we will release new versions of its
library. A developer should ensure the com.spectralink.sdk.jar file that is included in an Android project
corresponds to the Cisco API version the developer intends to use (for example 2.4).

Cisco Libraries in Android Studio
The following steps describe one method for using the API in a project for Android Studio. This process is
not unique to our API, but depending on your project’s complexity, few more steps are required. Refer to the
internet for additional information. There are likely several ways to do this so these are guidelines and not
hard-and-fast rules.

Trying to use Cisco APIs without inclusion of the Cisco libraries cause compiler, linker, or run-time errors.Note

1. Add the com.spectralink.sdk.jar file to the folder app/libs within your app’s project.

2. Open the application build.gradle (Module: app) and under dependencies, add: implementation
files('libs/com.spectralink.sdk.jar').

3. Sync project and use.

Barcode API
The barcode API allows Android applications (activities and services) to receive scanned barcode data on
Cisco Wireless Phone models with an integrated 1D/2D barcode reader (9x53). Applications can also enable
and disable the barcode reader to prevent an accidental barcode key press from powering-on the illuminating
LED in the barcode module.

• Allow multiple apps or services to receive barcode data.

• Introduce API to disable & enable the barcode scanner.

• Introduce API to determine if barcode scanner is present on device.

Usually, EMM configures barcode scanner and symbologies. Device can also be to configure them.

Supported Symbologies
The following symbologies are supported:

Interleaved 2 of 5CodabarAztec

ISBT-128Code 11CCA EAN-128

ISBT-128 ConCode 128CCA EAN-13

API Specification
2

API Specification
The Cisco Library

Macro Micro PDFCode 32CCA EAN-8

Macro PDFCode 39 Full ASCIICCA GS1 DataBar

Macro QRCode 39 TriopticExpanded

Matrix 2 of 5Code 93CCA GS1 DataBar Limited

Micro PDFDataMatrixCCA GS1 DataBar-14

Micro QRDiscrete (Standard) 2 of 5CCA UPC-A

MSIEAN-128CCA UPC-E

PDF-417EAN-13CCB EAN-128

QR CodeEAN-13 + 2 SupplementalCCB EAN-13

UPC-AEAN-13 + 5 supplementalCCB EAN-8

UPC-A + 2 SupplementalEAN-8CCB GS1 DataBar

UPC-A + 5 supplementalEAN-8 + 2 SupplementalExpanded

UPC-E0EAN-8 + 5 supplementalCCB GS1 DataBar Limited

UPC-E0 + 2 SupplementalGS1 DataBar ExpandedCCB GS1 DataBar-14

UPC-E0 + 5 supplementalGS1 DataBar LimitedCCB UPC-A

GS1 DataBar-14CCB UPC-E

Han XinCCC EAN-128

The following symbologies are supported:

MaxiCode2D:1D:

MaxiCode Mode 0Australian PostCIP 128

Irregular PDFBritish Post OfficeUPC-E1

Planet PostalCanada PostUPC-D

PostnetCodablock AISMN

QR Code Model 1Codablock FISSN

Sweden PostCode 16k

TLC 39Dutch Post

Infomail

Japan Post

Barcode Data Flow
The flow diagram shows how scanned data will be processed by the Cisco barcode service.

API Specification
3

API Specification
Barcode Data Flow

Barcode API
com.spectralink.barcode.lib

API Specification
4

API Specification
Barcode API

Class BarcodeManager

java.lang.Object

com.spectralink.barcode.lib.BarcodeManager

public class BarcodeManager

extends java.lang.Object

Table 1: Field summary

DescriptionField

static java.lang.String

This string can be used as the intent filter to receive
scanned barcode data.

static java.lang.String

SCAN_DATA_EXTRA

This is the key used to retrieve the barcode data from
broadcasted SCAN_INTENTs.

static java.lang.String

SCAN_DATA_SYMBOLOGY

This is the key used to retrieve the barcode symbology
from broadcasted SCAN_INTENTs.

static java.lang.String

SCAN_STATE_EXTRA

This is the key used to retrieve the barcode state from
broadcasted STATE_INTENTs.

static java.lang.String

STATE_BC_DISABLED

This string is passed as extra data with the barcode
STATE_INTENTwhen barcode scanning is disabled.

static java.lang.String

STATE_BC_ENABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode scanning is enabled.

static java.lang.String

STATE_INTENT

This string can be used as the intent filter to receive
scanner state changes.

static java.lang.String

STATE_KEYBOARD_DISABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode keyboard input is
disabled.

static java.lang.String

STATE_KEYBOARD_ENABLED

This string is passed as extra data with the barcode
STATE_INTENT when barcode keyboard input is
enabled.

static java.lang.String

API Specification
5

API Specification
Barcode API

Table 2: Method summary

DescriptionMethod

disableBarcodeKeyboard(android.content.Context

ctx)

Disables automatic keyboard input from the barcode
manager.

void

disableBarcodeReader(android.content.Context

ctx)

Disables the use of the barcode scanner.

void

doDecode()

Triggers a barcode scan. Note: this call only works
on Cisco Wireless Phone R1.4 or greater.

void

enableBarcodeKeyboard(android.content.Context

ctx)

Enables automatic keyboard input from the barcode
manager.

void

enableBarcodeReader(android.content.Context

ctx)

Enables the use of the barcode scanner.

void

getInstance()

Gets an instance of the Barcode manager.

Static Barcode Manager

getIsBarcodeEnabled()

Returns true if the barcode reader is enabled and false
otherwise.

boolean

getIsBarcodeKeyboardOn()

Returns true if the barcode keyboard input feature is
enabled and false otherwise.

boolean

hasBarcodeReader()

Returns true if the device has a barcode reader and
false otherwise.

boolean

Barcode API Guidelines
See the Barcode API example app included in this SDK for more details. Android projects using the barcode
capability must include the com.spectralink.barcode.lib library (contained within
com.spectralink.sdk.jar). The library can also be done adding the following to the manifest.xml file.
<uses-library android:name="com.spectralink.barcode.lib" />

API Specification
6

API Specification
Barcode API Guidelines

On CiscoWireless Phones with barcode readers (for example 840s), a Cisco barcode system service is started
during boot. The service is responsible for generating intents with barcode reader state and barcode data. If
the above uses-library declaration has android:required="false" set, the developer needs to check for this to
be a Cisco device before using any barcode API.

Determining if a barcode scanner is present

Applications can determine if a barcode scanner is present, either by checking device model numbers (i.e.
using Android.os.Build MODEL field) which may be challenging to keep in sync with new Cisco or OEM
product offerings, or by using the BarcodeManager hasBarcodeReader method, where the latter is the preferred
approach.

The BarcodeManager instance shall exist even on devices without a barcode scanner.Note

barcodeManager = BarcodeManager.getInstance();
if(barcodeManager.hasBarcodeReader()){
// do something useful with reader
} else{
// no barcode reader on this phone.
}

Enabling / disabling the barcode scanner

To prevent a user accidentally illuminating the scanner’s LED when pointed at someone, an app can control
the scanner function using the disableBarcodeReader and enableBarcodeReader methods. The current scanner
state can be identified via the BarcodeManager.STATE_INTENT and checking the extra data for
STATE_BC_DISABLED or STATE_BC_ENABLED.
disableButton.setOnClickListener(new OnClickListener(){
@Override
public void onClick(View v) {
barcodeManager.disableBarcodeReader(v.getContext());
}
});
enableButton.setOnClickListener(new OnClickListener(){
@Override
public void onClick(View v) {
barcodeManager.enableBarcodeReader(v.getContext());
}
});

Receiving scanned barcode data

To receive barcode data, an application can register a broadcast receiver for the
BarcodeManager.DATA_INTENT. The actual data is available in the extended data of the intent by using
the String key BarcodeManager.SCAN_DATA_EXTRA. You can also get symbology by using the string
key BarcodeManager.SCAN_DATA_SYMBOLOGY.
public class BarcodeReceiver extends BroadcastReceiver {
String mReceiverName = "";
BarcodeReceiver(String receiverName){
mReceiverName = receiverName;
}
@Override
public void onReceive(Context context, Intent intent) {
String rcvData = intent.getStringExtra(BarcodeManager.SCAN_DATA_EXTRA);
String rcvSymbology =

API Specification
7

API Specification
Barcode API Guidelines

intent.getStringExtra(BarcodeManager.SCAN_DATA_SYMBOLOGY);
Logging.myLog(mReceiverName + " Received: " + rcvData, context);
Logging.myLog(mReceiverName + " Received Symbology: " + rcvSymbology,
context);
}
public class TestActivity extends Activity{
public void onCreate(Bundle savedInstanceState) {
<snip>
// Register activity barcode receiver.
bcReceiver = new BarcodeReceiver("BC Activity");
IntentFilter filter = new IntentFilter(BarcodeManager.DATA_INTENT);
registerReceiver(bcReceiver, filter);
<snip>
}
}

Enabling / disabling text input field data insertion

By default, Cisco Wireless Phone will input scanned data into a text input field if in focus. This is useful if
the application does not actively interface with the barcode API to receive the data directly. However, some
apps may not want this behavior, so the behavior can be disabled by an app using the disableBarcodeKeyboard
and enableBarcodeKeyboard methods. The current keyboard input state can be identified via the
BarcodeManager.STATE_INTENT and checking the extra data for STATE_KEYBOARD_DISABLED or
STATE_KEYBOARD_DISABLED. If an application is using our API it is suggested to disable this keyboard
capability.
testBarcode.disableBarcodeKeyboard(v.getContext());

Example code

Please see the example code package for the Barcode API.

Custom Intents
Cisco Wireless Phone 840S or 860S supports Custom Intents.

The example application in this SDK zip file demonstrates the usage of the custom Intents. The manifest.xml
file has Intent Filters with Intent Action and Intent Categories.

The partner will need to provide the three settings to the SAM or EMM administrator.

• Intent Delivery Method

• Intent Action

• Intent Category

Those three settings collectively will enable the Barcode Service to send an Intent to the partner application
using one of the following delivery methods after a scan is completed.

• Start Activity

• Start Service

• Start Foreground Service

• Send Broadcast

The custom intent will contain the data shown in the table below as String Extras.

API Specification
8

API Specification
Custom Intents

String Extras can be obtained from the extras bundle shown below by calling “intent.getExtras()”

NotesValue (examples)Key

Barcode value after string
Manipulation

GS18061200285com.spectralink.Scanflex.data_string

Unix time of Scan1586158888809com.spectralink.Scanflex.data_dispatch_time

Type of Symbology ScannedCode 128com.spectralink.Scanflex.label_type

Use Cases
1. Start Activity use case

The partner app wants to move from the MainActivity to a different activity on a successfully completed
scan and send data to the new activity.

2. Send Broadcast use case

The partner application wants to send a broadcast to a broadcastReceiver that it has already implemented,
either within the same application or a different application developed by the same partner.

Button API

Buttons App User Interface
Cisco Wireless Phones contain multiple buttons not normally found on a consumer phone (Left, Right, Top,
and Fingerprint (Cisco Wireless Phone 860 or 860S only), along with expected buttons (Power, Volume up
and Volume down). Volume up and down buttons are available to apps via standard Android APIs, e.g. using
class KeyEvent and keycode KeyEvent.KEYCODE_VOLUME_DOWN.

All buttons are configurable in the Buttons app except for the power button. If an app listens for a android
intent via a button press, that android intent must be mapped to that respective physical button in the Buttons
App. For example, remapping the left button from ‘barcode’ to ‘custom 1’ will now send the custom 1 intent
when the left button is pressed.

The Buttons app provides a way for the user to change the way a button functions. The function follows the
change. No matter which button is selected for a function, the function intent will be delivered when the new
button is pressed.

The Buttons app allows you to change which programmable button does what assignable action:

API Specification
9

API Specification
Use Cases

Default actionButton

No actionLEFT button

PTTRIGHT button

AlarmTop button

Fingerprint*Fingerprint*

Volume upVolume up

Volume downVolume down

Scanner**

Run application

Home key

Back key

Open URL

Menu key

Custom 1

Custom 2

Custom 3

Custom 4

API Specification
10

API Specification
Buttons App User Interface

* Cisco Wireless Phone 860 or 860S only (on the back of the phone)

** Cisco Wireless Phone 840S or 860S only

The user simply selects the button to remap and then selects the new desired function. Not all actions are
available on all buttons. Custom buttons are programmed by the system administrator.

Default

Options

Cisco Intents for Buttons App
A custom app can use the physical buttons on CiscoWireless Phone for its own purposes. There are two steps
to get the appropriate functionality:

1. The custom app must register a broadcast receiver to listen for a Cisco intent.

2. The respective Cisco intent must be mapped to that button using the Button app.

The following intents can be defined in a custom application and then registered to a receiver within that
application:

API Specification
11

API Specification
Cisco Intents for Buttons App

Cisco Wireless Phones use the “Apollo” code word for intents used by all models of Cisco Wireless Phones.Note

Table 3: Broadcast Action Intent strings

DescriptionString

Intent action string for PTT“com.apollo.intent.action.PTT_BUTTON”

Intent action string for Panic“com.apollo.intent.action.PANIC_BUTTON”

Intent action string for Barcode“com.apollo.intent.action.BARCODE_BUTTON”

Intent action string for Fingerprint“com.apollo.intent.action.FINGERPRINT_BUTTON”

Intent action string for Custom 1“com.spectralink.intent.action.CUSTOM1_BUTTON”

Intent action string for Custom 2“com.spectralink.intent.action.CUSTOM2_BUTTON”

Intent action string for Custom 3“com.spectralink.intent.action.CUSTOM3_BUTTON”

Intent action string for Custom 4“com.spectralink.intent.action.CUSTOM4_BUTTON”

For each intent, the EXTRA_TEXT string provides information on the button action as follows:

Table 4: EXTRA_TEXT String

DescriptionString

When key is initially pressed“keypress”

When key is released“keyrelease”

Indicates key was pressed for short duration“shortpress”

Indicates keywas pressed for a duration exceeding the Android longpress
threshold

“longpress”

Button API Guidelines
Please see the Button API example app included in this SDK for more details. The following provides a simple
code snippet to detect a PTT long press.
public static final String PTT_BUTTON =
“com.apollo.intent.action.PTT_BUTTON”;
public static final String LONGPRESS = “longpress”;
public class ButtonActionReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if(intent.getAction().equals(PTT_BUTTON)) {
Bundle b = intent.getExtras();
if(b.get(Intent.EXTRA_TEXT).equals(LONGPRESS)){
//do something cool with long key press
}
}

API Specification
12

API Specification
Button API Guidelines

}
}

The generated intents do have dependencies based on Cisco Wireless Phone’s awake or asleep state, i.e.
whether the screen is on or off. The following provides an explanation of the behaviors. However, application
developers should become familiar with the button intent behaviors before trying to integrate them into their
app:

Phone Awake, Screen On (All buttons):

1. Button pressed -> button’s respective intent generated with EXTRA_TEXT=keypress.

2. If button is held longer than Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=longpress.

3. If button is released before Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=shortpress.

4. Button released -> button’s respective intent generated with EXTRA_TEXT=keyrelease.

Phone Asleep, Screen Off (button set to Scanner or Custom):

1. Button pressed -> No intent generated

2. Button released -> No intent generated

Phone Asleep, Screen Off (button set to Alarm or PTT):

1. Button pressed -> Phone wakes, NO keypress intent generated

2. If button is held longer than Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=longpress.

3. If button is released before Android’s longpress threshold -> button’s respective intent generated with
EXTRA_TEXT=shortpress.

4. Button released -> button’s respective intent generated with EXTRA_TEXT=keyrelease.

As shown above, buttons can behave differently, and behavior differs depending on phone state.

Buttons Troubleshooting
Adding Logcat messages will be helpful for identifying when and what Intents are received.

Miscellaneous
The following section provides additional useful programming information for Cisco Wireless Phone. These
may not use Cisco proprietary APIs but offer useful Standard Android based hints.

API Specification
13

API Specification
Buttons Troubleshooting

Initiating a Call Using Cisco SIP Dialer
Apps may want to use the integrated Cisco SIP dialer app to initiate phone calls.. Calling can be done using
the standard Android Intents, ACTION_CALL and ACTION_DIAL. See Android documentation for full
details on semantics. However in general terms, ACTION_CALL initiates a call, but requires Manifest
permissions, whereas ACTION_DIAL does not actually start the call nor does it require Manifest permission.

An example of using the intent is:
Intent callIntent = new Intent(Intent.ACTION_CALL);
callIntent.setData(Uri.parse("tel:7203754157"));
startActivity(callIntent);

There are many examples on the Internet, one good reference is:http://www.mkyong.com/android/
how-to-make-a-phone-call-in-android/

Google Play Services
Cisco Wireless Phone is a Google certified device and accordingly the software now includes and supports
GoogleMobile Services. Google Play, Google Play Services, and associated APIs are available to applications
as applicable.

API Specification
14

API Specification
Initiating a Call Using Cisco SIP Dialer

http://www.mkyong.com/android/how-to-make-a-phone-call-in-android/
http://www.mkyong.com/android/how-to-make-a-phone-call-in-android/

	API Specification
	About This Specification
	The Cisco Library
	Cisco Libraries in Android Studio

	Barcode API
	Supported Symbologies
	Barcode Data Flow

	Barcode API
	Barcode API Guidelines

	Custom Intents
	Use Cases

	Button API
	Buttons App User Interface
	Cisco Intents for Buttons App
	Button API Guidelines

	Buttons Troubleshooting

	Miscellaneous
	Initiating a Call Using Cisco SIP Dialer
	Google Play Services

