CONTENTS

CHAPTER 1
Cisco Unified CME Features Roadmap 1
Obtaining Documentation, Obtaining Support, and Security Guidelines 63

CHAPTER 2
Cisco Unified CME Overview 65
Important Information about Cisco IOS XE 16 Denali 65
Unified CME Graphical User Interface Deprecation 65
CTI CSTA Protocol Suite Deprecation 66
Simple Network Management Protocol (SNMP) Support for Unified CME 67
Introduction 67
Licensing 69
Cisco Smart Licensing 69
Smart License Operation 70
Cisco IOS XE Everest 16.5.1 Release to Cisco IOS XE Fuji 16.9.1 Release 70
Cisco IOS XE Gibraltar 16.10.1 Release Onwards 70
Cisco IOS XE Everest 16.5.1 Release to Cisco IOS XE Amsterdam 17.3.1a Release 70
Cisco IOS XE Gibraltar 16.12.1 Release to Cisco IOS XE Amsterdam 17.3.1a Release 71
Cisco IOS XE Amsterdam 17.3.2 Release Onwards 71
PBX or Keyswitch 72
PBX Model 73
Keyswitch Model 73
Hybrid Model 74
Call Detail Records 75
Additional References 75
Management Information Base 77

CHAPTER 3
Virtual CME 79
Phone Firmware Files 108
XML Template 109
Music-on-Hold (MOH) File 110
Script Files 110
Bundled TSP Archive 110
File Naming Conventions 110
Install and Upgrade Cisco Unified CME Software 111
Install Cisco Unified CME Software 111
Upgrade or Downgrade SCCP Phone Firmware 112
Upgrade or Downgrade SIP Phone Firmware 114
Phone Firmware Conversion from SCCP to SIP 118
Phone Firmware Conversion from SIP to SCCP 121
Remove SIP Configuration Profile 121
Generate SCCP XML Configuration File to Upgrade from SIP to SCCP 122
Example 124
What to Do Next 124
Verify SCCP Phone Firmware Version 124
Troubleshooting Tips for Cisco Phone Firmware 125

CHAPTER 6

Network Parameters 127
Prerequisites for Defining Network Parameters 127
Restrictions for Defining Network Parameters 127
Information About Defining Network Parameters 128
DHCP Service 128
Network Time Protocol for the Cisco Unified CME Router 128
Olson Timezones 128
DTMF Relay 129
SIP Register Support 130
Define Network Parameters 130
Enable Calls in Your VoIP Network 130
Configure DHCP 133
Configure Single DHCP IP Address Pool 133
Configure Separate DHCP IP Address Pool for Each DHCP Client 135
Configure DHCP Relay 137
Enable Network Time Protocol 138
Set Olson Timezone for SCCP Phones 139
Set Olson Timezone for SIP Phones 142
Configure DTMF Relay for H.323 Networks in Multisite Installations 145
Configure SIP Trunk Support 146
Verify SIP Trunk Support Configuration 148
Change the TFTP Address on a DHCP Server 149
Configuration Examples for Network Parameters 150
NTP Server 150
DTMF Relay for H.323 Networks 150
Where to Go Next 151
Feature Information for Network Parameters 151

CHAPTER 7

System-Level Parameters 153
Prerequisites for System-Level Parameters 153
Information About Configuring System-Level Parameters 153
Bulk Registration Support for SIP Phones 153
Register Transaction 154
Phone Status Update Transaction 157
DSCP 159
Maximum Epohnes in Cisco Unified CME 4.3 and Later Versions 159
Network Time Protocol for SIP Phones 159
Per-Phone Configuration Files 160
HFS Download Support for IP Phone Firmware and Configuration Files 160
Redundant Cisco Unified CME Router for SCCP Phones 163
Redundant Cisco Unified CME Router for SIP Phones 164
Timeouts 165
IPv6 Support for Cisco Unified CME SCCP Endpoints 166
Support for IPv4-IPv6 (Dual-Stack) 166
Media Flow Through and Flow Around 166
Media Flow Around Support for SIP-SIP Trunk Calls 167
Overlap Dialing Support for SIP and SCCP IP Phones 168
Unsolicited Notify for Shared Line and Presence Events for Cisco Unified SIP IP Phones 168
Interface Support for Unified CME and Unified SRST 169
Configure System-Level Parameters 170

Configure IP Phones in IPv4, IPv6, or Dual Stack Mode 170

Example 171

Configure IPv6 Source Address for SCCP IP Phones 172

Verify IPv6 and Dual-Stack Configuration 173

Configure Bulk Registration 175

Configure Bulk Registration for SIP IP Phones 177

Verify Phone Registration Type and Status 178

Set Up Cisco Unified CME for SCCP Phones 179

Set Date and Time Parameters for SCCP Phones 182

Block Automatic Registration for SCCP Phones 183

Define Per-Phone Configuration Files and Alternate Location for SCCP Phones 184

Modify Defaults for Timeouts for SCCP Phones 186

Configure Redundant Router for SCCP Phones 187

Configure Redundant Router for SIP Phones 189

Configure Version Stamp Synchronization on the Primary Router 190

Configure the XML Interface for the Secondary Backup Router 191

Configure Overlap Dialing on SCCP IP Phones 192

Set Up Cisco Unified CME for SIP Phones 194

Set Up Cisco Unified CME for SIP Phones 196

Set Date and Time Parameters for SIP Phones 199

Set Network Time Protocol for SIP Phones 201

Enable HFS Download Service for SIP Phones 202

Troubleshooting HFS Download Service 203

Configure HFS Home Path for SIP Phone Firmware Files 204

Change Session-Level Application for SIP Phones 205

Enable Media Flow Mode on SIP Trunks 206

Configure Overlap Dialing on SIP Phones 208

Configuration Examples for System-Level Parameters 209

Example for Bulk Registration Support for SIP Phones 209

Example for IPv6 Support on Cisco Unified CME 210

Example for System-Level Parameters 213

Example for Blocking Automatic Registration 215

Example for Enabling the HFS Download Service for Cisco Unified SIP IP Phone 216
Example for Configuring an HFS Home Path for Cisco Unified SIP IP Phone Firmware Files 216
Example for Verifying the HFS File Bindings of Cisco Unified SIP IP Phone Configuration and Firmware Files 216
Example for Redundant Router for SCCP Phones 217
Example for Redundant Router for SIP Phones 217
Example for Media Flow Around Mode for SIP Trunks 218
Example for Configuring Overlap Dialing for SCCP IP Phones 220
Example for Configuring Overlap Dialing for SIP IP Phones 221
Where to Go Next 222
Feature Information for System-Level Parameters 222

CHAPTER 8

Configuring Phones to Make Basic Calls 225
Prerequisites for Configuring Phones to Make Basic Calls 225
Restrictions for Configuring Phones to Make Basic Calls 226
Information About Configuring Phones to Make Basic Calls 226
Phones in Cisco Unified CME 226
Directory Numbers 226
 Single-Line 227
 Dual-Line 227
 Octo-Line 228
 SIP Shared-Line (Nonexclusive) 230
 Two Directory Numbers with One Telephone Number 230
 Dual-Number 231
 Shared Line (Exclusive) 232
 Shared Lines with Voice Class Codec Support 232
 Mixed Shared Lines 233
 Overlaid Directory Numbers 236
Auto Registration of SIP Phones on Cisco Unified CME 236
 Syslog Messages 238
 Monitor Mode for Shared Lines 239
 Watch Mode for Phones 240
 PSTN FXO Trunk Lines 241
 Codecs for Cisco Unified CME Phones 242
 Analog Phones 243
Cisco ATAs in SCCP Mode 243
Cisco ATAs in SIP Mode 243
FXS Ports in SCCP Mode 246
FXS Ports in H.323 Mode 246
Fax Support 246
Cisco VG202, VG204, and VG224 Auto Configuration 247
Internet Protocol - Secure Telephone Equipment Support 247
Secure Communications Between STU, STE, and IP-STE 248
SCCP Media Control for Secure Mode 248
Secure Communication Between STE, STU, and IP-STE Across SIP Trunk 249
Remote Teleworker Phones 249
Media Termination Point for Remote Phones 250
G.729r8 Codec on Remote Phones 250
Busy Trigger and Channel Huntstop for SIP Phones 250
Multiple Calls Per Line 251
Cisco Unified 8941 and 8945 SCCP IP Phones 251
Cisco Unified 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones 251
Digit Collection on SIP Phones 252
Key Press Markup Language Digit Collection 252
SIP Dial Plans 252
Session Transport Protocol for SIP Phones 253
Real-Time Transport Protocol Call Information Display Enhancement 253
Ephone-Type Configuration 254
7926G Wireless SCCP IP Phone Support 254
Enhanced Line Mode 255
KEM Support for Cisco Unified SIP IP Phones 256
Key Mapping 257
Call Control 257
XML Updates 258
Restrictions for KEM Support 258
Fast-Track Configuration Approach for Cisco Unified SIP IP Phones 258
Configure Phones for a PBX System 260
Create Directory Numbers for SCCP Phones 260
Configure Ephone-Type Templates for SCCP Phones 263
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephone-Type Parameters for Supported Phone Types</td>
<td>265</td>
</tr>
<tr>
<td>Assign Directory Numbers to SCCP Phones</td>
<td>266</td>
</tr>
<tr>
<td>Create Directory Numbers for SIP Phones</td>
<td>270</td>
</tr>
<tr>
<td>Assign Directory Numbers to SIP Phones</td>
<td>273</td>
</tr>
<tr>
<td>Configure Dial Plans for SIP Phones</td>
<td>276</td>
</tr>
<tr>
<td>Troubleshooting Tips for Configuring Dial Plans for SIP</td>
<td>279</td>
</tr>
<tr>
<td>Verify SIP Dial Plan Configuration</td>
<td>279</td>
</tr>
<tr>
<td>Enable KPML on a SIP Phone</td>
<td>280</td>
</tr>
<tr>
<td>Select Session-Transport Protocol for a SIP Phone</td>
<td>282</td>
</tr>
<tr>
<td>Disable SIP Proxy Registration for a Directory Number</td>
<td>283</td>
</tr>
<tr>
<td>Modify the Global Codec</td>
<td>285</td>
</tr>
<tr>
<td>Configure Codecs of Individual Phones for Calls Between Local Phones</td>
<td>286</td>
</tr>
<tr>
<td>Configure Phones for a Key System</td>
<td>289</td>
</tr>
<tr>
<td>Creating Directory Numbers for a Simple Key System on SCCP Phone</td>
<td>289</td>
</tr>
<tr>
<td>Configure Trunk Lines for a Key System on SCCP Phone</td>
<td>291</td>
</tr>
<tr>
<td>Configure a Simple Key System Phone Trunk Line Configuration on SCCP Phone</td>
<td>291</td>
</tr>
<tr>
<td>Configure an Advanced Key System Phone Trunk Line Configuration on SCCP Phone</td>
<td>295</td>
</tr>
<tr>
<td>Configure Individual IP Phones for Key System on SCCP Phone</td>
<td>299</td>
</tr>
<tr>
<td>Configure Cisco ATA, Analog Phone Support, Remote Phones, Cisco IP Communicator, and Secure IP Phone (IP-STE)</td>
<td>301</td>
</tr>
<tr>
<td>Configure Cisco ATA Support in SCCP Mode</td>
<td>301</td>
</tr>
<tr>
<td>Configure Cisco ATA Support in SIP Mode</td>
<td>303</td>
</tr>
<tr>
<td>Configure Firmware Upgrade for ATA in SIP Mode</td>
<td>303</td>
</tr>
<tr>
<td>Verify Cisco ATA Support</td>
<td>304</td>
</tr>
<tr>
<td>Troubleshooting Cisco ATA Support</td>
<td>304</td>
</tr>
<tr>
<td>Call Pickup and Group Call Pickup with Cisco ATA</td>
<td>304</td>
</tr>
<tr>
<td>Configure Voice and T.38 Fax Relay on Cisco ATA-187</td>
<td>305</td>
</tr>
<tr>
<td>Auto-Configuration for Cisco VG202, VG204, and VG224</td>
<td>309</td>
</tr>
<tr>
<td>Configure Phones on SCCP Controlled Analog (FXS) Ports</td>
<td>311</td>
</tr>
<tr>
<td>Verify Analog Phone Support</td>
<td>314</td>
</tr>
<tr>
<td>Enable Remote Phone</td>
<td>314</td>
</tr>
<tr>
<td>Verify Remote Phones</td>
<td>316</td>
</tr>
<tr>
<td>Configure Cisco IP Communicator Support on SCCP Phone</td>
<td>316</td>
</tr>
<tr>
<td>Verify Cisco IP Communicator Support on SCCP Phone</td>
<td>317</td>
</tr>
</tbody>
</table>
Troubleshooting Cisco IP Communicator Support on SCCP Phone 317
Configure Secure IP Phone (IP-STE) on SCCP Phone 317
Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G 319
Configure Phones to Make Basic Call 321
Configure Auto Registration for SIP Phones 321
Configure a Mixed Shared Line 322
Troubleshooting Tips for Mixed Shared Line 324
Configure the Maximum Number of Calls on SCCP Phone 325
Configure the Busy Trigger Limit on SIP Phone 327
Configure KEMs on SIP Phones 328
Provision SIP Phones to Use the Fast-Track Configuration Approach 330
SIP Phone Models Validated for CME using Fast-track Configuration 333
Configuration Examples for Making Basic Calls 333
Example for Configuring SCCP Phones for Making Basic Calls 333
Example for Configuring SIP Phones for Making Basic Calls 338
Example for Disabling a Bulk Registration for a SIP Phone 340
Examples for Configuring VCC with Shared Lines 341
Example for Configuring a Mixed Shared Line on a Second Common Directory Number 341
Example for Cisco ATA 342
Example for Cisco ATA in SIP Mode 342
Example for SCCP Analog Phone 342
Example for Remote Teleworker Phones 343
Example for Secure IP Phone (IP-STE) 344
Example for Configuring Phone Services XML File for Cisco Unified Wireless Phone 7926G 344
Example for Monitoring the Status of Key Expansion Modules 344
Cisco IOS Commands for Monitoring and Maintaining Cisco Unified CME 345
Example for Fast-Track Configuration Approach 347
Example for Configuring Key Expansion Module for Cisco 8800 Series IP Phones on Unified CME 348
Example for Configuring Enhanced Line Mode on Unified CME 348
Where To Go Next 348
Feature Information for Configuring Phones to Make Basic Calls 348

CHAPTER 9

Create Phone Configurations Using Extension Assigner 353
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for Extension Assigner</td>
<td>353</td>
</tr>
<tr>
<td>Restrictions for Extension Assigner</td>
<td>353</td>
</tr>
<tr>
<td>Information About Extension Assigner</td>
<td>354</td>
</tr>
<tr>
<td>Extension Assigner Overview</td>
<td>354</td>
</tr>
<tr>
<td>Procedure for System Administrators</td>
<td>354</td>
</tr>
<tr>
<td>Procedures for Installation Technicians</td>
<td>358</td>
</tr>
<tr>
<td>Files Included in this Release</td>
<td>359</td>
</tr>
<tr>
<td>Extension Assigner Synchronization</td>
<td>360</td>
</tr>
<tr>
<td>Configure Extension Assigner</td>
<td>360</td>
</tr>
<tr>
<td>Determine Extension Numbers to Assign to the New Phones and Plan Your Configuration</td>
<td>360</td>
</tr>
<tr>
<td>Download the Tcl Script and Audio Prompt Files</td>
<td>360</td>
</tr>
<tr>
<td>Configure the Tcl Script</td>
<td>361</td>
</tr>
<tr>
<td>Specify the Extension for Accessing Extension Assigner Application</td>
<td>363</td>
</tr>
<tr>
<td>Configure Provision-Tags for the Extension Assigner Feature</td>
<td>365</td>
</tr>
<tr>
<td>Configure Temporary Extension Numbers for SCCP Phones That Use Extension Assigner</td>
<td>366</td>
</tr>
<tr>
<td>Configure Temporary Extension Numbers for SIP Phones That Use Extension Assigner</td>
<td>367</td>
</tr>
<tr>
<td>Configure Extension Numbers That Installation Technicians Can Assign to SCCP Phones</td>
<td>369</td>
</tr>
<tr>
<td>Configure Extension Numbers That Installation Technicians Can Assign to SIP Phones</td>
<td>370</td>
</tr>
<tr>
<td>Configure Ephones with Temporary MAC Addresses</td>
<td>372</td>
</tr>
<tr>
<td>Configure Voice Register Pools with Temporary MAC Addresses</td>
<td>374</td>
</tr>
<tr>
<td>Configure the Router to Automatically Save Your Configuration</td>
<td>376</td>
</tr>
<tr>
<td>Provide the Installation Technician with the Required Information</td>
<td>378</td>
</tr>
<tr>
<td>Configure Extension Assigner Synchronization</td>
<td>378</td>
</tr>
<tr>
<td>Configure the XML Interface for the Secondary Backup Router</td>
<td>378</td>
</tr>
<tr>
<td>Configure Extension Assigner Synchronization on the Primary Router</td>
<td>379</td>
</tr>
<tr>
<td>Assign Extension Numbers Onsite by Using Extension Assigner</td>
<td>381</td>
</tr>
<tr>
<td>Assign New Extension Numbers</td>
<td>381</td>
</tr>
<tr>
<td>Unassign an Extension Number</td>
<td>381</td>
</tr>
<tr>
<td>Reassign the Current Extension Number</td>
<td>382</td>
</tr>
<tr>
<td>Verify Extension Assigner Configuration for SCCP Phones</td>
<td>383</td>
</tr>
<tr>
<td>Verify Extension Assigner Configuration for SIP Phones</td>
<td>383</td>
</tr>
<tr>
<td>Configuration Examples for Extension Assigner</td>
<td>383</td>
</tr>
<tr>
<td>Example for Extension Assigner on SCCP Phone</td>
<td>383</td>
</tr>
<tr>
<td>Example for Extension Assigner on SIP Phone</td>
<td>387</td>
</tr>
</tbody>
</table>
Example for Extension Assigner Synchronization 387
Feature Information for Extension Assigner 388

CHAPTER 10
Configuration Files for Phones 389
Information About Configuration Files 389
Configuration Files for Phones 389
Per-Phone Configuration Files 390
Generate Configuration Files for Phones 390
Generate Configuration Files for SCCP Phones 390
Verify Configuration Files for SCCP Phones 392
Generate Configuration Profiles for SIP Phones 393
Verify Configuration Profiles for SIP Phones 394
Where To Go Next 397

CHAPTER 11
Reset and Restart Cisco Unified IP Phones 399
Information About Resetting and Restarting Phones 399
Differences between Resetting and Restarting IP Phones 399
Cisco Unified CME TAPI Enhancement 400
Reset and Restart Phones 400
Use the reset Command on SCCP Phones 400
Use the restart Command on SCCP Phones 402
Reset a Session Between a TAPI Application and an SCCP Phone 403
Use the reset Command on SIP Phones 403
Use the restart Command on SIP Phones 405
Verify Basic Call 406
Feature Information for Reset and Restart Phones 406

CHAPTER 12
Localization Support 407
Information About Localization 407
Localization Enhancements in Cisco Unified CME 407
System-Defined Locales 408
Localization Support for Cisco Unified SIP IP Phones 409
User-Defined Locales 409
Localization Support for Phone Displays 409
Direct Inward Dialing Trunk Lines 445
Voice Translation Rules and Profiles 445
Secondary Dial Tone 446
E.164 Enhancements 446
 Phone Registration with Leading + E164 Number 446
 Callback and Calling Number Display 449
Configure Dial Plans 449
 Configure SCCP Dial Plan Patterns 449
 Configure SIP Dial Plan Patterns 450
Verify Dial Plan Patterns 451
Define Voice Translation Rules in Cisco CME 3.2 and Later Versions 452
Apply Voice Translation Rules on SCCP Phones in Cisco Unified CME 3.2 and Later Versions 454
Apply Translation Rules on SCCP Phones Before Cisco Unified CME 3.2 456
Apply Voice Translation Rules on SIP Phones in Cisco Unified CME 4.1 and Later 457
Apply Voice Translation Rules on SIP Phones Before Cisco Unified CME 4.1 458
Verify Voice Translation Rules and Profiles 459
Activate Secondary Dial Tone For SCCP Phones 460
Activate Secondary Dial Tone for SIP Phones 461
Define Translation Rules for Callback-Number on SIP Phones 463
Configuration Examples for Dial Plan Features 466
 Example for Configuring Secondary Dial Tone on SCCP Phones 466
 Example for Configuring Secondary Dial Tone on SIP Phones 466
 Example for Configuring Voice Translation Rules 467
Feature Information for Dial Plan Features 468

CHAPTER 14

Transcoding Resources 469
 Prerequisites for Configuring Transcoding Resources 469
 Restrictions for Configuring Transcoding Resources 469
 Information About Transcoding Resources 470
 Transcoding Support 470
 Local Transcoding Interface (LTI) Based Transcoding 473
 Transcoding When a Remote Phone Uses G.729r8 474
 Secure DSP Farm Transcoding 474
Configure Transcoding Resources 475
Disconnect ISDN Calls With No Matching Dial-peer 511
Block Two-stage Dialing Service on Analog and Digital FXO Ports 511
Configure Toll Fraud Prevention 511
 Configure IP Address Trusted Authentication for Incoming VoIP Calls 511
Add Valid IP Addresses For Incoming VoIP Calls 513
Configure Direct Inward Dial for Incoming ISDN Calls 515
Block Secondary Dial tone on Analog and Digital FXO Ports 516
Troubleshooting Tips for Toll Fraud Prevention 517
Feature Information for Toll Fraud Prevention 519

CHAPTER 16 Voice Mail Integration 521
Prerequisites for Voice Mail Integration 521
Information About Voice-Mail Integration 522
 Cisco Unity Connection Integration 522
 Cisco Unity Express Integration 522
 Cisco Unity Integration 523
 DTMF Integration for Legacy Voice-Mail Applications 523
Mailbox Selection Policy 523
RFC 2833 DTMF MTP Pass through 524
MWI Line Selection 524
AMWI 525
SIP MWI Prefix Specification 525
SIP MWI - QSIG Translation 525
VMWI 526
Transfer to Voice Mail 527
Live Record 527
 Cisco Unity Express AXL Enhancement 527
Configure Voice-Mail Integration 528
 Configure a Voice Mailbox Pilot Number on a SCCP Phone 528
 Configure a Mailbox Selection Policy on SCCP Phone 529
 Set a Mailbox Selection Policy for Cisco Unity Express or a PBX Voice-Mail Number 529
 Set a Mailbox Selection Policy for Cisco Unity 531
Transfer to Voice Mail 532
Configure Live Record on SCCP Phones 535
Directory Search 643
Configure Directory Services 643
 Configure Local Directory Service 643
 Define a Name for a Directory Number on SCCP Phone 644
 Add an Entry to a Local Directory on SCCP Phone 645
 Configure External Directory Service on SCCP Phone 646
 Called-Name Display 648
 Verify Called-Name Display 649
 Define a Name for a Directory Number on SIP Phone 650
 Configure External Directory Service on SIP Service 651
 Verify Directory Services 652
Configuration Examples for Directory Services 653
 Example for Configuring Local Directory 653
 Example for Configuring Called-Name Display 654
 Example for Called-Name Display for Voice Hunt Group 654
 Example for Configuring First Ephone-dn in the Overlay Set 654
 Example for Configuring Directory Name for an Overlaid Ephone-dn Set 655
 Example for Configuring Directory Name for a Hunt Group with Overlaid Ephone-dns 655
 Example for Configuring Directory Name for Non-Overlaid Ephone-dns 656
 Example for Configuring Ephone-dn Name for Overlaid Ephone-dns 657
 Feature Information for Directory Services 658

CHAPTER 19 Do Not Disturb 661
 Information About Do Not Disturb 661
 Do Not Disturb on SCCP Phone 661
 Do Not Disturb on SIP Phone 662
 Configure Do Not Disturb 663
 Blocking Do Not Disturb on SCCP Phone 663
 Verify Do Not Disturb on SCCP Phones 664
 Configure Do Not Disturb on SIP Phones 665
 Where to Go Next 667
 Feature Information for Do Not Disturb 667

CHAPTER 20 Enhanced 911 Services 669
Contents

Prerequisites for Enhanced 911 Services 669
Restrictions for Enhanced 911 Services 669
Information About Enhanced 911 Services 670
 Overview of Enhanced 911 Services 670
 Call Processing for E911 Services 672
Precautions for Mobile Phones 675
Plan Your Implementation of Enhanced 911 Services 675
Interactions with Existing Cisco Unified CME Features 677
 Multiple Usages of an ELIN 677
 Number Translation 677
 Call Transfer 678
 Call Forward 678
 Call Blocking Features 678
 Call Waiting 678
 Three-Way Conference 679
 Dial-Peer Rotary 679
 Dial Plan Patterns 679
 Caller ID Blocking 679
 Shared Line 679
Configure Enhanced 911 Services 680
 Configure the Emergency Response Location 680
 Configure Locations under Emergency Response Zones 681
 Configure Outgoing Dial Peers for Enhanced 911 Services 682
 Configure Dial Peers for Emergency Calls 683
 Configure Dial Peers for Emergency Response Zones 684
 Configure a Dial Peer for Callbacks from the PSAP 685
Assign ERLs to Phones 686
 Prerequisites for Assigning ERLs to Phones 686
 Assign an ERL to a Phone’s IP Subnet 687
 Assign an ERL to a SIP Phone 687
 Assign an ERL to a SCCP Phone 688
 Assign an ERL to a Dial Peer 689
Customize E911 Settings 690
 Using the Address Command for Two ELINS 692
Configure Forced Authorization Code 744
 Enable Forced Authorization Code (FAC) on LPCOR Groups 744
 Define Parameters for Authorization Package 746
Configuration Example for Forced Authorization Code 748
 Example for Configuring Forced Authorization Code 748
Feature Information for Forced Authorization Code 749

CHAPTER 25 Headset Auto Answer 751
 Information About Headset Auto Answer 751
 Auto Answering Calls Using a Headset 751
 Difference Between a Line and a Button 751
Configure Headset Auto Answer 753
 Enable Headset Auto Answer 753
 Verify Headset Auto Answer 754
Configuration Example for Headset Auto Answer 754
 Example for Enabling Headset Auto Answer 754
Feature Information for Headset Auto Answer 755

CHAPTER 26 Intercom Lines 757
 Information About Intercom Lines 757
 Intercom Auto-Answer Lines 757
 Whisper Intercom 758
 SIP Intercom 758
 Extension Number 760
Configure Intercom Lines 760
 Configure an Intercom Auto-Answer Line on SCCP Phones 760
 Configure Whisper Intercom on SCCP Phones 762
 Configure an Intercom Auto-Answer Line on SIP Phones 764
 Configure Intercom Call Option on SIP Phones 766
Configuration Examples for Intercom Lines 768
 Example for Configuring Intercom Lines 768
 Example for Configuring SIP Intercom Support 768
Where to Go Next 768
Feature Information for Intercom Lines 769
CHAPTER 27

Loopback Call Routing 771
Information About Loopback Call Routing 771
Loopback Call Routing 771
Configure Loopback Call Routing 772
Enable Loopback Call Routing 772
Verify Loopback Call Routing 776
Configuration Example for Loopback Call Routing 776
Example for Enabling Loopback Call Routing 776
Feature Information for Loopback Call Routing 776

CHAPTER 28

Multilevel Precedence and Preemption 777
Prerequisites for MLPP 777
Information About MLPP 777
Precedence 777
 Basic Precedence Call Setup 778
Preemption 779
 Basic Preemption Call 780
DSN Dialing Format 780
 Service Digit 781
 Route Code 781
 Example for Dialing 782
MLPP Service Domains 782
MLPP Indication 784
MLPP Announcements 784
 Automatic Call Diversion (Attendant Console) 786
Configure MLPP 787
 Enable MLPP Service Globally in Cisco Unified CME 787
 Enable MLPP Service on SCCP Phones 789
 Enable MLPP Service on Analog FXS Phone Ports 793
 Configure an MLPP Service Domain for Outbound Dial Peers 795
 Configure MLPP Options 797
 Troubleshooting MLPP Service 800
Feature Information for MLPP 800
CHAPTER 29

Music on Hold 803
Prerequisites for Music on Hold 803
Restrictions for Music on Hold 803
Information About Music on Hold 804
Music on Hold Summary 804
Music on Hold 805
Music on Hold from a Live Feed 805
Music on Hold from a Live Feed on Cisco 4000 Series Integrated Services Routers 806
Multicast MOH 807
Music on Hold for SIP Phones 807
Music On Hold Enhancement 807
Caching MOH Files for Enhanced System Performance 808
Configure G.711 and G.729 Files for Music on Hold 808
Configure Music on Hold 809
Configure Music on Hold from an Audio File to Supply Audio Stream 809
Configure Music on Hold from a Live Feed 812
Configure Music on Hold Groups to Support Different Media Sources 817
Assign a MOH Group to a Directory Number 820
Assign a MOH Group to all Internal Calls Only to SCCP Phones 822
Configure Buffer Size for MOH Files 824
Verify MOH File Caching 825
Verify Music on Hold Group Configuration 826
Feature Information for Music on Hold 828

CHAPTER 30

Paging 831
Restrictions for Paging 831
Information About Paging 831
Audio Paging 831
Paging Group Support for Cisco Unified SIP IP Phones 832
Configure Paging 834
Configure a Simple Paging Group on SCCP Phones 834
Configure a Combined Paging Group for SCCP Phones 835
Configure Paging Group Support for SIP IP Phones 838
Customized Ringtones 872
On-Hold Indicator 872
Configure Ringtones 872
 Configure Distinctive Ringing 872
 Configure Customized Ringtones 873
 Configure On-Hold Indicator 875
 Enable Distinctive Ringing on SIP Phones 876
Configuration Examples for Ringtones 877
 Example for Configuring Distinctive Ringing for Internal Calls 877
 Example for Configuring On-Hold Indicator 877
Feature Information for Ringtones 877

CHAPTER 33

Single Number Reach 879
Information About Single Number Reach 879
 Overview of Single Number Reach 879
SNR Enhancements 880
 Hardware Conference 880
 Call Park, Call Pickup, and Call Retrieval 880
 Answer Too Soon Timer 880
 SNR Phone Stops Ringing After Mobile Phone Answers 880
Single Number Reach for Cisco Unified SIP IP Phones 880
Virtual SNR DN for Cisco Unified SCCP IP Phones 882
Configure Single Number Reach 883
 Configure Single Number Reach on SCCP Phones 883
 Configure Single Number Reach Enhancements on SCCP Phones 887
 Configure Single Number Reach on SIP Phones 889
 Configure a Virtual SNR DN on SCCP Phones 893
Feature Information for Single Number Reach 895

CHAPTER 34

Customize Softkeys 897
Information About Softkeys 897
 Softkeys on IP Phones 897
 Softkeys Introduced in Unified CME Release 12.3 and Later Releases 899
 Account Code Entry 900
Associate VPN Group and Profile to SCCP IP Phone 991
Configure Alternate TFTP Address on Phone 994
Register Phone from a Remote Location 995
Configure SSL VPN Client with DTLS on Cisco Unified CME as VPN Headend 995
Set Up the Clock, Hostname, and Domain Name 996
Configure Trustpoint and Enroll with the Certificates 997
Configure VPN Gateway 997
Configure User Database 997
Configure Virtual Context 998
Configure Group Policy 998
Verify the IOS SSL VPN Connection 999
Configure Cisco Unified SCCP IP Phones for SSL VPN 999
Configuration on Cisco Unified SCCP IP Phone 1000
Configure SSL VPN on Cisco Unified CME 1000
VPN Phone Redundancy Support for Cisco Unified CME with DTLS 1001
Configuration Examples for SSL VPN Client 1001
Example for Configuring SSL VPN with ASA as VPN Headend 1001
Example for Configuring SSL VPN with DTLS on CME as VPN Headend 1002
Feature Information for SSL VPN Client 1004

CHAPTER 38

Automatic Line Selection 1005
Information About Automatic Line Selection 1005
Automatic Line Selection for Incoming and Outgoing Calls 1005
Configure Automatic Line Selection 1006
Enable Automatic Line Selection 1006
Verify Automatic Line Selection 1007
Configuration Examples for Automatic Line Selection 1008
Example for Automatic Line Selection 1008
Feature Information for Automatic Line Selection 1009

CHAPTER 39

Barge and Privacy 1011
Information About Barge and Privacy 1011
Barge and cBarge 1011
Barge (SIP) 1011
cBarge (SCCP and SIP) 1012
Privacy and Privacy on Hold 1013
Configure Barge and Privacy 1014
 Configure the cBarge Soft Key on SCCP Phones 1014
Enable Barge and cBarge Soft Keys on SIP Phones 1016
Enable Privacy and Privacy on Hold on SCCP Phones 1018
Enable Privacy and Privacy on Hold on SIP Phones 1021
Feature Information for Barge and Privacy 1023

CHAPTER 40 1025
Call Blocking 1025
 Information About Call Blocking 1025
 Call Blocking Based on Date and Time (After-Hours Toll Bar) 1025
 After-Hours Pattern-Blocking Support for Regular Expressions 1026
 Call Blocking Override 1027
 Class of Restriction 1027
Configure Call Blocking 1028
 Configure Call Blocking 1028
 Configure Call Blocking Exemption for a Dial Peer 1030
 Configure Call Blocking Override for All SCCP Phones 1031
 Configure Call Blocking Exemption for an Individual SCCP Phone 1032
 Configure Call Blocking Exemption for an Individual SIP Phone or Directory Number 1033
Verify Call Blocking Configuration 1034
 Apply Class of Restriction to a Directory Number on SCCP Phone 1035
 Apply Class of Restriction to Directory Number on SIP Phones 1036
Verify Class of Restriction 1038
Configuration Examples for Call Blocking 1039
 Example for Configuring Call Blocking 1039
 Example for Configuring Class of Restriction 1040
 Example for Configuring After-Hours Block Patterns of Regular Expressions 1041
Where to Go Next 1041
Feature Information for Call Blocking 1042

CHAPTER 41 1043
Call Park 1043
 Information About Call Park 1043
Call Park Enhancements in Cisco Unified CME 7.1 1043

Basic Call Park 1044

View Active Parked Calls 1045

Configure User Interface to View Active List of Parked Calls 1045

Directed Call Park 1047

Park Reservation Groups 1047

Dedicated Call-Park Slots 1047

Call-Park Blocking 1049

Call-Park Redirect 1049

Call Park Recall Enhancement 1049

Park Monitor 1050

Configure Call Park 1050

Enable Call Park or Directed Call Park 1050

Verify Call Park 1056

Configure Timeout Duration for Recalled Calls 1057

Troubleshooting Call Park 1058

Configuration Examples for Call Park 1058

Example for Configuring Basic Call Park 1058

Example for Blocking Phone From Using Call Park 1058

Example for Configuring Call-Park Redirect 1059

Example for Configuring Call Park Recall 1059

Where to Go Next 1060

Feature Information for Call Park 1060

CHAPTER 42

Call Restriction Regulations 1063

Prerequisites for LPCOR 1063

Information About LPCOR 1063

LPCOR Overview 1063

LPCOR Policy and Resource Groups 1064

Default LPCOR Policy 1065

How LPCOR Policies are Associated with Resource Groups 1066

Analog Phones 1066

IP Phones 1066

PSTN Trunks 1066
VoIP Trunks 1066
LPCOR Support for Supplementary Services 1067
Phone Display and Warning Tone for LPCOR 1069
LPCOR VSAs 1069
Configure LPCOR 1070
 Define a LPCOR Policy 1070
 Associate a LPCOR Policy with Analog Phone or PSTN Trunk Calls 1073
 Associate a LPCOR Policy with VoIP Trunk Calls 1076
 Associate a LPCOR Policy with IP Phone or SCCP FXS Phone Calls 1078
 Associate LPCOR with Mobile Phone Calls 1082
 Verify LPCOR Configuration 1086
Configuration Examples for LPCOR 1087
 Example for Configuring LPCOR for Cisco Unified CME 1087
 Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router 1090
Feature Information for LPCOR 1105

CHAPTER 43

Call Transfer and Forward 1107
 Information About Call Transfer and Forward 1107
 Call Forward 1107
 Selective Call Forward 1108
 Call Forward Unregistered 1108
 B2BUA Call Forward for SIP Devices 1109
 Call Forward All Synchronization for SIP Phones 1110
 Call Transfer 1110
 Call Transfer Blocking 1110
 Trunk-to-Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones 1111
 Transfer Pattern 1112
 Transfer Max-Length 1113
 Conference Max-Length 1113
 Conference-Pattern Blocked 1114
 Configure the Maximum Number of Digits for a Conference Call 1115
 Configure Conference Blocking Options for Phones 1116
 Transfer-Pattern Blocked 1117
 Conference Transfer-Pattern 1118
Call Transfer Recall on SCCP Phones 1118
Call Transfer Recall on SIP Phones 1119
Consultative-Transfer Enhancements in Cisco Unified CME 4.3 and Later Versions 1120
Consultative Transfer With Direct Station Select 1120
H.450.2 and H.450.3 Support 1121
 Tips for Using H.450 Standards 1122
 Transfer Method Recommendations by Cisco Unified CME Version 1123
H.450.12 Support 1124
Hairpin Call Routing 1125
H.450 Tandem Gateways 1127
Dial Peers 1129
Q Signaling Supplementary Services 1130
 Disable SIP Supplementary Services for Call Forward and Call Transfer 1131
 Typical Network Scenarios for Call Transfer and Call Forwarding 1131
Configure Call Transfer and Forwarding 1134
 Enable Call Transfer and Forwarding on SCCP Phones at System-Level 1134
 Enable Call-Transfer Recall on SIP Phones at System-Level 1140
 Enable Call Forwarding for a Directory Number 1141
 Call Transfer for a Directory Number 1144
 Configure Call Transfer Options for SCCP Phones 1145
 Verify Call Transfer for SCCP Phones 1147
 Specify Transfer Patterns for Trunk-to-Trunk Calls and Conferences for SIP 1148
 Conference Max-Length 1150
 Block Trunk-to-Trunk Call Transfers for SIP 1151
 Enable H.450.12 Capabilities 1152
 Enable H.323-to-H.323 Connection Capabilities 1154
 Forward Calls Using Local Hairpin Routing 1155
 Enable H.450.7 and QSIG Supplementary Services at System-Level 1157
 Enable H.450.7 and QSIG Supplementary Services on a Dial Peer 1159
 Disable SIP Supplementary Services for Call Forward and Call Transfer 1160
 Enable Interworking with Cisco Unified Communications Manager 1162
 Configure Cisco CME 3.1 or Later to Interwork with Cisco Unified Communications Manager 1163
 Enable Cisco Unified Communications Manager to Interwork with Cisco Unified CME 1166
 Troubleshooting Call Transfer and Forward Configuration 1167
Configure SIP-to-SIP Phone Call Forwarding 1168
Configure Call Forward Unregistered for SIP IP Phones 1171
 Troubleshooting Tips for Call Forward Unregistered 1171
Configure Keepalive Timer Expiration in SIP Phones 1172
Configure Call-Forwarding-All Softkey URI on SIP Phones 1173
Specify Number of 3XX Responses To be Handled on SIP Phones 1174
Configure Call Transfer on SIP Phones 1175
Configuration Examples for Call Transfer and Forwarding 1176
 Example for Configuring H.450.2 and H.450.3 Support 1176
 Example for Configuring Basic Call Forwarding 1177
 Example for Configuring Call Forwarding Blocked for Local Calls 1177
 Example for Configuring Transfer Patterns 1177
 Example for Configuring Maximum Length of Transfer Number 1177
 Example for Configuring Conference Transfer Patterns 1178
 Example for Blocking All Call Transfers 1178
 Example for Configuring Selective Call Forwarding 1178
 Example for Configuring Call Transfer 1179
 Example for Configuring Call Transfer Recall for SCCP Phones 1180
 Example for Configuring Call-Transfer Recall for SIP Phones 1180
 Example for Enabling H.450.12 Capabilities 1181
 Example for Enabling H.450.7 and QSIG Supplementary Services 1181
 Example for Configuring Cisco Unified CME and Cisco Unified Communications Manager in Same Network 1181
 Example for Configuring H.450 Tandem Gateway Working with Cisco Unified CME and Cisco Unified Communications Manager 1185
 Example for Configuring Call Forward to Cisco Unity Express 1187
 Example for Configuring Call Forward Unregistered for SIP IP Phones 1187
 Example for Configuring Keepalive Timer Expiration in SIP Phones 1188
Where to Go Next 1189
Feature Information for Call Transfer and Forwarding 1189

CHAPTER 44
Call Coverage Features 1195
 Information About Call Coverage Features 1195
 Call Coverage Summary 1195
Out-of-Dial Dialog REFER 1197
Call Hunt 1198
Call Pickup 1199
Call Waiting 1201
 Call-Waiting Beep for SCCP Phones 1201
 Call-Waiting Ring for SCCP Phones 1202
 Cancel Call Waiting 1202
Callback Busy Subscriber 1202
Hunt Groups 1203
 Ephone-Hunt Groups and Voice Hunt-Groups Comparison 1205
 Sequential Hunt Groups 1205
 Peer Hunt Groups 1206
 Longest-Idle Hunt Groups 1207
 Parallel Hunt Groups (Call Blast) 1208
View and Join for Voice Hunt Groups 1209
Enable User Interface to View, Join, and Unjoin Voice Hunt Groups on SCCP Phone 1210
Configure Service URL Button On SCCP Phone Line Key 1211
Configure Service URL Button On SIP Phone Line Key 1213
 Display Support for the Name of a Called Voice Hunt-Group 1215
 Support for Voice Hunt Group Descriptions 1216
 Prevent Local Call Forwarding to the Final Agent in a Voice Hunt-Groups 1216
 Enhancement of Support for Voice Hunt Group Agent Statistics 1217
 Enhancement of Support for Ephone-Hunt Group Agent Statistics 1217
Hunt Group Agent Availability Options 1217
Dynamic Ephone Hunt Group Membership 1219
Dynamically Join or Unjoin Multiple Voice Hunt Groups 1220
Agent Status Control for Ephone Hunt Group 1221
Agent Status Control for Voice Hunt Group 1222
Members Logout for Ephone Hunt Group 1224
Members Logout for Voice Hunt Group 1224
Automatic Agent Status Not-Ready for Ephone Hunt Group 1224
Automatic Agent Status Not-Ready for Voice Hunt Group 1225
All Agents Logged Out Display on SIP Phones 1226
Presentation of Calls for Ephone Hunt Group 1226
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation of Calls for Voice Hunt Group</td>
<td>1226</td>
</tr>
<tr>
<td>Night Service</td>
<td>1227</td>
</tr>
<tr>
<td>Overlaid Ephone-dns</td>
<td>1229</td>
</tr>
<tr>
<td>Shared- Line Overlays</td>
<td>1231</td>
</tr>
<tr>
<td>Call Waiting for Overlaid Ephone-dns</td>
<td>1232</td>
</tr>
<tr>
<td>Extend Calls for Overlaid Ephone-dns to Other Buttons on the Same Phone</td>
<td>1234</td>
</tr>
<tr>
<td>Configure Call Coverage Features</td>
<td>1234</td>
</tr>
<tr>
<td>Configure Call Hunt on SCCP Phones</td>
<td>1234</td>
</tr>
<tr>
<td>Verify Call Hunt Configuration on SCCP Phones</td>
<td>1236</td>
</tr>
<tr>
<td>Configure Call Hunt on SIP Phones</td>
<td>1237</td>
</tr>
<tr>
<td>Enable Call Pickup</td>
<td>1238</td>
</tr>
<tr>
<td>Configure Call-Waiting Indicator Tone on SCCP Phone</td>
<td>1241</td>
</tr>
<tr>
<td>Verify Call-Waiting Indicator Tone on SCCP Phone</td>
<td>1243</td>
</tr>
<tr>
<td>Configure Cancel Call Waiting on SCCP Phone</td>
<td>1244</td>
</tr>
<tr>
<td>Enable Call Waiting on SIP Phones</td>
<td>1246</td>
</tr>
<tr>
<td>Configure Ephone-Hunt Groups on SCCP Phones</td>
<td>1247</td>
</tr>
<tr>
<td>Verify Ephone Hunt Groups Configuration</td>
<td>1254</td>
</tr>
<tr>
<td>Configure Voice-Hunt Groups</td>
<td>1257</td>
</tr>
<tr>
<td>Verify Voice Hunt Groups Configuration</td>
<td>1263</td>
</tr>
<tr>
<td>Enable Audible Tone for Successful Login and Logout of a Hunt Group on SCCP Phone</td>
<td>1266</td>
</tr>
<tr>
<td>Enable the Collection of Call Statistics for Voice Hunt-Groups</td>
<td>1267</td>
</tr>
<tr>
<td>Associate a Name with a Called Voice Hunt-Group</td>
<td>1268</td>
</tr>
<tr>
<td>Prevent Local Call Forwarding to Final Agent in Voice Hunt-Groups</td>
<td>1270</td>
</tr>
<tr>
<td>Configure Night Service on SCCP Phones</td>
<td>1271</td>
</tr>
<tr>
<td>Configure Night Service on SIP Phones</td>
<td>1274</td>
</tr>
<tr>
<td>Verify Night Service Configuration on SCCP Phones</td>
<td>1279</td>
</tr>
<tr>
<td>Verify Night Service Configuration on SIP Phones</td>
<td>1282</td>
</tr>
<tr>
<td>Configure Overlaid Ephone-dns on SCCP Phones</td>
<td>1283</td>
</tr>
<tr>
<td>Verify Overlaid Ephone-dns Configuration on SCCP Phone</td>
<td>1286</td>
</tr>
<tr>
<td>Enable Out-Of-Dialog REFER</td>
<td>1287</td>
</tr>
<tr>
<td>Verify OOD-R Configuration</td>
<td>1289</td>
</tr>
<tr>
<td>Troubleshooting OOD-R</td>
<td>1289</td>
</tr>
<tr>
<td>Configuration Examples for Call Coverage Features</td>
<td>1290</td>
</tr>
<tr>
<td>Call Hunt: Examples</td>
<td>1290</td>
</tr>
</tbody>
</table>
Example for Setting Ephone-dn Dial-Peer Preference 1290
Example for Disabling Huntstop 1290
Example for Channel Huntstop 1291
Example for SIP Call Hunt 1291
Example for Call Pickup 1291
Example for Call-Waiting Beep 1292
Example for Call-Waiting Ring 1292
Examples for Hunt Group 1292
Example for Sequential Ephone-Hunt Group 1292
Example for Peer Ephone-Hunt Group 1293
Example for Longest-idle Ephone-Hunt Group 1293
Example for Longest-idle Ephone-Hunt Group Using From-Ring Option 1293
Example for Sequential Hunt Group 1294
Example for Preventing Local Call Forwarding in Parallel Voice Hunt-Groups 1295
Example for Associating a Name with a Called Voice Hunt-Group 1295
Example for Specifying a Description for a Voice Hunt-Group 1296
Example for Logout Display 1296
Example for Displaying Total Logged-In Time and Total Logged-Out Time for Each Hunt-Group Agent 1297
Example for Dynamic Membership To Ephone-Hunt 1298
Example for Dynamic Membership To Voice Hunt-Group 1299
Example for Agent Status Control using SCCP Phones 1300
Example for Agent Status Control using SIP Phones 1300
Example for Automatic Agent Not-Ready for Ephone Hunt Group 1301
Example for Automatic Agent Not-Ready for Voice Hunt Group 1301
Example for Call Statistics From a Voice Hunt Group 1302
Example for Night Service on SCCP Phones 1303
Example for Night Service on SIP Phones 1304
Examples for Overlaid Ephone-dns 1305

Where to Go Next 1313
Feature Information for Call Coverage Features 1315

CHAPTER 45

Caller ID Blocking 1323
Restrictions for Caller ID Blocking 1323
Feature Information for Creating Templates 1401

CHAPTER 48

Modify Cisco Unified IP Phone Options 1403

Information About Cisco Unified IP Phone Options 1403

Clear Directory Entries 1403

Enable Customized Background Images for Cisco Unified IP Phone 7970 1403

Customized Button Layout 1404

Customized Phone User Interface Services 1405

Fixed Line-Feature Buttons for Cisco Unified IP Phone 7931G 1406

Header Bar Display 1406

Phone Labels 1406

Programmable Vendor Parameters for Phones 1407

Push-to-Talk 1407

Support for Cisco Jabber 1408

Feature Support for Cisco Jabber 1408

Cisco Jabber Client Support on CME 1409

System Message Display 1410

URL Provisioning for Feature Buttons 1411

My Phone Apps for Cisco Unified SIP IP Phones 1411

Configure Cisco Unified IP Phone Options 1412

Enable Edit User Settings 1412

Clear Call-History Details from a SCCP Phone 1413

Troubleshooting Tips for Clearing Call-History Details from a SCCP Phone 1414

Configure Dial Rules for Cisco Softphone SIP Client 1415

Select Button Layout for a Cisco Unified SCCP IP Phone 7931G 1417

Configure Button Layout on SCCP Phones 1418

Configure Button Layout on SIP Phones 1420

Configure Service URL Button on a SIP IP Phone Line Key 1422

Configure Service URL Button on a SCCP Phone Line Key 1424

Configure Feature Button on a Cisco Unified SIP Phone Line Key 1425

Configure Feature Button on a Cisco Unified SCCP Line Key 1428

Block Local Services on Phone User Interface 1430

Modify Header Bar Display on SCCP Phones 1431

Modify Header Bar Display Supported SIP Phones 1432
Contents

VRF-Aware Cisco Unified CME for SCCP Phones 1496

Multi-VRF Support on Cisco Unified CME for SIP Phones 1496

Configure VRF Support 1497

- Create VRF Groups for SCCP Phones 1497
- Create VRF Groups for SIP Phones 1498
- Add Cisco Unified CME SCCP Phones to a VRF Group 1500
- Add Cisco Unified CME SIP Phones to a VRF Group 1502

Configuration Examples for Configuring VRF Support 1504

- Example for Mapping IP Address Ranges to VRF Using DHCP 1504
- Example for Configuring VRF-Aware Hardware Conferencing 1505
- Example for Configuring Cisco Unity Express on Global Voice VRF 1506
- Example for Configuring Multi-VRF Support for Cisco Unified CME SIP Phones 1507

Feature Information for VRF Support 1511

CHAPTER 52

Configure the XML API 1513

Information About XML API 1513

- XML API Definition 1513
- XML API Provision Using IXI 1513
- XML API for Cisco Unified CME 1513
- Target Audience 1514
- Prerequisites 1514

Information on XML API for Cisco Unified CME 1514

Examples for XML API Methods 1517

- ISexecCLI 1518
- ISSaveConfig 1519
- ISgetGlobal 1519
- ISgetDevice 1532
- ISgetDeviceTemplate 1536
- ISgetExtension 1539
- ISgetExtensionTemplate 1543
- ISgetUser 1545
- ISgetUserProfile 1545
- ISgetUtilityDirectory 1547
- ISgetVoiceRegGlobal 1547
ISgetSipDevice 1548
ISgetSipExtension 1549
ISgetSessionServer 1550
ISgetVoiceHuntGroup 1550
ISgetPresenceGlobal 1551

Configure XML API 1552
Define XML Transport Parameters 1552
Define XML Application Parameters 1553
Define Authentication for XML Access 1554
Define XML Event Table Parameters 1555
Troubleshooting the XML Interface 1556

Configuration Examples for XML API 1557
Example for XML Transport Parameters 1557
Example for XML Application Parameters 1557
Example for XML Authentication 1557
Example for XML Event Table 1557

Where to Go Next 1557

Feature Information for XML API 1558
Cisco Unified CME Features Roadmap

This roadmap lists the features that are documented in the Cisco Unified Communications Manager Express System Administrator Guide and maps them to the modules in which they appear.

The documentation set for this product strives to use bias-free language. For purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Feature and Release Support

Table 1: Supported Cisco Unified CME Features, on page 1 lists the Cisco Unified Communications Manager Express (Cisco Unified CME) version that introduced support for a given feature. Unless noted otherwise, subsequent versions of Cisco Unified CME software also support that feature. Only features that were introduced or modified in Cisco Unified CME 4.0 or a later version appear in the table. Not all features may be supported in your Cisco Unified CME software version.

To determine the correct Cisco IOS release to support a specific Cisco Unified CME version, see Cisco Unified CME and Cisco IOS Software Version Compatibility Matrix.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. An account on Cisco.com is not required.

Table 1: Supported Cisco Unified CME Features

<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified CME 14.1</td>
<td>Support for Unified CME on Cisco 8200 and C8300 Edge Series Platforms</td>
<td>From Cisco IOS XE Bengaluru 17.6.1a onwards, Unified CME is supported on Cisco 8200, Cisco 8200L, and C8300 Edge platforms.</td>
<td>Unified CME 14.1 Supported Firmware, Platforms, Memory, and Voice Products</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Support for Cisco 1100 Platform</td>
<td>From Cisco IOS XE Bengaluru 17.5.1a onwards Unified CME is supported on Cisco 1100 Integrated Services Router (ISR)</td>
<td>Unified CME 14.1 Supported Firmware, Platforms, Memory, and Voice Products</td>
</tr>
<tr>
<td></td>
<td>Smart Licensing Using Policy</td>
<td>From Cisco IOS XE Bengaluru 17.4.1a onwards, support is introduced for tracking license usage that is based on the historical usage data.</td>
<td>Licensing, on page 69</td>
</tr>
<tr>
<td></td>
<td>Support for C8000V</td>
<td>Cisco IOS XE Bengaluru 17.4.1a onwards, support is introduced for Virtual CME on C8000V series.</td>
<td>Overview</td>
</tr>
</tbody>
</table>

Unified CME 12.6

<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toll Fraud Prevention for Line Side SIP on Unified CME</td>
<td>Support for Toll Fraud Prevention for Line Side SIP on Unified CME.</td>
<td>Toll Fraud Prevention for SIP Line Side on Unified CME, on page 508</td>
</tr>
<tr>
<td></td>
<td>GUI on Unified CME</td>
<td>End of Support for GUI on Unified CME.</td>
<td>Unified CME Graphical User Interface Deprecation, on page 65</td>
</tr>
<tr>
<td></td>
<td>Computer Telephony Integration (CTI)</td>
<td>End of Support for CTI CSTA Protocol Suite on Unified CME.</td>
<td>CTI CSTA Protocol Suite Deprecation, on page 66</td>
</tr>
</tbody>
</table>

Unified CME 12.5
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual CME on Cisco Cloud Services Router 1000V Series</td>
<td>Support for Virtual CME on Cisco Cloud Services Router 1000V Series.</td>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Key Expansion Module (KEM)s on Cisco 8800 Series IP Phones on Unified CME</td>
<td>Support for CP-8800-A-KEM) and CP-8800-V-KEM Modules with Cisco 8800 Series IP Phones on Unified CME.</td>
<td>KEM Support for Cisco Unified SIP IP Phones, on page 256</td>
<td></td>
</tr>
<tr>
<td>Cisco ATA 191 on Unified CME</td>
<td>Native support for Cisco ATA 191 on Unified CME.</td>
<td>Cisco ATAs in SIP Mode, on page 243</td>
<td></td>
</tr>
<tr>
<td>Cisco Jabber on Unified CME</td>
<td>Support for Cisco Jabber 12.1.0 in Phone-only Mode on Unified CME.</td>
<td>Support for Cisco Jabber, on page 1408</td>
<td></td>
</tr>
<tr>
<td>Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832 with Unified CME</td>
<td>Support for Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832 on Unified CME Support for new Softkeys on Unified CME 12.3 and later releases.</td>
<td>Softkeys on IP Phones, on page 897</td>
<td></td>
</tr>
<tr>
<td>Unified CME 12.2</td>
<td>Music On Hold from Live Feed on Unified CME</td>
<td>Support for Music On Hold from live feed on Unified CME (Cisco 4000 Series Integrated Services Routers)</td>
<td>Music on Hold from a Live Feed on Cisco 4000 Series Integrated Services Routers, on page 806</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Voice Hunt Group Enhancements on Unified CME</td>
<td>Support for Voice Hunt Group with Shared Lines and Mixed Shared Lines on Unified CME</td>
<td>Hunt Groups, on page 1203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support for Voice Class Codec (VCC) for SIP Shared Lines on Unified CME</td>
<td>Shared Lines with Voice Class Codec Support, on page 232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support for All Agents Logged Out Message Display on SIP Phones</td>
<td>All Agents Logged Out Display on SIP Phones, on page 1226</td>
</tr>
<tr>
<td>Unified CME 12.1</td>
<td>No New features added in the Unified CME 12.1 Release.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unified CME 12.0</td>
<td>New Phone Support</td>
<td>As part of Unified CME Release 12.0, new phone support for Cisco IP Phones 8821, 8845, 8865 was introduced for Cisco Integrated Services Router Generation 2. The support is introduced for T-Train Release Version, 15.7(3)M and later.</td>
<td>Phone Feature Support Guide for Cisco Unified CME, Cisco Unified SRST, Cisco Unified E-SRST, and Cisco Unified Secure SRST</td>
</tr>
<tr>
<td></td>
<td>Idle URL for SIP Phones</td>
<td>Support for Idle URL feature was introduced for SIP Phones, as part of Unified CME Release 12.0.</td>
<td>Information About Cisco Unified IP Phone Options, on page 1403</td>
</tr>
<tr>
<td></td>
<td>Calling Number Local</td>
<td>Support to configure Calling Number Local under voice register global configuration mode was introduced as part of Unified CME Release 12.0.</td>
<td>Calling Number Local, on page 1127</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Called-Name Display (Dialed Number Identification Service)</td>
<td>Support to configure Dialed Number Identification Service for phones that are configured under a voice hunt group was introduced as part of Unified CME Release 12.0.</td>
<td>Called-Name Display, on page 642</td>
</tr>
<tr>
<td></td>
<td>cBarge on Mixed Shared Lines</td>
<td>Support for cBarge functionality in a mixed deployment scenario was introduced as part of Unified CME Release 12.0.</td>
<td>Barge and Privacy, on page 1011</td>
</tr>
<tr>
<td>Unified CME 11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.7</td>
<td>New Phone Support</td>
<td>As part of Unified CME Release 11.7, new phone support for Cisco IP Phones 8821, 8845, 8865 was introduced. With this addition, Unified CME supports all phone models in Cisco IP Phone 7800 Series and Cisco IP Phone 8800 Series.</td>
<td>Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST</td>
</tr>
<tr>
<td></td>
<td>Transcoding support for Music On Hold (MOH)</td>
<td>Transcoding for MOH is supported on Cisco 4000 Series Integrated Services Router from Cisco Unified CME Release 11.7 onwards.</td>
<td>Music on Hold, on page 803</td>
</tr>
<tr>
<td></td>
<td>Support for Conferencing on Unified CME</td>
<td>Provides support for conferencing on Cisco 4000 Series Integrated Services Router from Cisco Unified CME Release 11.7 onwards.</td>
<td>Conferencing, on page 1329</td>
</tr>
<tr>
<td></td>
<td>Support for Cisco Smart License</td>
<td>Provides support for Smart Licensing apart from the existing CSL licensing model from Cisco Unified CME Release 11.7 onwards.</td>
<td>Cisco Unified CME Overview, on page 65</td>
</tr>
<tr>
<td>Unified CME 11.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>11.6</td>
<td>Extension Assigner for SIP Phones</td>
<td>Provides support for automatically synchronizing configuration changes to backup systems for SIP Phones.</td>
<td>Create Phone Configurations Using Extension Assigner, on page 353</td>
</tr>
<tr>
<td></td>
<td>Call Transfer Recall for SIP Phones</td>
<td>Support for call transfer recall functionality on SIP phones.</td>
<td>Call Transfer Recall on SIP Phones, on page 1119</td>
</tr>
<tr>
<td></td>
<td>Secondary Unified CME for SIP Phones</td>
<td>Failover to Redundant Router—Sites can be set up with a primary and secondary Cisco Unified CME router to provide redundant Cisco Unified CME capability. SIP Phones automatically register at the secondary router if the primary router fails and later rehome to the primary router when it is operational again.</td>
<td>Redundant Cisco Unified CME Router for SIP Phones, on page 164</td>
</tr>
<tr>
<td></td>
<td>VHG Enhancements</td>
<td>Support for voice hunt group features such as Hlog support on SIP phone, DND Softkey as Hlog, Members Logout, Auto Logout, Presentation of calls, and Dynamic Agent Join or Unjoin Status message display on SIP phones.</td>
<td>Call Coverage Features, on page 1195 Customize Softkeys, on page 897</td>
</tr>
<tr>
<td></td>
<td>Night Service (Mixed Mode)</td>
<td>Support for night service functionality in a mixed deployment scenario.</td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td></td>
<td>Secondary Dial Tone for SIP Phones</td>
<td>Support for Secondary Dial Tone on SIP Phones.</td>
<td>Configure Dial Plans, on page 449</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Transcoding Support on Unified CME</td>
<td>Support for LTI-based Transcoding on Cisco 4000 Series Integrated Services Router.</td>
<td>Transcoding Support, on page 470</td>
</tr>
<tr>
<td>Cisco Unified CME 11.5</td>
<td>11.5 Auto Registration</td>
<td>Support for auto registration of SIP phones on Unified CME. Introduced the CLI command auto-register in voice register global mode to enable automatic registration of SIP phones on Unified CME.</td>
<td>Auto Registration of SIP Phones on Cisco Unified CME, on page 236</td>
</tr>
<tr>
<td></td>
<td>Night Service</td>
<td>Support for night service functionality on SIP phones.</td>
<td>Night Service, on page 1227</td>
</tr>
<tr>
<td></td>
<td>B-ACD</td>
<td>Support for B-ACD functionality on SIP phones.</td>
<td>Cisco Unified CME B-ACD and Tcl Call-Handling Applications</td>
</tr>
</tbody>
</table>
| Cisco Unified CME 11.0 | 11.0 New Phone Support | Lists the new phones that have been provided with support on Unified CME:
 • Support for Cisco IP Phone 7811
 • Support for Cisco IP Phones 8811, 8831, 8841, 8851, 8851NR, 8861
 • Support for Cisco ATA-190 Phones | Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST |
| Cisco Unified CME 10.5 | 10.5 New Phone Support | Lists the new phones that have been provided with support on Unified CME:
 • Support for Cisco IP Phone 7811
 • Support for Cisco IP Phones 8811, 8831, 8841, 8851, 8851NR, 8861
 • Support for Cisco ATA-190 Phones | Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST |
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
</table>
| 10.5 | New Phone Support | Lists the new phones that have been provided with support on Unified CME:
- Support for Cisco Unified 78xx Series SIP IP Phones
<p>| | Example for Monitoring the Status of Key Expansion Modules | Monitoring the Status of Key Expansion Modules: Example section has been updated to include support the show summary commands. | Example for Monitoring the Status of Key Expansion Modules, on page 344 |
| | Monitoring and Maintaining Cisco Unified CME | Monitoring and Maintaining Cisco Unified CME table has been updated to include the new show commands introduced in this release. | Cisco IOS Commands for Monitoring and Maintaining Cisco Unified CME, on page 345 |
| | Fast Dial | Fast Dial range has been increased to 100. | Enable a Personal Speed Dial Menu on SCCP Phones, on page 942 |
| | Viewing Active Parked Calls | Viewing Active Parked Calls feature enables the user to view the list of active parked calls on SIP and SCCP phones. | View Active Parked Calls, on page 1045 |
| | Distinctive Ring | Distinctive Ring feature enables the user to distinctly identify the type of call. | Call Park Recall Enhancement, on page 1049 |
| | Viewing and Joining Voice Hunt Groups | Viewing and Joining Voice Hunt Groups feature enables the user to view voice hunt group related information on SIP and SCCP phones. | View and Join for Voice Hunt Groups, on page 1209 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynamically Joining or Unjoining Multiple Voice Hunt Groups</td>
<td>Dynamically Joining or Unjoining Multiple Voice Hunt Groups feature provides support for phones to dynamically join the voice hunt groups is added.</td>
<td>Dynamically Join or Unjoin Multiple Voice Hunt Groups, on page 1220</td>
</tr>
<tr>
<td></td>
<td>Audible Tone</td>
<td>The Audible Tone feature has been introduced on SCCP phones to enable the user to receive a confirmation on successful log in or log out from an ephone hunt group and voice hunt group.</td>
<td>Enable Audible Tone for Successful Login and Logout of a Hunt Group on SCCP Phone, on page 1266</td>
</tr>
<tr>
<td></td>
<td>Cisco Jabber Client Support on CME</td>
<td>A new phone type, 'Jabber-CSF-Client' has been added to configure the Cisco Jabber client under voice register pool.</td>
<td>Cisco Jabber Client Support on CME, on page 1409</td>
</tr>
<tr>
<td></td>
<td>Multi VRF Support</td>
<td>Multi VRF Support feature has been enhanced to provide support for SIP phones.</td>
<td>Example for Configuring Multi- VRF Support for Cisco Unified CME SIP Phones, on page 1507</td>
</tr>
<tr>
<td>Cisco Unified CME 10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>Fast-Track Configuration Approach for Cisco Unified SIP IP Phones</td>
<td>Fast-Track Configuration feature provides a new configuration utility using which you can input the phone characteristics of a new SIP phone model.</td>
<td>Fast-Track Configuration Approach for Cisco Unified SIP IP Phones, on page 258</td>
</tr>
<tr>
<td></td>
<td>Cisco Jabber for Microsoft Windows</td>
<td>Cisco Jabber for Windows client is supported from Cisco Unified CME Release 10 onwards.</td>
<td>Cisco Jabber Client Support on CME, on page 1409</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified CME-SRST License</td>
<td>Cisco Unified CME-SRST permanent license has been introduced along with new license package called Collaboration Professional Suite.</td>
<td>Licensing, on page 69</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Secure SIP Trunk Support on Cisco Unified CME</td>
<td>Supports supplementary services in secure SRTP and SRTP fallback modes on SIP trunk of the SCCP Cisco Unified CME.</td>
<td>Secure SIP Trunk Support on Cisco Unified CME, on page 575</td>
<td></td>
</tr>
<tr>
<td>Cisco Unified CME 9.5</td>
<td>After-hours Pattern Blocking Support for Regular Expressions</td>
<td>Support for after-hours pattern blocking is extended to regular expression patterns for dial plans on Cisco Unified SIP and Cisco Unified SCCP IP phones.</td>
<td>After-Hours Pattern-Blocking Support for Regular Expressions, on page 1026</td>
</tr>
<tr>
<td>9.5</td>
<td>Call Park Recall Enhancement</td>
<td>The recall force keyword is added to the <code>call-park system</code> command in telephony-service configuration mode to allow a user to force the recall or transfer of a parked call to the phone that put the call in park.</td>
<td>Call Park Recall Enhancement, on page 1049</td>
</tr>
<tr>
<td></td>
<td>Display Support for Name of Called Voice Hunt Groups</td>
<td>The display of the name of the called voice-hunt-group pilot is supported by configuring the following command in voice hunt-group or ephone-hunt configuration mode: <code>[no] name primary pilot name [secondary secondary pilot name]</code></td>
<td>Display Support for the Name of a Called Voice Hunt-Group, on page 1215</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| | Enhancement of Support for Hunt Group Agent Statistics | Support for hunt group agent statistics of Cisco Unified SCCP IP phones is enhanced to include the following information:
- Total logged in time—On an hourly basis, displays the duration (in sec) since a specific agent logged into a hunt group.
- Total logged out time—On an hourly basis, displays the duration (in sec) since a specific agent logged out of a hunt group. | Enhancement of Support for Ephone-Hunt Group Agent Statistics, on page 1217 |
<p>| | HTTPS Support in Cisco Unified CME | With Hypertext Transfer Protocol Secure (HTTPS) support in Cisco Unified CME 9.5 and later versions, these services can be invoked using an HTTPS connection from the phones to Cisco Unified CME. | HTTPS Provisioning For Cisco Unified IP Phones, on page 578 |
| | Localization Enhancements in Cisco Unified CME | Canadian French is supported as a user-defined locale on Cisco Unified SIP IP phones and Cisco Unified SCCP IP phones when the correct locale package is installed. | Localization Enhancements in Cisco Unified CME, on page 407 |
| | Preventing Local-Call Forwarding to Final Agent in Voice Hunt Groups | Local calls are prevented from being forwarded to the final destination using the no forward local-calls to-final command in parallel or sequential voice hunt-group configuration mode. | Prevent Local Call Forwarding to the Final Agent in a Voice Hunt-Groups, on page 1216 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Voice Hunt Group Descriptions</td>
<td>A description can be specified for a voice hunt group using the description command in voice hunt-group configuration mode.</td>
<td>Support for Voice Hunt Group Descriptions, on page 1216</td>
<td></td>
</tr>
<tr>
<td>Trunk to Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones</td>
<td>Trunk to trunk transfer blocking for toll bypass fraud prevention is supported on Cisco Unified Session Initiation Protocol (SIP) IP phones also.</td>
<td>Trunk-to-Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones, on page 1111</td>
<td></td>
</tr>
<tr>
<td>Cisco Unified CME 9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>KEM Support for Cisco Unified 8961, 9951, and 9971 SIP IP Phones</td>
<td>Increases line key and feature key appearances, speed dials, or programmable buttons on Cisco Unified SIP IP phones.</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Cisco ATA-187</td>
<td>Supports T.38 fax relay and fax pass-through on Cisco ATA-187.</td>
<td>Configure Cisco ATA Support in SCCP Mode, on page 301</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified SIP IP Phones</td>
<td>Adds SIP support for the following phone types:</td>
<td>Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST</td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified 6901 and 6911 IP Phones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified 6921, 6941, 6945, and 6961 IP Phones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified 8941 and 8945 IP Phones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| Localization Enhancements for Cisco Unified SIP IP Phones | Provides the following enhanced localization support for Cisco Unified SIP IP phones:
• Localization support for Cisco Unified 6941 and 6945 SIP IP Phones.
• Locale installer that supports a single procedure for all Cisco Unified SIP IP phones. | Localization Support for Cisco Unified SIP IP Phones, on page 409 |
<p>| MIB Support for Extension Mobility in Cisco Unified SCCP IP Phones | Adds new MIB objects to monitor Cisco Unified SCCP IP Extension Mobility (EM) phones. | MIB Support for Extension Mobility in Cisco Unified SCCP IP Phones, on page 708 |
| Mixed Shared Lines | Allows Cisco Unified SIP and SCCP IP phones to share a common directory number. | Mixed Shared Lines, on page 233 |
| Multiple Calls Per Line | Overcomes the limitation on the maximum number of calls per line. | Multiple Calls Per Line, on page 251 |
| My Phone Apps for Cisco Unified SIP IP Phones | Adds support for My Phone Apps feature on Cisco Unified SIP IP phones. | My Phone Apps for Cisco Unified SIP IP Phones, on page 1411 |
| Olson Timezone | Eliminates the need to update time zone commands or phone loads to accommodate a new country with a new time zone or an existing country whose city or state wants to change their time zone, using the olsontimezone command in either telephony-service or voice register global configuration mode. | Olson Timezones, on page 128 |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paging Group Support for Cisco Unified SIP IP Phones</td>
<td>Allows you to specify a paging-dn tag and dial the paging extension number to page the Cisco Unified SIP IP phone associated with the paging-dn tag or paging group using the <code>paging-dn</code> command in voice register pool or voice register template configuration mode.</td>
<td>Paging Group Support for Cisco Unified SIP IP Phones, on page 832</td>
</tr>
<tr>
<td>Programmable Line Keys for Cisco Unified SIP IP Phones</td>
<td>Adds support for softkeys as programmable line keys on Cisco Unified 6911, 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones.</td>
<td>Programmable Line Keys (PLK), on page 902</td>
</tr>
</tbody>
</table>
| Single Number Reach for Cisco Unified SIP IP Phones | Supports the following SNR features for Cisco Unified SIP IP phones:
- Enable and disable the EM feature.
- Manual pull back of a call on a mobile phone.
- Send a call to a mobile PSTN phone.
- Send a call to a mobile phone regardless of whether the SNR phone is the originating or the terminating side. | Single Number Reach for Cisco Unified SIP IP Phones, on page 880 |
<p>| Unsolicited Notify for Shared Line and Presence Events for Cisco Unified SIP IP Phones | Allows the Unsolicited Notify mechanism to reduce network traffic during Cisco Unified SIP IP phone registration using the bulk registration method. | Unsolicited Notify for Shared Line and Presence Events for Cisco Unified SIP IP Phones, on page 168 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual SNR DN for Cisco Unified SCCP IP Phones</td>
<td>Allows a call to be made to a virtual SNR DN and allows the SNR feature to be launched even when the SNR DN is not associated with any phone.</td>
<td>Virtual SNR DN for Cisco Unified SCCP IP Phones, on page 882</td>
</tr>
<tr>
<td></td>
<td>Voice Hunt Group Enhancements</td>
<td>Allows all ephone and voice hunt group call statistics to be written to a file using the <code>hunt-group statistics write-all</code> command.</td>
<td>Hunt Groups, on page 1203</td>
</tr>
<tr>
<td>Cisco Unified CME 8.8</td>
<td>CTI CSTA Protocol Suite Enhancement</td>
<td>Enables the dial-via-office functionality from computer-based CSTA client applications and adds support to CSTA services and events.</td>
<td>CTI CSTA Protocol Suite Deprecation, on page 66</td>
</tr>
<tr>
<td></td>
<td>HFS Download Support for IP Phone Firmware and Configuration Files</td>
<td>Provides download support for SIP and SCCP IP phone firmware, scripts, midlets, and configuration files using the HTTP File-Fetch Server (HFS) infrastructure.</td>
<td>HFS Download Support for IP Phone Firmware and Configuration Files, on page 160</td>
</tr>
<tr>
<td></td>
<td>HTTPS Provisioning for Cisco Unified IP Phones</td>
<td>Allows you to import an IP phone's trusted certificate to an IP phone's CTL file using the <code>import certificate</code> command.</td>
<td>HTTPS support for an External Server, on page 578</td>
</tr>
<tr>
<td></td>
<td>Localization Enhancement</td>
<td>Adds localization support for Cisco Unified 3905 SIP and Cisco Unified 6945, 8941, and 8945 SCCP IP Phones.</td>
<td>System-Defined Locales, on page 408</td>
</tr>
<tr>
<td></td>
<td>Programmable Line Keys Enhancement</td>
<td>Adds support for softkeys as programmable line keys on Cisco Unified 6945, 8941, and 8945 SCCP IP Phones.</td>
<td>Programmable Line Keys (PLK), on page 902</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Real-Time Transport Protocol Call Information Display Enhancement</td>
<td>Allows you to display information on active RTP calls using the <code>show ephone rtp connections</code> command. The output from this command provides an overview of all the connections in the system, narrowing the criteria for debugging pulse code modulation and Cisco Unified CME packets without a sniffer.</td>
<td>Real-Time Transport Protocol Call Information Display Enhancement, on page 253</td>
</tr>
<tr>
<td></td>
<td>SIP Intercom</td>
<td>Adds intercom support to Cisco Unified SIP phones connected to a Cisco Unified CME system.</td>
<td>SIP Intercom, on page 758</td>
</tr>
<tr>
<td>Cisco Unified CME 8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Bulk Registration Support for SIP Phones</td>
<td>Adds support for SIP phone bulk registration.</td>
<td>Bulk Registration Support for SIP Phones, on page 153</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Clear Directory Entries in Missed/Placed/Received Calls List</td>
<td>Adds ability to clear phone call logs. Adds support for SIP client software for iPhone and iPod Touch.</td>
<td>Clear Directory Entries, on page 1403</td>
<td></td>
</tr>
<tr>
<td>Support for Cisco Jabber, on page 1408</td>
<td></td>
<td>Support for Cisco Jabber, on page 1408</td>
<td></td>
</tr>
<tr>
<td>Enhancement for Call-Forward Unregistered</td>
<td>Adds support for the CFU feature on SIP IP phones using the <code>call-forward b2bua unregistered</code> command under voice register dn tag.</td>
<td>Call Forward Unregistered, on page 1108</td>
<td></td>
</tr>
<tr>
<td>Extension Mobility Support for SIP phone</td>
<td>Adds SIP phone support to extension mobility.</td>
<td>Extension Mobility for SIP Phones Enhancement, on page 708</td>
<td></td>
</tr>
<tr>
<td>Increase in the Number of Translation Rules</td>
<td>Increases the number of translation rules from 15 to 100 rules per translation rule table.</td>
<td>Define Translation Rules for Callback-Number on SIP Phones, on page 463</td>
<td></td>
</tr>
<tr>
<td>Localization Support for SIP IP Phones</td>
<td>Adds localization support for SIP IP phones.</td>
<td>Localization Support for Cisco Unified SIP IP Phones, on page 409</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple Locales, on page 410</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure Localization Support on SCCP Phones, on page 411</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure Multiple Locales on SIP Phones, on page 431</td>
<td></td>
</tr>
<tr>
<td>SSL VPN SUPPORT on CUCME with DTLS</td>
<td>Adds enhanced SSL VPN support. Cisco Unified SCCP IP phones such as 7945, 7965, and 7975 located outside of the corporate network are able to register to Cisco Unified CME through an SSL VPN connection.</td>
<td>SSL VPN Support on Cisco Unified CME with DTLS, on page 975</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure SSL VPN Client with DTLS on Cisco Unified CME as VPN Headend, on page 995</td>
<td></td>
</tr>
<tr>
<td>Support for 7926G Wireless SCCP IP Phone</td>
<td>Adds support for 7926G Wireless SCCP IP Phone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows you to use on-board Digital Signal Processor resources (PVDM3) to facilitate adhoc or meet me video conference calls.</td>
<td>Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST on page 469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds video support for IP phones 8961, 9951, and 9971.</td>
<td>SIP Endpoint Video and Camera Support for Cisco Unified IP Phones 8961, 9951, and 9971, on page 960</td>
</tr>
</tbody>
</table>

Cisco Unified CME 8.5
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Customized Button Layout</td>
<td>Allows you to customize the display order of various button types on a phone using the button layout feature. The button layout feature allows you to customize the display of the following button types:</td>
<td>Configure Button Layout on SCCP Phones, on page 1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Line buttons</td>
<td>Configure Button Layout on SIP Phones, on page 1420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Speed Dial buttons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BLF Speed Dial buttons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Feature Buttons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ServiceURL buttons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Customized Phone User</td>
<td>Allows to customize the availability of individual service items such as Extension Mobility, My Phone Apps, and Single Number Reach (SNR) on a phone’s user interface by assigning an individual service item to a button using the Programmable Line Key (PLK) url-button command.</td>
<td>Customized Phone User Interface Services, on page 1405</td>
</tr>
<tr>
<td></td>
<td>Interface Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E.164 Enhancements</td>
<td>Allows to present a phone number in + E.164 telephone numbering format. E.164 is an International Telecommunication Union (ITU-T) recommendation that defines the international public telecommunication numbering plan used in the PSTN and other data networks.</td>
<td>E.164 Enhancements, on page 446</td>
</tr>
<tr>
<td></td>
<td>Enhancement to Voice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Group Restriction</td>
<td></td>
<td>Configure Call Coverage Features, on page 1234</td>
</tr>
<tr>
<td>Feature Policy Softkey Control</td>
<td>Allows you to control softkeys on the Cisco Unified SIP IP Phones 8961, 9951, and 9971 using the feature policy template. The feature policy template allows you to enable and disable a list of feature softkeys on Cisco Unified SIP IP Phones 8961, 9951, and 9971.</td>
<td>Feature Policy Softkey Control, on page 901</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Forced Authorization Code</td>
<td>Allows you to manage call access and call accounting through the Forced Authorization Code (FAC) feature. The FAC feature regulates the type of call a certain caller may place and forces the caller to enter a valid authorization code on the phone before the call is placed. FAC allows you to track callers dialing non-toll-free numbers, long distance numbers, and also for accounting and billing purposes.</td>
<td>Forced Authorization Code, on page 739</td>
<td></td>
</tr>
<tr>
<td>Immediate Divert for SIP Phones</td>
<td></td>
<td>Configure Immediate Divert (iDivert) Softkey on SIP Phone, on page 920</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Allows you to immediately divert a call to a voice messaging system. You can divert a call to a voice messaging system by pressing the iDivert softkey on Cisco Unified SIP IP phones, such as 7940, 7040G, 7960 G, 7945, 7965, 7975, 8961, 9951, and 9971, with voice messaging systems (Cisco Unity Express or Cisco Unity).</td>
<td>Enable Media Flow Mode on SIP Trunks, on page 206</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eliminates the need to terminate RTP and re-originate on Cisco Unified CME through the media flow around feature, reducing media switching latency and increasing the call handling capacity for Cisco Unified CME SIP trunks.</td>
<td>Example for Configuring Overlap Dialing for SCCP IP Phones, on page 220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enables overlap dialing on SCCP and SIP IP phones such as, 7942, 7945, 7962, 7965, 7970, 7971, and 7975.</td>
<td>Park Monitor, on page 1050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allows you to park a call and monitor the status of the parked call until the parked call is retrieved or abandoned. When a Cisco Unified SIP IP Phone 8961, 9951, or 9971 parks a call using the park softkey, the park monitoring feature monitors the status of the parked call.</td>
<td>Enable BLF-Speed-Dial Menu, on page 862</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Allows extension mobility (EM) users to configure IP-based Busy Lamp Field (BLF)-speed-dial settings directly on the phone through the Services feature button. BLF-speed-dial settings are added or modified (changed or deleted) on the phone using a menu available with the Services button.</td>
<td>Programmable Line Keys (PLK)</td>
<td>Programmable Line Keys (PLK), on page 902</td>
</tr>
<tr>
<td></td>
<td>Allows you to program feature buttons or URL services button on phone’s line keys. You can configure line keys as line buttons, speed dials, BLF speed dials, feature buttons, and URL buttons.</td>
<td>SNR Enhancements</td>
<td>Configure Single Number Reach Enhancements on SCCP Phones, on page 887</td>
</tr>
<tr>
<td></td>
<td>Enables Secure Sockets Layer (SSL) Virtual Private Network (VPN) on SCCP IP phones such as 7945, 7965, and 7975.</td>
<td>SSL VPN Client Support on SCCP IP Phones</td>
<td>SSL VPN Client for SCCP IP Phones, on page 975</td>
</tr>
<tr>
<td></td>
<td>XML API for Cisco Unified CME</td>
<td>XML API for Cisco Unified CME</td>
<td>XML API for Cisco Unified CME, on page 1513</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Adds support for eXtensible Markup</td>
<td>Adds support for eXtensible Markup Language (XML) Application Programming Interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language (XML) Application Programming Interface (API).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enables Toll Fraud Prevention on</td>
<td>Enables Toll Fraud Prevention on Cisco Unified CME to secure the Cisco Unified CME</td>
<td>Toll Fraud Prevention, on page 507</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified CME to secure the Cisco Unified CME system against potential toll fraud exploitation by unauthorized users.</td>
<td>system against potential toll fraud exploitation by unauthorized users.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhancements to SIP Phone Configuration</td>
<td>Allows you to verify SIP phone registration process, remove global registration</td>
<td>Cisco Unified CME Commands: show presence global through subnet.</td>
</tr>
<tr>
<td></td>
<td>Allows you to verify SIP phone</td>
<td>registration process, remove global registration parameters, and display details on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>registration process, remove global</td>
<td>phones that attempted to register with Cisco Unified CME and failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>registration parameters, and display</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>details on phones that attempted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to register with Cisco Unified CME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and failed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support for Cisco Unified 6901 and</td>
<td>Adds support for new SCCP IP phones 6901 and 6911.</td>
<td>Ephone-Type Parameters for Supported Phone Types, on page 265</td>
</tr>
<tr>
<td></td>
<td>6911 SCCP IP Phones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco Unified CME 8.0(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>8.0</td>
<td>Cancel Call Waiting</td>
<td>Enables an SCCP phone user to disable Call Waiting for a call they originate.</td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td></td>
<td>CTI CSTA Protocol Suite</td>
<td>Allows computer-based CSTA client applications, such as a Microsoft Office Communicator (MOC) client, to monitor and control the Cisco Unified CME system to enable programmatic control of SCCP telephony devices registered in Cisco Unified CME.</td>
<td>CTI CSTA Protocol Suite Deprecation, on page 66</td>
</tr>
<tr>
<td></td>
<td>IPv6 Support for SCCP Endpoints</td>
<td>Adds IPv6 support for SCCP phones. SCCP Phones can interact with and support any SCCP devices that support IPv4 only or both IPv4 and IPv6 (dual-stack).</td>
<td>Configure IP Phones in IPv4, IPv6, or Dual Stack Mode, on page 170</td>
</tr>
<tr>
<td></td>
<td>Logical Partitioning Class of Restriction (LPCOR)</td>
<td>Enables a single directory number on an IP or analog phone that is registered to Cisco Unified CME to connect to both PSTN and VoIP calls according to restrictions specified by Telecom Regulatory Authority of India (TRAI) regulations.</td>
<td>Call Restriction Regulations, on page 1063</td>
</tr>
<tr>
<td></td>
<td>MLPP enhancements</td>
<td></td>
<td>Configure MLPP, on page 787</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| | Adds enhanced Multilevel | Adds enhanced Multilevel Priority and Preemption (MLPP) features for Cisco Unified CME including:
• Additional MLPP announcements for isolated code (ICA), unauthorized precedence level (UPA), loss of C2 features (LOC2), and vacant code (VCA)
• Multiple service domains for the Defense Switched Network (DSN) and Defense Red Switched Network (DRSN)
• Route codes and service digits in dialing formats
• Support for supplementary services, such as Three-Way Conferencing, Call Pickup, and Cancel Call Waiting on Analog FXS ports | Configure Music on Hold Groups to Support Different Media Sources, on page 817
Music On Hold Enhancement | Adds support for Music on Hold from different media sources. | Internet Protocol - Secure Telephone Equipment Support, on page 247
Secure IP Phone (IP-STE) Support | Adds support for secure IP Phone, IP-STE. | |

Cisco Unified CME 7.1
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Autoconfiguration of Cisco VG202, VG204, and VG224</td>
<td>Allows you to automatically configure the Cisco VG202, VG204, and VG224 Analog Phone Gateway from Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barge and cBarge for SIP Phones</td>
<td>Enables phone users to join a call on a SIP shared-line directory number.</td>
<td>Barge and Privacy, on page 1011</td>
</tr>
<tr>
<td></td>
<td>BLF Monitoring of Ephone-DNs with DND, Call Park, Paging, and Conferencing</td>
<td>Provides Busy Lamp Field (BLF) indicators for directory numbers that become DND-enabled or are configured as call-park slots, paging numbers, or conference numbers.</td>
<td>Presence Service, on page 849</td>
</tr>
<tr>
<td></td>
<td>BLF Monitoring of Devices</td>
<td>Supports device-based BLF monitoring, allowing a watcher to monitor the status of a phone, not only a line on the phone.</td>
<td>Presence Service, on page 849</td>
</tr>
<tr>
<td></td>
<td>Busy Trigger and Channel Huntstop for SIP Phones</td>
<td>Provides a busy trigger and channel huntstop for directory numbers on SIP phones to prevent incoming calls from overloading the phone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call Park Enhancements</td>
<td>Adds Call Park features for SIP phones and enhances the Directed Call Park feature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call Pickup Enhancements</td>
<td>Adds Call Pickup features for SIP phones and enables users to perform Directed Call Pickup using the GPickUp softkey.</td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cisco Unified CME 7.0(1)</td>
<td>DND Enhancement for SIP phones</td>
<td>Modifies DND behavior so that the SIP phone flashes an alert to visually indicate an incoming call instead of ringing and the call can be answered if desired.</td>
<td>Do Not Disturb, on page 661</td>
</tr>
<tr>
<td></td>
<td>DSCP</td>
<td>Supports Differentiated Services Code Point (DSCP) packet marking for Cisco Unified IP phones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Privacy for SIP phones</td>
<td>Enables phone users to block other users from seeing call information or barging into a call on a SIP shared-line directory number.</td>
<td>Barge and Privacy, on page 1011</td>
</tr>
<tr>
<td></td>
<td>Shared-Line Directory Numbers</td>
<td>Adds shared-line directory numbers for SIP phones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Number Reach (SNR)</td>
<td>Enables users to answer incoming calls on their desktop IP phone or at a remote destination, such as a mobile phone.</td>
<td>Configure Single Number Reach, on page 883</td>
</tr>
<tr>
<td></td>
<td>SIP Trunk Video Support for SCCP Endpoints</td>
<td>Supports video calls between SCCP endpoints across different Cisco Unified CME routers connected through a SIP trunk. Supports H.264 codec for video calls.</td>
<td>Video Support, on page 955</td>
</tr>
<tr>
<td></td>
<td>Whisper Intercom</td>
<td>Provides a one-way voice path from the caller to the called party, regardless of whether the called party is busy or idle. The called phone automatically answers in speakerphone mode.</td>
<td>Intercom Lines, on page 757</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7.0(1)</td>
<td>Note Cisco Unified CME 7.0 includes the same features as Cisco Unified CME 4.3, which is renumbered to align with Cisco Unified Communications versions.</td>
<td></td>
<td>Configure System-Level Parameters, on page 170 Upgrade or Downgrade SCCP Phone Firmware, on page 112</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified CME Usability Enhancement</td>
<td>Automatically creates TFTP bindings using the enhanced <code>load</code> command if cnf location is router flash memory or router slot 0 memory.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Introduces locale installer that supports a single procedure for all SCCP IP phones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Automatically creates the required TFTP aliases for localization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Provides backward compatibility with the configuration method in Cisco Unified CME 7.0 and earlier versions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco Unified CME TAPI Enhancement</td>
<td>Introduces a Cisco IOS command that disassociates and reestablishes a TAPI session that is in frozen state or out of synchronization.</td>
<td>Reset and Restart Cisco Unified IP Phones, on page 399</td>
</tr>
<tr>
<td></td>
<td>Cisco Unity Express AXL Enhancement</td>
<td>Automatically synchronizes Cisco Unified CME and Cisco Unity Express passwords.</td>
<td>Voice Mail Integration, on page 521</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified IP Phones</td>
<td></td>
<td>Cisco Unified Communications Manager Express 7.0/4.3 Supported Firmware, Platforms, Memory, and Voice Products</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds SCCP support for the following phone type: Cisco Unified Communications Manager Express 7.0/4.3 Supported Firmware, Platforms, Memory, and Voice Products</td>
<td>Configure VRF Support, on page 1497</td>
</tr>
<tr>
<td></td>
<td>VRF Support on Cisco Unified CME</td>
<td>Adds support for conferencing, transcoding, a RSVP components in Cisco Unified CME through a VRF; also allows soft phones and TAPI clients in data VRF resources to communicate with phones in a VRF voice gateway.</td>
<td>Configure VRF Support, on page 1497</td>
</tr>
<tr>
<td></td>
<td>Configure Barge and Privacy, on page 1014</td>
<td>Enables phone users to join a call on a shared octo-line directory number by pressing the CBarge softkey and converting the call to an ad hoc conference.</td>
<td>Configure Barge and Privacy, on page 1014</td>
</tr>
<tr>
<td>7.0/4.3</td>
<td>Autoprovisioning Directory Numbers in SRST Fallback Mode</td>
<td>Allows you to specify whether Cisco Unified CME in SRST Fallback mode creates octo-line or dual-line directory numbers for ephone-dns that are “learned” automatically from the ephone configuration.</td>
<td>SRST Fallback Mode, on page 1479</td>
</tr>
<tr>
<td></td>
<td>Barge</td>
<td>Enables a transferred call to return to the phone that initiated the transfer if the destination does not answer.</td>
<td>Configure Barge and Privacy, on page 1014</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Cisco 3200 Series Mobile Access Router</td>
<td>Support for Cisco Unified CME on the Cisco 3200 Series Mobile Access Router was added.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco Unified IP Phones</td>
<td>Adds SCCP support for the following phone types:</td>
<td></td>
<td>Cisco Unified Communications Manager Express 7.0/4.3 Supported Firmware, Platforms, Memory, and Voice Products</td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Phone 7915 Expansion Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Phone 7916 Expansion Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Conference Station 7937</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nokia E61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adds SIP support for the following phone types:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Phone 7942G and 7945G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Phone 7962G and 7965G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified IP Phone 7975G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultative Transfer Enhancements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>DocumentedFeature</td>
<td>Modifies the digit-collection process for consultative call transfers. After a phone user presses the Transfer softkey for a consultative transfer, a new consultative call leg is created and the Transfer softkey is not displayed again until the dialed digits of the transfer-to number are matched to a transfer pattern and consultative call leg is in alerting state.</td>
<td>Directory Services, on page 641</td>
</tr>
<tr>
<td></td>
<td>Directory Services, on page 641</td>
<td>Increases the number of entries supported in a search results list from 32 to 240 when using the directory search feature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extension Mobility Enhancement</td>
<td>Adds support for the following:</td>
<td>Extension Mobility, on page 705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic Logout, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configurable time-of-day timers for automatically logging out all EM users.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configurable idle-duration timer for logging out a single user from an idle EM phone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic Clear Call History when a user logs out from EM.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Phone-Type Configuration</td>
<td>Allows you to dynamically add a new phone type to your configuration without upgrading your Cisco IOS software.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Live Record</td>
<td>Enables IP phone users to record a phone conversation when Cisco Unity Express is the voice mail system.</td>
<td>Voice Mail Integration, on page 521</td>
</tr>
<tr>
<td></td>
<td>Maximum Ephones</td>
<td>Sets the maximum number of SCCP phones that can register to Cisco Unified CME using the <code>max-ephones</code> command, without limiting the number that can be configured. This enhancement also expands the maximum number of phones that can be configured to 1000.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Octo-Line Directory Numbers</td>
<td>Adds octo-line directory numbers that support up to eight active calls, both incoming and outgoing, on a single phone button. Unlike a dual-line directory number, an octo-line directory number can split its channels among other phones that share the directory number.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Privacy</td>
<td>Enables phone users to block other users from seeing call information or barging into a call on a shared octo-line directory number.</td>
<td>Configure Barge and Privacy, on page 1014</td>
</tr>
<tr>
<td></td>
<td>Push-to-Talk</td>
<td>Adds support for one-way Push-to-Talk (PTT) in Cisco Unified CME without requiring an external server to support the functionality. PTT is supported in firmware version 1.0.4 and later versions on Cisco Unified wireless IP phones with a thumb button.</td>
<td>Configure One-Way Push-to-Talk on Cisco Unified SCCP Wireless IP Phones, on page 1445</td>
</tr>
<tr>
<td></td>
<td>Speed Dial/Fast Dial Phone User Interface</td>
<td>Allows IP phone users to configure their own speed-dial and fast-dial settings directly from the phone. Extension Mobility users can add or modify speed-dial settings in their user profile after logging in.</td>
<td>Speed Dial, on page 935</td>
</tr>
<tr>
<td></td>
<td>Transfer to Voice Mail</td>
<td>Allows a phone user to transfer a call directly to a voice-mail extension by pressing the TrnsfVM softkey.</td>
<td>Voice Mail Integration, on page 521</td>
</tr>
<tr>
<td></td>
<td>Voice Hunt-Group Enhancements</td>
<td></td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Supports the following Voice Hunt Group features:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Call Forwarding to a Parallel Voice Hunt-Group (Blast Hunt Group).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Call Transfer to a Voice Hunt-Group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Member of Voice Hunt-Group can be a SCCP phone, FXS analog phone, DSO-group, PRI-group, SIP phone, or SIP trunk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2(1)</td>
<td>Call Blocking Enhancements</td>
<td>Adds support for selective call blocking on IP phones and PSTN trunk lines.</td>
<td>Call Blocking, on page 1025</td>
</tr>
<tr>
<td></td>
<td>Extension Assigner Synchronization</td>
<td>Provides support for automatically synchronizing configuration changes to backup systems.</td>
<td>Create Phone Configurations Using Extension Assigner, on page 353</td>
</tr>
<tr>
<td></td>
<td>Extension Mobility Phone User support in Cisco Unified CME GUI</td>
<td>Allows a phone user to use a name and password from an EM profile to log into the Cisco Unified CME GUI for configuring personal speed dials on an EM phone. EM options in the GUI cannot be accessed from the System Administrator or Customer Administrator login screens.</td>
<td>Unified CME Graphical User Interface Deprecation, on page 65</td>
</tr>
</tbody>
</table>

Cisco Unified CME 4.2
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
</table>
| 4.2 | Enhanced 911 Services | • Enables routing to the PSAP closest to the caller by assigning ERLs to zones.
• Allows you to customize E911 services by defining a default ELIN, designated number for callback, expiry time for Last Caller table, and syslog messages for emergency calls.
• Expands the E911 location information to include name and address.
• Uses templates to assign ERLs to a group of phones.
• Adds permanent call detail records. | Enhanced 911 Services, on page 669 |
<p>| | Extension Mobility | Provides the benefit of phone mobility for end users by enabling the user to log into any local Cisco Unified IP phone that is enabled for extension mobility. | Extension Mobility, on page 705 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interoperability with Cisco Unified Contact Center Express (Cisco UCCX)</td>
<td>Enables interoperability between Cisco Unified CME and Cisco Customer Response Solutions (CRS) 5.0 and later versions with Cisco Unified Contact Center Express (Unified CCX), including Cisco Unified IP IVR, enhanced call processing, device and call monitoring, and unattended call transfers to multiple call center agents and basic extension mobility.</td>
<td>Interoperability with Cisco Unified CCX, on page 1457</td>
</tr>
</tbody>
</table>
| | Media Encryption (SRTP) on Cisco Unified Communications Manager Express | Provides the following secure voice call capabilities:
 • Secure call control signaling and media streams in Cisco Unified CME networks using Secure Real-Time Transport Protocol (SRTP) and H.323 protocols.
 • Secure supplementary services for Cisco Unified CME networks using H.323 trunks.
 • Secure Cisco VG224 Analog Phone Gateway endpoints. | Security, on page 561 |
<p>| Cisco Unified CME 4.1 | | | |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Call Forward All Synchronization</td>
<td>When a user enables Call Forward All on a SIP phone using the CfwdAll softkey, the uniform resource identifier (URI) for the service is sent to Cisco Unified CME. When Call Forward All is configured in Cisco Unified CME, the configuration is sent to the SIP phone which updates the CfwdAll softkey to indicate that Call forward All is enabled.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified IP Phones</td>
<td>Adds SCCP support for the following phones:</td>
<td>Cisco Unified CME 4.1 Supported Firmware, Platforms, Memory, and Voice Products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7921G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7942G and 7945G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7962G and 7965G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7975G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds SIP support for the following phones:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 3911</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 3951</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7911G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7941G and 7941G-GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7961G and 7961G-GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7970G and 7971G-GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No additional configuration is required for these phones. They are supported in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>appropriate Cisco IOS commands.</td>
<td></td>
</tr>
<tr>
<td>Directory Services</td>
<td>Supports local directory and local speed dial features for SIP phones.</td>
<td>Directory Services, on page 641</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Disabling SIP Supplementary Services for Call Forward and Call Transfer</td>
<td>Allows you to prevent REFER messages for call transfers and redirect responses for call forwarding from being sent by Cisco Unified CME if a destination gateway does not support supplementary services. Supports disabling of supplementary services if all endpoints use SCCP or all endpoints use SIP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhanced 911 Services for Cisco Unified CME in SRST Fallback Mode</td>
<td>Routes callers dialing 911 to the correct location.</td>
<td>Enhanced 911 Services, on page 669</td>
</tr>
<tr>
<td></td>
<td>KPML</td>
<td>Allows Key Press Markup Language (KPML) to report SIP phone users’ input digit by digit to Cisco Unified CME, which performs pattern recognition by matching a destination pattern to a dial peer as it collects the dialed digits.</td>
<td></td>
</tr>
</tbody>
</table>
| | Multi-Party Conferencing Enhancements | Provides the following enhancements:
 • Enhanced ad-hoc conferences are hardware-based and allow more than three parties.
 • Meet-me conferences consist of at least three parties dialing a meet-me conference number. | Conferencing, on page 1329 |
<p>| | Network Time Protocol | | Network Parameters, on page 127 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allows SIP phones registered to a Cisco Unified CME router to synchronize to a Network Time Protocol (NTP) server, known as the clock primary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out-of-Dial REFER</td>
<td>Allows remote applications to establish calls by sending an out-of-dialog REFER (OOD-R) message to Cisco Unified CME without an initial INVITE. After the REFER message is sent, the remainder of the call setup is independent of the application and the media stream does not flow through the application.</td>
<td>Network Parameters, on page 127</td>
</tr>
<tr>
<td></td>
<td>Presence with BLF Status</td>
<td>Allows presence to support BLF notification features for speed dial buttons and directory call lists for missed calls, placed calls, and received calls. SIP and SCCP phones that support BLF speed-dial and BLF call-list features can subscribe to status notification for internal and external directory numbers.</td>
<td>Presence Service, on page 849</td>
</tr>
<tr>
<td></td>
<td>Restarting Phones</td>
<td>Allows SIP phones to quickly reset using the <code>restart</code> command. Phones contact the TFTP server for updated configuration information and re-register without contacting the DHCP server.</td>
<td>Reset and Restart Cisco Unified IP Phones, on page 399</td>
</tr>
<tr>
<td></td>
<td>Session Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>TCP as Transport</td>
<td>Allows TCP to be used as the transport protocol for supported SIP phones connected to Cisco Unified CME. Previously, only UDP was supported.</td>
<td>Clements</td>
</tr>
<tr>
<td></td>
<td>SIP Dial Plans</td>
<td>Enables SIP phones to perform local digit collection and recognize dial patterns as user input is collected using dial plans. After a pattern is recognized, the SIP phone sends an INVITE message to Cisco Unified CME to initiate the call.</td>
<td>Clements</td>
</tr>
<tr>
<td></td>
<td>Softkeys</td>
<td>Allows you to customize the display and order of softkeys that appear on individual SIP phones during the connected, hold, idle, and seized call states.</td>
<td>Customize Softkeys, on page 897</td>
</tr>
<tr>
<td></td>
<td>Translation Rules</td>
<td>Allows SIP phones in a Cisco Unified CME system to support translation rules with functionality similar to phones running SCCP. Translation rules can be applied to incoming calls for directory numbers on a SIP phone.</td>
<td>Dial Plans, on page 443</td>
</tr>
</tbody>
</table>

Cisco Unified CME 4.0(3)
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0(3)</td>
<td>AMWI</td>
<td>Allows Cisco Unified IP Phone 7911 and Cisco Unified IP Phone 7931G to be configured to receive AMWI (Audible Message Line Indicator) and visual MWI notification from an external voice-messaging system.</td>
<td>Voice Mail Integration, on page 521</td>
</tr>
</tbody>
</table>
| | Cisco Unified IP Phones | Adds support for the following phones:
• Cisco Unified IP Phone 7906G
• Cisco Unified IP Phone 7931G | Cisco Unified CME 4.0(3) Supported Firmware, Platforms, Memory, and Voice Products |
<p>| | DSS | Introduces the DSS (Direct Station Select) feature that allows the phone user to press a single speed-dial line button to transfer an incoming call when the call is in the connected state. This feature is supported on all phones on which monitor line buttons for speed dial or speed-dial line buttons are configured. | Speed Dial, on page 935 |
| | Extension Assigner | Allows installation technicians to assign extension numbers to phones without administrative access to Cisco Unified CME, typically during the installation of new phones or the replacement of broken phones. | Create Phone Configurations Using Extension Assigner, on page 353 |
| | Fax Relay | | Configure Fax Relay, on page 730 |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified CME 4.0(1)</td>
<td></td>
<td>Introduces a SCCP-enhanced feature that adds support for Cisco Fax Relay and Super Group 3 (SG3) to G3 fax relay. The feature allows the fax stream between two SG3 fax machines to negotiate down to G3 speeds (less than 14.4 kbps) allowing SG3 fax machines to interoperate over fax relay with G3 fax machines.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>4.0(1)</td>
<td>Call Forwarding</td>
<td>Automatic call forwarding during night service—Ephone-dns (extensions) can be designated to automatically forward their calls to a specified number during the time that night service is in effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocking call forwarding of local calls—Forwarding of local (internal) calls from other Cisco Unified CME ephones can be blocked. External calls will continue to be forwarded as specified by the configuration for the ephone-dns.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selective call forwarding—Call forwarding for busy and no-answer ephone-dns can be applied selectively based on the number that a caller dials for a particular ephone-dn: the primary number, the secondary number, or either of those numbers expanded through the use of a dial-plan pattern.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| | Call Park | **Call park blocked per ephone**—Individual ephones can be blocked from parking calls at call-park slots.
Call park redirect—You can specify that calls use the H.450 or SIP Refer method of call forwarding or transfer to park calls and to pick up calls from park.
Dedicated call-park slots—A private call-park slot can be configured for each ephone.
Direct pickup of parked call on monitored park slot—A call that is parked on a monitored call-park slot can be picked up by pressing the assigned monitor button. | Call Coverage Features, on page 1195 |
<p>| | Call Pickup | Directed call pickup disable—The no service directed-pickup command globally disables directed call pickup and changes the action of the PickUp softkey to invoke local group pickup rather than directed call pickup. | Call Coverage Features, on page 1195 |
| | Call Transfer | | |</p>
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Call transfer blocking</td>
<td>When call transfers to phones outside the Cisco Unified CME system have been globally enabled, you can block them for individual ephones.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call transfer destination digits limited</td>
<td>When call transfers to phones outside the Cisco Unified CME system have been globally enabled, you can limit the number of digits that can be dialed when transferring a call.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transfer-system command</td>
<td>The command default has been changed from the <code>blind</code> keyword to the <code>full-consult</code> keyword, making H.450.2 consultative transfer the default method.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QSIG supplementary services support</td>
<td>H.450 supplementary services features allow Cisco Unified CME phones to use QSIG to interwork with PBX phones. IP phones can use a PBX message center with proper MWI notifications.</td>
<td></td>
</tr>
<tr>
<td>Cisco Unified IP Phones</td>
<td></td>
<td></td>
<td>Cisco Unified CME 4.0 Supported Firmware, Platforms, Memory, And Voice Products</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adds support for the following phones:</td>
<td>Conferencing, on page 1329</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7911G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7941G and 7941G-GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified IP Phone 7961G and 7961G-GE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No additional configuration is required for these phones. They are supported in the appropriate Cisco IOS commands.</td>
<td></td>
</tr>
</tbody>
</table>

Conferencing

Drop last party or keep parties connected—New options specify whether the last party that joined a conference can be dropped from the conference and whether the remaining two parties should be allowed to continue their connection after the conference initiator has left the conference.

Improved conference display—A Cisco Unified IP phone that is connected to a three-way conference displays “Conference.” No special configuration is required.
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feature Access Codes</td>
<td>Feature Access Code (FAC) support—The same FACs that are used by analog phones can be enabled for IP phones. In addition, standard FACs can be customized and aliases can be created to simplify the dialing of a FAC and any additional digits that are required to activate the feature.</td>
<td>Feature Access Codes, on page 733</td>
</tr>
<tr>
<td></td>
<td>Headset Auto-Answer</td>
<td>Headset auto-answer—When the headset key on a phone is activated, lines on the phone that are specified for headset auto-answer will automatically connect to incoming calls after playing an alerting tone to notify the phone user of the incoming call. This feature is available on Cisco Unified IP Phones 7940G, 7960G, 7970G, and 7971G-GE.</td>
<td>Headset Auto Answer, on page 751</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Hunt Groups</td>
<td></td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Feature Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent status control</td>
<td>Hunt group agents can put their phones in a not-ready state to temporarily suspend the receiving of hunt group calls by using the HLog softkey. A new FAC can toggle ready and not-ready state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic agent not-ready status</td>
<td>The criterion for placing a hunt group agent into not-ready status (previously called automatic logout) was changed. If an agent does not answer the number of consecutive hunt-group calls that you specify in the auto logout command, the agent’s ephone-dn is put into not-ready status (logged out) and will not receive further hunt group calls.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call hold statistics</td>
<td>New fields describing the length of time that calls spend in the hold state are in the statistical reports for Cisco Unified CME B-ACD applications. See the show ephone-hunt statistics command and the hunt-group report url command in Cisco Unified CME B-ACD and Tcl Call-Handling Applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic hunt group membership</td>
<td>Agents can join or leave a hunt group using standard or custom FACs when</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wildcard slots are</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>configured for hunt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>groups and the agents'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ephone-dns are authorized</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to join hunt groups.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change in hops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>command default—The</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximum number of hops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>allowed by a hunt group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>is automatically adjusted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to reflect the dynamically</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>changing number of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>members.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhanced display of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ephone hunt-group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>information—A text</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>string can be added to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>provide information in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration output and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to display on IP phones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>when a hunt-group call is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ringing or answered or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>when all hunt-group</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>members are logged out.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local call forwarding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>restriction in sequential</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ephone hunt groups—In</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sequential ephone-hunt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>groups, local (internal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>calls to the hunt group can</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>be prevented from being</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>forwarded beyond the first</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ephone-dn in the hunt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>group.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Hunt Groups</td>
<td></td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Longest-idle hunt group improvement—The from-ring command specifies that on-hook time stamps should be updated when a call rings an agent and when a call is answered by an agent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of agents—The maximum number of agents per hunt group has increased from 10 to 20. No special configuration is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum number of hunt groups—The maximum number of hunt groups per Cisco Unified CME system has increased from 10 to 100. No special configuration is required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No-answer timeout enhancements—No-answer timeouts in ephone hunt groups can be set individually for each ephone-dn in the list. A maximum cumulative no-answer timeout can be also be set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricting presentation of calls to idle or on-hook phones—The presentation of hunt group calls can be restricted to hunt-group members on phones that are idle or on-hook. This enhancement considers all lines on the phone, both members of the hunt group and nonmembers, when restricting presentation of hunt group calls.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return to a secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>destination in an ephone hunt group after call park</td>
<td>Calls parked by hunt group agents can be returned to a different entry point in the hunt group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Return to transferring party on no answer in an ephone hunt group</td>
<td>A call that was transferred into a hunt group and was not answered can be returned to the party that transferred it to the hunt group instead of being sent to voice mail or another final destination.</td>
<td></td>
</tr>
<tr>
<td>Localization</td>
<td>Multiple user locales and network locales</td>
<td>Up to five user and network locales are supported.</td>
<td></td>
</tr>
<tr>
<td>Localization</td>
<td>User-defined user locales and network locales</td>
<td>User-defined locales can be added for supported phones.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Music on Hold</td>
<td>Music on hold (MOH) for internal calls—Internal callers (those making calls between extensions in the same Cisco Unified CME system) hear music when they are on hold or are being transferred. The multicast moh command must be used to enable the flow of packets to the subnet on which the phones are located. Internal extensions that are connected through an analog voice gateway or through a WAN (remote extensions) do not hear MOH on internal calls. The ability to disable multicast MOH per phone was introduced, using the no multicast-moh command in ephone or ephone-template configuration mode.</td>
<td>Music on Hold, on page 803</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Overlaid Ephone-dns</td>
<td>Overlaid ephone-dns—The maximum number of overlaid ephone-dns per ephone button has increased from 10 to 25. No special configuration is required.</td>
<td>Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overlaid ephone-dn call-waiting display—The number of waiting calls that can be displayed for overlaid ephone-dns that have call waiting configured has been increased to six for the Cisco IP Phone 7940G, 7941G, 7941G-GE, 7960G, 7961G, 7961G-GE, 7970G, and 7971G-GE. The overlaid ephone-dns must be configured on the phone using the button command and the c keyword.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overlaid ephone-dn call overflow to other buttons—One or more buttons can be dedicated to serve as expansion or overflow buttons for another button on the same Cisco Unified IP phone that has overlaid ephone-dns. A call to an overlay button that is busy with an active call will roll over to the next available expansion button.</td>
<td></td>
</tr>
<tr>
<td>Phone Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Cisco IP Communicator</td>
<td>Cisco IP Communicator is a software-based application that appears on a user’s computer monitor as a graphical, display-based IP phone with a color screen, a key pad, feature buttons, and softkeys. Cisco Unified CME supports Cisco IP Communicator 2.0 and later versions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote teleworker phone</td>
<td>Teleworkers can connect remote phones over a WAN and be directly supported by Cisco Unified CME.</td>
<td>Ringtones, on page 871</td>
</tr>
<tr>
<td></td>
<td>Ring Tones</td>
<td>Distinctive ringing—An extension’s ring patterns can be set to distinguish among internal, external, and feature calls.</td>
<td>Ringtones, on page 871</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>Cisco Unified CME phone authentication is a security infrastructure for providing secure Skinny Client Control Protocol (SCCP) signaling between Cisco Unified CME and IP phones.</td>
<td>Security, on page 561</td>
</tr>
<tr>
<td></td>
<td>Softkeys</td>
<td></td>
<td>Customize Softkeys, on page 897</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Feature blocking—The features associated with the following softkeys can be individually blocked per ephone: CFwdAll, Confrn, GpickUp, Park, PickUp, and Transfer. The softkey is not removed, but it does not function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Softkey control for hold state—The softkeys that are available while a call is on hold can be modified. The NewCall and Resume softkeys are normally available when a phone has a call on hold, but a template can be applied to the phone to remove these softkeys.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Dial</td>
<td>Bulk-loading of speed-dial numbers—Text files with lists of speed-dial numbers can be loaded into system flash or a URL. The files can hold up to 10,000 numbers and can be applied to all ephones or to specific ephones.</td>
<td></td>
<td>Speed Dial, on page 935</td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>System-Level Parameters</td>
<td>Disabling automatic phone registration—Normally, Cisco Unified CME allocates an ephone slot to any ephone that connects to the system. To prevent unauthorized registrations, the no auto-reg-ephone command prevents any ephone from registering with Cisco Unified CME if its MAC address is not explicitly listed in the configuration.</td>
<td>Templates, on page 1393</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Maximum number of ephone templates</td>
<td>The maximum number of ephone templates that can be defined has increased from 5 to 20. No special configuration is required.</td>
<td>Video Support, on page 955</td>
</tr>
<tr>
<td></td>
<td>New commands available for ephone templates</td>
<td>Ephone templates were previously introduced to allow system administrators to control the display of softkeys in various call states on individual ephones. Their role has been expanded to allow you to define a set of ephone parameter values that can be assigned to one or more phones in a single step.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ephone-dn templates</td>
<td>Ephone-dn templates are introduced to allow administrators to easily apply sets of configured parameters to individual ephone-dns. Up to 15 ephone-dn templates can be defined.</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Feature Name</td>
<td>Feature Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Video support for SCCP-based endpoints—This feature adds video support to allow you to pass a video stream with a voice call between video-capable SCCP endpoints and between SCCP and H.323 endpoints. Through the Cisco Unified CME router, the video-capable endpoints can communicate with each other locally to a remote H.323 endpoint through a gateway or through an H.323 network.</td>
<td></td>
<td>Voice Mail Integration, on page 521</td>
</tr>
</tbody>
</table>

Voice Mail
<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Line-selectable MWI—Previously, the message-waiting indication (MWI) lamp on a phone could only indicate when messages were waiting for the primary number on a phone. Now, any phone line can be designated during configuration.</td>
<td>XML Interface</td>
<td>Configure XML API, on page 1552</td>
</tr>
<tr>
<td></td>
<td>Mailbox selection policy for voice-mail servers—A policy can be set for selecting the mailbox to use for calls that are diverted one or more times within a Cisco Unified CME system before being sent to a Cisco Unity Express, Cisco Unity, or PBX voice-mail pilot number.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prefix option for SIP unsolicited MWI Notify messages—Central voice-message servers that provide mailboxes for multiple Cisco Unified CME sites may use site codes or prefixes to distinguish among similarly numbered ranges of extensions at different sites. You can specify the prefix for your site so that central mailbox numbers are correctly converted to your extension numbers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco Unified CME Features Roadmap
Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly *What’s New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at:

DISCLAIMER: The use of monitoring, recording, or listening devices to eavesdrop, monitor, retrieve, or record phone conversations or other sound activities, whether or not contemporaneous with transmission, may be illegal in certain circumstances under federal, state and/or local laws. Legal advice should be sought prior to implementing any practice that monitors or records any phone conversation. Some laws require some form of notification to all parties to a phone conversation, such as by using a beep tone or other notification method or requiring the consent of all parties to the phone conversation, prior to monitoring or recording the phone conversation. Some of these laws incorporate strict penalties. In cases where local laws require a periodic beep while a conversation is being recorded, the Cisco Unity Express voice-mail system provides a user with the option of activating “the beep.” Prior to activating the Cisco Unity Express live record function, check the laws of all applicable jurisdictions. This is not legal advice and should not take the place of obtaining legal advice from a lawyer. IN ADDITION TO THE GENERAL DISCLAIMER THAT ACCOMPANIES THIS CISCO UNITY EXPRESS PRODUCT, CISCO ADDITIONALLY DISCLAIMS ANY AND ALL LIABILITY, BOTH CIVIL AND CRIMINAL, AND ASSUMES NO RESPONSIBILITY FOR THE UNAUTHORIZED AND/OR ILLEGAL USE OF THIS CISCO UNITY EXPRESS PRODUCT. THIS DISCLAIMER OF LIABILITY INCLUDES, BUT IS NOT NECESSARILY LIMITED TO, THE UNAUTHORIZED AND/OR ILLEGAL RECORDING AND MONITORING OF TELEPHONE CONVERSATIONS IN VIOLATION OF APPLICABLE FEDERAL, STATE AND/OR LOCAL LAWS.</p>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company (1110R).

<table>
<thead>
<tr>
<th>Version</th>
<th>Feature Name</th>
<th>Feature Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XML interface enhancements</td>
<td>An eXtensible Markup Language (XML) application program interface (API) is provided to supply data from Cisco Unified CME to management software. In Cisco Unified CME 4.0 and later versions, all Cisco Unified CME features have XML support.</td>
<td></td>
</tr>
</tbody>
</table>
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco Unified Communications Manager Express System Administrator Guide (All Versions)

© 2021 Cisco Systems, Inc. All rights reserved.
Important Information about Cisco IOS XE 16 Denali

Effective Cisco IOS XE Release 3.7.0E (for Catalyst Switching) and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16 Denali—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

For migration information related to the Cisco IOS XE 16, see Cisco IOS XE Denali 16.2 Migration Guide for Access and Edge Routers.

Unified CME Graphical User Interface Deprecation

From Unified CME Release 12.6 (Cisco IOS XE Gibraltar 16.11.1a Release), the Graphical User Interface (GUI) is no more supported for Unified CME. Hence, the GUI files posted under the name cme-gui..., as part of the Unified CME software bundle, is not available for download for Unified CME 12.6 and later releases. We recommend that you use the Command Line Interface (CLI) commands to configure Unified CME.

Note

CME GUI allows configuration of essential SIP phone features.

All the CLI commands related to Unified CME GUI deployment are disabled for Unified CME 12.6 and later releases. The following CLI commands related to Unified CME GUI are disabled:
CTI CSTA Protocol Suite Deprecation

From Unified CME Release 12.6 (Cisco IOS XE Gibraltar 16.11.1a), the Computer Telephony Integration (CTI) Computer Supported Telecommunications Applications (CSTA) protocol suite is no more supported on Unified CME. All the CLI commands related to CTI CSTA are disabled for Unified CME 12.6 and later releases.

The following CLI commands related to CTI CSTA that are configured under `voice service voip` configuration mode is disabled on Unified CME 12.6 and later releases:

- cti shutdown
- cti callmonitor
- cti csta mode basic
- cti message device-id suppress-conversion
- cti timeout make-call-prompt

The following CLI commands related to CTI CSTA that are configured under `ephone-dn` and `ephone-template` configuration mode is disabled on Unified CME 12.6 and later releases:

- cti notify
- cti watch

The following CLI commands related to CTI CSTA that are configured under `voice register session-server` configuration mode are disabled on Unified CME 12.6 and later releases:

- cti aware

The following CLI show commands related to CTI CSTA that are configured under `show cti` are disabled on Unified CME 12.6 and later releases:

- show cti call
- show cti gcid
- show cti line-node
- show cti session
Simple Network Management Protocol (SNMP) Support for Unified CME

Unified CME supports Simple Network Management Protocol (SNMP) Management Information Base (MIBs) for monitoring the product status. Unified CME Release 12.6 and later is SNMP Version 3 (SNMPv3) compliant. Unified CME supports the following main SNMP MIB:

- CISCO-CCME-MIB

For information on configuration of SNMP version 3 on Unified CME router, see SNMP Configuration Guide.

Introduction

The Cisco Unified Communications Manager Express System Administrator Guide refers to a phone with SIP firmware as SIP Phone, SIP IP Phone, or Cisco Unified SIP IP phone. A phone with SCCP firmware is referred as SCCP Phone, SCCP IP Phone, or Cisco Unified SCCP IP phone.

Note

It is mandatory to configure the command supplementary-service media-renegotiate under voice service voip configuration mode to enable the supplementary features supported on Unified CME.

Note

It is mandatory to configure the CLI command call-park system application under telephony-service configuration mode to support SIP and mixed mode (SIP and SCCP) features in Unified CME.

Note

Configure the CLI commands no supplementary-service sip refer, no supplementary-service sip moved-temporarily under voice service voip configuration mode for call transfer and call forward scenarios in Unified CME.

Cisco Unified Communications Manager Express (formerly known as Cisco Unified CallManager Express) is a call-processing application in Cisco IOS software that enables Cisco routers to deliver key-system or hybrid PBX functionality for enterprise branch offices or small businesses.

Cisco Unified CME is a feature-rich entry-level IP telephony solution that is integrated directly into Cisco IOS software. Cisco Unified CME allows small business customers and autonomous small enterprise branch offices to deploy voice, data, and IP telephony on a single platform for small offices, thereby streamlining operations and lowering network costs.

Cisco Unified CME is ideal for customers who have data connectivity requirements and also have a need for a telephony solution in the same office. Whether offered through a service provider’s managed services offering or purchased directly by a corporation, Cisco Unified CME offers most of the core telephony features
required in the small office, and also many advanced features not available with traditional telephony solutions. The ability to deliver IP telephony and data routing by using a single converged solution allows customers to optimize their operations and maintenance costs, resulting in a very cost-effective solution that meets office needs.

A Cisco Unified CME system is extremely flexible because it is modular. A Cisco Unified CME system consists of a router that serves as a gateway and one or more VLANs that connect IP phones and phone devices to the router.

Figure 1: Cisco Unified CME for the Small- and Medium-Size Office, on page 68 shows a typical deployment of Cisco Unified CME with several phones and devices connected to it. The Cisco Unified CME router is connected to the public switched telephone network (PSTN). The router can also connect to a gatekeeper and a RADIUS billing server in the same network.

Figure 1: Cisco Unified CME for the Small- and Medium-Size Office

Figure 2: Cisco Unified CME for Service Providers, on page 69 shows a branch office with several Cisco Unified IP phones connected to a Cisco IAD2430 series router with Cisco Unified CME. The Cisco IAD2430 router is connected to a multiservice router at a service provider office, which provides connection to the WAN and PSTN.

Figure 2: Cisco Unified CME for Service Providers
Figure 2: Cisco Unified CME for Service Providers

A Cisco Unified CME system uses the following basic building blocks:

- **Ephone or voice register pool**—A software concept that usually represents a physical telephone, although it is also used to represent a port that connects to a voice-mail system, and provides the ability to configure a physical phone using Cisco IOS software. Each phone can have multiple extensions associated with it and a single extension can be assigned to multiple phones. Maximum number of ephones and voice register pools supported in a Cisco Unified CME system is equal to the maximum number of physical phones that can be connected to the system.

- **Directory number**—A software concept that represents the line that connects a voice channel to a phone. A directory number represents a virtual voice port in the Cisco Unified CME system, so the maximum number of directory numbers supported in Cisco Unified CME is the maximum number of simultaneous call connections that can occur. This concept is different from the maximum number of physical lines in a traditional telephony system.

Licensing

This section provides information on licensing of Cisco Unified Communications Manager Express (Unified CME).

Cisco Smart Licensing

Cisco Smart Licensing is a software licensing model that provides visibility of ownership and usage through the Cisco Smart Software Manager (CSSM) portal. CSSM is a central license repository that manages licenses across all Cisco products that you own, including Cisco Unified Communications Manager Express (Unified CME). Devices send license usage to CSSM either directly or use an on-premises satellite. Your Smart Account Administrator controls your access to CSSM. Use your Cisco credentials to access the CSSM portal using http://software.cisco.com.

Smart Licensing applies to all platform technology (UCK9, Security) and Unified CME feature licenses that the router uses. Unified CME requires one license entitlement (CME_EP) for each configured SIP or SCCP phone.
CSSM shows license usage across all devices that you register to a virtual account. A Virtual Account License Inventory displays the quantity of licenses that you purchase, those licenses in use, and a balance. Alert **Insufficient Licenses** is displayed if the license balance is below 0.

For example, consider a smart account in CSSM with 50 CME_EP licenses. If you have a single registered Unified CME router with 20 configured phones, the CSSM licenses page shows **Purchased** as 50, **In Use** as 20 and **Balance** as 30.

For more information on Smart Software Manager, see the [Cisco Smart Software Manager User Guide](#).

Note
The CME_EP license count reflects the total phone count for both the ephones and voice register pools that are configured in the Unified CME irrespective of whether the phones are registered or not. To avoid unnecessary reporting while you configure Unified CME, license usage is reported three minutes after the last configuration change.

Note
Unified CME Smart Licenses also provide RTU entitlement for routers that are not configured for Smart Licensing.

Smart License Operation

Cisco IOS XE Everest 16.5.1 Release to Cisco IOS XE Fuji 16.9.1 Release

Cisco 4000 Series Integrated Services Routers support Smart Licensing as an alternative to Cisco Software RTU Licensing. Use the `license smart enable` command to enable Smart Licensing. To disable Smart Licensing, use the `no` form of the command and reaccept the EULA using the `license accept end user agreement` configuration command.

Cisco IOS XE Gibraltar 16.10.1 Release Onwards

The Cisco RTU Licensing and the CLI `license smart enable` command are deprecated. Smart Licensing is mandatory from this release.

Cisco IOS XE Everest 16.5.1 Release to Cisco IOS XE Amsterdam 17.3.1a Release

Routers configured to use Smart Licensing offer a 90-day evaluation period, during which you can use all the features without registering to CSSM. A Cisco Unified Communications Manager Express device is associated with CSSM using a registration token. You can obtain the registration token from the virtual CSSM account or from an on-premises satellite. Once registered, the evaluation period pauses and you can use the balance later. You cannot renew the evaluation period on its expiry.

Warning
Cisco Unified Communications Manager Express shuts down when the router is unregistered and allowed to pass into the Evaluation Expired state.
To register the Cisco Unified Communications Manager Express router with CSSM, use `license smart register idtoken` command. For information on registering the device with CSSM, see *Software Activation Configuration Guide*.

Upon successful registration, the device sends an authorization request to CSSM for the licenses in use. For each license type requested, if the Smart Account has sufficient licenses, CSSM responds with **Authorized**. If the Smart Account does not have sufficient licenses, CSSM responds with **Out of Compliance**.

Post successful authorization of the request, licenses are bound to the requesting device until the next authorization request submission.

An authorization request is sent every 30 days or when there is any change in license consumption, to maintain the registration with CSSM. The authorization expires if you do not update the license request for the router within 90 days. The certificate issued to identify the router at the time of registration is valid for one year and renewed every six months.

The router displays the License authorization as follows:

```
Router# show license summary
Smart Licensing is ENABLED
Registration:Status: REGISTERED
Smart Account: Call-Manager-Express
Virtual Account: CME Application
Export-Controlled Functionality: Not Allowed
Last Renewal Attempt: None
Next Renewal Attempt: Oct 07 12:08:10 2016 UTC
License Authorization:
Status: AUTHORIZED
Last Communication Attempt: SUCCESS
Next Communication Attempt: May 13 07:11:48 2016 UTC
License Usage:
License                 Entitlement tag            Count     Status
-----------------------------------------------------------------------------
ISR_4351_UnifiedComm... (ISR_4351_UnifiedCommun..)   1       AUTHORIZED
CME v12 Endpoint Lic... (CME_EP)                     4       AUTHORIZED
```

Cisco IOS XE Gibraltar 16.12.1 Release to Cisco IOS XE Amsterdam 17.3.1a Release

Specific License Reservation (SLR) is supported on Cisco 4000 Series Integrated Services Routers. SLR allows reservation and utilization of Cisco Smart Licenses without communicating the license information to CSSM. To reserve specific licenses for a device, generate request code from the device. Enter the request code in CSSM along with the required licenses and their quantity, and generate authorization code. Enter the authorization code on the device to map the license to the Unique Device Identifier (UDI).

If upgrading to Cisco IOS XE Amsterdam 17.3.1a with a license reservation in place, update the reservation to include version 14, rather than version 12 CME licenses. The reservation may be updated before or after the software upgrade.

Cisco IOS XE Amsterdam 17.3.2 Release Onwards

This release introduces a new paradigm for tracking license usage across your business. In earlier releases, license authorization was forward looking, binding licenses to a device until the next authorization request. Actual license usage during the proceeding reporting period is now sent to CSSM, allowing you to plan ongoing license requirements based on historical usage data.
Initial device registration is no longer required to use most platform functionality and the evaluation period is deprecated.

License usage reports are submitted periodically according to a minimum reporting policy set for your account. Typically, this period could be once per year. However, you can generate reports more frequently if the use of licensed features varies over time. CSSM acknowledges each Resource Utilization Monitoring (RUM) report to ensure that the usage is recorded reliably. If the router does not receive an acknowledgment within the minimum reporting period, call processing is disabled. Call processing is resumed when a valid acknowledgment is received.

Reports can be submitted to CSSM directly or through a satellite. Cisco Smart Licensing Utility (CSLU) applications can also receive usage reports, providing you with more flexibility in managing your license usage. Also, when a device is not able to communicate directly with a licensing server, a signed usage report can be generated and manually uploaded to CSSM. The acknowledgment that is generated by CSSM must be uploaded to the device within the license reporting policy period to ensure continued use.

As license reporting is now based on historical usage, the registration process that is used previously has been replaced with a trust association that also defines the reporting policy set in your account. Establishing trust with CSSM or Cisco Smart Software Manager Satellite uses an identity token similar to earlier registrations. Use the license smart trust idtoken token command to establish the trust relationship within the initial reporting period set for the device. The CLI license smart register command is deprecated from this release.

When using any of the following releases, Unified CME shuts down if the router does not receive a report acknowledgment from CSSM before the acknowledgment deadline set by the account policy: 17.3.2, 17.3.3, 17.3.4a, 17.6.1a, or any 17.4 or 17.5 release. Unified CME does not shut down in this way with later releases.

- Smart License Reservation (SLR) for Unified CME licenses is not compatible with Cisco IOS XE Amsterdam 17.3.2 and later releases. Even if a reservation is in place when upgrading to one of these releases, license use reporting is still required in accordance with the device policy.
- The enhancements that are made for Cisco IOS XE Amsterdam 17.3.2 and Cisco IOS XE Bengaluru 17.4.1a are not available for Cisco CSR 1000V.

Current license usage for Cisco Unified Communications Manager Express is displayed using the show license summary command:

```
ISR4400(config)#do sh license summary
License Usage:
License   Entitlement tag               Count Status
appxk9    (ISR_4400_Application)            1 IN USE
uck9      (ISR_4400_UnifiedCommun...)       1 IN USE
securityk9 (ISR_4400_Security)               1 IN USE
CME_EP    (CME_EP)                          2 IN USE
```

PBX or Keyswitch

When setting up a Cisco Unified CME system, you need to decide if call handling should be similar to that of a PBX, similar to that of a keyswitch, or a hybrid of both. Cisco Unified CME provides significant flexibility in this area, but you must have a clear understanding of the model that you choose.
PBX Model

The simplest model is the PBX model, in which most of the IP phones in your system have a single unique extension number. Incoming PSTN calls are routed to a receptionist at an attendant console or to an automated attendant. Phone users may be in separate offices or be geographically separated and therefore often use the telephone to contact each other.

For this model, we recommend that you configure directory numbers as dual-lines so that each button that appears on an IP phone can handle two concurrent calls. The phone user toggles between calls using the blue navigation button on the phone. Dual-line directory numbers enable your configuration to support call waiting, call transfer with consultation, and three-party conferencing (G.711 only).

Figure 3: Incoming Call Using PBX Model, on page 73 shows a PSTN call that is received at the Cisco Unified CME router, which sends it to the designated receptionist or automated attendant (1), which then routes it to the requested extension (2).

For configuration information, see Configure Phones for a PBX System, on page 260.

Keyswitch Model

In a keyswitch system, you can set up most of your phones to have a nearly identical configuration, in which each phone is able to answer any incoming PSTN call on any line. Phone users are generally close to each other and seldom need to use the telephone to contact each other.

For example, a 3x3 keyswitch system has three PSTN lines shared across three telephones, such that all three PSTN lines appear on each of the three telephones. This permits an incoming call on any PSTN line to be directly answered by any telephone—without the aid of a receptionist, an auto-attendant service, or the use of (expensive) DID lines. Also, the lines act as shared lines—a call can be put on hold on one phone and resumed on another phone without invoking call transfer.

In the keyswitch model, the same directory numbers are assigned to all IP phones. When an incoming call arrives, it rings all available IP phones. When multiple calls are present within the system at the same time, each individual call (ringing or waiting on hold) is visible and can be directly selected by pressing the corresponding line button on an IP phone. In this model, calls can be moved between phones simply by putting the call on hold at one phone and selecting the call using the line button on another phone. In a keyswitch model, the dual-line option is rarely appropriate because the PSTN lines to which the directory numbers correspond do not themselves support dual-line configuration. Using the dual-line option also makes configuration of call-coverage (hunting) behaviors more complex.

You configure the keyswitch model by creating a set of directory numbers that correspond one-to-one with your PSTN lines. Then you configure your PSTN ports to route incoming calls to those ephone-dns. The maximum number of PSTN lines that you can assign in this model can be limited by the number of available
buttons on your IP phones. If so, the overlay option may be useful for extending the number of lines that can be accessed by a phone.

Figure 4: Incoming PSTN Call Using Keyswitch Model, on page 74 shows an incoming call from the PSTN (1), which is routed to extension 1001 on all three phones (2).

Figure 4: Incoming PSTN Call Using Keyswitch Model

For configuration information, see Configure Phones for a Key System, on page 289.

Hybrid Model

PBX and keyswitch configurations can be mixed on the same IP phone and can include both unique per-phone extensions for PBX-style calling and shared lines for keyswitch-style call operations. Single-line and dual-line directory numbers can be combined on the same phone.

In the simplest keyswitch deployments, individual telephones do not have private extension numbers. Where key system telephones do have individual lines, the lines are sometimes referred to as intercoms rather than as extensions. The term “Intercom” is derived from “internal communication;” there is no assumption of the common “intercom press-to-talk” behavior of auto dial or auto answer in this context, although those options may exist.

For key systems that have individual intercom (extension) lines, PSTN calls can usually be transferred from one key system phone to another using the intercom (extension) line. When Call Transfer is invoked in the context of a connected PSTN line, the outbound consultation call is usually placed from the transferrer phone to the transfer-to phone using one of the phone’s intercom (extension) line buttons. When the transferred call is connected to the transfer-to phone and the transfer is committed (the transferrer hangs up), the intercom lines on both phones are normally released and the transfer-to call continues in the context of the original PSTN line button (all PSTN lines are directly available on all phones). The transferred call can be put on hold (on the PSTN line button) and then subsequently resumed from another phone that shares that PSTN line.

For example, you can design a 3x3 keyswitch system as shown in Figure 4: Incoming PSTN Call Using Keyswitch Model, on page 74 and then add another, unique extension on each phone (Figure 5: Incoming PSTN Call Using Hybrid PBX-Keyswitch Model, on page 75). This setup will allow each phone to have a “private” line to use to call the other phones or to make outgoing calls.
Call Detail Records

The accounting process collects accounting data for each call leg created on the Cisco voice gateway. You can use this information for post-processing activities such as generating billing records and network analysis. Voice gateways capture accounting data in the form of call detail records (CDRs) containing attributes defined by Cisco. The gateway can send CDRs to a RADIUS server, syslog server, or to a file in .csv format for storing to flash or an FTP server. For information about generating CDRs, see CDR Accounting for Cisco IOS Voice Gateways.

Additional References

The following section provides references related to Cisco Unified CME.

Table 2: Related Documents for Unified CME

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified CME configuration</td>
<td>Cisco Unified CME Command Reference</td>
</tr>
<tr>
<td></td>
<td>Cisco Unified CME Documentation Roadmap</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Voice Command Reference</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Software Releases 12.4T Command References</td>
</tr>
<tr>
<td>Cisco IOS configuration</td>
<td>Cisco IOS Voice Configuration Library</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Software Releases 12.4T Configuration Guides</td>
</tr>
<tr>
<td>Cisco IOS voice troubleshooting</td>
<td>Cisco IOS Voice Troubleshooting and Monitoring Guide</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| Dial peers, DID, and other dialing issues | Dial Peer Configuration on Voice Gateway Routers
Understanding One Stage and Two Stage Dialing (technical note)
Understanding How Inbound and Outbound Dial Peers Are Matched on Cisco IOS Platforms (technical note)
Using IOS Translation Rules - Creating Scalable Dial Plans for VoIP Networks (sample configuration) |
| Dynamic Host Configuration Protocol (DHCP) | “DHCP” section of the Cisco IOS IP Addressing Services Configuration Guide |
| Fax and modem configurations | Cisco Fax Services over IP Application Guide |
| FXS ports | FXS Ports in SCCP Mode on Cisco VG 224 Analog Phone Gateway
“Configuring Analog Voice Ports” section of the Cisco IOS Voice Port Configuration Guide
FXS Ports in SCCP Mode on Cisco VG 224 Analog Phone Gateway
SCCP Controlled Analog (FXS) Ports with Supplementary Features in Cisco IOS Gateways
Cisco VG 224 Analog Phone Gateway data sheet |
| H.323 | Cisco IOS H.323 Configuration Guide |
| Network Time Protocol (NTP) | “Performing Basic System Management” chapter of Cisco IOS Network Management Configuration Guide |
| Phone documentation for Cisco Unified CME | User Documentation for Cisco Unified IP Phones |
| Public key infrastructure (PKI) | “Part 5: Implementing and Managing a PKI” in the Cisco IOS Security Configuration Guide |
| SIP | Cisco IOS SIP Configuration Guide |
| TAPI and TSP documentation | Cisco Unified CME programming Guides |
| Tcl IVR and VoiceXML | Cisco IOS Tcl IVR and VoiceXML Application Guide - 12.3(14)T and later
Cisco Voice XML Programmer’s Guide |
| VLAN class-of-service (COS) marking | Enterprise QoS Solution Reference Network Design Guide |
| Voice-mail integration | Cisco Unified CallManager Express 3.0 Integration Guide for Cisco Unity 4.0
Integrating Cisco CallManager Express with Cisco Unity Express |
| Call detail records (CDRs) | CDR Accounting for Cisco IOS Voice Gateways |
Management Information Base

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-CCME-MIB MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>CISCO-VOICE-DIAL-CONTROL-MIB</td>
<td></td>
</tr>
</tbody>
</table>
Virtual CME

Overview

The Cisco Unified Communications Manager Express (Unified CME) feature set is delivered with hardware router platforms, such as the Cisco Integrated Services Router (ISR) series. From Cisco IOS XE Gibraltar 16.10.1, a subset of Unified CME features (virtual CME) is used in virtualized environments with the Cisco CSR 1000v Series Cloud Services Router.

From Cisco IOS XE Bengaluru 17.4.1a, virtual CME is available for use with Cisco Catalyst 8000V Edge Software (Catalyst 8000V) series.

Note

When upgrading to C8000V software from a CSR1000V release, an existing throughput configuration will be reset to a maximum of 250 Mbps. Install an HSEC authorization code, which you can obtain from your Smart License account, before reconfiguring your required throughput level.

Prerequisites for Virtual CME

Virtual CME has the following prerequisites:

- Hardware Requirements for Virtual CME, on page 80
- Software Requirements for Virtual CME, on page 81
Hardware Requirements for Virtual CME

The virtual CME feature set is included with the Cisco virtual router software. For more information about the virtual CME host platform, see Cisco CSR 1000V Series Cloud Services Router Software Configuration Guide and Cisco Catalyst 8000V Edge Software Configuration Guide.

As part of the Unified CME 14.1 release, virtual CME features have been verified using the following:

- VMware ESXi Hypervisor 6.5.0
- Cisco UCS Server—Cisco UCS C240 M5 (UCSC-C240-M5SX)

Note

For more information on the requirements on supported hypervisors, see CSR1000V Data Sheets and Cisco Catalyst 8000V Edge Software Data Sheet.

Virtual CME supports up to 450 device registrations and 113 active calls for any of the virtual machine resource profiles. The resource files can be small, medium, large, or large plus extra RAM. For more information, see the following table:

Table 3: Virtual CME Form Factor

<table>
<thead>
<tr>
<th>Resource Profiles</th>
<th>vCPU</th>
<th>Memory</th>
<th>Cisco UCS</th>
<th>Hypervisor</th>
<th>Number of Devices Registered to Virtual CME</th>
<th>Number of Active Calls Supported on Virtual CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>1</td>
<td>4</td>
<td>UCSC-C240-M5SX</td>
<td>ESXi 6.5.0</td>
<td>450</td>
<td>113</td>
</tr>
<tr>
<td>Medium</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large plus Extra RAM</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For information on the best practices for setting BIOS parameters for performance, see BIOS Settings.
- For information on how to configure network interfaces for Unified CME, see Mapping Cisco CSR 1000v Network Interfaces to VM Network Interfaces and Mapping the Cisco Catalyst 8000V Network Interfaces to VM Network Interfaces.
Software Requirements for Virtual CME

- Install the appropriate Cisco IOS image router and configure a working VoIP network. See Install Virtual CME, on page 83 for more information. Cisco IOS XE Gibraltar 16.10.1a is the minimum IOS version that supports virtual CME.

- Obtain the relevant license for the router platform. See Licensing Requirements, on page 83 for more information.

Virtual CME is validated and supported only on the Cisco CSR 1000v Series Cloud Services Router.

Protocol Support

The endpoints with the following protocols are supported on virtual CME:

- SIP—All SIP endpoints that are supported on Unified CME. For information on the endpoints supported on Unified CME, see Virtual Cisco Unified Communications Manager Express 12.5 Supported Firmware, Platforms, Memory, and Voice Products.

- SCCP—Only Analog Voice Gateways, such as Cisco VG310, VG320, and VG350 are supported as SCCP endpoints on virtual CME.

- Mixed Deployment (SIP and VG acting as SCCP endpoints). SCCP phones are not supported with virtual CME.

Feature Support for Virtual CME

Virtual CME supports most of the features that are supported by Unified CME. Due to the physical architecture of the router platform, the following features are not available with virtual CME:

- Hardware Conference (Due to the limitation in supporting the PVDM hardware)

- Transcoding (Due to the limitation in supporting the PVDM hardware)

- Physical Voice Ports

The following phone features are not supported by virtual CME:

- Music On Hold Groups
- cBarge
- Hold and Remote Resume with Shared Line (not supported for Analog VG endpoints)
- Multicast MOH is not supported for SIP or Analog VG endpoints.
- Live MOH is not supported for SIP or Analog VG endpoints.
Feature Support

All SIP endpoints supported by Unified CME, including the Cisco IP Phone 7800 Series and Cisco 8800 Series IP Phones, are supported by virtual CME. SCCP is only supported for use with Cisco VG 300 Series Analog Voice Gateways (VG310, VG320, and VG350) only.

For detailed feature support information on virtual CME for SIP endpoints and Cisco VG300 Series Analog Voice Gateways (SCCP), see Cisco Unified Communications Manager Express Platform Protocol Compatibility Matrix.

For more information on memory and platform recommendations for virtual CME, see Virtual Cisco Unified Communications Manager Express 12.5 Supported Firmware, Platforms, Memory, and Voice Products.

CLI Support on Virtual CME

Virtual CME does not support the hardware conferencing-related CLI commands available on Unified CME. The following CLI commands cannot be configured on virtual CME:

- Within `telephony-service` configuration mode:
 - `conference hardware`
 - `fxo hook-flash`
 - Virtual CME does not support any of the `sdspfarm` related commands that are supported in Unified CME. Some of the examples are:
 - `sdspfarm units number`
 - `sdspfarm conference mute-on mute-ondigits mute-off mute-off-digits`
 - `sdspfarm tag number device-name`

- Within `voice register global` configuration mode:
 - `conference hardware`

- Within `ephone-dn` configuration mode:
 - `conference ad-hoc | meetme`

- Within global configuration mode:
 - `call-manager-fallback`

Restrictions of Virtual CME

- All caveats, restrictions, and limitations of Cisco IOS XE Gibraltar 16.12.1a are applicable to virtual CME.

- Only Unified CME features supported by Cisco IOS XE Fuji 16.9.1 (Unified CME 12.3) are available on virtual CME.
• As DSP or voice interface hardware is not available for the CSR 1000V or the CSR 8000V, related Unified CME features such as transcoding and hardware conferencing are not supported on virtual CME.
• NIM-based Analog or Digital PSTN Trunks are not supported.
• No support for colocation with CUBE.

Install Virtual CME

Use the CSR1000V or C8000V OVA application file (available from software.cisco.com) to deploy a new virtual instance directly in VMware ESXi. For details about how to perform the deployment, see Installing the Cisco CSR 1000v in VMware ESXi Environments and Installing Catalyst 8000V in VMware ESXi Environment.

Explicit subscription of CPUs and Memory is required while deploying OVA provided by Cisco CSR 1000V or C8000V series.

Licensing Requirements

Virtual CME offers the same licensing options that are available for Unified CME.

To allow the configuration of virtual CME:
• Enable an APPX or AX license on a Cisco CSR 1000v Series Cloud Services Router.
• Enable a DNA Advantage subscription on a C8000V series.

The licensing options for virtual CME on the router platform are available under the CLI command `license boot level`:

```
Router(config)#license boot level ?
  appx    Enable appx license
  ax      Enable ax(ipb+sec+appx) license
  ipbase  Enable ipbase license
  security Enable security license
```

For virtual CME, throughput license suitable for the number of calls and other traffic processed by the router should be selected. For information on throughput licenses, see Changing Throughput Licenses.

Install Cisco Smart License for virtual CME. Cisco Smart License for virtual CME is enabled with the same entitlement tags that are assigned for Unified CME.

For more information on licensing options available for Unified CME, see Licensing, on page 69.

For detailed steps about how to install Cisco CSR 1000V Licenses or C8000V series, see Installing Cisco CSR 1000V Licenses and Cisco Catalyst 8000V Licensing.
Enable Virtual CME

Perform the following steps to enable virtual CME.

Before you begin

• Cisco CSR 1000v Series Cloud Services Router or C8000V series.
• Virtual CME license. See Licensing Requirements, on page 83.
• Mandatory hardware and software. See Hardware Requirements for Virtual CME, on page 80 and Software Requirements for Virtual CME, on page 81.
• Acceptance of End User License Agreement (EULA).

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. mode cme
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in virtual CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 mode cme</td>
<td>Enables mode for provisioning SIP phones in Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# mode cme</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>
Cisco VG300 Series Voice Gateways support Skinny Client Control Protocol (SCCP) registration with virtual CME for Cisco IOS XE Gibraltar 16.10.1a or later releases.

The analog phone or fax machine is connected to the VG350’s Foreign Exchange Station (FXS) port. The VG350 is registered to virtual CME through SCCP and communicates to the public switched telephone network (PSTN) provider through a Foreign Exchange Office (FXO) port.

Cisco VG350 Configuration

```
hostname GW-VG350
!
interface GigabitEthernet0/0
 ip address 10.8.1.10 255.255.255.0
duplex auto
 speed auto
!--- For modem or fax support using NSE based switchover.
voice-port 2/0
caller-id enable
!
voice-port 2/23
caller-id enable
!
!--- Set source interface of SCCP packets. Also determines which MAC address is used to register to vCME.
sccp local GigabitEthernet0/0
!
!--- Set address of SCCP agent, must match the IP source address of vCME.
sccp ccm 10.8.1.2 identifier 1 version 7.0
 sccp
!
sccp ccm group 1
!
!--- Associate SCCP agent with CCM group.
 associate ccm 1 priority 1
!
!--- Associate STCAPP to CCM Group
 stcapp ccm-group 1
 stcapp
!
!--- Enable STCAPP on voice port.
dial-peer voice 1000 pots
 service stcapp
 port 2/0
!
dial-peer voice 1023 pots
 service stcapp
 port 2/23
!
```
Virtual CME Configuration

hostname VCME

! telephony-service

ip source-address 10.8.1.2 port 2000
create cnf-files version-stamp Jan 01 2002 00:00:00

! ephone-dn 8 dual-line
number 4441 secondary 9191114441
description vg350-2/0
name Joe

! ephone-dn 9 dual-line
number 4442
description vg350-2/23
name Jane
call-forward busy 5200
call-forward noan 5200 timeout 10

! ephone-dn 20
number 8000....

! ephone-dn 21
number 8001....

ephone 5
mac-address C863.9018.0417
type anl
button 1:9

! --- phone for VG350 port 2/0.

ephone 8
mac-address C863.9018.0400
type anl
button 1:8

MAC Address Convention

After configuring the Analog Voice Gateway, enable the command show stcapp device summary to display the output summary with MAC address of all voice ports, as follows:

VCME#show stcapp device summary
Total Devices: 3
Total Calls in Progress: 0
Total Call Legs in Use: 0

Port Device Device Call Dev Directory Dev
Identifier Name State State Type Number Cntl
-------------- --------------- --------------- --------- ---------------
0/0/0 AN6549AEBB58000 IS IDLE ALG 6901 CME
0/0/1 AN6549AEBB58001 IS IDLE ALG 6902 CME
0/0/2 AN6549AEBB58002 IS IDLE ALG 6903 CME
Router_VG350#

The MAC address of the voice ports can be identified by removing the first three characters of the Device Name displayed in the show stcapp device summary output. For example, the MAC address of the device with Device Name AN6549AEBB58000 is 549A.EBB5.8000.
Feature Information for Virtual CME

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature Information for Virtual CME

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual CME</td>
<td>14.1</td>
<td>Support introduced for Virtual CME on C8000V series.</td>
</tr>
<tr>
<td>Virtual CME</td>
<td>12.5</td>
<td>Support introduced for Virtual CME on Cisco CSR 1000v Series Cloud Services Router.</td>
</tr>
</tbody>
</table>
Before You Begin

- Prerequisites for Configuring Cisco Unified CME, on page 89
- Restrictions for Configuring Cisco Unified CME, on page 90
- Information About Planning Your Configuration, on page 90
- Cisco Unified CME Workflow, on page 93
- Install Cisco Voice Services Hardware, on page 97
- Install Cisco IOS Software, on page 98
- Configure VLANs on a Cisco Switch, on page 100
- Using Cisco IOS Commands, on page 104
- Voice Bundles, on page 105

Prerequisites for Configuring Cisco Unified CME

- Base Cisco Unified CME feature license and phone user licenses that entitle you to use Cisco Unified CME are purchased.

Note

To support H.323 call transfers and forwards to network devices that do not support the H.450 standard, such as Cisco Unified Communications Manager, a tandem gateway is required in the network. The tandem gateway must be running Cisco IOS release 12.3(7)T or a later release and requires the Integrated Voice and Video Services feature license (FL-GK-NEW-xxx), which includes H.323 gatekeeper, IP-to-IP gateway, and H.450 tandem functionality.

- Your IP network is operational and you can access Cisco web.
- You have a valid Cisco.com account.
- You have access to a TFTP server for downloading files.
- Cisco router with all recommended services hardware for Cisco Unified CME is installed. For installation information, see Install Cisco Voice Services Hardware, on page 97.
- Recommended Cisco IOS IP Voice or higher image is downloaded to flash memory in the router.
 - To determine which Cisco IOS software release supports the recommended Cisco Unified CME version, see Cisco Unified CME and Cisco IOS Software Compatibility Matrix.
Restrictions for Configuring Cisco Unified CME

- Cisco Unified CME cannot register as a member of a Cisco Unified Communications Manager cluster.
- For conferencing and music on hold (MOH) support with G.729, hardware digital signal processors (DSPs) are required for transcoding G.729 between G.711.
- After a three-way conference is established, a participant cannot use call transfer to join the remaining conference participants to a different number.
- Cisco Unified CME does not support the following:
 - CiscoWorks IP Telephony Environment Monitor (ITEM)
 - Element Management System (EMS) integration
 - Media Gateway Control Protocol (MGCP) on-net calls
 - Java Telephony Application Programming Interface (JTAPI) applications, such as the Cisco IP Softphone, Cisco Unified Communications Manager Auto Attendant, or Cisco Personal Assistant
 - Telephony Application Programming Interface (TAPI)

Cisco Unified CME implements only a small subset of TAPI functionality. It supports operation of multiple independent clients (for example, one client per phone line), but not full support for multiple-user or multiple-call handling, which is required for complex features such as automatic call distribution (ACD) and Cisco Unified Contact Center (formerly Cisco IPCC). Also, this TAPI version does not have direct media- and voice-handling capabilities.

Information About Planning Your Configuration

System Design

Traditional telephony systems are based on physical connections and are therefore limited in the types of phone services that they can offer. Because phone configurations and directory numbers in a Cisco Unified CME system are software entities and because the audio stream is packet-based, an almost limitless number of combinations of phone numbers, lines, and phones can be planned and implemented.
Cisco Unified CME systems can be designed in many ways. The key is to determine the total number of simultaneous calls you want to handle at your site and at each phone at your site, and how many different directory numbers and phones you want to have. Even a Cisco Unified CME system has its limits, however. Consider the following factors in your system design:

- **Maximum number of phones**—This number corresponds to the maximum number of devices that can be attached. The maximum is platform- and version-dependent. To find the maximum for your platform and version, see Cisco CME Supported Firmware, Platforms, Memory, and Voice Products.

- **Maximum number of directory numbers**—This number corresponds to the maximum number of simultaneous call connections that can occur. The maximum is platform- and version-dependent. To find the maximum for your platform and version, see Cisco CME Supported Firmware, Platforms, Memory, and Voice Products.

- **Telephone number scheme**—Your numbering plan may restrict the range of telephone numbers or extension numbers that you can use. For example, if you have DID, the PSTN may assign you a certain series of numbers.

- **Maximum number of buttons per phone**—You may be limited by the number of buttons and phones that your site can use. For example, you may have two people with six-button phones to answer 20 different telephone numbers.

The flexibility of a Cisco Unified CME system is due largely to the different types of directory numbers (DNs) that you can assign to phones in your system. By understanding types of DNs and considering how they can be combined, you can create the complete call coverage that your business requires. For more information about DNs, see Configuring Phones to Make Basic Calls, on page 225.

After setting up the DNs and phones that you need, you can add optional Cisco Unified CME features to create a telephony environment that enhances your business objectives. Cisco Unified CME systems are able to integrate with the PSTN and with your business requirements to allow you to continue using your existing number plans, dialing schemes, and call coverage patterns.

When creating number plans, dialing schemes, and call coverage patterns in Cisco Unified CME, there are several factors that you must consider:

- Is there an existing PBX or Key System that you are replacing and want to emulate?
- Number of phones and phone users to be supported?
- Do you want to use single-line or dual-line DNs?
- What protocols does your voice network support?
- Which call transfer and forwarding methods must be supported?
- What existing or preferred billing method do you want to use for transferred and forwarded calls?
- Do you need to optimize network bandwidth or minimize voice delay?

Because these factors can limit your choices for some of the configuration decisions that you will make when you create of a dialing plan, see the Cisco Unified Communications Manager Express Solution Reference Network Design Guide to help you understand the effect these factors have on your Cisco Unified CME implementation.
Toll Fraud Prevention

When a Cisco router platform is installed with a voice-capable Cisco IOS software image, appropriate features must be enabled on the platform to prevent potential toll fraud exploitation by unauthorized users. Deploy these features on all Cisco router Unified Communications applications that process voice calls, such as Cisco Unified Communications Manager Express (Cisco Unified CME), Cisco Survivable Remote Site Telephony (Cisco Unified SRST), Cisco Unified Border Element, Cisco IOS-based router and standalone analog and digital PBX and public-switched telephone network (PSTN) gateways, and Cisco contact-center VoiceXML gateways. These features include, but are not limited to, the following:

- **Disable secondary dial tone on voice ports**—By default, secondary dial tone is presented on voice ports on Cisco router gateways. Use private line automatic ringdown (PLAR) for foreign exchange office (FXO) ports and direct-inward-dial (DID) for T1/E1 ports to prevent secondary dial tone from being presented to inbound callers.

- **Cisco router access control lists (ACLs)**—Define ACLs to allow only explicitly valid sources of calls to the router or gateway, and therefore to prevent unauthorized Session Initiation Protocol (SIP) or H.323 calls from unknown parties to be processed and connected by the router or gateway.

- **Close unused SIP and H.323 ports**—If either the SIP or H.323 protocol is not used in your deployment, close the associated protocol ports. If a Cisco voice gateway has dial peers configured to route calls outbound to the PSTN using either time division multiplex (TDM) trunks or IP, close the unused H.323 or SIP ports so that calls from unauthorized endpoints cannot connect calls. If the protocols are used and the ports must remain open, use ACLs to limit access to legitimate sources.

- **Change SIP port 5060**—If SIP is actively used, consider changing the port to something other than well-known port 5060.

- **SIP registration**—If SIP registration is available on SIP trunks, turn on this feature because it provides an extra level of authentication and validation that only legitimate sources can connect calls. If it is not available, ensure that the appropriate ACLs are in place.

- **SIP Digest Authentication**—If the SIP Digest Authentication feature is available for either registrations or invites, turn this feature on because it provides an extra level of authentication and validation that only legitimate sources can connect calls.

- **Explicit incoming and outgoing dial peers**—Use explicit dial peers to control the types and parameters of calls allowed by the router, especially in IP-to-IP connections used on Cisco Unified CME, Cisco Unified SRST, and Cisco Unified Border Element. Incoming dial peers offer additional control on the sources of calls, and outgoing dial peers on the destinations. Incoming dial peers are always used for calls. If a dial peer is not explicitly defined, the implicit dial peer 0 is used to allow all calls.

- **Explicit destination patterns**—Use dial peers with more granularity than .T for destination patterns to block disallowed off-net call destinations. Use class of restriction (COR) on dial peers with specific destination patterns to allow even more granular control of calls to different destinations on the PSTN.

- **Translation rules**—Use translation rules to manipulate dialed digits before calls connect to the PSTN to provide better control over who may dial PSTN destinations. Legitimate users dial an access code and an augmented number for PSTN for certain PSTN (for example, international) locations.

- **Tcl and VoiceXML scripts**—Attach a Tcl/VoiceXML script to dial peers to do database lookups or additional off-router authorization checks to allow or deny call flows based on origination or destination numbers. Tcl/VoiceXML scripts can also be used to add a prefix to inbound DID calls. If the prefix plus DID matches internal extensions, then the call is completed. Otherwise, a prompt can be played to the caller that an invalid number has been dialed.
• Host name validation—Use the “permit hostname” feature to validate initial SIP Invites that contain a fully qualified domain name (FQDN) host name in the Request Uniform Resource identifier (Request URI) against a configured list of legitimate source hostnames.

• Dynamic Domain Name Service (DNS)—If you are using DNS as the “session target” on dial peers, the actual IP address destination of call connections can vary from one call to the next. Use voice source groups and ACLs to restrict the valid address ranges expected in DNS responses (which are used subsequently for call setup destinations).

For more configuration guidance, see Cisco IOS Unified Communications Toll Fraud Prevention and Configure Toll Fraud Prevention, on page 511.

Cisco Unified CME Workflow

Table 5: Workflow for Creating or Modifying Basic Telephony Configuration, on page 93 lists the tasks for installing and configuring Cisco Unified CME and for modifying the configuration, in the order in which the tasks are to be performed and including links to modules in this guide that support each task.

Note

Not all tasks are required for all Cisco Unified CME systems, depending on software version and on whether it is a new Cisco Unified CME, an existing Cisco router that is being upgraded to support Cisco Unified CME, or an existing Cisco Unified CME that is being upgraded or modified for new features or to add or remove phones.

Table 5: Workflow for Creating or Modifying Basic Telephony Configuration

<table>
<thead>
<tr>
<th>Task</th>
<th>Cisco Unified CME Configuration</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Cisco router and all recommended services hardware for Cisco Unified CME.</td>
<td>Required</td>
<td>Optional</td>
</tr>
<tr>
<td>Download recommended Cisco IOS IP Voice or higher image to flash memory in the router.</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Download recommended Cisco Unified CME software including phone firmware.</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Configure separate virtual LANs (VLANS) for data and voice on the port switch.</td>
<td>Required</td>
<td>—</td>
</tr>
<tr>
<td>Task</td>
<td>Cisco Unified CME Configuration</td>
<td>New</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-----</td>
</tr>
</tbody>
</table>
| • Enable calls in your VoIP network.
• Define DHCP.
• Set Network Time Protocol (NTP).
• Configure DTMF Relay for H.323 networks in multisite installations.
• Configure SIP trunk support.
• Change the TFTP address on a DHCP server
• Enable OOD-R. | Required | Optional | Network Parameters, on page 127 |
| • Configure Bulk Registration.
• Set up Cisco Unified CME.
• Set date and time parameters.
• Block Automatic Registration.
• Define alternate location and type of configuration files.
• Change defaults for Time Outs.
• Configure a redundant router. | Required | Optional | System-Level Parameters, on page 153 |
Table 6: Workflow for Adding Features in Cisco Unified CME, on page 95

<table>
<thead>
<tr>
<th>Task</th>
<th>Cisco Unified CME Configuration</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New</td>
<td>Modify</td>
</tr>
<tr>
<td>• Create directory numbers and assigning directory numbers to phones.</td>
<td>Required</td>
<td>Optional</td>
</tr>
<tr>
<td>• Create phone configurations using Extension Assigner.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Generate configuration files for phones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reset or restart phones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connect to PSTN.</td>
<td>Required</td>
<td>—</td>
</tr>
<tr>
<td>Install system- and user-defined files for localization of phones.</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Table 6: Workflow for Adding Features in Cisco Unified CME contains a list of tasks for adding commonly configured features in Cisco Unified CME and the module in which they appear in this guide. For a detailed list of features, with links to corresponding information in this guide, see [Cisco Unified CME Features Roadmap, on page 1](#).

<table>
<thead>
<tr>
<th>Task</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure transcoding to support conferencing, call transferring and forwarding, MOH, and Cisco Unity Express.</td>
<td>Transcoding Resources, on page 469</td>
</tr>
<tr>
<td>Configure support for voice mail.</td>
<td>Voice Mail Integration, on page 521</td>
</tr>
<tr>
<td>Configure interoperability with Cisco Unified CCX.</td>
<td>Interoperability with Cisco Unified CCX, on page 1457</td>
</tr>
<tr>
<td>Configure authentication support.</td>
<td>Security, on page 561</td>
</tr>
<tr>
<td>Task</td>
<td>Documentation</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Add features.</td>
<td>• Automatic Line Selection, on page 1005</td>
</tr>
<tr>
<td>• Call Blocking</td>
<td>• Call Blocking, on page 1025</td>
</tr>
<tr>
<td>• Call-Coverage Features, including:</td>
<td>• Call Coverage Features, on page 1195</td>
</tr>
<tr>
<td>• Call Hunt</td>
<td>• Call Park, on page 1043</td>
</tr>
<tr>
<td>• Call Pickup</td>
<td>• Call Waiting</td>
</tr>
<tr>
<td>• Call Waiting</td>
<td>• Callback Busy Subscriber</td>
</tr>
<tr>
<td>• Hunt Groups</td>
<td>• Hunt Groups</td>
</tr>
<tr>
<td>• Night Service</td>
<td>• Night Service</td>
</tr>
<tr>
<td>• Overlaid Ephone-dns</td>
<td>• Overlaid Ephone-dns</td>
</tr>
<tr>
<td>• Call Park</td>
<td>• Call Park</td>
</tr>
<tr>
<td>• Call Transfer and Forwarding</td>
<td>• Call Transfer and Forward, on page 1107</td>
</tr>
<tr>
<td>• Caller ID Blocking</td>
<td>• Caller ID Blocking, on page 1323</td>
</tr>
<tr>
<td>• Conferencing</td>
<td>• Conferencing, on page 1329</td>
</tr>
<tr>
<td>• Intercom Lines</td>
<td>• Directory Services, on page 641</td>
</tr>
<tr>
<td>• Music on Hold (MOH)</td>
<td>• Do Not Disturb, on page 661</td>
</tr>
<tr>
<td>• Paging</td>
<td>• Extension Mobility, on page 705</td>
</tr>
<tr>
<td>Configure phone options, including:</td>
<td>• Feature Access Codes, on page 733</td>
</tr>
<tr>
<td>• Customized Background Images for Cisco Unified IP Phone 7970</td>
<td>• Headset Auto Answer, on page 751</td>
</tr>
<tr>
<td>• Fixed Line/Feature Buttons for Cisco Unified IP Phone 7931G</td>
<td>• Intercom Lines, on page 757</td>
</tr>
<tr>
<td>• Header Bar Display</td>
<td>• Loopback Call Routing, on page 771</td>
</tr>
<tr>
<td>• PC Port Disable</td>
<td>• Music on Hold, on page 803</td>
</tr>
<tr>
<td>• Phone Labels</td>
<td>• Paging, on page 831</td>
</tr>
<tr>
<td>• Programmable vendorConfig Parameters</td>
<td>• Presence Service, on page 849</td>
</tr>
<tr>
<td>• System Message Display</td>
<td>• Ringtones, on page 871</td>
</tr>
<tr>
<td>• URL Provisioning for Feature Buttons</td>
<td>• Customize Softkeys, on page 897</td>
</tr>
<tr>
<td>Modify Cisco Unified IP Phone Options, on page 1403</td>
<td>• Speed Dial, on page 935</td>
</tr>
</tbody>
</table>
Install Cisco Voice Services Hardware

Note
Cisco routers are normally shipped with Cisco voice services hardware and other optional equipment that you ordered already installed. In the event that the hardware is not installed or you are upgrading your existing Cisco router to support Cisco Unified CME or Cisco Unity Express, you will be required to install hardware components.

Voice bundles do not include all the necessary components for Cisco Unity Express. Contact the Cisco IP Communications Express partner in your area for more information about including Cisco Unity Express in your configuration.

Before you begin

- Cisco router and all recommended hardware for Cisco Unified CME, and if required, Cisco Unity Express, is ordered and delivered, or is already onsite.

<table>
<thead>
<tr>
<th>Task</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure video support.</td>
<td>Video Support, on page 955</td>
</tr>
<tr>
<td>Configure Cisco Unified CME as SRST Fallback.</td>
<td>SRST Fallback Mode, on page 1479</td>
</tr>
</tbody>
</table>

Step 1 Install the Cisco router on your network. To find installation instructions for the Cisco router, access documents located at www.cisco.com>Technical Support & Documentation>Product Support>Routers>router you are using>Install and Upgrade Guides.

Step 2 Install Cisco voice services hardware.

a) To find installation instructions for any Cisco interface card, access documents located at www.cisco.com>Technical Support & Documentation>Product Support>Cisco Interfaces and Modules>interface you are using>Install and Upgrade Guides or Documentation Roadmap.

b) To install and configure your Catalyst switch, see Cisco Network Assistant.

c) To find installation instructions for any Cisco EtherSwitch module, access documents located at www.cisco.com>Technical Support & Documentation>Product Support>Cisco Switches>switch you are using>Install and Upgrade Guides.

Step 3 Connect to the Cisco router using a terminal or PC with terminal emulation. Attach a terminal or PC running terminal emulation to the console port of the router.

Use the following terminal settings:

- 9600 baud rate
- No parity
- 8 data bits
- 1 stop bit
- No flow control
Memory recommendations and maximum numbers of Cisco IP phones identified in the next step are for common Cisco Unified CME configurations only. Systems with large numbers of phones and complex configurations may not work on all platforms and can require additional memory or a higher performance platform.

Step 4
Log in to the router and use the `show version` EXEC command or the `show flash` privileged EXEC command to check the amount of memory installed in the router. Look for the following lines after issuing the `show version` command.

Example:

```
Router> show version...
Cisco 2691 (R7000) processor (revision 0.1) with 177152K/19456K bytes of memory
... 31360K bytes of ATA System Compactflash (Read/Write)
```

The first line indicates how much Dynamic RAM (DRAM) and Packet memory is installed in your router. Some platforms use a fraction of their DRAM as Packet memory. The memory requirements take this into account, so you have to add both numbers to find the amount of DRAM available on your router (from a memory requirement point of view).

The second line identifies the amount of flash memory installed in your router.

or

Look for the following line after issuing the `show flash` command. Add the number available to the number used to determine the total flash memory installed in the Cisco router.

```
Router# show flash
... 2252800 bytes available, (29679616 bytes used]
```

Step 5
Identify DRAM and flash memory requirements for the Cisco Unified CME version and Cisco router model you are using. To find Cisco Unified CME specifications, see the appropriate Cisco Unified CME Supported Firmware, Platforms, Memory, and Voice Products.

Step 6
Compare the amount of memory required to the amount of memory installed in the router. To install or upgrade the system memory in the router, access documents located at www.cisco.com>Technical Support & Documentation>Product Support>Routers>router you are using>Install and Upgrade Guides.

Step 7
Use the `memory-size iomem i/o memory-percentage` privileged EXEC command to disable Smartinit and allocate ten percent of the total memory to Input/Output (I/O) memory.

Example:

```
Router# memory-size iomem 10
```

Install Cisco IOS Software

Note
The Cisco router in a voice bundle is preloaded with the recommended Cisco IOS software release and feature set plus the necessary Cisco Unified CME phone firmware files to support Cisco Unified CME and Cisco Unity Express. If the recommended software is not installed or if you are upgrading an existing Cisco router to support Cisco Unified CME and Cisco Unity Express, you will be required to download and extract the required image and files.
To verify that the recommended software is installed on the Cisco router and if required, download and install a Cisco IOS Voice or higher image, perform the following steps.

Before you begin

- The Cisco router is installed including sufficient memory, all Cisco voice services hardware, and other optional hardware.

Step 1 Identify which Cisco IOS software release is installed on router. Log in to the router and use the `show version` EXEC command.

```plaintext
Router> show version
Cisco Internetwork Operating System Software
IOS (tm) 12.3 T Software (C2600-I-MZ), Version 12.3(11)T, RELEASE SOFTWARE
```

Step 2 Compare the Cisco IOS release installed on the Cisco router to the information in the Cisco Unified CME and Cisco IOS Software Version Compatibility Matrix to determine whether the Cisco IOS release supports the recommended Cisco Unified CME.

Step 3 If required, download and extract the recommended Cisco IOS IP Voice or higher image to flash memory in the router. To find software installation information, access information located at www.cisco.com>Technical Support & Documentation>Product Support>Cisco IOS Software>Cisco IOS Software Mainline release you are using>Configuration Guides>Cisco IOS Configuration Fundamentals and Network Management Configuration Guide>Part 2: File Management>Locating and Maintaining System Images.

Step 4 To reload the Cisco Unified CME router with the new software after replacing or upgrading the Cisco IOS release, use the `reload` privileged EXEC command.

Example:

```plaintext
Router# reload
System configuration has been modified. Save [yes/no]:
Y
Building configuration...
OK
Proceed with reload? Confirm.
11w2d: %Sys-5-RELOAD: Reload requested by console. Reload reason: reload command . System bootstrap, System Version 12.2(8r)T, RELEASE SOFTWARE (fc1) ...
Press RETURN to get started.
...
Router>
```

What to do next

- If you installed a new Cisco IOS software release on the Cisco router, download and extract the compatible Cisco Unified CME version. See Install and Upgrade Cisco Unified CME Software, on page 107.

- If you are installing a new stand-alone Cisco Unified CME system, see Configure VLANs on a Cisco Switch, on page 100.
Configure VLANs on a Cisco Switch

To configure two Virtual Local Area Networks (VLANs), one for voice and one for data, on a Cisco Catalyst switch or an internal Cisco NM, HWIC, or Fast Ethernet switching module, perform only one of the following tasks.

- Network Assistant, on page 100
- Cisco IOS Commands, on page 101
- Internal Cisco Ethernet Switching Module, on page 103

Network Assistant

To configure two Virtual Local Area Networks (VLANs), one for voice and one for data, on an external Cisco Catalyst switch and to implement Cisco Quality-of-Service (QoS) policies on your network, perform the following steps.

Before you begin

- The Cisco router is installed including sufficient memory, all Cisco voice services hardware and other optional hardware.
- The recommended Cisco IOS release and feature set plus the necessary Cisco Unified CME phone firmware files are installed.
- Determine if you can use the Cisco Network Assistant to configure VLANs on the switch for your Cisco Unified CME router, see Devices Supported in the appropriate Release Notes for Cisco Network Assistant.

A PC connected to the Cisco Unified CME router over the LAN is required to download, install, and run Cisco Network Assistant.

Note

- If you want to use Cisco Network Assistant to configure VLANs on the Cisco Catalyst switch, verify that the PC on which you want to install and run Cisco Network Assistant meets the minimum hardware and operating system requirements. See Installing, Launching, and Connecting Network Assistant in Getting Started with Cisco Network Assistant.
- An RJ-45-to-RJ-45 rollover cable and the appropriate adapter (both supplied with the switch) connecting the RJ-45 console port of the switch to a management station or modem is required to manage a Cisco Catalyst switch through the management console.

Step 1 Install, launch, and connect Cisco Network Assistant. For instructions, see Installing, Launching, and Connecting Network Assistant in Getting Started with Cisco Network Assistant.

Step 2 Use Cisco Network Assistant to perform the following tasks. See online Help for additional information and procedures.
 - Enable two VLANs on the switch port.
• Configure a trunk between the Cisco Unified CME router and the switch.
• Configure Cisco IOS Quality-of-Service (QoS).

Cisco IOS Commands

To configure two Virtual Local Area Networks (VLANs), one for voice and one for data, a trunk between the Cisco Unified CME router and the switch, and Cisco IOS Quality-of-Service (QoS) on an external Cisco Catalyst switch, perform the following steps.

Before you begin

• The Cisco router is installed including sufficient memory, all Cisco voice services hardware and other optional hardware.
• The recommended Cisco IOS release and feature set plus the necessary Cisco Unified CME phone firmware files are installed.
• An RJ-45-to-RJ-45 rollover cable and the appropriate adapter (both supplied with the switch) connecting the RJ-45 console port of the switch to a management station or modem is required to manage a Cisco Catalyst switch through the management console.

SUMMARY STEPS

1. enable
2. vlan database
3. vlan vlan-number name vlan-name
4. vlan vlan-number name vlan-name
5. exit
6. wr
7. configure terminal
8. macro global apply cisco-global
9. interface slot-number / port-number
10. macro apply cisco-phone \$AVID number \$VVID number
11. interface slot-number / port-number
12. macro apply cisco-router \$NVID number
13. end
14. wr

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Cisco Unified Communications Manager Express System Administrator Guide
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>vlan database</td>
<td>Enters VLAN configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# vlan database</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>vlan vlan-number name vlan-name</td>
<td>Specifies the number and name of the VLAN being configured.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(vlan)# vlan 10 name data</td>
<td>VLAN 10 modified</td>
</tr>
<tr>
<td></td>
<td>Name: DATA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>vlan vlan-number name vlan-name</td>
<td>Specifies the number and name of the VLAN being configured.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(vlan)# vlan 100 name voice</td>
<td>VLAN 100 modified</td>
</tr>
<tr>
<td></td>
<td>Name: VOICE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Exits this configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(vlan)# exit</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>wr</td>
<td>Writes the modifications to the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# wr</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>macro global apply cisco-global</td>
<td>Applies the Smartports global configuration macro for QoS.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config)# macro global apply cisco-global</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>interface slot-number/port-number</td>
<td>Specifies interface to be configured while in the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config)# interface fastEthernet 0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The slash must be entered between the slot and port numbers.</td>
</tr>
<tr>
<td>10</td>
<td>macro apply cisco-phone $AVIDnumber$VVIDnumber</td>
<td>Applies VLAN and QoS settings in Smartports macro to the port being configured.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config-if)# macro apply cisco-phone $AVID 10 $VVID 100</td>
<td></td>
</tr>
</tbody>
</table>
Before You Begin

Internal Cisco Ethernet Switching Module

To configure two Virtual Local Area Networks (VLANs), one for voice and one for data, on an internal Cisco Ethernet switching module, perform the following steps.

Before you begin

- The Cisco router is installed including sufficient memory, all Cisco voice services hardware and other optional hardware.
- The recommended Cisco IOS release and feature set plus the necessary Cisco Unified CME phone firmware files are installed.
- The switch is in privileged EXEC mode.

SUMMARY STEPS

1. enable
2. vlan database

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $VVID number — Voice VLAN configured in earlier step.</td>
<td>Step 11 interface slot-number / port-number Example: Switch (config-if)# interface fastEthernet 0/24</td>
</tr>
<tr>
<td>• slot-number/port-number — Slot and port of interface to which the Cisco router is connected. Note: The slash must be entered between the slot and port numbers.</td>
<td>Step 12 macro apply cisco-router $NVID number Example: Switch (config-if)# macro apply cisco-router $NVID 10</td>
</tr>
<tr>
<td>• $NVID number — Data VLAN configured in earlier step.</td>
<td>Step 13 end Example: Switch(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Step 14 wr Example: Switch# wr</td>
</tr>
</tbody>
</table>

What to do next

See Using Cisco IOS Commands, on page 104.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>vlan database</code></td>
<td>Enters VLAN configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# vlan database</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vlan vlan-number name vlan-name</code></td>
<td>Specifies the number and name of the VLAN being configured.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(vlan)# vlan 10 name data</code></td>
<td>• <code>vlan-number</code>—Unique value that you assign to dial-peer being configured. Range: 2 to 1004.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>name</code>—Name of the VLAN to associate to the <code>vlan-number</code> being configured.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>vlan vlan-number name vlan-name</code></td>
<td>Specifies the number and name of the VLAN being configured.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(vlan)# vlan 100 name voice</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
<td>Exits this configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(vlan)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>wr</code></td>
<td>Writes the modifications to the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# wr</code></td>
<td></td>
</tr>
</tbody>
</table>

What to do next

See Using Cisco IOS Commands, on page 104.

Using Cisco IOS Commands

Prerequisites
• Hardware and software to establish a physical or virtual console connection to the Cisco router using a terminal or PC running terminal emulation is available and operational.

• Connect to the Cisco router using a terminal or PC with terminal emulation. Attach a terminal or PC running terminal emulation to the console port of the router.

For connecting to the router to be configured, use the following terminal settings:

- 9600 baud rate
- No parity
- 8 data bits
- 1 stop bit
- No flow control

Your choice of configuration method depends on whether you want to create an initial configuration for your IP telephony system or you want to perform ongoing maintenance, such as routinely making additions and changes associated with employee turnover. Table 7: Comparison of Configuration Methods for Cisco Unified CME, on page 105 compares the different methods for configuring Cisco Unified CME.

<table>
<thead>
<tr>
<th>Configuration Method</th>
<th>Benefits</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS command line</td>
<td>• Generates commands for running configuration which can be saved on Cisco router to be configured.</td>
<td>Requires knowledge of Cisco IOS commands and Cisco Unified CME.</td>
</tr>
<tr>
<td>interface</td>
<td>• Use for setting up or modifying all parameters and features during initial configuration and ongoing maintenance.</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Comparison of Configuration Methods for Cisco Unified CME

Voice Bundles

Voice bundles include a Cisco Integrated Services Router for secure data routing, Cisco Unified CME software and licenses to support IP telephony, Cisco IOS SP Services or Advanced IP Services software for voice gateway features, and the flexibility to add Cisco Unity Express for voice mail and auto attendant capabilities. Voice bundles are designed to meet the diverse needs of businesses worldwide. To complete the solution, add digital or analog trunk interfaces to interface to the PSTN or the host PBX, Cisco IP phones, and Cisco Catalyst data switches supporting Power-over Ethernet (PoE).

Table 8: Cisco Tools for Deploying Cisco IPC Express, on page 106 contains a list of the Cisco tools for deploying Cisco IPC Express.
Table 8: Cisco Tools for Deploying Cisco IPC Express

<table>
<thead>
<tr>
<th>Tool Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Configuration Professional Express (Cisco CP Express) and Cisco Configuration Professional (Cisco CP)</td>
<td>Cisco CP Express is a basic router configuration tool that resides in router Flash memory. It is shipped with every device ordered with Cisco CP. Cisco CP Express allows the user to give the device a basic configuration, and allows the user to install Cisco CP for advanced configuration and monitoring capabilities. Cisco CP is the next generation advanced configuration and monitoring tool. It enables you to configure such things as router LAN and WAN interfaces, a firewall, IPSec VPN, dynamic routing, and wireless communication. Cisco CP is installed on a PC. It is available on a CD, and can also be downloaded from www.cisco.com.</td>
</tr>
<tr>
<td>Cisco Network Assistant</td>
<td>Cisco Network Assistant is a PC-based network management application optimized for networks of small and medium-sized businesses.</td>
</tr>
<tr>
<td>Initialization Wizard for Cisco Unity Express</td>
<td>Initialization Wizard in the Cisco Unity Express GUI prompts the user for required information to configure users, voice mailboxes, and other features of voice mail and auto attendant. The wizard starts automatically the first time you log in to the Cisco Unity Express GUI.</td>
</tr>
<tr>
<td>See Configuring the System for the First Time, in the appropriate Cisco Unity Express GUI Administrator Guide.</td>
<td></td>
</tr>
<tr>
<td>Router and Security Device Manager (SDM)</td>
<td>Cisco Router and Security Device Manager (Cisco SDM) is an intuitive, Web-based device-management tool for Cisco routers. Cisco SDM simplifies router and security configuration through smart wizards, which help customers and Cisco partners quickly and easily deploy, and configure a Cisco router without requiring knowledge of the command-line interface (CLI). Supported on Cisco 830 Series to Cisco 7301 routers, Cisco SDM is shipping on Cisco 1800 Series, Cisco 2800 Series, and Cisco 3800 Series routers pre-installed by the factory.</td>
</tr>
</tbody>
</table>
Chapter 5

Install and Upgrade Cisco Unified CME Software

- Prerequisites for Installing Cisco Unified CME Software, on page 107
- Cisco Unified CME Software, on page 107
- Install and Upgrade Cisco Unified CME Software, on page 111

Prerequisites for Installing Cisco Unified CME Software

Hardware

- Your IP network is operational and you can access Cisco web.
- You have a valid Cisco.com account.
- You have access to a TFTP server for downloading files.
- Cisco router and all recommended services hardware for Cisco Unified CME is installed. For installation information, see Install Cisco Voice Services Hardware, on page 97.

Cisco IOS Software

- Recommended Cisco IOS IP Voice or higher image is downloaded to flash memory in the router. To determine which Cisco IOS software release supports the recommended Cisco Unified CME version, see Cisco Unified CME and Cisco IOS Software Compatibility Matrix. For installation information, see Install Cisco IOS Software, on page 98.

Cisco Unified CME Software

This section contains a list of the types of files that must be downloaded and installed in the router flash memory to use with Cisco Unified CME. The files listed in this section are included in zipped or tar archives that are downloaded from the Cisco Unified CME software download website at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.

Basic Files

A tar archive contains the basic files you need for Cisco Unified CME. Be sure to download the correct version for the Cisco IOS software release that is running on your router. The basic tar archive generally also contains the phone firmware files that you require, although you may occasionally need to download individual phone firmware files. For information about installing Cisco Unified CME, see Install Cisco Unified CME Software, on page 111.
Phone Firmware Files

Phone firmware files provide code to enable phone displays and operations. These files are specialized for each phone type and protocol, SIP or SCCP, and are periodically revised. You must be sure to have the appropriate phone firmware files for the types of phones, protocol being used, and Cisco Unified CME version at your site.

New IP phones are shipped from Cisco with a default manufacturing SCCP image. When a IP phone downloads its configuration profile, the phone compares the phone firmware mentioned in the configuration profile with the firmware already installed on the phone. If the firmware version differs from the one that is currently loaded on the phone, the phone contacts the TFTP server to upgrade to the new phone firmware and downloads the new firmware before registering with Cisco Unified CME.

Generally, phone firmware files are included in the Cisco Unified CME software archive that you download. They can also be posted on the software download website as individual files or archives.

Early versions of Cisco phone firmware for SCCP and SIP IP phones had filenames as follows:

- SCCP firmware—P003xxyy.bin
- SIP firmware—P0S3xxyy.bin

In both bases, x represents the major version, and y represented the minor version. The third character represents the protocol, “0” for SCCP or “S” for SIP.

In later versions, the following conventions are used:

- SCCP firmware—P003xxyyzzww, where x represents the major version, y represents the major subversion, z represents the maintenance version, and w represents the maintenance subversion.
- SIP firmware—P0S3-xx-y-zz, where x represents the major version, y represents the minor version, and z represents the subversions.
- The third character in a filename—Represents the protocol, “0” for SCCP or “S” for SIP.

There are exceptions to the general guidelines. For Cisco ATA, the filename begins with AT. For Cisco Unified IP Phone 7002, 7905, and 7912, the filename can begin with CP.

Signed and unsigned versions of phone firmware are available for certain phone types. Signed binary files support image authentication, which increases system security. We recommend signed versions if your version of Cisco Unified CME supports them. Signed binary files have .sbn file extensions, and unsigned files have .bin file extensions.

For Java-based IP phones, such as the Cisco Unified IP Phone 7911, 7941, 7941GE, 7961, 7961GE, 7970, and 7971, the firmware consists of multiple files including JAR and tone files. All of the firmware files for each phone type must be downloaded to the TFT server before they can be downloaded to the phone.

The following example shows a list of phone firmware files that are installed in flash memory for the Cisco Unified IP Phone 7911:

tftp-server flash:SCCP11.7-2-1-0S.loads
tftp-server flash:term06.default.loads
tftp-server flash:term11.default.loads
tftp-server flash:cvm11.7-2-0-66.sbn
tftp-server flash:jar11.7-2-0-66.sbn
tftp-server flash:dsp11.1-0-0-73.sbn
tftp-server flash:apps11.1-0-0-72.sbn
tftp-server flash:cnul11.3-0-0-81.sbn

However, you only specify the filename for the image file when configuring Cisco Unified CME. For Java-based IP phones, the following naming conventions are used for image files:

- SCCP firmware—TERMnn.xx-y-z-ww or SCCPnn.xx-y-zz-ww, where n represents the phone type, x represents the major version, y represents the major subversion, z represents the maintenance version, and w represents the maintenance subversion.

The following example shows how to configure Cisco Unified CME so that the Cisco Unified IP Phone 7911 can download the appropriate SCCP firmware from flash memory:

Router(config)# telephony-service
Router(config-telephony)# load 7911 SCCP11.7-2-1-0S

<table>
<thead>
<tr>
<th>SCCP Phones</th>
<th>Image</th>
<th>Version</th>
<th>SIP Phones</th>
<th>Image</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P00300303000</td>
<td>3.3(3)</td>
<td>P0S3-04-4-00</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P00305000200</td>
<td>5.0(2)</td>
<td>P0S3-05-2-00</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P00306000100</td>
<td>6.0(1)</td>
<td>P0S3-06-0-00</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCCP41.8-0-4ES4-0-1S</td>
<td>8.0(4)</td>
<td>SIP70.8-0-3S</td>
<td>8.0(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TERM41.7-0-3-0S</td>
<td>7.0(3)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

The phone firmware filenames for each phone type and Cisco Unified CME version are listed in the appropriate document available at Cisco CME Supported Firmware, Platforms, Memory, and Voice Products.

For information about installing firmware files, see Install Cisco Unified CME Software, on page 111.

For information about configuring Cisco Unified CME for upgrading between versions or converting between SCCP and SIP, see Install and Upgrade Cisco Unified CME Software, on page 107.

XML Template

The file called xml.template can be copied and modified to allow or restrict specific functions to customer administrators, a class of administrative users with limited capabilities in a Unified CME system. This file is included in tar archives (cme-basic-...). To install the file, see Install Cisco Unified CME Software, on page 111.
Music-on-Hold (MOH) File

An audio file named music-on-hold.au provides music for external callers on hold when a live feed is not used. This file is included in the tar archive with basic files (cme-basic-...). To install the file, see Install Cisco Unified CME Software, on page 111.

Script Files

Archives containing Tcl script files are listed individually on the Cisco Unified CME software download website. For example, the file named app-h450-transfer.2.0.0.9.zip.tar contains a script that adds H.450 transfer and forwarding support for analog FXS ports.

The Cisco Unified CME Basic Automatic Call Distribution and Auto Attendant Service (B-ACD) requires a number of script files and audio files, which are contained in a tar archive with the name cme-b-acd-.... For a list of files in the archive and for more information about the files, see Cisco CME B-ACD and TCL Call-Handling Applications.

For information about installing Tcl script file or an archive, see Install Cisco Unified CME Software, on page 111.

Bundled TSP Archive

An archive is available at the Cisco Unified CME software download website that contains several Telephony Application Programming Interface (TAPI) Telephony Service Provider (TSP) files. These files are needed to set up individual PCs for Cisco Unified IP phone users who wish to make use of Cisco Unified CME-TAPI integration with TAPI-capable PC software. To install the files from the archive, see the installation instructions in TAPI Developer Guide for Cisco CME/SRST.

File Naming Conventions

Most of the files available at the Cisco Unified CME software download website are archives that must be uncompressed before individual files can be copied to the router. In general, the following naming conventions apply to files on the Cisco Unified CME software download website:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cme-basic-...</td>
<td>Basic Cisco Unified CME files, including phone firmware files for a particular Cisco Unified CME version or versions.</td>
</tr>
<tr>
<td>cmterm..., P00..., 7970..</td>
<td>Phone firmware files.</td>
</tr>
<tr>
<td></td>
<td>Note Not all firmware files to be downloaded to a phone are specified in the load command. For a list of file names to be installed in flash memory, and which file names are to be specified by using the load command, see Cisco Unified CME Supported Firmware, Platforms, Memory, and Voice Products.</td>
</tr>
<tr>
<td>cme-b-acd...</td>
<td>Files required for Cisco Unified CME B-ACD service.</td>
</tr>
</tbody>
</table>
Install and Upgrade Cisco Unified CME Software

Note
Customers who purchase a router bundle enabled with Cisco Unified CME will have the necessary Cisco Unified CME files installed at time of manufacture.

Install Cisco Unified CME Software

Step 1 Go to http://www.cisco.com/cgi-bin/tablebuild.pl/ip-key.
Step 2 Select the file to download.
Step 3 Download zip file to tftp server.
Step 4 Use the zip program to extract the file to be installed, then:
 a) If the file is an individual file, use the copy command to copy the files to router flash:

 Router# copy tftp://x.x.x.x/P00307020300.sbn flash:

 b) If the file is a tar file, use the archive tar command to extract the files to flash memory.

 Router# archive tar /xtract source-url flash:/file-url

Step 5 Verify the installation. Use the show flash: command to list the files installed in in flash memory.

 Router# show flash:

 31 128996 Sep 19 2005 12:19:02 -07:00 P00307020300.bin
 32 461 Sep 19 2005 12:19:02 -07:00 P00307020300.loads
 33 681290 Sep 19 2005 12:19:04 -07:00 P00307020300.sb2
 34 129400 Sep 19 2005 12:19:04 -07:00 P00307020300.sbn

Step 6 Use the archive tar /create command to create a backup tar file of all the files stored in flash. You can create a tar file that includes all files in a directory or a list of up to four files from a directory.

 For example, the following command creates a tar file of the three files listed:

 archive tar /create flash:abctestlist.tar flash:orig1 sample1.txt sample2.txt sample3.txt

 The following command creates a tar file of all the files in the directory:

 archive tar /create flash:abctest1.tar flash:orig1

 The following command creates a tar file to backup the flash files to a USB card, on supported platforms:

 archive tar /create usbflash1:abctest1.tar flash:orig1
What to do next

- If you installed Cisco Unified CME software and Cisco Unified CME is not configured on your router, see Network Parameters, on page 127.

- If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SCCP protocol to receive and place calls and the firmware version must be upgraded to a recommended version, or if the phones to be connected to Cisco Unified CME are brand new, out-of-the-box, the phone firmware preloaded at the factory must be upgraded to the recommended version before your phones can complete registration, see Upgrade or Downgrade SCCP Phone Firmware, on page 112.

- If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SIP protocol to receive and place calls and the firmware version must be upgraded to a recommended version, see Upgrade or Downgrade SIP Phone Firmware, on page 114.

- If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SCCP protocol to receive and place calls and you now want some or all of these phones to use the SIP protocol, the phone firmware for each phone type must be upgraded from SCCP to the recommended SIP version before the phones can register. See Phone Firmware Conversion from SCCP to SIP, on page 118.

- If Cisco Unified IP phones to be connected to Cisco Unified CME are using the SIP protocol and are brand new, out-of-the-box, the phone firmware preloaded at the factory must be upgraded to the recommended SIP version before your SIP phones can complete registration. See Phone Firmware Conversion from SCCP to SIP, on page 118.

- If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SIP protocol to receive and place calls and you now want some or all of these phones to use the SCCP protocol, the phone firmware for each phone type must be upgraded from SIP to the recommended SCCP version before the phones can register. See Phone Firmware Conversion from SIP to SCCP, on page 121.

Upgrade or Downgrade SCCP Phone Firmware

Note

Before you begin

- Phone firmware for Cisco Unified IP phones to be connected to Cisco Unified CME, including all versions required during an upgrade or downgrade sequence, must be loaded in the flash memory of the TFTP server from which the phones download their configuration profiles. For information about installing firmware files in flash memory, see Install Cisco Unified CME Software, on page 111.

SUMMARY STEPS

1. enable
2. configure terminal
3. tftp-server device:firmware-file
4. **telephony-service**
5. **load** *phone-type firmware-file*
6. **create cnf-files**
7. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
Example:
Router> enable |
| **Step 2** | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | tftp-server *device*:*firmware-file* | (Optional) Creates TFTP bindings to permit IP phones served by the Cisco Unified CME router to access the specified file.
Example:
Router(config)# tftp-server flash:P00307020300.loads
Router(config)# tftp-server flash:P00307020300.sb2
Router(config)# tftp-server flash:P00307020300.sbn
Router(config)# tftp-server flash:P00307020300.bin |
| **Step 4** | telephony-service | Enters telephony-service configuration mode.
Example:
Router(config)# telephony-service |
| **Step 5** | load *phone-type firmware-file* | Associates a phone type with a phone firmware file.
Example:
Router(config-telephony)# load 7960-7940 P00307020300 |

- A separate **load** command is required for each IP phone type.
- **firmware-file**—Filenames are case-sensitive.
- In Cisco Unified CME 7.0/4.3 and earlier versions, do not use the file suffix (.bin, .sbin, .loads) for any phone type except the Cisco ATA and Cisco Unified IP Phone 7905 and 7912.
- In Cisco Unified CME 7.0(1) and later versions, you must use the complete filename, including the file suffix, for phone firmware versions later than version 8-2-2 for all phone types.
Upgrade or Downgrade SIP Phone Firmware

The upgrade and downgrade sequences for SIP phones differ per phone type as follows:

- Upgrading/downgrading the phone firmware for Cisco Unified IP Phone 7905G, Cisco Unified IP Phone 7912G, and Cisco ATA Analog Telephone Adapter is straightforward; modify the `load` command to upgrade directly to the target load.

- The phone firmware version upgrade sequence for Cisco Unified IP Phone 7940Gs and 7960Gs is from version [234].x to 4.4, to 5.3, to 6.x, to 7.x. You cannot go directly from version [234].x to version 7.x.

- To downgrade phone firmware for Cisco Unified IP Phone 7940Gs and 7960Gs, first upgrade to version 7.x, then modify the `load` command to downgrade directly to the target phone firmware.

Restriction

- Cisco Unified IP Phone 7905G, Cisco Unified IP Phone 7912G, and Cisco ATA—Signed load starts from SIP v1.1. After you upgrade the firmware to a signed load, you cannot downgrade the firmware to an unsigned load.

- Cisco Unified IP Phone 7940G and Cisco Unified IP Phone 7960G—Signed load starts from SIP v5.x. Once you upgrade the firmware to a signed load, you cannot downgrade the firmware to an unsigned load.

- The procedures for upgrading phone firmware files for SIP phones is the same for all Cisco Unified IP phones. For other limits on firmware upgrade between versions, see Cisco 7940 and 7960 IP Phones Firmware Upgrade Matrix.
Before you begin

Phone firmware for Cisco Unified IP phones to be connected to Cisco Unified CME, including all versions required during an upgrade or downgrade sequence, must be loaded in the flash memory of the TFTP server from which the phones will download their configuration profiles. For information about installing firmware files in flash memory, see Install Cisco Unified CME Software, on page 111.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. mode cme
5. load phone-type firmware-file
6. upgrade
7. Repeat Step 5 and Step 6.
8. file text
9. create profile
10. exit
11. voice register pool pool-tag
12. reset
13. exit
14. voice register global
15. no upgrade
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable | |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal | |
| Step 3 | voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.
Example:
Router(config)# voice register global | |
| Step 4 | mode cme | Enables mode for provisioning SIP phones in Cisco Unified CME.
Example:
Router(config-register-global)# mode cme | |
| Step 5 | load phone-type firmware-file | Associates a phone type with a phone firmware file.
Example: | |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config-register-global)# load 7960-7940 P0S3-06-0-00` | - A separate `load` command is required for each IP phone type.
- *firmware-file*—Filename to be associated with the specified Cisco Unified IP phone type.
- Do not use the `.sbin` or `.loads` file extension except for Cisco ATA and Cisco Unified IP Phone 7905 and 7912 |
| **Step 6** | upgrade
Example:
`Router(config-register-global)# upgrade` | Generates a file with the universal application loader image for upgrading phone firmware and performs the TFTP server alias binding. |
| **Step 7** | Repeat Step 5 and Step 6.
Example:
`Router(config-register-global)# load 7960-7940 P0S3-07-4-00`
`Router(config-register-global)# upgrade` | (Optional) Repeat for each version required in multistep upgrade sequences only. |
| **Step 8** | file text
Example:
`Router(config-register-global)# file text` | (Optional) Generates ASCII text files for Cisco Unified IP Phone 7905s and 7905Gs, Cisco Unified IP Phone 7912s and 7912Gs, Cisco ATA-186, or Cisco ATA-188.
- Default—System generates binary files to save disk space. |
| **Step 9** | create profile
Example:
`Router(config-register-global;)# create profile` | Generates provisioning files required for SIP phones and writes the file to the location specified with the `tftp-path` command. |
| **Step 10** | exit
Example:
`Router(config-register-global)# exit` | Exits from the current command mode to the next highest mode in the configuration mode hierarchy. |
| **Step 11** | voice register pool *pool-tag*
Example:
`Router(config)# voice register pool 1` | Enters voice register pool configuration mode to set phone-specific parameters for SIP phones.
- *pool-tag*—Unique sequence number of the SIP phone to be configured. Range is 1 to 100 or the upper limit as defined by `max-pool` command. |
| **Step 12** | reset
Example:
`Router(config-register-pool)# reset` | Performs a complete reboot of the single SIP phone specified with the `voice register pool` command and contacts the DHCP server and the TFTP server for updated information. |
| **Step 13** | exit
Example:
`Router(config-register-pool)# exit` | Exits from the current command mode to the next highest mode in the configuration mode hierarchy. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 15 no upgrade</td>
<td>Return to the default for the upgrade command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# no upgrade</td>
<td></td>
</tr>
<tr>
<td>Step 16 end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows the configuration steps for upgrading firmware for a Cisco Unified IP Phone 7960G or Cisco Unified IP Phone 7940G from SIP 5.3 to SIP 6.0, then from SIP 6.0 to SIP 7.4:

Router(config)# voice register global
Router(config-register-global)# mode cme
Router(config-register-global)# load 7960 POS3-06-0-00
Router(config-register-global)# upgrade
Router(config-register-global)# load 7960 POS3-07-4-00
Router(config-register-global)# create profile

The following example shows the configuration steps for downgrading firmware for a Cisco Unified IP Phone 7960/40 from SIP 7.4 to SIP 6.0:

Router(config)# voice register global
Router(config-register-global)# mode cme
Router(config-register-global)# load 7960 POS3-06-0-00
Router(config-register-global)# upgrade
Router(config-register-global)# create profile

What to do next

- If the Cisco Unified IP phone to be upgraded is not configured in Cisco Unified CME, see Configure Phones for a PBX System, on page 260.
- If the Cisco Unified IP phone is already configured in Cisco Unified CME and can make and receive calls, you are ready to reboot the Cisco Unified IP phones to download the phone firmware to the phone. See Reset and Restart Cisco Unified IP Phones, on page 399.
Phone Firmware Conversion from SCCP to SIP

If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SCCP protocol to receive and place calls and you now want some or all of these phones to use the SIP protocol, the phone firmware for each phone type must be upgraded from SCCP to the recommended SIP version before the phones can register. If Cisco Unified IP phones to be connected to Cisco Unified CME are brand new, out-of-the-box, the SCCP phone firmware preloaded at the factory must be upgraded to the recommended SIP version before your SIP phones can complete registration.

Note

If codec values for the dial peers of a connection do not match, the call fails. The default codec for the POTS dial peer for an SCCP phone is G.711 and the default codec for a VoIP dial peer for a SIP phone is G.729. If neither the SCCP phone nor the SIP phone in Cisco Unified CME has been specifically configured to change the codec, calls between the two IP phones on the same router will produce a busy signal caused by the mismatched default codecs. To avoid codec mismatch, specify the codec for IP phones in Cisco Unified CME. For configuration information, see Configure Individual IP Phones for Key System on SCCP Phone, on page 299.

Before you begin

- Phone firmware for Cisco Unified IP phones to be connected to Cisco Unified CME, including all versions required during an upgrade or downgrade sequence, must be loaded in the flash memory of the TFTP server from which the phones download their configuration profiles. For information about installing firmware files in flash memory, see Install Cisco Unified CME Software, on page 111.
- Cisco Unified IP Phone 7940Gs and Cisco Unified IP Phone 7960Gs—If these IP phones are already configured in Cisco Unified CME to use the SCCP protocol, the SCCP phone firmware on the phone must be version 5.x. If required, upgrade the SCCP phone firmware to 5.x before upgrading to SIP.

SUMMARY STEPS

1. enable
2. configure terminal
3. no ephone ephone-tag
4. exit
5. no ephone-dn dn-tag
6. exit
7. voice register global
8. mode cme
9. load phone-type firmware-file
10. upgrade
11. Repeat Step 9 and Step 10.
12. create profile
13. file text
14. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.

 - Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode. |
| Step 3 | no ephone **ephone-tag** | (Optional) Disables the ephone and removes the ephone configuration.

 - Required only if the Cisco Unified IP phone to be configured is already connected to Cisco Unified CME and is using SCCP protocol.

 - **ephone-tag**—Particular IP phone to which this configuration change will apply. |
| Step 4 | exit | (Optional) Exits from the current command mode to the next highest mode in the configuration mode hierarchy.

 - Required only if you performed the previous step. |
| Step 5 | no ephone-dn **dn-tag** | (Optional) Disables the ephone-dn and removes the ephone-dn configuration.

 - Required only if this directory number is not now nor will be associated to any SCCP phone line, intercom line, paging line, voice-mail port, or message-waiting indicator (MWI) connected to Cisco Unified CME.

 - **dn-tag**—Particular configuration to which this change will apply. |
| Step 6 | exit | (Optional) Exits from the current command mode to the next highest mode in the configuration mode hierarchy.

 - Required only if you performed the previous step. |
<p>| Step 7 | voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME. |
| Step 8 | mode cme | Enables mode for provisioning SIP phones in Cisco Unified CME. |
| Step 9 | load phone-type firmware-file | Associates a phone type with a phone firmware file. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# load 7960-7940 POS3-06-3-00</td>
<td>• A separate \texttt{load} command is required for each IP phone type.</td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>upgrade</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# upgrade</td>
<td>Generates a file with the universal application loader image for upgrading phone firmware and performs the TFTP server alias binding.</td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>Repeat Step 9 and Step 10.</td>
<td>(Optional) Repeat for each version required in multistep upgrade sequences only.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# load 7960-7940 POS3-07-4-00</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# upgrade</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>create profile</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# create profile</td>
<td>Generates provisioning files required for SIP phones and writes the file to the location specified with the \texttt{tftp-path} command.</td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>file text</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# file text</td>
<td>(Optional) Generates ASCII text files for Cisco Unified IP Phones 7905 and 7905G, Cisco Unified IP Phone 7912 and Cisco Unified IP Phone 7912G, Cisco ATA-186, or Cisco ATA-188.</td>
</tr>
<tr>
<td></td>
<td>• Default—System generates binary files to save disk space.</td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(\textit{config-register-global})# end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example

The following example shows the configuration steps for converting firmware on an Cisco Unified IP phone already connected in Cisco Unified CME and using the SCCP protocol, from SCCP 5.x to SIP 7.4:

```plaintext
Router(config)# telephony-service
Router(config-telephony)# no create cnf
CNF files deleted
Router(config-telephony)# voice register global
Router(config-register-global)# mode cme
Router(config-register-global)# load 7960 POS3-07-4-00
Router(config-register-global)# upgrade
Router(config-register-global)# create profile
```
What to do next

After you configure the **upgrade** command, refer to the following statements to determine which task to perform next:

- If the Cisco Unified IP phone to be upgraded is already connected in Cisco Unified CME and you removed the SCCP configuration file for the phone but have not configured this phone for SIP in Cisco Unified CME, see **Configure Phones for a PBX System**, on page 260.

- If the Cisco Unified IP phones to be upgraded are already configured in Cisco Unified CME, see **Reset and Restart Cisco Unified IP Phones**, on page 399.

Phone Firmware Conversion from SIP to SCCP

If Cisco Unified IP phones presently connected to Cisco Unified CME are using the SIP protocol to receive and place calls and you now want some or all of these phones to use the SCCP protocol, the phone firmware for each phone type must be upgraded from SIP to SCCP before the phones can register.

Note

If codec values for the dial peers of a connection do not match, the call fails. The default codec for the POTS dial peer for an SCCP phone is G.711 and the default codec for a VoIP dial peer for a SIP phone is G.729. If neither the SCCP phone nor the SIP phone in Cisco Unified CME has been specifically configured to change the codec, calls between the two IP phones on the same router will produce a busy signal caused by the mismatched default codecs. To avoid codec mismatch, specify the codec for SIP and SCCP phones in Cisco Unified CME. For more information, see **Configure Phones for a PBX System**, on page 260.

Before you begin

- Phone firmware for Cisco Unified IP phones to be connected to Cisco Unified CME, including all versions required during an upgrade or downgrade sequence, must be loaded in the flash memory of the TFTP server from which the phones will download their configuration profiles. For information about installing firmware files in flash memory, see **Install Cisco Unified CME Software**, on page 111.

- Cisco Unified IP Phone 7940Gs and Cisco Unified IP Phone 7960Gs—If these IP phones are already configured in Cisco Unified CME to use the SIP protocol, the SIP phone firmware must be version 7.x. See **Upgrade or Downgrade SIP Phone Firmware**, on page 114.

Remove SIP Configuration Profile

To remove the SIP configuration profile before downloading the SCCP phone firmware to convert a phone from SIP to SCCP, perform the steps in this task.

SUMMARY STEPS

1. enable
2. configure terminal
3. no voice register pool pool-tag
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	

Step 3 no voice register pool pool-tag	Disables voice register pool and removes the voice pool configuration.
Example:	• pool-tag—Unique sequence number for a particular SIP phone to which this configuration applies.
Router(config)# no voice register pool 1	

Step 4 end	Exits from the current command mode to the next highest mode in the configuration mode hierarchy.
Example:	
Router(config-register-pool)# end	

Generate SCCP XML Configuration File to Upgrade from SIP to SCCP

To create an ephone entry and generate a new SCCP XML configuration file for upgrading a particular Cisco Unified IP phone in Cisco Unified CME from SIP to SCCP, perform the steps in this task.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. exit
5. tftp-server device:firmware-file
6. telephony-service
7. load phone-type firmware-file
8. create cnf-files
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Step 2 configure terminal | Enters global configuration mode. |
| Example: | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ephone-dn dn-tag</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone dn 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.</td>
</tr>
<tr>
<td></td>
<td>dn-tag—Unique sequence number that identifies this ephone-dn during configuration tasks. The maximum number of ephone-dns in Cisco Unified CME is version and platform specific. Type ? to display range.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits from the current command mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>tftp-server device:firmware-file</td>
<td>(Optional) Creates TFTP bindings to permit IP phones served by the Cisco Unified CME router to access the specified file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# tftp-server flash:P00307020300.loads</td>
<td></td>
</tr>
<tr>
<td>Router(config)# tftp-server flash:P00307020300.sbn</td>
<td></td>
</tr>
<tr>
<td>Router(config)# tftp-server flash:P00307020300.bin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A separate tftp-server command is required for each phone type.</td>
</tr>
<tr>
<td></td>
<td>• Required for Cisco Unified CME 7.0/4.3 and earlier versions.</td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified CME 7.0(1) and later versions: Required only if the location for cnf files is not flash or slot 0. Use the complete filename, including the file suffix, for phone firmware versions later than version 8-2-2 for all phone types.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>load phone-type firmware-file</td>
<td>Associates a phone type with a phone firmware file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# load 7960-7940 P00307020300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A separate load command is required for each IP phone type.</td>
</tr>
<tr>
<td></td>
<td>• firmware-file—Filename is case-sensitive.</td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified CME 7.0/4.3 and earlier versions: Do not use the .sbin or .loads file extension except for the Cisco ATA and Cisco Unified IP Phone 7905 and 7912.</td>
</tr>
<tr>
<td></td>
<td>• Cisco Unified CME 7.0(1) and later versions: Use the complete filename, including the file suffix, for phone firmware versions later than version 8-2-2 for all phone types.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 8**
create cnf-files
Example:
Router(config-telephony)# create cnf-files | Builds XML configuration files required for SCCP phones. |
| **Step 9**
end
Example:
Router(config-telephony)# end | Exits to privileged EXEC mode. |

Example

The following example shows the configuration steps for upgrading firmware for a Cisco Unified IP Phone 7960G from SIP to SCCP. First the SIP firmware is upgraded to SIP 6.3 and from SIP 6.3 to SIP 7.4; then, the phone firmware is upgraded from SIP 7.4 to SCCP 7.2(3). The SIP configuration profile is deleted and a new ephone configuration profile is created for the Cisco Unified IP phone.

Router(config)# voice register global
Router(config-register-global)# mode cme
Router(config-register-global)# load 7960 P0S3-06-0-00
Router(config-register-global)# upgrade
Router(config-register-global)# load 7960 P0S3-07-4-00
Router(config-register-global)# exit
Router(config)# no voice register pool 1
Router(config-register-pool)# exit
Router(config)# voice register global
Router(config-register-global)# no upgrade
Router(config-register-global)# exit
Router(config)# ephone-dn 1
Router(config-ephone-dn)# exit
Router(config)# tftp-server flash:P00307020300.loads
Router(config)# tftp-server flash:P00307020300.sb2
Router(config)# tftp-server flash:P00307020300.sbn
Router(config)# tftp-server flash:P00307020300.bin
Router(config)# telephony service
Router(config-telephony)# load 7960-7940 P00307000100
Router(config-telephony)# create cnf-files

What to Do Next

After you configure the `upgrade` command:

- If the Cisco Unified IP phone to be upgraded is already connected in Cisco Unified CME and you removed the SIP configuration file for the phone and have not configured the SCCP phone in Cisco Unified CME, see Configure Phones for a PBX System, on page 260.
- If the Cisco Unified IP phones to be upgraded are already configured in Cisco Unified CME, see Reset and Restart Cisco Unified IP Phones, on page 399.

Verify SCCP Phone Firmware Version

Step 1
show flash:
Use this command to learn the filenames associated with that phone firmware

Router# show flash:

31 128996 Sep 19 2005 12:19:02 -07:00 P00307020300.bin
32 461 Sep 19 2005 12:19:02 -07:00 P00307020300.loads
33 681290 Sep 19 2005 12:19:04 -07:00 P00307020300.sb2
34 129400 Sep 19 2005 12:19:04 -07:00 P00307020300.sbn

Step 2 show ephone phone-load

Use this command to verify which phone firmware is installed on a particular ephone. The DeviceName includes the MAC address for the IP phone.

Router# show ephone phone-load

<table>
<thead>
<tr>
<th>DeviceName</th>
<th>CurrentPhoneload</th>
<th>PreviousPhoneload</th>
<th>LastReset</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP000A8A2C8C6E</td>
<td>7.3(3.02)</td>
<td></td>
<td>Initialized</td>
</tr>
</tbody>
</table>

Troubleshooting Tips for Cisco Phone Firmware

Use the debug tftp event command to troubleshoot an attempt to upgrade or convert Cisco phone firmware files for SIP phones.
CHAPTER 6

Network Parameters

• Prerequisites for Defining Network Parameters, on page 127
• Restrictions for Defining Network Parameters, on page 127
• Information About Defining Network Parameters, on page 128
• Define Network Parameters, on page 130
• Configuration Examples for Network Parameters, on page 150
• Where to Go Next, on page 151
• Feature Information for Network Parameters, on page 151

Prerequisites for Defining Network Parameters

• IP routing must be enabled.

• VoIP networking must be operational. For quality and security purposes, we recommend you have separate virtual LANs (VLANs) for data and voice. The IP network assigned to each VLAN should be large enough to support addresses for all nodes on that VLAN. Cisco Unified CME phones receive their IP addresses from the voice network, whereas all other nodes such as PCs, servers, and printers receive their IP addresses from the data network. For configuration information, see Configure VLANs on a Cisco Switch, on page 100.

• If applicable, PSTN lines are configured and operational.

• If applicable, the WAN links are configured and operational.

• Trivial File Transfer Protocol (TFTP) must be enabled on the router to allow IP phones to download phone firmware files.

• To support IP phones that are running SIP to be directly connected to the Cisco Unified CME router, Cisco Unified CME 3.4 or later must be installed on the router.

• To provide voice-mail support for phones connected to the Cisco Unified CME router, install and configure voice mail on your network.

Restrictions for Defining Network Parameters

In Cisco Unified CME 4.0 and later versions, Layer-3-to-Layer-2 VLAN Class of Service (CoS) priority marking is not automatically processed. Cisco Unified CME 4.0 and later versions will continue to mark
Layer 3, but Layer 2 marking is now only handled in the Cisco IOS software. Any Quality of Service (QoS) design that requires Layer 2 marking will have to be explicitly configured, either on a Catalyst switch that supports this capability or on the Cisco Unified CME router under the Ethernet interface configuration. For configuration information, see Enterprise QoS Solution Reference Network Design Guide.

Information About Defining Network Parameters

DHCP Service

When a Cisco Unified IP phone is connected to the Cisco Unified CME system, it automatically queries for a Dynamic Host Configuration Protocol (DHCP) server. The DHCP server responds by assigning an IP address to the Cisco Unified IP phone and providing the IP address of the TFTP server through DHCP option 150. Then the phone registers with the Cisco Unified CME server and attempts to get configuration and phone firmware files from the TFTP server.

For configuration information, perform only one of the following procedures to set up DHCP service for your IP phones:

- If your Cisco Unified CME router is the DHCP server and you can use a single shared address pool for all your DHCP clients, see Configure Single DHCP IP Address Pool, on page 133.
- If your Cisco Unified CME router is the DHCP server and you need separate pools for non-IP-phone DHCP clients, see Configure Separate DHCP IP Address Pool for Each DHCP Client, on page 135.
- If the Cisco Unified CME router is not the DHCP server and you want to relay DHCP requests from IP phones to a DHCP server on a different router, see Configure DHCP Relay, on page 137.

Network Time Protocol for the Cisco Unified CME Router

Network Time Protocol (NTP) allows you to synchronize your Cisco Unified CME router to a single clock on the network, which is known as the clock primary. NTP is disabled on all interfaces by default, but it is essential for Cisco Unified CME so you must ensure that it is enabled. For information about configuring NTP for the Cisco Unified CME router, see Enable Network Time Protocol, on page 138.

Olson Timezones

Before Cisco Unified CME 9.0, some Cisco Unified SCCP IP phones and Cisco Unified SIP IP phones displayed exactly the same time as that of the Cisco Unified CME. For these phones, the correct time was displayed whenever the Cisco Unified CME time was set correctly. The clock timezone, clock summer-time, and clock set commands were the only commands used to set the Cisco Unified CME time correctly.

Other phones used only the time-zone command in telephony-service configuration mode and the timezone command in voice register global configuration mode to specify which time zone they were in so that the correct local time was displayed on Cisco Unified SCCP IP phones and Cisco Unified SIP IP phones, respectively. The phones calculated and displayed the time based on the Greenwich Mean Time (GMT) provided by the Cisco Unified CME or the Network Time Protocol server. The problem with this method is that every time a new country or new time zone was available or an old time zone was changed, the Cisco Unified CME time-zone and timezone commands and the phone loads had to be updated.
In Cisco Unified CME 9.0 and later versions, the Olson Timezone feature eliminates the need to update time zone commands or phone loads to accommodate a new country with a new time zone or an existing country whose city or state wants to change their time zone. Oracle’s Olson Timezone updater tool, tzupdater.jar, only needs to be current for you to set the correct time using the olsontimezone command in either telephony-service or voice register global configuration mode.

For Cisco Unified 3911 and 3951 SIP IP phones and Cisco Unified 6921, 6941, 6945, and 6961 SCCP and SIP IP phones, the correct Olson Timezone updater file is TzDataCSV.csv. The TzDataCSV.csv file is created based on the tzupdater.jar file.

To set the correct time zone, you must determine the Olson Timezone area/location where the Cisco Unified CME is located and download the latest tzupdater.jar or TzDataCSV.csv to a TFTP server that is accessible to the Cisco Unified CME, such as flash or slot 0.

After a complete reboot, the phone checks if the version of its configuration file is earlier or later than 2010o. If it is earlier, the phone loads the latest tzupdater.jar and uses that updater file to calculate the Olson Timezone.

To make the Olson Timezone feature backward compatible, both the time-zone and timezone commands are retained as legacy time zones. Because the olsontimezone command covers approximately 500 time zones (Version 2010o of the tzupdater.jar file supports approximately 453 Olson Timezone IDs.), this command takes precedence when either the time-zone or the timezone command (that covers a total of 90 to 100 time zones only) is present at the same time as the olsontimezone command.

For more information on setting the time zone so that the correct local time is displayed on an IP phone, see Set Olson Timezone for SCCP Phones, on page 139 or Set Olson Timezone for SIP Phones, on page 142.

DTMF Relay

IP phones connected to Cisco Unified CME systems require the use of out-of-band DTMF relay to transport DTMF (keypad) digits across VoIP connections. The reason for this is that the codecs used for in-band transport may distort DTMF tones and make them unrecognizable. DTMF relay solves the problem of DTMF tone distortion by transporting DTMF tones out-of-band, or separate, from the encoded voice stream.

For IP phones on H.323 networks, DTMF is relayed using the H.245 alphanumeric method, which is defined by the ITU H.245 standard. This method separates DTMF digits from the voice stream and sends them as ASCII characters in H.245 user input indication messages through the H.245 signaling channel instead of the RTP channel. For information about configuring a DTMF relay in a multisite installation, see Configure DTMF Relay for H.323 Networks in Multisite Installations, on page 145.

To use remote voice-mail or IVR applications on SIP networks from Cisco Unified CME phones, the DTMF digits used by the Cisco Unified CME phones must be converted to the RFC 2833 in-band DTMF relay mechanism used by SIP phones. The SIP DTMF relay method is needed in the following situations:

- When SIP is used to connect a Cisco Unified CME system to a remote SIP-based IVR or voice-mail application.
- When SIP is used to connect a Cisco Unified CME system to a remote SIP-PSTN voice gateway that goes through the PSTN to a voice-mail or IVR application.

The requirement for out-of-band DTMF relay conversion is limited to SCCP phones. SIP phones natively support in-band DTMF relay as specified in RFC 2833.

To use voice mail on a SIP network that connects to a Cisco Unity Express system, which uses a nonstandard SIP Notify format, the DTMF digits used by the Cisco Unified CME phones must be converted to the Notify format. Additional configuration may be required for backward compatibility with Cisco CME 3.0 and 3.1.
SIP Register Support

SIP register support enables a SIP gateway to register E.164 numbers with a SIP proxy or SIP registrar, similar to the way that H.323 gateways can register E.164 numbers with a gatekeeper. SIP gateways allow registration of E.164 numbers to a SIP proxy or registrar on behalf of analog telephone voice ports (FXS) and IP phone virtual voice ports (EFXS) for local SCCP phones.

When registering E.164 numbers in dial peers with an external registrar, you can also register them with a secondary SIP proxy or registrar to provide redundancy. The secondary registration can be used if the primary registrar fails.

Note

No commands allow registration between the H.323 and SIP protocols.

By default, SIP gateways do not generate SIP Register messages, so the gateway must be configured to register the gateway’s E.164 telephone numbers with an external SIP registrar. For information about configuring the SIP gateway to register phone numbers with Cisco Unified CME, see Configure SIP Trunk Support, on page 146.

Note

When you configure SIP on a router, the ports on all its interfaces are open by default. This makes the router vulnerable to malicious attackers who can execute toll fraud across the gateway if the router has a public IP address and a public switched telephone network (PSTN) connection. To eliminate the threat, you should bind an interface to private IP address that is not accessible by untrusted hosts. In addition, you should protect any public or untrusted interface by configuring a firewall or an access control list (ACL) to prevent unwanted traffic from traversing the router.

Define Network Parameters

Enable Calls in Your VoIP Network

Restriction

- SIP endpoints are not supported on H.323 trunks. SIP endpoints are supported on SIP trunks only.
- Cisco Unified CME 3.4 and later versions support Media Flow-through mode only; enabling SIP-to-SIP calls is required before you can successfully make SIP-to-SIP calls.
- Media Flow-around configured with the `media flow-around` command is not supported by Cisco Unified CME with SIP phones.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice service voip`
4. `allow-connections from-type to to-type`
5. `sip`
6. `registrar server [expires [max sec] [min sec]]`
7. `exit`
8. `sip-ua`
9. `notify telephone-event max-duration time`
10. `registrar (dns:host-name | ipv4:ip-address) expires seconds [tcp] [secondary]`
11. `retry register number`
12. `timers register time`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice service configuration mode and specifies Voice over IP (VoIP) encapsulation.</td>
</tr>
<tr>
<td><code>voice service voip</code></td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables calls between specific types of endpoints in a VoIP network.</td>
</tr>
<tr>
<td><code>allow-connections from-type to to-type</code></td>
<td>• A separate allow-connections command is required for each type of endpoint to be supported.</td>
</tr>
<tr>
<td>Example: Router(config-voi-srv)# allow-connections h323 to h323</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voi-srv)# allow-connections h323 to SIP</td>
</tr>
<tr>
<td></td>
<td>Router(config-voi-srv)# allow-connections SIP to SIP</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Enters SIP configuration mode.</td>
</tr>
<tr>
<td><code>sip</code></td>
<td>• Required if you are connecting IP phones running SIP directly in Cisco CME 3.4 and later.</td>
</tr>
<tr>
<td>Example: Router(config-voi-srv)# sip</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Enables SIP registrar functionality in Cisco Unified CME.</td>
</tr>
<tr>
<td><code>registrar server [expires [max sec] [min sec]]</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Router(config-voi-sip)# registrar server expires max 600 min 60** | - Required if you are connecting IP phones running SIP directly in Cisco CME 3.4 and later.
Note Cisco Unified CME does not maintain a persistent database of registration entries across reloads. Because SIP phones do not use a keepalive functionality, the SIP phones must register again. To decrease the amount of time after which the SIP phones register again, we recommend that you change the expiry.
Note Ensure that the registration expiration timeout is set to a value smaller than the TCP connection aging timeout to avoid disconnection from the TCP.
- **min sec**—(Optional) Range: 60 to 3600. Default: 60. |
| **Step 7** exit | Exits dial-peer configuration mode. |
| **Example:** Router(config-voi-sip)# exit |
| **Step 8** sip-ua | Enters SIP user-agent configuration mode. |
| **Example:** Router(config)# sip-ua |
| **Step 9** notify telephone-event max-duration time | Configures the maximum time interval allowed between two consecutive NOTIFY messages for a single DTMF event.
| **Example:** Router(config-sip-ua)# notify telephone-event max-duration 2000 |
| **Step 10** registrar {dns:hostname | ipv4:ip-address} expires seconds [tcp] [secondary] | Registers E.164 numbers on behalf of analog telephone voice ports (FXS) and IP phone virtual voice ports (EFXS) with an external SIP proxy or SIP registrar server. |
| **Example:** Router(config-sip-ua)# registrar ipv4:10.8.17.40 expires 3600 secondary |
| **Step 11** retry register number | Sets the total number of SIP Register messages that the gateway should send.
- **number**—Number of Register message retries.
<p>| Example: Router(config-sip-ua)# retry register 10 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 12**
 timers register *time*
 Example:
 Router(config-sip-ua)# timers register 500 | Sets how long the SIP user agent (UA) waits before sending Register requests.
 • *time*—Waiting time, in milliseconds.
 Range: 100 to 1000. Default: 500. |
| **Step 13**
 end
 Example:
 Router(config-sip-ua)# end | Exits configuration mode and enters privileged EXEC mode. |

Configure DHCP

To set up DHCP service for your DHCP clients, perform only one of the following procedures:

- If your Cisco Unified CME router is the DHCP server and you can use a single shared address pool for all your DHCP clients, see **Configure Single DHCP IP Address Pool**, on page 133.
- If your Cisco Unified CME router is the DHCP server and you need separate pools for each IP phone and each non-IP-phone DHCP client, see **Configure Separate DHCP IP Address Pool for Each DHCP Client**, on page 135.
- If the Cisco Unified CME router is not the DHCP server and you want to relay DHCP requests from IP phones to a DHCP server on a different router, see **Configure DHCP Relay**, on page 137.

Configure Single DHCP IP Address Pool

To create a shared pool of IP addresses for all DHCP clients, perform the following step.

Note

Do not perform this task if you already have a DHCP server on the LAN that can be used to provide addresses to the Cisco Unified CME phones. See **Enable Network Time Protocol**, on page 138.

Restriction

A single DHCP IP address pool cannot be used if non-IP-phone clients, such as PCs, must use a different TFTP server address.

Before you begin

Your Cisco Unified CME router is a DHCP server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp pool pool-name`
4. `network ip-address [mask | /prefix-length]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
enable
Example:
Router> enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2**
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
ip dhcp pool pool-name
Example:
Router(config)# ip dhcp pool mypool | Creates a name for the DHCP server address pool and enters DHCP pool configuration mode. |
| **Step 4**
network ip-address [mask | /prefix-length]
Example:
Router(config-dhcp)# network 10.0.0.0 255.255.0.0 | Specifies the IP address of the DHCP address pool to be configured. |
| **Step 5**
option 150 ip ip-address
Example:
Router(config-dhcp)# option 150 ip 10.0.0.1 | Specifies the TFTP server address from which the Cisco Unified IP phone downloads the image configuration file.
- This is your Cisco Unified CME router’s address. |
| **Step 6**
default-router ip-address
Example:
Router(config-dhcp)# default-router 10.0.0.1 | (Optional) Specifies the router that the IP phones will use to send or receive IP traffic that is external to their local subnet.
- If the Cisco Unified CME router is the only router on the network, this address should be the Cisco Unified CME IP source address. This command can be omitted if IP phones need to send or receive IP traffic only to or from devices on their local subnet.
- The IP address that you specify for default router will be used by the IP phones for fallback purposes. If the Cisco Unified CME IP source address becomes unreachable, IP phones will attempt to register to the address specified in this command. |
| **Step 7**
end
Example:
Router(config-dhcp)# end | Returns to privileged EXEC mode. |
What to do next

- If you are configuring Cisco Unified CME for the first time on this router, you are ready to configure NTP for the Cisco Unified CME router. For more information, see Enable Network Time Protocol, on page 138.
- If you are finished modifying network parameters for an already configured Cisco Unified CME router, see Configuration Files for Phones, on page 389.

Configure Separate DHCP IP Address Pool for Each DHCP Client

To create a DHCP IP address pool for each DHCP client, including non-IP-phone clients such as PCs, perform the following steps.

Note

Do not perform this task if you already have a DHCP server on the LAN that can be used to provide addresses to the Cisco Unified CME phones. See Enable Network Time Protocol, on page 138.

Restriction

To use a separate DHCP IP address pool for each DHCP client, make an entry for each IP phone.

Before you begin

Your Cisco Unified CME router is a DHCP server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp pool pool-name`
4. `host ip-address subnet-mask`
5. `client-identifier mac-address`
6. `option 150 ip ip-address`
7. `default-router ip-address`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# ip dhcp pool pool2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 host ip-address subnet-mask</td>
<td>Specifies the IP address that you want the phone to get.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# host 10.0.0.0 255.255.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 client-identifier mac-address</td>
<td>Specifies the MAC address of the phone, which is printed on a label on each Cisco Unified IP phone.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# client-identifier 01238.380.3056</td>
<td>• A separate client-identifier command is required for each DHCP client.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Add “01” prefix number before the MAC address.</td>
<td></td>
</tr>
<tr>
<td>Step 6 option 150 ip ip-address</td>
<td>Specifies the TFTP server address from which the Cisco Unified IP phone downloads the image configuration file.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# option 150 ip 10.0.0.1</td>
<td>• This is your Cisco Unified CME router’s address.</td>
<td></td>
</tr>
<tr>
<td>Step 7 default-router ip-address</td>
<td>(Optional) Specifies the router that the IP phones will use to send or receive IP traffic that is external to their local subnet.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# default-router 10.0.0.1</td>
<td>• If the Cisco Unified CME router is the only router on the network, this address should be the Cisco Unified CME IP source address. This command can be omitted if IP phones need to send or receive IP traffic only to or from devices on their local subnet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The IP address that you specify for default router will be used by the IP phones for fallback purposes. If the Cisco Unified CME IP source address becomes unreachable, IP phones will attempt to register to the address specified in this command.</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- If you are configuring Cisco Unified CME for the first time on this router, you are ready to configure NTP for the Cisco Unified CME router. See [Enable Network Time Protocol, on page 138](#).
- If you are finished modifying network parameters for an already configured Cisco Unified CME router, see [Configuration Files for Phones, on page 389](#).
Configure DHCP Relay

To set up DHCP relay on the LAN interface where the Cisco Unified IP phones are connected and enable the DHCP relay to relay requests from the phones to the DHCP server, perform the following steps.

Restriction

The Cisco Unified CME router cannot be the DHCP server.

Before you begin

There is a DHCP server that is not on this Cisco Unified CME router on the LAN that can provide addresses to the Cisco Unified CME phones.

SUMMARY STEPS

1. enable
2. configure terminal
3. service dhcp
4. interface type number
5. ip helper-address ip-address
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 service dhcp</td>
<td>Enables the Cisco IOS DHCP server feature on the router.</td>
</tr>
<tr>
<td>Example: Router(config)# service dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface type number</td>
<td>Enters interface configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface vlan 10</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip helper-address ip-address</td>
<td>Specifies the helper address for any unrecognized broadcast for TFTP server and DNS server requests.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip helper-address 10.0.0.1</td>
<td>• A separate ip helper-address command is required for each server if the servers are on different hosts.</td>
</tr>
</tbody>
</table>
Enable Network Time Protocol

SUMMARY STEPS

1. enable
2. configure terminal
3. clock timezone zone hours-offset [minutes-offset]
4. clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]
5. ntp server ip-address
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 clock timezone zone</td>
<td>Sets the local time zone.</td>
</tr>
<tr>
<td>hours-offset [minutes-offset]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# clock</td>
<td></td>
</tr>
<tr>
<td>timezone pst -8</td>
<td></td>
</tr>
<tr>
<td>Step 4 clock summer-time zone</td>
<td>(Optional) Specifies daylight savings time.</td>
</tr>
<tr>
<td>recurring [week day month</td>
<td></td>
</tr>
<tr>
<td>hh:mm week day month hh:mm</td>
<td></td>
</tr>
<tr>
<td>[offset]]</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- If you are configuring Cisco Unified CME for the first time on this router, you are ready to configure NTP for the Cisco Unified CME router. See Enable Network Time Protocol, on page 138.
- If you are finished modifying network parameters for an already configured Cisco Unified CME router, see Configuration Files for Phones, on page 389.
Command or Action | Purpose
--- | ---
Example: Router(config)# clock summer-time pdt recurring | • Default: summer time is disabled. If the clock summer-time zone recurring command is specified without parameters, the summer time rules default to United States rules. Default of the offset argument is 60.

Step 5 ntp server ip-address | Synchronizes software clock of router with the specified NTP server.
Example: Router(config)# ntp server 10.1.2.3

Step 6 exit | Returns to privileged EXEC mode.
Example: Router(config-telephony)# end

What to do next
• If you are configuring Cisco Unified CME for the first time on this router and if you have a multisite installation, you are ready to configure a DTMF relay. See Configure DTMF Relay for H.323 Networks in Multisite Installations, on page 145.
• If Cisco Unified CME will interact with a SIP Gateway, you must set up support for the gateway. See Configure SIP Trunk Support, on page 146.
• If you are configuring Cisco Unified CME for the first time on this router and you are ready to configure system parameters. See System-Level Parameters, on page 153.
• If you are finished modifying network parameters for an already configured Cisco Unified CME router, see Configuration Files for Phones, on page 389.

Set Olson Timezone for SCCP Phones
To set the Olson Timezone so that the correct local time is displayed on a Cisco Unified SCCP IP phone, perform the following steps.

Before you begin
• TzDataCSV.csv file is added to the configuration files of Cisco Unified 6921, 6941, 6945, and 6961 SCCP IP phones.
• tzupdater.jar file is added to the configuration files of Cisco Unified 7961 SCCP IP phones.

SUMMARY STEPS
1. enable
2. configure terminal
3. tftp-server device: tzupdater.jar
4. tftp-server device: TZDataCSV.csv
5. telephony-service
6. `olsontimezone timezone version number`
7. `create cnf-files`
8. `time-zone number`
9. `exit`
10. `clock timezone zone hours-offset`
11. `clock summer-time zone date date month year hh:mm date month year hh:mm`
12. `exit`
13. `clock set hh:mm:ss day month year`
14. `configure terminal`
15. `telephony-service`
16. `reset`
17. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Example:
Router> enable |
| **Step 2** | **configure terminal**
Example:
Router# configure terminal |
| **Step 3** | **tftp-server device: tzupdater.jar**
Example:
Router(config)# tftp-server flash tzupdater.jar |
| **Step 4** | **tftp-server device: TZDataCSV.csv**
Example:
Router(config)# tftp-server flash TZDataCSV.csv |
| **Step 5** | **telephony-service**
Example:
Router(config)# telephony-service |
| **Step 6** | **olsontimezone timezone version number**
Example:
Router(config-telephony)# olsontimezone America/Argentina/Buenos Aires version 2010o |

Sets the Olson Timezone so that the correct local time is displayed on Cisco Unified SCCP IP phones or Cisco Unified SIP IP phones.

timezone—Olson Timezone names, which include the area (name of continent or ocean) and location (name of a specific location within that region, usually cities or small islands).
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• version number — Version of the tzupdater.jar or TzDataCSV.csv file. The version indicates whether the file needs to be updated or not.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>In Cisco Unified CME 9.0, the latest version is 20100.</td>
</tr>
<tr>
<td>Step 7</td>
<td>create cnf-files</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-telephony)# create cnf-files</td>
</tr>
<tr>
<td>Builds the eXtensible Markup Language (XML) configuration files that are required for Cisco Unified SCCP IP phones in Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>time-zone number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-telephony)# time-zone 21</td>
</tr>
<tr>
<td>Sets the time zone so that the correct local time is displayed on Cisco Unified SCCP IP phones.</td>
<td></td>
</tr>
<tr>
<td>• number — Numeric code for a named time zone.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config-telephony)# exit</td>
</tr>
<tr>
<td>Exits telephony-service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>clock timezone zone hours-offset</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# clock timezone CST -6</td>
</tr>
<tr>
<td>Sets the time zone for display purposes.</td>
<td></td>
</tr>
<tr>
<td>• zone — Name of the time zone to be displayed when standard time is in effect. The length of the zone argument is limited to 7 characters.</td>
<td></td>
</tr>
<tr>
<td>• hours-offset — Hours difference from UTC.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>clock summer-time zone date month year hh:mm</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# clock summer-time CST date 12 October 2010 2:00 26 April 2011 2:00</td>
</tr>
<tr>
<td>(Optional) Configures the Cisco Unified CME system to automatically switch to summer time (daylight saving time).</td>
<td></td>
</tr>
<tr>
<td>• zone — Name of the time zone (for example, “PDT” for Pacific Daylight Time) to be displayed when summer time is in effect. The length of the zone argument is limited to 7 characters.</td>
<td></td>
</tr>
<tr>
<td>• date — Indicates that summer time should start on the first specific date listed in the command and end on the second specific date in the command.</td>
<td></td>
</tr>
<tr>
<td>• month — Month (January, February, and so on).</td>
<td></td>
</tr>
<tr>
<td>• year — Year (1993 to 2035).</td>
<td></td>
</tr>
<tr>
<td>• hh:mm — Time (24-hour format) in hours and minutes.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# exit</td>
</tr>
<tr>
<td>Exits global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>clock set hh:mm:ss day month year</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# clock set 19:29:00 13 May 2011</td>
</tr>
<tr>
<td></td>
<td>Manually sets the system software clock.</td>
</tr>
<tr>
<td></td>
<td>• hh:mm:ss—Current time in hours (24-hour format), minutes, and seconds.</td>
</tr>
<tr>
<td></td>
<td>• day—Current day (by date) in the month.</td>
</tr>
<tr>
<td></td>
<td>• month—Current month (by name).</td>
</tr>
<tr>
<td></td>
<td>• year—Current year (no abbreviation).</td>
</tr>
<tr>
<td>Step 14</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 15</td>
<td>telephony-service</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# telephony-service</td>
</tr>
<tr>
<td></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Step 16</td>
<td>reset</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# reset</td>
</tr>
<tr>
<td></td>
<td>Performs a complete reboot of Cisco Unified SCCP IP phones associated with a Cisco Unified CME router.</td>
</tr>
<tr>
<td>Step 17</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# end</td>
</tr>
<tr>
<td></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Set Olson Timezone for SIP Phones

To set the Olson Timezone so that the correct local time is displayed on a Cisco Unified SIP IP phone, perform the following steps.

Before you begin

- TzDataCSV.csv file is added to the configuration files of Cisco Unified 3911, 3951, 6921, 6941, 6945, and 6961 SIP IP phones.
- tzupdater.jar file is added to the configuration files of Cisco Unified 7961 SIP IP phones.

SUMMARY STEPS

1. enable
2. configure terminal
3. tftp-server *device: tzupdater.jar*
4. tftp-server *device: TZDataCSV.csv*
5. voice register global
6. olsontimezone timezone version number
7. create profile
8. timezone number
9. exit
10. clock timezone zone hours-offset
11. clock summer-time zone date date month year hh:mm date month year hh:mm
12. exit
13. clock set hh:mm:ss day month year
14. configure terminal
15. voice register global
16. reset
17. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: enable</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables access to the tzupdater.jar file on the TFTP server.</td>
</tr>
<tr>
<td>tftp-server device: tzupdater.jar</td>
<td>- device—TFTP server that is accessible to the Cisco Unified CME, such as flash or slot 0.</td>
</tr>
<tr>
<td>Example: tftp-server slot0:tzupdater.jar</td>
<td></td>
</tr>
<tr>
<td>Router(config)# tftp-server slot0:tzupdater.jar</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables access to the TZDataCSV.csv file on the TFTP server.</td>
</tr>
<tr>
<td>tftp-server device: TZDataCSV.csv</td>
<td>- device—TFTP server that is accessible to the Cisco Unified CME, such as flash or slot 0.</td>
</tr>
<tr>
<td>Example: tftp-server slot0:TZDataCSV.csv</td>
<td></td>
</tr>
<tr>
<td>Router(config)# tftp-server slot0:TZDataCSV.csv</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enters voice register global configuration mode.</td>
</tr>
<tr>
<td>voice register global</td>
<td></td>
</tr>
<tr>
<td>Example: voice register global</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Sets the Olson Timezone so that the correct local time is displayed on Cisco Unified SCCP IP phones or Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td>olsontimezone timezone version number</td>
<td>- timezone—Olson Timezone names, which include the area (name of continent or ocean) and location (name of a specific location within that region, usually cities or small islands).</td>
</tr>
<tr>
<td>Example: olsontimezone version 2010o</td>
<td></td>
</tr>
</tbody>
</table>
Purpose
- **version number**—Version of the tzupdater.jar or tzdatacsv.csv file. The version indicates whether the file needs to be updated or not.

Note
In Cisco Unified CME 9.0, the latest version is 2010o.

Command or Action
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>create profile</td>
<td>Generates the configuration profile files required for Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# create profile</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>timezone number</td>
<td>Sets the time zone used for Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# timezone 21</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Exits voice register global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>clock timezone</td>
<td>Sets the time zone for display purposes.</td>
</tr>
<tr>
<td></td>
<td>zone hours-offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# clock timezone CST -6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>clock summer-time</td>
<td>(Optional) Configures the Cisco Unified CME system to automatically switch to summer time (daylight saving time).</td>
</tr>
<tr>
<td></td>
<td>zone date date month year hh:mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# clock summer-time CST date 12 October 2010 2:00 26 April 2011 2:00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configure DTMF Relay for H.323 Networks in Multisite Installations

To configure DTMF relay for H.323 networks in a multisite installation only, perform the following steps.

Note
To configure DTMF relay on SIP networks, see *Configure SIP Trunk Support*, on page 146.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip
4. dtmf-relay h245-alphanumeric
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>dial-peer voice tag voip</td>
<td>Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# dial-peer 2 voip</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>dtmf-relay h245-alphanumeric</td>
<td>Specifies the H.245 alphanumeric method for relaying dual tone multifrequency (DTMF) tones between telephony interfaces and an H.323 network.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-dial-peer)# dtmf-relay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h245-alphanumeric</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-dial-peer)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- To set up support for a SIP trunk, see *Configure SIP Trunk Support*, on page 146.
- If you are configuring Cisco Unified CME for the first time on this router and you are ready to configure system parameters. For more information, see *System-Level Parameters*, on page 153.
- If you are finished modifying network parameters for an already configured Cisco Unified CME router, see *Configuration Files for Phones*, on page 389.

Configure SIP Trunk Support

To enable DTMF relay on a dial-peer for a SIP gateway and set up the gateway to register phone numbers with Cisco Unified CME, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip
4. dtmf-relay rtp-nte
5. dtmf-relay sip-notify
6. exit
7. sip-ua
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
Example:
`Router> enable`
- Enter your password if prompted. |
| 2 | `configure terminal` | Enters global configuration mode.
Example:
`Router# configure terminal` |
| 3 | `dial-peer voice tag voip` | Enters dial-peer configuration mode.
Example:
`Router(config)# dial-peer voice 2 voip` |
| 4 | `dtmf-relay rtp-nte` | Forwards DTMF tones by using Real-Time Transport Protocol (RTP) with the Named Telephone Event (NTE) payload type and enables DTMF relay using the RFC 2833 standard method.
Example:
`Router(config-dial-peer)# dtmf-relay rtp-nte` |
| 5 | `dtmf-relay sip-notify` | Forwards DTMF tones using SIP NOTIFY messages.
Example:
`Router(config-dial-peer)# dtmf-relay sip-notify` |
| 6 | `exit` | Exits dial-peer configuration mode.
Example:
`Router(config-dial-peer)# exit` |
| 7 | `sip-ua` | Enters SIP user-agent configuration mode.
Example:
`Router(config)# sip-ua` |
| 8 | `notify telephone-event max-duration msec` | Sets the maximum milliseconds allowed between two consecutive NOTIFY messages for a single DTMF event.
- `max-duration time`—Range: 500 to 3000.
Example:
`Router(config-sip-ua)# notify telephone-event max-duration 2000` |
| 9 | `registrar {dns: host-name | ipv4: ip-address} expires seconds [tcp] [secondary]` | Registers E.164 numbers on behalf of analog telephone voice ports (FXS) and IP phone virtual voice ports (EFXS) with an external SIP proxy or SIP registrar server.
Example: |
| 10 | `retry register number` | |
| 11 | `timers register msec` | |
| 12 | `end` | |
Verify SIP Trunk Support Configuration

To verify SIP trunk configuration, perform the following steps in any order.

Step 1

show sip-ua status

Use this command to display the time interval between consecutive NOTIFY messages for a telephone event. In the following example, the time interval is 2000 ms:

Example:

```
Router# show sip-ua status
SIP User Agent Status
SIP User Agent for UDP :ENABLED
SIP User Agent for TCP :ENABLED
SIP User Agent bind status(signaling):DISABLED
SIP User Agent bind status(media):DISABLED
SIP early-media for 180 responses with SDP:ENABLED
SIP max-forwards :6
SIP DNS SRV version:2 (rfc 2782)
NAT Settings for the SIP-UA
Role in SDP:NONE
Check media source packets:DISABLED
Maximum duration for a telephone-event in NOTIFYs:2000 ms
SIP support for ISDN SUSPEND/RESUME:ENABLED
Redirection (3xx) message handling:ENABLED
```
SDP application configuration:
Version line (v=) required
Owner line (o=) required
Timespec line (t=) required
Media supported: audio image
Network types supported: IN
Address types supported: IP4
Transport types supported: RTP/AVP udp/tl

Step 2 show sip-ua timers
This command displays the waiting time before Register requests are sent; that is, the value that has been set with the timers register command.

Step 3 show sip-ua register status
This command displays the status of local E.164 registrations.

Step 4 show sip-ua statistics
This command displays the Register messages that have been sent.

Change the TFTP Address on a DHCP Server

To change the TFTP IP address after it has already been configured, perform the following steps.

Restriction
If the DHCP server is on a different router than Cisco Unified CME, reconfigure the external DHCP server with the new IP address of the TFTP server.

Before you begin
Your Cisco Unified CME router is a DHCP server.

SUMMARY STEPS
1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. option 150 ip ip-address
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Configuration Examples for Network Parameters

NTP Server

The following example defines the pst timezone as 8 hours offset from UTC, using a recurring daylight savings time called pdt, and synchronizes the clock with the NTP server at 10.1.2.3:

```
clock timezone pst -8
clock summer-time pdt recurring
ntp server 10.1.2.3
```

DTMF Relay for H.323 Networks

The following excerpt from the `show running-config` command output shows a dial peer configured to use H.245 alphanumeric DTMF relay:

```
dial-peer voice 4000 voip
destination-pattern 4000
session target ipv4:10.0.0.25
codec g711ulaw
dtmf-relay h245-alphanumeric
```
Where to Go Next

- If you are configuring Cisco Unified CME for the first time on this router, you are ready to configure system-level parameters. See System-Level Parameters, on page 153.

- If you modified network parameters for an already configured Cisco Unified CME router, you are ready to generate the configuration file to save the modifications. See Configuration Files for Phones, on page 389.

Feature Information for Network Parameters

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 11: Feature Information for Network Parameters

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olson Timezone</td>
<td>9.0</td>
<td>Eliminates the need to update time zone commands or phone loads to accommodate a new country with a new time zone or an existing country whose city or state wants to change their time zone, using the <code>olsontimezone</code> command in either telephony-service or voice register global configuration mode.</td>
</tr>
</tbody>
</table>
Prerequisites for System-Level Parameters

- To directly connect Cisco Unified IP phones that are running Session Initiation Protocol (SIP) in Cisco Unified CME, Cisco CME 3.4 or a later version must be installed on the router. For installation information, see Install and Upgrade Cisco Unified CME Software, on page 107.
- Cisco Unified CME must be configured to work with your IP network. For configuration information, see Network Parameters, on page 127.

Information About Configuring System-Level Parameters

Bulk Registration Support for SIP Phones

Cisco Unified CME 8.6 enhances the bulk registration feature for Cisco Unified SIP IP phones by optimizing the two main transactions involved in bulk registration process and minimizing the number of required messages to be sent to the phones. The bulk registration process involves the following two main transactions:

- Register—Register transaction handles per line REGISTER messages coming to Cisco Unified CME and provisions phone DNs by creating dialpeers and various phone data structures.
- Phone Status Update—Phone status update transaction sends back device information using REFER and NOTIFY messages.

In Cisco Unified CME 8.6, the bulk registration process consists of only one REGISTER message per phone instead of one REGISTER message per phone per line, thus reducing any negative impact on your router’s performance. For information on configuring bulk registration, see Configure Bulk Registration for SIP IP Phones, on page 177.
The `show voice register pool` command displays the registration method a phone uses: per line, bulk-in progress, or bulk-completed. The per line option indicates that the phone is using the per line registration process. The bulk-in progress option indicates that the phone is using the bulk registration process but the registration process is not complete yet. The bulk-completed option indicates that the phone is registered using the bulk registration process and the registration process is complete. For information on verifying the phone registration process, see Verify Phone Registration Type and Status, on page 178.

The bulk registration feature in Cisco Unified CME 8.6 optimizes line registration on SIP phones and is a phone interop feature. The bulk registration feature is not related to the `bulk` command under voice register global configuration mode.

In earlier versions of Cisco Unified CME, the registration process was very lengthy and several SIP messages were exchanged between the end points and Cisco Unified CME to properly provision the phone.

Table 12: Number of Messages Required for an Eight-Button IP Phone, on page 154 lists the number of messages required to register an eight-button Cisco Unified SIP IP phone, where all of the eight buttons can be configured as a shared line with message waiting indicator (MWI) notification enabled, to Cisco Unified CME.

<table>
<thead>
<tr>
<th>Transactions</th>
<th>Method</th>
<th>Messages Per Transaction</th>
<th>Number of Transactions</th>
<th>Total number of messages (per line)</th>
<th>Total number of messages (bulk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>REGISTER</td>
<td>2</td>
<td>8</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>Phone Status Update</td>
<td>REFER remotecc NOTIFY (mwi, service-control)</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Subscription</td>
<td>SUBSCRIBE (sharedline)</td>
<td>4</td>
<td>8</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
<td>37</td>
</tr>
</tbody>
</table>

You can see from the preceding table that more than 70 messages are required to register one 8-button IP phone. If there is a simultaneous registration of more phones, the amount of messages can be overwhelming and can have a negative impact on the performance of the router.

With the enhanced bulk registration process, the two main transactions (Register and Phone Status Update) are optimized to minimize the number of messages required to complete the phone registration process. Table 12: Number of Messages Required for an Eight-Button IP Phone, on page 154 shows that the total number of messages required for bulk registration is only 37.

Register Transaction

The following is an example of the REGISTER message:

```
REGISTER sip:28.18.88.1 SIP/2.0
Via: SIP/2.0/TCP 28.18.88.33:44332;branch=z9hG4bK53f227fc
From: <sip:6010@28.18.88.1>;tag=001b2a893698027db8ea0454-26b9fb0c
```
To: <sip:6010@28.18.88.1>
Call-ID: 001b2a89-3698011e-280209a4-567e339c828.18.88.33
Max-Forwards: 70
Date: Wed, 03 Mar 2010 01:18:34 GMT
CSeq: 240 REGISTER
User-Agent: Cisco-CP7970G/8.4.0
Contact: <sip:6010@28.18.88.33:44332;transport=tcp >

Reason: SIP;cause=200;text="cisco-alarm:23 Name=SEP001B2A893698 Load=SIP70.8-4-2-30S Last=reset-restart"
Expires: 3600
Content-Type: multipart/mixed; boundary=uniqueBoundary
Mime-Version: 1.0
Content-Length: 982
--uniqueBoundary
Content-Type: application/x-cisco-remotecc-request+xml
Content-Disposition: session;handling=optional

<x-cisco-remotecc-request>
<bulkregisterreq>
 <contact all="true">
 <register>
 </register>
 </contact>
</bulkregisterreq>
</x-cisco-remotecc-request>
--uniqueBoundary
Content-Type: application/x-cisco-remotecc-request+xml
Content-Disposition: session;handling=optional

<x-cisco-remotecc-request>
<optionsind>
 <combine max="6">
 <remotecc>
 <status>
 </status>
 </remotecc>
</optionsind>
The following is an example of a response to the preceding REGISTER message:

```
SIP/2.0 200 OK
Date: Wed, 03 Mar 2010 01:18:41 GMT
From: <sip:6010@28.18.88.1>;tag=001b2a893698027db8ea0454-26b9fb0c
Content-Length: 603
To: <sip:6010@28.18.88.1>;tag=E2556C-6C1
Contact: <sip:6010@28.18.88.33:44332;transport=tcp>;expires=3600;x-cisco-newreg
Expires: 3600
Content-Type: multipart/mixed;boundary=uniqueBoundary
Call-ID: 001b2a89-3698011e-280209a4-567e339c@28.18.88.33
Via: SIP/2.0/TCP 28.18.88.33:44332;branch=z9hG4bK53fZ9hG4bK53f227fc
Server: Cisco-SIPGateway/IOS-12.x
CSeq: 240 REGISTER
Mime-Version: 1.0
```

```xml
--uniqueBoundary--
```

```xml
    < response >
        < code >200</code>
        < optionsind >
            < combine max="6" >
                < remotecc >
                    < status/ >
                </remotecc>
            </combine>
            < dialog usage="shared line" >
                < sub/ >
            </dialog>
            < presence usage="blf speed dial" >
                < sub/ >
            </presence>
        </optionsind>
    </response>
```

```xml
    < x-cisco-remotecc-response >
        < response >
            < code >200</code>
            < optionsind >
                < combine max="6" >
                    < remotecc >
                        < status/ >
                    </remotecc>
                </combine>
                < dialog usage="shared line" >
                    < sub/ >
                </dialog>
                < presence usage="blf speed dial" >
                    < sub/ >
                </presence>
            </optionsind>
        </response>
    </x-cisco-remotecc-response>
```
Phone Status Update Transaction

Cisco Unified IP phones use the option indication to negotiate supported options with Cisco Unified CME via remotecc request. Cisco Unified CME selects an option or options that it wishes to support and return it in the response. Cisco Unified CME ignores items (elements, attributes, and values) that it fails to understand.

A new phone option, combine, is defined to optimize phone status update. This option combines remotecc status information (cfwdall, privacy, dnd, bulk mwi) and service-control. The following is an example of a combined status update:

```
<optionsind>
<combine max="5">
<remotecc><status/></remotecc>
<service-control/>
</combine>
</optionsind>
```

The following is another example of a combined status update:

```
<optionsind>
<combine max="4">
<remotecc><status/></remotecc>
<service-control/>
</combine>
</optionsind>
```

To minimize the data size, Cisco Unified CME and the phone agree ahead of time on a default value to apply updates. Therefore, during initial registration, Cisco Unified CME will not send the value if it matches the agreed upon default. Table 13: Status Information and Default, on page 157 captures the existing status information and applicable default value.

Table 13: Status Information and Default

<table>
<thead>
<tr>
<th>Status</th>
<th>Default</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CallForwardAll Update</td>
<td>No default</td>
<td>Always send regardless of the value</td>
</tr>
<tr>
<td>Privacyrequest</td>
<td>Disabled</td>
<td>Only send if the value is not equal to the default</td>
</tr>
<tr>
<td>DnDupdate</td>
<td>Disabled</td>
<td>Only send if value is not equal to the default</td>
</tr>
<tr>
<td>Bulkupdate (MWI)</td>
<td>No default</td>
<td>Always send regardless of value</td>
</tr>
</tbody>
</table>

During bulk registration, Cisco Unified CME uses a single REFER message to send combined phone status update message for phone status updates such as cfwdallupdate, privacyprequest, DnDupdate, and Bulkupdate (MWI) instead of sending phone status in individual NOTIFY or REFER message to the phone. The following is an example of the single REFER message sent by Cisco Unified CME to the phone:

```
REFER sip:6010@28.18.88.33:44332 SIP/2.0
Content-Id: <14833336>
From: <sip:28.18.88.1>;tag=E256D4-2316
Timestamp: 1267579121
Content-Length: 934
User-Agent: Cisco-SIPGateway/IOS-12.x
```
Cisco Unified IP phones use the TCP for registration refresh. TCP socket has a default keepalive time out session of 60 minutes. If registration refresh to Cisco Unified CME does not takes place within an hour (60 minutes), the TCP connection will be removed. This will make the phones restart instead of refresh. To stop the phones from restarting, adjust the registrar expire timer under voice service voip or set the timer connection aging under sip-ua to a value greater than what the phone uses for registration refreshes. For example, if the phone does a registration refresh every 60 minutes, then setting up a timer connection aging to 100 minutes will guarantee that the TCP keeps the connection open. Or you can set the registrar expire maximum value to less than 3600.
DSCP

Differentiated Services Code Point (DSCP) packet marking is used to specify the class of service for each packet. Cisco Unified IP Phones get their DSCP information from the configuration file that is downloaded to the device.

In earlier versions of Cisco Unified CME, the DSCP value is predefined. In Cisco Unified CME 7.1 and later versions, you can configure the DSCP value for different types of network traffic. Cisco Unified CME downloads the configured DSCP value to SCCP and SIP phones in their configuration files and all control messages and flow-through RTP streams are marked with the configured DSCP value. This allows you to set different DSCP values, for example, for video streams and audio streams.

For configuration information, see Set Up Cisco Unified CME for SCCP Phones, on page 179 or Set Up Cisco Unified CME for SIP Phones, on page 194.

Maximum Ephones in Cisco Unified CME 4.3 and Later Versions

In Cisco Unified CME 4.3 and later versions, the `max-ephones` command is enhanced to set the maximum number of SCCP phones that can register to Cisco Unified CME, without limiting the number that can be configured. In previous versions of Cisco Unified CME, the `max-ephones` command defined the maximum number of phones that could be both configured and registered.

This enhancement expands the maximum number of phones that can be configured to 1000. The maximum number of phones that can register to Cisco Unified CME has not changed; it is dependent on the number of phones supported by the hardware platform and is limited by the `max-ephones` command.

This enhancement supports features, such as Extension Assigner, that require you to configure more phones than can register. For example, if you set the `max-ephones` command to 50 and configure 100 ephones, only 50 phones can register to Cisco Unified CME, one at a time in random order. The remaining 50 phones cannot register and an error message displays for each rejected phone. This enhancement also allows you to assign ephone tags that match the extension number of the phone, for extensions up to 1000.

If you reduce the value of the `max-ephones` command, currently registered phones are not forced to unregister until a reboot. If the number of registered phones, however, is already equal to or more than the max-ephones value, no additional phones can register to Cisco Unified CME. If you increase the value of the `max-ephones` command, the previously rejected ephones are able to register immediately until the new limit is reached.

Note

For Cisco Integrated Services Router 4351, you can set the max-ephones value to 3925. For Cisco Integrated Services Router 4331, you can set the max-ephones value to 2921. For Cisco Integrated Services Router 4321, you can set the max-ephones value to 2901. For Cisco Integrated Services Router 4400 series, you can set the max-ephones value to 4451.

Network Time Protocol for SIP Phones

Although SIP phones can synchronize to a Cisco Unified CME router, the router can lose its clock after a reboot causing phones to display the wrong time. SIP phones registered to a Cisco Unified CME router can synchronize to a Network Time Protocol (NTP) server. Synchronizing to an NTP server ensures that SIP phones maintain the correct time. For configuration information, see Set Network Time Protocol for SIP Phones, on page 201.
Per-Phone Configuration Files

In Cisco Unified CME 4.0 and later versions, you can use an external TFTP server to off load the TFTP server function on the Cisco Unified CME router. Using flash memory or slot 0 memory on the Cisco Unified CME router allows you to use different configuration files for each phone type or for each phone, permitting you to specify different user locales and network locales for different phones. Before Cisco Unified CME 4.0, you could specify only a single default user and network locale for a Cisco Unified CME system.

You can specify one of the following four locations to store configuration files:

- **System**—This is the default. When system:/its is the storage location, there is only one default configuration file for all phones in the system. All phones, therefore, use the same user locale and network locale. User-defined locales are not supported.
- **Flash or slot 0**—When flash memory or slot 0 memory on the router is the storage location, you can create additional configuration files to apply per phone type or per individual phone. Up to five user and network locales can be used in these configuration files.

When the storage location you selected is flash memory and the file system type on this device is Class B (LEFS), you must check the free space on the device periodically and use the `squeeze` command to free the space used up by deleted files. Unless you use the `squeeze` command, the space used by the moved or deleted configuration files cannot be used by other files. Rewriting flash memory space during the `squeeze` operation may take several minutes. We recommend that you use this command during scheduled maintenance periods or off-peak hours.

- **TFTP**—When an external TFTP server is the storage location, you can create additional configuration files that can be applied per phone type or per individual phone. Up to five user and network locales can be used in these configuration files.

You can then specify one of the following ways to create configuration files:

- **Per system**—This is the default. All phones use a single configuration file. The default user and network locale in a single configuration file are applied to all phones in the Cisco Unified CME system. Multiple locales and user-defined locales are not supported.
- **Per phone type**—This setting creates separate configuration files for each phone type. For example, all Cisco Unified IP Phone 7960s use XMLDefault7960.cnf.xml, and all Cisco Unified IP Phone 7905s use XMLDefault7905.cnf.xml. All phones of the same type use the same configuration file, which is generated using the default user and network locale. This option is not supported if you store the configuration files in the system:/its location.
- **Per phone**—This setting creates a separate configuration file for each phone by MAC address. For example, a Cisco Unified IP Phone 7960 with the MAC address 123.456.789 creates the per-phone configuration file SEP123456789.cnf.xml. The configuration file for a phone is generated with the default user and network locale unless a different user and network locale is applied to the phone using an ephone template. This option is not supported if you store the configuration files in the system:/its location.

For configuration information, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.

HFS Download Support for IP Phone Firmware and Configuration Files

Legacy IP phones access the TFTP server to download firmware and configuration files but Cisco Unified CME 8.8 enhances download support for SIP phone firmware, scripts, midlets, and configuration files using the HTTP File-Fetch Server (HFS) infrastructure.
In Cisco Unified CME 8.8 and later versions, SIP phones use an HTTP server as the primary download service when it is configured and access a TFTP server as a secondary or fallback option when the HTTP server fails.

Note

When the HFS download service is not configured, SIP phones automatically access the TFTP server.

The following scenario shows a successful download sequence using an HTTP server:

An IP phone initiates TCP connection to port 6970. A connection is established and an internal request for a file is sent to the HTTP server. The phone receives the HTTP response status code of 200, signifying that the download is successful.

The following scenario shows a download sequence that begins with an IP phone using an HTTP server to download files and ends with a TFTP server as a fallback option when the initial download attempt fails:

An IP phone initiates TCP connection to port 6970 but is unable to establish a connection. The phone contacts the TFTP server and sends an internal request for a file. The file is successfully downloaded from the TFTP server.

The following scenario shows how a download sequence that starts with an HTTP server does not always fall back to the TFTP server when the initial download attempt fails:

An IP phone initiates TCP connection to port 6970. A connection is established and an internal request for a file is sent to the HTTP server. The phone receives the HTTP response status code of 404, signifying that the file requested could not be found. Because the file cannot be found, the request is not sent to the TFTP server.

The configuration files are shared by the HTTP and TFTP servers. However, the firmware files are different for each server.

For more information on Phone Firmware Files, see *Install and Upgrade Cisco Unified CME Software*, on page 107.

For more information on Per-Phone Configuration Files, see *Per-Phone Configuration Files*, on page 160.

For more information on Configuration Files for Phones in Cisco Unified CME, see *Generate Configuration Files for Phones*, on page 390.

Enable HFS Service

To enable the HFS download service, the underlying HTTP server must be enabled first because the HFS infrastructure is built on top of an existing IOS HTTP server.

```
Router(config) # ip http server
```

This HFS infrastructure enables multiple HTTP services to co-exist. The HFS download service runs on custom port 6970 but can also share default port 80 with other services. Other HTTP services run on other non-standard ports like 1234.

```
Router(config) # ip http server
Router(config) # ip http port 1234
```

The HFS download service starts when the following is configured in telephony-service configuration mode.

For the default port:

```
Router(config-telephony) # hfs enable
```
For the custom port:

```
Router(config-telephony)# hfs enable port 6970
```

Note

If the entered custom HFS port clashes with the underlying IP HTTP port, an error message is displayed and the command is disallowed.

In the following example, port 6970 is configured as the IP HTTP port. When the HFS port is configured with the same value, an error message is displayed to show that the port is already in use.

```
Router (config)# ip http port 6970
```

```
Router (config)# telephony-service
```

```
Router (config-telephony)# hfs enable port 6970
```

Error Message Invalid port number or port in use by other application

Explanation The HFS port number is already in use by the underlying IP HTTP server.

Recommended Action Use an HFS port that is different from the underlying IP HTTP port.

Note

Because IP phones are hardcoded to use port 6970 to connect to Cisco Unified CME, you must search for other applications running on port 6970 and assign them with ports different from 6970 to prevent a failure in connecting to Cisco Unified CME.

For configuration information, see *[Enable HFS Download Service for SIP Phones, on page 202]*.

File Binding and Fetching

File binding and fetching using the HTTP server can be classified into two:

- **Explicit binding** – The `create profile` command triggers the system to generate the configuration and firmware files and store them in RAM or a flash memory. The system asks the new internal application programming interfaces (APIs) implemented by the HFS download service to bind the filename and alias that an IP phone wants to access to their corresponding URL.

- **Loose binding** – The HFS download service enables the Cisco Unified CME system to configure a home path from where any requested firmware file that has no explicit binding can be searched and fetched. The files can be stored on any device (such as flash memory or NVRAM) under a root directory or a suitable subdirectory.

No matter how the system is configured, if there is no explicit binding, the files will go to the home path.

An advantage of the HFS service over the TFTP service is that only the absolute path where the firmware files are located needs to be configured in telephony-service configuration mode.

For example:

```
Router(config-telephony)# hfs home-path flash:/cme/loads/
```

In contrast, the TFTP service requires that each file be explicitly bound to its URL using the following `tftp-server` command:

```
tftp-server flash: SCCP70.8-3-3-14S.loads
```
The method is inefficient because this step must be repeated for each file that needs to be fetched using the TFTP server.

For information on verifying HFS file bindings, see Example for Verifying the HFS File Bindings of Cisco Unified SIP IP Phone Configuration and Firmware Files, on page 216.

For information on how to configure the home path, see Configure HFS Home Path for SIP Phone Firmware Files, on page 204.

Locale Installer

Installing and configuring locale files in Cisco Unified CME when using an HTTP server is the same as when using a TFTP server.

For configuration information, see Use the Locale Installer in Cisco Unified CME 7.0(1) and Later Versions, on page 418.

Security Recommendations

Like any access interface, the HFS download service can open router files that should only be accessed by authorized persons. Security issues are made more severe by the fact that the HFS download service is HTTP based, enabling anyone with a simple web browser to access sensitive files, such as configuration or image files, by entering a random string of words.

However, the HFS security problem is restricted to the loose binding operation, where the administrator provides an HFS home path in which the phone firmware and other related files are stored.

In the case where a unique directory path (where only the phone firmware files are stored) is used as the HFS home path

```
(config-telephony)# hfs home-path flash:/cme/loads/
```

only those files that are in flash:/cme/loads/ can be accessed.

But when it is the root directory path that is used as the HFS home path

```
(config-telephony)# hfs home-path flash:(/
```

there is a risk of making configuration files and system images, which are stored in the root directory shared with the phone firmware files, accessible to unauthorized persons.

The following are two recommendations on how to make firmware files inaccessible to unauthorized persons:

- Create a unique directory, which is not shared by any other application or used for any other purpose, for IP phone firmware files. Using a root directory as the HFS home path is not recommended.

- Use the `ip http access-class` command to specify the access list that should be used to restrict access to the HTTP server. Before the HTTP server accepts a connection, it checks the access list. If the check fails, the HTTP server does not accept the request for a connection.

Redundant Cisco Unified CME Router for SCCP Phones

A second Cisco Unified CME router can be configured to provide call-control services if the primary Cisco Unified CME router fails. The secondary Cisco Unified CME router provides uninterrupted services until the primary router becomes operational again.

When a phone registers to the primary router, it receives a configuration file from the primary router. Along with other information, the configuration file contains the IP addresses of the primary and secondary
Cisco Unified CME routers. The phone uses these addresses to initiate a keepalive (KA) message to each router. The phone sends a KA message after every KA interval (30 seconds by default) to the router with which it is registered and after every two KA intervals (60 seconds by default) to the other router. The KA interval can be adjusted.

If the primary router fails, a phone will not receive an acknowledgment (ACK) to its KA message to the primary router. If the phone does not get an ACK from the primary router for three consecutive KAs, it registers with the secondary Cisco Unified CME router.

During the time that the phone is registered to the secondary router, it keeps sending a KA probe to the primary router to see if it has come back up, now every 60 seconds by default or two times the normal KA interval. After the primary Cisco Unified CME router returns to normal operation, the phone starts receiving ACKs for its probes. After the phone receives ACKs from the primary router for three consecutive probes, it switches back to the primary router and re-registers with it. The re-registration of phones with the primary router is also called rehoming.

The physical setup for redundant Cisco Unified CME routers is as follows. The FXO line from the PSTN is split using a splitter. From the splitter, one line goes to the primary Cisco Unified CME router and the other line goes to the secondary Cisco Unified CME router. When a call comes in on the FXO line, it is presented to both the primary and secondary Cisco Unified CME routers. The primary router is configured by default to answer the call immediately. The secondary Cisco Unified CME router is configured to answer the call after three rings. If the primary router is operational, it answers the call immediately and changes the call state so that the secondary router does not try to answer it. If the primary router is unavailable and does not answer the call, the secondary router sees the new call coming in and answers after three rings.

The secondary Cisco Unified CME router should be connected in some way on the LAN, either through the same switch or through another switch that may or may not be connected to the primary Cisco Unified CME router directly. As long as both routers and the phones are connected on the LAN with the appropriate configurations in place, the phones can register to whichever router is active.

Configure primary and secondary Cisco Unified CME routers identically, with the exception that the FXO voice port from the PSTN on the secondary router should be configured to answer after more rings than the primary router, as previously explained. The same command is used on both routers to specify the IP addresses of the primary and secondary routers.

For configuration information, see Configure Redundant Router for SCCP Phones, on page 187.

Restriction

- Due to lack of High Availability support, Stateful Switchover or preservation of active calls is not supported in the redundancy feature offered by Unified CME.
- The physical setup for redundant Cisco Unified CME routers only support Loop start signaling. The Ground start signaling is not supported.

Redundant Cisco Unified CME Router for SIP Phones

A secondary Cisco Unified CME router can be configured to provide call-control services if the primary Cisco Unified CME router fails. The secondary Cisco Unified CME router provides uninterrupted services until the primary router becomes operational again.

When a SIP phone registers to the primary router, it receives a configuration file from the primary router. Along with other information, the configuration file contains the IP addresses of the primary and secondary Cisco Unified CME routers. The phone uses these addresses to initiate a keepalive (KA) message to the
secondary CME router. The phone sends a REGISTER message to the primary router for registration and a keepalive REGISTER message with Expires=0, to the secondary router during the keepalive interval (every 120 seconds by default). The keepalive interval can be configured (Range is 120 to 65535).

If primary router fails, a SIP phone (on registration refresh) will not receive a successful response for its REGISTER message. On unsuccessful response from primary router, phone registers with the secondary router. When the phone is registered to the secondary router, phone sends keepalive REGISTER (Expires=0) messages to the primary router.

After the primary Cisco Unified CME router returns to normal operation, the phone sends a "token-registration" to the primary router seeking permission to move registration of the phone from the standby secondary router to the primary router. To obtain a token, the SIP phones sends a Out-of-Dialog REFER message to the primary router for registration. The primary router accepts the token by responding with a 202 Accepted response. When the SIP phones receive the token (202 Accepted response) from the primary router, the phones will immediately de-register from the secondary router by sending a REGISTER message with Expires=0 for each line and registers back to the primary router. The re-registration of phones with the primary router is called rehoming.

No signaling or media preservation is done for any active calls on Unified CME. Hence during failover on primary CME, calls would remain in active state. But media would not be present for those calls. The SIP phones will not register to the secondary router until the active call is disconnected.

The secondary Cisco Unified CME router is connected directly to the same SIP trunk as the primary Cisco Unified CME router. As long as both routers and the phones are connected on the LAN with the appropriate configurations in place, the phones can register to whichever router is active. You should configure the primary and secondary Cisco Unified CME routers identically. The same command is used on both routers to specify the IP addresses of the primary and secondary routers.

For configuration information, see Configure Redundant Router for SIP Phones, on page 189.

Restriction

- Due to lack of High Availability support, Stateful Switchover or preservation of active calls is not supported in the redundancy feature offered by Unified CME.

Timeouts

The following system-level timeout parameters have default values that are generally adequate:

- **Busy Timeout**—Length of time that can elapse after a transferred call reaches a busy signal before the call is disconnected.
- **Interdigit Timeout**—Length of time that can elapse between the receipt of individual dialed digits before the dialing process times out and is terminated. If the timeout ends before the destination is identified, a tone sounds and the call ends. This value is important when using variable-length dial-peer destination patterns (dial plans).
- **Ringing Timeout**—Length of time a phone can ring with no answer before returning a disconnect code to the caller. This timeout is used only for extensions that do not have no-answer call forwarding enabled. The ringing timeout prevents hung calls received over interfaces, such as FXO, that do not have forward-disconnect supervision.
- **Keepalive**—Interval determines how often a message is sent between the router and Cisco Unified IP phones, over the session, to ensure that the keepalive timeout is not exceeded. If no other traffic is sent over the session during the interval, a keepalive message is sent.
For configuration information, see Modify Defaults for Timeouts for SCCP Phones, on page 186.

IPv6 Support for Cisco Unified CME SCCP Endpoints

Internet Protocol version 6 (IPv6), which is the latest version of the Internet Protocol (IP) that uses packets to exchange data, voice, and video traffic over digital networks, increases the number of network address bits from 32 bits in IPv4 to 128 bits. IPv6 support in Cisco Unified CME allows the network to behave transparently in a dual-stack (IPv4 and IPv6) environment and provides additional IP address space to SCCP phones and devices that are connected to the network. For information on configuring DHCP for IPv6, see Network Parameters, on page 127.

Before Cisco Unified CME 8.0, SCCP supported IPv4 addresses (4 bytes) only. With Cisco Unified CME 8.0, the SCCP version is upgraded to store IPv6 address (16 bytes) also.

The following SCCP phones and devices are supported on IPv6: 7911, 7931, 7941G, 7941GE, 7961G, 7961GE, 7970G, 7971G, 7971G-GE, 7942, 7962, 7945, 7965, 7975, SCCP analogue gateway, Xcoder, and Hardware Conference devices. For more information on configuring SCCP IP phones for IPv6 source address, see Configure IPv6 Source Address for SCCP IP Phones, on page 172.

Note
You must disable Alternative Network Address Transport (ANAT) globally for SIP lines if you have a Cisco Unified CME with a dual-stack SIP trunk and enable ANAT at dial-peer level for the SIP trunk.

Support for IPv4-IPv6 (Dual-Stack)

Cisco Unified CME 8.0 can interact with and support any SCCP devices that support IPv4 only or both IPv4 and IPv6 (dual-stack). In dual-stack mode, two IP addresses are assigned to an interface, one is an IPv4 address and the other is an IPv6 address. Both IPv4 and IPv6 stacks are enabled on the voice gateways so that applications can interact with both versions of IP addresses. To support devices that use IPv4 only, IPv6 only, or both IPv4 and IPv6 (dual-stack) addresses, you must ensure that the Cisco Unified CME has both IPv4 address and IPv6 address enabled. For more information, see Configure IP Phones in IPv4, IPv6, or Dual Stack Mode, on page 170.

Media Flow Through and Flow Around

Media transport modes, such as flow around and flow through, are used to transport media packets across endpoints. Media flow around enables media packets to pass directly between the endpoints, without the intervention of the IP-IP Gateway (IPIPGW). Media flow through enables media packets to pass through the endpoints, without the intervention of the IPIPGW.

Table 14: Call Flow Scenarios Between IPv4 only, IPv6 only, and Dual-Stack, on page 167 lists media flow-through and flow-around scenarios between endpoints that support IPv4, IPv6, and dual-stack. When both endpoints are IPv4 only or IPv6 only, the call flows around. When one endpoint is IPv4 and the other is IPv6, calls flow through. When one endpoint is dual-stack and the other IPv4 or IPv6 the calls flow around. When both endpoints are dual-stack calls flow around or follows the preference (preferred IP address version) selected by protocol mode in dual-stack.
Table 14: Call Flow Scenarios Between IPv4 only, IPv6 only, and Dual-Stack

<table>
<thead>
<tr>
<th>IP Versions</th>
<th>IPv4 Only</th>
<th>IPv6 Only</th>
<th>Dual-Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Only</td>
<td>Flow Around</td>
<td>Flow Through</td>
<td>Flow Around</td>
</tr>
</tbody>
</table>

1 When MTP is configured under ephones all the call flow-around scenarios change to flow-through. This is also applicable to cross-VRF endpoints.

Media Flow Around Support for SIP-SIP Trunk Calls

Cisco Unified CME 8.5 and later versions support the media flow around functionality for SIP to SIP trunk calls on Cisco Unified CME, allowing less consumption of resources on Cisco Unified CME.

The media flow around feature eliminates the need to terminate RTP and re-originate on Cisco Unified CME. This reduces media switching latency and increases the call handling capacity for a Cisco Unified CME SIP trunk.

Media flow around is supported in the following scenarios:

- Single Number Reach (SNR) Push—If an SNR call on a SIP trunk is pushed over to a mobile user over another SIP trunk, the resulting connection is a SIP-SIP trunk call connection. If both SIP trunks are configured for media flow around, the media is allowed to flow around Cisco Unified CME for the resulting call.

- Call Forward—If a SIP trunk call is forwarded over another SIP trunk and both the SIP trunks are configured for media flow around, media flows around Cisco Unified CME for the resulting SIP-SIP trunk call. Media flow around is supported for all types of call forwarding, such as call forward night-service, call forward all, call forward busy, and call forward no-answer.

- Call Transfer—If a SIP trunk call is transferred over another SIP trunk and both SIP trunks are configured for media flow around, media flows around Cisco Unified CME for the resulting SIP-SIP trunk call. Media flow around is supported on both SIP-line-initiated call transfer and SCCP-line-initiated call transfers. It is supported for all types of call transfers, such as blind transfer, consult transfer, and full consult transfer.

Media is forced to flow through on different types of call flows including the SIP to SIP trunk call with asymmetric flow mode configurations or symmetric flow through configuration. In asymmetric flow mode configurations, one SIP leg is configured in the media flow around mode and another SIP leg is configured in the media flow through mode. In such cases, media is forced to flow through Cisco Unified CME.

Media is forced to flow through Cisco Unified CME for the following types of call flows:

- Any calls involving a SIP endpoint, a SCCP endpoint, PSTN trunks (BRI/PRI/FXO), or FXO circuits.
- SIP to SIP trunk call with either asymmetric flow mode configurations or symmetric flow through configurations.
- SIP to SIP trunk call that requires transcoding services on Cisco Unified CME.
Overlap Dialing Support for SIP and SCCP IP Phones

Cisco Unified CME 8.5 and later versions support overlap dialing on SCCP and SIP IP phones such as 7942, 7945, 7962, 7965, 7970, 7971, and 7975.

In earlier versions of Cisco Unified CME, overlap dialing was not supported over PRI/BRI trunks for calls originating from SCCP or SIP IP phones. Dialing was always converted into enbloc dialing based on the dial-peer configuration and the dial-peer mapping application. Once dialpeer matching took place, no further dialing was possible and no overlap digit were sent over ISDN trunk, even though overlap dialing was supported over ISDN trunks.

SCCP IP phones currently support overlap dialing, but digits are converted to enbloc digits when it reaches Cisco Unified CME. Overlap dialing is supported on SIP IP phones using the KeyPad Markup Language (KPML) method.

With overlap dialing support, the dialed digits from the SIP or SCCP IP phones are passed across to the PRI/BRI trunks as overlap digits and not as enbloc digits, enabling overlap dialing on the PRI/BRI trunks as well.

For information on how to configure SCCP and SIP IP phones for overlap dialing, see Configure Overlap Dialing on SCCP IP Phones, on page 192 and Configure Overlap Dialing on SIP Phones, on page 208.

Unsolicited Notify for Shared Line and Presence Events for Cisco Unified SIP IP Phones

Before Cisco Unified CME 9.0, a Cisco Unified SIP IP phone receives NOTIFY messages that convey shared line and presence events from the Cisco Unified CME only by subscribing to such events. To subscribe, the IP phone sends a SUBSCRIBE message to the Cisco Unified CME with the type of event for which it wants to be notified. The Cisco Unified CME sends a NOTIFY message to alert the subscribed IP phone or subscriber of event updates.

In Unsolicited Notify, the Cisco Unified CME acquires the required information from the router configuration to create the implicit subscription and adds subscribers without a subscription request from Cisco Unified SIP IP phones. The Cisco Unified CME sends out NOTIFY messages to the IP phones for shared line or presence updates.
In Cisco Unified CME 9.0 and later versions, the Unsolicited Notify mechanism reduces network traffic particularly during Cisco Unified SIP IP phone registration using the bulk registration method. Through this registration method, the preferred notification method of the IP phone is embedded in the registration message.

Configuring TCP as the transport layer protocol under voice register pool configuration mode enables bulk registration with negotiation for the Unsolicited Notify mechanism.

The Unsolicited Notify mechanism supports backward compatibility with all existing Cisco Unified SIP IP phone features. This mechanism is also the defacto notify mechanism in newer IP phone and Cisco Unified CME features, such as SNR Mobility.

From the end-user perspective, the following are the only two discernible differences between the SUBSCRIBE/NOTIFY and the Unsolicited Notify mechanisms:

- **show presence subscription** and **show shared-line** commands display different subscription IDs for each mechanism.
- With the SUBSCRIBE/NOTIFY mechanism, a Cisco Unified SIP IP phone needs to refresh the Cisco Unified CME subscription. In Unsolicited Notify mode, the subscription is permanent and does not need a refresh as long as the IP phone remains registered.

Restriction

- Because Unsolicited Notify is negotiated during bulk registration, the mechanism is not available on Cisco Unified SIP IP phones that do not have bulk registration turned on or have firmware that do not support bulk registration.
- Cisco Unified CME cannot disable the Unsolicited Notify mechanism. The system complies with and cannot override the requests of Cisco Unified SIP IP phones.
- In the absence of Cisco Unified SIP IP phone subscription information to distinguish if a notification event is for line or device monitoring, local device monitoring is not supported in the Unsolicited Notify mode.

Interface Support for Unified CME and Unified SRST

Unified CME and Unified SRST routers have multiple interfaces that are used for signaling and data packet transfers. The two types of interfaces available on a Cisco router include the physical interface and the virtual interface. The types of physical interfaces available on a router depends on its interface processors or port adapters. Virtual interfaces are software-based interfaces that you create in the memory of the networking device using Cisco IOS commands. When you need to configure a virtual interface for connectivity, you can use the Loopback Interface for Unified CME and Unified SRST.

The following interfaces are supported on Unified CME and Unified SRST:

- Gigabit Ethernet Interface (IEEE 802.3z) (**interface gigabitethernet**)
- Loopback Interface (**interface loopback**)
- Fast Ethernet Interface (**interface fastethernet**)

The remaining Cisco IOS interfaces are not validated on Unified CME and Unified SRST. Hence, Unified CME and Unified SRST do not claim support for these interfaces. For more information on the Cisco IOS Interface commands, see **Cisco IOS Interface and Hardware Component Command Reference**.
For physical interfaces such as `interface gigabitethernet` and `interface fastethernet`, subinterfaces are supported. In a subinterface, virtual interfaces are created by dividing a physical interface into multiple logical interfaces. For Cisco routers, a subinterface uses the parent physical interface for sending and receiving data. Virtual interfaces (For example, `interface loopback`) do not support subinterfaces.

A subinterface for `interface gigabitethernet` is configured as follows:

```
Router(config)#interface gigabitEthernet 0/0.1
Router(config-subif)#exit
Router(config)#exit
```

Configure System-Level Parameters

Configure IP Phones in IPv4, IPv6, or Dual Stack Mode

Restriction
- Legacy IP phones are not supported.
- Multicast MOH and multicast paging features are not supported on IPv6 only phones. If you want to receive paging calls on IPv6 enabled phones, use the default multicast paging.
- Primary and secondary CME need to be provisioned with the same network type.
- MWI relay server must be in IPv4 network.
- Presence server must be IPv4 only.
- Video endpoints, such as CUVA and 7985, are not supported in IPv6
- TAPI client is not supported in IPv6.
- All HTTP based IPv6 services are not supported.
- IOS TFTP server is not supported in IPv6.
- If protocol mode is IPv4, you can only configure IPv4 as the source IP-address, if protocol mode is IPv6 you can only configure IPv6 as the source IP address and if the protocol mode is dual-stack, you can configure both IPv4 and IPv6 source addresses.

Before you begin
- Cisco Unified CME 8.0 or later version.
- IPv6 CEF must be enabled for dual-stack configuration.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `protocol mode {ipv4 | ipv6 | dual-stack [preference {ipv4 | ipv6}]}`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td><code>• Enter your password if prompted.</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>`protocol mode {ipv4</td>
<td>ipv6</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# protocol mode dual-stack preference ipv6</code></td>
<td></td>
</tr>
<tr>
<td>• <code>ipv4</code>—Allows you to set the protocol mode as an IPv4 address.</td>
<td></td>
</tr>
<tr>
<td>• <code>ipv6</code>—Allows you to set the protocol mode as an IPv6 address.</td>
<td></td>
</tr>
<tr>
<td>• <code>dual-stack</code>—Allows you to set the protocol mode for both IPv4 and IPv6 addresses.</td>
<td></td>
</tr>
<tr>
<td>• <code>preference</code>—Allows you to choose a preferred IP address family if protocol mode is dual-stack.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Example

```
telephony-service
protocol mode dual-stack preference ipv6
....
ip source-address 10.10.2.1 port 2000
```
Configure IPv6 Source Address for SCCP IP Phones

Restriction
- IPv6 option only appears if protocol mode is in dual-stack or IPv6.
- Do not change the default port number (2000) in the `ip source-address` configuration command. If you change the port number, IPv6 CEF packet switching engine may not be able to handle the IPv6 SCCP phones and various packet handling problems may occur.

Before you begin
Cisco Unified CME 8.0 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `ip source-address {ipv4 address | ipv6 address} port port [secondary {ipv4 address | ipv6 address } [rehome seconds]] [strict-match]`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.
Example:
Router> enable |
- Enter your password if prompted. |
| Step 2 | `configure terminal` | Enters global configuration mode.
Example:
Router# configure terminal | |
| Step 3 | `telephony-service` | Enters the telephony-service configuration mode.
Example:
Router(config)# telephony-service | |
| Step 4 | `ip source-address {ipv4 address | ipv6 address} port port [secondary {ipv4 address | ipv6 address } [rehome seconds]] [strict-match]` | Allows to configure an IPv4 or IPv6 address as an IP source-address for phones to communicate with a Cisco Unified CME router.
Example:
Router(config-telephony)# ip source-address 10.10.10.33 port 2000 ip source-address 2001:10:10:10:: |
- `ipv4 address`—Allows phones to communicate with phones or voice gateways in an IPv4 network. `ipv4 address` can only be configured with an IPv4 address or a dual-stack mode.
- `ipv6 address`—Allows phones to communicate with phones or voice gateways in an IPv6 network. `ipv6 address` can only be configured with an IPv6 address or a dual-stack mode. |
System-Level Parameters

Verify IPv6 and Dual-Stack Configuration

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) port — TCP/IP port number to use for SCCP. Range is from 2000 to 9999. Default is 2000. For dual-stack, port is only configured with an IPv4 address.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) secondary — Cisco Unified CME router with which phones can register if the primary Cisco Unified CME router fails.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) rehome seconds — Used only by Cisco Unified IP phones that have registered with a Cisco Unified Survivable Remote Site Telephony (SRST) router. This keyword defines a delay that is used by phones to verify the stability of their primary SCCP controller (Cisco Unified Communication Manager or Cisco Unified CME) before the phones re-register with it. This parameter is ignored by phones unless they are registered to a secondary Cisco Unified SRST router. The range is from 0 to 65535 seconds. The default is 120 seconds. The use of this parameter is a phone behavior and is subject to change, based on the phone type and phone firmware version.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) strict-match — Requires strict IP address checking for registration.</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows a list of success messages that are printed during Cisco IOS boot up. These messages confirm whether IPv6 has been enabled on interfaces (for example, EDSP0.1 to EDSP0.5) specific to exchanging RTP packets with SCCP endpoints.

Example:

```
Router# 00:00:33: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0 added.
00:00:34: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0.1 added.
00:00:34: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0.2 added.
00:00:34: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0.3 added.
00:00:34: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0.4 added.
00:00:34: %EDSP-6-IPV6_ENABLED: IPv6 on interface EDSP0.5 added.
00:00:34: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down
00:00:34: %LINK-3-UPDOWN: Interface ephone_dsp DN 1.1, changed state to up
00:00:34: %LINK-3-UPDOWN: Interface ephone_dsp DN 1.2, changed state to up
```
Step 2 Use the show ephone socket command to verify if IPv4 only, IPv6 only, or dual-stack (IPv4/IPv6) is configured in Cisco Unified CME. In the following example, SCCP TCP listening socket (skinny_tcp_listen_socket fd) values 0 and 1 verify dual-stack configuration. When IPv6 only is configured, the show ephone socket command displays SCCP TCP listening socket values as (-1) and (0). The listening socket is closed if the value is (-1). When IPv4 only is configured, the show ephone socket command displays SCCP TCP listening socket values as (0) and (-1).

Example:
```
Router# show ephone socket
skinny_tcp_listen_socket fd = 0
skinny_tcp_listen_socket (ipv6) fd = 1

skinny_secure_tcp_listen_socket fd = -1
skinny_secure_tcp_listen_socket (ipv6) fd = -1

Phone 7,
read_buffer 0x483C0BC4, read_offset 0, read_header N, read_length 0
resend_queue 0x47EC69EC, resend_offset 0, resend_flag N, resend_Q_depth 0
MTP 1,
skinnysockets[16] fd = 17
read_buffer 0x483C1400, read_offset 0, read_header N, read_length 0
resend_queue 0x47EC6978, resend_offset 0, resend_flag N, resend_Q_depth 0

Phone 8,
skinnysockets[17] fd = 18 [ipv6]
read_buffer 0x483C1C3C, read_offset 0, read_header N, read_length 0
resend_queue 0x47EC6904, resend_offset 0, resend_flag N, resend_Q_depth 0
```

Step 3 Use the show ephone summary command to verify the IPv6 or IPv4 addresses configured for ephones. The following example displays IPv6 and IPv4 addresses for different ephones:

Example:
```
Router# show ephone summary
mediaActive:0 whisper_mediaActive:0 startMedia:0 offhook:0 ringing:0 reset:0 reset_sent:0 debug:0
privacy:1 primary_dn: 1*
IPV6:2000:A0A:201:0:216:46FF:FEE0:796A* IP:10.10.10.12 7970 keepalive 599 music 0 1:1
sp1:2004

mediaActive:0 whisper_mediaActive:0 startMedia:0 offhook:0 ringing:0 reset:0 reset_sent:0 debug:0
privacy:0 primary_dn: 13*
```
Configure Bulk Registration

To configure bulk registration for registering a block of phone numbers with an external registrar so that calls can be routed to Cisco Unified CME from a SIP network, perform the following steps.

Numbers that match the number pattern defined by using the **bulk** command can register with the external registrar. The block of numbers that is registered can include any phone that is attached to Cisco Unified CME or any analog phone that is directly attached to an FXS port on a Cisco Unified CME router.

Note

Use the **no reg** command to specify that an individual directory number should not register with the external registrar. For configuration information, see [Disable SIP Proxy Registration for a Directory Number](#), on page 283.

Before you begin

Cisco Unified CME 3.4 or a later version.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **voice register global**
4. **mode cme**
5. **bulk number**
6. **exit**
7. **sip-ua**
8. **registrar {dns: address | ipv4: destination-address} expires seconds [tcp] [secondary] no registrar [secondary]**
9. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Example:
Router> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Step 2**
Example:
Router# configure terminal | Enters global configuration mode. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 mode cme</td>
<td>Enables mode for provisioning SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# mode cme</td>
<td></td>
</tr>
<tr>
<td>Step 5 bulk number</td>
<td>Sets bulk registration for E.164 numbers that will register with a SIP proxy server.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# bulk 408526...</td>
<td></td>
</tr>
<tr>
<td>• number—Unique sequence of up to 32 characters, including wild cards and patterns that represents E.164 numbers that will register with a SIP proxy server.</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits configuration mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 sip-ua</td>
<td>Enters SIP user agent (UA) configuration mode for configuring the user agent.</td>
</tr>
<tr>
<td>Example: Router(config)# sip-ua</td>
<td></td>
</tr>
<tr>
<td>Step 8 registrar {dns: address</td>
<td>ipv4: destination-address} expires seconds [tcp] [secondary] no registrar [secondary]</td>
</tr>
<tr>
<td>Example: Router(config-sip-ua)# registrar server ipv4:1.5.49.240</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits SIP UA configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-sip-ua)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows that all phone numbers that match the pattern “408555...” can register with a SIP proxy server (IP address 1.5.49.240):

```
voice register global
mode cme
bulk 408555...
sip-ua
registrar ipv4:1.5.49.240
```
Configure Bulk Registration for SIP IP Phones

Before you begin

- Cisco Unified CME 8.6 or a later version.
- Phone firmware 8.3 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register pool tag`
4. `session-transport {tcp | udp}`
5. `number tag dn tag`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td><code>• Enter your password if prompted.</code></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register pool tag</td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td>Example: Router(config)#voice register pool 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 session-transport {tcp</td>
<td>udp}</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)#session-transport tcp</td>
<td><code>• tcp—TCP is used for bulk registration.</code></td>
</tr>
<tr>
<td></td>
<td><code>• udp—UDP is used for line registration.</code></td>
</tr>
<tr>
<td>Step 5 number tag dn tag</td>
<td>Associates a directory number with the SIP phone being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)#number 1 dn 2</td>
<td><code>• dn dn-tag—Identifies the directory number for this SIP phone as defined by the voice register dn command.</code></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verify Phone Registration Type and Status

You can verify phone registration type and status using the `show voice register pool` command. The following example shows that the Cisco Unified IP phone 7970 used the bulk registration method and completed the registration process:

```
Router#sh voice register pool 20
Pool Tag 20
Config:
    Mac address is 001B.2A89.3698
    Type is 7970
    Number list 1 : DN 20
    Number list 2 : DN 2
    Number list 3 : DN 24
    Number list 4 : DN 4
    Number list 5 : DN 6
    Number list 6 : DN 7
    Number list 7 : DN 17
    Number list 8 : DN 23
    Proxy Ip address is 0.0.0.0
    Current Phone load version is Cisco-CP7970G/9.0.1
    DTMF Relay is enabled, rtp-nte, sip-notify
    Call Waiting is enabled
    DnD is disabled
    Video is disabled
    Camera is disabled
    Busy trigger per button value is 0
    speed-dial blf 1 6779 label 6779_device
    speed-dial blf 2 3555 label 3555_remote
    speed-dial blf 3 6130 label 6130
    speed-dial blf 4 3222 label 3222_remote_dev
    fastdial 1 1234
    keep-conference is enabled
    username johndoe password cisco
    template is 1
    kpml signal is enabled
    Lpcor Type is none
    Transport type is tcp
    service-control mechanism is supported
    Registration method: bulk - completed
    registration Call ID is 001b2a89-3698017e-68646967-126b902e@28.18.88.33
    Privacy is configured: init status: ON, current status: ON
```
Privacy button is enabled
active primary line is: 6010

Set Up Cisco Unified CME for SCCP Phones

To identify filenames and the location of phone firmware for phone types to be connected, specify the port for phone registration, and specify the number of phones and directory numbers to be supported, perform the following steps.

DSCP requires Cisco Unified CME 7.1 or a later version. If DSCP is configured for the gateway interface using the `service-policy` command or for the dial peer using the `ip qos dscp` command, the value set with those commands takes precedence over the DSCP value configured in this procedure.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **tftp-server device:filename**
4. **telephony-service**
5. **load phone-type firmware-file**
6. **max-ephones max-phones**
7. **max-dn max-directory-numbers [preference preference-order] [no-reg primary | both]**
8. **ip source-address ip-address [port port] [any-match | strict-match]**
9. **ip qos dscp {{number | af | cs | default | ef} {media | service | signaling | video}}**
10. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>tftp-server device:filename</td>
<td>(Optional) Creates TFTP bindings to permit IP phones served by the Cisco Unified CME router to access the specified file.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# tftp-server flash:P00307020300.bin</td>
<td>A separate <code>tftp-server</code> command is required for each phone type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required for Cisco Unified CME 7.0/4.3 and earlier versions.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Identifies a Cisco Unified IP phone firmware file to be used by phones of the specified type when they register.</td>
<td></td>
</tr>
<tr>
<td>load phone-type firmware-file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# load 7960-7940 P00307020300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Sets the maximum number of phones that can register to Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td>max-phones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# max-phones 24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If you are loading a firmware file larger than 384 KB, you must first load a file for that phone type that is smaller than 384 KB and then load the larger file.

- **Cisco Unified CME 7.0(1) and later versions**: Required only if the location for cnf files is not flash or slot 0, such as system memory or a TFTP server url. Use the complete filename, including the file suffix, for phone firmware versions later than version 8.2(2) for all phone types.

- **Cisco Unified CME 7.0(1) and later versions**: Use the complete filename, including the file suffix, for phone firmware versions later than version 8.2(2) for all phone types.

- **Cisco Unified CME 7.0/4.3 and earlier versions**: Do not use the .sbin or .loads file extension except for the Cisco ATA and Cisco Unified IP Phone 7905 and 7912.

- **Cisco Unified CME 7.0(1) and later versions**: Use the complete filename, including the file suffix, for phone firmware versions later than version 8.2(2) for all phone types.

- **Note**: Maximum number is platform and version-specific. Type ? for range.

- **In Cisco Unified CME 7.0/4.3 and later versions**, the maximum number of phones that can register is different from the maximum number of phones that can be configured. The maximum number of phones that can be configured is 1000.

- **In versions earlier than Cisco Unified CME 7.0/4.3**, this command restricted the number of phones that could be configured on the router.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>max-dn max-directory-numbers [preference preference-order] [no-reg primary</td>
<td>Limits number of directory numbers to be supported by this router.</td>
</tr>
<tr>
<td></td>
<td>] [both]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# max-dn 200 no-reg primary</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ip source-address ip-address [port port] [any-match</td>
<td>Identifies the IP address and port number that the Cisco Unified CME router uses for IP phone registration.</td>
</tr>
<tr>
<td></td>
<td>strict-match]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# ip source-address 10.16.32.144</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ip qos dscp {number</td>
<td>af</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# ip qos dscp af43 video</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows different DSCP settings for media, signaling, video, and services enabled with the `ip qos dscp` command:

```
telephony-service
telephony-service
load 7960-7940 P00308000500
max-ephones 100
max-dn 240
ip source-address 10.10.10.1 port 2000
ip qos dscp af11 media
ip qos dscp cs2 signal
ip qos dscp af43 video
ip qos dscp 25 service
cnf-file location flash:
```


Set Date and Time Parameters for SCCP Phones

To specify the format of the date and time that appears on all SCCP phones in Cisco Unified CME, perform the following steps.

For certain phones, such as the Cisco Unified IP Phones 7906, 7911, 7931, 7941, 7942, 7945, 7961, 7962, 7965, 7970, 7971, and 7975, you must configure the `time-zone` command to ensure that the correct time stamp appears on the phone display. This command is not required for Cisco Unified IP Phone 7902G, 7905G, 7912G, 7920, 7921, 7935, 7936, 7940, 7960, or 7985G.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `date-format {dd-mm-yy | mm-dd-yy | yy-dd-mm | yy-mm-dd}`
5. `time-format {12 | 24}`
6. `time-zone number`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`date-format {dd-mm-yy</td>
<td>mm-dd-yy</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-telephony)# date-format yy-mm-dd</code></td>
<td>• Default: <code>mm-dd-yy</code>.</td>
</tr>
<tr>
<td>Step 5</td>
<td>`time-format {12</td>
<td>24}`</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-telephony)# time-format 24</code></td>
<td>• Default: <code>12</code>.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>time-zone number</code></td>
<td>Sets time zone for SCCP phones.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| Example: | • Not required for Cisco Unified IP Phone 7902G, 7905G, 7912G, 7920, 7921, 7935, 7936, 7940, 7960, or 7985G.
| Router(config-telephony)# time-zone 2 | • Default: 5, Pacific Standard/Daylight Time (-480). |

Step 7
Example:
Router(config-telephony)# end
Purpose: Returns to privileged EXEC mode.

Block Automatic Registration for SCCP Phones

Before you begin
Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. no auto-reg-ephone
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example: | • Enter your password if prompted.
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode.
| Example: |
| Router# configure terminal | |
| **Step 3** telephony-service | Enters telephony-service configuration mode.
| Example: |
| Router(config)# telephony-service | |
| **Step 4** no auto-reg-ephone | Disable automatic registration of Cisco Unified IP phones that are running SCCP but are not explicitly configured in Cisco Unified CME.
| Example: | • Default: Enabled.
| Router(config-telephony)# no auto-reg-ephone | |
Define Per-Phone Configuration Files and Alternate Location for SCCP Phones

Restriction

- TFTP does not support file deletion. When configuration files are updated, they overwrite any existing configuration files with the same name. If you change the configuration file location, files are not deleted from the TFTP server.

- Generating configuration files on flash memory or slot 0 memory can take up to a minute, depending on the number of files being generated.

- For smaller routers such as the Cisco 2600 series routers, you must manually enter the `squeeze` command to erase files after changing the configuration file location or entering any commands that trigger the deletion of configuration files. Unless you use the `squeeze` command, the space used by the moved or deleted configuration files is not usable by other files.

- If VRF Support on Cisco Unified CME is configured and the `cnf-file location` command is configured for `system:`, the per phone or per phone type file for an ephone in a VRF group is created in `system:/its/vrf<group-tag>/`. The vrf directory is automatically created and appended to the TFTP path. No action is required on your part. Locale files are still created in `system:/its/`.

- If VRF Support on Cisco Unified CME is configured and the `cnf-file location` command is configured as `flash:` or `slot0:`, the per phone or per phone type file for an ephone in a VRF group is named `flash:/its/vrf<group-tag>_<filename>` or `slot0:/its/vrf<group-tag>_filename>`. The vrf directory is automatically created and appended to the TFTP path. No action is required on your part. The location of the locale files is not changed.

To define a location other than `system:/its` for storing configuration files for per-phone and per-phone type configuration files, perform the following steps.

Before you begin

- Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `cnf-file location {flash: | slot0: | tftp tftp-url}`
5. `cnf-file {perphonetype | perphone}`
6. `end`
System-Level Parameters

Define Per-Phone Configuration Files and Alternate Location for SCCP Phones

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** telephony-service | Enters telephony-service configuration mode.
 Example:
 Router(config)# telephony-service |
| **Step 4** cnf-file location `flash: | Specifies a location other than system:/its for storing phone configuration files.
 Example:
 Router(config-telephony)# cnf-file location flash:
 `tftp tftp-url`
 `slot0:` |
| **Step 5** cnf-file `perphonetype | Specifies whether to use a separate file for each type of phone or for each individual phone.
 Example:
 Router(config-telephony)# cnf-file perphone |
| **Step 6** end | Returns to privileged EXEC mode.
 Example:
 Router(config-telephony)# end |

Example

The following example selects flash memory as the configuration file storage location and per-phone as the type of configuration files that the system generates:

```plaintext
telephony-service
cnf-file location flash:
cnf-file perphone
```

What to do next

If you changed the configuration file storage location, use the **option 150 ip** command to update the address. See [Change the TFTP Address on a DHCP Server](#), on page 149.
Modify Defaults for Timeouts for SCCP Phones

To configure values for system-level intervals for which default values are typically adequate, perform the following steps.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **telephony-service**
4. **timeouts busy seconds**
5. **timeouts interdigit seconds**
6. **timeouts ringing seconds**
7. **keepalive seconds**
8. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 timeouts busy seconds</td>
<td>(Optional) Sets the length of time after which calls that are transferred to busy destinations are disconnected.</td>
</tr>
<tr>
<td>Example:</td>
<td>(seconds)—Number of seconds. Range is 0 to 30. Default is 10.</td>
</tr>
<tr>
<td>Router(config-telephony)# timeouts busy 20</td>
<td></td>
</tr>
<tr>
<td>Step 5 timeouts interdigit seconds</td>
<td>(Optional) Configures the interdigit timeout value for all Cisco Unified IP phones attached to the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>(seconds)—Number of seconds before the interdigit timer expires. Range is 2 to 120. Default is 10.</td>
</tr>
<tr>
<td>Router(config-telephony)# timeouts interdigit 30</td>
<td></td>
</tr>
<tr>
<td>Step 6 timeouts ringing seconds</td>
<td>(Optional) Sets the duration, in seconds, for which the Cisco Unified CME system allows ringing to continue if a call is not answered. Range is 5 to 60000. Default is 180.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# timeouts ringing 30</td>
<td></td>
</tr>
</tbody>
</table>
Configure Redundant Router for SCCP Phones

Before you begin
- Cisco Unified CME 4.0 or a later version.
- The secondary router’s running configuration must be identical to that of the primary router.
- The physical configuration of the secondary router must be as described in Redundant Cisco Unified CME Router for SCCP Phones, on page 163.
- Phones that use this feature must be configured with the `type` command, which guarantees that the appropriate phone configuration file will be present.

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `ip source-address ip-address [port port] [secondary ip-address [rehome seconds]] [any-match | strict-match]`
5. `exit`
6. `voice-port slot-number / port`
7. `signal ground-start`
8. `incoming alerting ring-only`
9. `ring number number`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>(Optional) Sets the time interval, in seconds, between keepalive messages that are sent to the router by Cisco Unified IP phones.</td>
</tr>
</tbody>
</table>
| `keepalive seconds` | - The default is usually adequate. If the interval is set too large, it is possible for notification to be delayed when a system goes down.
- Range: 10 to 65535. Default: 0. |
<p>| Example: | Router(config-telephony)# keepalive 45 |
| Step 8 | Returns to privileged EXEC mode. |
| <code>end</code> | Router(config-telephony)# end |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>ip source-address ip-address [port port] [secondary ip-address [rehome seconds]] [any-match</td>
<td>Identifies the IP address and port number that the primary Unified CME router uses for IP phone registration.</td>
</tr>
<tr>
<td></td>
<td>strict-match]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# ip source-address 10.0.0.1 port 2000 secondary 10.2.2.25</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# exit</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>voice-port slot-number / port</td>
<td>Enters voice-port configuration mode for the FXO voice port for DID calls from the PSTN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice-port 2/0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>signal ground-start</td>
<td>Specifies ground-start signaling for a voice port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voiceport)# signal ground-start</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>incoming alerting ring-only</td>
<td>Instructs the FXO ground-start voice port to detect incoming calls by detecting incoming ring signals.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voiceport)# incoming alerting ring-only</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>ring number number</td>
<td>(Required only for the secondary router) Sets the maximum number of rings to be detected before answering an incoming call over an FXO voice port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voiceport)# ring number 3</td>
<td></td>
</tr>
</tbody>
</table>

- **ip-address**—Address of the primary Unified CME router.
- **port port**—(Optional) TCP/IP port number to use for SCCP. Range is 2000 to 9999. Default is 2000.
- **secondary ip-address**—Indicates a backup Unified CME router.
- **rehome seconds**—Not used by Unified CME. Used only by phones registered to Cisco Unified SRST.
- **any-match**—(Optional) Disables strict IP address checking for registration. This is the default.
- **strict-match**—(Optional) Router rejects IP phone registration attempts if the IP server address used by the phone does not exactly match the source address.

Number of Rings:
- **number**—Number of rings detected before answering the call. Range is 1 to 10. Default is 1.
Purpose

For an incoming FXO voice port on a secondary Cisco Unified CME router, set this value higher than is set on the primary router. We recommend setting this value to 3 on the secondary router.

Note

Returns to privileged EXEC mode.

Example:

```bash
Router(config-voiceport)# end
```

Configure Redundant Router for SIP Phones

Before you begin

- Cisco Unified CME 11.6 or a later version.
- Auto-register configuration is recommended only on the primary router.
- XML interface for secondary backup router is configured. See Configure the XML Interface for the Secondary Backup Router, on page 191.

Note

It is recommended to configure the XML interface for a seamless failover from primary to secondary Cisco Unified CME. Else, there is delay in the phones getting registered to secondary Cisco Unified CME due to mismatch in the configuration version timestamp.

Note

Ensure that you configure version stamp synchronization on the primary router. See Configure Version Stamp Synchronization on the Primary Router, on page 190.

Note

It is recommended to configure version stamp synchronization for a seamless failover from primary to secondary Cisco Unified CME. Else, there is delay in the phones getting registered to secondary Cisco Unified CME.

Restriction

Active calls are not supported when switchover happens from primary router to the secondary router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `source-address ip-address [port port] [secondary ip-address]`
5. `keepalive seconds`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice register global configuration mode.</td>
</tr>
<tr>
<td><code>voice register global</code></td>
<td>Router(config)# voice register global</td>
</tr>
<tr>
<td>Step 4</td>
<td>Identifies the IP address and port number that the Cisco Unified CME router uses for IP phone registration.</td>
</tr>
<tr>
<td><code>source-address ip-address [port port] [secondary ip-address]</code></td>
<td>• <code>ip-address</code>—Address of the primary Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>port port</code>—(Optional) TCP/IP port number to use for SIP. Range is 2000 to 9999. Default is 5060 for SIP.</td>
</tr>
<tr>
<td></td>
<td>• <code>secondary ip-address</code>—Indicates a backup Cisco Unified CME router.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Sets the length of the time interval between successive keepalive messages from the SIP phones to Cisco Unified CME router. Default is 120 seconds.</td>
</tr>
<tr>
<td><code>keepalive seconds</code></td>
<td>Router(config-register-global)# keepalive 200</td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Router(config-register-global)# end</td>
</tr>
</tbody>
</table>

Configure Version Stamp Synchronization on the Primary Router

To configure the primary router to enable automatic synchronization of 'version stamp' with secondary backup router, perform the following steps.

⚠️ **Tip**

All phone-related configurations are tagged with a 'version stamp' that indicates when the last configuration change was made.
Before you begin

- XML interface for secondary backup router is configured. See Configure the XML Interface for the Secondary Backup Router, on page 191.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. standby username username password password
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 standby username username password password</td>
<td>Defines an authorized user.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# standby username user23 password 3Rs92uzQ</td>
<td>• Same username and password that is defined in Configure the XML Interface for the Secondary Backup Router, on page 191.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure the XML Interface for the Secondary Backup Router

To configure the secondary backup router to activate the XML interface required to receive "version stamp" configuration change information from the primary router, perform the following steps.

Restriction

- Automatic synchronization for new or replacement routers is not supported.
Before you begin

- The XML interface, provided through the Cisco IOS XML Infrastructure (IXI), must be configured. See Configuring the XML API.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `xml user user-name password password privilege-level`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>telephony-service</code></td>
<td>Enters telephony service configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>xml user user-name password password privilege-level</code></td>
<td>Defines an authorized user.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# xml user user23 password 3Rs92uzQ 15</code></td>
<td>- <code>user-name</code>—Username of the authorized user.</td>
</tr>
<tr>
<td></td>
<td>- <code>password</code>—Password to use for access.</td>
</tr>
<tr>
<td></td>
<td>- <code>privilege-level</code>—Level of access to Cisco IOS commands to be granted to this user. Only the commands with the same or a lower level can be executed via XML. Range is 0 to 15.</td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configure Overlap Dialing on SCCP IP Phones

SUMMARY STEPS

1. `enable`
System-Level Parameters

Configure Overlap Dialing on SCCP IP Phones

1. **configure terminal**
2. **telephony-service**
3. **overlap-signal**
4. **exit**
5. **ephone phone-tag**
6. **overlap-signal**
7. **exit**
8. **ephone-template template-tag**
9. **overlap-signal**
10. **exit**
11. **end**

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>overlap-signal</td>
<td>Allows to configure overlap signaling support for SCCP IP phones.</td>
</tr>
<tr>
<td>Example:</td>
<td>exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>overlap-signal</td>
<td>Applies overlap signaling support for ephone.</td>
</tr>
<tr>
<td>Example:</td>
<td>exit</td>
<td>Exits ephone configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Step 9 ephone-template template-tag</td>
<td>Enters ephone-template configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)ephone-template 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10 overlap-signal</td>
<td>Applies overlap signaling support to ephone template.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)#overlap-signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set Up Cisco Unified CME for SIP Phones

To identify filenames and location of phone firmware for phone types to be connected, to specify the port for phone registration, and to specify the number of phones and directory numbers to be supported, perform the following steps.

Note

If your Cisco Unified CME system supports SCCP and SIP phones, do not connect your SIP phones to your network until after you have verified the configuration profile for the SIP phone.

Note

From Cisco IOS XE Amsterdam 17.2.1r onwards, `cme-app` mode was added for ISR4321 routers. This mode allows configuration of up to 200 phones for routers that are dedicated to CME use only. The `cme` or `cme-app` modes configure SIP phones and features for standalone call control use.

Restriction

- SIP endpoints are not supported on H.323 trunks. SIP endpoints are supported on SIP trunks only.
- Certain Cisco Unified IP phones, such as the Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE, are supported only in Cisco Unified CME 4.1 and later versions.
- DSCP requires Cisco Unified CME 7.1 or a later version. If DSCP is configured for the gateway interface using the `service-policy` command or for the dial peer using the `ip qos dscp` command, the value set with those commands takes precedence over the DSCP value configured in this procedure.

Before you begin

Cisco CME 3.4 or a later version.

SUMMARY STEPS

1. `enable`
2. configure terminal
3. voice register global
4. mode [cme | cme-app]
5. source-address ip-address [port port]
6. load phone-type firmware-file
7. tftp-path {flash: | slot0: | tftp://url}
8. max-pool max-phones
9. max-dn max-directory-numbers
10. authenticate [all][realm string]
11. ip qos dscp [{number | af | cs | default | ef} {media | service | signaling | video}]
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted.
Example:
Router> enable |

| **Step 2** configure terminal | Enters global configuration mode.
Example:
Router(config)# configure terminal |

| **Step 3** voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.
Example:
Router(config)# voice register global |

| **Step 4** mode [cme | cme-app] | Enables mode for provisioning SIP phones in Cisco Unified CME.
Example:
Router(config-register-global)# mode cme |

| **Step 5** source-address ip-address [port port] | Enables the Cisco Unified CME router to receive messages from SIP phones through the specified IP address and port.
Example:
Router(config-register-global)# source-address 10.6.21.4 |

| **Step 6** load phone-type firmware-file | Associates a phone type with a phone firmware file.
• A separate load command is required for each phone type.
Example:
Router(config-register-global)# load 7960-7940 POS3-07-3-00 |

| **Step 7** tftp-path {flash: | slot0: | tftp://url} | (Optional) Defines a location, other than system memory, from which the SIP phones will download configuration profile files.
• Default: system memory (system:/cme/sipphone/).
Example:
Router(config-register-global)# tftp-path http://mycompany.com/files |
System-Level Parameters

Set Up Cisco Unified CME for SIP Phones

To identify filenames and location of phone firmware for phone types to be connected, to specify the port for phone registration, and to specify the number of phones and directory numbers to be supported, perform the following steps.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 8** | **max-pool max-phones**
Example:
Router(config-register-global)# max-pool 10 | Sets maximum number of SIP phones to be supported by the Cisco Unified CME router.
- Version- and platform-dependent; type ? for range.
- In Cisco CME 3.4 to Cisco Unified CME 7.0: Default is maximum number supported by platform.
- In Cisco Unified CME 7.0(1) and later versions: Default is 0. |
| **Step 9** | **max-dn max-directory-numbers**
Example:
Router(config-register-global)# max-dn 20 | (Optional) Sets maximum number of directory numbers for SIP phones to be supported by the Cisco Unified CME router.
- Required for Cisco Unified CME 7.0(1) and later versions.
- In Cisco Unified CME 7.0(1) and later versions: Default is 0. Range is 1 to maximum number supported by platform. Type ? for range.
- In Cisco CME 3.4 to Cisco Unified CME 7.0: Default is 150 or maximum allowed on platform. Type ? for value. |
| **Step 10** | **authenticate [all][realm string]**
Example:
Router(config-register-global)# authenticate all realm company.com | (Optional) Enables authentication for registration requests in which the MAC address of the SIP phone cannot be identified by using other methods. | | | | | | | | |
| **Step 11** | **ip qos dscp** {{number | af | cs | default | ef} | media | service | signaling | video}}
Example:
Router(config-register-global)# ip qos dscp af43 video | Sets the DSCP priority levels for different types of traffic. |
| **Step 12** | **end**
Example:
Router(config-register-global)# end | Exits voice register global configuration mode and enters privileged EXEC mode. |
If your Cisco Unified CME system supports SCCP and SIP phones, do not connect your SIP phones to your network until after you have verified the configuration profile for the SIP phone.

Note
From Cisco IOS XE Amsterdam 17.2.1r onwards, `cme-app` mode was added for ISR4321 routers. This mode allows configuration of up to 200 phones for routers that are dedicated to CME use only. The `cme` or `cme-app` modes configure SIP phones and features for standalone call control use.

Restriction
- SIP endpoints are not supported on H.323 trunks. SIP endpoints are supported on SIP trunks only.
- Certain Cisco Unified IP phones, such as the Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE, are supported only in Cisco Unified CME 4.1 and later versions.
- DSCP requires Cisco Unified CME 7.1 or a later version. If DSCP is configured for the gateway interface using the `service-policy` command or for the dial peer using the `ip qos dscp` command, the value set with those commands takes precedence over the DSCP value configured in this procedure.

Before you begin
Cisco CME 3.4 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `mode [cme | cme-app]`
5. `source-address ip-address [port port]`
6. `load phone-type firmware-file`
7. `tftp-path {flash: | slot0: | tftp://url}`
8. `max-pool max-phones`
9. `max-dn max-directory-numbers`
10. `authenticate [all][realm string]`
11. `ip qos dscp {{number | af | cs | default | ef} {media | service | signaling | video}}`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 mode [cme</td>
<td>Enables mode for provisioning SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>cme-app]</td>
<td>Example: Router(config-register-global)# mode cme</td>
</tr>
<tr>
<td>Step 5 source-address ip-address [port port]</td>
<td>Enables the Cisco Unified CME router to receive messages from SIP phones through the specified IP address and port.</td>
</tr>
<tr>
<td>Step 6 load phone-type firmware-file</td>
<td>Associates a phone type with a phone firmware file.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# load 7960-7940 P0S3-07-3-00</td>
<td>• A separate load command is required for each phone type.</td>
</tr>
<tr>
<td>Step 7 tftp-path {flash:</td>
<td>(Optional) Defines a location, other than system memory, from which the SIP phones will download configuration profile files.</td>
</tr>
<tr>
<td>slot0:</td>
<td>Example: Router(config-register-global)# tftp-path http://mycompany.com/files</td>
</tr>
<tr>
<td>tftp://url}</td>
<td>Step 8 max-pool max-phones</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# max-pool 10</td>
<td>• Version- and platform-dependent; type ? for range.</td>
</tr>
<tr>
<td>Step 9 max-dn max-directory-numbers</td>
<td>• In Cisco CME 3.4 to Cisco Unified CME 7.0: Default is maximum number supported by platform.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# max-dn 20</td>
<td>• In Cisco Unified CME 7.0(1) and later versions: Default is 0. Range is 1 to maximum number supported by platform. Type ? for range.</td>
</tr>
</tbody>
</table>

(Optional) Sets maximum number of directory numbers for SIP phones to be supported by the Cisco Unified CME router.
System-Level Parameters

Set Date and Time Parameters for SIP Phones

Before you begin

- Cisco CME 3.4 or a later version.
- `mode cme` command is enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. timezone `number`
5. date-format `[d/m/y | m/d/y | y-d-m | y/m/d | y y-m-d]`
6. time-format `{12 | 24}`
7. dst auto-adjust
8. dst `[start | stop] month [day day-of-month | week week-number | day day-of-week] time hour:minutes`
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
</tbody>
</table>
System-Level Parameters

Set Date and Time Parameters for SIP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2** | **configure terminal**
 Example:
 Router# configure terminal | Enters global configuration mode. |
| **Step 3** | **voice register global**
 Example:
 Router(config)# voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME. |
| **Step 4** | **timezone number**
 Example:
 Router(config-register-global)# timezone 8 | Selects the time zone used for SIP phones in Cisco Unified CME.
 - Default: 5, Pacific Standard/Daylight Time. Type ? to display a list of time zones. |
| **Step 5** | **date-format [d/m/y | m/d/y | y-d-m | y/d/m | y/m/d | yy-m-d]**
 Example:
 Router(config-register-global)# date-format yy-m-d | (Optional) Selects the date display format on SIP phones in Cisco Unified CME.
 - Default: m/d/y. |
| **Step 6** | **time-format {12 | 24}**
 Example:
 Router(config-register-global)# time-format 24 | (Optional) Selects the time display format on SIP phones in Cisco Unified CME.
 - Default: 12. |
| **Step 7** | **dst auto-adjust**
 Example:
 Router(config-register-global)# dst auto-adjust | (Optional) Enables automatic adjustment of Daylight Saving Time on SIP phones in Cisco Unified CME.
 - To modify start and stop times for daylight savings time, use the dst command. |
| **Step 8** | **dst {start | stop} month [day day-of-month | week week-number [day day-of-week] time hour:minutes**
 Example:
 Router(config-register-global)# dst start jan day 1 time 00:00
 Router(config-register-global)# dst stop mar day 31 time 23:59 | (Optional) Sets the time period for Daylight Saving Time on SIP phones in Cisco Unified CME.
 - Required if automatic adjustment of Daylight Saving Time is enabled by using the dst auto-adjust command.
 - Default is Start: First week of April, Sunday, 2:00 a.m.
 Stop: Last week of October, Sunday 2:00 a.m. |
| **Step 9** | **end**
 Example:
 Router(config-register-global)# end | Returns to privileged EXEC mode. |
Set Network Time Protocol for SIP Phones

To enable Network Time Protocol (NTP) for certain phones, such as the Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE, connected to Cisco Unified CME running SIP, perform the following steps.

Before you begin

• Cisco Unified CME 4.1 or a later version.
• The firmware load 8.2(1) or a later version is installed for SIP phones to download. For upgrade information, see Upgrade or Downgrade SIP Phone Firmware, on page 114.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. ntp-server ip-address [mode {anycast | directedbroadcast | multicast | unicast}]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
Example:
Router> enable
• Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** voice register global | Enters voice register global configuration mode to set global parameters for all supported SIP phones in a Cisco Unified CME environment.
Example:
Router(config)# voice register global |
| **Step 4** ntp-server ip-address [mode {anycast | directedbroadcast | multicast | unicast}] | Synchronizes clock on this router with the specified NTP server.
Example:
Router(config-register-global)# ntp-server 10.1.2.3 |
| **Step 5** end | Returns to privileged EXEC mode.
Example:
Router(config-register-global)# end |
Enable HFS Download Service for SIP Phones

Restriction
- Only Cisco Unified 8951, 9951, and 9971 SIP IP Phones are supported.
- No IPv6 support for the HFS download service.

Before you begin
Cisco Unified CME 8.8 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. ip http server
4. ip http port number
5. voice register global
6. mode cme
7. load phone-type firmware-file
8. create profile
9. exit
10. telephony-service
11. hfs enable [port port-number]
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip http server</td>
<td>Enables the underlying IOS HTTP server of the HFS infrastructure.</td>
</tr>
<tr>
<td>Example: Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip http port number</td>
<td>(Optional) Specifies the port where the HTTP service is run.</td>
</tr>
<tr>
<td>Example: Router(config)# ip http port 60</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>voice register global</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register global</td>
</tr>
<tr>
<td>6</td>
<td>mode cme</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# mode cme</td>
</tr>
<tr>
<td>7</td>
<td>load phone-type firmware-file</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# load 3951 SIP51.9.2.1S</td>
</tr>
<tr>
<td>8</td>
<td>create profile</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# create profile</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# exit</td>
</tr>
<tr>
<td>10</td>
<td>telephony-service</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
</tr>
<tr>
<td>11</td>
<td>hfs enable [port port-number]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# hfs enable port 5678</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# end</td>
</tr>
</tbody>
</table>

Troubleshooting HFS Download Service

The `debug cme-hfs` command can be used to troubleshoot an attempt to download Cisco Unified SIP IP phone configuration and firmware files using the HFS service.
Configure HFS Home Path for SIP Phone Firmware Files

To configure a home path where any requested Cisco Unified SIP IP Phone firmware file that has no explicit binding can be searched and fetched using the HFS download service, perform the following steps.

Restriction
- Only Cisco 8951, 9951, and 9971 SIP IP Phones are supported.
- No IPv6 support for the HFS download service.

Before you begin
Cisco Unified CME 8.8 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http server
4. ip http port number
5. telephony-service
6. hfs enable [port port-number]
7. hfs home-path path
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ip http server</td>
<td>Enables the underlying IOS HTTP server of the HFS infrastructure.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ip http port number</td>
<td>Specifies the port where the HTTP service is run.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip http port 1234</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode for configuring Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>hfs enable [port port-number]</td>
<td>Enables the HFS download service on a specified port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# hfs enable port 6970</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>hfs home-path path</td>
<td>Sets a home path directory for Cisco Unified SIP IP phone firmware files that can be searched and fetched using the HFS download service.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# hfs home-path flash:/cme/loads/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The administrator must store the phone firmware files at the location set as the home path directory.</td>
</tr>
<tr>
<td>8</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Change Session-Level Application for SIP Phones

Before you begin
Cisco CME 3.4 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register global
4. application application-name
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
</tbody>
</table>
Enable Media Flow Mode on SIP Trunks

Restriction
- If any media service (like transcoding and conferencing) is needed for SIP to SIP trunk call, at least one of the SIP trunks must be placed in flow through mode.
- If media needs to flow through Cisco Unified CME for voicemail calls, the SIP trunk going towards the voicemail must be in flow through mode.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice service voip
4. media [flow around | flow through]
5. exit
6. dial-peer voice tag voip
7. media [{flow-around | flow-through} forking]
8. exit
9. voice class media tag
10. media [{flow-around | flow-through} forking]
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

 enable

 Example:

 Router> enable | Enables privileged EXEC mode.

 • Enter your password if prompted. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>voice service voip</td>
<td>Enters voice service voip configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#voice service voip</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>media [flow around</td>
<td>Enables global media setting for VoIP calls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>flow through]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(conf-voi-serv)#media flow-around</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Exits voice service voip configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voi-ser)#exit</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>dial-peer voice tag voip</td>
<td>Enters dial-peer configuration mode to define a VoIP dial peer for the voice-mail system.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#dial-peer voice 222 voip</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>media [(flow-around</td>
<td>Enables media settings for voice dial-peer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>flow-through] fork]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-dial-peer)#media flow-around</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits voip dial-peer configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-epphone)exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>voice class media tag</td>
<td>Enters voice class media configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#voice class media 10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>media [(flow-around</td>
<td>Enables media settings for voice dial-peer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>flow-through] fork]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-class)#media flow-around</td>
<td></td>
</tr>
</tbody>
</table>
Configure Overlap Dialing on SIP Phones

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `overlap-signal`
5. `exit`
6. `voice register pool pool-tag`
7. `overlap-signal`
8. `exit`
9. `voice register template template tag`
10. `overlap-signal`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td><code>voice register global</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Allows to configure overlap signaling support for SIP IP phones.</td>
</tr>
<tr>
<td><code>overlap-signal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)overlap-signal</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits voice register pool configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)exit</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| Step 6 | voice register pool pool-tag
Example: Router(config)voice register pool 10 | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone. |
| Step 7 | overlap-signal
Example: Router(config-register-global)overlap-signal | Enables overlap signaling support for voice register global. |
| Step 8 | exit
Example: Router(config-register-global)exit | Exits voice register-template configuration mode. |
| Step 9 | voice register template template tag
Example: Router(config)voice register template 5 | Enters voice register-template configuration mode to create an ephone template.
• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10. |
| Step 10 | overlap-signal
Example: Router(config-register-temp) overlap-signal | Applies overlap signaling support for voice register-template. |
| Step 11 | end
Example: Router(config-register-temp)# end | Returns to privileged EXEC mode. |

Configuration Examples for System-Level Parameters

Example for Bulk Registration Support for SIP Phones

The following example shows TCP and UDP configured for various phones. Notice that in Bulk Registration (TCP), only the primary directory number is displayed, while in Line Registration (UDP), all directory numbers are displayed.

```
Router# show sip-ua status registrar  
Line    destination   expires(sec)  contact  
transport call-id    peer    
----------------------------------------------------------
1001    21.1.1.138    112    21.1.1.138  
TCP     239665429027943821.1.1.138  
        40015           
1009    21.1.1.138    118    21.1.1.138  
```
Example for IPv6 Support on Cisco Unified CME

```
! ip source-route
!
!ip cef
no ip dhcp use vrf connected
ip dhcp excluded-address 10.10.10.1 10.10.10.9
ip dhcp excluded-address 192.168.2.1
ipv6 unicast-routing
ipv6 cef
ntp server 223.255.254.254
multilink bundle-name authenticated
isdn switch-type primary-5ess
!
voice service voip
allow-connections h323 to h323
allow-connections h323 to sip
allow-connections sip to h323
allow-connections sip to sip
fax protocol cisco
!
sip registrar server expires max 1200 min 300
!
!
voice register dn  1
number 2016
allow watch
name SIP-7961GE
label SIP2016
!
voice register dn  2
number 2017
```
voice logout-profile 1

voice logout-profile 2
number 2001 type normal
speed-dial 1 2004 label "7960-1"

interface GigabitEthernet0/0
ip address 10.10.10.2 255.255.255.0
duplex auto
speed auto
ipv6 address 2000:A0A:201:0:F:35FF:FF2C:697D/64
ipv6 enable

interface GigabitEthernet0/1
ip address 40.10.30.1 255.255.255.0
shutdown
duplex auto
speed auto
ipv6 address 2000::1/64
ipv6 address 2000::2/64
ipv6 address 2000::A/64
ipv6 address 3000::1/64
ipv6 address 4000::1/64
ipv6 address 9000::1/64
ipv6 address F000::1/64
ipv6 enable

ip http server

tftp-server flash:P00308000500.bin
tftp-server flash:P00308000500.loads
p-server flash:cvm70sccp.8-5-2FT1-18.sbn

Example for IPv6 Support on Cisco Unified CME

System-Level Parameters
Example for IPv6 Support on Cisco Unified CME

! voice-port 0/0/0:23
!
!
mgcp fax t38 ecm
!
scmp local GigabitEthernet0/0
scmp ccm 10.10.10.2 identifier 1 version 7.0
scmp ccm 2000:A0A:201:0:F:35FF:FF2C:697D identifier 2 version 7.0
scmp
!
!
gateway
timer receive-rtp 1200
!
sip-ua
protocol mode dual-stack preference ipv6
!
!
telephony-service
protocol mode dual-stack preference ipv6
sdspfarm conference mute-on 111 mute-off 222
sdspfarm units 2
sdspfarm transcode sessions 20
sdspfarm tag 1 xcoder
sdspfarm tag 2 conference
conference hardware
no auto-reg-ephone
em logout 0:0 0:0 0:0
max-ephones 52
max-dn 192
ip source-address 10.10.10.2 port 2000
ip source-address 2000:A0A:201:0:F:35FF:FF2C:697D
service phone settingsAccess 1
service phone spanTOPCPort 0
timeouts transfer-recall 15
system message MOTO-CME1
url directories http://10.10.10.2:80/localdirectory
cnf-file location flash:
cnf-file perphone
Example for System-Level Parameters

The following example shows the system-level configuration for a Cisco Unified CME that can support up to 500 directory numbers on 100 phones. It sets up TFTP file sharing for phone firmware files for Cisco Unified IP Phones 7905, 7912, 7914, 7920, 7940, and 7960 and it loads those files.

```
tftp-server flash:ATA030100SCCP040211A.zup
! ATA 186/188 firmware

! ATA 7902 firmware

! 7905 firmware

! 7912 firmware

! 7914 firmware

! 7920 firmware

! 7935 firmware

! 7936 firmware

! 7936 firmware

! 7960/40 firmware
!

telephony-service

max-ephones 100
max-dn 500
load ata ATA030100SCCP040211A
load 7902 CP7902080001SCCP051117A
```
Cisco Unified IP Phone 7911, 7941, 7941-GE, 7961, 7961-GE, 7970, and 7971 require multiple files to be shared using TFTP. The following configuration example adds support for these phones.

```
tftp-server flash:SCCP11.7-2-1-0S.loads
tftp-server flash:term11.default.loads
tftp-server flash:apps11.1-0-0-72.sbn
tftp-server flash:cnul11.3-0-0-81.sbn
tftp-server flash:cvm11.7-2-0-66.sbn
tftp-server flash:dsp11.1-0-0-73.sbn
tftp-server flash:jar11.7-2-0-66.sbn
! 7911 firmware
!
tftp-server flash:TERM41.7-0-3-0S.loads
tftp-server flash:TERM41.DEFAULT.loads
tftp-server flash:TERM61.DEFAULT.loads
tftp-server flash:CVM41.2-0-2-26.sbn
tftp-server flash:cnu41.2-7-6-26.sbn
tftp-server flash:Jar41.2-9-2-26.sbn
! 7941/41-GE, 7961/61-GE firmware
!
tftp-server flash:TERM70.7-0-1-0s.LOADS
tftp-server flash:TERM70.DEFAULT.loads
tftp-server flash:TERM71.DEFAULT.loads
tftp-server flash:CVM70.2-0-2-26.sbn
tftp-server flash:cnu70.2-7-6-26.sbn
tftp-server flash:Jar70.2-9-2-26.sbn
! 7970/71 firmware
!
telephony-service
load 7911 SCCP11.7-2-1-0S
```
load 7941 TERM41.7-0-3-0S
load 7961 TERM41.7-0-3-0S
load 7941GE TERM41.7-0-3-0S
load 7961GE TERM41.7-0-3-0S
load 7970 TERM70.7-0-1-0s
load 7971 TERM70.7-0-1-0s
create cnf-files version-stamp Jan 01 2002 00:00:00
.
.
.

Example for Blocking Automatic Registration

The following example shows how to disable automatic ephone registration, display a log of attempted registrations, and then clear the log:

Router(config)# telephony-service
Router(config-telephony)# no auto-reg-ephone
Router(config-telephony)# exit
Router(config)# exit
Router# show ephone attempted-registrations

Attempting Mac address:

<table>
<thead>
<tr>
<th>Num</th>
<th>Mac Address</th>
<th>DateTime</th>
<th>DeviceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C863.8475.5417</td>
<td>22:52:05 UTC Thu Apr 28 2005</td>
<td>SCCP Gateway (AN)</td>
</tr>
<tr>
<td>2</td>
<td>C863.8475.5408</td>
<td>22:52:05 UTC Thu Apr 28 2005</td>
<td>SCCP Gateway (AN)</td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>000D.28D7.7222</td>
<td>22:26:32 UTC Thu Apr 28 2005</td>
<td>Telecaster 7960</td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>C863.94A8.D40F</td>
<td>22:52:17 UTC Thu Apr 28 2005</td>
<td>SCCP Gateway (AN)</td>
</tr>
<tr>
<td>49</td>
<td>C863.94A8.D400</td>
<td>22:52:15 UTC Thu Apr 28 2005</td>
<td>SCCP Gateway (AN)</td>
</tr>
</tbody>
</table>
Example for Enabling the HFS Download Service for Cisco Unified SIP IP Phone

The following example shows how to enable the HFS download service:

```
Router(config)# ip http server
Router(config)# ip http port 1234
Router (config)# telephony-service
Router(config-telephony)# hfs enable port 65500
```

Example for Configuring an HFS Home Path for Cisco Unified SIP IP Phone

Firmware Files

The following example shows how a new directory called phone-load can be created under the root directory of the flash memory and set as the hfs home-path:

```
cassini-c2801# mkdir flash:phone-loads
Create directory filename [phone-loads]?
cassini-c2801#sh flash:
+-#---length-- -----date/time------ path
1 13932728 Mar 22 2007 15:57:38 +00:00 c2801-ipbase-mz.124-1c.bin
2 33510140 Sep 18 2010 01:21:56 +00:00 rootfs9951.9-0-3.sebn
3 143604 Sep 18 2010 01:22:20 +00:00 sboot9951.111909R1-9-0-3.sebn
4 1249 Sep 18 2010 01:22:40 +00:00 sip9951.9-0-3.loads
5 66996 Sep 18 2010 01:23:00 +00:00 skern9951.022809R2-9-0-3.sebn
6 10724 Sep 18 2010 00:59:48 +00:00 dkern9951.100609R2-9-0-3.sebn
7 1507064 Sep 18 2010 01:00:24 +00:00 kern9951.9-0-3.sebn
B 0 Jan 5 2011 02:03:46 +00:00 phone-loads
14819328 bytes available (49192960 bytes used)
cassini-c2801#conf t
Enter configuration commands, one per line. End with CNTL/Z.
cassini-c2801(config)#tele
```
cassini-c2801(config)#telephony-service
```
cassini-c2801(config-telephony)#hfs hom
```cassini-c2801(config-telephony)#hfs home-path flash:?
WORD
```cassini-c2801(config-telephony)#hfs home-path flash:phone-loads
```
```
cassini-c2801(config-telephony)#
```

Example forVerifying the HFS File Bindings of Cisco Unified SIP IP Phone Configuration and Firmware Files

The following is a sample output from the `show voice register hfs` command:

```
Router(config)#show voice register hfs
Fetch Service Enabled = Y
App enabled port = 6970
Use default port = N
Registered session-id = 19

Default home path = flash:/
Ongoing fetches from home = 0
```
HTTP File Server Bindings
 No. of bindings = 11
 No. of url table entries = 9
 No. of alias table entries = 9

Example for Redundant Router for SCCP Phones

The following example is configured on the primary Cisco Unified CME router. It establishes the router at 10.5.2.78 as a secondary router. The voice port 3/0/0 is the FXO port for incoming calls from the PSTN. It is set to use ground-start signaling and to detect incoming calls by counting incoming ring signals.

```
telephony-service
   ip source-address 10.0.0.1 port 2000 secondary 10.5.2.78

voice-port 3/0/0
   signal ground-start
   incoming alerting ring-only
```

The secondary Cisco Unified CME router is configured with the same commands, except that the ring number command is set to 3 instead of using the default of 1.

```
telephony-service
   ip source-address 10.0.0.1 port 2000 secondary 10.5.2.78

voice-port 3/0/0
   signal ground-start
   incoming alerting ring-only
   ring number 3
```

Example for Redundant Router for SIP Phones

The following example is configured on the primary Cisco Unified CME router. It establishes the router at 10.6.50.6 as a secondary router with keepalive value set to 200 seconds.

```
voice register global
   source-address 10.6.21.4 port 6000 secondary 10.6.50.6
   keepalive 200

ip http server

ixi transport http
   response size 8
   no shutdown
   request outstanding 2
```

Note

For the synchronization to happen, additional configurations are needed. These configurations such as IXI, HTTP, and telephony-service are provided in the output.
request timeout 30
ixi application cme
 no shutdown
 response timeout -1

telephony-service
 ip source-address 10.6.21.4 secondary 10.6.50.6
 standby user cisco password cisco123

The secondary Cisco Unified CME router is configured with the same commands:

voice register global
 source-address 10.6.21.4 port 6000 secondary 10.6.50.6
 keepalive 200

ip http server
 ixi transport http
 response size 8
 no shutdown
 request outstanding 2
 request timeout 30

ixi application cme
 no shutdown
 response timeout -1

telephony-service
 ip source-address 10.6.50.6
 xml user cisco password cisco123 15

Example for Media Flow Around Mode for SIP Trunks

The following example shows media flow-around enabled in voice service voip, voice class media, and dial peer configuration modes:

Router# show running config
!
!
voice service voip
 ip address trusted list
 ipv4 20.20.20.1
media flow-around
 allow-connections sip to sip
 vpn-group 1
 vpn-gateway 1 https://9.10.60.254/SSLVPNphone
 vpn-trustpoint 1 trustpoint cme_cert root
 vpn-hash-algorithm sha-1
 vpn-profile 1
keepalive 50
auto-network-detect enable
host-id-check disable

vpn-profile 2
mtu 1300
authen-method both
password-persistent enable
host-id-check enable

vpn-profile 4
fail-connect-time 50
sip
!

voice class media 10
media flow-around
!
!
!

dspfarm profile 1 conference
codec g711ulaw
maximum sessions 2
associate application SCCP
!
dial-peer voice 222 voip
media flow-around
!
dial-peer voice 10 voip
media flow-around
!
dial-peer voice 101 voip
end
Example for Configuring Overlap Dialing for SCCP IP Phones

The following example shows the overlap-signal command configured in telephony-service configuration mode, ephone template 10, and ephone 10:

Router# show running config
!
!
telephony-service
max-ephones 25
max-dn 15
load 7906 SCCP11.8-5-3S.loads
load 7911 SCCP11.8-5-3S.loads
load 7921 CP7921G-1.3.3.LOADS
load 7941 SCCP41.8-5-3S.loads
load 7942 SCCP42.8-5-3S.loads
load 7961 SCCP41.8-5-3S.loads
load 7962 SCCP42.8-5-3S.loads
max-conferences 12 gain -6
web admin system name cisco password cisco
transfer-system full-consult
create cnf-files version-stamp Jan 01 2002 00:00:00
overlap-signal
!
ephone-template 1
button-layout 1 line
button-layout 3-6 blf-speed-dial
!
ephone-template 9
feature-button 1 Endcall
feature-button 3 Mobility
!
!
Example for Configuring Overlap Dialing for SIP IP Phones

The following example shows the `overlap-signal` configured in voice register global configuration mode and voice register pool 10:

```
Router# show running config
!
!
!
voice service voip
ip address trusted list
ipv4 20.20.20.1
media flow-around
allow-connections sip to sip
!
voice class media 10
media flow-around
!
voice register global
```
max-pool 10
overlap-signal
!
voice register pool 5
overlap-signal
!
!
!

Where to Go Next

After configuring system-level parameters, you are ready to configure phones for making basic calls in Cisco Unified CME.

- To use Extension Assigner to assign extension numbers to the phones in your Cisco Unified CME, see Create Phone Configurations Using Extension Assigner, on page 353.
- Otherwise, see Configure Phones to Make Basic Call, on page 321.

Feature Information for System-Level Parameters

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 15: Feature Information for System-Level Parameters

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Versions</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant Router for SIP Phones</td>
<td>11.6</td>
<td>Introduces redundant router support for SIP phones.</td>
</tr>
<tr>
<td>Unsolicited Notify for Shared Line and Presence Events for Cisco Unified SIP IP Phones</td>
<td>9.0</td>
<td>Allows the Unsolicited Notify mechanism to reduce network traffic during Cisco Unified SIP IP phone registration using the bulk registration method.</td>
</tr>
<tr>
<td>HFS Download Support for IP Phone Firmware and Configuration Files</td>
<td>8.8</td>
<td>Provides download support for SIP and SCCP IP phone firmware, scripts, midlets, and configuration files using the HTTP File-Fetch Server (HFS) infrastructure.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Versions</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Bulk Registration</td>
<td>8.6/3.4</td>
<td>Introduces bulk registration support for SIP phones. Introduces bulk registration for registering a block of phone numbers with an external registrar.</td>
</tr>
<tr>
<td>Media Flow Around for SIP-SIP Trunks</td>
<td>8.5</td>
<td>Introduces the media flow around feature, which eliminates the need to terminate RTP and re-originate on Cisco Unified CME, reducing media switching latency and increasing the call handling capacity for Cisco Unified CME SIP trunk.</td>
</tr>
<tr>
<td>Overlap Dialing for SCCP and SIP Phones</td>
<td>8.5</td>
<td>Allows the dialed digits from the SIP or SCCP IP phones to pass across the PRI/BRI trunks as overlap digits and not as enbloc digits, enabling overlap dialing on the PRI/BRI trunks.</td>
</tr>
<tr>
<td>DSCP</td>
<td>7.1</td>
<td>Supports DSCP packet marking for Cisco Unified IP Phones to specify the class of service for each packet.</td>
</tr>
<tr>
<td>Maximum Ephones</td>
<td>7.0/4.3</td>
<td>The <code>max-ephones</code> command sets the maximum number of SCCP phones that can register to Cisco Unified CME, without limiting the number that can be configured. Maximum number of phones that can be configured is 1000.</td>
</tr>
<tr>
<td>Network Time Protocol for SIP Phones</td>
<td>4.1</td>
<td>Allows SIP phones to synchronize to an NTP server.</td>
</tr>
<tr>
<td>Blocking Automatic Registration</td>
<td>4.0</td>
<td>Blocks IP phones that are not explicitly configured in Cisco Unified CME from registering.</td>
</tr>
<tr>
<td>Per-Phone Configuration Files and Alternate Location</td>
<td>4.0</td>
<td>Defines a location other than system for storing configuration files and specifies the type of configuration files to generate.</td>
</tr>
<tr>
<td>Redundant Router for SCCP Phones</td>
<td>4.0</td>
<td>Introduces redundant router capability.</td>
</tr>
<tr>
<td>SIP phones in Cisco Unified CME</td>
<td>3.4</td>
<td>Introduces support for SIP endpoints directly connected to Cisco Unified CME.</td>
</tr>
</tbody>
</table>
CHAPTER 8

Configuring Phones to Make Basic Calls

This chapter describes how to configure Cisco Unified IP phones in Cisco Unified Communications Manager Express (Cisco Unified CME) so that you can make and receive basic calls.

Caution

The Interactive Voice Response (IVR) media prompts feature is only available on the IAD2435 when running IOS version 15.0(1)M or later.

Prerequisites for Configuring Phones to Make Basic Calls

• Prerequisites for Configuring Phones to Make Basic Calls, on page 225
• Restrictions for Configuring Phones to Make Basic Calls, on page 226
• Information About Configuring Phones to Make Basic Calls, on page 226
• Configure Phones for a PBX System, on page 260
• Configure Phones for a Key System, on page 289
• Configure Cisco ATA, Analog Phone Support, Remote Phones, Cisco IP Communicator, and Secure IP Phone (IP-STE), on page 301
• Configure Phones to Make Basic Call, on page 321
• SIP Phone Models Validated for CME using Fast-track Configuration, on page 333
• Configuration Examples for Making Basic Calls, on page 333
• Where To Go Next, on page 348
• Feature Information for Configuring Phones to Make Basic Calls, on page 348

Prerequisites for Configuring Phones to Make Basic Calls

• Cisco IOS software and Cisco Unified CME software, including phone firmware files for Cisco Unified IP phones to be connected to Cisco Unified CME, must be installed in router flash memory. See Install Cisco Unified CME Software, on page 111.

• For Cisco Unified IP phones that are running SIP and are connected directly to Cisco Unified CME, Cisco Unified CME 3.4 or a later version must be installed on the router. See Install Cisco Unified CME Software, on page 111.

• Procedures in Network Parameters, on page 127 and Configure System-Level Parameters, on page 170 must be completed before you start the procedures in this section.
Restrictions for Configuring Phones to Make Basic Calls

When you are configuring dial peers or ephone-dns, including park slots and conferencing extensions, on Cisco Integrated Services Router Voice Bundles, the following message may appear to warn you that free memory is not available:

```
%DIALPEER_DB-3-ADDPEER_MEM_THRESHOLD: Addition of dial-peers limited by available memory
```

To configure more dial peers or ephone-dns, increase the DRAM in the system. A moderately complex configuration may exceed the default 256 MB DRAM and require 512 MB DRAM. Note that many factors contribute to memory usage, in addition to the number of dial peers and ephone-dns configured.

Information About Configuring Phones to Make Basic Calls

Phones in Cisco Unified CME

An ephone, or “Ethernet phone,” for SCCP or a voice-register pool for SIP is the software configuration for a phone in Cisco Unified CME. This phone can be either a Cisco Unified IP phone or an analog phone. Each physical phone in your system must be configured as an ephone or voice-register pool on the Cisco Unified CME router to receive support in the LAN environment. Each phone has a unique tag, or sequence number, to identify it during configuration.

For information on the phones supported in Cisco Unified CME Release 8.8 and later versions, see Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST.

Directory Numbers

A directory number, also known as an ephone-dn for SCCP or a voice-register dn for SIP, is the software configuration in Cisco Unified CME that represents the line connecting a voice channel to a phone. A directory number has one or more extension or telephone numbers associated with it to allow call connections to be made. Generally, a directory number is equivalent to a phone line, but not always. There are several types of directory numbers, which have different characteristics.

Each directory number has a unique dn-tag, or sequence number, to identify it during configuration. Directory numbers are assigned to line buttons on phones during configuration.

One virtual voice port and one or more dial peers are automatically created for each directory number, depending on the configuration for SCCP phones, or for SIP phones, when the phone registers in Cisco Unified CME.

Because each directory number represents a virtual voice port in the router, the number of directory numbers that you create corresponds to the number of simultaneous calls that you can have. This means that if you want more than one call to the same number to be answered simultaneously, you need multiple directory numbers with the same destination number pattern.

The directory number is the basic building block of a Cisco Unified CME system. Six different types of directory numbers can be combined in different ways for different call coverage situations. Each type will help with a particular type of limitation or call-coverage need. For example, if you want to keep the number...
of directory numbers low and provide service to a large number of people, you might use shared directory numbers. Or if you have a limited quantity of extension numbers that you can use and you need to have a large quantity of simultaneous calls, you might create two or more directory numbers with the same number. The key is knowing how each type of directory number works and its advantages.

Not all types of directory numbers can be configured for all phones or for all protocols. In the remaining information about directory numbers, we have used SCCP in the examples presented but that does not imply exclusivity. The following sections describe the types of directory numbers in a Cisco Unified CME system:

Single-Line

A single-line directory number has the following characteristics:

- Makes one call connection at a time using one phone line button. A single-line directory number has one telephone number associated with it.

- Should be used when phone buttons have a one-to-one correspondence to the PSTN lines that come into a Cisco Unified CME system.

- Should be used for lines that are dedicated to intercom, paging, message-waiting indicator (MWI), loopback, and music-on-hold (MOH) feed sources.

- Must have more than one single-line directory number on a phone when used with multiple-line features like call waiting, call transfer, and conferencing.

- Can be combined with dual-line directory numbers on the same phone.

Note

You must make the choice to configure each directory number in your system as either dual-line or single-line when you initially create configuration entries. If you need to change from single-line to dual-line later, you must delete the configuration for the directory number, then recreate it.

Figure 6: Single-Line Directory Number, on page 227 shows a single-line directory number for an SCCP phone in Cisco Unified CME.

Figure 6: Single-Line Directory Number

Dual-Line

A dual-line directory number has the following characteristics:

- Has one voice port with two channels.

- Supported on IP phones that are running SCCP; not supported on IP phones that are running SIP.

- Can make two call connections at the same time using one phone line button. A dual-line directory number has two channels for separate call connections.

- Can have one number or two numbers (primary and secondary) associated with it.
• Should be used for a directory number that needs to use one line button for features like call waiting, call transfer, or conferencing.

• Cannot be used for lines that are dedicated to intercom, paging, message-waiting indicator (MWI), loopback, and music-on-hold (MOH) feed sources.

• Can be combined with single-line directory numbers on the same phone.

Note

You must make the choice to configure each directory number in your system as either dual-line or single-line when you initially create configuration entries. If you need to change from single-line to dual-line later, you must delete the configuration for the directory number, then recreate it.

Figure 7: Dual-Line Directory Number, on page 228 shows a dual-line directory number for an SCCP phone in Cisco Unified CME.

Octo-Line

An octo-line directory number supports up to eight active calls, both incoming and outgoing, on a single button of a SCCP phone. Unlike a dual-line directory number, which is shared exclusively among phones (after a call is answered, that phone owns both channels of the dual-line directory number), an octo-line directory number can split its channels among other phones that share the directory number. All phones are allowed to initiate or receive calls on the idle channels of the shared octo-line directory number.

Because octo-line directory numbers do not require a different ephone-dn for each active call, one octo-line directory number can handle multiple calls. Multiple incoming calls to an octo-line directory number ring simultaneously. After a phone answers a call, the ringing stops on that phone and the call-waiting tone plays for the other incoming calls. When phones share an octo-line directory number, incoming calls ring on phones without active calls and these phones can answer any of the ringing calls. Phones with an active call hear the call-waiting tone.

After a phone answers an incoming call, the answering phone is in the connected state. Other phones that share the octo-line directory number are in the remote-in-use state.

After a connected call on an octo-line directory number is put on-hold, any phone that shares this directory number can pick up the held call. If a phone user is in the process of initiating a call transfer or creating a conference, the call is locked and other phones that share the octo-line directory number cannot steal the call.

Figure 8: Octo-Line Directory Number, on page 229 shows an octo-line directory number for SCCP phones in Cisco Unified CME.
The Barge and Privacy features control whether other phones are allowed to view call information or join calls on the shared octo-line directory number.

Feature Comparison by Directory Number Line-Mode on SCCP Phones

Table 16: Feature Comparison by Line Mode on SCCP Phones, on page 229 lists some common directory number features and their support based on the type of line mode defined with the `ephone-dn` command.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Single-Line</th>
<th>Dual-Line</th>
<th>Octo-Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Busy Trigger</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Conferencing (8-party)</td>
<td>—</td>
<td>4 directory numbers</td>
<td>1 directory number</td>
</tr>
<tr>
<td>FXO Trunk Optimization</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Huntstop Channel</td>
<td>—</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intercom</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Key System (one call per button)</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Maximum Calls</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>MWI</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Overlay directory numbers (c, o, x)</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Paging</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Park</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Privacy</td>
<td>—</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>
SIP Shared-Line (Nonexclusive)

Cisco Unified CME 7.1 and later versions support SIP shared lines to allow multiple phones to share a common directory number. All phones sharing the directory number can initiate and receive calls at the same time. Calls to the shared line ring simultaneously on all phones without active calls and any of these phones can answer the incoming calls. After a phone answers a call, the ringing stops on all phones and the call-waiting tone plays for other incoming calls to the connected phone.

The phone that answers an incoming call is in the connected state. Other phones that share the directory number are in the remote-in-use state. The first user that answers the call on the shared line is connected to the caller and the remaining users see the call information and status of the shared line.

Calls on a shared line can be put on hold like calls on a non-shared line. When a call is placed on hold, other phones with the shared-line directory number receive a hold notification so all phones sharing the line are aware of the held call. Any shared-line phone user can resume the held call. If the call is placed on hold as part of a conference or call transfer operation, the call cannot be resumed by other shared-line phone users. The ID of the held call is used by other shared-line members to resume the call. Notifications are sent to all associated phones when a held call is resumed on a shared line.

Shared lines support up to 16 calls, depending on the configuration in Cisco Unified CME, which rejects any new call that exceeds the configured limit. For configuration information, see Create Directory Numbers for SIP Phones, on page 270.

The Barge and Privacy features control whether other phones are allowed to view call information or join calls on the shared-line directory number. See Barge and Privacy, on page 1011.

Note

When the no supplementary-service sip handle-replaces command is configured, SIP shared-line is not supported on CME.

Two Directory Numbers with One Telephone Number

Two directory numbers with one telephone or extension number have the following characteristics:

- Have the same telephone number but two separate virtual voice ports, and therefore can have two separate call connections.
- Can be dual-line (SCCP only) or single-line directory numbers.
- Can appear on the same phone on different buttons or on different phones.
- Should be used when you want the ability to make more call connections while using fewer numbers.

Figure 9: Two Directory Numbers with One Number on One Phone, on page 231 shows a phone with two buttons that have the same number, extension 1003. Each button has a different directory number (button 1 is directory number 13 and button 2 is directory number 14), so each button can make one independent call connection if the directory numbers are single-line and two call connections (for a total of four) if the directory numbers are dual-line.

Figure 10: Two Directory Numbers with One Number on Two Phones, on page 231 shows two phones that each have a button with the same number. Because the buttons have different directory numbers, the calls that are connected on these buttons are independent of one another. The phone user at phone 4 can make a call on extension 1003, and the phone user on phone 5 can receive a different call on extension 1003 at the same time.
The two directory numbers-with-one-number situation is different than a shared line, which also has two buttons with one number but has only one directory number for both of them. A shared directory number will have the same call connection at all the buttons on which the shared directory number appears. If a call on a shared directory number is answered on one phone and then placed on hold, the call can be retrieved from the second phone on which the shared directory number appears. But when there are two directory numbers with one number, a call connection appears only on the phone and button at which the call is made or received. In the example in Figure 10: Two Directory Numbers with One Number on Two Phones, on page 231, if the user at phone 4 makes a call on button 1 and puts it on hold, the call can be retrieved only from phone 4. For more information about shared lines, see Shared Line (Exclusive), on page 232 section.

The examples in Figure 9: Two Directory Numbers with One Number on One Phone, on page 231 and Figure 10: Two Directory Numbers with One Number on Two Phones, on page 231 show how two directory numbers with one number are used to provide a small hunt group capability. In Figure 9: Two Directory Numbers with One Number on One Phone, on page 231, if the directory number on button 1 is busy or does not answer, an incoming call to extension 1003 rolls over to the directory number associated with button 2 because the appropriate related commands are configured. Similarly, if button 1 on phone 4 is busy, an incoming call to 1003 rolls over to button 1 on phone 5.

Figure 9: Two Directory Numbers with One Number on One Phone

Figure 10: Two Directory Numbers with One Number on Two Phones

Dual-Number

A dual-number directory number has the following characteristics:

- Has two telephone numbers, a primary number and a secondary number.
- Can make one call connection if it is a single-line directory number.
- Can make two call connections at a time if it is a dual-line directory number (SCCP only).
- Should be used when you want to have two different numbers for the same button without using more than one directory number.

Figure 11: Dual-Number Directory, on page 232 shows a directory number that has two numbers, extension 1006 and extension 1007.
Shared Line (Exclusive)

An exclusively shared directory number has the following characteristics:

- Has a line that appears on two different phones but uses the same directory number, and extension or phone number.
- Can make one call at a time and that call appears on both phones.
- Should be used when you want the capability to answer or pick up a call at more than one phone.

Because this directory number is shared exclusively among phones, if the directory number is connected to a call on one phone, that directory number is unavailable for calls on any other phone. If a call is placed on hold on one phone, it can be retrieved on the second phone. This is like having a single-line phone in your house with multiple extensions. You can answer the call from any phone on which the number appears, and you can pick it up from hold on any phone on which the number appears.

Note

Transcoding is not supported for Shared Lines. From Unified CME Release 12.2, you can use Voice Class Codec (VCC) with shared lines.

Shared Lines with Voice Class Codec Support

From Unified CME 12.2 Release, Unified CME supports voice class codecs (VCC) with SIP shared lines. A VCC is a construct within which a codec preference order is defined. Preferences defined within the VCC can be used to determine which codecs will be selected over others. When a VCC is applied to a dial peer on the Unified CME, the dial peer then follows the preference order defined in the VCC.

The VCC configuration can be applied for phones having shared line configured on Unified CME. However, the voice class codec behavior of SIP trunk remains unchanged. It is recommended that the same voice class codec configuration is applied on all phones using the shared line directory number. The VCC configuration applied under the voice register pool configuration mode is used for filtering the codecs on inbound and outbound calls from the phone. If the VCC configuration does not have a common codec negotiated, then the
call is disconnected. When the codec on the incoming SIP trunk is not listed in the VCC, the call is not placed. It is mandatory to configure the CLI command supplementary-service media-renegotiate under voice service voip configuration mode for VCC configuration support with SIP shared lines. For a sample configuration of VCC with shared line, see Examples for Configuring VCC with Shared Lines, on page 341.

Codec Support

All the codecs listed under the CLI command voice class codec are supported as part of the VCC support for SIP shared lines on Unified CME.

Feature Support

The following shared line features are supported as part of the VCC configuration:

• Hold and Remote Resume
• Barge
• eBarge
• Video
• MOH Transcoding
• Privacy

Advantages

• Insertion of transcoding resource to place a call can be avoided.

Restrictions

• Transcoding is not supported for SIP shared lines with VCC support.

Mixed Shared Lines

Cisco Unified CME 9.0 and later versions support the mixed Cisco Unified SIP/SCCP shared line. This feature allows Cisco Unified SIP and SCCP IP phones to share a common directory number.

The mixed shared line supports up to 16 calls, depending on the configuration in Cisco Unified CME, which rejects any new call that exceeds the configured limit.

For configuration information, see Create Directory Numbers for SCCP Phones, on page 260 and Create Directory Numbers for SIP Phones, on page 270.

Incoming and Outgoing Calls

All phones sharing the common directory number can initiate and receive calls at the same time. Calls to the mixed shared line ring simultaneously on all phones without active calls and any of these phones can answer the incoming calls. After a phone answers a call, the ringing stops on all phones and the call-waiting tone plays for other incoming calls to the connected phone.

The phone that answers an incoming call is in the connected state. Other phones that share the common directory number are in the remote-in-use state. The first user who answers the call on the mixed shared line is connected to the caller and the remaining users see the call information and status of the mixed shared line.
When a mixed shared-line user makes an outgoing call on the shared line, all the other shared-line users are notified of the outgoing call. When the called party answers, the caller is connected while the remaining shared-line users see the call information and the status of the call on the mixed shared line.

Hold and Resume

Calls on a mixed shared line can be put on hold like calls on a non-shared line. When a call is placed on hold, other phones with the shared-line directory number receive a hold notification so all phones sharing the line are aware of the call on hold. Any shared-line phone user can resume the call on hold. The ID of the call on hold is used by other shared-line members to resume the call. Notifications are sent to all associated phones when a call on hold is resumed on a mixed shared line. If the call is placed on hold as part of a conference or call transfer operation, the resume feature is not allowed.

Privacy on Hold

The Privacy on Hold feature prevents other phone users from viewing call information or retrieving a call put on hold by another phone sharing a common directory number. Only the caller who put the call on hold can see the status of the held call.

By default, Privacy on Hold feature is disabled for all phones on a shared line. Use the `privacy-on-hold` command in telephony-service configuration mode to enable the Privacy feature for calls that are on hold on Cisco Unified SCCP IP phones on a mixed shared line. Use the `privacy-on-hold` command in voice register global configuration mode to enable the Privacy feature for calls that are on hold on Cisco Unified SIP IP phones on a mixed shared line.

The `no privacy` and `privacy off` commands override the `privacy-on-hold` command.

Call Transfer and Forwarding

Both blind transfer and consult transfer are supported on a mixed shared line. A mixed shared line can be the one transferring the call, the one receiving the transferred call, or the call being transferred.

There are four types of call forwarding: all calls, no answer, busy, and night service. Any of these can be configured under a shared SCCP ephone-dn or a shared SIP voice register dn. However, the user must keep the call forwarding parameters for the SCCP and SIP lines synchronized with each other. A mixed shared line can be the one forwarding the call, the one receiving the forwarded call, or the call being forwarded.

For more information, see Configure Call Transfer and Forwarding, on page 1134.

Call Pickup

The Call Pickup feature is supported on a mixed shared line when the `call-park system application` command is configured in telephony-service configuration mode.

A user can answer a call that:

- Originates from a shared line
- Rings on a shared line
- Originates from one shared line and rings on another shared line

For more information, see Call Pickup, on page 1199.

Call Park

The Call Park feature is supported on a mixed shared line when the `call-park system application` command is configured in telephony-service configuration mode.
Message Waiting Indication

SCCP and SIP message-waiting indication (MWI) services are supported on Cisco Unity and Cisco Unity voice mails on mixed shared lines:

The following are two ways of registering a mixed shared line for an MWI service from a SIP-based MWI server with the shared-line option:

- Configure the `mwi sip` command in ephone-dn or ephone-dn-template configuration mode.
- Configure the `mwi` command in voice register dn configuration mode.

For SCCP MWI service on a mixed shared line, use the `mwi { off | on | on-off }` command in ephone-dn configuration mode to enable a specific Cisco Unified IP phone extension to receive MWI notification from an external voice-messaging system.

Software Conferencing

A local software conference can be created on a mixed shared line, with the mixed shared line acting as a conference creator and a conference participant.

For software conferencing on a mixed shared line, other shared-line users remain in remote-in-use state and do not see the calls on hold when the conference call is put on hold by a mixed-shared-line user acting as the conference creator.

Note

Only the conference creator, who put a conference call on hold, can resume the conference call.

Dial Plan

A dial plan pattern enables abbreviated extensions to be expanded into fully qualified E.164 numbers and builds additional dial peers for the expanded numbers it creates.

Features are effectively supported on a mixed shared line when dial-plan patterns have matching configurations in telephony-service and voice register global configuration modes using the `dialplan pattern` command.

Busy Lamp Field Speed-Dial Monitoring

A mixed shared line only supports directory number-based Busy-Lamp-Field (BLF) Speed-Dial monitoring and not device-based monitoring.

Restrictions For Mixed Shared Lines

The following features are not supported on mixed Cisco Unified SIP/SCCP shared lines:

- Single Number Reach
- Hardware Conferencing
- Remote-resume on a local software conference call
- Video calls
- Overlay DNs on Cisco Unified SCCP IP phones
Feature Support
The following features are supported on mixed Cisco Unified SIP/SCCP shared lines from Unified CME, 12.2:

- Hold and Resume
- Privacy
- Barge
- cBarge

Overlaid Directory Numbers
An overlaid directory number has the following characteristics:

- Is a member of an overlay set, which includes all the directory numbers that have been assigned together to a particular phone button.
- Can have the same telephone or extension number as other members of the overlay set or different numbers.
- Can be single-line or dual-line, but cannot be mixed single-line and dual-line in the same overlay set.
- Can be shared on more than one phone.

Overlaid directory numbers provide call coverage similar to shared directory numbers because the same number can appear on more than one phone. The advantage of using two directory numbers in an overlay arrangement rather than as a simple shared line is that a call to the number on one phone does not block the use of the same number on the other phone, as would happen if it were a shared directory number.

For information about configuring call coverage using overlaid ephone-dns, see Configure Call Coverage Features, on page 1234.

You can overlay up to 25 lines on a single button. A typical use of overlaid directory numbers would be to create a “10x10” shared line, with 10 lines in an overlay set shared by 10 phones, resulting in the possibility of 10 simultaneous calls to the same number. For configuration information, see Creating Directory Numbers for a Simple Key System on SCCP Phone, on page 289.

Auto Registration of SIP Phones on Cisco Unified CME
Cisco Unified CME supports auto registration of both SIP and SCCP phones. When the auto registration feature is enabled, the voice register pool and voice register dn commands do not need to be manually configured for the phones. The configuration is automatically created when the phone registers.

The auto registration feature for SIP phones is enabled with the auto-register command under voice register global configuration mode. For more information on auto-register command, see Cisco Unified Communications Manager Express Command Reference.

The auto registration of SCCP phones is enabled with the auto-reg-ephone command under telephony-service configuration mode. For more information on auto-register command, see Cisco Unified Communications Manager Express Command Reference.

As part of the auto-register command, certain CLI sub-mode configuration options are available to the administrator to successfully register phones using auto-registration on Unified CME.
Router(config-register-global)#auto-register
Router(config-voice-auto-register)#
Router(config-voice-auto-register)##

VOICE auto register configuration commands:
 auto-assign Define DN range for auto assignment
 default Set a command to its defaults
 exit Exit from voice register group configuration mode
 no Negate a command or set its defaults
 password Default password for auto-register phones
 service-enable Enable SIP phone Auto-Registration
 template Default template for auto-register phones

For details on the configuration steps for auto registration of SIP phones, see Configure Auto Registration for SIP Phones, on page 321.

Service Enable —If the administrator needs to temporarily disable or enable auto registration without losing configurations such as DN range, and password, the no form of the CLI option service-enable is used (no service-enable). Once auto-register command is entered, the service is enabled by default. To re-enable the auto registration feature, use the command service-enable. It is a sub-mode option in the CLI command auto-register. To disable auto registration including removal of configurations such as password and DN range, the no form of the CLI command auto-register (under voice register global) is used.

Router(config)#voice register global
Router(config-register-global)#auto-register
Router(config-voice-auto-register)#no service-enable ?
<cr>

Password —As part of the auto registration feature, authentication of phones registering on Unified CME is enabled. When the phone registers with Unified CME, it is mandatory for the administrator to configure the password credentials; username is assigned by default. However, the administrator can modify the username and password credentials under the corresponding voice register pool that gets created after auto registration.

Router(config)#voice register global
Router(config-register-global)#auto-register
Router(config-voice-auto-register)#password ?
WORD Password string

Note

It is mandatory that password is configured before DN range (auto-assign) while registering phones using auto registration.

Auto Assign —It is mandatory to define a directory number (DN) range for auto-registration feature to work. The DN range that can be assigned to phones registering on Unified CME is configured using auto-assign <first-dn> to <last-dn>, which is a submode option of the CLI command auto-register (under voice register global). The DN numbers assigned to the phones through auto registration are always within the DN range that is defined. However, ensure that the defined DN range is within the maximum DNs recommended for the supported platform.

Router(config)#voice register global
Router(config-register-global)#auto-register
Router(config-voice-auto-register)#auto-assign ?
<1-4294967295> First DN number
Router(config-voice-auto-register)#auto-assign 1001 ?
<1-4294967295> Last DN number
Router(config-voice-auto-register)#auto-assign 1001 to 1010
The automatic registration feature also provides the administrators with the option to enhance a predefined DN range. The enhancement of an existing DN range is supported such that the new first-dn is not greater than the existing first-dn and the new last-dn is not less than the existing last-dn.

For example, the DN range 8001-8006 can be enhanced as 7999-8006, 8000-8007, but not as 8002-8006 or 8001 to 8005.

```
Router# show running-config | section voice register global
voice register global
  mode cme
  source-address 8.41.20.1 port 5060
  auto-register
    password xxxx
  auto-assign 8001 to 8006
  max-dn 50
  max-pool 40
```

The DN assigned to phone using the auto registration feature does not duplicate a manually configured DN. When the defined DN range includes a previously registered DN, that DN is skipped as part of the auto registration process. However, when a previously registered DN deregisters and the corresponding configuration for the DN and pool are removed, it can be assigned to a phone registering on Unified CME using auto registration. The assignment of DN range is done in round robin fashion and the first available free DN is assigned to the phone that is auto registering with Unified CME.

Note We recommend that administrators choose different DN ranges for manually configured and auto configured phones.

Template — Administrators are provided the option to create a basic configuration template that can be applied to all phones registering automatically on Unified CME. This basic configuration template supports all the configurations currently supported by the voice register template. It is mandatory that voice register template is configured with the same template tag.

```
Router(config)#voice register global
Router(config-register-global)#auto-register
Router(config-register-global)#auto-assign 8002 to 8006
Router(config-register-global)#auto-assign 8001 to 8005
```

The CLI commands show `voice register pool all` and `show voice register pool all brief` distinctly mention the registration process for phones as registered or unregistered for manual registration, and registered* or unregistered* for automatic registration. However, the registration status for auto-registered phones are reset in the event of a router reload. Then, phone registration status displays only as registered or unregistered.

Syslog Messages

Unified CME generates Syslog messages as part of the registration feature, when the phone registers and unregisters with the Cisco Unified CME. Also, based on the DN range configured, the administrator gets
syslog message providing updates on the registration status of assigned DNs. The syslog messages that provide updates are generated at two instances; at 80% utilization of available DNs, and at 100% utilization of DNs.

From Unified CME 12.3 Release (Cisco IOS XE Fuji Release 16.9.1), the following changes are introduced to syslog messages printed in Unified CME:

- Syslog messages are printed for successful endpoint assignment and unassignment using Extension Assigner (EA) feature.
- The device type information in the registration and unregistration syslog messages of Unified CME is printed as **DeviceType:Phone-Type**

A sample output for Unified CME 12.3 syslog changes is as follows:

Successful extension assignment:
```
```

Successful extension un-assignment:
```
```

Phone un-registration:
```
000300: *Apr 23 03:58:55.128: %SIPPHONE-6-UNREGISTER: VOICE REGISTER POOL-1 has unregistered. Name:SEP382056447710  IP:8.55.0.108  DeviceType:Phone-8851
```

Phone registration:
```
000310: *Apr 23 03:59:08.054: %SIPPHONE-6-REGISTER: VOICE REGISTER POOL-2 has registered. Name:SEP382056447710  IP:8.55.0.108  DeviceType:Phone-8851
```

The Unified CME system generates the following syslog messages as part of auto registration.

- **Syslog message when phone registers with Unified CME:**
  ```
  *Mar 28 21:44:08.795 IST: %SIPPHONE-6-REGISTER: VOICE REGISTER POOL-8 has registered. Name:SEP2834A2823843  IP:8.41.20.58 DeviceType:Phone
  ```

- **Syslog message at 80% utilization of DN range:**
  ```
  *Mar 28 21:42:25.732 IST: %SIPPHONE-6-AUTOREGISTER80: AUTO-REGISTER: 80% of DN range is consumed
  ```

- **Syslog message at 100% utilization of DN range:**
  ```
  *Mar 28 21:44:03.328 IST: %SIPPHONE-6-AUTOREGISTER100: AUTO-REGISTER: 100% of DN range is consumed
  ```

- **Syslog message when phone unregisters with Unified CME:**
  ```
  *Mar 28 18:03:41.748 IST: %SIPPHONE-6-UNREGISTER: VOICE REGISTER POOL-6 has unregistered. Name:SEPB000B4BAF3DA  IP:8.41.20.53 DeviceType:Phone
  ```

Monitor Mode for Shared Lines

In Cisco CME 3.0 and later versions, monitor mode for shared lines provides a visible line status indicating whether the line is in-use or not. A monitor-line lamp is off or unlit only when its line is in the idle call state.
The idle state occurs before a call is made and after a call is completed. For all other call states, the monitor line lamp is lit. A receptionist who monitors the line can see that it is in use and can decide not to send additional calls to that extension, assuming that other transfer and forwarding options are available, or to report the information to the caller; for example, “Sorry, that extension is busy, can I take a message?”

In Cisco CME 3.2 and later versions, consultative transfers can occur during Direct Station Select (DSS) for transferring calls to idle monitored lines. The receptionist who transfers a call from a normal line can press the Transfer button and then press the line button of the monitored line, causing the call to be transferred to the phone number of the monitored line. For information about consultative transfer with DSS, see Configure Call Transfer and Forwarding, on page 1134.

In Cisco Unified CME 4.0(1) and later versions, the line button for a monitored line can be used as a DSS for a call transfer when the monitored line is idle or in-use, provided that the call transfer can succeed; for example, when the monitored line is configured for Call Forward Busy or Call Forward No Answer.

Typically, Cisco Unified CME does not attempt a transfer that causes the caller (transferee) to hear a busy tone. However, the system does not check the state of subsequent target numbers in the call-forward path when the transferred call is transferred more than once. Multiple transfers can occur because a call-forward-busy target is also busy and configured for Call Forward Busy.

In Cisco Unified CME 4.3 and later versions, a receptionist can use the Transfer to Voicemail feature to transfer a caller directly to a voice-mail extension for a monitored line. For configuration information, see Transfer to Voice Mail, on page 532.

For configuration information for monitor mode, see Create Directory Numbers for SCCP Phones, on page 260.

Monitor mode is intended for use only in the context of shared lines so that a receptionist can visually monitor the in-use status of several users’ phone extensions; for example, for Busy Lamp Field (BLF) notification. To monitor all lines on an individual phone so that a receptionist can visually monitor the in-use status of that phone, see Watch Mode for Phones, on page 240.

For BLF monitoring of speed-dial buttons and directory call-lists, see Configure Presence Service, on page 853.

Watch Mode for Phones

In Cisco Unified CME 4.1 and later versions, a line button that is configured for watch mode on one phone provides BLF notification for all lines on another phone (watched phone) for which watched directory number is the primary line. Watch mode allows a phone user, such as a receptionist, to visually monitor the in-use status of an individual phone. A user can use the line button that has been set in watch mode as a speed-dial to call the first extension of the watched phone. The watching phone button displays a red light when the watched phone is unregistered in a DND state or in an offhook state. Pressing the button when it is not displaying a red light will dial the number in the same manner it would for a monitor button or the speed-dial button. Incoming calls on a line button that is in watch mode do not ring and do not display caller ID or call-waiting caller ID.

The line button for a watched phone can also be used as a DSS for a call transfer when the watched phone is idle. In this case, the phone user who transfers a call from a normal line can press the Transfer button and then press the line button of the watched directory number, causing the call to be transferred to the phone number associated with the watched directory number.
PSTN FXO Trunk Lines

In Cisco CME 3.2 and later versions, IP phones running SCCP can be configured to have buttons for dedicated PSTN FXO trunk lines, also known as FXO lines. FXO lines may be used by companies whose employees require private PSTN numbers. For example, a salesperson may need a special number that customers can call without having to go through a main number. When a call comes in to the direct number, the salesperson knows that the caller is a customer. In the salesperson’s absence, the customer can leave a voice mail. FXO lines can use PSTN service provider voice mail: when the line button is pressed, the line is seized, allowing the user to hear the stutter dial tone provided by the PSTN to indicate that voice messages are available.

Because FXO lines behave as private lines, users do not have to dial a prefix, such as 9 or 8, to reach an outside line. To reach phone users within the company, FXO-line users must dial numbers that use the company's PSTN number. For calls to non-PSTN destinations, such as local IP phones, a second directory number must be provisioned.

Calls placed to or received on an FXO line have restricted Cisco Unified CME services and cannot be transferred by Cisco Unified CME. However, phone users are able to access hookflash-controlled PSTN services using the Flash softkey.

In Cisco Unified CME 4.0(1), the following FXO trunk enhancements were introduced to improve the keyswitch emulation behavior of PSTN lines on phones running SCCP in a Cisco Unified CME system:

- **FXO port monitoring**—Allows the line button on IP phones to reliably show the status of an FXO port when the port is in use. The status indicator, either a lamp or an icon, depending on the phone model, accurately displays the status of the FXO port during the duration of the call, even after the call is forwarded or transferred. The same FXO port can be monitored by multiple phones using multiple trunk ephone-dns.

- **Transfer recall**—If a transfer-to phone does not answer after a specified timeout, the call is returned to the phone that initiated the transfer and it resumes ringing on the FXO line button. The directory number must be dual-lined.

- **Transfer-to button optimization**—When an FXO call is transferred to a private extension button on another phone, and that phone has a shared line button for the FXO port, after the transfer is committed and the call is answered, the connected call displays on the FXO line button of the transfer-to phone. This frees up the private extension line on the transfer-to phone. The directory number \(n \) must be dual-line.

- **Dual-line ephone-dns**—Directory numbers for FXO lines can now be configured for dual-line to support the FXO monitoring, transfer recall, and transfer-to button optimization features.

For configuration information, see **Configure Trunk Lines for a Key System on SCCP Phone**, on page 291.
Codecs for Cisco Unified CME Phones

In Cisco CME 3.4, support for connecting and provisioning SIP phones was added. The default codec of the POTS dial peer for an SCCP phone is G.711 and the default codec of a VoIP dial peer for a SIP phone is G.729. If neither the SCCP phone nor the SIP phone in Cisco Unified CME is specifically configured to change the codec, calls between the two phones on the same router will produce a busy signal caused by the mismatched default codecs. To avoid codec mismatch, specify the codec for individual IP phones in Cisco Unified CME. Modify the configuration for either SIP or SCCP phones to ensure that the codec for all phones match. Do not modify the configuration for both SIP and SCCP phones. For configuration information, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.

In Cisco Unified CME 4.3, support for G.722-64K and the Internet Low Bit Rate Codec (iLBC) was added. This enables Cisco Unified CME to support the same codecs that are used in newer Cisco Unified IP phones, mobile wireless networks, and internet telephony without transcoding. This feature provides support for the following:

- iLBC and G.722-capable SIP and SCCP IP phones in Cisco Unified CME.
- iLBC-capable SCCP analog endpoints and remote phones in Cisco Unified CME.
- Conferencing support for G.722 and ILBC.
- Supplementary services, such as transfer, call forward, MOH, support for G.722 and iLBC, including any supplementary services that require transcoding between G.722 and any other codec.
- Transcoding for G.722 and iLBC, including G.722 to G.711 and G.722 to any other codec.

With the introduction of G.722 and iLBC codecs, there can be a disparity between codec capabilities of different phones and different firmware versions on same phone type. For example, when a H.323 call is established, the codec is negotiated based on the dial-peer codec and the assumption is that the codecs supported on H.323 side are supported by the phones. This assumption is not valid after G.722 and ILBC codec are introduced in your network. If the phones do not support the codecs on the H.323 side, a transcoder is required. To avoid transcoding in this situation, configure incoming dial-peers so that G.722 and iLBC codecs are not used for calls to phones that are not capable of supporting these codecs. Instead, configure these phones for G.729 or G.711. Also, when configuring shared directory numbers, ensure that phones with the same codec capabilities are connected to the shared directory number.

G.722-64K

Traditional PSTN telephony codecs, including G.711 and G.729, are classified as narrowband codecs because they encode audio signals in a narrow audio bandwidth, giving telephone calls a characteristic “tinny” sound. Wideband codecs, such as G.722, provide a superior voice experience because wideband frequency response is 200 Hz to 7 kHz compared to narrowband frequency response of 300 Hz to 3.4 kHz. At 64 kbps, the G.722 codec offers conferencing performance and good music quality.

A wideband handset for certain Cisco Unified IP phones, such as the Cisco Unified IP Phone 7906G, 7911G, 7941G-GE, 7942G, 7945G, 7961G-GE, 7962G, 7965G, and 7975G, take advantage of the higher voice quality provided by wideband codecs to enhance end-user experience with high-fidelity wideband audio. When users use a headset that supports wideband, they experience improved audio sensitivity when the wideband setting on their phones is enabled. You can configure phone-user access to the wideband headset setting on IP phones by setting the appropriate VendorConfig parameters in the phone’s configuration file. For configuration information, see Modify Cisco Unified IP Phone Options, on page 1403.

If the system is not configured for a wideband codec, phone users may not detect any additional audio sensitivity, even when they are using a wideband headset.
You can configure the G.722-64K codec at a system-level for all calls through Cisco Unified CME. For configuration information, see Modify the Global Codec, on page 285. To configure individual phones and avoid codec mismatch for calls between local phones, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.

iLBC codec

Internet Low Bit Rate Codec (iLBC) enables graceful speech quality degradation in a network where frames get lost. Consider iLBC suitable for real-time communications, such as telephony and video conferencing, streaming audio, archival, and messaging. This codec is widely used by internet telephony softphones. The SIP, SCCP, and MGCP call protocols support use of the iLBC as an audio codec. iLBC provides better voice quality than G.729 but less than G.711. Supporting codecs that have standardized use in other networks, such as iLBC, enables end-to-end IP calls without the need for transcoding.

To configure individual SIP or SCCP phones, including analog endpoints in Cisco Unified CME, and avoid codec mismatch for calls between local phones, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.

Analog Phones

Cisco Unified CME supports analog phones and fax machines using Cisco Analog Telephone Adaptors (ATAs) or FXS ports in SCCP, H.323 mode, and fax pass-through mode. The FXS ports used for analog phones or fax can be on a Cisco Unified CME router, Cisco VG224 voice gateway, or integrated services router (ISR).

This section provides information on the following topics:

Cisco ATAs in SCCP Mode

You can configure the Cisco ATA 186 or Cisco ATA 188 to cost-effectively support analog phones using SCCP in Cisco IOS Release 12.2(11)T and later versions. Each Cisco ATA enables two analog phones to function as IP phones. For configuration information, see Configure Cisco ATA Support in SCCP Mode, on page 301.

Cisco ATAs in SIP Mode

You can configure the Cisco ATA 187, Cisco ATA 190 or Cisco ATA 191 to cost-effectively support analog phones and FAX using SIP for Unified CME. The support for Cisco ATA 191 is introduced from Unified CME 12.5 (Cisco IOS XE Gibralter 16.10.1a) Release. Each Cisco ATA enables two analog phones to function as IP phones. For configuration information, see Configure Cisco ATA Support in SIP Mode, on page 303.

The following are some of the known restrictions for Cisco ATA 191 on Unified CME:

- If both ports of a Cisco ATA 191 are configured as shared line, then a call put on hold on one port cannot be resumed at the other port.

- For Unified CME, a call put on hold on Unified SIP IP Phone cannot be resumed from a Cisco ATA 191.

- You cannot configure the same shared line DN on both ports of the Cisco ATA 191. On configuring the same shared line DN on both the lines of the Cisco ATA 191, second line does not get registered.
Cisco ATA 191 on Unified CME

The ATA 191 analog telephone adapter is a telephony-device-to-Ethernet adapter that allows regular analog phones to operate on IP-based telephony networks. The ATA 191 supports two voice ports, each with an independent phone number. The ATA 191 also has an RJ-45 10/100BASE-T data port.

Unified CME 12.5 and later release provide native support for Cisco ATA 191. The SIP protocol is supported on Cisco ATA 191.

The ATA 191 supports two lines, but has only a single MAC address. Hence, you must use a shifted MAC address to configure the second line on ATA 191. A sample configuration for Line 1 and Line 2 for an ATA 191 is as follows:

Line 1 configuration:
voice register dn 15
number 8015
voice register pool 15
 id mac DCEB.941C.F33D
type ATA-191
 number 1 dn 15
 username abcd password xxxx
 codec g711ulaw

Line 2 configuration:
voice register dn 16
number 8016
voice register pool 16
 id mac EB94.1CF3.3D01
type ATA-191
 number 1 dn 16
 username uvwx password xxxx
 codec g711ulaw

Note Left shift the MAC address by two places, and append the two removed digits at the end with 01 to define the shifted MAC address. For example, the MAC address **DCEB.941C.F33D** is modified to get the shifted MAC address, **EB94.1CF3.3D01**.

Feature Support for Cisco ATA 191

The Cisco ATA 191 supports the following features on Unified CME:

- **Hold or Resume**—Hold or Resume is invoked using a hookflash for Cisco ATA 191 on Unified CME. For more information on the feature, see [Put a Call on Hold on Your Analog Phone](#).

- **Consult or Semi Consult Transfer**—To Transfer a call using Cisco ATAT 191 on Unified CME, you need to use hookflash along with FAC. For information on the feature, see [Transfer a Call from Your Analog Phone](#).

- **Call Waiting**—Call Waiting calls are answered using a hookflash for Cisco ATA 191 on Unified CME. For more information on the feature, see [Answer Call Waiting on Your Analog Phone](#).

- **MeetMe Conference**—To host a MeetMe Conference on Cisco ATAT 191 on Unified CME, you need to use hookflash along with FAC. For information on how to invoke the feature, see [Host a Meet Me Conference on Your Analog Phone](#).
• Call Forward (All, Busy, No Answer)—Call Forward is invoked using a hookflash for Cisco ATA 191 on Unified CME. For more information on the feature, see Forward Your Analog Phone Calls to Another Number.

• cBarge—cBarge is invoked using a hookflash for Cisco ATA 191 on Unified CME. For more information on the feature, see Call Features and Star Codes for Analog Phones.

• Built-in Bridge Conference (BIB)—BIB is invoked using a hookflash for Cisco ATA 191 on Unified CME. For more information on the feature, see Make a Conference Call from Your Analog Phone.

• Call Park—Call Park is invoked using a FAC Code for Cisco ATA 191 on Unified CME. To park a call on Cisco ATA 191 on Unified CME, you need to transfer the call to the FAC code, **6. For more information, see Call Park, on page 1043.

• Call Park Pickup and G-Pickup—to pick up a parked call, dial the park-slot number.

• Voice Mail—for Voice Mail support on Cisco ATA 191, you need to go offhook, and dial the voice mail number configured on Unified CME to access the IVR options.

• Fax Transmission (with T.38, Passthrough)—For Fax transmission to work with Cisco ATA 191 on Unified CME, you need to configure the CLI command

```
service phone faxMode 0
```

under telephony-service configuration mode. For information on the feature, see Send and Receive Fax Calls.

• Shared Line/Mixed Shared Line—for information on the feature, see Shared Lines on Your Analog Phone.

• KPML Dialing—for KPML Dialing support on Cisco ATA 191, you need to go offhook and dial the number.

• TCP/UDP Registration

• Extension Assigner

• Auto Registration

• DTMF

• Caller ID Blocking

• Music On Hold (MOH)

• Upgrade or Downgrade Firmware

• Redial

• WebAccess

• SSH

• MWI—Cisco ATA 191 plays a stuttered tone instead of MWI

Feature Support Restriction

The following are the known feature restrictions for Cisco ATA 191 on Unified CME:

• Barge—Cisco ATA 191 cannot barge into an active shared line call (phone limitation). However, non-ATA phones can barge into Cisco ATA’s shared line call.

• Hardware Conference is not supported.
• Do Not Disturb
• Span to PC Port
• Speed Dial—For Cisco ATA 191, Abbreviated Dial is supported as Speed Dial. Unified CME does not support Abbreviated Dial.
• Secondary CME
• Call Waiting with Caller-ID—For Cisco ATA 191, the phone Caller-ID does not display any call waiting notification (only call waiting tone is supported).
• Localization
• Shared Line
 • Both the ports of a Cisco ATA191 cannot be configured with the same Shared Line DN.
 • Remote Resume is not supported for a Shared Line call placed on hold.

FXS Ports in SCCP Mode

FXS ports on Cisco VG224 Voice Gateways and Cisco 2800 Series and Cisco 3800 Series ISRs can be configured for SCCP supplementary features. For information about using SCCP supplementary features on analog FXS ports on a Cisco IOS gateway under the control of a Cisco Unified CME router, see Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide.

FXS Ports in H.323 Mode

FXS ports on platforms that cannot enable SCCP supplementary features can use H.323 mode to support call waiting, caller ID, hookflash transfer, modem pass-through, fax (T.38, Cisco fax relay, and pass-through), and PLAR. These features are provisioned as Cisco IOS voice features and not as Cisco Unified CME features.

Note
When using Cisco Unified CME, you can configure FXS ports in H.323 mode for call waiting or hookflash transfer, but not both at the same time.

Fax Support

Cisco Unified CME 4.0 introduced the use of G.711 fax pass-through for SCCP on the Cisco VG224 voice gateway and Cisco ATA. In Cisco Unified CME 4.0(3) and later versions, fax relay using the Cisco-proprietary fax protocol is the only supported fax option for SCCP-controlled FXS ports on the Cisco VG224 and integrated service routers. For more information on fax relay, see Fax Relay, on page 727.

Cisco ATA-187

Cisco Unified CME 9.0 and later versions provide voice and fax support on Cisco ATA-187.
Cisco ATA-187 is a SIP-based analog telephone adaptor that turns traditional telephone devices into IP devices. Cisco ATA-187 can connect with a regular analog FXS phone or fax machine on one end, while the other end is an IP side that uses SIP for signaling and registers to Cisco Unified CME as a Cisco Unified SIP IP phone.
Cisco ATA-187 functions as a Cisco Unified SIP IP phone that supports T.38 fax relay and fax pass-through, enabling the real-time transmission of fax over IP networks. The fax rate is from 7.2 to 14.4 kbps.

For information on how to configure voice and fax support on Cisco ATA-187, see Configure Voice and T.38 Fax Relay on Cisco ATA-187, on page 305.

For information on the features supported in Cisco ATA-187, see Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST.

For more information on Cisco ATA-187, see Cisco ATA 187 Analog Telephone Adaptor Administration Guide for SIP.

Cisco VG202, VG204, and VG224 Auto Configuration

The Auto Configuration feature in Cisco Unified CME 7.1 and later versions allows you to automatically configure the Cisco VG202, VG204, and VG224 Analog Phone Gateway. You can configure basic voice gateway information in Cisco Unified CME, which then generates XML configuration files for the gateway and saves the files to either the default location in system:/its/ or to a location you define in system memory, flash memory, or an external TFTP server. When the voice gateway powers up, it downloads the configuration files from Cisco Unified CME and based on the information in the files, the voice gateway provisions its analog voice ports and creates the corresponding dial peers.

Using this Auto Configuration feature with the existing Auto Assign feature allows you to quickly set up analog phones to make basic calls. After the voice gateway is properly configured and it downloads its XML configuration files from Cisco Unified CME, the SCCP telephony control (STC) application registers each configured voice port to Cisco Unified CME.

If you enable the Auto Assign feature, the gateway automatically assigns the next available directory number from the pool set by the `auto assign` command, binds that number to the requesting voice port, and creates an ephone entry associated with the voice port. The MAC address for the ephone entry is calculated based on the MAC address of the gateway and the port number. You can manually assign a directory number to each of the voice ports by creating the ephone-dn and corresponding ephone entry.

You can initiate a reset or restart of the analog endpoints from Cisco Unified CME, which triggers the autoconfiguration process. The voice gateway downloads its configuration files from Cisco Unified CME and applies the new changes.

For configuration information, see Auto-Configuration for Cisco VG202, VG204, and VG224, on page 309.

Internet Protocol - Secure Telephone Equipment Support

Cisco Unified CME 8.0 adds support for a new secure endpoint, Internet Protocol - Secure Telephone Equipment (IP-STE). IP-STE is a standalone, V.150.1 capable device which functions like a 7960 phone with secure communication capability. IP-STE has native state signaling events (SSE / SPRT) support and supports SCCP protocol. IP-STE uses the device ID 30035 when registering to a SCCP server. However, only V.150.1 modem relay is implemented in an IP-STE stack and V150.1 modem passthrough is not supported. Therefore, the response to capability query from Cisco Unified CME only includes media_payload_XV150_MR_711U and media_payload_xv150_MR_729A.

For configuration information, see Configure Secure IP Phone (IP-STE) on SCCP Phone, on page 317.

The following support is added for IP-STE endpoints:

- The IP-STE endpoint allows secure communication between gateway-connected legacy analog STE/STU devices and IP STE devices using existing STE devices in voice networks.
Secure Communications Between STU, STE, and IP-STE

Secure Telephone Equipment (STE) and Secure Telephone Units (STUs) encrypt voice and data streams with government proprietary algorithms (Type-1 encryption). To provide support for the legacy STEs and STUs and next generation IP Secure Telephone Equipment (IP-STE), voice gateways must be able to support voice and data in secure mode within the IP network and be able to pass calls within and also to and from government voice networks.

In earlier versions of Cisco Unified CME, Cisco IOS gateways supported secure voice and data communication between legacy STE and STU devices using modem pass-through method. Cisco Unified CME 8.0 and later versions control the secure endpoints by implementing a subset of v.150.1 modem relay protocol and ensures secure communications between IP-STE endpoints and STE/STU endpoints. This allows Cisco Unified CME SCCP controlled secure endpoints to communicate with the IP-STE or legacy endpoints in secure mode.

SCCP Media Control for Secure Mode

IP-STE endpoints use the V.150.1 modem relay transport method using Future Narrow Band Digital Terminal (FNBDT) signaling over a V.32 or V.34 data pump for secure communication with other legacy STE endpoints. However, IP-STE endpoints cannot communicate with STU endpoints because STU endpoints use the modem pass-through method using a proprietary data pump and do not support the FNBDT signaling.

Secure communication between IP-STE endpoints and legacy STE endpoints support the following encryption-capable endpoints:

- **STE**—Specialized encryption-capable analog or BRI phones that can communicate over V.150.1 modem relay or over modem pass-through, also known as Voice Band Data (VBD).
- **IP-STE**—Specialized encryption-capable IP phones that communicate only over V.150.1 modem relay.
- **STU**—Specialized encryption-capable analog phones that operate only over NSE-based modem pass-through connections.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>STU</th>
<th>STE</th>
<th>IP-STE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STU</td>
<td>Pass-through</td>
<td>Pass-through</td>
<td>None</td>
</tr>
<tr>
<td>STE</td>
<td>Pass-through</td>
<td>Pass-through</td>
<td>Relay</td>
</tr>
</tbody>
</table>

Table 17: Supported Secure Call Scenarios and Modem Transport Methods, on page 248 lists call scenarios between devices along with modem transport methods that the IP-STE endpoints use to communicate with STE endpoints.
Secure Communication Between STE, STU, and IP-STE Across SIP Trunk

The Secure Device Provisioning (SDP) for SIP end-to-end negotiation includes four proprietary media types for secure communication between Cisco Unified CME and SIP trunk. These proprietary VBD or Modem Relay (MR) media types can be encoded into media attributes of SDP media lines. VBD capabilities are signaled using the SDP extension mechanism and Cisco proprietary nomenclature. MR capabilities are signaled through V.150.1. The following example shows VBD capabilities. The SDP syntax are based on RFC 2327 and V.150.1 Appendix E.

```
a=rtpmap:100 X-NSE/8000
a=rtpmap:118 v150fw/8000
a=sqn:0
a=cdsc:1 audio RTP/AVP 118 0 18
a=cdsc: 4 audio udsprt 120
a=cpar: a=sprtmap: 120 v150mr/8000
```

Remote Teleworker Phones

IP phones or a Cisco IP Communicator can be connected to a Cisco Unified CME system over a WAN to support teleworkers who have offices that are remote from the Cisco Unified CME router. The maximum number of remote phones that can be supported is determined by the available bandwidth.

IP addressing is a determining factor in the most critical aspect of remote teleworker phone design. The following two scenarios represent the most common designs, the second one is the most common for small and medium businesses:

- Remote site IP phones and the hub Cisco Unified CME router use globally routable IP addresses.

- Remote site IP phones use NAT with unroutable private IP addresses and the hub Cisco Unified CME router uses a globally routable address (see Figure 13: Remote Site IP Phones Using NAT, on page 250).

This scenario results in one-way audio unless you use one of the following workarounds:

- Configure static NAT mapping on the remote site router (for example, a Cisco 831 Ethernet Broadband Router) to convert between a private address and a globally routable address. This solution uses fewer Cisco Unified CME resources, but voice is unencrypted across the WAN.

- Configure an IPsec VPN tunnel between the remote site router (For example, a Cisco 831 Ethernet Broadband Router) and the Cisco Unified CME router. This solution requires Advanced IP Services or higher image on the Cisco Unified CME router if this router is used to terminate the VPN tunnel. Voice will be encrypted across the WAN. This method will also work with the Cisco VPN client on a PC to support a Cisco IP Communicator.
Media Termination Point for Remote Phones

Media termination point (MTP) configuration is used to ensure that Real-Time Transport Protocol (RTP) media packets from remote phones always transit through the Cisco Unified CME router. Without the MTP feature, a phone that is connected in a call with another phone in the same Cisco Unified CME system sends its media packets directly to the other phone, without the packets going through the Cisco Unified CME router. MTP forces the packets to be sourced from the Cisco Unified CME router.

When this configuration is used to instruct a phone to always send its media packets to the Cisco Unified CME router, the router acts as an MTP or proxy and forwards the packets to the destination phone. If a firewall is present, it can be configured to pass the RTP packets because the router uses a specified UDP port for media packets. In this way, RTP packets from remote IP phones can be delivered to IP phones on the same system though they must pass through a firewall.

You must use the `mtp` command to explicitly enable MTP for each remote phone that sends media packets to Cisco Unified CME.

One factor to consider is whether you are using multicast music on hold (MOH) in your system. Multicast packets generally cannot be forwarded to phones that are reached over a WAN. The multicast MOH feature checks to see if MTP is enabled for a phone and if it is, MOH is not sent to that phone. If you have a WAN configuration that can forward multicast packets and you can allow RTP packets through your firewall, you can decide not to use MTP.

For configuration information, see Enable Remote Phone, on page 314.

G.729r8 Codec on Remote Phones

You can select the G.729r8 codec on a remote IP phone to help save network bandwidth. The default codec is G.711 mu-law. If you use the `codec g729r8` command without the `dspfarm-assist` keyword, the use of the G.729 codec is preserved only for calls between two phones on the Cisco Unified CME router (such as between an IP phone and another IP phone or between an IP phone and an FXS analog phone). The `codec g729r8` command has no effect on a call directed through a VoIP dial peer unless the `dspfarm-assist` keyword is also used.

For configuration information, see Enable Remote Phone, on page 314.

For information about transcoding behavior when using the G.729r8 codec, see Transcoding When a Remote Phone Uses G.729r8, on page 474.

Busy Trigger and Channel Huntstop for SIP Phones

Cisco Unified CME 7.1 introduced busy trigger and huntstop channel support for SIP phones, such as the Cisco Unified IP Phone 7941G, 7941GE, 7942G, 7945G, 7961G, 7961GE, 7962G, 7965G, 7970G, 7971GE, 7975G, and 7985. For these SIP phones, the number of channels supported is limited by the amount of memory on the phone. To prevent incoming calls from overloading the phone, you can configure a busy trigger and a channel huntstop for the directory numbers on the phone.
The Channel Huntstop feature limits the number of channels available for incoming calls to a directory number. If the number of incoming calls reaches the configured limit, Cisco Unified CME does not present the next incoming call to the directory number. This reserves the remaining channels for outgoing calls or for features, such as call transfer and conferencing.

The Busy Trigger feature limits the calls to a directory number by triggering a busy response. After the number of active calls, both incoming and outgoing, reaches the configured limit, Cisco Unified CME forwards the next incoming call to the Call Forward Busy destination or rejects the call with a busy tone if Call Forward Busy is not configured.

The busy-trigger limit applies to all directory numbers on a phone. If a directory number is shared among multiple SIP phones, Cisco Unified CME presents incoming calls to those phones that have not reached their busy-trigger limit. Cisco Unified CME initiates the busy trigger for an incoming call only if all the phones sharing the directory number exceed their limit.

For configuration information, see Create Directory Numbers for SIP Phones, on page 270 and Assign Directory Numbers to SIP Phones, on page 273.

Multiple Calls Per Line

Cisco Unified CME 9.0 provides support for the Multiple Calls Per Line (MCPL) feature on Cisco Unified 6921, 6941, 6945, and 6961 SIP IP phones and Cisco Unified 8941 and 8945 SCCP and SIP IP phones.

Before Cisco Unified CME 9.0, the maximum number of calls supported for every directory number (DN) on Cisco Unified 8941 and 8945 SCCP IP phones was restricted to two.

With Cisco Unified CME 9.0, the MCPL feature overcomes the limitation on the maximum number of calls per line.

In Cisco Unified CME 9.0, the MCPL feature is not supported on Cisco Unified 6921, 6941, 6945, and 6961 SCCP IP phones.

Cisco Unified 8941 and 8945 SCCP IP Phones

Before Cisco Unified CME 9.0, Cisco Unified 8941 and 8945 SCCP IP phones only supported two incoming calls per line and a third channel was reserved for call transfers or conference calls. These phones were also hardcoded with `ephone-dn octo-line`, `huntstop-channel 2`, `max-calls-per-button 3`, and `busy-trigger-per-button 2`.

In Cisco Unified CME 9.0, you can configure the `ephone-dn dn-tag [dual-line | octo-line]` in global configuration mode and the `max-calls-per-button` and `busy-trigger-per-button` commands in `ephone` or `ephone-template` configuration mode for Cisco Unified 8941 and 8945 SCCP IP phones to configure a DN and enable the number of calls per DN, set the maximum number of calls allowed on an octo-line DN, and set the maximum number of calls allowed on an octo-line DN before activating a busy tone.

For configuration information, see Configure the Maximum Number of Calls on SCCP Phone, on page 325.

Cisco Unified 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones

In Cisco Unified CME 9.0, the default values for the `busy-trigger-per-button` command is 1 for the Cisco Unified 6921, 6941, 6945, and 6961 SIP IP phones and 2 for the Cisco Unified 8941 and 8945 SIP IP phones.

You can configure the maximum number of calls before a phone receives a busy tone. For example, if you configure `busy-trigger-per-button 2` in voice register pool configuration mode for a Cisco Unified 6921, 6941, 6945, or 6961 SIP IP phone, the third incoming call to the phone receives a busy tone.
For information on the Busy Trigger feature on Cisco Unified SIP IP phones, see "Busy Trigger and Channel Huntstop for SIP Phones, on page 250."

For configuration information, see "Configure the Busy Trigger Limit on SIP Phone, on page 327."

Digit Collection on SIP Phones

Digit strings dialed by phone users must be collected and matched against predefined patterns to place calls to the destination corresponding to the user’s input. Before Cisco Unified CME 4.1, SIP phone users had to press the DIAL softkey or # key or wait for the interdigit-timeout to trigger call processing. In Cisco Unified CME 4.1 and later versions, two methods of collecting and matching digits are supported for SIP phones, depending on the model of phone:

Key Press Markup Language Digit Collection

Key Press Markup Language (KPML) uses SIP SUBSCRIBE and NOTIFY methods to report user input digit by digit. Each digit dialed by the phone user generates its own signaling message to Cisco Unified CME, which performs pattern recognition by matching a destination pattern to a dial peer as it collects the dialed digits. This process of relaying each digit immediately is similar to the process used by SCCP phones. It eliminates the need for the user to press the Dial softkey or wait for the interdigit timeout before the digits are sent to Cisco Unified CME for processing.

KPML is supported on Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE. For configuration information, see "Enable KPML on a SIP Phone, on page 280."

SIP Dial Plans

A dial plan is a set of dial patterns that SIP phones use to determine when digit collection is complete after a user goes off-hook and dials a destination number. Dial plans allow SIP phones to perform local digit collection and recognize dial patterns as user input is collected. After a pattern is recognized, the SIP phone sends an INVITE message to Cisco Unified CME to initiate the call to the number matching the user’s input. All of the digits entered by the user are presented as a block to Cisco Unified CME for processing. Because digit collection is done by the phone, dial plans reduce signaling messages overhead compared to KPML digit collection.

SIP dial plans eliminate the need for a user to press the Dial softkey or # key or to wait for the interdigit timeout to trigger an outgoing INVITE. You configure a SIP dial plan and associate the dial plan with a SIP phone. The dial plan is downloaded to the phone in the configuration file.

You can configure SIP dial plans and associate them with the following SIP phones:

- Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE—These phones use dial plans and support KPML. If both a dial plan and KPML are enabled, the dial plan has priority.

 If a matching dial plan is not found and KPML is disabled, the user must wait for the interdigit timeout before the SIP NOTIFY message is sent to Cisco Unified CME. Unlike other SIP phones, these phones do not have a Dial softkey to indicate the end of dialing, except when on-hook dialing is used. In this case, the user can press the Dial softkey at any time to send all the dialed digits to Cisco Unified CME.

- Cisco Unified IP Phones 7905, 7912, 7940, and 7960—These phones use dial plans and do not support KPML. If you do not configure a SIP dial plan for these phones, or if the dialed digits do not match a dial plan, the user must press the Dial softkey or wait for the interdigit timeout before digits are sent to Cisco Unified CME.
When you reset a phone, the phone requests its configuration files from the TFTP server, which builds the appropriate configuration files depending on the type of phone.

- Cisco Unified IP Phones 7905 and 7912—The dial plan is a field in their configuration files.
- Cisco Unified IP Phones 7911G, 7940, 7941G, 7941GE, 7960, 7961G, 7961GE, 7970G, and 7971GE—The dial plan is a separate XML file that is pointed to from the normal configuration file.

For configuration information for Cisco Unified CME, see Configure Dial Plans for SIP Phones, on page 276.

Session Transport Protocol for SIP Phones

In Cisco Unified CME 4.1 and later versions, you can select TCP as the transport protocol for connecting supported SIP phones to Cisco Unified CME. Previously only UDP was supported. TCP is selected for individual SIP phones by using the `session-transport` command in voice register pool or voice register template configuration mode. For configuration information, see Select Session-Transport Protocol for a SIP Phone, on page 282.

Real-Time Transport Protocol Call Information Display Enhancement

Before Cisco Unified CME 8.8, active RTP call information on ephone call legs were determined only by parsing the `show ephone registered` or `show ephone offhook` command output. The `show voip rtp connections` command showed active call information in the system but it did not apply to ephone call legs. In Cisco Unified CME 8.8 and later versions, you can display information on active RTP calls, including the ephone tag number of the phone with an active call, the channel of the ephone-dn, and the caller and called party’s numbers for the connection for both local and remote endpoints, using the `show ephone rtp connections` command. The output from this command provides an overview of all the connections in the system, narrowing the criteria for debugging pulse code modulation and Cisco Unified CME packets without a sniffer.

When an ephone to non-ephone call is made, information on the non-ephone does not appear in a `show ephone rtp connections` command output. To display the non-ephone call information, use the `show voip rtp connections` command.

The following sample output shows all the connected ephones in the Cisco Unified CME system. The sample output shows five active ephone connections with one of the phones having the `dsfarm-assist` keyword configured to transcode the code on the local leg to the indicated codec. The output also shows four ephone-to-ephone calls, represented in the CallID columns of both the RTP connection source and RTP connection destination by zero values.

Normally, a phone can have only one active connection but in the presence of a whisper intercom call, a phone can have two. In the sample output, ephone-40 has two active calls: it is receiving both a normal call and a whisper intercom call. The whisper intercom call is being sent by ephone-6, which has an invalid LocalIP of 0.0.0.0. The invalid LocalIP indicates that it does not receive RTP audio because it only has a one-way voice connection to the whisper intercom call recipient.

```
Router# show ephone rtp connections
Ephone RTP active connections :
Ephone  Line  DN  Chan  SrcCallID  DstCallID  Codec (xcoded?)
       SrcNum  DstNum  LocalIP  RemoteIP
ephone-5  1   5   1   15   14  G729 ({Y)
1005  1102  [192.168.1.100]:23192  [192.168.1.1]:2000
```
Ephone-Type Configuration

In Cisco Unified CME 4.3 and later versions, you can dynamically add a new phone type to your configuration without upgrading your Cisco IOS software. New phone models that do not introduce new features can easily be added to your configuration without requiring a software upgrade.

The ephone-type configuration template is a set of commands that describe the features supported by a type of phone, such as the particular phone type's device ID, number of buttons, and security support. Other phone-related settings under telephony-service, ephone-template, and ephone configuration mode can override the features set within the ephone-type template. For example, an ephone-type template can specify that a particular phone type supports security and another configuration setting can disable this feature. However, if an ephone-type template specifies that this phone does not support security, the other configuration cannot enable support for the security feature.

Cisco Unified CME uses the ephone-type template to generate XML files to provision the phone. System-defined phone types continue to be supported without using the ephone-type configuration. Cisco Unified CME checks the ephone-type against the system-defined phone types. If there is conflict with the phone type or the device ID, the configuration is rejected.

For configuration information, see Configure Ephone-Type Templates for SCCP Phones, on page 263.

7926G Wireless SCCP IP Phone Support

Cisco Unified CME 8.6 adds support for the Cisco Unified 7926G Wireless SCCP IP phone. The 7926G wireless phone is phone similar to the 7925 wireless phone with a 2D barcode and EA15 module attached. The 7926G wireless phone is capable of scanning functionality. For more details on phone features and functionality, see Cisco Unified IP Phone 7900 Series User Guide.

Cisco Unified CME 8.6 supports the scanning function on the 7926G SCCP wireless phone using the ephone built-in device type. Table 18: Supported Values for Ephone-Type Command, on page 254 shows supported values for the ephone-type for 7926G wireless phone.

Table 18: Supported Values for Ephone-Type Command

<table>
<thead>
<tr>
<th>Supported Device</th>
<th>device-id</th>
<th>device-type</th>
<th>num-buttons</th>
<th>max-presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified Wireless IP Phone 7926G</td>
<td>577</td>
<td>7926</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

To support service provisioning, an XML file is constructed externally and applied to the ephone-template of the phone. To allow the phone to read the external XML file, you are required to create-cnf and download the XML file to the ephone. For more information on configuring PhoneServices XML file, see Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G, on page 319.
The following is an example of the <phoneServices> XML file:

```xml
<phoneServices useHTTPS="true">
  <provisioning>0</provisioning>
  <phoneService type="1" category="0">
    <name>Missed Calls</name>
    <url>Application:Cisco/MissedCalls</url>
    <vendor></vendor>
    <version></version>
  </phoneService>
  <phoneService type="0" category="1">
    <displayName>Store Ops</displayName>
    <name>Store Ops</name>
    <url>http://1.4.206.105/Midlets/StoreOps.jad?StoreNumber=1777</url>
    <vendor>CiscoSystems</vendor>
    <version>0.0.82</version>
  </phoneService>
</phoneServices>
```

Enhanced Line Mode

Enhanced Line Mode allows you to use the buttons on both sides of the phone screen to configure Line Keys (DNs), Feature Buttons, or Speed Dial.

In a scenario where you have Line Keys, Feature Button, and Speed Dial configured under voice register pool configuration mode for phones that are supported on Unified CME, the priority is set as follows:

- Line Keys
- Speed Dial
- Feature Button

From Unified CME Release 12.3, support is introduced for Enhanced Line Mode (ELM) on Cisco IP Phone 8800 Series. The support is introduced for all Cisco IP Phone 8800 Series phones, except Cisco Wireless IP Phone 8821, Cisco Unified IP Conference Phone 8831, and Cisco IP Conference Phone 8832. ELM for Unified CME is supported on the Cisco 4000 Series Integrated Services Routers. For Cisco IP Phone 8800 Series, a maximum of 10 phone buttons can be configured for ELM lines.

For ELM on Unified CME, you need to configure the CLI command `service phone lineMode 1` under telephony-service configuration mode to enable Enhanced Line Mode on phones. The Cisco IP Phone 8800 Series configured on Unified CME uses the vendor config XML body in the CNF file to verify if the CLI command `service phone lineMode 1` is added to enable ELM mode. For a sample configuration of ELM on Unified CME, see Example for Configuring Enhanced Line Mode on Unified CME, on page 348.

Note

The CLI command `service phone lineMode` is case-sensitive, and must be entered exactly as mentioned.

You can enable ELM on Unified CME using the CLI command `service phone lineMode` as follows:

```bash
Router(config)#telephony-service
Router(config-telephony)#service phone lineMode ?
  WORD enter the phone xml file parameter text for the previously entered
```
Once you enable service phone lineMode 1 under telephony-service for ELM, you need to create profile and restart the phones under voice register global configuration mode to enable ELM for the Cisco IP Phone 8800 series phones on Unified CME.

Feature Support on Enhanced Line Mode

The following features are supported for ELM on Cisco IP Phone 8800 Series:

- HLog
- DND
- Park
- Redial
- Mobility
- Group Pickup
- Meet Me
- Mobility
- Pickup
- Privacy

KEM Support for Cisco Unified SIP IP Phones

For Unified CME 12.3 and prior releases, KEM support is limited to C-KEM and BE-KEM device types. From Unified CME Release 12.5, Key Expansion Module (KEM) device types A-KEM (Audio) and V-KEM (Video) are supported for Cisco IP Phone 8800 Series. The support is introduced for both SLM (Session Line Mode) and ELM (Enhanced Line Mode) configuration. You can switch from SLM to ELM mode to use buttons on both sides of the Cisco IP Phone 8800 Series.

The following endpoints are supported as part of Unified CME Release 12.5:

- Cisco IP Phone 8851—Supports upto 2 A-KEM Modules.
- Cisco IP Phone 8851NR—Supports upto 2 A-KEM Modules
- Cisco IP Phone 8861—Supports upto 3 A-KEM Modules.
- Cisco IP Phone 8865—Supports upto 3 V-KEM Modules

An A-KEM or V-KEM Module supports a maximum of 28 lines. Hence, the total number of lines on the supported phone types for Unified CME 12.5 are as follows:
Table 19: A-KEM and V-KEM Line Support

<table>
<thead>
<tr>
<th>Phone Model</th>
<th>Number of KEM Lines Supported</th>
<th>Line Support (With SLM)</th>
<th>Line Support (With ELM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8851</td>
<td>56 (2*28)</td>
<td>61 (56+5)</td>
<td>66 (56+10)</td>
</tr>
<tr>
<td>8851NR</td>
<td>56 (2*28)</td>
<td>61 (56+5)</td>
<td>66 (56+10)</td>
</tr>
<tr>
<td>8861</td>
<td>84 (3*28)</td>
<td>89 (84+5)</td>
<td>94 (84+10)</td>
</tr>
<tr>
<td>8865</td>
<td>84 (3*28)</td>
<td>89 (84+5)</td>
<td>94 (84+10)</td>
</tr>
</tbody>
</table>

V-KEM is supported only with the 8865 phone type. You need to configure CP-8800-Video to support V-KEM with 8865 phones. You need to configure CP-8800-Audio to support A-KEM with the phone types 8851, 8851NR, and 8861. The phone types 8851, 8851NR, and 8861 also support CKEM and BEKEM.

Note

A mixed deployment of KEM Modules is not supported for any phone type. For example, if the phone type 8861 supports three KEM modules, then all three KEM modules have to be either CKEM, BEKEM, or CP-8800-Audio.

To enable A-KEM or V-KEM on Unified CME, you need to configure the KEM option for the phone type under *voice register pool* configuration mode for Unified CME 12.5 and later releases:

Router(config)# enable
Router(config)# configure terminal
Router(config)# voice register pool
Router(config-register-pool)# type 8851 addon 1 CP-8800-Audio 2 CP-8800-Audio
Router(config-register-pool)# type 8851NR addon 1 CP-8800-Audio 2 CP-8800-Audio
Router(config-register-pool)# type 8861 addon 1 CP-8800-Audio 2 CP-8800-Audio 3 CP-8800-Audio
Router(config-register-pool)# type 8865 addon 1 CP-8800-Video 2 CP-8800-Video 3 CP-8800-Video

To configure KEM on Unified SIP Phones, see [Configure KEMs on SIP Phones](#), on page 328.

For more information on the KEM support for Cisco Unified 8851/51NR, 8861, 8865, 8961, 9951, and 9971 SIP IP Phones, see [Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST](#).

Key Mapping

The mapping of configured keys on a phone depends on the number of KEMs attached to the phone.

If only one CKEM is attached to a phone and the number of keys configured is 114, only 36 keys on the CKEM are mapped to the configured keys on the phone. The rest of the keys are not visible on the phone or the KEM. The maximum number of supported keys on each A-KEM and V-KEM device is 28. For information on A-KEM and V-KEM support, see Table 19: A-KEM and V-KEM Line Support, on page 257.

Call Control

All call control features are supported by KEMs on Cisco Unified SIP IP phones. Any feature that can be configured on the phone keys can also be configured on the KEM.
XML Updates

- There is no separate firmware for KEMs, instead they are built in as part of the phones.
- The number of XML entries in the configuration file increases with the number of keys configured.
- The device type for KEMs is C-KEM, BE-KEM, A-KEM, and V-KEM. The maximum number of supported keys on each C-KEM device is 36. The maximum number of supported keys on each A-KEM and V-KEM device is 28.

Restrictions for KEM Support

- KEMs are not supported for Cisco Unified SCCP IP phones and Cisco Unified SIP IP phones other than the Cisco Unified 8851/51NR, 8861, 8865, 8961, 9951, and 9971 SIP IP phones.
- Features configured on keys are disabled when supported Cisco Unified SIP IP phones are in Cisco Unified SIP SRST.
- All Cisco Unified 8851/51NR, 8861, 8865, 8961, 9951, and 9971 SIP IP phone restrictions and limitations apply to KEMs.
- All Cisco Unified CME and Cisco Unified SIP SRST feature restrictions and limitations apply to KEMs.

For more information on how the `blf-speed-dial`, `number`, and `speed-dial` commands, in voice register pool configuration mode, have been modified, see Cisco Unified Communications Manager Express Command Reference.

For information on installing KEMs on Cisco Unified IP Phone, see “Installing a Key Expansion Module on the Cisco Unified IP Phone” section of Cisco Unified IP Phone 8961, 9951, and 9971 Administration Guide for Cisco Unified Communications Manager 10.0.

For information on installing KEMs on Cisco Unified 8811, 8841, 8851, 8851NR, 8865, and 8861 Phones, see Cisco IP Phone Key Expansion Module section of Cisco IP Phone 8800 Series Administration Guide for Cisco Unified Communications Manager.

Fast-Track Configuration Approach for Cisco Unified SIP IP Phones

In Cisco Unified CME Release 10.0, the Fast-Track Configuration feature provides a new configuration utility using which you can input the phone characteristics of a new SIP phone model. This utility allows you to configure the existing SIP line features to the new SIP phone models. In the fast-track configuration, an option is provided to input an existing SIP phone as a reference phone. This feature is supported only on new SIP phone models that do not need any changes in the software protocols and the Cisco Unified CME application.

Note

To deploy Cisco Unified SIP IP phones on Cisco Unified CME using the fast-track configuration approach, you require Cisco IOS Release 15.3(3)M or a later release.

Forward Compatibility

When a new SIP phone model is configured using the fast-track configuration approach, and the Cisco Unified CME is upgraded to a later version that supports the new SIP phone model, the fast-track configuration
pertaining to that SIP phone model is removed automatically. If the Cisco Unified CME is downgraded to a version that does not have the built-in support, the fast-track configuration should be applied again.

To support Fast-Track Configuration feature, the **voice register pool-type** command has been introduced in the global configuration mode. The properties of the new SIP phone can be configured under the voice register pool-type submode. In addition to the explicit configuration of the phone’s properties, the reference-pooltype option can be used to inherit the properties of an existing SIP phone.

Localization support

CME supports localization for phones in fast-track mode through locale installer. However, the locale package should have .jar files for a specific phone model to make the feature work.

To use the locale installer, see Locale Installer for Cisco Unified SIP IP Phones, on page 411.

For new SIP phone models validated using Fast-track configuration and the supported locale package version, see Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST.

Restrictions for Fast-Track Support

- The fast-track configuration does not allow you to use the following phone models as reference phone:
 - ATA—Cisco ATA-186 and Cisco ATA-188
 - 7905—Cisco Unified IP Phone 7905 and Cisco Unified IP Phone 7905G
 - 7912—Cisco Unified IP Phone 7912 and Cisco Unified IP Phone 7912G
 - 7940—Cisco Unified IP Phone 7940 and Cisco Unified IP Phone 7940G
 - 7960—Cisco Unified IP Phone 7960 and Cisco Unified IP Phone 7960G
 - P100—PingTel Xpressa 100
 - P600—Polycom SoundPoint IP 600

- Existing Cisco Unified SIP IP phones are not allowed to be configured as new Cisco Unified SIP IP phones using the fast-track configuration approach.

- The reference-pooltype functionality is allowed only on existing SIP phone models. New SIP phone models configured using the fast-track configuration approach cannot be used as a reference phone.

- The fast-track configuration approach supports only the XML format and not support the text format for phone configuration.

- The fast-track approach does not support the new SIP phone models that have a new call flow, new message flow, or a new configuration file format that are not supported by the Cisco Unified CME.

For configuration information, see Provision SIP Phones to Use the Fast-Track Configuration Approach, on page 330.

For configuration examples, see Example for Fast-Track Configuration Approach, on page 347.
Configure Phones for a PBX System

This section contains the following tasks:

Create Directory Numbers for SCCP Phones

To create a directory number in Cisco Unified CME for a SCCP phone, intercom line, voice port, or a message-waiting indicator (MWI), perform the following steps for each directory number to be created. Each ephone-dn becomes a virtual line, or extension, on which call connections can be made. Each ephone-dn configuration automatically creates one or more virtual dial peers and virtual voice ports to make those call connections.

To create and assign directory numbers to be included in an overlay set, see Configure Overlaid Ephone-dns on SCCP Phones, on page 1283.

Note

• The Cisco Unified IP Phone 7931G is a SCCP keyset phone and, when configured for a key system, does not support the dual-line option for a directory number. To configure a Cisco Unified IP Phone 7931G, see Configure Phones for a Key System, on page 289.

• Octo-line directory numbers are not supported by the Cisco Unified IP Phone 7902, 7920, or 7931, or by analog phones connected to the Cisco VG224 or Cisco ATA.

• Octo-line directory numbers are not supported in button overlay sets.

• Octo-line directory numbers do not support the trunk command.

Before you begin

• Maximum number of directory numbers must be changed from the default of 0 by using the max-dn command.

• Octo-line directory numbers are supported in Cisco Unified CME 4.3 and later versions.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag [dual-line | octo-line]
4. number number [secondary number] [no-reg [both | primary]]
5. huntstop [channel number]
6. name name
7. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
  ```bash
  Router> enable
  ``` |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
  ```bash
  Router# configure terminal
  ``` |
| **Step 3** ephone-dn *dn-tag* [dual-line | octo-line] | Enters ephone-dn configuration mode to create a directory number for a SCCP phone.
 Example:
  ```bash
  Router(config)# ephone-dn 7 octo-line
  ``` |
| **Step 4** number *number* [secondary number] [no-reg [both | primary]] | Configures an extension number for this directory number.
 Example:
  ```bash
  Router(config-ephone-dn)# number 2001
  ``` |
| **Step 5** huntstop [channel *number*] | (Optional) Enables Channel Huntstop, which keeps a call from hunting to the next channel of a directory number if the first channel is busy or does not answer.
 Example:
  ```bash
  Router(config-ephone-dn)# huntstop channel 4
  ``` |
| **Step 6** name *name* | (Optional) Associates a name with this directory number.
 Example:
  ```bash
  Router(config-ephone-dn)# name Smith, John
  ``` |

*(Optional) Enables Channel Huntstop, which keeps a call from hunting to the next channel of a directory number if the first channel is busy or does not answer.
channel number—Number of channels available to accept incoming calls. Remaining channels are reserved for outgoing calls and features such as call transfer, call waiting, and conferencing. Range: 1 to 8. Default: 8.
number argument is supported for octo-line directory numbers only.

Name is used for caller-ID displays and in the local directory listings.
Must follow the name order that is specified with the directory command.
Example

Example for Nonshared Octo-Line Directory Number

In the following example, ephone-dn 7 is assigned to phone 10 and not shared by any other phone. There are two active calls on ephone-dn 7. Because the `busy-trigger-per-button` command is set to 2, a third incoming call to extension 2001 is either rejected with a busy tone or forwarded to another destination if Call Forward Busy is configured. The phone user can still make an outgoing call or transfer or conference a call on ephone-dn 7 because the `max-calls-per-button` command is set to 3, which allows a total of three calls on ephone-dn 7.

```
ephone-dn  7  octo-line
   number 2001
   name Smith, John
   huntstop channel 4
   !
   !
ephone  10
   max-calls-per-button 3
   busy-trigger-per-button 2
   mac-address 00E1.CB13.0395
   type 7960
   button 1:7
```

Example for Shared Octo-Line Directory Number

In the following example, ephone-dn 7 is shared between phone 10 and phone 11. There are two active calls on ephone-dn 7. A third incoming call to ephone-dn 7 rings only phone 11 because its `busy-trigger-per-button` command is set to 3. Phone 10 allows a total of three calls, but it rejects the third incoming call because its `busy-trigger-per-button` command is set to 2. A fourth incoming call to ephone-dn 7 on ephone 11 is either rejected with a busy tone or forwarded to another destination if Call Forward Busy is configured. The phone user can still make an outgoing call or transfer or conference a call on ephone-dn 7 on phone 11 because the `max-calls-per-button` command is set to 4, which allows a total of four calls on ephone-dn 7 on phone 11.

```
ephone-dn  7  octo-line
   number 2001
   name Smith, John
   huntstop channel 4
   !
   !
ephone  10
   max-calls-per-button 3
   busy-trigger-per-button 2
   mac-address 00E1.CB13.0395
   type 7960
   button 1:7
   !
```
Configure Ephone-Type Templates for SCCP Phones

Restriction
Ephone-type templates are not supported for system-defined phone types. For a list of system-defined phone types, see the `type` command in Cisco Unified CME Command Reference.

Before you begin
Cisco Unified CME 4.3 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-type phone-type [addon]`
4. `device-id number`
5. `device-name name`
6. `device-type phone-type`
7. `num-buttons number`
8. `max-presentation number`
9. `addon`
10. `security`
11. `phoneload`
12. `utf8`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>ephone-type phone-type [addon]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-type E61</td>
</tr>
<tr>
<td></td>
<td>• phone-type—Unique label that identifies the type of IP phone for which the phone-type template is being defined.</td>
</tr>
<tr>
<td></td>
<td>• addon—(Optional) Phone type is an add-on module, such as the Cisco Unified IP Phone 7915 Expansion Module.</td>
</tr>
<tr>
<td>4</td>
<td>device-id number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-type)# device-id 376</td>
</tr>
<tr>
<td></td>
<td>• This device ID must match the predefined device ID for the specific phone model.</td>
</tr>
<tr>
<td></td>
<td>• If this command is set to the default value of 0, the ephone-type is invalid.</td>
</tr>
<tr>
<td></td>
<td>• See Table 20: Supported Values for Ephone-Type Commands, on page 265 for a list of supported device IDs.</td>
</tr>
<tr>
<td>5</td>
<td>device-name name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-type)# device-name E61 Mobile Phone</td>
</tr>
<tr>
<td></td>
<td>• See Table 20: Supported Values for Ephone-Type Commands, on page 265 for a list of supported device types.</td>
</tr>
<tr>
<td>6</td>
<td>device-type phone-type</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-type)# device-type E61</td>
</tr>
<tr>
<td>7</td>
<td>num-buttons number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-type)# num-buttons 1</td>
</tr>
<tr>
<td></td>
<td>• number—Range: 1 to 100. Default: 0.</td>
</tr>
<tr>
<td></td>
<td>• See Table 20: Supported Values for Ephone-Type Commands, on page 265 for the number of buttons supported by each phone type.</td>
</tr>
<tr>
<td>8</td>
<td>max-presentation number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-type)# max-presentation 1</td>
</tr>
<tr>
<td></td>
<td>• number—Range: 1 to 100. Default: 0.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• See Table 20: Supported Values for Ephone-Type Commands, on page 265 for the number of presentation lines supported by each phone type.</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

addon

Example:

```
Router(config-ephone-type)# addon
```

(Optional) Specifies that this phone type supports an add-on module, such as the Cisco Unified IP Phone 7915 Expansion Module.

Step 10

security

Example:

```
Router(config-ephone-type)# security
```

(Optional) Specifies that this phone type supports security features.

- This command is enabled by default.

Step 11

phoneload

Example:

```
Router(config-ephone-type)# phoneload
```

(Optional) Specifies that this phone type requires that the load command be configured.

- This command is enabled by default.

Step 12

utf8

Example:

```
Router(config-ephone-type)# utf8
```

(Optional) Specifies that this phone type supports UTF8.

- This command is enabled by default.

Step 13

end

Example:

```
Router(config-ephone-type)# end
```

Exits to privileged EXEC mode.

Ephone-Type Parameters for Supported Phone Types

Table 20: Supported Values for Ephone-Type Commands, on page 265 lists the required device ID, device type, and the maximum number of buttons and call presentation lines that are supported for each phone type that can be added with ephone-type templates.

<table>
<thead>
<tr>
<th>Supported Device</th>
<th>device-id</th>
<th>device-type</th>
<th>num-buttons</th>
<th>max-presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified IP Phone 6901</td>
<td>547</td>
<td>6901</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 6911</td>
<td>548</td>
<td>6911</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 6945</td>
<td>564</td>
<td>6945</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 7915 Expansion Module with 12 buttons</td>
<td>227</td>
<td>7915</td>
<td>12</td>
<td>0 (default)</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 7915 Expansion Module with 24 buttons</td>
<td>228</td>
<td>7915</td>
<td>24</td>
<td>0</td>
</tr>
</tbody>
</table>
Supported Device

<table>
<thead>
<tr>
<th></th>
<th>device-id</th>
<th>device-type</th>
<th>num-buttons</th>
<th>max-presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified IP Phone 7916 Expansion Module with 12 buttons</td>
<td>229</td>
<td>7916</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 7916 Expansion Module with 24 buttons</td>
<td>230</td>
<td>7916</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Cisco Unified Wireless IP Phone 7925</td>
<td>484</td>
<td>7925</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Cisco Unified IP Conference Station 7937G</td>
<td>431</td>
<td>7937</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 8941</td>
<td>586</td>
<td>8941</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 8945</td>
<td>585</td>
<td>8945</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 8941 with Fast-Track configuration support</td>
<td>586</td>
<td>8941</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Cisco Unified IP Phone 8945 with Fast-Track configuration support</td>
<td>586</td>
<td>8945</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Nokia E61</td>
<td>376</td>
<td>E61</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Example

The following example shows the Nokia E61 added with an ephone-type template, which is then assigned to ephone 2:

```plaintext
ephone-type E61
device-id 376
device-name E61 Mobile Phone
num-buttons 1
max-presentation 1
no utf8
no phoneload
!
ephone 2
mac-address 001C.821C.ED23
type E61
button 1:2
```

Assign Directory Numbers to SCCP Phones

This task sets up the initial ephone-dn-to-ephone relationships: how and which extensions appear on each phone. To create and modify phone-specific parameters for individual SCCP phones, perform the following steps for each SCCP phone to be connected in Cisco Unified CME.

Note

To create and assign directory numbers to be included in an overlay set, see Configure Overlaid Ephone-dns on SCCP Phones, on page 1283.
• For Watch mode. If the watched directory number is associated with several phones, then the watched phone is the one on which the watched directory number is on button 1 or the one on which the watched directory number is on the button that is configured by using the auto-line command, with auto-line having priority. For configuration information, see Automatic Line Selection, on page 1005.

• Octo-line directory numbers are not supported by the Cisco Unified IP Phone 7902, 7920, or 7931, or by analog phones connected to the Cisco VG224 or Cisco ATA.

• Octo-line directory numbers are not supported in button overlay sets.

Before you begin

• To configure a phone line for Watch (w) mode by using the button command, Cisco Unified CME 4.1 or a later version.

• To configure a phone line for Monitor (m) mode by using the button command, Cisco CME 3.0 or a later version.

• To assign a user-defined phone type in Cisco Unified CME 4.3 or a later version, you must first create an ephone-type template. See Configure Ephone-Type Templates for SCCP Phones, on page 263.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address [mac-address]
5. type phone-type [addon 1 module-type 2 module-type]
6. button button-number {separator}dn-tag [,dn-tag...] [button-number {x} overlay-button-number] [button-number...]
7. max-calls-per-button number
8. busy-trigger-per-button number
9. keypad-normalize
10. nte-end-digit-delay [milliseconds]
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1. | enable | Enables privileged EXEC mode. | Enables privileged EXEC mode.
<pre><code> | Example: | • Enter your password if prompted. |
 | Router> enable | |
</code></pre>
<p>| 2. | configure terminal | Enters global configuration mode. |
| Example: | |
| Router# configure terminal | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**
ephone phone-tag
Example:
Router(config)# ephone 6 | Enters ephone configuration mode.
- *phone-tag*—Unique sequence number that identifies this ephone during configuration tasks. The maximum number of ephones is version and platform-specific. Type `?` to display range. |
| **Step 4**
mac-address [mac-address]
Example:
Router(config-ephone)# mac-address 2946.3f2.311 | Specifies the MAC address of the IP phone that is being configured.
- *mac-address*—(Optional) For CiscoUnifiedCME 3.0 and later versions, it is not required to register phones before configuring the phone because CiscoUnifiedCME can detect MAC addresses and automatically populate phone configurations with the MAC addresses and phone types for individual phones. Not supported for voice-mail ports. |
| **Step 5**
type phone-type [addon 1 module-type [2 module-type]]
Example:
Router(config-ephone)# type 7960 addon 1 7914 | Specifies the type of phone.
- CiscoUnifiedCME 4.0 and later versions: The only types to which you can apply an add-on module are 7960, 7961, 7961GE, and 7970.
- CiscoCME 3.4 and earlier versions: The only type to which you can apply an add-on module is 7960. |
| **Step 6**
button button-number {separator} dn-tag [, dn-tag...]
[button-number {x} overlay-button-number]
[button-number...]
Example:
Router(config-ephone)# button 1:10 2:11 3b12 4o13,14,15 | Associates a button number and line characteristics with an extension (ephone-dn). Maximum number of buttons is determined by phone type.
Note The CiscoUnified IPPhone 7910 has only one line button but can be given two ephone-dn tags. |
| **Step 7**
max-calls-per-button number
Example:
Router(config-ephone)# max-calls-per-button 3 | (Optional) Sets the maximum number of calls, incoming and outgoing, allowed on an octo-line directory number on this phone.
- This command is supported in CiscoUnifiedCME 4.3 and later versions.
- This command must be set to a value that is more than or equal to the value set with the busy-trigger-per-button command.
- This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration. |
<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>busy-trigger-per-button number</td>
<td>(Optional) Sets the maximum number of calls allowed on this phone's octo-line directory numbers before triggering Call Forward Busy or a busy tone.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone)# busy-trigger-per-button 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• number—Range: 1 to 8. Default: 0 (disabled).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command is supported in CiscoUnifiedCME4.3 and later versions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• After the number of existing calls, incoming and outgoing, on an octo-line directory number exceeds the number of calls set with this command, the next incoming call to the directory number is forwarded to the Call Forward Busy destination if configured, or the call is rejected with a busy tone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command must be set to a value that is less than or equal to the value set with the max-calls-per-button command.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>keypad-normalize</td>
<td>(Optional) Imposes a 200-millisecond delay before each keypad message from an IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone)# keypad-normalize</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When used with the nte-end-digit-delay command, this command ensures that the delay configured for a dtmf-end event is always honored.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>nte-end-digit-delay [milliseconds]</td>
<td>(Optional) Specifies the amount of time that each digit in the RTP NTE end event in an RFC2833 packet is delayed before being sent.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone)# nte-end-digit-delay 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command is supported in CiscoUnifiedCME 4.3 and later versions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To enable the delay, you must also configure the dtmf-interworking rtp-nte command in voice-service or dial-peer configuration mode. For information, see Enable DTMF Integration Using RFC 2833, on page 542.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in ephone-template configuration mode. The value set in ephone configuration mode has priority over the value set in ephone-template mode.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Example

Example for assigning directory number to SCCP Phone

The following example assigns extension 2225 in the Accounting Department to button 1 on ephone 2:

```plaintext
ephone-dn 25  
number 2225  
name Accounting  
  
ephone 2  
mac-address 00E1.CB13.0395  
type 7960  
button 1:25  
```

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see *Configure Codecs of Individual Phones for Calls Between Local Phones*, on page 286.
- After configuring phones in Cisco Unified CME to make basic calls, you are ready to generate configuration files for the phones to be connected. See *Generate Configuration Files for SCCP Phones*, on page 390.

Create Directory Numbers for SIP Phones

To create a directory number in Cisco Unified CME for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI), perform the following steps for each directory number to be created.
Restriction

- Valid characters in voice register DN include 0–9, '.', '+', '*', and '#'.

- The name or label that is associated with a directory number that is configured under voice register dn or voice register global configuration mode cannot contain special characters such as quotes ("), angle brackets (<, >), ampersand (&), and percentage (%).

- To allow insertion of '#' at any place in voice register DN, the CLI "allow-hash-in-dn" is configured in voice register global mode.

- When the CLI "allow-hash-in-dn" is configured, the user is required to change the dial-peer terminator from '#' (default terminator) to another valid terminator in configuration mode. The other terminators that are supported include '0'-'9', 'A'-'F', and '*'.

- Maximum number of directory numbers that are supported by a router is version and platform dependent.

- Call Forward All, Presence, and message-waiting indication (MWI) features in Cisco Unified CME 4.1 and later versions require that SIP phones be configured with a directory number using the dn keyword with the number command; direct line numbers are not supported.

- SIP endpoints are not supported on H.323 trunks. SIP endpoints are supported on SIP trunks only.

- The Media Flow-around feature configured with the media flow-around command is not supported by Cisco Unified CME with SIP phones.

- SIP shared-line directory numbers are not supported by the Cisco Unified IP Phone 7902, 7920, 7931, 7940, or 7960, or by analog phones connected to the Cisco VG224.

- For Unified CME 12.1 and prior releases, SIP shared-line directory numbers cannot be members of voice hunt groups.

- If this directory number is used as shared line, you can associate the directory number to a maximum of 16 phones.

Before you begin

- Cisco CME 3.4 or a later version.

- SIP shared-line directory numbers are supported in Cisco Unified CME 7.1 and later versions.

- registrar server command must be configured. For configuration information, see Enable Calls in Your VoIP Network, on page 130.

- In Cisco Unified CME 7.1 and later versions, the maximum number of directory numbers must be changed from the default of 0 by using the max-dn (voice register global) command. For configuration information, see Set Up Cisco Unified CME for SIP Phones, on page 194.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
4. number number
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| | Example:
Router> enable | |
| Step 2 | configure terminal | Enters global configuration mode. |
| | Example:
Router# configure terminal | |
| Step 3 | voice register dn dn-tag | Enters voice register DN configuration mode to define a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI). |
| | Example:
Router(config)# voice register dn 17 | |
| Step 4 | number number | Defines a valid number for a directory number. |
| | Example:
Router(config-register-dn)# number 7001 | |
| Step 5 | shared-line [max-calls number-of-calls] | (Optional) Creates a shared-line directory number.
• max-calls number-of-calls (Optional)—Maximum number of calls, both incoming and outgoing. Range: 2–16. Default: 2.
• Must be set to a value that is more than or equal to the value set with the busy-trigger-per-button command.
• This command is supported in Cisco Unified CME 7.1 and later versions. |
| | Example:
Router(config-register-dn)# shared-line max-calls 6 | |
| Step 6 | huntstop channel number-of-channels | (Optional) Enables Channel Huntstop, which keeps a call from hunting to the next channel of a directory number if the first channel is busy or does not answer.
• number-of-channels—Number of channels available to accept incoming calls on the directory number. Remaining channels are reserved for outgoing calls and features, such as Call Transfer, Call Waiting, and Conferencing. Range: 1–50. Default: 0 (disabled).
• This command is supported in Cisco Unified CME 7.1 and later versions. |
| | Example:
Router(config-register-dn)# huntstop channel 3 | |
| Step 7 | end | Exits to privileged EXEC mode. |
| | Example: | |
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-register-dn)# end</td>
</tr>
</tbody>
</table>

Example

Example for assigning directory numbers to SIP Phones

The following example shows directory number 24 configured as a shared line and assigned to phone 124 and phone 125:

```plaintext
voice register dn 24
  number 8124
  shared-line max-calls 6
!
voice register pool 124
  id mac 0017.E033.0284
  type 7965
  number 1 dn 24
!
voice register pool 125
  id mac 00E1.CB13.0395
  type 7965
  number 1 dn 24
```

Assign Directory Numbers to SIP Phones

This task sets up which extensions appear on each phone. To create and modify phone-specific parameters for individual SIP phones, perform the following steps for each SIP phone to be connected in Cisco Unified CME.

Note

If your Cisco Unified CME system supports SCCP and SIP phones, do not connect your SIP phones to your network until after you have verified the configuration profile for the SIP phone.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **voice register pool pool-tag**
4. **id** `{network address mask mask | ip address mask mask | mac address}`
5. **type** `phone-type`
6. **number** `tag dn dn-tag`
7. **busy-trigger-per-button** `number-of-calls`
8. **username** `username password`
9. **dtmf-relay** `{ [cisco-rtp] [rtp-nte] [sip-notify] }`
10. **end**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
 | Example: | • Enter your password if prompted.
 | Router> enable | |
| 2 | configure terminal | Enters global configuration mode.
 | Example: | |
| 3 | voice register pool pool-tag | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.
 | Example: | |
| 4 | id (network address mask mask | Explicitly identifies a locally available individual SIP phone to support a degree of authentication.
 | | |
| 5 | type phone-type | Defines a phone type for the SIP phone being configured.
 | Example: | |
| 6 | number tag dn dn-tag | Associates a directory number with the SIP phone being configured.
 | Example: | • dn dn-tag—identifies the directory number for this SIP phone as defined by the voice register dn command.
 | Router(config-register-pool)# number 1 dn 17 | |
| 7 | busy-trigger-per-button number-of-calls | (Optional) Sets the maximum number of calls allowed on any of this phone’s directory numbers before triggering Call Forward Busy or a busy tone.
 | Example: | • number-of-calls—Maximum number of calls allowed before Cisco Unified CME forwards the next incoming call to the Call Forward Busy destination, if configured, or rejects the call with a busy tone.
 | Router(config-register-pool)# busy-trigger-per-button 2 | Range: 1 to 50.
<p>| | • This command is supported in Cisco Unified CME 7.1 and later versions. | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>username username password password</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# username smith password 123zyx</td>
</tr>
<tr>
<td></td>
<td>(Optional) Required only if authentication is enabled with the authenticate command. Creates an authentication credential.</td>
</tr>
<tr>
<td>Note</td>
<td>This command is not for SIP proxy registration. The password will not be encrypted. All lines in a phone will share the same credential.</td>
</tr>
<tr>
<td></td>
<td>• username—identifies a local Cisco Unified IP phone user. Default: Admin.</td>
</tr>
<tr>
<td>Step 9</td>
<td>dtmf-relay { [cisco-rtp] [rtp-nte] [sip-notify] }</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# dtmf-relay rtp-nte</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies a list of DTMF relay methods that can be used by the SIP phone to relay DTMF tones.</td>
</tr>
<tr>
<td>Note</td>
<td>SIP phones natively support in-band DTMF relay as specified in RFC 2833.</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example for configuring SIP Nonshared Line

Example for configuring SIP Shared Line

In the following example, voice register dn 23 is assigned to phone 123. The fourth incoming call to extension 8123 is not presented to the phone because the huntstop channel command is set to 3. Because the busy-trigger-per-button command is set to 2 on phone 123 and Call Forward Busy is configured, the third incoming call to extension 8123 is forwarded to extension 8200.

```plaintext
voice register dn  23
number 8123
call-forward b2bua busy 8200
huntstop channel 3
!
voice register pool  123
busy-trigger-per-button 2
id mac 0009.A3D4.1234
type 7965
number 1 dn 23
```

In the following example, voice register dn 24 is shared by phones 124 and 125. The first two incoming calls to extension 8124 ring both phones. A third incoming call rings only phone 125 because its busy-trigger-per-button command is set to 3. The fourth incoming call to extension 8124 triggers Call Forward Busy because the busy trigger limit on all phones is exceeded.

```plaintext
voice register dn  24
number 8124
call-forward b2bua busy 8200
shared-line max-calls 6
```
Configure Dial Plans for SIP Phones

Dial plans enable SIP phones to recognize digit strings dialed by users. After the phone recognizes a dial pattern, it automatically sends a SIP INVITE message to the Cisco Unified CME to initiate the call and does not require the user to press the Dial key or wait for the interdigit timeout. To define a dial plan for a SIP phone, perform the following steps.

Before you begin
- Cisco Unified CME 4.1 or a later version.
- mode cme command must be enabled in Cisco Unified CME.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dialplan dialplan-tag
4. type phone-type
5. pattern tag string [button button-number] [timeout seconds] [user (ip | phone)] or filename filename
6. exit
7. voice register pool pool-tag
8. dialplan dialplan-tag
9. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register dialplan dialplan-tag</td>
<td>Enters voice register dialplan configuration mode to define a dial plan for SIP phones.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register dialplan 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 type phone-type</td>
<td>Defines a phone type for the SIP dial plan.</td>
</tr>
<tr>
<td>Example: Router(config-register-dialplan)# type 7905-7912</td>
<td>- 7905-7912—Cisco Unified IP Phone 7905, 7905G, 7912, or 7912G.</td>
</tr>
<tr>
<td></td>
<td>- 7940-7960-others—Cisco Unified IP Phone 7911, 7940, 7940G, 7941, 7941GE, 7960, 7960G, 7961, 7961GE, 7970, or 7971.</td>
</tr>
<tr>
<td></td>
<td>- The phone type specified with this command must match the type of phone for which the dial plan is used. If this phone type does not match the type assigned to the phone with the type command in voice register pool mode, the dial-plan configuration file is not generated.</td>
</tr>
<tr>
<td></td>
<td>- You must enter this command before using the pattern or filename command in the next step.</td>
</tr>
<tr>
<td>Step 5 pattern tag string [button button-number] [timeout seconds] [user (ip</td>
<td>phone)] or filename filename</td>
</tr>
<tr>
<td>Example: Router(config-register-dialplan)# pattern 1 52... or Router(config-register-dialplan)# filename dialsip</td>
<td>- tag—Number that identifies the dial pattern. Range: 1 to 24.</td>
</tr>
<tr>
<td></td>
<td>- string—Dial pattern, such as the area code, prefix, and first one or two digits of the telephone number, plus wildcard characters or dots (.) for the remainder of the dialed digits.</td>
</tr>
<tr>
<td></td>
<td>- button button-number—(Optional) Button to which the dial pattern applies.</td>
</tr>
<tr>
<td></td>
<td>- timeout seconds—(Optional) Time, in seconds, that the system waits before dialing the number entered by the user. Range: 0 to 30. To have the number dialed immediately, specify 0. If you do not use this parameter, the phone's default interdigit timeout value is used (10 seconds).</td>
</tr>
</tbody>
</table>
Configure Dial Plans for SIP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| • user—(Optional) Tag that automatically gets added to the dialed number. Do not use this keyword if Cisco Unified CME is the only SIP call agent.
• ip—Uses the IP address of the user.
• phone—Uses the phone number of the user.
• Repeat this command for each pattern that you want to include in this dial plan.
or
Specify a custom XML file that contains the dial patterns to use for the SIP dial plan.
• You must load the custom XML file must into flash and the filename cannot include the .xml extension.
• The `filename` command is not supported for the Cisco Unified IP Phone 7905 or 7912. |

Step 6
Exit
Example:
```
Router(config-register-dialplan)# exit
```  
Exits dialplan configuration mode.

Step 7
voice register pool pool-tag
Example:
```
Router(config)# voice register pool 4
```  
Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.
• `pool-tag`—Unique sequence number of the SIP phone to be configured. Range is version and platform-dependent; type `?` to display range. You can modify the upper limit for this argument by using the `max-pool` command.

Step 8
dialplan dialplan-tag
Example:
```
Router(config-register-pool)# dialplan 1
```  
Assigns a dial plan to a SIP phone.
• `dialplan-tag`—Number that identifies the dial plan to use for this SIP phone. This is the number that was used with the `voice register dialplan` command in Step 3. Range: 1 to 24.

Step 9
end
Example:
```
Router(config-register-global)# end
```  
Exits to privileged EXEC mode.

Examples

The following example shows the configuration for dial plan 1, which is assigned to SIP phone 1:

```
voice register dialplan 1
```
Troubleshooting Tips for Configuring Dial Plans for SIP

If you create a dial plan by downloading a custom XML dial pattern file to flash and using the `filename` command, and the XML file contains an error, the dial plan might not work properly on a phone. We recommend creating a dial pattern file using the `pattern` command.

To remove a dial plan that was created using a custom XML file with the `filename` command, you must remove the dial plan from the phone, create a new configuration profile, and then use the `reset` command to reboot the phone. You can use the `restart` command after removing a dial plan from a phone only if the dial plan was created using the `pattern` command.

To use KPML if a matching dial plan is not found, when both a dial plan and KPML are enabled on a phone, you must configure a dial pattern with a single wildcard character (`.`) as the last pattern in the dial plan. For example:

```
voice register dialplan 10
  type 7940-7960-others
  pattern 1 66...
  pattern 2 91.......
```

What to Do Next

If you are done modifying parameters for SIP phones, you must generate a new configuration profile and restart the phones. See Configuration Files for Phones, on page 389.

Verify SIP Dial Plan Configuration

Step 1

```
show voice register dialplan tag
```

This command displays the configuration information for a specific SIP dial plan.

Example:

Router# show voice register dialplan 1

Dialplan Tag 1
Config:
 Type is 7940-7960-others
 Pattern 1 is 2..., timeout is 10, user option is ip, button is default
 Pattern 2 is 1234, timeout is 0, user option is ip, button is 4
 Pattern 3 is 65..., timeout is 0, user option is phone, button is default
 Pattern 4 is 1..., timeout is 0, user option is phone, button is default
Step 2

show voice register pool tag

This command displays the dial plan assigned to a specific SIP phone.

Example:

Router# show voice register pool 29

Pool Tag 29
Config:
 - Mac address is 0012.7F54.EDC6
 - Number list 1: DN 29
 - Proxy Ip address is 0.0.0.0
 - DTMF Relay is disabled
 - Call Waiting is enabled
 - DnD is disabled
 - keep-conference is enabled
 - dialplan tag is 1
 - kpml signal is enabled
 - service-control mechanism is not supported

Step 3

show voice register template tag

This command displays the dial plan assigned to a specific template.

Example:

Router# show voice register template 3

Temp Tag 3
Config:
 - Attended Transfer is disabled
 - Blind Transfer is enabled
 - Semi-attended Transfer is enabled
 - Conference is enabled
 - Caller-ID block is disabled
 - DnD control is enabled
 - Anonymous call block is disabled
 - Voicemail is 62000, timeout 15
 - Dialplan Tag is 1
 - Transport type is tcp

Enable KPML on a SIP Phone

To enable KPML digit collection on a SIP phone, perform the following steps.

Restriction

- This feature is supported only on Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE.
- A dial plan assigned to a phone has priority over KPML.
Before you begin

Cisco Unified CME 4.1 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool *pool-tag*
4. digit collect kpml
5. end
6. show voice register dial-peers

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable
 * Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** voice register pool *pool-tag* | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.
 Example:
 Router(config)# voice register pool 4
 * pool-tag—Unique sequence number of the SIP phone to be configured. Range is version and platform-dependent; type ? to display range. You can modify the upper limit for this argument by using the max-pool command. |
| **Step 4** digit collect kpml | Enables KPML digit collection for the SIP phone.
 Example:
 Router(config-register-pool)# digit collect kpml
 Note This command is enabled by default for supported phones in Cisco Unified CME. |
| **Step 5** end | Exits to privileged EXEC mode.
 Example:
 Router(config-register-pool)# end |
| **Step 6** show voice register dial-peers | Displays details of all dynamically created VoIP dial peers associated with the Cisco Unified CME SIP register, including the defined digit collection method.
 Example:
 Router# show voice register dial-peers |
What to do next

If you are done modifying parameters for SIP phones, you must generate a new configuration profile and restart the phones. See Configuration Files for Phones, on page 389.

Select Session-Transport Protocol for a SIP Phone

To change the session-transport protocol for a SIP phone from the default of UDP to TCP, perform the following steps.

Restriction

- TCP is not supported as a session-transport protocol for the Cisco Unified IP Phone 7905, 7912, 7940, or 7960. If TCP is assigned to an unsupported phone, calls to that phone will not complete successfully. However, the phone can originate calls using UDP, although TCP has been assigned.

Before you begin

- Cisco Unified CME 4.1 or a later version.
- Directory number must be assigned to SIP phone to which configuration is to be applied. For configuration information, see Assign Directory Numbers to SIP Phones, on page 273.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag
4. session-transport {tcp | udp}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 3</td>
<td></td>
</tr>
<tr>
<td>Step 4 session-transport {tcp</td>
<td>udp}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Router(config-register-pool)# session-transport tcp | • This command can also be configured in voice register template configuration mode and applied to one or more phones. The voice register pool configuration has priority over the voice register template configuration.

Step 5 end | Exits voice register pool configuration mode and enters privileged EXEC mode.

Example:
Router(config-register-pool)# end

What to do next

When TCP is used as session-transport for the SIP phones, and if the TCP Connection aging timer is less than the SIP Register expire timer; then after every TCP connection aging timer expires, the phone will be reset and will re-register to CME. If this is not desired, then modify the TCP Connection aging timer and/or SIP Register expire timer so that SIP Register expire timer is less than TCP Connection aging timer.

- If you want to disable SIP Proxy registration for an individual directory number, see Disable SIP Proxy Registration for a Directory Number, on page 283.
- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.
- If you are finished configuring phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Profiles for SIP Phones, on page 393.

Disable SIP Proxy Registration for a Directory Number

To prevent a particular directory number from registering with an external SIP proxy server, perform the following steps.

Restriction
Phone numbers that are registered under a voice register dn must belong to a SIP phone that is registered in Cisco Unified CME.

Before you begin
- Cisco Unified CME 3.4 or a later version.
- Bulk registration is configured at system level. For configuration information, see Configure Bulk Registration, on page 175.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn \textit{dn-tag}
4. number \textit{number}
5. no-reg
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register dn \textit{dn-tag}</td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)# voice register dn 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>number \textit{number}</td>
<td>Defines a valid number for a directory number to be assigned to a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-dn)# number 4085550152</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>no-reg</td>
<td>Prevents directory number being configured from registering with an external proxy server.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-dn)# no-reg</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits voice register dn configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- If you want to configure the G.722-64K codec for all calls through your Cisco Unified CME system, see \textit{Modify the Global Codec}, on page 285.
- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see \textit{Configure Codecs of Individual Phones for Calls Between Local Phones}, on page 286.
- If you want to configure individual phones to support some codec other than the system-level codec or some codec other than the phone’s native codec, see \textit{Codecs for Cisco Unified CME Phones}, on page 242.
If you are finished configuring phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Profiles for SIP Phones, on page 393.

Modify the Global Codec

To change the global codec from the default (G.711ulaw) to G.722-64K for all calls through Cisco Unified CME, perform the following steps.

Restriction

If G.722-64K codec is configured globally and a phone does not support the codec, the fallback codec is G.711ulaw.

Before you begin

Cisco Unified CME 4.3 or later versions.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. codec \{ g711-ulaw | g722-64k \}
5. service phone g722CodecSupport \{ 0 | 1 | 2 \}
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony service configuration mode to set parameters for SCCP and SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 codec { g711-ulaw</td>
<td>g722-64k }</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# codec g722-64k</td>
<td>• Required only if you want to modify codec from the default (G.711ulaw) to G.722-64K.</td>
</tr>
</tbody>
</table>
Configure Codecs of Individual Phones for Calls Between Local Phones

To designate a codec for individual phones to ensure connectivity between a variety of phones connected to the same Cisco Unified CME router, perform the following steps for each SCCP or SIP phone.

Step 5

Command or Action

- `service phone g722CodecSupport (0 | 1 | 2)`

Example:

```
Router(config)# service phone g722CodecSupport 2
```

Purpose

Causes all phones to advertise the G.722-64K codec to Cisco Unified CME.

- Required only if you configured the `codec g722-64k` command in telephony-service configuration mode.
- `g722CodecSupport`—Default: 0, phone default set by manufacturer and equal to enabled or disabled.
- Cisco phone firmware 8.2.1 or a later version is required to support the G.722-64K codec on G.722-capable SCCP phones.
- Cisco phone firmware 8.3.1 or a later version is required to support the G.722-64K codec on G.722-capable SIP phones.
- For SCCP only: This command can also be configured in ephone-template configuration mode and applied to one or more SCCP phones.

Step 6

Command or Action

- `end`

Example:

```
Router(config-telephony)# end
```

Purpose

Exits the telephony service configuration mode and enters privileged EXEC mode.

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.
- If you want to configure individual phones to support some codec other than the system-level codec or some codec other than the phone’s native codec, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.
- If you are finished configuring SCCP phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390.

Configure Codecs of Individual Phones for Calls Between Local Phones

To designate a codec for individual phones to ensure connectivity between a variety of phones connected to the same Cisco Unified CME router, perform the following steps for each SCCP or SIP phone.

Note

If codec values for the dial peers of an internal connection do not match, the call fails. For calls to external phones, that is, phones that are not in the same Cisco Unified CME, such as VoIP calls, the codec is negotiated based on the protocol that is used for the call, such as H.323. Cisco Unified CME plays no part in the negotiation.
• Not all phones support all codecs. To verify whether your phone supports a particular codec, see your phone documentation.

• For SIP and SCCP phones in Cisco Unified CME: Modify the configuration for either SIP or SCCP phones to ensure that the codec for all phones match. Do not modify the configuration for both SIP and SCCP phones.

• If G.729 is the desired codec for Cisco ATA-186 and Cisco ATA-188, then only one port of the Cisco ATA device should be configured in Cisco Unified CME. If a call is placed to the second port of the Cisco ATA device, it will be disconnected gracefully. If you want to use both Cisco ATA ports simultaneously, then configure G.711 in Cisco Unified CME.

• If G.722-64K or iLBC codecs are configured in ephone configuration mode and the phone does not support the codec, the fallback is the global codec or G.711ulaw if the global codec is not supported. To configure a global codec, see Modify the Global Codec, on page 285.

Before you begin

• For SIP phones in Cisco Unified CME: Cisco Unified CME 3.4 or a later version.

• For G.722-64K and iLBC codecs: Cisco Unified CME 4.3 or a later version.

• To support G.722-64K on an individual phone: Cisco phone firmware 8.2.1 or a later version for SCCP phones and 8.3.1 or a later version for SIP phones. For information about upgrading Cisco phone firmware, see Install Cisco Unified CME Software, on page 111.

• To support iLBC on an individual phone: Cisco phone firmware 8.3.1 or a later version for SCCP and SIP phones. For information about upgrading Cisco phone firmware, see Install Cisco Unified CME Software, on page 111.

• Cisco Unified IP phone to which the codec is to be applied must be already configured. For configuration information for SIP phones, see Assign Directory Numbers to SIP Phones, on page 273. For configuration information for SCCP phones, see Assign Directory Numbers to SCCP Phones, on page 266.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ephone ephone-tag** or **voice register pool pool-tag**
4. **codec codec-type**
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone ephone-tag or voice register pool pool-tag</td>
<td>Enters ephone configuration mode to set phone-specific parameters for a SCCP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 1</td>
<td>or Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 4 codec codec-type</td>
<td>Specifies the codec for the dial peer for the IP phone being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# codec g729r8 or Router(config-register-pool)# codec g711alaw</td>
<td>• codec-type—Type ? for a list of codecs.</td>
</tr>
<tr>
<td></td>
<td>• This command overrides any previously configured codec selection set with the voice-class codec command.</td>
</tr>
<tr>
<td></td>
<td>• This command overrides any previously configured codec selection set with the codec command in telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• SCCP only—This command can also be configured in ephone-template configuration mode and applied to one or more phones.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits the configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end or Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- If you want to select the session-transport protocol for a SIP phone, see Select Session-Transport Protocol for a SIP Phone, on page 282.
- If you are finished configuring SIP phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Profiles for SIP Phones, on page 393.
- If you are finished configuring SCCP phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390.
Configure Phones for a Key System

Creating Directory Numbers for a Simple Key System on SCCP Phone

To create a set of directory numbers with the same number to be associated with multiple line buttons on an IP phone and provide support for call waiting and call transfer on a key system phone, perform the following steps.

- Do not configure directory numbers for a key system for dual-line mode because this does not conform to the key system one-call-per-line button usage model for which the phone is designed.
- Provisioning support for the Cisco Unified IP Phone 7931 is available only in Cisco Unified CME 4.0(2) and later versions.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. number number [secondary number] [no-reg [both | primary]]
5. preference preference-order
6. no huntstop or huntstop
7. mwi-type {visual | audio | both}
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode to create a directory number.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-dn 11</td>
<td></td>
</tr>
<tr>
<td>Step 4 number number [secondary number] [no-reg [both primary]]</td>
<td>Configures a valid phone or extension number for this directory number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# number 101</td>
<td>Sets dial-peer preference order for a directory number associated with a Cisco Unified IP phone.</td>
</tr>
<tr>
<td>Preference preference preference-order</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# preference 1</td>
<td>• Default: 0.</td>
</tr>
<tr>
<td></td>
<td>• Increments the preference order for all subsequent instances within a set of ephone dns with the same number to be associated with a key system phone. That is, the first instance of the directory number is preference 0 by default and you must specify 1 for the second instance of the same number, 2 for the next, and so on. This allows you to create multiple buttons with the same number on an IP phone.</td>
</tr>
<tr>
<td></td>
<td>• Required to support call waiting and call transfer on a key system phone.</td>
</tr>
<tr>
<td>Step 6 no huntstop or huntstop</td>
<td>Explicitly enables call hunting behavior for a directory number.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Configure no huntstop for all instances, except the final instance, within a set of ephone dns with the same number to be associated with a key system phone.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# no huntstop</td>
<td>• Required to allow call hunting across multiple line buttons with the same number on an IP phone.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-dn)# huntstop</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Enables call hunting behavior for a directory number.</td>
</tr>
<tr>
<td></td>
<td>• Configure the huntstop command for the final instance within a set of ephone dns with the same number to be associated with a key system phone.</td>
</tr>
<tr>
<td></td>
<td>• Required to limit the call hunting to a set of multiple line buttons with the same number on an IP phone.</td>
</tr>
<tr>
<td>Step 7 mwi-type {visual</td>
<td>audio</td>
</tr>
<tr>
<td>Example:</td>
<td>• This command is supported only by Cisco Unified IP Phone 7931s and Cisco Unified IP Phone 7911s.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# mwi-type audible</td>
<td>• This command can also be configured in ephone-dn-template configuration mode. The value set in ephone-dn configuration mode has priority over the value set in ephone-dn-template mode.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
</tbody>
</table>
What to do next

The following example shows the configuration for six instances of directory number 101, assigned to the first six buttons of an IP phone:

```plaintext
ephone-dn 10
  number 101
  no huntstop

ephone-dn 11
  number 101
  preference 1
  no huntstop

ephone-dn 12
  number 101
  preference 2
  no huntstop

ephone-dn 13
  number 101
  preference 3
  no huntstop

ephone-dn 14
  number 101
  preference 4
  no huntstop

ephone-dn 15
  number 101
  preference 5

ephone 1
  mac-address 0001.2345.6789>
  type 7931
  button 1:10 2:11 3:12 4:13 5:14 6:15
```

Configure Trunk Lines for a Key System on SCCP Phone

To set up trunk lines for your key system, perform only one of the following procedures:

- To only enable direct status monitoring of the FXO port on the line button of the IP phone, see Configure a Simple Key System Phone Trunk Line Configuration on SCCP Phone, on page 291.

- To enable direct status monitoring and allow transferred PSTN FXO line calls to be automatically recalled if the transfer target does not answer, see Configure an Advanced Key System Phone Trunk Line Configuration on SCCP Phone, on page 295.

Configure a Simple Key System Phone Trunk Line Configuration on SCCP Phone

Perform the steps in this section to:

- Create directory numbers corresponding to each FXO line that allows phones to have shared or private lines connected directly to the PSTN.

- Enable direct status monitoring of the FXO port on the line button of the IP phone. The line button indicator, either a lamp or an icon depending on the phone, shows the in-use status of the FXO port during the duration of the call.
• Directory number with a trunk line cannot be configured for call forward, busy, or no answer.

• Numbers entered after a trunk line is seized will not be displayed. Only the trunk tag is displayed on IP phones.

• Numbers entered after trunk line is seized will not appear in call history or call detail records (CDRs) of a Cisco Unified CME router. Only the trunk tag is logged for calls made from trunk lines.

• FXO trunk lines do not support the CFwdALL, Transfer, Pickup, GPickUp, Park, CallBack, and NewCall softkeys.

• FXO trunk lines do not support conference initiator dropoff.

• FXO trunk lines do not support on-hook redial. The phone user must explicitly select the FXO trunk line before pressing the Redial button.

• FXO trunk lines do not support call transfer to IP phones. However, the call initiator can conference an FXO line with an IP phone by pressing the Hold button, which leaves the FXO trunk line and IP phone connected. The conference initiator is unable to participate in the conference, but can place calls on other lines.

• FXO trunk lines do not support bulk speed dial.

• FXO port monitoring has the following restrictions:
 • Not supported before Cisco Unified CME 4.0.
 • Supported only for analog FXO loop-start and ground-start ports and T1/E1 FXO CAS ports. FXS loop-start and ground-start ports and PRI/BRI PSTN trunks are not supported.
 • Not supported for analog ports on the Cisco VG224 or Cisco ATA 180 Series.
 • T1 CAS DS0 group must be configured per time slot (cannot bundle more than one time slot into a ds0-group).

• Transfer recall and transfer-to button optimization are supported on dual-line directory numbers only in Cisco Unified CME 4.0 and later versions.

• Transfer-to button optimization is not supported for call forwarding, call-park recall, call pickup on hold, or call pickup at alert.

Before you begin

• FXO port for a private line automatic ringdown (PLAR) off-premises extension (OPX) connection must be configured; for example:

```plaintext
voice-port 1/0/0
connection plar-opx 801
```

• Dial peers for FXO port must be configured; for example:

```plaintext
dial-peer voice 111 pots
destination-pattern 811
port 1/0/0
```
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn *dn-tag*
4. **number** *number* [**secondary** *number*] [**no-reg** [**both** | **primary**]]
5. **trunk** *trunk-tag* [**timeout** *seconds*] **monitor-port** *port*
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters ephone-dn configuration mode to create a directory number.</td>
</tr>
<tr>
<td>ephone-dn dn-tag</td>
<td>• Configure this command in the default single line mode, without the dual-line keyword, when configuring a simple key system trunk line.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 51</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures a valid phone or extension number for this directory number.</td>
</tr>
<tr>
<td>number number [secondary number] [no-reg [both</td>
<td>primary]]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# number 801</td>
</tr>
<tr>
<td>Step 5</td>
<td>Associates a directory number with an FXO port.</td>
</tr>
<tr>
<td>trunk trunk-tag [timeout seconds] monitor-port port</td>
<td>• The monitor-port keyword is not supported before Cisco Unified CME 4.0.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# trunk 811 monitor-port 1/0/0</td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
</tbody>
</table>
Examples

The following example shows the configuration for six instances of directory number 101, assigned to the first six buttons of an IP phone, plus four PSTN line appearances that are assigned to buttons 7 to 10:

```
ephone-dn 10
    number 101
    no huntstop

ephone-dn 11
    number 101
    preference 1
    no huntstop

ephone-dn 12
    number 101
    preference 2
    no huntstop

ephone-dn 13
    number 101
    preference 3
    no huntstop

ephone-dn 14
    number 101
    preference 4
    no huntstop

ephone-dn 15
    number 101
    preference 5

ephone-dn 51
    number 801
    trunk 811 monitor-port 1/0/0>

ephone-dn 52
    number 802
    trunk 812 monitor-port 1/0/1

ephone-dn 53
    number 803
    trunk 813 monitor-port 1/0/2

ephone-dn 54
    number 804
    trunk 814 monitor-port 1/0/3

ephone 1
    mac-address 0001.2345.6789
    type 7931

voice-port 1/0/0
    connection plar opx 801

voice-port 1/0/1
    connection plar opx 802
```
voice-port 1/0/2
 connection plar opx 803

voice-port 1/0/3
 connection plar opx 804

dial-peer voice 811 pots
 destination-pattern 811
 port 1/0/0

dial-peer voice 812 pots
 destination-pattern 812
 port 1/0/1

dial-peer voice 813 pots
 destination-pattern 813
 port 1/0/2

dial-peer voice 814 pots
 destination-pattern 814
 port 1/0/3

What to do next
You are ready to configure each individual phone and assign button numbers, line characteristics, and directory numbers to buttons on the phone. See Configure Individual IP Phones for Key System on SCCP Phone, on page 299.

Configure an Advanced Key System Phone Trunk Line Configuration on SCCP Phone

Perform the steps in this section to:

• Create directory numbers corresponding to each FXO line that allows phones to have shared or private lines connected directly to the PSTN.

• Enable direct status monitoring of the FXO port on the line button of the IP phone. The line button indicator, either a lamp or an icon depending on the phone, shows the in-use status of the FXO port during the duration of the call.

• Allow transferred PSTN FXO line calls to be automatically recalled if the transfer target does not answer after the specified number of seconds. The call is withdrawn from the transfer-to phone and the call resumes ringing on the phone that initiated the transfer.
Restriction

- Ephone-dn with a trunk line cannot be configured for call forward, busy, or no answer.
- Numbers entered after a trunk line is seized will not be displayed. Only the trunk tag is displayed on IP phones.
- Numbers entered after a trunk line is seized will not appear in call history or call detail records (CDRs) of a Cisco Unified CME router. Only the trunk tag is logged for calls made from trunk lines.
- FXO trunk lines do not support the CFwdALL, Transfer, Pickup, GPickUp, Park, CallBack, and NewCall softkeys.
- FXO trunk lines do not support conference initiator dropoff.
- FXO trunk lines do not support on-hook redial. The phone user must explicitly select the FXO trunk line before pressing the Redial button.
- FXO trunk lines do not support call transfer to IP phones. However, the call initiator can conference an FXO line with an IP phone by pressing the Hold button, which leaves the FXO trunk line and IP phone connected. The conference initiator is unable to participate in the conference, but can place calls on other lines.
- FXO trunk lines do not support bulk speed dial.
- FXO port monitoring has the following restrictions:
 - Not supported before Cisco Unified CME 4.0.
 - Supported only for analog FXO loop-start and ground-start ports and T1/E1 FXO CAS ports. FXS loop-start and ground-start ports and PRI/BRI PSTN trunks are not supported.
 - Not supported for analog ports on the Cisco VG224 or Cisco ATA 180 Series.
 - T1 CAS DS0 group must be configured per time slot (cannot bundle more than one time slot into a ds0-group).
- Transfer recall and transfer-to button optimization is supported on dual-line directory numbers only in Cisco Unified CME 4.0 and later.
- Transfer-to button optimization is not supported for call forwarding, call-park recall, call pickup on hold, or call pickup at alert.
- Transfer recall is not supported for analog ports on the Cisco VG224 or Cisco ATA 180 Series.

Before you begin

- FXO port for a private line automatic ringdown (PLAR) off-premises extension (OPX) connection must be configured; for example:
  ```
  voice-port 1/0/0
  connection plar-opx 801 <<<------Private number
  ```
- Dial peers for FXO port must be configured; for example:
  ```
  dial-peer voice 111 pots
  destination-pattern 811 <<<------Trunk-tag
  port 1/0/0
  ```
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag dual-line
4. number number [secondary number] [no-reg [both | primary]]
5. trunk digit-string [timeout seconds] [transfer-timeout seconds] [monitor-port port]
6. huntstop [channel]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ephone-dn dn-tag dual-line</td>
<td>Enters ephone-dn configuration mode for the purpose of creating and configuring a telephone or extension number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>dual-line—Required when configuring an advanced key system phone trunk line. Dual-line mode provides a second call channel for the directory number on which to place an outbound consultation call during the call transfer attempt. This also allows the phone to remain part of the call to monitor the progress of the transfer attempt and if the transfer is not answered, to pull the call back to the phone on the original PSTN line button.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 51 dual-line</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>number number [secondary number] [no-reg [both</td>
<td>primary]]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# number 801</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>trunk digit-string [timeout seconds] [transfer-timeout seconds] [monitor-port port]</td>
<td>Associates this directory number with an FXO port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>transfer-timeout seconds—For dual-line ephone-dns only. Range: 5 to 60000. Default: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# trunk 811 transfer-timeout 30 monitor-port 1/0/0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The monitor-port keyword is not supported before Cisco Unified CME 4.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The monitor-port and transfer-timeout keywords are not supported on directory numbers for analog ports on the Cisco VG224 or Cisco ATA 180 Series.</td>
</tr>
</tbody>
</table>
Table: Configure an Advanced Key System Phone Trunk Line Configuration on SCCP Phone

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td>huntstop [channel]</td>
<td>Disables call hunting to the second channel of this directory number if the first channel is busy or does not answer.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# huntstop channel</td>
<td>Router(config-ephone-dn)# huntstop channel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# end</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
</tbody>
</table>

Examples

The following example shows the configuration for six instances of directory number 101, assigned to the first six buttons of an IP phone, plus four PSTN line appearances that are assigned to buttons 7 to 10. These four PSTN line appearances are configured as dual lines to provide a second call channel on which to place an outbound consultation call during a call transfer attempt. This configuration allows the phone to remain part of the call to monitor the progress of the transfer attempt, and if the transfer is not answered, to pull the call back to the phone on the original PSTN line button.

```plaintext
ephone-dn 10
number 101
no huntstop

ephone-dn 11
number 101
preference 1
no huntstop

ephone-dn 12
number 101
preference 2
no huntstop

ephone-dn 13
number 101
preference 3
no huntstop

ephone-dn 14
number 101
preference 4
no huntstop

ephone-dn 15
number 101
preference 5

ephone-dn 51 dual-line
number 801
trunk 811 transfer-timeout 30 monitor-port 1/0/0
```
Configure Individual IP Phones for Key System on SCCP Phone

To assign button numbers, line characteristics, and directory numbers to buttons on an individual phone that will operate as a key system phone, perform the following steps.
Restriction

- Provisioning for Cisco Unified IP Phone 7931G is available only in Cisco Unified CME 4.0(2) and later versions.
- Cisco Unified IP Phone 7931G can support only one call waiting overlaid per directory number.
- Cisco Unified IP Phone 7931G cannot support overlays that contain directory numbers configured for dual-line mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address [mac-address]
5. type phone-type
6. button button-number (separator) dn-tag [.dn-tag...] [button-number (x) overlay-button-number] [button-number...]
7. mwi-line line-number
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 mac-address [mac-address]</td>
<td>Specifies the MAC address of the IP phone that is being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# mac-address 0001.2345.6789</td>
<td></td>
</tr>
<tr>
<td>Step 5 type phone-type</td>
<td>Specifies the type of phone that is being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# type 7931</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Associates a button number and line characteristics with an ephone-dn. Maximum number of buttons is determined by phone type.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Selects a phone line to receive MWI treatment; when a message is waiting for the selected line, the message waiting indicator is activated.</td>
</tr>
<tr>
<td>Example:</td>
<td>router(config-ephone)# mwi-line 3</td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits ephone configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>router(config-ephone)# end</td>
</tr>
</tbody>
</table>

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see **Configure Codecs of Individual Phones for Calls Between Local Phones**, on page 286.
- To select a fixed-button layout for a Cisco Unified IP Phone 7931G, see **Select Button Layout for a Cisco Unified SCCP IP Phone 7931G**, on page 1417.
- If you are finished configuring phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See **Generate Configuration Files for SCCP Phones**, on page 390.

Configure Cisco ATA, Analog Phone Support, Remote Phones, Cisco IP Communicator, and Secure IP Phone (IP-STE)

Configure Cisco ATA Support in SCCP Mode

To enable an analog phone that uses a Cisco ATA to register with Cisco Unified CME, perform the following steps.

Restriction

For a Cisco ATA that is registered to a Cisco Unified CME system to participate in fax calls, it must have its ConnectMode parameter set to use the same RTP payload type as the Cisco voice gateway that is performing the fax pass-through. Cisco voice gateways use standard payload type 0/8, which is selected on Cisco ATAs by setting bit 2 of the ConnectMode parameter to 1. For more information, see the **Parameters and Defaults** chapter in **Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator’s Guide for SCCP** (version 3.0).
Step 1 Install the Cisco ATA.
See the Installing the Cisco ATA chapter in Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator's Guide for SCCP (version 3.0).

Step 2 Configure the Cisco ATA.
See the Configuring the Cisco ATA for SCCP chapter in Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator's Guide for SCCP (version 3.0).

Step 3 Upgrade the firmware to the latest Cisco ATA image.
If you are using either the v2.14 or v2.14ms Cisco ATA 186 image based on the 2.14 020315a build for H.323/SIP or the 2.14 020415a build for MGCP or SCCP, you must upgrade to the latest version to install a security patch. This patch fixes a security hole in the Cisco ATA Web server that allows users to bypass the user interface password.

For information about upgrading firmware, see Install Cisco Unified CME Software, on page 111. Alternatively, you can use a manual method, as described in the Upgrading the Cisco ATA Signaling Image chapter of Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator's Guide for SCCP (version 3.0).

Step 4 Set the following network parameters on the Cisco ATA:

- DHCP parameter to 1 (enabled).
- TFTP parameter to 1 (enabled).
- TFTPURL parameter to the IP address of the router running Cisco Unified CME.
- SID0 parameter to a period (.) or the MAC address of the Cisco ATA (to enable the first port).
- SID1 parameter to a period (.) or a modified version the Cisco ATA’s MAC address, with the first two hexadecimal numbers removed and 01 appended to the end, if you want to use the second port. For example, if the MAC address of the Cisco ATA is 00012D01073D, set SID1 to 012D01073D01.
- Nprintf parameter to the IP address and port number of the host to which all Cisco ATA debug messages are sent. The port number is usually set to 9001.
- To prevent tampering and unauthorized access to the Cisco ATA 186, you can disable the web-based configuration. However, if you disable the web configuration page, you must use either a TFTP server or the voice configuration menu to configure the Cisco ATA 186.

Step 5 In Cisco Unified CME, configure analog phones that use a Cisco ATA in the same way as a Cisco Unified IP phone. In the type command, use the ata keyword. For information on how to provision phones, see Create Directory Numbers for SCCP Phones, on page 260.

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.
- To select a fixed-button layout for a Cisco Unified IP Phone 7931G, see Select Button Layout for a Cisco Unified SCCP IP Phone 7931G, on page 1417.
• If you are finished configuring phones to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390 and Generate Configuration Profiles for SIP Phones, on page 393.

Configure Cisco ATA Support in SIP Mode

Cisco ATA 187, 190, and 191 support SIP mode. To enable an analog phone that uses a Cisco ATA 191 to register with Unified CME, perform the following steps.

Restriction
• For a Cisco ATA that is registered to a Unified CME system to participate in fax calls, it must have its ConnectMode parameter set to use the same RTP payload type as the Cisco voice gateway that is performing the Fax pass-through. Cisco voice gateways use standard payload type 0/8, which is selected on Cisco ATAs by setting bit 2 of the ConnectMode parameter to 1. For more information, see the Configure Fax Services chapter in Cisco ATA 191 Analog Telephone Adapter Administration Guide for Cisco Unified Communications Manager.

• If both ports of a Cisco ATA 191 are configured as shared line, then a call put on hold on one port cannot be resumed at the other port.

Step 1 Install the Cisco ATA.
See the Install the ATA 191 chapter in Cisco ATA 191 Analog Telephone Adapter Administration Guide for Cisco Unified Communications Manager.

Step 2 Configure the Cisco ATA.
See the Configure the ATA 191 chapter in Cisco ATA 191 Analog Telephone Adapter Administration Guide for Cisco Unified Communications Manager.

Step 3 Upgrade the firmware to the latest Cisco ATA image. For more information, see Configure Firmware Upgrade for ATA in SIP Mode, on page 303.

Step 4 In Cisco Unified CME, configure analog phones that use a Cisco ATA in the same way as a Cisco Unified IP phone. In the type command that is configured under voice register pool configuration mode, use the ATA-191 keyword. For information on how to provision phones, see Create Directory Numbers for SIP Phones, on page 270.

Configure Firmware Upgrade for ATA in SIP Mode

Cisco ATA 187, 190, and 191 support SIP mode. To configure firmware upgrade for ATA 190 in SIP mode with Unified CME, perform the following steps.

You can specify the Cisco ATA 191 phone type using the CLI command type as shown:

Router(config)# voice register pool 1
Router(config-register-pool)# type ATA-191

Step 1 Copy the firmware files to router flash memory.
For example, ATA190.1-1-2-005.loads and ATA190.1-1-2-005.bin.sgn are firmware files for ATA 190.
Verify Cisco ATA Support

Use the `show ephone ata` command to display SCCP phone configurations with the `type ata` command.

The following is sample output for a Cisco Unified CME configured for two analog phones using a Cisco ATA with MAC address 00:0F.F7:58.E7:0E:

```
ephone-30 Mac:000F.F758.E70E TCP socket:[2] activeLine:0 REGISTERED in SCCP ver 1 and Server in ver 1 mediaActive:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:7 IP:1.4.188.72 15325 ATA Phone keepalive 7 max_line 2 dual-line button 1: dn 80 number 8080 CH1 IDLE CH2 IDLE
```

```
ephone-31 Mac:0FF7.58E7.0E01 TCP socket:[3] activeLine:0 REGISTERED in SCCP ver 1 and Server in ver 1 mediaActive:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:3 IP:1.4.188.72 15400 ATA Phone keepalive 7 max_line 2 dual-line button 1: dn 81 number 8081 CH1 IDLE CH2 IDLE
```

Troubleshooting Cisco ATA Support

Use the `debug ephone detail` command to diagnose problems with analog phones that use Cisco ATAs.

Call Pickup and Group Call Pickup with Cisco ATA

Most of the procedures for using Cisco ATAs with Cisco Unified CME are the same as those for using Cisco ATAs with Cisco Unified Communications Manager, as described in the How to Use Pre-Call and Mid-Call Services chapter of Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator’s
Guide for SCCP (version 3.0). However, the call pickup and group call pickup procedures are different when using Cisco ATAs with Cisco Unified CME, as described below:

Call Pickup

When using Cisco ATAs with Cisco Unified CME:
- To pickup the last parked call, press **3**.
- To pickup a call on a specific extension, press **3** and enter the extension number.
- To pickup a call from a park slot, press **3** and enter the park slot number.

Group Call Pickup

When using Cisco ATAs with Cisco Unified CME:
- To answer a phone within your call pickup group, press **4**.
- To answer a phone outside of your call pickup group, press **4** and the group ID number.

Note

If there is only one pickup group, you do not need to enter the group ID after the **4** to pickup a call.

Configure Voice and T.38 Fax Relay on Cisco ATA-187

Restriction

- H.323 trunk calls are not supported.
- Hardware conferencing with DSPFarm resource is not supported on Cisco ATA-187 in Cisco Unified CME 9.0. With the correct firmware (9.2(3) or a later version), local three-way conferencing is supported.

Before you begin

Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. authenticate realm string
5. exit
6. voice service { voip | voatm }
7. allow-connections from-type to to-type
8. fax protocol t38 [ls_redundancy value [hs_redundancy value]] [fallback {cisco | none | pass-through {g711ulaw | g711alaw}]]
9. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.
Example:
Router> enable
- Enter your password if prompted. |
| **Step 2** | `configure terminal` | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | `voice register global` | Enters voice register global configuration mode.
Example:
Router(config)# voice register global |
| **Step 4** | `authenticate realm string` |
realm string—Realm parameter for challenge and response as specified in RFC 2617 is authenticated.
Example:
Router(config-register-global)# authenticate realm xxxxx |
| **Step 5** | `exit` | Exits voice register global configuration mode.
Example:
Router(config-register-global)# exit |
| **Step 6** | `voice service { voip | voatm }` | Enters voice-service configuration mode to specify a voice encapsulation type.
- *voip*—Specifies Voice over IP (VoIP) parameters.
- *voatm*—Specifies Voice over ATM (VoATM) parameters.
Example:
Router(config)# voice service voip |
| **Step 7** | `allow-connections from-type to to-type` | Allows connections between specific types of endpoints in a VoIP network.
- *from-type*—Originating endpoint type. The following choices are valid:
 - *sip*—Session Interface Protocol.
Example:
Router(config-voi-serv)# allow-connections sip to sip |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>Specifies the global default ITU-T T.38 standard fax protocol to be used for all VoIP dial peers.</td>
</tr>
<tr>
<td>`fax protocol t38 [ls_redundancy value [hs_redundancy value]] [fallback {cisco</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>• hs_redundancy value—(Optional) (T.38 fax relay only) Specifies the number of redundant T.38 fax packets to be sent for high-speed V.17, V.27, and V.29 T.4 or T.6 fax machine image data. Range varies by platform from 0 (no redundancy) to 2 or 3. Default is 0.</td>
</tr>
<tr>
<td></td>
<td>• fallback—(Optional) A fallback mode is used to transfer a fax across a VoIP network if T.38 fax relay could not be successfully negotiated at the time of the fax transfer.</td>
</tr>
<tr>
<td></td>
<td>• pass-through—(Optional) The fax stream uses one of the following high-bandwidth codecs:</td>
</tr>
<tr>
<td></td>
<td>• g711ulaw—Uses the G.711 u-law codec.</td>
</tr>
<tr>
<td></td>
<td>• g711alaw—Uses the G.711 a-law codec.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Exits voice-service configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# exit</td>
</tr>
<tr>
<td>Step 10</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a Cisco Unified SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td><code>voice register pool pool-tag</code></td>
<td>• pool-tag—Unique number assigned to the pool. Range: 1 to 100.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 11</td>
</tr>
<tr>
<td>Step 11</td>
<td>identifies a locally available Cisco Unified SIP IP phone.</td>
</tr>
<tr>
<td><code>id mac address</code></td>
<td>• mac address—Identifies the MAC address of a particular Cisco Unified SIP IP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# id mac 93FE.12D8.2301</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 12
type phone-type
Example:
Router(config-register-pool)# type ATA-187</td>
<td>Defines a phone type for the SIP phone being configured.</td>
</tr>
</tbody>
</table>
| **Step 13**
ata-ivr-pwd password
Example:
Router(config-register-pool)# ata-ivr-pwd 1234 | (Optional) Defines a password to access interactive voice response (IVR) and change the default phone settings on Cisco Analog Telephone Adaptors.
 - **password**—Four-digit or five-digit string to be used as password to access IVR. Password string must contain numbers 0 to 9. |
| **Step 14**
session-transport {tcp | udp}
Example:
Router(config-register-pool)# session-transport tcp | (Optional) Specifies the transport layer protocol that a Cisco Unified SIP IP phone uses to connect to Cisco Unified CME.
 - **tcp**—Transmission Control Protocol (TCP) is used.
 - **udp**—User Datagram Protocol (UDP) is used. This is the default. |
| **Step 15**
number tag dn dn-tag
Example:
Router(config-register-pool)# number 1 dn 33 | Indicates the E.164 phone numbers that the registrar permits to handle the Register message from the Cisco Unified SIP IP phone.
 - **tag**—Identifies the telephone number when there are multiple number commands. Range: 1 to 10.
 - **dn**—Identifies the directory number tag for this phone number as defined by the voice register dn command. Range: 1 to 150. |
| **Step 16**
username username [password password]
Example:
Router(config-register-pool)# username ata112 password cisco | Assigns an authentication credential to a phone user so that the SIP phone can register in Cisco Unified CME.
 - **username**—Username of the local Cisco IP phone user. Default: Admin.
 - **password**—Enables password for the Cisco IP phone user.
 - **password**—Password string. |
| **Step 17**
codec codec-type [bytes]
Example:
Router(config-register-pool)# codec g711ulaw | Specifies the codec to be used when setting up a call for a SIP phone or group of SIP phones in Cisco Unified CME.
 - **codec-type**—Preferred codec; values are as follows:
 - **g711alaw**—G.711 A law 64K bps.
 - **g711ulaw**—G.711 micro law 64K bps.
 - **g722r64**—G.722-64K at 64K bps. |
Auto-Configuration for Cisco VG202, VG204, and VG224

Supported only for the Cisco VG202, VG204, and VG224 voice gateways.

Before you begin

- Cisco Unified CME 7.1 or a later version. The Cisco Unified CME router must be configured and running before you boot the analog voice gateway. See Set Up Cisco Unified CME for SCCP Phones, on page 179.

- Default location of configuration files is system:/its/. To define an alternate location at which to save the gateway configuration files, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.

- To automatically assign the next available directory number to the voice port as it registers to Cisco Unified CME, and create an ephone entry associated with each voice port, enable the auto assign command in Cisco Unified CME.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice-gateway system tag
4. mac-address mac-address
5. type { vg202 | vg204 | vg224 }
6. voice-port port-range
7. network-locale locale-code
8. create cnf-files
9. reset or restart
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice-gateway system tag</td>
<td>Enters voice gateway configuration mode and creates a voice gateway configuration.</td>
</tr>
<tr>
<td>Example: Router(config)# voice-gateway system 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 mac-address mac-address</td>
<td>Defines the MAC address of the voice gateway to autoconfigure.</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# mac-address</td>
<td></td>
</tr>
<tr>
<td>Step 5 type (vg202</td>
<td>vg204</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# type vg224</td>
<td></td>
</tr>
<tr>
<td>Step 6 voice-port port-range</td>
<td>Identifies the ports on the voice gateway that register to Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# voice-port 0-23</td>
<td></td>
</tr>
<tr>
<td>Step 7 network-locale locale-code</td>
<td>Selects a geographically specific set of tones and cadences for the voice gateway’s analog endpoints that register to Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# network-locale FR</td>
<td></td>
</tr>
<tr>
<td>Step 8 create cnf-files</td>
<td>Generates the XML configuration files that are required for the voice gateway to autoconfigure its analog ports that register to Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# create cnf-files</td>
<td></td>
</tr>
<tr>
<td>Step 9 reset or restart</td>
<td>(Optional) Performs a complete reboot of all analog phones associated with the voice gateway and registered to Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-voice-gateway)# reset</td>
<td>or</td>
</tr>
<tr>
<td>or Router(config-voice-gateway)# restart</td>
<td>(Optional) Performs a fast restart of all analog phones associated with the voice gateway after simple changes to buttons, lines, or speed-dial numbers.</td>
</tr>
<tr>
<td></td>
<td>• Use these commands to download new configuration files to the analog phones after making configuration changes to the phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-voice-gateway)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows the voice gateway configuration in Cisco Unified CME:

```plaintext
voice-gateway system 1
network-locale FR
type VG224
mac-address 001F.A30F.8331
voice-port 0-23
create cnf-files
```

What to do next

- Cisco VG202 or VG204 voice gateway
 - Enable the gateway for autoconfiguration. See the *Auto-Configuration on the Cisco VG202 and Cisco VG204 Voice Gateways* section in *Cisco VG202 and Cisco VG204 Voice Gateways Software Configuration Guide*.

- Cisco VG224 analog phone gateway
 - Enable SCCP and the STC application on the gateway. See the *Configuring FXS Ports for Basic Calls* chapter in *Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide*.

Configure Phones on SCCP Controlled Analog (FXS) Ports

Configuring Cisco Unified CME to support calls and features on analog endpoints connected to SCCP controlled analog (FXS) ports is basically the same as configuring any SCCP phone in Cisco Unified CME. This section describes only the steps that have special meaning for phones connected to a Cisco VG224 Analog Phone Gateway.

Restriction

FXS ports on Cisco VG248 analog phone gateways are not supported by Cisco Unified CME.

Before you begin

- For phones connected to analog FXS ports on the Cisco VG224 Analog Phone Gateway: Cisco CME 3.2.2 or a later version.
- For phones connected to analog FXS ports on the Cisco Integrated Services Routers (ISR) voice gateway: Cisco Unified CME 4.0 or a later version.
- Cisco ISR voice gateway or Cisco VG224 analog phone gateway is installed and configured for operation. For information, see the appropriate Cisco configuration documentation.
- Prior to Cisco IOS Release 12.4(11)T, set the `timeouts ringing` command to `infinity` for all SCCP-controlled analog ports. In Cisco IOS Release 12.4(11)T and later, the default for this command is infinity.
• SCCP is enabled on the Cisco IOS voice gateway. For configuration information, see Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide.

Step 1
Set up ephone-dns for up to 24 endpoints on the Cisco IOS gateway.

Use the `ephone-dn` command:

Example:

```
ephone-dn 1 dual-line
   number 1000
```

```
ephone-dn 24 dual-line
   number 1024
```

Step 2
Set the maximum number of ephones.

Use the `max ephones` command to set a number equal to or greater than the total number of endpoints that you intend to register on the Cisco Unified CME router, including both IP and analog endpoints. For example, if you have 6 IP phones and 12 analog phones, set the `max ephones` command to 18 or greater.

Step 3
Assign ephone-dns to ephones.

Use the `auto assign` command to enable the automatic assignment of an available ephone-dn to each phone as the phone contacts the Cisco Unified CME router to register.

Note
The order of ephone-dn assignment is not guaranteed. For example, if you have analog endpoints on ports 2/0 through 2/23 on the Cisco IOS gateway, port 2/0 does not necessarily become ephone 1. Use one of the following commands to enable automatic ephone-dn assignment.

- **auto assign 1 to 24**—You do not need to use the `type` keyword if you have only analog endpoints to be assigned or if you want all endpoints to be automatically assigned.

- **auto assign 1 to 24 type anl**—Use the `type` keyword if you have other phone types in the system and you want only the analog endpoints to be assigned to ephone-dns automatically.

An alternative to using the `auto assign` command is to manually assign ephone-dns to ephones (analog phones on FXS ports). This method is more complicated, but you might need to use it if you want to assign a specific extension number (ephone-dn) to a particular ephone. The reason that manual assignment is more complicated is because a unique device ID is required for each registering ephone and analog phones do not have unique MAC addresses like IP phones do. To create unique device IDs for analog phones, the auto assign process uses a particular algorithm. When you make manual ephone assignments, you have to use the same algorithm for each phone that receives a manual assignment.

The algorithm uses the single 12-digit SCCP local interface MAC address on the Cisco IOS gateway as the base to create unique 12-digit device IDs for all the FXS ports on the Cisco IOS gateway. The rightmost 9 digits of the SCCP local interface MAC address are shifted left three places and are used as the leftmost 9 digits for all 24 individual device IDs. The remaining 3 digits are the hexadecimal translation of the binary representation of the port’s slot number (3 digits), subunit number (2 digits), and port number (7 digits). The following example shows the use of the algorithm to create a unique device ID for one port:

- **a.** The MAC address for the Cisco VG224 SCCP local interface is 000C.8638.5EA6.
b. The FXS port has a slot number of 2 (010), a subunit number of 0 (00), and a port number of 1 (0000001). The binary digits are strung together to become 0100 0000 0001, which is then translated to 401 in hexadecimal to create the final device ID for the port and ephone.

c. The resulting unique device ID for this port is C863.85EA.6401.

When manually setting up an ephone configuration for an analog port, assign it just one button because the port represents a single-line device. The button command can use the “:” (colon, for normal), “o” (overlay) and “c” (call-waiting overlay) modes.

Note Once you have assigned ephone-dns to all the ephones that you want to assign manually, you can use the auto assign command to automatically assign the remaining ports.

Step 4 Set up feature parameters as desired.

The following list includes commonly configured features. For information about supported features, see Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide.

- Call transfer—To use call transfer from analog endpoints, the transfer-system command must be configured for the full-blind or full-consult keyword in telephony-service configuration mode on the Cisco Unified CME router. This is the recommended setting for Cisco CME 3.0 and later versions, but it is not the default.

- Call forwarding—Call forwarding destinations are specified for all, busy, and no-answer conditions for each ephone-dn using the call-forward all, call-forward busy, and call-forward noan commands in ephone-dn configuration mode.

- Call park—Call-park slots are created using the park-slit command in ephone-dn configuration mode. Phone users must be instructed how to transfer calls to the call-park slots and use directed pickup to retrieve the calls.

- Call pickup groups—Extensions are added to pickup groups using the pickup-group command in ephone-dn configuration mode. Phone users must be told which phones are in which groups.

- Caller ID—Caller names are defined using the name command in ephone-dn configuration mode. Caller numbers are defined using the number command in ephone-dn configuration mode.

- Speed dial—Numbers to be speed-dialed are stored with their associated speed-dial codes using the speed-dial command in ephone configuration mode.

- Speed dial to voice mail—The voice-mail number is defined using the voicemail command in telephony-service configuration mode.

Step 5 Set up feature restrictions as desired.

Features such as transfer, conference, park, pickup, group pickup (gpickup), and call forward all (cfwdall) can be restricted from individual ephones using the appropriate Cisco Unified CME softkey template command, even though analog phones do not have softkeys. Simply create a template that leaves out the softkey that represents the feature you want to restrict and apply the template to the ephone for which you want the feature restricted. For more information about softkey template customization, see Customize Softkeys, on page 897.

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.

- To select a fixed-button layout for a Cisco Unified IP Phone 7931G, see Select Button Layout for a Cisco Unified SCCP IP Phone 7931G, on page 1417.
After configuring phones in Cisco Unified CME to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390.

Verify Analog Phone Support

Use the following `show` commands to display information about analog endpoints.

- `show ephone anl`—Displays MAC address, registration status, ephone-dn, and speed-dial numbers for analog ephones.
- `show telephony-service ephone-dn`—Displays call forward, call waiting, pickup group, and more information about ephone-dns.
- `show running-config`—Displays running configuration nondefault values.

Enable Remote Phone

To enable IP phones or instances of Cisco IP Communicator to connect to a Cisco Unified CME system over a WAN, perform the following steps.

Restriction

- Because Cisco Unified CME is not designed for centralized call processing, remote phones are supported only for fixed teleworker applications, such as working from a home office.
- Cisco Unified CME does not support CAC for remote SCCP phones, so voice quality can degrade if a WAN link is oversubscribed. High-bandwidth data applications used over a WAN can cause degradation of voice quality for remote IP phones.
- Cisco Unified CME does not support Emergency 911 (E911) calls from remote IP phones. Teleworkers using remote phones connected to Cisco Unified CME over a WAN should be advised not to use these phones for E911 emergency services because the local public safety answering point (PSAP) will not be able to obtain valid calling-party information from them.

We recommend that you make all remote phone users aware of this issue. One way is to place a label on all remote teleworker phones that reminds users not to place 911 emergency calls on remote IP phones. Remote workers should place any emergency calls through locally configured hotel, office, or home phones (normal land-line phones) whenever possible. Inform remote workers that if they must use remote IP phones for emergency calls, they should be prepared to provide specific location information to the answering PSAP personnel, including street address, city, state, and country.

Before you begin

- The WAN link supporting remote teleworker phones should be configured with a Call Admission Control (CAC) or Resource Reservation Protocol (RSVP) solution to prevent the oversubscription of bandwidth, which can degrade the quality of all voice calls.
- If DSP farms will be used for transcoding, you must configure them separately. See Configure Transcoding Resources, on page 475.
A SCCP phone to be enabled as a remote phone is configured in Cisco Unified CME. For configuration information, see Create Directory Numbers for SCCP Phones, on page 260.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `mtp`
5. `codec {g711ulaw | g722r64 | g729r8 [dspfarm-assist]}`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| `enable`
Example: `Router> enable` | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** | Enters global configuration mode. |
| `configure terminal`
Example: `Router# configure terminal` | Enters global configuration mode. |
| **Step 3** | Enters ephone configuration mode. |
| `ephone phone-tag`
Example: `Router(config)# ephone 36` | Enters ephone configuration mode.
- `phone-tag`—Unique sequence number that identifies this ephone during configuration tasks. |
| **Step 4** | Sends media packets to the Cisco Unified CME router. |
| `mtp`
Example: `Router(config-ephone)# mtp` | Sends media packets to the Cisco Unified CME router. |
| **Step 5** | (Optional) Selects a preferred codec for setting up calls. |
| `codec {g711ulaw | g722r64 | g729r8 [dspfarm-assist]}`
Example: `Router(config-ephone)# codec g729r8 dspfarm-assist` | (Optional) Selects a preferred codec for setting up calls.
- Default: G.711 mu-law codec.
- The `g722r64` keyword requires Cisco Unified CME 4.3 and later versions.
- `dspfarm-assist`—Attempts to use DSP-farm resources for transcoding the segment between the phone and the Cisco Unified CME router if G.711 is negotiated for the call.
Note The `dspfarm-assist` keyword is ignored if the SCCP endpoint type is ATA, VG224, or VG248. |
| **Step 6** | Returns to privileged EXEC mode. |
| `end`
Example: | Returns to privileged EXEC mode. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ephone)#</td>
<td>end</td>
</tr>
</tbody>
</table>

What to do next

- If you have SIP and SCCP phones connected to the same Cisco Unified CME, see Configure Codecs of Individual Phones for Calls Between Local Phones, on page 286.
- To select a fixed-button layout for a Cisco Unified IP Phone 7931G, see Select Button Layout for a Cisco Unified SCCP IP Phone 7931G, on page 1417.
- After configuring phones in Cisco Unified CME to make basic calls, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390.

Verify Remote Phones

Use the `show running-config` command or the `show telephony-service ephone` command to verify parameter settings for remote ephones.

Configure Cisco IP Communicator Support on SCCP Phone

To enable support for Cisco IP Communicator, perform the following steps.

Before you begin

- Cisco Unified CME 4.0 or a later version.
- IP address of the Cisco Unified CME TFTP server.
- PC for Cisco IP Communicator is installed. For hardware and platform requirements, see the appropriate Cisco IP Communicator User Guide.
- Audio devices, such as headsets and handsets for users, are installed. You can install audio devices any time, but the ideal time to do this is before you install and launch Cisco IP Communicator.
- Directory numbers and ephone configuration for Cisco IP Communicator are configured in Cisco Unified CME. For information, see Configure Phones for a PBX System, on page 260.

Step 1
Download Cisco IP Communicator 2.0 or a later version software from the software download site at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.

Step 2
Install the software on your PC, then launch the Cisco IP Communicator application.
For information, see the *Installing and Launching Cisco IP Communicator* section in the appropriate Cisco IP Communicator User Guide.

Step 3
Complete the configuration and registration tasks on the Cisco IP Communicator as required, including the following:
a) Configure the IP address of the Cisco Unified CME TFTP server.
 - Right-click on the Cisco IP Communicator interface, then choose Preferences > Network > Use these TFTP servers.
 - Enter the IP address of the Cisco Unified CME TFTP server in the field.

b) Disable the Optimize for low bandwidth parameter to ensure that Cisco IP Communicator sends voice packets for all calls.
 Note The following steps are required to enable Cisco IP Communicator to support the G.711 codec, which is the fallback codec for Cisco Unified CME. You can compensate for disabling the optimization parameter by using the codec command in ephone configuration mode to configure G.729 or another advanced codec as the preferred codec for Cisco IP Communicator. This helps to ensure that the codec for a VoIP (For example, SIP or H.323) dial-peer is supported by Cisco IP Communicator and can prevent audio problems caused by insufficient bandwidth.
 - Right-click on the Cisco IP Communicator interface and choose Preferences > Audio.
 - Uncheck the checkbox next to Optimize for low bandwidth.

Step 4 Wait for the Cisco IP Communicator application to connect and register to Cisco Unified CME.
Step 5 Test Cisco IP Communicator.
 For more information, see Verify Cisco IP Communicator Support on SCCP Phone, on page 317.

Verify Cisco IP Communicator Support on SCCP Phone

Step 1 Use the `show running-config` command to display ephone-dn and ephone information associated with this phone.

Step 2 After Cisco IP Communicator registers with Cisco Unified CME, it displays the phone extensions and softkeys in its configuration. Verify that these are correct.

Step 3 Make a local call from the phone and have someone call you. Verify that you have a two-way voice path.

Troubleshooting Cisco IP Communicator Support on SCCP Phone

Use the `debug ephone detail` command to diagnose problems with calls. For more information, see Cisco Unified CME Command Reference.

Configure Secure IP Phone (IP-STE) on SCCP Phone

To configure an IP-STE phone on Cisco Unified CME, perform the following steps.
Restriction

- Detection or conversion between Network Transmission Equipment (NTE) and Session Signaling Event (SSE) is not supported.
- Transcoding or trans-compress rate support for different Voice Band Data (VBD) and Modem Relay (MR) media type is not supported.
- IP-STE supports only single-line calls, dual-line and octo-line calls are not supported.
- Speed-dial can only be configured manually on the IP-STE.

Before you begin
Cisco Unified CME 8.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address [mac-address]
5. type ip-ste
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.

 Example:
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.

 Example:
 Router# configure terminal |
| **Step 3** ephone phone-tag | Enters ephone configuration mode.

 Example:
 Router(config)# ephone 6 |
| **Step 4** mac-address [mac-address] | Specifies the MAC address of the IP phone that is being configured.

 Example:
 Router(config-ephone)# mac-address 2946.3f2.311 |
| **Step 5** type ip-ste | Specifies the type of phone. |

Configure Secure IP Phone (IP-STE) on SCCP Phone
Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G

To configure the phone services XML file for Cisco Unified Wireless phone 7926G, perform the following steps:

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address \([mac-address]\)
5. type phone-type
6. button button-number
7. ephone-template template tag
8. service \(\text{phone parameter name parameter value} \mid \text{xml-config append phone_service xmlfilename}\)
9. telephony-service
10. cnf-file perphone
11. create cnf-files
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# end</td>
</tr>
</tbody>
</table>

Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G

To configure the phone services XML file for Cisco Unified Wireless phone 7926G, perform the following steps:

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address \([mac-address]\)
5. type phone-type
6. button button-number
7. ephone-template template tag
8. service \(\text{phone parameter name parameter value} \mid \text{xml-config append phone_service xmlfilename}\)
9. telephony-service
10. cnf-file perphone
11. create cnf-files
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
</tbody>
</table>

Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G

To configure the phone services XML file for Cisco Unified Wireless phone 7926G, perform the following steps:

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address \([mac-address]\)
5. type phone-type
6. button button-number
7. ephone-template template tag
8. service \(\text{phone parameter name parameter value} \mid \text{xml-config append phone_service xmlfilename}\)
9. telephony-service
10. cnf-file perphone
11. create cnf-files
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
</tbody>
</table>

Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G

To configure the phone services XML file for Cisco Unified Wireless phone 7926G, perform the following steps:

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address \([mac-address]\)
5. type phone-type
6. button button-number
7. ephone-template template tag
8. service \(\text{phone parameter name parameter value} \mid \text{xml-config append phone_service xmlfilename}\)
9. telephony-service
10. cnf-file perphone
11. create cnf-files
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
</tbody>
</table>

Configure Phone Services XML File for Cisco Unified Wireless Phone 7926G

To configure the phone services XML file for Cisco Unified Wireless phone 7926G, perform the following steps:

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. mac-address \([mac-address]\)
5. type phone-type
6. button button-number
7. ephone-template template tag
8. service \(\text{phone parameter name parameter value} \mid \text{xml-config append phone_service xmlfilename}\)
9. telephony-service
10. cnf-file perphone
11. create cnf-files
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 4** | **mac-address** [mac-address]
Example:
Router(config-ephone)# mac-address 0001.2345.6789
| Specifies the MAC address of the IP phone that is being configured. |
| **Step 5** | **type** phone-type
Example:
Router(config-ephone)# type 7926
| Specifies the type of phone that is being configured. |
| **Step 6** | **button** button-number
Example:
Router(config-ephone)# button 1:1
| Creates a set of ephone-dns overlayed on a single button. |
| **Step 7** | **ephone-template** template tag
Example:
Router(config)# ephone-template 5
| Enters ephone-template configuration mode to create an ephone template. |
| **Step 8** | **service** [phone parameter name parameter value]
| [xml-config append phone_service xml filename]
Example:
Router(config-ephone-template)#service xml-config append flash:7926_phone_services.xml
| Sets parameters for all IP phones that support the configured functionality and to which this template is applied.
- *parameter name*—The parameter name is word and case-sensitive. See [Cisco Unified CME Command Reference](#).
- *phone_service xml filename*—Allows the addition of a phone services xml file. |
| **Step 9** | **telephony-service**
Example:
Router(config)# telephony-service
| Enters telephony-service configuration mode. |
| **Step 10** | **cnf-file** perphone
Example:
(config-telephony)# cnf-file perphone
| Specifies that the system generates a separate configuration XML file for each IP phone.
- Separate configuration files for each endpoint are required for security. |
| **Step 11** | **create cnf-files**
Example:
Router(config-telephony)# create cnf-files
| Builds XML configuration files required for SCCP phones. |
| **Step 12** | **end**
Example:
Router(config-telephony)# end
| Returns to privileged EXEC mode. |
Configure Phones to Make Basic Call

Configure Auto Registration for SIP Phones

To configure automatic registration of SIP phones with the Cisco Unified CME system, perform the following steps.

- The DNs assigned to auto registered phones cannot be configured as shared line DNs.
- Only Cisco Unified 7800 and 8800 series phones are supported with auto registration.

Before you begin

- Cisco CME 11.5 or a later version.
- It is recommended that administrators choose different DN ranges for manually configured and auto configured phones.
- It is mandatory that **password** is configured before DN range (**auto-assign**) while registering SIP phones using auto registration.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. auto-register
5. password **string**
6. auto-assign **First DN number to Last DN number**
7. service-enable
8. template **tag**
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action
<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Enters voice register global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Enters auto registration mode for SIP phones registering with Unified CME.</td>
</tr>
<tr>
<td>Step 5</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Configures the default password for SIP phones that auto register.</td>
</tr>
<tr>
<td>• string—Configures the mandatory word string that administrator provides for auto registration of phones on Unified CME.</td>
</tr>
<tr>
<td>Step 6</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Configures the range of directory numbers for phones that auto register on Unified CME.</td>
</tr>
<tr>
<td>• First DN number to Last DN number—Range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 7</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Enables the auto registration of SIP phones on Unified CME. Once auto-register command is entered, the service is enabled by default.</td>
</tr>
<tr>
<td>To temporarily disable auto registration feature without losing DN and password configurations, use the no form of this command.</td>
</tr>
<tr>
<td>Step 8</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Configures a basic configuration template that supports all the configurations available on the voice register template.</td>
</tr>
<tr>
<td>• It is mandatory that voice register template is configured with the same template tag.</td>
</tr>
<tr>
<td>• tag—Range is 1 to 10.</td>
</tr>
<tr>
<td>Step 9</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configure a Mixed Shared Line

To configure a mixed shared line between Cisco Unified SIP IP and Cisco Unified SCCP IP phones, perform the following steps.
Restriction

- Cisco Unified SCCP trunk-dn is not supported.
- Mixed shared lines can only be configured on one of several common directory numbers.
- Mixed shared lines are not supported in Cisco Unified SRST.

Before you begin

Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
4. number number
5. shared-line [max-calls number-of-calls]
6. exit
7. ephone-dn dn-tag [dual-line | octo-line]
8. number number
9. shared-line sip
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register dn 1</td>
<td>- dn-tag—Unique sequence number that identifies a particular directory number during configuration tasks. Range is 1 to 150 or the maximum defined by the max-dn command.</td>
</tr>
<tr>
<td>Step 4 number number</td>
<td>Associates a telephone or extension number with a Cisco Unified SIP IP phone in a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# number 1001</td>
<td>- number—String of up to 16 characters that represents an E.164 telephone number. Normally, the string is composed of digits, but the string may contain</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>shared-line [max-calls number-of-calls]</td>
<td>Creates a directory number to be shared by multiple Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# shared-line max-calls 4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice register dn configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td>ephone-dn dn-tag [dual-line</td>
<td>octo-line]</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-dn 1 octo-line</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Purpose</td>
</tr>
<tr>
<td>number number</td>
<td>Associates a telephone or extension number with this ephone-dn.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# number 1001</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Purpose</td>
</tr>
<tr>
<td>shared-line sip</td>
<td>Adds an ephone-dn as a member of a shared directory number in the database of the Shared-Line Service Module for a mixed shared line between Cisco Unified SIP and Cisco Unified SCCP IP phones.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# shared-line sip</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Purpose</td>
</tr>
<tr>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# end</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Purpose</td>
</tr>
</tbody>
</table>

Troubleshooting Tips for Mixed Shared Line

Use the **debug ephone shared-line-mixed** command to display debugging information about mixed shared lines.
Configure the Maximum Number of Calls on SCCP Phone

To configure the maximum number of calls on a Cisco Unified SCCP IP phone in Cisco Unified CME 9.0, perform the following steps.

Before you begin
- Cisco Unified CME 9.0 and later versions.
- Correct firmware, 9.2(1) or a later version, is installed.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ephone-dn dn-tag [dual-line | octo-line]**
4. **number number**
5. **exit**
6. **ephone phone-tag**
7. **mac-address mac-address**
8. **type phone-type**
9. **busy-trigger-per-button number-of-calls**
10. **max-calls-per-button number-of-calls**
11. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters ephone-dn configuration mode to configure a directory number for an IP phone line.</td>
</tr>
<tr>
<td>ephone-dn dn-tag [dual-line</td>
<td>octo-line]</td>
</tr>
<tr>
<td>Example:</td>
<td>- dual-line—(Optional) Enables two calls per directory number.</td>
</tr>
<tr>
<td>Router(config)# ephone-dn 6 octo-line</td>
<td>- octo-line—(Optional) Enables eight calls per directory number.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 4 | **number number** | Associates a telephone or extension number with an ephone-dn in a Cisco Unified CME.
| | Example: | |
| | `Router(config-ephone-dn)# number 1007` | |
| 5 | **exit** | Exits ephone-dn configuration mode. |
| | Example: | |
| | `Router(config-ephone-dn)# exit` | |
| 6 | **ephone phone-tag** | Enters ephone configuration mode.
| | Example: | |
| | `Router(config)# ephone 98` | |
| 7 | **mac-address mac-address** | Associates the MAC address of a Cisco IP phone with an ephone configuration in a Cisco Unified CME.
| | Example: | |
| | `Router(config-ephone)# mac-address ABCD.1234.56EF` | |
| 8 | **type phone-type** | Assigns a phone type to an SCCP phone.
| | Example: | |
| | `Router(config-ephone)# type 8941` | |
| 9 | **busy-trigger-per-button number-of-calls** | Sets the maximum number of calls allowed on an octo-line directory number before activating Call Forward Busy or a busy tone.
| | Example: | |
| | `Router(config-ephone)# busy-trigger-per-button 6` | |
| 10 | **max-calls-per-button number-of-calls** | Sets the maximum number of calls allowed on an octo-line directory number on an SCCP phone.
| | Example: | |
| | `Router(config-ephone)# max-calls-per-button 4` | |
| 11 | **end** | Exits configuration mode and enters privileged EXEC mode. |
| | Example: | |
| | `Router(config-ephone)# end` | |
Configure the Busy Trigger Limit on SIP Phone

To configure the busy trigger limit on a Cisco Unified SIP IP phone in Cisco Unified CME 9.0, perform the following steps.

You cannot configure the maximum number of calls per line. The phone controls the maximum number of outgoing calls.

Table 21: Maximum Number of Incoming and Outgoing Calls, on page 327 shows the maximum number of outgoing calls allowed by a phone and the maximum number of incoming calls that can be configured using the busy-trigger-per-button command for Cisco Unified 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones in Cisco Unified CME 9.0.

<table>
<thead>
<tr>
<th>Cisco Unified SIP IP Phones</th>
<th>Maximum Number of Outgoing Calls (Controlled by Phones)</th>
<th>Maximum Number of Incoming Calls Before Busy Tone (Configurable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6921</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>6941</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>6945</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>6961</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>8941</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>8945</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Before you begin

- Cisco Unified CME 9.0 and later versions.
- Correct firmware is installed:
 - 9.2(1) or a later version for Cisco Unified 6921, 6941, 6945 and 6961 SIP IP phones.
 - 9.2(2) or a later version for Cisco Unified 8941 and 8945 SIP IP phones.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag
4. type phone-type
5. busy-trigger-per-button number
6. end
Configure KEMs on SIP Phones

To configure KEMs for Cisco SIP IP phones, perform the following steps.

Before you begin

- Unified CME 9.1 or a later version for C-KEM and BE-KEM.
- Unified CME 12.5 or a later release for A-KEM and V-KEM.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode and creates a pool configuration for a SIP IP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 20</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>For Cisco Unified CME systems, the upper limit for this argument is defined by the max-pool command.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>type phone-type</td>
<td>Defines a phone type for a SIP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# type 6921</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>busy-trigger-per-button number</td>
<td>Sets the maximum number of calls allowed on a SIP directory number before activating Call Forward Busy or a busy tone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# busy-trigger-per-button 25</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>number—Maximum number of calls. Range: 1 to the maximum number of incoming calls listed in Step 6. The default values are 1 for the Cisco Unified 6921, 6941, 6945, and 6961 SIP IP phones and 2 for the Cisco Unified 8941 and 8945 SIP IP phones.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 29</td>
<td></td>
</tr>
<tr>
<td>Note pool-tag—Unique number assigned to the pool. Range is 1 to 100.</td>
<td></td>
</tr>
<tr>
<td>Note For Cisco Unified CME systems, the upper limit for this argument is defined by the max-pool command.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# type 9971 addon 1 CKEM 2 CKEM 3 CKEM Router(config-register-pool)# type 8851 addon 1 CP-8800-Audio 2 CP-8800-Audio Router(config-register-pool)# type 8851NR addon 1 CP-8800-Audio 2 CP-8800-Audio Router(config-register-pool)# type 8861 addon 1 CP-8800-Audio 2 CP-8800-Audio 3 CP-8800-Audio Router(config-register-pool)# type 8865 addon 1 CP-8800-Video 2 CP-8800-Video 3 CP-8800-Video</td>
<td>The following keywords increase the number of speed-dial, busy-lamp-field, and directory number keys that can be configured:</td>
</tr>
<tr>
<td>Note This option is available to Cisco Unified 8961, 9951, and 9971 SIP IP phones only.</td>
<td></td>
</tr>
<tr>
<td>Note addon 1 CP-8800-Audio or addon 1 CP-8800-Video—(Optional) Tells the router that a Cisco SIP IP Phone A-KEM or V-KEM is being added to this Cisco Unified SIP IP Phone.</td>
<td></td>
</tr>
</tbody>
</table>

Provision SIP Phones to Use the Fast-Track Configuration Approach

To provision the Cisco Unified SIP IP phones using the fast-track configuration approach, perform the following steps.
When a new Cisco Unified SIP IP phone is configured on Cisco Unified CME using the fast-track configuration approach, and the Cisco Unified CME is upgraded to a later version that supports the new phone type, the fast-track configuration pertaining to that SIP IP phone is removed automatically.

Before you begin

You require Cisco Unified CME Release 10 or a later release.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool-type pool-type
4. addons max-addons
5. description string
6. gsm-support
7. num-lines max-lines
8. Phoneload-support
9. reference-pooltype phone-type
10. telnet-support
11. transport (udp | TCP)
12. Xml-config (maxNumCalls | busyTrigger | custom)
13. exit
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register pool-type pool-type</td>
<td>Enters the voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool-type 9900</td>
<td>If the new phone type is an existing phone that is supported on Cisco Unified CME release, you get the following error message: <code>ERROR: 8945 is built-in phonemodel, cannot be changed</code></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>addons max-addons</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# addons 3</td>
</tr>
<tr>
<td></td>
<td>Defines the maximum number of add-on modules supported in Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td></td>
<td>• addons—The maximum allowed value is 3. The configured add-on modules can be used while defining the pool for the new SIP phone model using the existing type command as shown below:</td>
</tr>
<tr>
<td></td>
<td>type <phone-type> [addon 1 module-type [2 module-type]]</td>
</tr>
<tr>
<td>Step 5</td>
<td>description string</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# description TEST</td>
</tr>
<tr>
<td></td>
<td>Defines the description string for the new phone type.</td>
</tr>
<tr>
<td>Step 6</td>
<td>gsm-support</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# gsm-support</td>
</tr>
<tr>
<td></td>
<td>Defines phone support for Global System for Mobile Communications (GSM) support.</td>
</tr>
<tr>
<td>Step 7</td>
<td>num-lines max-lines</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# num-lines 12</td>
</tr>
<tr>
<td></td>
<td>Defines the maximum number of lines supported by the new phone.</td>
</tr>
<tr>
<td></td>
<td>• max-lines—If this parameter is not configured, the default value 1 is used.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Phoneload-support</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# Phoneload-support</td>
</tr>
<tr>
<td></td>
<td>Defines phone support for firmware download from Cisco Unified CME. You can use the load command in the voice register global mode to configure the corresponding phone load for the new phone type if it supports phone load.</td>
</tr>
<tr>
<td>Step 9</td>
<td>reference-pooltype phone-type</td>
</tr>
<tr>
<td>Example:</td>
<td>voice register pool-type 7821? description Cisco IP Phone 7821 reference-pooltype 6921</td>
</tr>
<tr>
<td></td>
<td>Defines the nearest phone family from which the SIP IP phone in fast-track mode will inherit the properties.</td>
</tr>
<tr>
<td></td>
<td>• phone-type—Unique number that represents the phone model.</td>
</tr>
<tr>
<td></td>
<td>Default There is no reference point to inherit the properties.</td>
</tr>
<tr>
<td>Step 10</td>
<td>telnet-support</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# telnet-support</td>
</tr>
<tr>
<td></td>
<td>Defines phone support for Telnet access.</td>
</tr>
<tr>
<td>Step 11</td>
<td>**transport (udp</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pooltype)# transport TCP</td>
</tr>
<tr>
<td></td>
<td>Defines the default transport type supported by the new phone.</td>
</tr>
<tr>
<td></td>
<td>If this parameter is not configured, UDP is used as the default value. The session-transport command configured at the voice register pool takes priority over this configuration.</td>
</tr>
</tbody>
</table>
SIP Phone Models Validated for CME using Fast-track Configuration

For information on the SIP phone models validated for Cisco Unified CME using fast-track configuration, see Phone Feature Support Guide for Unified CME, Unified SRST, Unified E-SRST, and Unified Secure SRST.

Configuration Examples for Making Basic Calls

This section contains the following examples of the required Cisco Unified CME configurations with some of the additional options that are discussed in other modules.

Example for Configuring SCCP Phones for Making Basic Calls

The following is a sample output of the `show running-config` command, showing how an SCCP phone is configured to make basic calls:

```
Router# show running-config

version 12.4
service tcp-keepalives-in
```
service tcp-keepalives-out
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname CME40
!
boot-start-marker
boot-end-marker
!
logging buffered 2000000 debugging
!
no aaa new-model
!
resource policy
!
clock timezone PST -8
clock summer-time PDT recurring
no network-clock-participate slot 2
voice-card 0
no dspfarm
dsp services dspfarm
!
voice-card 2
dspfarm
!
no ip source-route
ip cef
!
!
ip domain name cisco.com
ip multicast-routing
!
ftp-server enable
ftp-server topdir flash:
isdn switch-type primary-5ess
!
!
voice service voip
 allow-connections h323 to sip
 allow-connections sip to h323
 no supplementary-service h450.2
 no supplementary-service h450.3
h323
call start slow
!
!
controller T1 2/0/0
 framing esf
 linecode b8zs
 pri-group timeslots 1-24
!
controller T1 2/0/1
 framing esf
 linecode b8zs
!
interface GigabitEthernet0/0
 ip address 192.168.1.1 255.255.255.0
 ip pim dense-mode
duplex auto
speed auto
media-type rj45
negotiation auto
!
interface Service-Engine1/0
 ip unnumbered GigabitEthernet0/0
 service-module ip address 192.168.1.2 255.255.255.0
 service-module ip default-gateway 192.168.1.1
!
interface Serial2/0/0:23
 no ip address
 encapsulation hdlc
 isdn switch-type primary-5ess
 isdn incoming-voice voice
 isdn map address ^.* plan unknown type international
 no cdp enable
!
ip route 0.0.0.0 0.0.0.0 192.168.1.254
ip route 192.168.1.1 255.255.255.255 Service-Engine1/0
ip route 192.168.2.253 255.255.255.255 10.2.0.1
ip route 192.168.3.254 255.255.255.255 10.2.0.1
!
!
ip http server
ip http authentication local
no ip http secure-server
ip http path flash:
!
!
!
tftp-server flash:P00307020300.loads
tftp-server flash:P00307020300.sb2
tftp-server flash:P00307020300.sbn
!
control-plane
!
!
voice-port 2/0/0:23
!
!
scpp local GigabitEthernet0/0
scpp ccm 192.168.1.1.1 identifier 1
scpp
!
scpp ccm group 1
 associate ccm 1 priority 1
 associate profile 1 register MTP0013c49a0cd0
 keepalive retries 5
!
dspfarm profile 1 transcode
 codec g711ulaw
 codec g711alaw
 codec g729ar8
 codec g729abr8
 codec gsmfr
 codec g729r8
maximum sessions 90
associate application SCCP
!
Example for Configuring SCCP Phones for Making Basic Calls

```plaintext
!
dial-peer voice 9000 voip
mailbox-selection last-redirect-num
destination-pattern 78..
session protocol sipv2
session target ipv4:192.168.1.2
dtmf-relay sip-notify
codec g711ulaw
no vad
!
dial-peer voice 2 pots
incoming called-number .
direct-inward-dial
port 2/0:0:23
forward-digits all
!
dial-peer voice 1 pots
destination-pattern 9[2-9]......
port 2/0:0:23
forward-digits 8
!
dial-peer voice 3 pots
destination-pattern 91[2-9]..[2-9]......
port 2/0:0:23
forward-digits 12!
!
gateway
timer receive-rtp 1200
!
!
telephony-service
load 7960-7940 p00307020300
max-ephones 100
max-dn 300
ip source-address 192.168.1.1 port 2000
system message CCME 4.0
sdspfarm units 1
sdspfarm transcode sessions 128
sdspfarm tag 1 MTP0013c49a0cd0
voicemail 7800
max-conferences 24 gain -6
call-forward pattern .T
moh music-on-hold.au
multicast moh 239.1.1.1 port 2000
web admin system name admin password sjdflg
transfer-system full-consult
transfer-pattern .T
secondary-dialtone 9
create cnf-files version-stamp Jan 01 2002 00:00:00
!
!
ephone-dn-template 1
!
!
ephone-template 1
keep-conference endcall local-only
codec g729r8 sdspfarm-assist
!
!
ephone-template 2
!
!
ephone-dn 1
number 6001
```

Cisco Unified Communications Manager Express System Administrator Guide

336

Configuring Phones to Make Basic Calls
call-forward busy 7800
call-forward noan 7800 timeout 10
!
!
esphone-dn 2
 number 6002
call-forward busy 7800
call-forward noan 7800 timeout 10
!
!
esphone-dn 10
 number 6013
 paging ip 239.1.1.1 port 2000
!
!
esphone-dn 20
 number 8000....
mwi on
!
!
esphone-dn 21
 number 8001....
mwi off
!
!
esphone 1
 device-security-mode none
 username "user1"
 mac-address 002D.264E.54FA
 codec g729r8 dspfarm-assist
type 7970
 button 1:1
!
!
esphone 2
 device-security-mode none
 username "user2"
 mac-address 001C.821C.ED23
 type 7960
 button 1:2
!
!
line con 0
 stopbits 1
line aux 0
 stopbits 1
line 66
 no activation-character
 no exec
 transport preferred none
 transport input all
 transport output all
line 258
 no activation-character
 no exec
 transport preferred none
 transport input all
 transport output all
line vty 0 4
 exec-timeout 0 0
Example for Configuring SIP Phones for Making Basic Calls

The following is a configuration example for SIP phones running on Cisco Unified CME:

```
voice service voip
  allow-connections sip to sip
  sip
  registrar server expires max 600 min 60

voice class codec 1
  codec preference 1 g711ulaw

voice hunt-group 1 parallel
  final 8000
  list 2000,1000,2101
  timeout 20
  pilot 9000

voice hunt-group 2 sequential
  final 1000
  list 2000,2300
  timeout 25
  pilot 9100 secondary 9200

voice hunt-group 3 peer
  final 2300
  list 2100,2200,2101,2201
  timeout 15
  hops 3
  pilot 9300
  preference 5

voice hunt-group 4 longest-idle
  final 2000
  list 2300,2100,2200,2101,2201,2000
  timeout 15
  hops 5
  pilot 9400 secondary 9444
  preference 5 secondary 9

voice register global
  mode cme

  external-ring bellcore-dr3

voice register dn 1
  number 2300
  mwi

voice register dn 2
  number 2200
  call-forward b2bua all 1000
  call-forward b2bua mailbox 2200
```
Configuring Phones to Make Basic Calls

Example for Configuring SIP Phones for Making Basic Calls

```plaintext
mw1
!
voice register dn 3
   number 2201
   after-hour exempt
!
voice register dn 4
   number 2100
   call-forward b2bua busy 2000
mw1

voice register dn 5
   number 2101
mw1

voice register dn 76
   number 2525
   call-forward b2bua unreachable 2300
mw1
!
voice register template 1
!
voice register template 2
   no conference enable
   voicemail 7788 timeout 5
!
voice register pool 1
   id mac 000D.ED22.EDFE
   type 7960
   number 1 dn 1
   template 1
   preference 1
   no call-waiting
   codec g711alaw
!
voice register pool 2
   id mac 000D.ED23.CBA0
   type 7960
   number 1 dn 2
   number 2 dn 2
   template 1
   preference 1
!
   dtmf-relay rtp-nte
   speed-dial 3 2001
   speed-dial 4 2201
!
voice register pool 3
   id mac 0030.94C3.053E
   type 7960
   number 1 dn 3
   number 3 dn 3
   template 2
!
voice register pool 5
   id mac 0012.019B.3FD8
   type ATA
   number 1 dn 5
   preference 1
   dtmf-relay rtp-nte
   codec g711alaw
!
voice register pool 6
   id mac 0012.019B.3E88
```

Cisco Unified Communications Manager Express System Administrator Guide
Example for Disabling a Bulk Registration for a SIP Phone

The following example shows that all phone numbers that match the pattern “408555..” can register with the SIP proxy server (IP address 1.5.49.240) except directory number 1, number “4085550101,” for which bulk registration is disabled:

voice register global
 mode cme
 bulk 408555...
!
voice register dn 1
 number 4085550101
 no-reg
Examples for Configuring VCC with Shared Lines

Example

The following is a sample configuration for VCC with shared lines, with the same voice class codec configured under the voice register pools.

Router#

voice class codec 1
 codec preference 1 g711ulaw
 codec preference 2 g729r8
 codec preference 3 g722-64

voice class codec 2
 codec preference 1 g711ulaw
 codec preference 2 g729r8

voice register pool 1
 busy-trigger-per-button 2
 id mac 08CC.A785.EE9C
 type 8865
 number 1 dn 1
dtmf-relay rtp-nte
voice-class codec 1
 username abcd password xxxx
 no vad

voice register pool 2
 busy-trigger-per-button 2
 id mac D42C.4485.D9C2
 type 7861
 number 1 dn 1
dtmf-relay rtp-nte
voice-class codec 1
 username uvwx password xxxx
 no vad

dial-peer voice 2 voip
 session protocol sipv2
 incoming called-number 50..
 voice-class codec 2
dtmf-relay rtp-nte
 no vad

Example for Configuring a Mixed Shared Line on a Second Common Directory Number

The following example shows how configuring a mixed shared line on a second common directory number is rejected:

Router(config)#ephone-dn 14 octo-line
Router(config-ephone-dn)#number 2502
Router(config-ephone-dn)#shared-line sip
Example for Cisco ATA

The following example shows the configuration for two analog phones using a single Cisco ATA with MAC address 000F.F758.E70E. The analog phone attached to the first port uses the MAC address of the Cisco ATA. The analog phone attached to the second port uses a modified version of the Cisco ATA’s MAC address; the first two hexadecimal numbers are removed and 01 is appended to the end.

```
telephony-service
  conference hardware
  load ATA ATA0020SCCP05101A.zup
  ephone-dn  80  dual-line
    number 8080
  ephone-dn  81  dual-line
    number 8081
  ephone  30
    mac-address 000F.F758.E70E
    type ata
    button 1:80
  ephone  31
    mac-address 00FF.758E.70E1
    type ata
    button 1:81
```

Example for Cisco ATA in SIP Mode

The following example shows the configuration for an analog phones using a Cisco ATA 190 or ATA 191 with MAC address DCEB.941C.F33D.

```
enable
configure terminal
voice register dn 15
  number 8015
voice register pool 15
  id mac DCEB.941C.F33D
  type ATA-190/ATA-191
  number 1 dn 15
  username abcd password xxxx
  codec g711ulaw
end
```

Example for SCCP Analog Phone

The following partial sample output from a Cisco Unified CME configuration sets transfer type to full-blind and sets the voice-mail extension to 5200. Ephone-dn 10 has the extension 4443 and is assigned to Tommy; that number and name will be used for caller-ID displays. The description field under ephone-dn is used to
indicate that this ephone-dn is on the Cisco VG224 voice gateway at port 1/3. Extension 4443 is assigned to ephone 7, which is an analog phone type with 10 speed-dial numbers.

CME_Router# show running-config
.
.
telephony-service
load 7910 P00403020214
load 7960-7940 P003050000301
load 7905 CP79050101SCCP030530B31
max-ephones 60
max-dn 60
ip source-address 10.8.1.2 port 2000
auto assign 1 to 60
create cnf-files version-stamp 7960 Sep 28 2004 17:23:02
voicemail 5200
mwi relay
mwi expires 99999
max-conferences 8 gain -6
web admin system name cisco password lab
web admin customer name ac2 password cisco
dn-webedit
time-webedit
transfer-system full-blind
transfer-pattern 6...
transfer-pattern 5...
!
ephone-dn 10 dual-line
number 4443 secondary 9191114443
pickup-group 5
description vg224-1/3
name tommy
!
ephone 7
mac-address C863.9018.0402
speed-dial 1 4445
speed-dial 2 4445
speed-dial 3 4442
speed-dial 4 4441
speed-dial 5 6666
speed-dial 6 1111
speed-dial 7 1112
speed-dial 8 9191114441
speed-dial 9 9191114442
speed-dial 10 9191114442
type anl
button 1:10

Example for Remote Teleworker Phones

The following example shows the configuration for ephone 270, a remote teleworker phone with its codec set to G.729r8. The dspfarm-assist keyword is used to ensure that calls from this phone will use DSP resources to maintain the G.729r8 codec when calls would normally be switched to a G.711 codec.

ephone 270
button 1:36
mtp
codec g729r8 dspfarm-assist
description teleworker remote phone
Example for Secure IP Phone (IP-STE)

The following example shows the configuration for Secure IP Phone IP-STE. IP-STE is the phone type required to configure a secure phone.

```plaintext
ephone-dn 1
  number 3001
...
ephone 9
  mac-address 0004.E2B9.1AD1
  max-calls-per-button 1
  type IP-STE
  button 1:1 2:2 3:3 4:4
```

Example for Configuring Phone Services XML File for Cisco Unified Wireless Phone 7926G

The following example shows phone type 7926 configured in ephone 1 and service xml-config file configured in ephone template 1:

```plaintext
! 
! 
telephony-service 
  max-ephones 58 
  max-dn 192 
  ip source-address 1.4.206.105 port 2000 
  cnf-file perphone 
  create cnf-files 
! 
ephone-template 1 
  service xml-config append flash:7926_phone_services.xml 
!
ephone-dn 1 octo-line 
  number 1001 
!
ephone 1 
  mac-address AAAA.BBBB.CCCC 
  ephone-template 1 
  type 7926 
  button 1:1 
```

Example for Monitoring the Status of Key Expansion Modules

Show commands are used to monitor the status and other details of Key Expansion Modules (KEMs).
The following example demonstrates how the `show voice register all` command displays KEM details with all the Cisco Unified CME configurations and registration information:

```plaintext
show voice register all
VOICE REGISTER GLOBAL
-------------------------
CONFIG [Version=9.1]
-------------------------

............
Pool Tag 5
Config:
```
Mac address is B4A4.E328.4698
Type is 9971 addon 1 CKEM
Number list 1 : DN 2
Number list 2 : DN 3
Proxy Ip address is 0.0.0.0
DTMF Relay is disabled
Call Waiting is enabled
DnD is disabled
Video is enabled
Camera is enabled
Busy trigger per button value is 0
keep-conference is enabled
registration expires timer max is 200 and min is 60
kpml signal is enabled
Lpcor Type is none

The following example demonstrates how the `show voice register pool type` command displays all the phones configured with add-on KEMs in Cisco Unified CME:

```
Router# show voice register pool type CKEM
Pool ID              IP Address      Ln DN  Number               State
==== =============== =============== == === ==================== ============
              B4A4.E328.4698  9.45.31.111     1  4   5589$                REGISTERED
```

The following example demonstrates how the `show voice register pool type summary` command displays all the SIP phones (both registered and unregistered) configured with add-on KEMs in Cisco Unified CME:

```
Router# show voice register pool type summary
Phone Type    Configured    Registered    Unregistered
==========    ==========    ==========    ============
Unknown type     2            0                2
7821          1            0                1
9951         1            1                0
DX650        1              0                1
======================================================
Total Phones     5             1                4
```

Cisco IOS Commands for Monitoring and Maintaining Cisco Unified CME

To monitor and maintain Cisco Unified Communications Manager Express (CME), use the following commands in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show call-manager-fallback all</code></td>
<td>Displays the detailed configuration of all the Cisco Unified IP phones, voice ports, and dial peers of the Cisco Unified CME Router.</td>
</tr>
<tr>
<td><code>Router# show call-manager-fallback dial-peer</code></td>
<td>Displays the output of the dial peers of the Cisco Unified CME Router.</td>
</tr>
<tr>
<td><code>Router# show call-manager-fallback ephone-dn</code></td>
<td>Displays Cisco Unified IP Phone destination numbers when in call manager fallback mode.</td>
</tr>
<tr>
<td><code>Router# show call-manager-fallback voice-port</code></td>
<td>Displays output for the voice ports.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# <code>show dial-peer voice summary</code></td>
<td>Displays a summary of all voice dial peers.</td>
</tr>
<tr>
<td>Router# <code>show ephone phone</code></td>
<td>Displays Cisco Unified IP Phone status.</td>
</tr>
<tr>
<td>Router# <code>show ephone offhook</code></td>
<td>Displays Cisco Unified IP Phone status for all phones that are off hook.</td>
</tr>
<tr>
<td>Router# <code>show ephone registered</code></td>
<td>Displays Cisco Unified IP Phone status for all phones that are currently registered.</td>
</tr>
<tr>
<td>Router# <code>show ephone remote</code></td>
<td>Displays Cisco Unified IP Phone status for all nonlocal phones (phones that have no Address Resolution Protocol [ARP] entry).</td>
</tr>
<tr>
<td>Router# <code>show ephone ringing</code></td>
<td>Displays Cisco Unified IP Phone status for all phones that are ringing.</td>
</tr>
<tr>
<td>Router# <code>show ephone summary</code></td>
<td>Displays a summary of all Cisco Unified IP Phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone summary brief</code></td>
<td>Displays a brief summary of all Cisco Unified SCCP phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone summary types</code></td>
<td>Displays a summary of all types of Cisco Unified SCCP phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone registered summary</code></td>
<td>Displays a summary of all registered Cisco Unified SCCP phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone unregistered summary</code></td>
<td>Displays a summary of all unregistered Cisco Unified SCCP phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone telephone-number phone-number</code></td>
<td>Displays Unified IP Phone status for a specific phone number.</td>
</tr>
<tr>
<td>Router# <code>show ephone unregistered</code></td>
<td>Displays Unified IP Phone status for all unregistered phones.</td>
</tr>
<tr>
<td>Router# <code>show ephone-dn tag</code></td>
<td>Displays Unified IP Phone destination numbers.</td>
</tr>
<tr>
<td>Router# <code>show ephone-dn summary</code></td>
<td>Displays a summary of all Cisco Unified IP Phone destination numbers.</td>
</tr>
<tr>
<td>Router# <code>show ephone-dn loopback</code></td>
<td>Displays Cisco Unified IP Phone destination numbers in loopback mode.</td>
</tr>
<tr>
<td>Router# <code>show running-config</code></td>
<td>Displays the configuration.</td>
</tr>
<tr>
<td>Router # <code>show sip-ua status registrar</code></td>
<td>Display SIP registrar clients.</td>
</tr>
<tr>
<td>Router# <code>show voice port summary</code></td>
<td>Displays a summary of all voice ports.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Router # <code>show voice register all</code></td>
<td>Displays all SIP SRST configurations, SIP phone registrations and dial peer info.</td>
</tr>
<tr>
<td>Router # <code>show voice register global</code></td>
<td>Displays voice register global config.</td>
</tr>
<tr>
<td>Router # <code>show voice register pool all</code></td>
<td>Displays all config SIP phone voice register pool detail info.</td>
</tr>
<tr>
<td>Router # <code>show voice register pool type summary</code></td>
<td>Displays a summary of all registered and unregistered Cisco SIP Phones.</td>
</tr>
<tr>
<td>Router # <code>show voice register pool <tag></code></td>
<td>Displays specific SIP phone voice register pool detail info.</td>
</tr>
<tr>
<td>Router # <code>show voice register dial-peers</code></td>
<td>Displays SIP-CME created dial peer.</td>
</tr>
<tr>
<td>Router # <code>show voice register dn all</code></td>
<td>Displays all config voice register dn detail info.</td>
</tr>
<tr>
<td>Router # <code>show voice register dn <tag></code></td>
<td>Displays specific voice register dn detail info.</td>
</tr>
</tbody>
</table>

Example for Fast-Track Configuration Approach

The following example shows how to enable the new Cisco Unified 9900 SIP IP phone to inherit the properties of the Cisco Unified SIP IP phone 9951 and overwrite some of the phone’s properties:

```
voice register pool-type 9900
  reference-pooltype 9951
  description SIP Phone 9900 addon module
  num-lines 24
  addons 3
  no phoneload-support
  xml-config custom "custom-sftp"1"/custom-sftp"

voice register pool 1
  type 9900 add-on 1 CKEM 2 CKEM 3 CKEM
  id mac 1234.4567.7891
  voice register global
  mode cme
  load 9900 P0S3-06-0-00
```

The following example shows how to inherit the existing properties of a reference phone type (Cisco Unified SIP IP phone 6921) using the fast-track configuration approach.

```
voice register pool-type 6922
  reference-pooltype 6921
  device-name "SIP Phone 6922"

voice register pool 11
  type 6922
  id mac 1234.4567.7890
```
Example for Configuring Key Expansion Module for Cisco 8800 Series IP Phones on Unified CME

The following example demonstrates how to configure the type command for phone type 8865 with the KEM option CP-8800-Video to enable Key Expansion Module for Cisco IP Phone 8800 Series on Unified CME 12.5 and later releases:

```bash
enable
configure terminal
voice register pool
   id mac eeee.ffff.cccc
type 8865 addon 1 CP-8800-Video 2 CP-8800-Video 3 CP-8800-Video
```

Example for Configuring Enhanced Line Mode on Unified CME

The following example demonstrates how to configure service phone lineMode command under telephony-service to enable Enhanced Line Mode feature for Cisco IP Phone 8800 Series on Unified CME:

```bash
Router#sh run | s tele
telephony-service
max-ephones 50
max-dn 50
ip source-address 8.40.23.31 port 2000
service phone sshAccess 0
service phone webAccess 0
service phone lineMode 1
max-conferences 8 gain -6
call-park system application
hunt-group logout HLog
moh enable-g711 "flash:music-on-hold.au"
moh g729 "flash:SampleAudioSource.g729.wav"
transfer-system full-consult
fac standard
create cnf-files version-stamp Jan 01 2002 00:00:00
```

Where To Go Next

To select a fixed-button layout for a Cisco Unified IP Phone 7931G, see Select Button Layout for a Cisco Unified SCCP IP Phone 7931G, on page 1417.

After configuring phones in Cisco Unified CME to make basic calls, you are ready to generate configuration files for the phones to be connected to your router. See Generate Configuration Files for Phones, on page 390.

Feature Information for Configuring Phones to Make Basic Calls

⚠️ Caution

The Interactive Voice Response (IVR) media prompts feature is only available on the IAD2435 when running IOS version 15.0(1)M or later.
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 22: Feature Information for Basic Call Features

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Versions</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco ATA 191</td>
<td>12.5</td>
<td>Introduces native support for Cisco ATA 191 with Unified CME.</td>
</tr>
<tr>
<td>Shared Lines with Voice Class Codec Support</td>
<td>12.2</td>
<td>Adds support for shared lines with voice class codec on Unified CME.</td>
</tr>
<tr>
<td>KEM Support for Cisco Unified 8961, 9951, and 9971 SIP IP Phones</td>
<td>9.1</td>
<td>Increases line key and feature key appearances, speed dials, or programmable buttons on Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td>Cisco Unified SIP IP Phones</td>
<td></td>
<td>Adds SIP support for the following phone types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified 6901 and 6911 IP Phones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified 6921, 6941, 6945, and 6961 IP Phones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco Unified 8941 and 8945 IP Phones</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Unified/CME Versions</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Mixed Shared Lines</td>
<td></td>
<td>Allows Cisco Unified SIP and SCCP IP phones to share a common directory number.</td>
</tr>
<tr>
<td>Multiple Calls Per Line</td>
<td></td>
<td>Overcomes the limitation on the maximum number of calls per line.</td>
</tr>
<tr>
<td>Real-Time Transport Protocol Call Information Display Enhancement</td>
<td>8.8</td>
<td>Allows you to display information on active RTP calls using the <code>show ephone rtp connections</code> command. The output from this command provides an overview of all the connections in the system, narrowing the criteria for debugging pulse code modulation and Cisco Unified CME packets without a sniffer.</td>
</tr>
<tr>
<td>Support for Cisco Unified 3905 SIP IP Phones</td>
<td></td>
<td>Adds support for SIP phones connected to a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Support for Cisco Unified 6945, 8941, and 8945 SCCP IP Phones</td>
<td></td>
<td>Adds support for SCCP phones connected to a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Support for 7926G Wireless SCCP IP Phone</td>
<td>8.6</td>
<td>Added support for 7926G Wireless SCCP IP Phone.</td>
</tr>
<tr>
<td>Secure IP Phones</td>
<td>8.0</td>
<td>Adds support for Secure IP Phone (IP-STE).</td>
</tr>
<tr>
<td>SIP Shared Lines</td>
<td>7.1</td>
<td>Adds support for nonexclusive shared lines on SIP phones.</td>
</tr>
<tr>
<td>Autoconfiguration for Cisco VG202, VG204, and VG224</td>
<td></td>
<td>Adds autoconfiguration for the Cisco VG202, VG204, and VG224 Analog Phone Gateway.</td>
</tr>
<tr>
<td>Ephone-Type Templates</td>
<td>7.0/4.3</td>
<td>Adds support for dynamically adding new phone types without upgrading Cisco IOS software.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Versions</td>
<td>Feature Information</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Octo-Line Directory Numbers</td>
<td></td>
<td>Adds octo-line directory numbers that support up to eight active calls.</td>
</tr>
<tr>
<td>G.722 and iLBC Transcoding and Conferencing Support in Cisco Unified CME</td>
<td></td>
<td>Adds support for the G.722-64K and iLBC codecs.</td>
</tr>
<tr>
<td>Dial Plans for SIP Phones</td>
<td>4.1</td>
<td>Adds support for dial plans for SIP phones.</td>
</tr>
<tr>
<td>KPML</td>
<td></td>
<td>Adds support for KPML for SIP phones.</td>
</tr>
<tr>
<td>Session Transport Protocol</td>
<td></td>
<td>Adds selection for session-transport protocol for SIP phones.</td>
</tr>
<tr>
<td>Watch Mode</td>
<td></td>
<td>Provides Busy Lamp Field (BLF) notification on a line button that is configured for watch mode on one phone for all lines on another phone (watched phone) for which the watched directory number is the primary line.</td>
</tr>
<tr>
<td>Remote Teleworker Phones</td>
<td>4.0</td>
<td>Introduces support for teleworker remote phones.</td>
</tr>
<tr>
<td>Analog Phones</td>
<td>4.0</td>
<td>Introduces support for analog phones with SCCP supplementary features using FXS ports on Cisco Integrated Services Routers.</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
<td>Introduces support for analog phones with SCCP supplementary features using FXS ports on a Cisco VG224 voice gateway.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Introduces support for Cisco ATA 186 and Cisco ATA 188.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Introduces support for analog phones in H.323 mode using FXS ports.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>CiscoUnifiedCME Versions</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Cisco IP Communicator</td>
<td>4.0</td>
<td>Introduces support for Cisco IP Communicator.</td>
</tr>
</tbody>
</table>
| Direct FXO Trunk Lines | 4.0 | Adds enhancements to improve the keyswitch emulation behavior of PSTN lines in a Cisco Unified CME system, including the following:
 • Status monitoring of the FXO port on the line button of an IP phone.
 • Transfer recall if a transfer-to phone does not answer after a specified timeout.
 • Transfer-to button optimization to free up the private extension line on the transfer-to phone.
 • Directory numbers for FXO lines can be configured for dual-line to support the FXO monitoring, transfer recall, and transfer-to button optimization features. |
| 3.2 | | Introduces direct FXO trunk line capability. |
| SIP Phones | 3.4 | Adds support for SIP phones connected to Cisco CME system. |
| Monitor Mode for Shared Lines| 3.0 | Provides a visible line status indicating whether the line is in-use or not. |
CHAPTER 9

Create Phone Configurations Using Extension Assigner

- Prerequisites for Extension Assigner, on page 353
- Restrictions for Extension Assigner, on page 353
- Information About Extension Assigner, on page 354
- Configure Extension Assigner, on page 360
- Configure Extension Assigner Synchronization, on page 378
- Assign Extension Numbers Onsite by Using Extension Assigner, on page 381
- Verify Extension Assigner Configuration for SCCP Phones, on page 383
- Verify Extension Assigner Configuration for SIP Phones, on page 383
- Configuration Examples for Extension Assigner, on page 383

Prerequisites for Extension Assigner

- Cisco Unified CME 11.6 or a later version for SIP phones.
- Cisco Unified CME 4.0(3) or a later version for SCCP phones.
- For Extension Assigner Synchronization, Cisco Unified CME 4.2(1) or a later version.
- The auto-register-phone command must be enabled (default) for SCCP phones, and auto-register must be enabled for SIP phones.
- DHCP must be configured. For configuration information, see Network Parameters.
- You have a valid Cisco.com account.
- You have access to a TFTP server for downloading files.

Restrictions for Extension Assigner

- The number of phones that you install cannot exceed the maximum number of phones supported by the router chassis. To find the maximum number of phones for a particular router and Cisco Unified CME version, see the appropriate Cisco Unified CME Supported Firmware, Platforms, Memory, and Voice Products for your Cisco IOS release.
- For Extension Assigner Synchronization, automatic synchronization only applies to configuration changes made by Cisco Unified CME Extension Assigner.
Information About Extension Assigner

Extension Assigner Overview

From Cisco Unified CME Release 11.6 onwards, Extension Assigner feature is supported for both SIP and SCCP phones. This feature enables installation technicians to assign extension numbers to Cisco Unified CME phones without administrative access to the server, typically during the installation of new phones or the replacement of broken phones. However, before an installation technician can use this feature, the system administrator must first configure Cisco Unified CME to allow specific extensions to be assigned. The system administrator must also provide the installation technician with the information necessary for assigning extension numbers to phones. The installation technician can then assign extension numbers to phones with access to only the phones themselves and with no further intervention from the administrator.

To configure this feature, tasks must be performed on the Cisco router by an administrator and onsite by installation technicians.

Procedure for System Administrators

Before an installation technician can assign new extension numbers to phones, you must complete the following tasks:

1. Determine which extension numbers will be assigned to the new phones and plan your configuration.
2. Download the appropriate Tcl script and associated audio prompt files and place them in the correct directory.
3. Configure the Cisco Unified CME router to:
 - Configure and load the appropriate Tcl script.
 - Specify the extension that the installation technician calls to assign extension numbers.
 - Optionally specify whether the extension used to assign extension numbers is dialed automatically.
 - Specify the password that the installation technician enters to assign extension numbers.
 - Configure the extension assigner feature.
 - Configure ephone-dns with temporary extension numbers (applicable only for SCCP phones).
 - Configure ephone-dns and voice register dns with the extension numbers that the installation technician can assign to phones.
 - Configure ephones and voice register pools with temporary MAC addresses for each phone that will be assigned an extension number by the installation technician.
 - Optionally configure the router to automatically save your configuration.

 Note
 All phone configurations such as dn and pool that are generated as part of the auto registration process are persistent configurations (If the command `background save interval` is configured under telephony-service). These phone configurations are available on Unified CME even after an event of router reload.

4. Provide the installation technician with the information needed to assign extension numbers to the new phones.
Before you can configure this feature, you must understand how the extension assigner application works and what information the installation technician needs to assign extension numbers to phones.

Other information you must provide to the installation technician involves the tasks that the installation technician must perform. These tasks include:

- Dialing a configurable extension number to access the extension assigner application.
- Entering a configurable password.
- Entering a tag (provision-tag for SIP phones, and ephone-tag or provision-tag for SCCP phones) that identifies the extension number that will be assigned to the phone.

Therefore, you must make the following decisions:

- Which extension number must be dialed to access the extension assigner application.
- Whether the number is dialed automatically when a phone goes off hook.
- What password the installation technician must enter to access the extension assigner application.
- What type of tag (provision-tag for SIP phones, and ephone-tag or provision-tag for SCCP phones) numbers to use to identify the extension number to assign to the phone.
- What specific tag numbers to use to identify the extension number to assign to the phone.

The first three decisions are straightforward, but the last two tag number decisions require some knowledge of how the extension assigner feature works.

This feature is implemented using a Tcl script and audio files. To run this script, the installation technician plugs in the phone, waits for a random extension number to be automatically assigned, and dials a specified extension assigner number to invoke the extension assigner service.

After the phones have registered and received their temporary extension numbers, the installation technician can access extension assigner and enter a tag number. This tag number is used to identify the extension number and must match either an ephone tag (only for SCCP phones) or a similar new tag called the provision-tag (applicable to both SIP and SCCP phones).

For SCCP phones, you must decide on which tag you want to use before you configure your ephone and ephone-dn entries.

The advantage of using the provision-tag is that you can make it easier for the installation technician to assign extension numbers because you can configure the tag to match the primary extension number or some other unique identifier for the phone, such as a jack number. We recommend you to configure provision-tag same as the primary extension number.

The disadvantage is that you configure an additional keyword for each ephone entry, as shown in the following example:

```
ephone 1
  provision-tag 9001
  mac-address 02EA.EAEA.0001
  button 1:1

voice register pool 1
  provision-tag 1001
  mac-address 02EA.EAEA.0001
  number 1 dn 101
```

For SCCP phones, if you decide to use the ephone tag, it requires less configuration. However, the installation technician enters an arbitrary tag number instead of the actual extension number when configuring a phone. This restriction is because the number of ephone tags that you can configure is limited by your license. For
example, if you use the ephone tag and you have a 100-user license, the installation technician cannot enter 9001 for the tag because you can configure only ephone 1 to ephone 100.

Note that each ephone entry that you configure must also include a temporary MAC address. As shown in the above example, this address should begin with 02EA.EAEA and can end with any unique number. We strongly recommend that you can configure this unique number to match the ephone tag for SCCP phones.

For SCCP phones, you do not have to configure any ephone entries for the extension number that are randomly assigned. The auto assign feature automatically creates an ephone entry for each new phone when it registers. The auto assign feature then automatically assigns an ephone-dn entry if there is an available ephone-dn that has one of the tag numbers specified by the `auto assign` command. The resulting ephone pool configurations have the actual MAC address of the phone and a button with the first available ephone-dn designated for the auto assign feature. For more information, see Configure Temporary Extension Numbers for SCCP Phones That Use Extension Assigner, on page 366.

For SIP phones, you do not have to configure voice register pool or voice register dn. You need to configure auto-register command for automatic registration of SIP phones on Cisco Unified CME. For more information, see Configure Temporary Extension Numbers for SCCP Phones That Use Extension Assigner, on page 366.

For manually registered phones, ephone (or voice register pool) and ephone-dn (or voice register dn) are manually created.

As shown in the following example, you configure at least one ephone-dn for a temporary extension and specify which ephone-dns the autoassign feature will assign to the temporary ephone entries:

```
telephony-service
  auto assign 101 to 105
  ephone-dn 101
    number 0001
```

When the installation technician assigns an extension number to a phone, the temporary MAC address is replaced by the actual MAC address and the ephone entry created by the auto register feature is deleted. The number of ephone-dns that you configure for the auto assign feature determines how many phones you can plug in at one time and get an automatically assigned extension. If you define four ephone-dns for auto assign and you plug in five phones, one phone will not get a temporary extension number until you assign an extension to one of the other four phones and reset the fifth phone. You are permitted to set the max-ephone value higher than the number of users and phones supported by your Cisco Unified CME phone licenses for the purpose of enrolling licensed phones using Extension Assigner.

In addition to configuring one ephone-dn for each temporary extension number that is assigned automatically, you also must configure an ephone-dn entry for each extension number that is assigned by the installation technician. For more details on configuring extension numbers that technicians can assign to SCCP phones, see Configure Extension Numbers That Installation Technicians Can Assign to SCCP Phones, on page 369.

For SIP Phones, the temporary MAC address is replaced by the actual MAC address and voice register pool entry created by the auto-register feature is deleted when the installation technician assigns an extension number to a phone. The number of voice register dns that you configure for the auto assign feature determines how many phones you can plug in at one time and get an automatically assigned extension. If you define four voice register dns for auto assign and you plug in five phones, one phone will not get a temporary extension number until you assign an extension to one of the other four phones and reset the fifth phone. You are permitted to set the max-pool value higher than the number of users and phones supported by your Cisco Unified CME phone licenses for the purpose of enrolling licensed phones using Extension Assigner. For more
For SIP Phones, you need not create temporary DN if auto registration is used.

To complete the configuration, as shown in the following example, you must:

- Specify whether to use the ephone or the provision-tag number to identify the extension number to assign to the phone. Set this when the feature is enabled with the new `extension-assigner tag-type` command provided with this feature.
- Configure an ephone-DN for each temporary extension number that is assigned automatically.
- Configure an ephone-DN or voice register DN for each extension number that you want the installation technician to assign to a phone.
- Configure an ephone or voice register pool with a temporary MAC address for each phone that is assigned an extension number by the installation technician. Optionally, this ephone definition can include the new provision-tag. For SIP phones, it is necessary to have provision-tag information under voice register pool. For more information, see Configure Ephones with Temporary MAC Addresses, on page 372.

```
telephony-service
  extension-assigner tag-type provision-tag
  auto assign 101 to 105
  ephone-dn 1 dual-line
    number 6001
  ephone-dn 101
    number 0001
    label Temp-Line-not assigned yet
    ephone 1
      provision-tag 6001
      mac-address 02EA.EAEA.0001
      button 1:1

******************************************************************************

  voice register pool 1
  provision-tag 1001
  mac-address 02EA.EAEA.0001
  number 1 dn 101
```

Because you must configure two ephone-DNs or voice register DNs for each extension number that you want to assign, you may exceed your max-DN setting. You are permitted to set the max-DN value higher than the number allowed by your license for the purpose of enrolling licensed phones using extension assigner.

Assuming that your max-DN setting is set high enough, your max-ephone or max-pool setting determines how many phones you can plug in at one time. For example, if your max-ephone or max-pool setting is ten more than the number of phones to which you want to assign extension numbers, then you can plug in ten phones at a time. If you plug in eleven phones, one phone will not register or get a temporary extension number until you assign an extension to one of the first ten phones and reset the eleventh phone.

After you have configured your ephone or voice register pool, and ephone-DN or voice register DN entries, you can complete your router configuration by optionally configuring the router to automatically save your configuration. If the router configuration is not saved, any extension assignments made by the installation technician will be lost when the router is restarted. The alternative to this optional procedure is to have the installation technician connect to the router and enter the `write memory` command to save the router configuration.
The final task of the system administrator is to document the information that the installation technician needs to assign extension numbers to the new phones. You can also use this documentation as a guide when you configure Cisco Unified CME to implement this feature. This information includes:

- How many phones the installation technician can plug in at one time
- Which extension number to dial to access the extension assigner application
- Whether the number is dialed automatically when a phone goes off hook
- What password to enter to access the application
- Which tag numbers to enter to assign an extension to each phone

Because this feature is implemented using a Tcl script and audio files, you must place the script and associated audio prompt files in the correct directory. Do not edit this script; just configure Cisco Unified CME to load the appropriate script.

Extension Assigner in Mixed Deployment

From Cisco Unified CME release 11.6 onwards, extension assigner feature supports mixed deployment of SCCP and SIP phones. In a mixed deployment scenario, you sometimes have to migrate or replace an SCCP phone with a SIP phone or vice versa. The extension assigner functionality ensures a seamless migration experience in this scenario by letting you assign extension numbers to the new phone (irrespective of SIP or SCCP).

In mixed mode deployment, you can reassign any current extension number to a new phone. When you dial in to the extension assigner system to perform this task, you are redirected to the unassign menu. You need to unassign the current extension number so that it is no more assigned to any phone. After successfully unassigning the extension number, the call is disconnected. When you dial in to the extension assigner again, you can reassign the extension number to your new phone. For more information, see Reassign the Current Extension Number, on page 382.

Procedures for Installation Technicians

This feature is implemented using a Tcl script and audio prompt files that enable the installation technician to assign an extension number to a new Cisco Unified CME phone by performing the following procedure. The system administrator provides the installation technician with all of the information required to perform this procedure.

Step 1 Plug in a specified number of new phones.
Step 2 Wait for the phones to be assigned temporary, random extension numbers.
Step 3 Dial a specified number to access the extension assigner application.
Step 4 Enter a specified password.
Step 5 Enter a tag that identifies an extension number and enables the installation technician to perform one of the following tasks:
• Assign a new extension number to a phone.
• Unassign the current extension number.
• Reassign an extension number.

Files Included in this Release

The app-cme-ea-2.0.0.0.tar or later archive file provided for the extension assigner feature includes a readme file, a Tcl script, and several audio prompt files. If you want to replace the audio files with files that use a language other than English, do not change the name of the files. The Tcl script is written to use only the following list of the filenames:

- app-cme-ea-2.0.0.0.tcl (script)
- en_cme_tag_assign_phone.au (audio file)
- en_cme_tag_assigned_to_phone.au (audio file)
- en_cme_tag_assigned_to_phone_idle.au (audio file)
- en_cme_tag_assigned_to_phone_inuse.au (audio file)
- en_cme_tag_assigned_to_phone_unreg.au (audio file)
- en_cme_tag_available.au (audio file)
- en_cme_tag_extension.au (audio file)
- en_cme_tag_invalid.au (audio file)
- en_cme_tag_unassign_phone.au (audio file)
- en_cme_tag_action_cancelled.au (audio file)
- en_cme_tag_assign_failed.au (audio file)
- en_cme_tag_assign_success.au (audio file)
- en_cme_tag_contact_admin.au (audio file)
- en_cme_tag_disconnect.au (audio file)
- en_cme_tag_ephone_tagid.au (audio file)
- en_cme_tag_invalid_password.au (audio file)
- en_cme_tag_invalidoption.au (audio file)
- en_cme_tag_noentry.au (audio file)
- en_cme_tag_password.au (audio file)
- en_cme_tag_unassign_failed.au (audio file)
- en_cme_tag_unassign_success.au (audio file)
- en_eight.au (audio file)
- en_five.au (audio file)
- en_four.au (audio file)
- en_nine.au (audio file)
- en_one.au (audio file)
- en_seven.au (audio file)
- en_six.au (audio file)
- en_three.au (audio file)
- en_two.au (audio file)
- en_zero.au (audio file)
Extension Assigner Synchronization

Extension Assigner Synchronization enables the secondary backup router to automatically receive any changes made by Extension Assigner to ephone or voice register pool mac-addresses in the primary router. The synchronization is performed using the Cisco Unified CME XML interface. The Cisco Unified CME XML client encapsulates the configuration changes into an `ISexecCLI` request and sends it to the secondary backup router using HTTP. The server on the secondary backup side processes the incoming XML request and calls the Cisco IOS CLI parser to perform the updates.

For configuration information, see Configure Extension Assigner Synchronization.

Configure Extension Assigner

The following tasks are performed by an administrator or other personnel who is responsible for configuring Extension Assigner:

Determine Extension Numbers to Assign to the New Phones and Plan Your Configuration

After you determine which extension number to assign to each phone, you must make the following decisions:

- Which extension number must be dialed to access the extension assigner application.
- Whether the number is dialed automatically when a phone goes off hook.
- What password the installation technician must enter to access the extension assigner application.
- Whether to use ephone-tag (applicable only for SCCP phones) or the provision-tag number to identify the extension number to assign to the phone.
- How many temporary extension numbers to configure. This will determine how many temporary ephone-dns or voice register dns, and temporary MAC addresses to configure.
- What specific tag numbers to use to identify the extension number to assign to the phone.

Download the Tcl Script and Audio Prompt Files

To download the Tcl script and audio prompt files for the extension assigner feature, perform the following steps.

For more information about how to use Tcl scripts, see the Cisco IOS Tcl IVR and Voice XML Application Guide for your Cisco IOS release.

Note

Do not edit the Tcl script

SUMMARY STEPS

2. Download the Cisco Unified CME extension assigner tar archive to a TFTP server that is accessible to the Cisco Unified CME router.

3. `enable`

4. `archive tar /xtract source-url destination-url`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Download the Cisco Unified CME extension assigner tar archive to a TFTP server that is accessible to the Cisco Unified CME router.</td>
<td>This tar archive contains the extension assigner Tcl script and the default audio files that you need for the extension assigner service.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>enable</code>
Example: <code>Router> enable</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>archive tar /xtract source-url destination-url</code>
Example: <code>Router# archive tar /xtract tftp://192.168.1.1/app-cme-ea-2.0.0.0.tar flash:</code></td>
<td>Uncompresses the files in the archive file and copies them to a location that is accessible by the Cisco Unified CME router.
• <code>source-url</code>—URL of the source of the extension assigner TAR file. Valid URLs can refer to TFTP or HTTP servers or to flash memory.
• <code>location</code>—URL of the destination of the extension assigner TAR file, including its Tcl script and audio files. Valid URLs can refer to TFTP or HTTP servers or to flash memory.</td>
</tr>
</tbody>
</table>

Configure the Tcl Script

To configure and load the Tcl script for the extension assigner feature and create the password that installation technicians enter to access the extension assigner application, perform the following steps.

For more information about how to use Tcl scripts, see the Cisco IOS Tcl IVR and Voice XML Application Guide for your Cisco IOS release.

To change the password, you must remove the existing extension assigner service and create a new service that defines a new password.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `application`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters application configuration mode to configure packages and services.</td>
</tr>
<tr>
<td>application</td>
<td>Router(config)# application</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters service parameter configuration mode to configure parameters for the call-queue service.</td>
</tr>
<tr>
<td>service service-name location</td>
<td>Router(config-app)# service EA flash:/EA/</td>
</tr>
<tr>
<td>Step 5</td>
<td>Sets the password that installation technicians enter to access the extension assigner application.</td>
</tr>
<tr>
<td>param ea-password password</td>
<td>• password—Numerical password that installation technicians enter to access the extension assigner application. Length: 2 to 10 digits.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-app-param)# param ea-password 1234</td>
</tr>
<tr>
<td>Step 6</td>
<td>Defines the language of audio files that are used for dynamic prompts by an IVR application.</td>
</tr>
<tr>
<td>paramspace english index number</td>
<td>• For the Extension Assigner, language must be English and prefix is en.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-app-param)# paramspace english index 0</td>
</tr>
<tr>
<td>Step 7</td>
<td>Defines the language of audio files that are used for dynamic prompts by an IVR application.</td>
</tr>
<tr>
<td>paramspace english language en</td>
<td>Router(config-app-param)# paramspace english language en</td>
</tr>
</tbody>
</table>
Purpose

- For the Extension Assigner, language must be English and prefix is en.

Step 8

paramspace english location `location`

Example:

```bash
Router(config-app-param)# paramspace english location flash:/EA/
```

Defines the location of audio files that are used for dynamic prompts by an IVR application.

- For the Extension Assigner, language must be English.
- `location`—URL of the Tcl script for the extension assigner service. Valid URLs can refer to TFTP or HTTP servers or to flash memory.

Step 9

paramspace english prefix en

Example:

```bash
Router(config-app-param)# paramspace english prefix en
```

Defines the prefix of audio files that are used for dynamic prompts by an IVR application.

- For the Extension Assigner, language must be English and prefix is en.

Step 10

end

Example:

```bash
Router(config-app-param)# end
```

Returns to privileged EXEC mode.

Specify the Extension for Accessing Extension Assigner Application

To specify the extension number that installation technicians must dial to access the extension assigner application during onsite installation, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice `tag voip`
4. service service-name `out-bound`
5. destination-pattern `string`
6. session protocol sipv2
7. session target ipv4: `destination-address`
8. dtmf-relay rtp-nte
9. codec `g711ulaw`
10. no vad
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Specify the Extension for Accessing Extension Assigner Application

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>dial-peer voice tag voip</td>
<td>Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 5999 voip</td>
<td>• tag—Number used during configuration tasks to identify this dial peer.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>service service-name out-bound</td>
<td>Loads and configures the extension assigner application on a dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# service extensionassigner out-bound</td>
<td>• service-name—Name must match the name that you used to load the extension assigner Tcl script in the Configuring the Tcl Script section.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>destination-pattern string</td>
<td>Specifies either the prefix or the full E.164 telephone number (depending on the dial plan) for a dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# destination pattern 1010</td>
<td>• string—Number that the installation technician calls when assigning an extension number to a phone.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>session protocol sipv2</td>
<td>Designates a SIP loopback trunk for Extension Assigner application.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# session protocol sipv2</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>session target ipv4: destination-address</td>
<td>Designates a network-specific address to receive calls from a VoIP dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# session target ipv4:172.16.200.200</td>
<td>• destination—IP address for the Cisco Unified CME interface on this router.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>dtmf-relay rtp-nte</td>
<td>Specifies the method for relaying dual tone multifrequency (DTMF) tones between two devices as per RFC2833.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# dtmf-relay rtp-nte</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>codec g711ulaw</td>
<td>Specifies the voice coder rate of speech for a dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# codec g711ulaw</td>
<td>• g711ulaw—Option that represents the correct voice decoder rate. g711ulaw is the only codec supported with Extension Assigner application.</td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>no vad</td>
<td>Disables voice activity detection (VAD) for the calls using a particular dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# no vad</td>
<td>• Required for Extension Assigner.</td>
</tr>
</tbody>
</table>
Configure Provision-Tags for the Extension Assigner Feature

To modify Extension Assigner to use provision-tags, perform the following steps. By default, the extension assigner is enabled and uses ephone tags.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. extension-assigner tag-type { ephone-tag | provision-tag }
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 extension-assigner tag-type { ephone-tag</td>
<td>provision-tag }</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# extension-assigner tag-type provision-tag</td>
<td></td>
</tr>
</tbody>
</table>

• **ephone-tag**: Specifies that extension assigner use the ephone tag to identify the extension number that is assigned to a phone. The installation technician enters this number to assign an extension number to a phone.

• **provision-tag**: Specifies that extension assigner use the provision-tag to identify the extension number that is assigned to a phone. The installation technician enters this number to assign an extension number to a phone.
Configure Temporary Extension Numbers for SCCP Phones That Use Extension Assigner

To create ephone-dn that is used as temporary extension numbers for phones to which an extension number will be assigned by Extension Assigner, perform the following steps for each temporary number to be created.

Tip
The readme file that is included with the script contains some sample entries for this procedure that you can edit to fit your needs.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn dn-tag [dual-line]`
4. `number number [secondary number] [no-reg [both | primary]]`
5. `trunk digit-string [timeout seconds]`
6. `name name`
7. `exit`
8. `telephony-service`
9. `auto assign dn-tag to dn-tag`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Note: Enables privileged EXEC mode.
- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag [dual-line]
Note: We recommend that you use single-line mode for your temporary extension numbers.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# ephone-dn 90</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>`number number [secondary number] [no-reg [both</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>trunk digit-string [timeout seconds]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>name name</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>telephony-service</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>auto assign dn-tag to dn-tag</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Configure Temporary Extension Numbers for SIP Phones That Use Extension Assigner

To create voice register dns to use as temporary extension numbers for phones in which an extension number is assigned by Extension Assigner, perform the following steps for each temporary number to be created.
The readme file that is included with the script contains some sample entries for this procedure that you can edit to fit your needs.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. auto-register
5. password *string*
6. auto-assign *first dn to last dn*
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 auto-register</td>
<td>Enters auto-register configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# auto-register</td>
<td></td>
</tr>
<tr>
<td>Step 5 password string</td>
<td>Specifies default password for auto registered phones.</td>
</tr>
<tr>
<td>Example: Router(config-voice-auto-register)# password xxxx</td>
<td></td>
</tr>
<tr>
<td>Step 6 auto-assign first dn to last dn</td>
<td>Automatically assigns voice register dn with these extensions to Cisco Unified IP phones as they register for service with a Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example: Router(config-voice-auto-register)# auto-assign 90 to 99</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-voice-auto-register)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Extension Numbers That Installation Technicians Can Assign to SCCP Phones

To create ephone-dns for an extension numbers that the installation technicians can assign to phones, perform the following steps for each directory number to be created.

> Tip
>
The readme file provided with this feature contains sample entries that you can edit to fit your needs.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn dn-tag [dual-line]`
4. `number number [secondary number] [no-reg [both | primary]]`
5. `trunk digit-string [timeout seconds]`
6. `name name`
7. `exit`
8. `telephony-service`
9. `auto assign dn-tag to dn-tag`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.
Example:
```
Router> enable
```
| | **Example:**
| | `Router> enable`
| **Step 2** | `configure terminal` | Enters global configuration mode.
Example:
```
Router# configure terminal
```
| **Step 3** | `ephone-dn dn-tag [dual-line]` | Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.
Example:
```
Router(config)# ephone-dn 20
```
| | **Note** | To change an ephone-dn from dual-line to single-line mode or the reverse, first delete the ephone-dn and then recreate it. |
| **Step 4** | `number number [secondary number] [no-reg [both | primary]]` | Configures a valid extension number for this ephone-dn instance.
Example:
```
Router(config-ephone-dn)# number 9000
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 trunk digit-string [timeout seconds]</td>
<td>(Optional) Configures extension number to be automatically dialed for accessing the extension assigner application.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# trunk 5999</td>
<td>• digit-string - Must match the number that you configured in the Specify the Extension for Accessing Extension Assigner Application section.</td>
</tr>
</tbody>
</table>

| **Step 6** name name | (Optional) Associates a name with this ephone-dn instance. This name is used for caller-ID displays and in the local directory listings. |
| **Example:** Router(config-ephone-dn)# name hardware | • Must follow the name order that is specified with the directory command. |

| **Step 7** exit | Exits ephone-dn configuration mode |
| **Example:** Router(config-ephone-dn)# exit | |

| **Step 8** telephony-service | Enters telephony-service configuration mode. |
| **Example:** Router(config)# telephony-service | |

| **Step 9** auto assign dn-tag to dn-tag | Automatically assigns ephone-dn tags to Cisco Unified IP phones as they register for service with a Cisco Unified CME router. |
| **Example:** Router(config-telephony)# auto assign 90 to 99 | • Must match the tags that you configured in earlier step. |

| **Step 10** end | Returns to privileged EXEC mode. |
| **Example:** Router(config-telephony)# end | |

Configure Extension Numbers That Installation Technicians Can Assign to SIP Phones

To create voice register dns for an extension numbers that the installation technicians can assign to phones, perform the following steps for each directory number to be created.

Tip
The readme file provided with this feature contains sample entries that you can edit to fit your needs.

SUMMARY STEPS

1. enable
2. configure terminal
3. **voice register dn** *tag*
4. **number** *number*
5. **name** *name*
6. **end**

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable
Example: Router> enable | Enables privileged EXEC mode.
* Enter your password if prompted. |
| **Step 2** | configure terminal
Example: Router# configure terminal | Enters global configuration mode. |
| **Step 3** | voice register dn *tag*
Example: Router(config)# voice register dn 20 | Enters voice register dn configuration mode, and creates a voice register dn. |
| **Step 4** | number *number*
Example: Router(config-register-dn)# number 20 | Configures a valid extension number for this voice register dn instance. |
| **Step 5** | name *name*
Example: Router(config-register-dn)# name hardware | (Optional) Associates a name with this voice register dn instance. This name is used for caller-ID displays and in the local directory listings.
* Must follow the name order that is specified with the directory command. |
| **Step 6** | end
Example: Router(config-register-dn)# end | Returns to privileged EXEC mode. |
Configure Ephones with Temporary MAC Addresses

To create an ephone configuration with temporary MAC address for a Cisco Unified CME phone to which you want the installation technician to assign extension numbers, perform the following steps for each phone.

- Max-ephone setting determines how many phones you can plug in at one time. For example, if your max-ephonesetting is ten more than the number of phones to which you want to assign extension numbers, the you can plug in ten phones at a time. If you plug in eleven phones, one phone will not register or get a temporary extension number until you assign an extension to one of the first ten phones and reset the eleventh phone.

- For Cisco VG224 analog voice gateways with extension assigner, a minimum of 24 temporary ephones is required.

Restriction

The readme file provided with this feature contains some sample entries for this procedure that you can edit to fit your needs.

Tip

The readme file provided with this feature contains some sample entries for this procedure that you can edit to fit your needs.

Before you begin

The max-ephone command must be configured for a value equal to at least one greater than the number of phones to which you want to assign extension numbers to allow the autoregister feature to automatically create at least one ephone for your temporary extension numbers.

Note

You are permitted to set the max-ephone value higher than the number of users supported by your Cisco Unified CME licenses for the purpose of enrolling licensed phones using Extension Assigner.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `enable phone-tag`
4. `provision-tag number`
5. `mac-address 02EA.EAEA. number`
6. `type phone-type [addon 1 module-type [2 module-type]]`
7. `button button-number[separator]dn-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 enable phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 provision-tag number</td>
<td>(Optional) Creates a unique sequence number to be used by Extension Assigner to identify extension numbers to be assigned.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# provision-tag 20</td>
<td></td>
</tr>
<tr>
<td>Step 5 mac-address 02EA.EAEA. number</td>
<td>Specifies a temporary MAC address number for this ephone.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# mac-address 02EA.EAEA. 0020</td>
<td></td>
</tr>
<tr>
<td>Step 6 type phone-type [addon 1 module-type [2 module-type]]</td>
<td>Specifies the type of phone.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# type 7960 addon 1 7914</td>
<td></td>
</tr>
<tr>
<td>Step 7 button button-number{separator}dn-tag</td>
<td>Associates a button number and line characteristics with an extension (ephone-dn).</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# button 1:1</td>
<td>Note The Cisco Unified IP Phone 7910 has only one line button, but can be given two ephone-dn tags.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Voice Register Pools with Temporary MAC Addresses

- **Restriction**
 - Max-pool setting determines how many phones you can plug in at one time. For example, if your max-pool setting is ten more than the number of phones to which you want to assign extension numbers, the you can plug in ten phones at a time. If you plug in eleven phones, one phone will not register or get a temporary extension number until you assign an extension to one of the first ten phones and reset the eleventh phone.

- **Tip**
 - The readme file provided with this feature contains some sample entries for this procedure that you can edit to fit your needs.

Before you begin

The **max-pool** command must be configured for a value equal to at least one greater than the number of phones to which you want to assign extension numbers to allow the autoregister feature to automatically create at least one ephone for your temporary extension numbers.

- **Note**
 - You are permitted to set the max-pool value higher than the number of users supported by your Cisco Unified CME licenses for the purpose of enrolling licensed phones using Extension Assigner.
 - For a phone that needs to invoke Extension Assigner application for assign or unassign operations, g711ulaw codec and dtmf-relay as rtp-nte needs to be configured in voice register pool.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register pool pool-tag`
4. `provision-tag number`
5. `mac-address 02EA.EAEA. number`
6. `type phone-type [addon 1 module-type [2 module-type]]`
7. `number number dn dn-tag`
8. `dtmf-relay rtp-nte`
9. `codec g711ulaw`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

```
Router# configure terminal
```

Enters global configuration mode.

Step 3

voice register pool pool-tag

Example:

```
Router(config)# voice register pool 20
```

Enters voice register pool configuration mode.

- **phone-tag**: Maximum number is version and platform-specific. Type ? to display range.
- Number that the installation technician enters when assigning an extension to a phone.

Step 4

provision-tag number

Example:

```
Router(config-register-pool)# provision-tag 20
```

Creates a unique sequence number to be used by Extension Assigner to identify extension numbers to be assigned.

- **required only if you configured the** `provision-tag` **keyword with the** `extension-assigner tag-type` **command.**

Step 5

mac-address 02EA.EAEA. number

Example:

```
Router(config-register-pool)# mac-address 02EA.EAEA. 0020
```

Specifies a temporary MAC address number for this phone.

- For Extension Assigner, MAC address must begin with **02EA.EAEA.**
- **number** - we strongly recommend that you make this number same as the voice register pool number.

Step 6

type phone-type [addon 1 module-type [2 module-type]]

Example:

```
Router(config-register-pool)# type 8860 addon 1 CKEM 2
```

Specifies the type of phone.

Step 7

number number dn dn-tag

Example:

```
Router(config-register-pool)# number 1 dn 1
```

Associates number and line characteristics with an extension (voice register dn).

Step 8

dtmf-relay RTP-nte

Example:

```
Router(config-register-pool)# dtmf-relay RTP-nte
```

(Optional) Specifies the method for relaying dual tone multifrequency (DTMF) tones between two devices as per RFC2833.

This configuration is required only to perform assign or unassign operation using Extension Assigner application.

Step 9

codec g711ulaw

Example:

```
Router(config-register-pool)# codec g711ulaw
```

(Optional) Specifies the voice coder rate of speech for a dial peer. This configuration is required only to perform assign or unassign operation using Extension Assigner application.
Configure the Router to Automatically Save Your Configuration

To automatically save your router configuration when the router is restarted, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `kron policy-list list-name`
4. `cli write`
5. `exit`
6. `kron occurrence occurrence-name [user username] [[in numdays:]numhours:]nummin { oneshot | recurring }`
7. `policy-list list-name`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>kron policy-list list-name</code></td>
<td>Specifies a name for a new or existing Command Scheduler policy list and enters kron-policy configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# kron policy-list save-config</td>
<td>• If the value of the <code>list-name</code> argument is new, a new policy list structure is created.</td>
</tr>
<tr>
<td></td>
<td>• If the value of the <code>list-name</code> argument exists, the existing policy list structure is accessed. No editor function is available, and the policy list is run in the order in which it was configured.</td>
</tr>
</tbody>
</table>
Purpose

You can also use the CLI command `background save interval` configured under telephony-service to automatically save configurations on Unified CME. This is as an alternative for the `kron` command.

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cli write</code></td>
<td>Specifies the fully-qualified EXEC command and associated syntax to be added as an entry in the Command Scheduler policy list.</td>
</tr>
</tbody>
</table>

Example:

```text
Router(config-kron-policy)# cli write
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```text
Router(config-kron-policy)# exit
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>

Example:

```text
Router(config)# kron occurrence backup in 30 recurring
```

- **Step 6:**
 - ** occurrence-name:** Specifies the name of the occurrence. Length of occurrence-name is from 1 to 31 characters. If the occurrence-name is new, an occurrence structure is created. If the occurrence-name is not new, the existing occurrence is edited.
 - **user:** (Optional) Used to identify a particular user.
 - **username:** Name of user.
 - **in:** Identifies that the occurrence is to run after a specified time interval. The timer starts when the occurrence is configured.
 - **numdays:** (Optional) Number of days. If used, add a colon after the number.
 - **numhours:** (Optional) Number of hours. If used, add a colon after the number.
 - **nummin:** (Optional) Number of minutes.
 - **oneshot:** Identifies that the occurrence is to run only one time. After the occurrence has run, the configuration is removed.
 - **recurring:** Identifies that the occurrence is to run on a recurring basis.

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-list list-name</code></td>
<td>Specifies a Command Scheduler policy list.</td>
</tr>
</tbody>
</table>

Example:

```text
```
Provide the Installation Technician with the Required Information

Before the installation technician can assign extension numbers to the new phones, you must provide the following information:

- How many phones the installation technician can plug in at one time. This is determined by the number of temporary MAC addresses that you configured.
- Which extension number to dial to access the extension assigner application.
- Whether the number is dialed automatically when a phone goes off hook (applicable only to SCCP phones).
- What password to enter to access the application.
- Which tag numbers to enter to assign an extension to each phone.

Configure Extension Assigner Synchronization

Configure the XML Interface for the Secondary Backup Router

To configure the secondary backup router to activate the XML interface required to receive configuration change information from the primary router, perform the following steps.

Note

If there are HTTP connection issues between the primary router and the secondary backup router during automatic synchronization, the extension assigner synchronization changes are lost.

Restriction

- Automatic synchronization for new or replacement routers is not supported.
- Extension assigner preconfiguration must be manually performed on the secondary backup router.

Before you begin

- The XML interface, provided through the Cisco IOS XML Infrastructure (IXI), must be configured. See Information About XML API.
SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service | voice register global
4. xml user user-name password password privilege-level
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony service configuration mode or voice register global mode.</td>
</tr>
<tr>
<td>voice register global</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 xml user user-name password password privilege-level</td>
<td>Defines an authorized user.</td>
</tr>
</tbody>
</table>
| **Example:** Router(config-telephony)# xml user user23 password 3Rs92uzQ 15 Router(config-register-global)# xml user user23 password 3Rs92uzQ 15 | - **user-name**—Username of the authorized user.
- **password**—Password to use for access.
- **privilege-level**—Level of access to Cisco IOS commands to be granted to this user. Only the commands with the same or a lower level can be executed via XML. Range is 0 to 15. |
| **Step 5** end | Returns to privileged EXEC mode. |
| **Example:** Router(config-telephony)# end Router(config-register-global)# end | |

Configure Extension Assigner Synchronization on the Primary Router

To configure the primary router to enable automatic synchronization to the secondary backup router, perform the following steps.
Before you begin

- XML interface for secondary backup router is configured. See Configure the XML Interface for the Secondary Backup Router.
- The secondary backup router’s IP address must already be configured using the `ip source-address` command in telephony-service configuration mode.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone configurations such as MAC address, pool-tag, and phone type are saved as part of synchronization for Extension Assigner feature.</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service` | `voice register global`
4. `standby username username password password`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 `Router> enable`
| **Step 2** `configure terminal` | Enters global configuration mode.
 Example:
 `Router# configure terminal`
| **Step 3** `telephony-service` | Enters telephony service configuration mode or voice register global mode.
 `voice register global`
 Example:
 `Router(config)# telephony-service`
 `Router(config)# voice register global`
| **Step 4** `standby username username password password` | Defines an authorized user.
 Example:
 `Router(config-telephony)# standby username user23 password 3Rs92uzQ`
 `Router(config-register-global)# standby username user23 password 3Rs92uzQ`
| **Step 5** `end` | Returns to privileged EXEC mode.
 Example:
 `Router# end` |
Assign Extension Numbers Onsite by Using Extension Assigner

The following tasks are performed by the installation technician at the customer’s site:

Assign New Extension Numbers

Initially, when you install a phone, it is assigned a temporary, random extension number. To access Extension Assigner and assign the appropriate extension number to this phone, perform the following steps.

Step 1 Get the information you need to use extension assigner from your system administrator. For a list of this information, see Provide the Installation Technician with the Required Information.

Step 2 Dial the appropriate extension number to access the extension assigner system.

Step 3 Enter the password for the extension assigner and press #.

Step 4 Enter the ID number that represents this phone’s extension and press #.

Step 5 If the extension is not assigned to another phone, press 1 to confirm that you want to assign the extension to your phone, then hang up. After the phone resets, the assignment is complete.

Step 6 If the extension is assigned to another phone that is idle:
 a) Press 2 to confirm that you want to unassign the extension from the other phone.
 b) Hang up.
 c) Repeat this procedure beginning at Step 2, on page 381.

Step 7 If the extension is assigned to another phone that is in use, either:
 • Return to Step 5, on page 381 to enter another extension number.
 • Perform the procedures in the Unassign an Extension Number section and then repeat this procedure beginning at Step 2, on page 381.

Unassign an Extension Number

After the new extension number is assigned, you may find that you assigned the wrong number or that your original dial plan has changed. To unassign the wrong number so that it can be used by another phone, perform the following steps.

Note You can unassign the extension number of the phone that is used to dial in to the Extension Assigner or the extension number of another phone that has a provision-tag configured.
Reassign the Current Extension Number

• If you must replace a broken phone or you want to reassign an extension number, perform the following steps.

Note

You can reassign a number to a phone only if that number:

• Is not assigned to another phone
• Is assigned to another phone and that phone is idle
• Is assigned to another phone and you first unassign the extension

Step 1
Get the information you need to use extension assigner from your system administrator. For a list of this information, see Provide the Installation Technician with the Required Information.

Step 2
Dial the appropriate extension number to access the extension assigner system.

Step 3
Enter the password for the extension assigner and press #.

Step 4
Enter the ID number that represents this phone’s extension and press #.

Step 5
If the extension is not assigned to another phone, press 1 to confirm that you want to assign the extension to your phone, then hang up. After the phone resets, the reassignment is complete.

Step 6
If the extension is assigned to another phone that is idle:

• Press 2 to confirm that you want to unassign the extension from the other phone.
• Hang up.
• Perform the procedure in the Assign New Extension Numbers section.

Step 7
If the extension is assigned to another phone that is in use, either:

• Return to Step 5, on page 382 to enter another extension number.
• Perform the procedures in the Unassign an Extension Number section and the Assign New Extension Numbers section.
Verify Extension Assigner Configuration for SCCP Phones

Step 1 Use the `debug ephone extension-assigner` command to display status messages produced by the extension assigner application.
Step 2 Use the `debug voip application script` command to display status messages produced by the server as it runs the assigner application Tcl script.
Step 3 Use the `debug ephone state` command as described in the Cisco IOS Debug Command Reference.

Verify Extension Assigner Configuration for SIP Phones

Step 1 Use the `debug voice register events` and `debug voice register error` commands to display status messages produced by the extension assigner application.
Step 2 Use the `debug voip application script` command to display status messages produced by the server as it runs the assigner application Tcl script.
Step 3 Use the `debug ccsip messages` and `debug ccsip error` commands to display status messages for unregistration of phones.

Configuration Examples for Extension Assigner

Example for Extension Assigner on SCCP Phone

This example shows a router configuration with the following characteristics:

- The extension that the installation technician dials to access the extension assigner application is 0999.
- The password that the installation technician enters to access the extension assigner application is 1234.
- The `auto assign` command is configured to assign extensions 0001 to 0005.
- The installation technician can use extension assigner to assign extension numbers 6001 to 6005.
- The extension assigner uses the provision-tag to identify which ephone configuration and extension numbers to assign to the phone.
- The `auto-reg-ephone` command is shown but required, since it is enabled by default.
- The `kron` command is used to automatically save the router configuration.
- The `max-ephone` and `max-dn` settings of 51 are high enough to allow the installation technician to assign extensions to 50 phones, plugging them in one at a time. If the installation technician is assigning extensions to 40 phones, 11 can be plugged in one at a time. The exception is if you use CiscoVG224AnalogVoiceGateways. Extension assigner creates 24 ephones for each CiscoVG224AnalogVoiceGateway, one for each port.

```
Router# show running-config
version 12.4
```
no service password-encryption
!
hostname Test-Router
!
boot-start-marker
boot system flash:c2800nm-ipvoice-mz.2006-05-31.GOPED_DEV
boot-end-marker
!
enable password ww
!
no aaa new-model
!
resource policy
!
ip cef
no ip dhcp use vrf connected
!
ip dhcp pool pool21
network 172.21.0.0 255.255.0.0
default-router 172.21.200.200
option 150 ip 172.30.1.60
!
no ip domain lookup
!
application
service EA flash:ea/app-cme-ea-2.0.0.0.tcl
paramspace english index 0
paramspace english language en
param ea-password 1234
paramspace english location flash:ea/
paramspace english prefix en
!
interface GigabitEthernet0/0
no ip address
duplex auto
speed 100
no keepalive
!
interface GigabitEthernet0/0.21
encapsulation dot1Q 21
ip address 172.21.200.200 255.255.0.0
ip http server
!
control-plane
!
dial-peer voice 999 voip
service EA out-bound
destination-pattern 0999
session target ipv4:172.21.200.200
dtmf-relay h245-alphanumeric
codec g711ulaw
no vad
!
telephony-service
extension-assigner tag-type provision-tag
max-ephones 51
max-dn 51
ip source-address 172.21.200.200 port 2000
auto-reg-ephone
auto assign 101 to 105
system message Test-CME
create cnf-files version-stamp 7960 Jun 14 2006 05:37:34
!
ephone-dn 1 dual-line
number 6001
!
ephone-dn 2 dual-line
number 6002
!
ephone-dn 3 dual-line
number 6003
!
ephone-dn 4 dual-line
number 6004
!
ephone-dn 5 dual-line
number 6005
!
ephone-dn 101
number 0101
Example for Extension Assigner on SCCP Phone

label Temp-Line-not assigned yet

ephone-dn 102
number 0102
label Temp-Line-not assigned yet

ephone-dn 103
number 0103
label Temp-Line-not assigned yet

ephone-dn 104
number 0104
label Temp-Line-not assigned yet

ephone-dn 105
number 0105
label Temp-Line-not assigned yet

ephone 1
provision-tag 101
mac-address 02EA.EAEA.0001
button 1:1

ephone 2
provision-tag 102
mac-address 02EA.EAEA.0002
button 1:2

ephone 3
provision-tag 103
mac-address 02EA.EAEA.0003
button 1:3

ephone 4
provision-tag 104
mac-address 02EA.EAEA.0004
button 1:4

ephone 5
provision-tag 105
mac-address 02EA.EAEA.0005
button 1:5
!
kron occurrence backup in 30 recurring
policy-list writeconfig
!
kron policy-list writeconfig
cli write
!
line con 0
line aux 0
line vty 0 4
logging synchronous
!
no scheduler max-task-time
scheduler allocate 20000 1000
!
end

Example for Extension Assigner on SIP Phone

The following example shows that provision tag 1001 is configured for voice register pool 1 and provision tag 1002 is configured for voice register pool 2:

voice register global
auto-register
 password cisco1234
 auto assign 101-102

voice register dn 1001
 number 1001
voice register dn 1002
 number 1002

voice register pool 1
 provision-tag 1001
 mac-address 02EA.EAEA.0001
 number 1 dn 1001

voice register pool 2
 provision-tag 1002
 mac-address 02EA.EAEA.0002
 number 2 dn 1002

Example for Extension Assigner Synchronization

Primary Router: Example
The extension assigner is authorized to send configuration change information from the primary router to the secondary backup router.

```bash
telephony-service
standby username user555 password purplehat
```

Secondary Backup Router: Example

System components are enabled and the XML interface is readied to receive configuration change information.

```bash
ip http server
ixi transport http
no shutdown
ixi application cme
no shutdown
telephony-service
xml user user555 password purplehat 15
```

Feature Information for Extension Assigner

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 23: Feature Information for Extension Assigner

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Assigner for SIP Phones</td>
<td>11.6</td>
<td>Enables the installation technicians to assign extension numbers to SIP Phones configured on Cisco Unified CME.</td>
</tr>
<tr>
<td>Extension Assigner Synchronization</td>
<td>4.2(1)</td>
<td>Enables the secondary backup router to automatically receive any changes made to ephone mac-addressess in the primary router.</td>
</tr>
<tr>
<td>Extension Assigner</td>
<td>4.0(3)</td>
<td>Enables installation technicians to assign extension numbers to Cisco Unified CME SCCP phones without accessing the server.</td>
</tr>
</tbody>
</table>
Configuration Files for Phones

Information About Configuration Files

When a phone requests service from Cisco Unified CME, the registrar confirms the username, i.e. the phone number for the phone. The phone accesses its configuration profile on the TFTP server, typically the Cisco Unified CME router, and processes the information contained in the file, registers itself, and puts the phone number on the phone console display.

Minimally, a configuration profile contains the MAC address, the type, and the phone number that is permitted by the registrar to handle the Register message for a particular Cisco Unified IP phone.

Any time you create or modify parameters for either an individual phone or a directory number, generate a new phone configuration to properly propagate the parameters.

By default, there is one shared XML configuration file located in system:/its/ for all Cisco Unified IP phones that are running SCCP. For SIP phones directly connected to Cisco Unified CME, an individual configuration profile is created for each phone and stored in system:/cme/sipphone/.

When an IP phone comes online or is rebooted, it automatically gets information about itself from the appropriate configuration file.

The Cisco universal application loader for phone firmware files allows you to add additional phone features across all protocols. To do this, a hunt algorithm searches for multiple configuration files. After a phone is reset or restarted, the phone automatically selects protocol depending on which matching configuration file is found first. To ensure that Cisco Unified IP phones download the appropriate configuration for the desired protocol, SCCP or SIP, you must properly configure the IP phones before connecting or rebooting the phones. The hunt algorithm searches for files in the following order:

1. CTLSEP <mac> file for a SCCP phone—For example, CTLSEP003094C25D2E.tlv
2. SEP <mac> file for a SCCP phone—For example, SEP003094C25D2E.cnf.xml
3. SIP <mac> file for a SIP phone—For example, SIP003094C25D2E.cnf or gk003069C25D2E
4. XML default file for SCCP phones—For example, SEPDefault.cnf.xml
5. XML default file for SIP phones—For example, SIPDefault.cnf

In Cisco Unified CME 4.0 and later for SCCP and in Cisco CME 3.4 and later for SIP, you can designate one of the following locations in which to store configuration files:

- System (Default)—For SCCP phones, one configuration file is created, stored, and used for all phones in the system. For SIP phones, an individual configuration profile is created for each phone.
- Flash or slot 0—When flash or slot 0 memory on the router is the storage location, you can create additional configuration files to be applied per phone type or per individual phone, such as user or network locales.
- TFTP—When an external TFTP server is the storage location, you can create additional configuration files to be applied per phone type or per individual phone, which are required for multiple user and network locales.

Per-Phone Configuration Files

If configurations files for SCCP phones are to be stored somewhere other than in the default location, the following individual configuration files can be created for SCCP phones:

- Per phone type—Creates separate configuration files for each phone type and all phones of the same type use the same configuration file. This method is not supported if the configuration files are to be stored in the system location.
- Per phone—Creates a separate configuration file for each phone, by MAC address. This method is not supported if the configuration files are to be stored in the system location.

For configuration information, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.

Generate Configuration Files for Phones

Generate Configuration Files for SCCP Phones

To generate the configuration profile files that are required by the SCCP phones in Cisco Unified CME and write them to either system memory or to the location specified by the cnf-file location command, follow the steps in this section.
Restriction

- Externally stored and per-phone configuration files are not supported on the Cisco Unified IP Phone 7902G, 7910, 7910G, or 7920, or the Cisco Unified IP Conference Station 7935 and 7936.

- TFTP does not support file deletion. When configuration files are updated, they overwrite any existing configuration files with the same name. If you change the configuration file location, files are not deleted from the TFTP server.

- Generating configuration files on flash or slot 0 can take up to a minute, depending on the number of files being generated.

- For smaller routers such as Cisco 2600 series routers, you must manually enter the `squeeze` command to erase files after changing the configuration file location or entering any commands that trigger the deletion of configuration files. Unless you use the `squeeze` command, the space used by the moved or deleted configuration files is not usable by other files.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `create cnf-files`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: telephony-service</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 create cnf-files</td>
<td>Builds the XML configuration files required for IP phones.</td>
</tr>
<tr>
<td>Example: create cnf-files</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# create cnf-files</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: end</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verify Configuration Files for SCCP Phones

To verify the Cisco Unified CME phone configuration, perform the following steps.

Step 1

show telephony-service all

Use this command to verify the configuration for phones, directory numbers, voice ports, and dial peers in Cisco Unified CME.

Example:

```
Router# show telephony-service all

CONFIG (Version=4.0(0))
---------------------
Version 4.0(0)
Cisco Unified CallManager Express
For on-line documentation please see:

ip source-address 10.0.0.1 port 2000
max-ephones 24
max-dn 24
dialplan-pattern 1 408734....
voicemail 11111
transfer-pattern 510734....
keepalive 30
ephone-dn 1
number 5001
huntstop

ephone-dn 2
number 5002
huntstop

call-forward noan 5001 timeout 8
```

Step 2

show telephony-service tftp-bindings

Use this command to display the current configuration files accessible to IP phones.

Example:

```
Router# show telephony-service tftp-bindings

tftp-server system:/its/SEPDEFAULT.cnf

tftp-server system:/its/SEPDEFAULT.cnf alias SEPDefault.cnf

tftp-server system:/its/XMLDefault.cnf.xml alias XMLDefault.cnf.xml

tftp-server system:/its/ATAdefault.cnf.xml

tftp-server system:/its/XMLDefault7960.cnf.xml alias SEP0003685486B15.cnf.xml

tftp-server system:/its/germany/7960-font.xml alias German_Germany/7960-font.xml

tftp-server system:/its/germany/7960-dictionary.xml alias German_Germany/7960-dictionary.xml

tftp-server system:/its/germany/7960-kate.xml alias German_Germany/7960-kate.xml

tftp-server system:/its/germany/SCCP-dictionary.xml alias German_Germany/SCCP-dictionary.xml

tftp-server system:/its/germany/7960-tones.xml alias Germany/7960-tones.xml
```
Generate Configuration Profiles for SIP Phones

To generate the configuration profile files that are required by the SIP phones in Cisco Unified CME and write them to the location specified by the `tftp-path (voice register global)` command, follow the steps in this section.

Any time you create or modify parameters under the voice register dn or voice register pool configuration modes, generate a new configuration profile and properly propagate the parameters.

⚠️ Caution
If your Cisco Unified CME system supports SCCP and also SIP phones, do not connect your SIP phones to the network until after you have verified the phone configuration profiles.

Before you begin
- Cisco Unified CME 3.4 or a later version.
- The `mode` command must be enabled in Cisco Unified CME.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. file text
5. create profile
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.
 Example:
 Router(config)# voice register global |
| **Step 4** file text | (Optional) Generates ASCII text files of the configuration profiles generated for Cisco Unified IP Phone 7905s and 7905Gs, Cisco Unified IP Phone 7912s and 7912Gs, Cisco ATA-186, or Cisco ATA-188.
 Example:
 Router(config-register-global)# file text |
Verify Configuration Profiles for SIP Phones

To verify the configuration profiles, perform the following steps. SIP phones to be connected to Cisco Unified CME can register and minimally, have an assigned phone number, only if the configuration is correct.

Step 1
show voice register tftp-bind

Use this command to display a list of configuration profiles that are accessible to SIP phones using TFTP. The file name includes the MAC address for each SIP phone, such as SIP <mac-address>.cnf. Verify that a configuration profile is available for each SIP phone in Cisco Unified CME.

The following is sample output from this command:

Example:

```
Router(config)# show voice register tftp-bind
tftp-server SIPDefault.cnf url system:/cme/sipphone/SIPDefault.cnf>
tftp-server syncinfo.xml url system:/cme/sipphone/syncinfo.xml
tftp-server SIP0009B7F7532E.cnf url system:/cme/sipphone/SIP0009B7F7532E.cnf
tftp-server SIP000ED7DF7932.cnf url system:/cme/sipphone/SIP000ED7DF7932.cnf
tftp-server SIP0012D9EDE0AA.cnf url system:/cme/sipphone/SIP0012D9EDE0AA.cnf
tftp-server gk123456789012 url system:/cme/sipphone/gk123456789012
tftp-server gk123456789012.txt url system:/cme/sipphone/gk123456789012.txt
```

Step 2
show voice register profile

Use this command to display the contents of the ASCII format configuration profile for a particular voice register pool.

Note To generate ASCII text files of the configuration profiles for Cisco Unified IP Phone 7905s and 7905Gs, Cisco Unified IP Phone 7912s and 7912Gs, Cisco ATA-186s, and Cisco ATA-188s, use the **file text** command.

Example:

The following is sample output from this command displaying information in the configuration profile for voice register pool 4.

```
Router# show voice register profile text 4
Pool Tag: 4
# txt
```
Step 3 more system

Use this command to display the contents of the configuration profile for a particular Cisco Unified IP Phone 7940, Cisco Unified IP Phone 7905G, Cisco Unified IP Phone 7960, or Cisco Unified IP Phone 7960G.

The following is sample output from this command displaying information in two SIP configuration profile files. The SIPDefault.cnf configuration profile is a shared file and SIP < MAC address > .cnf is the SIP configuration profile for the SIP phone with the designated MAC address.

Router# more system:/cme/sipphone/SIPDefault.cnf

image_version: "P0S3-07-4-00";
proxy1_address: "10.1.100.100";
proxy2_address: "";
proxy3_address: "";
proxy4_address: "";
proxy5_address: "";
proxy6_address: "";
proxy1_port: "5060";
proxy2_port: "";
proxy3_port: "";
proxy4_port: "";
proxy5_port: "";
proxy6_port: "";
proxy_register: "1";
time_zone: "EST";
dst_auto_adjust: "1";
dst_start_month: "April";
dst_start_day: "";
dst_start_day_of_week: "Sun";
dst_start_week_of_month: "1";
dst_start_time: "02:00";
dst_stop_month: "October";
dst_stop_day: "";
dst_stop_day_of_week: "Sun";
dst_stop_week_of_month: "8";
dst_stop_time: "02:00";
date_format: "M/D/Y";
time_format_24hr: "0";
local_cfwd_enable: "1";
directory_url: "";
messages_uri: "2000";
services_url: "";
logo_url: "";
stutter_msg_waiting: "0";
sync: "0000200155330856";
telnet_level: "1";
autocomplete: "1";

Cisco Unified Communications Manager Express System Administrator Guide
Verify Configuration Profiles for SIP Phones

AutoLookUp:0
DirectoriesUrl:0
CallWaiting:1
CallForwardNumber:0
Conference:1
AttendedTransfer:1
BlindTransfer:1
SIPRegOn:1
UseTftp:1
UseLoginID:0
UIPassword:0
NTPIP:0.0.0.0
UID:2468
call_stats: "0";
Domain_Name: "";
dtmf_avt_payload: "101";
dtmf_db_level: "3";
dtmf_inband: "1";
dtmf_outofband: "avt";
dyn_dns_addr_1: "";
dyn_dns_addr_2: "";
dyn_tftp_addr: "";
end_media_port: "32766";
http_proxy_addr: "";
http_proxy_port: "80";
nat_address: "";
nat_enable: "0";
nat_received_processing: "0";
network_media_type: "Auto";
network_port2_type: "Hub/Switch";
outbound_proxy: "";
outbound_proxy_port: "5060";
proxy_backup: "";
proxy_backup_port: "5060";
proxy_emergency: "";
proxy_emergency_port: "5060";
remote_party_id: "0";
sip_invite_retx: "6";
sip_retx: "10";
sntp_mode: "directedbroadcast";
sntp_server: "0.0.0.0";
start_media_port: "16384";
tftp_cfg_dir: "";
timer_invite_expires: "180";
timer_register_delta: "5";
timer_register_expires: "3600";
timer_t1: "500";
timer_t2: "4000";
tos_media: "5";
voip_control_port: "5060";

Router# more system:/cme/sipphone/SIP000CCE62BCED.cnf

image_version: "POS3-07-4-00";
user_info: "phone";
line1_name: "1051";
line1_displayname: "";
line1_shortname: "";
line1_authname: "1051";
line1_password: "ww";
line2_name: "";
line2_displayname: "";
line2_shortname: "";
line2_authname: "";
line2_password: "";
auto_answer: "0";
speed_line1: "";
speed_label1: "";
speed_line2: "";
speed_label2: "";
speed_line3: "";
speed_label3: "";
speed_line4: "";
speed_label4: "";
speed_line5: "";
speed_label5: "";
call_hold_ringback: "0";
Where To Go Next

After you generate a configuration file for a Cisco Unified IP phone connected to the Cisco Unified CME router, you are ready to download the file to the phone. See Reset and Restart Phones, on page 400.
Chapter 11

Reset and Restart Cisco Unified IP Phones

- Information About Resetting and Restarting Phones, on page 399
- Reset and Restart Phones, on page 400
- Feature Information for Reset and Restart Phones, on page 406

Information About Resetting and Restarting Phones

Differences between Resetting and Restarting IP Phones

Cisco Unified IP phones must be rebooted after configuration changes in order for the changes to be effective. Configurations for phones in Cisco Unified CME are downloaded when a phone is rebooted or reset. You can reboot a single phone or you can reboot all phones in a Cisco Unified CME system. The differences between reboot types are summarized in Table 24: reset and restart Command Differences, on page 399.

When rebooting multiple IP phones, it is possible for a conflict to occur if too many phones attempt to access changed Cisco Unified CME configuration information via TFTP simultaneously.

Table 24: reset and restart Command Differences

<table>
<thead>
<tr>
<th></th>
<th>reset Command</th>
<th>restart Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Reboot</td>
<td>Similar to power-off, power-on reboot.</td>
<td>Quick restart.</td>
</tr>
<tr>
<td>Phone Configurations</td>
<td>Downloads configurations for IP phones.</td>
<td>Downloads configurations for IP phones.</td>
</tr>
<tr>
<td>DHCP and TFTP</td>
<td>Contacts DHCP and TFTP servers for updated configuration information.</td>
<td>Phones contact the TFTP server for updated configuration information and reregister without contacting the DHCP server.</td>
</tr>
<tr>
<td>Note</td>
<td>This command was introduced for SIP phones in Cisco CME 3.4.</td>
<td>This command was introduced for SIP phones in Cisco Unified CME 4.1.</td>
</tr>
</tbody>
</table>
Cisco Unified CME TAPI Enhancement

Before Cisco Unified CME 7.0(1), the only method to clear a session between a Microsoft Windows Workstation and an SCCP phone that was out-of-sync was to reboot the router. In Cisco Unified CME 7.0(1) and later versions, you can clear a Telephony Application Programming Interface (TAPI) session that is in a frozen state or out of synchronization by using a Cisco IOS software command. For configuration information, see Reset a Session Between a TAPI Application and an SCCP Phone, on page 403.

This enhancement also automatically handles ephone-TAPI registration error conditions. No additional configuration is required for this new feature.

Reset and Restart Phones

Use the reset Command on SCCP Phones

To reboot and reregister one or more SCCP phones, including contacting the DHCP server for updated information, perform the following steps.

<table>
<thead>
<tr>
<th>reset Command</th>
<th>restart Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Time</td>
<td>Takes longer to process when updating multiple phones. Faster processing for multiple phones.</td>
</tr>
<tr>
<td>When Required</td>
<td>Directory numbers, Phone buttons, Speed-dial numbers</td>
</tr>
</tbody>
</table>

- Date and time settings
- Network locale
- Phone firmware
- Source address
- TFTP path
- URL parameters
- User locale
- Voicemail access number

Can be used when updating the following:

- Directory numbers
- Phone buttons
- Speed-dial numbers

Note

If phones are not yet plugged in, resetting or restarting phones is not necessary. Instead, connect your IP phones to your network to boot the phone and download the required configuration files.
Before you begin

- Phones to be rebooted are connected to the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service or ephone ephone-tag
4. reset {all [time-interval] | cancel | mac-address mac-address | sequence-all} or reset
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

Step 3	telephony-service or ephone ephone-tag	Enters telephony-service configuration mode.
	Example:	or Enters ephone configuration mode.
	Router(config)# telephony-service	
	or	
	Router(config)# ephone 1	

Step 4	reset {all [time-interval]	cancel	mac-address mac-address	sequence-all} or reset	Performs a complete reboot of the specified or all phones running SCCP, including contacting the DHCP and TFTP servers for the latest configuration information.
	Example:	or Performs a complete reboot of the individual SCCP phone being configured.			
	Router(config-telephony)# reset all	or			
	or				
	Router(config-ephone)# reset				

Step 5	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-telephony)# end	
	or	
	Router(config-ephone)# end	
Use the restart Command on SCCP Phones

To fast reboot and reregister one or more SCCP phones, perform the following steps.

Before you begin
- Phones to be rebooted are connected to the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service or ephone ephone-tag
4. restart {all [time-interval] | mac-address} or restart
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service or ephone ephone-tag</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 restart {all [time-interval]</td>
<td>mac-address} or restart</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>Example:</td>
<td>Performs a fast reboot of the individual SCCP phone being configured.</td>
</tr>
<tr>
<td>Router(config-telephony)# restart all</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# restart</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
Reset a Session Between a TAPI Application and an SCCP Phone

To clear a TAPI session that is in a frozen state or out of synchronization, perform the following steps.

Before you begin

- Cisco Unified CME 7.0(1) or a later version

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. reset tapi
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 36</td>
<td>• phone-tag—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 4 reset tapi</td>
<td>Resets the connection between a Telephony Application Programmer's Interface (TAPI) application and the SCCP phone.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# reset tapi</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Use the reset Command on SIP Phones

To reboot and reregister one or more SIP phones, including contacting the DHCP server for updated information, perform the following steps.
Before you begin

- Cisco Unified CME 3.4 or later.
- The **mode cme** command must be enabled in Cisco Unified CME.
- Phones to be rebooted are connected to the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global or voice register pool *pool-tag*
4. reset
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable
 • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** voice register global or voice register pool *pool-tag* | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.
 or
 Enters voice register pool configuration mode to set phone-specific parameters for SIP phones
 Example:
 Router(config)# voice register global
 or
 Router(config)# voice register pool 1 |
| **Step 4** reset | Performs a complete reboot of all phones connected to this router that are running SIP, including contacting the DHCP and TFTP servers for the latest configuration information.
 or
 Performs a complete reboot of the individual SIP phone being configured.
 Example:
 Router(config-register-global)# reset
 or
 Router(config-register-pool)# reset |
| **Step 5** end | Exits to privileged EXEC mode.
 Example:
 Router(config-register-global)# end
 or
 Router(config-register-pool)# end |
Use the restart Command on SIP Phones

To fast reboot and reregister one or more SIP phones, perform the following steps.

Before you begin

• Cisco Unified CME 4.1 or later.
• The mode cme command must be enabled in Cisco Unified CME.
• Phones to be rebooted are connected to the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global or voice register pool pool-tag
4. restart
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global or voice register pool pool-tag</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register global or Router(config)# voice register pool 1</td>
<td>or Enters voice register pool configuration mode to set phone-specific parameters for SIP phones.</td>
</tr>
<tr>
<td>Step 4 restart</td>
<td>Performs a fast reboot all SIP phones associated with this Cisco Unified CME router. Does not contact the DHCP server for updated information.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# restart or Router(config-register-pool)# restart</td>
<td>or Performs a fast reboot of the individual SIP phone being configured.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>or Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Basic Call

To verify that Cisco IP phones in Cisco Unified CME can place and receive calls through the voice ports, perform the following steps.

Step 1 Test local phone operation. Make calls between phones on the Cisco Unified CME router.

Step 2 Place a call *from* a phone in Cisco Unified CME to a number in the local calling area.

Step 3 Place a call *to* a phone in Cisco Unified CME from a phone outside this Cisco Unified CME system.

Feature Information for Reset and Restart Phones

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 25: Feature Information for Reset and Restart Phones

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Unified CME TAPI</td>
<td>7.0(1)</td>
<td>Disassociates and reestablishes a TAPI session that is in a frozen state or out of synchronization by using a Cisco IOS command. This enhancement also automatically handles ephone-TAPI registration error conditions.</td>
</tr>
</tbody>
</table>
Localization Support

This chapter describes the localization support in Cisco Unified Communications Manager Express (Cisco Unified CME) for languages other than English and network tones and cadences not specific to the United States.

- Information About Localization, on page 407
- Configure Localization Support on SCCP Phones, on page 411
- Configure Localization Support on SIP Phones, on page 425
- Configuration Examples for Localization, on page 434
- Configuration Examples for Locale Installer on SCCP Phones, on page 437
- Where to Go Next, on page 441
- Feature Information for Localization Support, on page 441

Information About Localization

Localization Enhancements in Cisco Unified CME

Cisco Unified CME supports the French locale but some phrases in France French and Canadian French differ. In Cisco Unified CME 9.5, Canadian French is supported as a user-defined locale on Cisco Unified SIP IP phones and Cisco Unified SCCP IP phones when the correct locale package is installed.

Note

Some abbreviations such as BLF, SNR, and CME are not localized.

Prerequisites

- Cisco Unified CME 9.5 or later version
- Locale package version 9.5.2.6 is required
Restriction

All the localization enhancements are supported in Cisco Unified CME only. They are not supported in Cisco Unified SRST. Table 26: Language Codes for User-Defined Locales, on page 408 shows the language codes used in the filenames of locale files.

Table 26: Language Codes for User-Defined Locales

<table>
<thead>
<tr>
<th>Language</th>
<th>Language Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian French</td>
<td>fr_CA</td>
</tr>
</tbody>
</table>

For configuration information, see Install User-Defined Locales, on page 415.

System-Defined Locales

Cisco Unified CME provides built-in, system-defined localization support for 12 languages including English and 16 countries including the United States. Network locales specify country-specific tones and cadences; user locales specify the language to use for text displays.

Configuring system-defined locales depends on the type of IP phone:

- Cisco Unified IP Phone 7905, 7912, 7940, and 7960—System-defined network locales and user locales are preloaded into Cisco IOS software. No external files are required. Use the `network-locale` and `user-locale` commands to set the locales for these phones.

- Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, 8941, 8945, and Cisco IP Communicator—You must download locale files to support the system-defined locales and store the files in flash memory, slot 0, or on an external TFTP server. See Install System-Defined Locales for Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, and Cisco IP Communicator, on page 411.

- Cisco Unified 3905, 6941, 6945, 8961, 9951, and 9971 SIP IP Phones—You must download locale files to support the system-defined locales and store the files in flash memory, slot 0, or on an external TFTP server.

Note

TFTP aliases for localization are not automatically created for Cisco Unified SIP IP phones in a Cisco Unified CME system. For more information on how to manually create TFTP aliases, see Install System-Defined Locales for Cisco Unified IP Phone 8961, 9951, and 9971, on page 425.

Note

Cisco Unified CME 10.5 Release onwards, the System defined locales are deprecated and User-defined locales are recommended.

Cisco Unified 3905 SIP IP Phones and Cisco Unified 6945, 8941, and 8945 SCCP IP Phones have support for all locales up to Cisco Unified CME 8.8.
Localization Support for Cisco Unified SIP IP Phones

Cisco Unified CME 8.6 provides localization support for 12 languages including English and 16 countries including the United States. Network locales specify country-specific tones and cadences; user locales specify the language to use for text displays. Create additional localization support with user-defined locales. For more information about user-defined locales, see User-Defined Locales, on page 409.

In Cisco Unified CME 9.0 and later versions, localization is enhanced to support Cisco Unified 6941 and 6945 SIP IP Phones.

The `load` command supports both user-defined and system-defined locales.

Note

The locale files must be stored in the same location as the configuration files.

User-Defined Locales

The user-defined locale feature allows you to support network and user locales other than the system-defined locales that are predefined in Cisco IOS software. For example, if your site has phones that must use the language and tones for Traditional Chinese, which is not one of the system-defined choices, you must install the locale files for Traditional Chinese.

In Cisco Unified CME 4.0 and later versions, you can download files to support a particular user and network locale and store the files in flash memory, slot 0, or an external TFTP server. These files cannot be stored in the system location. User-defined locales can be assigned to all phones or to individual phones.

User-defined language codes for user locales are based on ISO 639 codes, which are available at the Library of Congress website at http://www.loc.gov/standards/iso639-2/. User-defined country codes for network locales are based on ISO 3166 codes.

For configuration information, see Install User-Defined Locales, on page 415.

Localization Support for Phone Displays

On the Cisco Unified IP Phone 8961, 9951, and 9971, menus and prompts that are managed by the locale file for the IP phone type (.jar) or the Cisco Unified CME dictionary file are localized. Display options configured through Cisco IOS commands are not localized.

The following display items are localized by the IP phone (.jar file):

- System menus accessed with feature buttons (for example, messages, directories, services, settings, and information)
- Call processing messages
- Softkeys (for example, Redial and CFwdALL)

The following display items are localized by the dictionary file for Cisco Unified CME:

- Directory Service (Local Directory, Local Speed Dial, and Personal Speed Dial)
- Status Line
Display options configured through Cisco IOS commands are not localized and can only be displayed in English. For example, this includes features such as:

- Caller ID
- Header Bar
- Phone Labels
- System Message

Multiple Locales

In Cisco Unified CME 8.6 and later versions, you can specify up to five user and network locales and apply different locales to individual ephones or groups of ephones using ephone templates. For example, you can specify French for phones A, B, and C; German for phones D, E, and F; and English for phones G, H, and I. Only one user and network locale can be applied to each phone.

Each of the five user and network locales that you can define in a multilocale system is identified by a locale tag. The locale identified by tag 0 is always the default locale, although you can define this default to be any supported locale. For example, if you define user locale 0 to be JP (Japanese), the default user locale for all phones is JP. If you do not specify a locale for tag 0, the default is US (United States).

To apply alternative locales to different phones, you must use per-phone configuration files to build individual configuration files for each phone. The configuration files automatically use the default user-locale 0 and network-locale 0. You can override these defaults for individual phones by configuring alternative locale codes and then creating ephone-templates to assign the locales to individual ephones.

For configuration information, see Configure Multiple Locales on SCCP Phones, on page 421.

Locale Installer for Cisco Unified SCCP IP Phones

Before Cisco Unified CME 7.0(1), configuring localization required up to 16 steps, most of which were manual and some of which required filename changes. In Cisco Unified CME 7.0(1) and later versions, the following enhancements for installing locales are supported:

- Locale installer that supports a single procedure for all SCCP IP phones.
- Cisco Unified CME parses new firmware-load text files and automatically creates the TFTP aliases for localization, eliminating the requirement for you to manually create up to five aliases for files in the TAR file. To use this feature in Cisco Unified CME 7.0(1), you must use the complete filename, including the file suffix, when you configure the load command for phone firmware versions later than version 8-2-2 for all phone types. For example:

```
Router(config-telephony)# load 7941 SCCP41.8-3-3S.loads
```

In Cisco Unified CME 4.3 and earlier versions, you do not include the file suffix for any phone type except Cisco ATA and Cisco Unified IP Phone 7905 and 7912. For example:

```
Router(config-telephony)# load 7941 SCCP41.8-2-2SR2S
```

- Backward compatibility with the configuration method in Cisco Unified CME 7.0 and earlier versions.
For configuration information, see Use the Locale Installer in Cisco Unified CME 7.0(1) and Later Versions, on page 418.

Locale Installer for Cisco Unified SIP IP Phones

Cisco Unified CME 9.0 and later versions support the following enhancements for installing locales for Cisco Unified SIP IP phones:

- Locale installer that supports a single procedure for all Cisco Unified SIP IP phones.

- New `load` keyword that requires you to use the complete filename, including the file suffix (.tar), when you configure the `user-locale` command for all Cisco Unified SIP IP phone types. The command syntax is `user-locale [user-locale-tag] [user-defined-code country-code] [load TAR-filename]`. For example,


  ```
  Router(config-register-global)#user-locale 2 DE load CME-locale-de_DE-German-8.6.3.0.tar
  ```

With the locale installer, you do not need to perform manual configuration. Instead, you copy the locale file using the `copy` command in privileged EXEC configuration mode.

Note

You must copy the locale file into the `/its` directory (flash:/its or slot0:/its) when you store the locale files on the Cisco Unified CME router.

For example,

```
Router# copy tftp://12.1.1.100/CME-locale-de_DE-German-8.6.3.0.tar flash:/its
```

For configuration information, see Use the Locale Installer in Cisco Unified CME 9.0 and Later Versions, on page 428.

Configure Localization Support on SCCP Phones

Install System-Defined Locales for Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, and Cisco IP Communicator

Network locale files allow an IP phone to play the proper network tone for the specified country. You must download and install a tone file for the country you want to support.

User locale files allow an IP phone to display the menus and prompts in the specified language. You must download and install JAR files and dictionary files for each language you want to support.

To download and install locale files for system-defined locales, perform the following steps.

Tip

The locale installer simplifies the installation and configuration of system- and user-defined locales in Cisco Unified CME 7.0(1) and later versions. To use the locale installer in Cisco Unified CME 7.0(1) and later versions, see Use the Locale Installer in Cisco Unified CME 7.0(1) and Later Versions, on page 418.
Localization Support

Restriction

- Localization is not supported for SIP phones.
- Phone firmware, configuration files, and locale files must be in the same directory, except the directory file for Japanese and Russian, which must be in flash memory.

Before you begin

- Cisco Unified CME 4.0(2) or a later version.
- You must create per-phone configuration files as described in Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- You must have an account on Cisco.com to download locale files.

Step 1
Go to http://www.cisco.com/cgi-bin/tablebuild.pl/CME-Locale.
You must have an account on Cisco.com to access the Software Download Center. If you do not have an account or if you have forgotten your username or password, click the appropriate button at the login dialog box and follow the instructions that appear.

Step 2
Navigate to Downloads Home > Products > Unified Communications > Call Control > Mid-Market Call Control > Cisco Unified Communications Manager Express > Unified Communications Manager Express Individual File Set and select your version of Cisco Unified CME.

Step 3
Select the TAR file for the locale you want to install. Each TAR file contains locale files for a specific language and country and uses the following naming convention: CME-locale-language_country-CMEversion

Example:
For example, CME-locale-de_DE-4.0.2-2.0 is German for Germany for Cisco Unified CME 4.0(2).

Step 4
Download the TAR file to a TFTP server that is accessible to the Cisco Unified CME router. Each file contains all the firmware required for all phone types supported by that version of Cisco Unified CME.

Step 5
Use the archive tar command to extract the files to flash memory, slot 0, or an external TFTP server.

Example:
Router# archive tar /xtract source-url flash:/file-url

Example:
For example, to extract the contents of CME-locale-de_DE-4.0.2-2.0.tar from TFTP server 192.168.1.1 to router flash memory, use this command:

Router# archive tar /xtract tftp://192.168.1.1/cme-locale-de_DE-4.0.2-2.0.tar flash:

Step 6
See Table 27: Phone-Type Codes for Locale JAR Files, on page 413 and Table 28: System-Defined User and Network Locales, on page 413 for a description of the codes used in the filenames and the list of supported directory names.

Each phone type has a JAR file that uses the following naming convention:

language-phone-sccp.jar

Example:
For example, de-td-sccp.jar is for German on the Cisco Unified IP Phone 7970.

Each TAR file also includes the file g3-tones.xml for country-specific network tones and cadences.

Table 27: Phone-Type Codes for Locale JAR Files

<table>
<thead>
<tr>
<th>Phone Type</th>
<th>Phone Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>6921</td>
<td>rtl</td>
</tr>
<tr>
<td>6945</td>
<td>rtl</td>
</tr>
<tr>
<td>7906/7911</td>
<td>tc</td>
</tr>
<tr>
<td>7931</td>
<td>gp</td>
</tr>
<tr>
<td>7941/7961</td>
<td>mk</td>
</tr>
<tr>
<td>7970/7971</td>
<td>td</td>
</tr>
<tr>
<td>8941/8945</td>
<td>gh</td>
</tr>
<tr>
<td>CIPC</td>
<td>ipc</td>
</tr>
</tbody>
</table>

Table 28: System-Defined User and Network Locales

<table>
<thead>
<tr>
<th>Language</th>
<th>Language Code</th>
<th>User-Locale Directory Name</th>
<th>Country Code</th>
<th>Network-Locale Directory Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>en</td>
<td>English_United_States(^2)</td>
<td>US</td>
<td>United_States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English_United_Kingdom</td>
<td>UK</td>
<td>United_Kingdom</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>Danish</td>
<td>dk</td>
<td>Danish_Denmark</td>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>Dutch</td>
<td>nl</td>
<td>Dutch_Netherlands</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>French</td>
<td>fr</td>
<td>French_France</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>German</td>
<td>de</td>
<td>German_Germany</td>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Italian</td>
<td>it</td>
<td>Italian_Italy</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>Japanese(^3)</td>
<td>jp</td>
<td>Japanese_Japan</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>Norwegian</td>
<td>no</td>
<td>Norwegian_Norway</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>Portuguese</td>
<td>pt</td>
<td>Portuguese_Portugal</td>
<td>PT</td>
<td>Portugal</td>
</tr>
</tbody>
</table>
Install System-Defined Locales for Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, and Cisco IP Communicator

<table>
<thead>
<tr>
<th>Language</th>
<th>Language Code</th>
<th>User-Locale Directory Name</th>
<th>Country Code</th>
<th>Network-Locale Directory Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian</td>
<td>ru</td>
<td>Russian_Russia</td>
<td>RU</td>
<td>Russian_Federation</td>
</tr>
<tr>
<td>Spanish</td>
<td>es</td>
<td>Spanish_Spain</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>Swedish</td>
<td>se</td>
<td>Swedish_Sweden</td>
<td>SE</td>
<td>Sweden</td>
</tr>
</tbody>
</table>

2 English for the United States is the default language. You do not need to install the JAR file for U.S. English unless you assign a different language to a phone and then want to reassign English.

3 Katakana is supported by Cisco Unified IP Phone 7905, 7912, 7940, and 7960. Kanji is supported by Cisco Unified IP Phone 7911, 7941, 7961, 7970, and 7971.

Step 7

If you store the locale files in flash memory or slot 0 on the Cisco Unified CME router, create a TFTP alias for the user locale (text displays) and network locale (tones) using this format:

Example:

Router(config)# tftp-server flash:/jar_file alias directory_name/td-sccp.jar

Router(config)# tftp-server flash:/g3-tones.xml alias directory_name/g3-tones.xml

Use the appropriate directory name shown in Table 28: System-Defined User and Network Locales, on page 413 and remove the two-letter language code from the JAR file name. For example, the TFTP aliases for German and Germany for the Cisco Unified IP Phone 7970 are:

Router(config)# tftp-server flash:/de-td-sccp.jar alias German_Germany/td-sccp.jar

Router(config)# tftp-server flash:/g3-tones.xml alias Germany/g3-tones.xml

Note On Cisco 3800 series routers, you must include /its in the directory name (flash:/its or slot0:/its). For example, the TFTP alias for German for the Cisco Unified IP Phone 7970 is:

Router# tftp-server flash:/its/de-td-sccp.jar alias German_Germany/td-sccp.jar

Step 8

If you store the locale files on an external TFTP server, create a directory under the TFTP root directory for each user and network locale.

Use the appropriate directory name shown in Table 28: System-Defined User and Network Locales, on page 413 and remove the two-letter language code from the JAR file name.

Example:

For example, the user-locale directory for German and the network-locale directory for Germany for the Cisco Unified IP Phone 7970 are:

TFTP-Root/German_Germany/td-sccp.jar TFTP-Root/Germany/g3-tones.xml

Step 9

For Russian and Japanese, you must copy the UTF8 dictionary file into flash memory to use special phrases.

- Only flash memory can be used for these locales. Copy russian_tags_utf8_phrases for Russian; Japanese_tags_utf8_phrases for Japanese.
- Use the user-locale jp and user-locale ru command to load the UTF8 phrases into Cisco Unified CME.

Step 10

Assign the locales to phones. To set a default locale for all phones, use the user-locale and network-locale commands in telephony-service configuration mode.

Step 11

To support more than one user or network locale, see Configure Multiple Locales on SCCP Phones, on page 421.
Localization Support

Install User-Defined Locales

You must download XML files for locales that are not predefined in the system. To install up to five user-defined locale files to use with phones, perform the following steps.

Note

From Cisco Unified CME 10.5 Release onwards, the System defined locales are deprecated and User-defined locales are recommended. However, the older locale packages can be still used but some phrases may be displayed in English.

Restriction

- User-defined locales are not supported on the Cisco Unified IP Phone 7920 or 7936.
- User-defined locales are not supported if the configuration file location is “system:”.
- When you use the setup tool from the telephony-service setup command to provision phones, you can only choose a default user locale and network locale and you are limited to selecting a locale code that is supported in the system. You cannot use multiple locales or user-defined locales with the setup tool.
- When using a user-defined locale, the phone normally displays text using the user-defined fonts, except for any strings that are interpreted by Cisco Unified CME, such as “Cisco/Personal Directory,” “Speed Dial/Fast Dial,” and so forth.

Before you begin

- Cisco Unified CME 4.0(3) or a later version.
- You must create per-phone configuration files as described in Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- You must have an account on Cisco.com to download locale files.

Step 1

You must have an account on Cisco.com to access the Software Download Center. If you do not have an account or if you have forgotten your username or password, click the appropriate button at the login dialog box and follow the instructions that appear.

Step 2

Navigate to Downloads Home > Products > Unified Communications > Call Control > Mid-Market Call Control > Cisco Unified Communications Manager Express > Unified Communications Manager Express Individual File Set and select your version of Cisco Unified CME.

Step 3

Select the TAR file for the locale that you want to install. Each TAR file contains locale files for a specific language and country and uses the following naming convention: CME-locale-language_country-CMEversion-fileversion.
Example:
For example, CME-locale-zh_CN-4.0.3-2.0 is Traditional Chinese for China for Cisco Unified CME 4.0(3).

Step 4
Download the TAR file to a TFTP server that is accessible to the Cisco Unified CME router. Each file contains all the firmware required for all phone types supported by that version of Cisco Unified CME.

Step 5
Use the `archive tar` command to extract the files to slot 0, flash memory, or an external TFTP server.

Example:
```
Router# archive tar /xtract source-url flash:/file-url
```
For example, to extract the contents of CME-locale-zh_CN-4.0.3-2.0.tar from TFTP server 192.168.1.1 to router flash memory, use this command:
```
Router# archive tar /xtract tftp://192.168.1.1/cme-locale-zh_CN-4.0.3-2.0.tar flash:
```

Step 6
For Cisco Unified IP Phone 7905, 7912, 7940, or 7960, go to Step 11, on page 418. For Cisco Unified IP Phone 7911, 7941, 7961, 7970, or 7971, go to Step 7, on page 416.

Step 7
Each phone type has a JAR file that uses the following naming convention: `language-type-sccp.jar`

Example:
For example, zh-td-sccp.jar is Traditional Chinese for the Cisco Unified IP Phone 7970.

See [Table 29: Phone-Type Codes for Locale Files](#) on page 416 and [Table 30: Language Codes for User-Defined Locales](#) on page 416 for a description of the codes used in the filenames.

<table>
<thead>
<tr>
<th>Phone Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>6921</td>
<td>rtl</td>
</tr>
<tr>
<td>6945</td>
<td>rtl</td>
</tr>
<tr>
<td>7906/7911</td>
<td>tc</td>
</tr>
<tr>
<td>7931</td>
<td>gp</td>
</tr>
<tr>
<td>7941/7961</td>
<td>mk</td>
</tr>
<tr>
<td>7970/7971</td>
<td>td</td>
</tr>
<tr>
<td>8941/8945</td>
<td>gh</td>
</tr>
<tr>
<td>CIPC</td>
<td>ipc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Language Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgarian</td>
<td>bg</td>
</tr>
<tr>
<td>Chinese</td>
<td>zh</td>
</tr>
<tr>
<td>Croatia</td>
<td>hr</td>
</tr>
</tbody>
</table>

Table 29: Phone-Type Codes for Locale Files

Table 30: Language Codes for User-Defined Locales
Step 8

If you store the locale files in flash memory or slot 0 on the Cisco Unified CME router, create a TFTP alias using this format:

Example:

```
Router(config)# tftp-server flash:/jar_file alias directory_name/td-sccp.jar
```

Remove the two-letter language code from the JAR filename and use one of five supported directory names with the following convention:

user_define_number, where number is 1 to 5

For example, the alias for Chinese on the Cisco Unified IP Phone 7970 is:

```
Router(config)# tftp-server flash:/zh-td-sccp.jar alias user_define_1/td-sccp.jar
```

Note

On Cisco 3800 series routers, you must include /its in the directory name (flash:/its or slot0:/its). For example, the TFTP alias for Chinese for the Cisco Unified IP Phone 7970 is:

```
Router(config)# tftp-server flash:/its/zh-td-sccp.jar alias user_define_1/td-sccp.jar
```

Step 9

If you store the locale files on an external TFTP server, create a directory under the TFTP root directory for each locale. Remove the two-letter language code from the JAR filename and use one of five supported directory names with the following convention:

user_define_number, where number is 1 to 5

Example:

For example, for Chinese on the Cisco Unified IP Phone 7970, remove “zh” from the JAR filename and create the “user_define_1” directory under TFTP-Root on the TFTP server:
Use the Locale Installer in Cisco Unified CME 7.0(1) and Later Versions

To install and configure locale files to use with SCCP phones in Cisco Unified CME, perform the following steps.

Tip
Cisco Unified CME 7.0(1) provides backward compatibility with the configuration method in Cisco Unified CME 4.3/7.0 and earlier versions. To use the same procedures as you used with earlier versions of Cisco Unified CME, see Install System-Defined Locales for Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, and Cisco IP Communicator, on page 411.
When using an external TFTP server, you must manually create the user locale folders in the root directory. This is a limitation of the TFTP server.

Locale support is limited to phone firmware versions that are supported by Cisco Unified CME.

User-defined locales are not supported on the Cisco Unified IP Phone 7920 or 7936.

User-defined locales are not supported if the configuration file location is system.

When you use the setup tool from the `telephony-service setup` command to provision phones, you can only choose a default user locale and network locale, and you are limited to selecting a locale code that is supported in the system. You cannot use multiple locales or user-defined locales with the setup tool.

When using a user-defined locale, the phone normally displays text using the user-defined fonts, except for any strings that are interpreted by Cisco Unified CME, such as “Cisco/Personal Directory,” and “Speed Dial/Fast Dial.”

If you install and configure a user-defined locale using country codes U1-U5 and then you install a new locale using the same label, the phone retains the original language locale even after the phone is reset. This is a limitation of the IP Phone. To work around this limitation, you must configure the new package using a different country code.

Each user-defined country code (U1-U5) can be used for only one user-locale-tag at a time. For example:

```bash
Router(config-telephony)# user-locale 2 U2 load Finnish.pkg
Router(config-telephony)# user-locale 1 U2 load Chinese.pkg
LOCALE ERROR: User Defined Locale U2 already exists on locale index 2.
```

Before you begin

- Cisco Unified CME 7.0(1) or a later version.
- You must configure Cisco Unified CME for per-phone configuration files. See Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- When the storage location specified by the `cnf-file location` command is flash memory, sufficient space must be on the flash file system for extracting the contents of the locale TAR file.
- You must have an account on Cisco.com to download locale files.

Step 1

You must have an account on Cisco.com to access the Software Download Center. If you do not have an account or have forgotten your username or password, click the appropriate button at the login dialog box and follow the instructions that appear.

Step 2
Navigate to Downloads Home > Products > Unified Communications > Call Control > Mid-Market Call Control > Cisco Unified Communications Manager Express > Unified Communications Manager Express Individual File Set and select your version of Cisco Unified CME.

Step 3
Select the TAR file for the locale you want to install. Each TAR file contains locale files for a specific language and country and uses the following naming convention: `CME-locale-language_country-CMEversion`
Example:
For example, CME-locale-de_DE-7.0.1.0 is German for Germany for Cisco Unified CME 7.0(1).

Step 4
Download the TAR file to the location previously specified by the cnf-file location command. Each file contains all the firmware required for all phone types supported by that version of Cisco Unified CME.

a) If the cnf-file location is flash memory: Copy the TAR file to the flash:/its directory.
b) If the cnf-file location is slot0: Copy the TAR file to the slot0:/its directory.
c) If the cnf-file location is tftp: Create a folder in the root directory of the TFTP server for each locale using the following format and then copy the TAR file to the TFTP-Root folder. **TFTP-Root/TAR-filename**

Example:
For system-defined locales, use the locale folder name as shown in Table 31: System-Defined and User-Defined Locales, on page 420. For example, create the folder for system-defined German as follows:

TFTP-Root/de_DE-7.0.1.0.tar

For up to five user-defined locales, use the User_Define_n folder name as shown in Table 31: System-Defined and User-Defined Locales, on page 420. A user-defined locale is a language other than the system-defined locales that are predefined in Cisco IOS software. For example, create the folder for user-defined locale Chinese (User_Define_1) as follows:

TFTP-Root/CME-locale-zh_CN-7.0.1.0.tar

Note For a list of user-defined languages supported in Cisco Unified CME, see Cisco Unified CME Localization Matrix.

Table 31: System-Defined and User-Defined Locales

<table>
<thead>
<tr>
<th>Language</th>
<th>Locale Folder Name</th>
<th>Country Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>English_United_States</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>English_United_Kingdom</td>
<td>UK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td>Danish</td>
<td>Danish_Denmark</td>
<td>DK</td>
</tr>
<tr>
<td>Dutch</td>
<td>Dutch_Netherlands</td>
<td>NL</td>
</tr>
<tr>
<td>French</td>
<td>French_France</td>
<td>FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td>German</td>
<td>German_Germany</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH</td>
</tr>
<tr>
<td>Italian</td>
<td>Italian_Italy</td>
<td>IT</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japanese_Japan</td>
<td>JP</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Norwegian_Norway</td>
<td>NO</td>
</tr>
</tbody>
</table>
Katakana is supported by Cisco Unified IP Phone 7905, 7912, 7940, and 7960. Kanji is supported by Cisco Unified IP Phone 7911, 7941, 7961, 7970, and 7971.

5 Katakana is supported by Cisco Unified IP Phone 7905, 7912, 7940, and 7960. Kanji is supported by Cisco Unified IP Phone 7911, 7941, 7961, 7970, and 7971.

6 Where “n” is a number from 1 to 5.

Step 5 Use the `user-locale [user-locale-tag] country-code load TAR-filename` command in telephony-service configuration mode to extract the contents of the TAR file. For country codes, see Table 31: System-Defined and User-Defined Locales, on page 420.

Example:

For example, to extract the contents of the CME-locale-zh_CN-7.0.1.0.tar file when U1 is the country code for user-defined locale Chinese (User_Define_1), use this command:

```
Router (telephony-service)# user-locale U1 load CME-locale-zh_CN-7.0.1.0.tar
```

Step 6 Assign the locales to phones. See Configure Multiple Locales on SCCP Phones, on page 421.

Step 7 Use the `create cnf-files` command to rebuild the configuration files.

Step 8 Use the `reset` command to reset the phones and see the localized displays.

Verify User-Defined Locales

See Verify Multiple Locales on SCCP Phones, on page 425.

Configure Multiple Locales on SCCP Phones

To define one or more alternatives to the default user and network locales and apply them to individual phones, perform the following steps.

Restriction

- Multiple user and network locales are not supported on the Cisco Unified IP Phone 7902G, 7910, 7910G, or 7920, or the Cisco Unified IP Conference Stations 7935 and 7936.
- When you use the setup tool from the `telephony-service setup` command to provision phones, you can only choose a default user locale and network locale and you must select a locale code that is predefined in the system. You cannot use multiple or user-defined locales with the setup tool.
Before you begin

- Cisco Unified CME 4.0 or a later version.
- To specify alternative user and network locales for individual phones in a Cisco Unified CME system, you must use per-phone configuration files. For more information, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- You can also use user-defined locale codes as alternative locales after you download the appropriate XML files. See Install User-Defined Locales, on page 415.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. user-locale [user-locale-tag] { [user-defined-code] country-code }
5. network-locale network-locale-tag [user-defined-code] country-code
6. create cnf-files
7. exit
8. ephone-template template-tag
9. user-locale user-locale-tag
10. network-locale network-locale-tag
11. exit
12. ephone phone-tag
13. ephone-template template-tag
14. exit
15. telephony-service
16. reset { all [time-interval] | cancel | mac-address mac-address | sequence-all }
17. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable
| Example:
| Router> enable | Enables privileged EXEC mode.
| • Enter your password if prompted. |
| **Step 2**
| configure terminal
| Example:
| Router# configure terminal | Enters global configuration mode. |
| **Step 3**
| telephony-service
| Example:
| Router(config)# telephony-service | Enters telephony-service configuration mode. |
| **Step 4**
<p>| user-locale [user-locale-tag] { [user-defined-code] country-code } | Specifies a language for phone displays. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# user-locale 1 U1 ZH</code></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>• <code>user-locale-tag</code>—Assigns a locale identifier to the locale. Range is 0 to 4. Default: 0. This argument is required when defining some locale other than the default (0).</td>
<td></td>
</tr>
<tr>
<td>• <code>user-defined-code</code>—(Optional) Assigns one of the user-defined codes to the specified country code. Valid codes are U1, U2, U3, U4, and U5.</td>
<td></td>
</tr>
<tr>
<td>• <code>country-code</code>—Type <code>?</code> to display a list of system-defined codes. Default: US (United States). You can assign any valid ISO 639 code to a user-defined code (U1 to U5).</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>network-locale network-locale-tag [user-defined-code] country-code</code></td>
<td>Specifies a country for tones and cadences.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# network-locale 1 FR</code></td>
<td></td>
</tr>
<tr>
<td>• <code>network-locale-tag</code>—Assigns a locale identifier to the country code. Range is 0 to 4. Default: 0. This argument is required when defining some locale other than the default (0).</td>
<td></td>
</tr>
<tr>
<td>• <code>user-defined-code</code>—(Optional) Assigns one of the user-defined codes to the specified country code. Valid codes are U1, U2, U3, U4, and U5.</td>
<td></td>
</tr>
<tr>
<td>• <code>country-code</code>—Type <code>?</code> to display a list of system-defined codes. Default: US (United States). You can assign any valid ISO 3166 code to a user-defined code (U1 to U5).</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>create cnf-files</code></td>
<td>Builds the required XML configuration files for IP phones. Use this command after you update configuration file parameters such as the user locale or network locale.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# create cnf-files</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-telephony)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>ephone-template template-tag</code></td>
<td>Enters ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ephone template 1</code></td>
<td></td>
</tr>
<tr>
<td>• <code>template-tag</code>—Unique sequence number that identifies this template during configuration tasks.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>user-locale user-locale-tag</code></td>
<td>Assigns a user locale to this ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-ephone-template)# user-locale 2</code></td>
<td></td>
</tr>
<tr>
<td>• <code>user-locale-tag</code>—A locale tag that was created in Step 4, on page 422. Range is 0 to 4.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>network-locale network-locale-tag</code></td>
<td>Assigns a network locale to this ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(config-ephone-template)# network-locale 2</code></td>
<td><code>• network-locale-tag</code>—A locale tag that was created in Step 5, on page 423. Range is 0 to 4.</td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone-template)# exit</code></td>
</tr>
<tr>
<td>Exits ephone-template configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>ephone <code>phone-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# ephone 36</code></td>
</tr>
<tr>
<td>Enters ephone configuration mode.</td>
<td><code>• phone-tag</code>—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 13</td>
<td>ephone-template <code>template-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone)# ephone-template 1</code></td>
</tr>
<tr>
<td>Applies an ephone template to an ephone.</td>
<td><code>• template-tag</code>—Number of the template to apply to this ephone.</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone)# exit</code></td>
</tr>
<tr>
<td>Exits ephone configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>telephony-service</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# telephony-service</code></td>
</tr>
<tr>
<td>Enters telephony-service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>reset `{ all</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-telephony)# reset all</code></td>
</tr>
<tr>
<td>Performs a complete reboot of all phones or the specified phone, including contacting the DHCP and TFTP servers for the latest configuration information.</td>
<td><code>• all</code>—All phones in the Cisco Unified CME system.</td>
</tr>
<tr>
<td></td>
<td><code>• time-interval</code>—(Optional) Time interval, in seconds, between each phone reset. Range is 0 to 60. Default is 15.</td>
</tr>
<tr>
<td></td>
<td><code>• cancel</code>—Interrupts a sequential reset cycle that was started with a <code>reset sequence-all</code> command.</td>
</tr>
<tr>
<td></td>
<td><code>• mac-address mac-address</code>—A specific phone.</td>
</tr>
<tr>
<td></td>
<td><code>• sequence-all</code>—Resets all phones in strict one-at-a-time order by waiting for one phone to reregister before starting the reset for the next phone.</td>
</tr>
<tr>
<td>Step 17</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-telephony)# end</code></td>
</tr>
<tr>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>
Verify Multiple Locales on SCCP Phones

Step 1 Use the `show telephony-service tftp-bindings` command to display a list of configuration files that are accessible to IP phones using TFTP, including the dictionary, language, and tone configuration files.

Example:
```
Router(config)# show telephony-service tftp-bindings

tftp-server system:/its/SEPDEFAULT.cnf

tftp-server system:/its/XMLDefault.cnf.xml alias XMLDefault.cnf.xml

tftp-server system:/its/germany/7960-font.xml alias German_Germany/7960-font.xml

tftp-server system:/its/germany/7960-dictionary.xml alias German_Germany/7960-dictionary.xml

tftp-server system:/its/germany/7960-kate.xml alias German_Germany/7960-kate.xml

tftp-server system:/its/germany/SCCP-dictionary.xml alias German_Germany/SCCP-dictionary.xml

tftp-server system:/its/germany/7960-tones.xml alias Germany/7960-tones.xml
```

Step 2 Ensure that per-phone configuration files are defined with the `cnf-file perphone` command.

Step 3 Use the `show telephony-service ephone-template` command to check the user locale and network locale settings in each ephone template.

Step 4 Use the `show telephony-service ephone` command to check that the correct templates are applied to phones.

Step 5 If the configuration file location is not TFTP, use the `debug tftp events` command to see which files Cisco Unified CME is looking for and whether the files are found and opened correctly. There are usually three states (“looking for x file,” “opened x file,” and “finished x file”). The file is found when all three states are displayed. For an external TFTP server you can use the logs from the TFTP server.

Configure Localization Support on SIP Phones

Install System-Defined Locales for Cisco Unified IP Phone 8961, 9951, and 9971

Network locale files allow an IP phone to play the proper network tone for the specified country. You must download and install a tone file for the country you want to support.

User locale files allow an IP phone to display the menus and prompts in the specified language. You must download and install JAR files and dictionary files for each language you want to support.

To download and install locale files for system-defined locales, perform the following steps.

Restriction
Phone firmware, configuration files, and locale files must be in the same directory.

Before you begin
- Cisco Unified CME 8.6 or a later version. For Cisco Unified IP Phone 9971, Cisco Unified CME 8.8 or a later version.
• You must have an account on Cisco.com to download locale files.

Step 1
Go to http://www.cisco.com/cgi-bin/tablebuild.pl/CME-Locale.
You must have an account on Cisco.com to access the Software Download Center. If you do not have an account or if you have forgotten your username or password, click the appropriate button at the login dialog box and follow the instructions that appear.

Step 2
Navigate to Downloads Home > Products > Unified Communications > Call Control > Mid-Market Call Control > Cisco Unified Communications Manager Express > Unified Communications Manager Express Individual File Set and select your version of Cisco Unified CME.

Step 3
Select the TAR file for the locale you want to install. Each TAR file contains locale files for a specific language and country and uses the following naming convention: CME-locale-language_country-CMEversion

Example:
For example, CME-locale-de_DE-8.6 is German for Germany for Cisco Unified CME 8.6.

Step 4
Download the TAR file to a TFTP server that is accessible to the Cisco Unified CME router. Each file contains all the firmware required for all phone types supported by that version of Cisco Unified CME.

Step 5
Use the archive tar command to extract the files to flash memory, slot 0, or an external TFTP server.

Example:
Router# archive tar /xtract source-url flash:/file-url

For example, to extract the contents of CME-locale-de_DE-8.6.tar from TFTP server 192.168.1.1 to router flash memory, use this command:
Router# archive tar /xtract tftp://192.168.1.1/cme-locale-de_DE-8.6.tar flash:

Step 6
See Table 32: Phone-Type Codes for Locale JAR Files, on page 426 and Table 33: System-Defined User and Network Locales , on page 427 for a description of the codes used in the filenames and the list of supported directory names.

Each phone type has a JAR file that uses the following naming convention:
language-phone-sip.jar

Example:
For example, de-gh-sip.jar is for German on the Cisco Unified IP Phone 8961.

Each TAR file also includes the file g4-tones.xml for country-specific network tones and cadences.

Table 32: Phone-Type Codes for Locale JAR Files

<table>
<thead>
<tr>
<th>Phone Type</th>
<th>Phone Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3905</td>
<td>cin</td>
</tr>
<tr>
<td>6941</td>
<td>rtl</td>
</tr>
<tr>
<td>6945</td>
<td>rtl</td>
</tr>
<tr>
<td>8961</td>
<td>gh</td>
</tr>
<tr>
<td>9951</td>
<td>gd</td>
</tr>
<tr>
<td>Phone Type</td>
<td>Phone Code</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>9971</td>
<td>gd</td>
</tr>
</tbody>
</table>

Table 33: System-Defined User and Network Locales

<table>
<thead>
<tr>
<th>Language</th>
<th>Language Code</th>
<th>User-Locale Directory Name</th>
<th>Country Code</th>
<th>Network-Locale Directory Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>en</td>
<td>English_United_States</td>
<td>US</td>
<td>United_States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English_United_Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danish</td>
<td>dk</td>
<td>Danish_Denmark</td>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>Dutch</td>
<td>nl</td>
<td>Dutch_Netherlands</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>French</td>
<td>fr</td>
<td>French_France</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>German</td>
<td>de</td>
<td>German_Germany</td>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Italian</td>
<td>it</td>
<td>Italian_Italy</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>Japanese</td>
<td>jp</td>
<td>Japanese_Japan</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>Norwegian</td>
<td>no</td>
<td>Norwegian_Norway</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>Portuguese</td>
<td>pt</td>
<td>Portuguese_Portugal</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>Russian</td>
<td>ru</td>
<td>Russian_Russia</td>
<td>RU</td>
<td>Russian_Federation</td>
</tr>
<tr>
<td>Spanish</td>
<td>es</td>
<td>Spanish_Spain</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>Swedish</td>
<td>se</td>
<td>Swedish_Sweden</td>
<td>SE</td>
<td>Sweden</td>
</tr>
</tbody>
</table>

7 English for the United States is the default language. You do not need to install the JAR file for U.S. English unless you assign a different language to a phone and then want to reassign English.

Step 7

If you store the locale files in flash memory or slot 0 on the Cisco Unified CME router, create a TFTP alias for the user locale (text displays) and network locale (tones) using this format:

Example:
Router(config)# tftp-server flash:/jar_file alias directory_name/gh-sip.jar
Router(config)# tftp-server flash:/g4-tones.xml alias directory_name/g4-tones.xml

Use the appropriate directory name shown in Table 32: Phone-Type Codes for Locale JAR Files, on page 426 and remove the two-letter language code from the JAR file name.

For example, the TFTP aliases for German and Germany for the Cisco Unified IP Phone 8961 are:

Router(config)# tftp-server flash:/de-gh-sip.jar alias German_Germany/
Router(config)# tftp-server flash:/g4-tones.xml alias Germany/g4-tones.xml

Step 8
If you store the locale files on an external TFTP server, create a directory under the TFTP root directory for each user and network locale.

Use the appropriate directory name shown in Table 32: Phone-Type Codes for Locale JAR Files, on page 426 and remove the two-letter language code from the JAR file name.

Example:
For example, the user-locale directory for German and the network-locale directory for Germany for the Cisco Unified IP Phone 8961 are:

TFTP-Root/German_Germany/gh-sip.jar TFTP-Root/Germany/g4-tones.xml

Step 9
Assign the locales to the phones. To set a default locale for all phones, use the user-locale and network-locale commands in voice register global configuration mode.

Step 10
To support more than one user or network locale, see Verify Multiple Locales on SIP Phones, on page 434.

Step 11
Use the create profile command to rebuild the configuration files.

Step 12
Use the reset command to reset the phones and see the localized displays.

Use the Locale Installer in Cisco Unified CME 9.0 and Later Versions

Restriction
- When using an external TFTP server, you must manually create the user locale folders in the root directory. This is a limitation of the TFTP server.
- Locale support is limited to phone firmware versions that are supported by Cisco Unified CME.
- User-defined locales are not supported if the configuration file location is “system:”.
- If you install and configure a user-defined locale using country codes U1-U5 and then you install a new locale using the same label, the phone retains the original language locale even after the phone is reset. This is a limitation of the IP phone. To work around this limitation, you must configure the new package using a different country code.
- Each user-defined country code (U1-U5) can be used for only one user-locale-tag at a time. For example:

 Router(config-register-global)# user-locale 2 U2 load Finnish.pkg
 Router(config-register-global)# user-locale 1 U2 load Chinese.pkg
 LOCALE ERROR: User Defined Locale U2 already exists on locale index 2.
Before you begin

- Cisco Unified CME 9.0(1) or a later version.
- When the storage location specified by the `cnf-file location` command is flash memory, sufficient space must be on the flash file system for extracting the contents of the locale TAR file.
- You must have an account on Cisco.com to download locale files.

Step 1

Go to http://www.cisco.com/cgi-bin/tablebuild.pl/CME-Locale

You must have an account on Cisco.com to access the Software Download Center. If you do not have an account or have forgotten your username or password, click the appropriate button at the login dialog box and follow the instructions that appear.

Step 2

Navigate to [Downloads Home > Products > Unified Communications > Call Control > Mid-Market Call Control > Cisco Unified Communications Manager Express > Unified Communications Manager Express Individual File Set](http://www.cisco.com/cgi-bin/tablebuild.pl/CME-Locale) and select your version of Cisco Unified CME.

Step 3

Select the TAR file for the locale you want to install. Each TAR file contains locale files for a specific language and country and uses the following naming convention: `CME-locale-language_country-CMEversion.tar`

Example:

For example, CME-locale-de_DE-German-8.6.3.0.tar is German for Germany for Cisco Unified CME 9.0.

Step 4

Download the TAR file to the location previously specified by the `cnf-file location` command. Each file contains all the firmware required for all phone types supported by that version of Cisco Unified CME.

With the locale installer, you do not need to perform manual configuration. Instead, you copy the locale file using the `copy` command in privileged EXEC configuration mode.

Note

You must copy the locale file into the /its directory (flash:/its or slot0:/its) when you store the locale files on the Cisco Unified CME router.

a) If the `cnf-file location` is flash memory: Copy the TAR file to the flash:/its directory.

Example:

For example,

```
Router# copy tftp://12.1.1.100/CME-locale-de_DE-German-8.6.3.0.tar flash:/its
```

b) If the `cnf-file location` is slot0: Copy the TAR file to the slot0:/its directory.

c) If the `cnf-file location` is tftp: Create a folder in the root directory of the TFTP server for each locale using the following format and then copy the TAR file to the TFTP-Root folder.

Example:

```
TFTP-Root/TAR-filename
```

For system-defined locales, use the locale folder name as shown in Table 34: System-Defined and User-Defined Locales, on page 430. For example, create the folder for system-defined German as follows:

```
TFTP-Root/de_DE-8.6.3.0.tar
```
For up to five user-defined locales, use the User_Define_n folder name as shown in Table 34: System-Defined and User-Defined Locales, on page 430. A user-defined locale is a language other than the system-defined locales that are predefined in Cisco IOS software. For example, create the folder for user-defined locale Chinese (User_Define_1) as follows:

TFTP-Root/CME-locale-zh_CN-Chinese-8.6.3.0.tar

Note For a list of user-defined languages supported in Cisco Unified CME, see Cisco Unified CME Localization Matrix.

<table>
<thead>
<tr>
<th>Language</th>
<th>Locale Folder Name</th>
<th>Country Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>English_United_States</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>English_United_Kingdom</td>
<td>UK</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>Danish</td>
<td>Danish_Denmark</td>
<td>DK</td>
</tr>
<tr>
<td>Dutch</td>
<td>Dutch_Netherlands</td>
<td>NL</td>
</tr>
<tr>
<td>French</td>
<td>French_France</td>
<td>FR</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>German_Germany</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>AT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>Italian_Italy</td>
<td>IT</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japanese_Japan</td>
<td>JP</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Norwegian_Norway</td>
<td>NO</td>
</tr>
<tr>
<td>Portuguese</td>
<td>Portuguese_Portugal</td>
<td>PT</td>
</tr>
<tr>
<td>Russian</td>
<td>Russian_Russia</td>
<td>RU</td>
</tr>
<tr>
<td>Spanish</td>
<td>Spanish_Spain</td>
<td>ES</td>
</tr>
<tr>
<td>Swedish</td>
<td>Swedish_Sweden</td>
<td>SE</td>
</tr>
<tr>
<td>Un^8</td>
<td>User_Define_n</td>
<td>Un^1</td>
</tr>
</tbody>
</table>

^8 Where “n” is a number from 1 to 5.

Step 5 Use the `user-locale [user-locale-tag] [user-defined-code|country-code] [load TAR-filename]` command in voice register global configuration mode to extract the contents of the TAR file. For country codes, see Table 34: System-Defined and User-Defined Locales, on page 430.
Use the complete filename, including the file suffix (.tar), when you configure the user-locale command for all Cisco Unified SIP IP phone types.

Note

Use the complete filename, including the file suffix (.tar), when you configure the user-locale command for all Cisco Unified SIP IP phone types.

Example:

For example, to extract the contents of the CME-locale-zh_CN-Chinese-8.6.3.0.tar file when U1 is the country code for user-defined locale Chinese (User_Define_1), use this command:

```
Router(config-register-global)# user-locale U1 load CME-locale-zh_CN-Chinese-8.6.3.0.tar
```

Step 6

Assign the locales to the phones. See Configure Multiple Locales on SIP Phones, on page 431.

Step 7

Use the create profile command in voice register global configuration mode to generate the configuration profile files required for Cisco Unified SIP IP phones.

Step 8

Use the reset command to reset the phones and see the localized displays.

Configure Multiple Locales on SIP Phones

To define one or more alternatives to the default user and network locales and apply them to individual phones, perform the following steps.

Restriction

* Multiple user and network locales are supported only on Cisco Unified IP Phone 8961, 9951, and 9971.

Before you begin

* Cisco Unified CME 8.6 or a later version. For Cisco Unified IP Phone 9971, Cisco Unified CME 8.8 or a later version.

* To specify alternative user and network locales for individual phones in a Cisco Unified CME system, you must use per-phone configuration files. For more information, see Install System-Defined Locales for Cisco Unified IP Phone 6921, 6945, 7906, 7911, 7921, 7931, 7941, 7961, 7970, 7971, and Cisco IP Communicator, on page 411.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. user-locale [user-locale-tag] { [user-defined-code] country-code}
5. network-locale network-locale-tag [user-defined-code] country-code
6. create profile
7. exit
8. voice register template template-tag
9. user-locale user-locale-tag
10. network-locale network-locale-tag
11. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
* Example:
`Router> enable`
- Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode.
* Example:
`Router(config)# configure terminal` |
| Step 3 | voice register global | Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.
* Example:
`Router(config)# voice register global` |
| Step 4 | user-locale [user-locale-tag] ([user-defined-code] country-code) | Specifies a language for phone displays.
* `user-locale-tag`—Assigns a locale identifier to the locale. Range is 0 to 4. Default: 0. This argument is required when defining some locale other than the default (0).
* `country-code`—Type ? to display a list of system-defined codes. Default: US (United States).
* Example:
`Router(config-register-global)# user-locale 1 DE` |
| Step 5 | network-locale network-locale-tag [user-defined-code] country-code | Specifies a country for tones and cadences.
* `network-locale-tag`—Assigns a locale identifier to the country code. Range is 0 to 4. Default: 0. This argument is required when defining some locale other than the default (0).
* `country-code`—Type ? to display a list of system-defined codes. Default: US (United States).
* You can assign any valid ISO 3166 code to a user-defined code (U1 to U5).
* Example:
`Router(config-register-global)# network-locale 1 FR` |
| Step 6 | create profile | Generates provisioning files required for SIP phones and writes the file to the location specified with the tftp-path command.
* Example:
`Router(config-register-global)# create profile` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice register global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>voice register template template-tag</td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)voice register template 10</td>
<td></td>
</tr>
<tr>
<td>• Range—1 to 10.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>user-locale user-locale-tag</td>
<td>Assigns a user locale to this ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# user-locale 2</td>
<td></td>
</tr>
<tr>
<td>• user-locale-tag—A locale tag that was created in Step 4, on page 432. Range is 0 to 4.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>network-locale network-locale-tag</td>
<td>Assigns a network locale to this ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# network-locale 2</td>
<td></td>
</tr>
<tr>
<td>• network-locale-tag—A locale tag that was created in Step 5, on page 432. Range is 0 to 4.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice register template configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#voice register pool 5</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>voice register template template-tag</td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)voice register template 10</td>
<td></td>
</tr>
<tr>
<td>• Range—1 to 10.</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice register template configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td></td>
</tr>
<tr>
<td>voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td></td>
</tr>
<tr>
<td>reset</td>
<td>Performs a complete reboot of all phones or the specified phone, including contacting the DHCP and TFTP servers for the latest configuration information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# reset</td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action
Step 17 end
Example:
 Router(config-register-global)# end

Returns to privileged EXEC mode.

Verify Multiple Locales on SIP Phones

Step 1 Use the **show voice register tftp-bind** command to display a list of configuration files that are accessible to IP phones using TFTP, including the dictionary, language, and tone configuration files.

 Example:

   ```
   Router#sh voice register tftp-bind
   tftp-server syncinfo.xml url system:/cme/sipphone(syncinfo.xml
   tftp-server SIPDefault.cnf url system:/cme/sipphone/SIPDefault.cnf
   tftp-server softkeyDefault_kpml.xml url system:/cme/sipphone/softkeyDefault_kpml.xml
   tftp-server softkeyDefault.xml url system:/cme/sipphone/softkeyDefault.xml
   tftp-server softkey2_kpml.xml url system:/cme/sipphone/softkey2_kpml.xml
   tftp-server softkey2.xml url system:/cme/sipphone/softkey2.xml
   tftp-server featurePolicyDefault.xml url system:/cme/sipphone/featurePolicyDefault.xml
   tftp-server SEPACA016FDC1BD.cnf.xml url system:/cme/sipphone/SEPACA016FDC1BD.cnf.xml
   ```

Step 2 Use the **show voice register template all** command to check the user locale and network locale settings in each ephone template.

Step 3 Use the **show voice register pool all** command to check that the correct templates are applied to phones.

Step 4 If the configuration file location is not TFTP, use the **debug tftp events** command to see which files Cisco Unified CME is looking for and whether the files are found and opened correctly. There are usually three states (“looking for x file,” “opened x file,” and “finished x file”). The file is found when all three states are displayed. For an external TFTP server, you can use the logs from the TFTP server.

Configuration Examples for Localization

Example for Configuring Multiple User and Network Locales

The following example sets the default locale of 0 to Germany, which defines Germany as the default user and network locale. Germany is used for all phones unless you apply a different locale to individual phones using ephone templates.

```
telephony service
cnf-file location flash:
cnf-file perphone
user-locale 0 DE
network-locale 0 DE
```
After using the previous commands to define Germany as the default user and network locale, use the following commands to return the default value of 0 to US:

```text
telephony service
   no user-locale 0 DE
   no network-locale 0 DE
```

Another way to define Germany as the default user and network locale is to use the following commands:

```text
telephony service
   cnf-file location flash:
   cnf-file perphone
   user-locale DE
   network-locale DE
```

After using the previous commands, use the following commands to return the default to US:

```text
telephony service
   no user-locale DE
   no network-locale DE
```

The following example defines three alternative locales: JP (Japan), FR (France), and ES (Spain). The default is US for all phones that do not have an alternative applied using ephone templates. In this example, ephone 11 uses JP for its locales, ephone 12 uses FR, ephone 13 uses ES, and ephone 14 uses the default, US.

```text
telephony-service
   cnf-file location flash:
   cnf-file perphone
   create cnf-files
   user-locale 1 JP
   user-locale 2 FR
   user-locale 3 ES
   network-locale 1 JP
   network-locale 2 FR
   network-locale 3 ES
   create cnf-files

   ephone-template 1
   user-locale 1
   network-locale 1

   ephone-template 2
   user-locale 2
   network-locale 2

   ephone-template 3
   user-locale 3
   network-locale 3

   ephone 11
   button 1:25
   ephone-template 1

   ephone 12
   button 1:26
   ephone-template 2

   ephone 13
   button 1:27
   ephone-template 3

   ephone 14
   button 1:28
```
Example for Configuring User-Defined Locales

The following example shows user-locale tag 1 assigned to code U1, which is defined as ZH for Traditional Chinese. Traditional Chinese is not predefined in the system so you must download the appropriate XML files to support this language.

In this example, ephone 11 uses Traditional Chinese (ZH) and ephone 12 uses the default, US English. The default is US English for all phones that do not have an alternative applied using ephone templates.

```
telephony-service
  cnf-file location flash:
    cnf-file perphone
    user-locale 1 U1 ZH
    network-locale 1 U1 CN

  ephone-template 2
  user-locale 1
  network-locale 1

  ephone 11
    button 1:25
  ephone-template 2

  ephone 12
    button 1:26
```

Example for Configuring Chinese as the User-Defined Locale

The following is a sample output from the `user-locale` command when you configure the Chinese language as the user-defined locale in Cisco Unified CME:

```
Router(config-register-global)# user-locale U1 load chinese.pkg
Updating CNF files

LOCALE INSTALLER MESSAGE: VER:1
LOCALE INSTALLER MESSAGE: Langcode:zh
LOCALE INSTALLER MESSAGE: Language:Chinese
LOCALE INSTALLER MESSAGE: Filename: 7905-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7905-font.xml
LOCALE INSTALLER MESSAGE: Filename: 7905-kate.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-tones.xml
LOCALE INSTALLER MESSAGE: Filename: mk-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: td-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: 7921-font.dat
LOCALE INSTALLER MESSAGE: Filename: 7921-kate.utf-8.xml
LOCALE INSTALLER MESSAGE: Filename: 7921-kate.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.utf-8.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary-ext.xml
LOCALE INSTALLER MESSAGE: Filename: 7921-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: utf8_tags_file
LOCALE INSTALLER MESSAGE: Filename: tags_file
LOCALE INSTALLER MESSAGE: New Locale configured

Processing file:flash:/its/user_define_1_tags_file
Processing file:flash:/its/user_define_1_utf8_tags_file
```
Example for Configuring Swedish as the System-Defined Locale

The following is a sample output from the `user-locale` command when you configure the Swedish language as the system-defined locale in Cisco Unified CME:

```
Router(config-register-global)# user-locale SE load swedish.pkg
Updating CNF files
LOCALE INSTALLER MESSAGE: VER:1
LOCALE INSTALLER MESSAGE: Langcode:se
LOCALE INSTALLER MESSAGE: Language:swedish
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: gp-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: ipc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: mk-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: td-sccp.jar
LOCALE INSTALLER MESSAGE: New Locale configured
```

Configuration Examples for Locale Installer on SCCP Phones

System-Defined Locale is the Default Applied to All Phones

The following example is the output from the `user-locale` command when you configure a system-defined locale for Cisco Unified CME and the locale is on the default locale index (user-locale-tag 0). The `user-locale-tag` argument is required only when using multiple locales; otherwise, the specified language is the default applied to all SCCP phones.

```
Router(config-telephony)# user-locale SE load CME-locale-sv_SV-7.0.1.1a.tar
Updating CNF files
LOCALE INSTALLER MESSAGE: VER:1
LOCALE INSTALLER MESSAGE: Langcode:se
LOCALE INSTALLER MESSAGE: Language:swedish
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: gp-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: ipc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: mk-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: td-sccp.jar
LOCALE INSTALLER MESSAGE: New Locale configured
```
User-Defined Locale is Default Language to be Applied to All Phones

The following example is the output from the `user-locale` command when you configure a user-defined locale for Cisco Unified CME and the locale is on the default locale index (user-locale-tag 0). The `user-locale-tag` argument is required when using multiple locales, otherwise the specified language is the default applied to all SCCP phones.

```
Router(config-telephone)# user-locale U1 load CME-locale-xh_CN-7.0.1.1.tar
Updating CNF files
LOCALE INSTALLER MESSAGE: VER:1
LOCALE INSTALLER MESSAGE: Langcode:fi
LOCALE INSTALLER MESSAGE: Language:Finnish
LOCALE INSTALLER MESSAGE: Filename: 7905-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7905-kate.xml
LOCALE INSTALLER MESSAGE: Filename: 7920-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-font.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-kate.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-tones.xml
LOCALE INSTALLER MESSAGE: Filename: mk-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: td-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tags_file
LOCALE INSTALLER MESSAGE: Filename: utf8_tags_file
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.utf-8.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: ipc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: gp-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tags_file
LOCALE INSTALLER MESSAGE: Filename: utf8_tags_file
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.utf-8.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: ipc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: gp-sccp.jar
LOCALE INSTALLER MESSAGE: New Locale configured

Processing file:flash:/its/user_define_2_tags_file
Processing file:flash:/its/user_define_2_utf8_tags_file

CNF FILES: Clock is not set or synchronized, retaining old versionStamps
CNF files updating complete
```

Locale on a Non-default Locale Index

The following example is the output from the `user-locale` command if you configure a user-defined locale as an alternate locale for a particular SCCP phone (ephone 1) in Cisco Unified CME. The `user-locale-tag` argument is required only when using multiple locales. In this configuration, the locale is user-defined Finnish (U2) on user-locale index 2.

```
Router(config-telephony)# user-locale 2 U2 load CME-locale-fi_FI-7.0.1.1.tar
Updating CNF files
LOCALE INSTALLER MESSAGE: VER:1
LOCALE INSTALLER MESSAGE: Langcode:fi
LOCALE INSTALLER MESSAGE: Language:Finnish
LOCALE INSTALLER MESSAGE: Filename: 7905-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7905-kate.xml
LOCALE INSTALLER MESSAGE: Filename: 7920-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-font.xml
```
LOCALE INSTALLER MESSAGE: Filename: 7960-kate.xml
LOCALE INSTALLER MESSAGE: Filename: 7960-tones.xml
LOCALE INSTALLER MESSAGE: Filename: mk-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: td-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: tags_file
LOCALE INSTALLER MESSAGE: Filename: utf8_tags_file
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.utf-8.xml
LOCALE INSTALLER MESSAGE: Filename: SCCP-dictionary.xml
LOCALE INSTALLER MESSAGE: Filename: ipc-sccp.jar
LOCALE INSTALLER MESSAGE: Filename: gp-sccp.jar
LOCALE INSTALLER MESSAGE: New Locale configured

Processing file:flash:/its/user_define_2_tags_file
Processing file:flash:/its/user_define_2_utf8_tags_file

CNF-FILES: Clock is not set or synchronized, retaining old versionStamps
CNF files updating complete

Router(config-telephony)# ephone-template 1
Router(config-ephone-template)# user-locale 2
Router(config-ephone-template)# ephone 1
Router(config-ephone)# ephone-template 1
The ephone template tag has been changed under this ephone, please restart or reset ephone
to take effect.
Router(config-ephone)# telephony-service
Router(config-telephony)# create cnf-files
Router(config-telephony)# ephone 1
Router(config-ephone)# reset

Examples for Configuring Multiple User and Network Locales on SIP Phones

The following example sets the default locale of 0 to Germany, which defines Germany as the default user
and network locale. Germany is used for all phones unless you apply a different locale to individual phones
using ephone templates.

voice register global
 user-locale 0 DE
 network-locale 0 DE

After using the previous commands to define Germany as the default user and network locale, use the following
commands to return the default value of 0 to US:

voice register global
 no user-locale 0 DE
 no network-locale 0 DE

Another way to define Germany as the default user and network locale is to use the following commands:

voice register global
 user-locale DE
 network-locale DE

After using the previous commands, use the following commands to return the default to US:
voice register global
 no user-locale DE
 no network-locale DE

SIP: Alternative Locales

The following example defines three alternative locales: JP (Japan), FR (France), and ES (Spain). The default
is US for all phones that do not have an alternative applied using ephone templates. In this example, ephone
11 uses JP for its locales, ephone 12 uses FR, ephone 13 uses ES, and ephone 14 uses the default, US.

voice register global
 create profile
 user-locale 1 JP
 user-locale 2 FR
 user-locale 3 ES
 network-locale 1 JP
 network-locale 2 FR
 network-locale 3 ES
 create profile

voice register template 1
 user-locale 1
 network-locale 1

voice register template 2
 user-locale 2
 network-locale 2

voice register pool 1
 number 1 dn 1
 template 1
 user-locale 3
 network-locale 3

voice register pool 2
 number 2 dn 2
 template 2

voice register pool 6
 number 3 dn 3
 template 3

Example for Configuring Locale Installer on SIP Phones

The following example shows how the locale installer only requires you to copy the locale file using the copy
command in privileged EXEC configuration mode to configure a locale on a Cisco Unified SIP IP phone.
The example also shows that the locale file has been copied in the /its directory.

Router# copy tftp://100.1.1.1/CME-locale-de_DE-German-8.6.3.0.tar flash:/its
Destination filename [/its/CME-locale-de_DE-German-8.6.3.0.tar]?
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# voice register global
Router(config)# voice register-global)# user-locale DE load
CME-locale-de_DE-German-8.6.3.0.tar
LOCALE INSTALLER MESSAGE (SIP):Loading Locale Package...
LOCALE INSTALLER MESSAGE: VER:3
LOCALE INSTALLER MESSAGE: Langcode:de_DE
LOCALE INSTALLER MESSAGE: Language:German
LOCALE INSTALLER MESSAGE: Filename: g3-tones.xml
Where to Go Next

Ephone Templates

For more information about ephone templates, see Templates, on page 1393.

Feature Information for Localization Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 35: Feature Information for Localization Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization Enhancements for Cisco Unified SIP IP Phones</td>
<td>10.5</td>
<td>Cisco Unified CME 10.5 provides support for additional languages.</td>
</tr>
<tr>
<td>Localization Enhancements for Cisco Unified SIP IP Phones</td>
<td>9.0</td>
<td>Provides the following enhanced localization support for Cisco Unified SIP IP phones:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Localization support for Cisco Unified 6941 and 6945 SIP IP Phones.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locale installer that supports a single procedure for all Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td>Localization Enhancement</td>
<td>8.8</td>
<td>Adds localization support for Cisco Unified 3905 SIP and Cisco Unified 6945, 8941, and 8945 SCCP IP Phones.</td>
</tr>
<tr>
<td>Usability Enhancement</td>
<td>8.6</td>
<td>Adds localization support for SIP IP Phones.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Cisco Unified CME Usability</td>
<td>7.0(1)</td>
<td>• Locale installer that supports a single procedure for all SCCP IP phones.</td>
</tr>
<tr>
<td>Enhancement</td>
<td></td>
<td>• Parses firmware-load text files and automatically creates the required TFTP aliases for localization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Backward compatibility with the configuration method in Cisco Unified CME 7.0 and earlier versions.</td>
</tr>
<tr>
<td>Multiple Locales</td>
<td>4.0</td>
<td>Multiple user and network locales were introduced.</td>
</tr>
<tr>
<td>User-Defined Locales</td>
<td>4.0</td>
<td>User-defined locales were introduced.</td>
</tr>
</tbody>
</table>
Dial Plans

This chapter describes features that enable Cisco Unified Communications Manager Express (Cisco Unified CME) to expand or manipulate internal extension numbers so that they conform to numbering plans used by external systems.

- Information About Dial Plans, on page 443
- Configure Dial Plans, on page 449
- Configuration Examples for Dial Plan Features, on page 466
- Feature Information for Dial Plan Features, on page 468

Information About Dial Plans

Phone Number Plan

If you install a Cisco Unified CME system to replace an older telephony system that had an established telephone number plan, you can retain the old number plan. Cisco Unified CME supports flexible extension number lengths and can provide automatic conversion between extension dialing and E.164 public telephone number dialing.

When a router receives a voice call, it selects an outbound dial peer by comparing the called number (the full E.164 telephone number) in the call information with the number configured as the destination pattern for the POTS dial peer. The router then strips out the left-justified numbers corresponding to the destination pattern matching the called number. If you have configured a prefix, the prefix will be put in front of the remaining numbers, creating a dial string, which the router will then dial. If all numbers in the destination pattern are stripped-out, the user will receive (depending on the attached equipment) a dial tone.

A successful Cisco Unified CME system requires a telephone numbering plan that supports future expansion. The numbering plan also must not overlap or conflict with other numbers that are on the same VoIP network or are part of a centralized voice mail system.

Cisco Unified CME supports shared lines and multiple lines configured with the same extension number. This means that you can set up several phones to share an extension number to provide coverage for that number. You can also assign several line buttons on a single phone to the same extension number to create a small hunt group.

If you are configuring more than one Cisco Unified CME site, you need to decide how calls between the sites will be handled. Calls between Cisco Unified CME phones can be routed either through the PSTN or over VoIP. If you are routing calls over VoIP, you must decide among the following three choices:
You can route calls using a global pool of fixed-length extension numbers. For example, all sites have unique extension numbers in the range 5000 to 5999, and routing is managed by a gatekeeper. If you select this method, assign a subrange of extension numbers to each site so that duplicate number assignment does not result. You will have to keep careful records of which Cisco Unified CME system is assigned which number range.

You can route calls using a local extension number plus a special prefix for each Cisco Unified CME site. This choice allows you to use the same extension numbers at more than one site.

You can use an E.164 PSTN phone number to route calls over VoIP between Cisco Unified CME sites. In this case, intersite callers use the PSTN area code and local prefix to route calls between Cisco Unified CME systems.

If you choose to have a gatekeeper route calls among multiple Cisco Unified CME systems, you may face additional restrictions on the extension number formats that you use. For example, you might be able to register only PSTN-formatted numbers with the gatekeeper. The gatekeeper might not allow the registration of duplicate telephone numbers in different Cisco Unified CME systems, but you might be able to overcome this limitation. Cisco Unified CME allows the selective registration of either 2- to 5-digit extension numbers or 7- to 10-digit PSTN numbers, so registering only PSTN numbers might prevent the gatekeeper from sensing duplicate extensions.

Mapping of public telephone numbers to internal extension numbers is not restricted to simple truncation of the digit string. Digit substitutions can be made by defining dial plan patterns to be matched. For information about dial plans, see Dial Plan Patterns, on page 444. More sophisticated number manipulations can be managed with voice translation rules and voice translation profiles, which are described in the Voice Translation Rules and Profiles section.

In addition, your selection of a numbering scheme for phones that can be directly dialed from the PSTN is limited by your need to use the range of extensions that are assigned to you by the telephone company that provides your connection to the PSTN. For example, if your telephone company assigns you a range from 408 555-0100 to 408 555-0199, you may assign extension numbers only in the range 100 to 199 if those extensions are going to have Direct Inward Dialing (DID) access. For more information about DID, see Direct Inward Dialing Trunk Lines, on page 445.

Dial Plan Patterns

A dial plan pattern enables abbreviated extensions to be expanded into fully qualified E.164 numbers. Use dial plan patterns when configuring a network with multiple Cisco Unified CMEs to ensure that the appropriate calling number, extension or E.164 number, is provided to the target Cisco Unified CME, and appears on the phone display of the called phone. In networks that have a single router, you do not need to use dial plan patterns.

When you define a directory number for an SCCP phone, the Cisco Unified CME system automatically creates a POTS dial peer with the ephone-dn endpoint as a destination. For SIP phones connected directly into Cisco Unified CME, the dial peer is automatically created when the phone registers. By default, Cisco Unified CME creates a single POTS dial peer for each directory number.

For example, when the ephone-dn with the number 1001 was defined, the following POTS dial peer was automatically created for it:

```
dial-peer voice 20001 pots
destination-pattern 1001
voice-port 50/0/2
```
A dial plan pattern builds additional dial peers for the expanded numbers it creates. If a dialplan pattern is configured and it matches against a directory number, two POTS dial peers are created, one for the abbreviated number and one for the complete E.164 direct-dial telephone number.

For example, if you then define a dial plan pattern that 1001 will match, such as 40855500.., a second dial peer is created so that calls to both the 0001 and 4085550001 numbers are completed. In this example, the additional dial peer that is automatically created looks like the following:

```
dial-peer voice 20002 pots
  destination-pattern 40855510001
  voice-port 50/0/2
```

In networks with multiple routers, you may need to use dial plan patterns to expand extensions to E.164 numbers because local extension numbering schemes can overlap each other. Networks with multiple routers have authorities such as gatekeepers that route calls through the network. These authorities require E.164 numbers so that all numbers in the network are unique. Define dial plan patterns to expand extension numbers into unique E.164 numbers for registering with a gatekeeper. For more information on E.164 numbers, see E .164 Enhancements, on page 446.

If multiple dial plan patterns are defined, the system matches extension numbers against the patterns in sequential order, starting with the lowest numbered dial plan pattern tag first. Once a pattern matches an extension number, the pattern is used to generate an expanded number. If additional patterns subsequently match the extension number, they are not used.

Direct Inward Dialing Trunk Lines

Direct Inward Dialing (DID), is a one-way incoming trunking mechanism, that allows an external caller to directly reach a specific extension without the call being served by an attendant or other intervention.

It is a service offered in which the last few (typically three or four) digits dialed by the caller are forwarded to the called party on a special DID trunk. For example, all the phone numbers from 555-0000 to 555-0999 could be assigned to a company with 20 DID trunks. When a caller dials any number in this range, the call is forwarded on any available trunk. If the caller dialed 555-0234, then the digits 2, 3, and 4 are forwarded. These DID trunks could be terminated on a PBX, so that the extension 234 gets the call without operator assistance. This makes it look as though 555-0234 and the other 999 lines all have direct outside lines, while only requiring 20 trunks to service the 1,000 telephone extensions. Using DID, a company can offer its customers individual phone numbers for each person or workstation within the company without requiring a physical line into the PBX for each possible connection. Compared to regular PBX service, DID saves the cost of a switchboard operator. Calls go through faster, and callers feel they are calling a person rather than a company.

Dial plan patterns are required to enable calls to DID numbers. When the PSTN connects a DID call for “4085550234” to the Cisco Unified CME system, it also forwards the extension digits “234” to allow the system to route the call.

Voice Translation Rules and Profiles

Translation rules manipulate dialed numbers to conform to internal or external numbering schemes. Voice translation profiles allow you to group translation rules together and apply them to the following types of numbers:

- Called numbers (DNIS)
• Calling numbers (ANI)
• Redirected called numbers
• Redirected target numbers—These are transfer-to numbers and call-forwarding final destination numbers. Supported by SIP phones in Cisco Unified CME 4.1 and later versions.

After you define a set of translation rules and assign them to a translation profile, you can apply the rules to incoming and outgoing call legs to and from the Cisco Unified CME router based on the directory number. Translation rules can perform regular expression matches and replace substrings. A translation rule replaces a substring of the input number if the number matches the match pattern, number plan, and type present in the rule.

For configuration information, see Define Voice Translation Rules in Cisco CME 3.2 and Later Versions, on page 452.

For examples of voice translation rules and profiles, see the Voice Translation Rules technical note and the Number Translation using Voice Translation Profiles technical note.

Secondary Dial Tone

A secondary dial tone is available for Cisco Unified IP phones connected to Cisco Unified CME. From Cisco Unified CME Release 11.6 onwards, secondary dial tone is supported on both SIP phones and SCCP phones.

The secondary dial tone is generated when a phone user dials a predefined PSTN access prefix and terminates when additional digits are dialed. An example is when a secondary dial tone is heard after a PSTN access prefix, such as the number 9, is dialed to reach an outside line. For SIP phones, a dialplan file is downloaded when the phone restarts. This dialplan file will have the dialplan pattern configured. Based on this dialplan pattern, phone would collect the digits or play secondary dial tone if there is a comma (,) in the pattern. The call is placed from the phone, when there is matching pattern in the dialplan file. Also note that when this feature is enabled, KPML digit collection is disabled on SIP phones.

For configuration information, see Activate Secondary Dial Tone For SCCP Phones, on page 460 and Activate Secondary Dial Tone for SIP Phones, on page 461.

E.164 Enhancements

Cisco Unified CME 8.5 allows you to present a phone number in +E.164 telephone numbering format. E.164 is an International Telecommunication Union (ITU-T) recommendation that defines the international public telecommunication numbering plan used in the PSTN and other data networks. E.164 defines the format of telephone numbers. A leading +E.164 telephone number can have a maximum of 15 digits and is usually written with a ‘+’ prefix defining the international access code. To dial such numbers from a normal fixed line phone, the appropriate international call prefix must be used.

The leading +E.164 number is unique number specified to a phone or a device. Callers from around the world dial the leading +E.164 phone number to reach a phone or a device without the need to know local or international prefix. The leading +E.164 feature also reduces the overall telephony configuration process by eliminating the need to further translate the telephone numbers.

Phone Registration with Leading +E164 Number

In Cisco Unified CME, phones register using the leading ‘+’ dialing plan in two ways. Phones can either register with the extension number or with leading +E.164 number.
When phones are registered with extension number, the phones will have a dial peer association with the extension number. The `dialplan-pattern` command is enhanced to allow you to configure leading + phone numbers on the dialplan pattern. Once dialplan-pattern is configured, there could be an E.164 number dialpeer associated with the same phone.

For example, phones registered with extension number 1111 can also be reached by dialing +13332221111. This phone registration method is beneficial in two ways, that is, locally, phones are able to reach each other by just dialing the extension numbers and, remotely, phones can dial abbreviated numbers which are translated as an E.164 number at the outgoing dial-peer. See Example 1, on page 447 for more information.

There are instances where phone is registered with Unified CME using the extension number. If the user has to reach the phone using the full +E.164 number, a dial peer needs to be configured for the full number. This is applicable only when the extension-length is specified to have the same length as extension number.

When phones are registered with a leading + E.164 number, there is only one leading + E.164 number associated with the phone. The `demote` option in the `dialplan-pattern` command allows the phone to have two dialpeers associated with the same phone. For more information on configuring the dialplan-patterns, see **Configure Dial Plans**, on page 449.

For example, a phone registered with + E.164 phone number +12223331111 will have two dialpeers associated with the same phone that is, +122233331111 and 1111. See Example 2, on page 447.

Example 1

In the following example, phones are registered with extension number 1111 but they can be reached by either dialing the 4-digit extension number, or a leading + E.164 number (+122233331111). When the dial-peer pattern is configured, phones can also be reached by dialing its + E.164 number. The phone can be reached by dialing either the 4-digit extension number or the + E.164 number.

```plaintext
ephone-dn 1
  number 1111
ephone 1
  button 1:1
  telephony-service
    dialplan-pattern 1 +1222333.... extension-length 4
  voice register dn 1
    number 1235
  voice register pool 1
    number 1 dn 1
  voice register global
    dialplan-pattern 1 +1222333.... extension-length 4
```

Example 2

In the following example, phones are registered with leading + E.164 number (+122233331111) and the phones can be reached by dialing either the 4-digit extension number or the + E.164 number. In this example, phone can be reached by dialing 1111 or the +E.164 number.
Because the legacy phone does not have a ‘+’ button, you can configure dialplan-pattern or translation profile.

Example 3

In the following example, phones are registered with leading +E.164 number (+12223331111) for SCCP phone and +12223331235 for SIP phone) and the phones can be reached by dialing either the 6-digit number or the + E.164 number. The phone number +12223331234 can be reached by dialing either the 6-digit demoted number or the + E.164 number.
After the CLI for demote is configured to extension-length 6, you can dial 331235 for SIP phone, and 331111 for SCCP phone.

Callback and Calling Number Display

In earlier versions of Cisco Unified CME and Cisco Unified SRST, the calling number (number from an incoming call ringing on your phone) was used for both callback (number displayed under Missed Calls in your local phone directory number) and calling numbers. The + E.164 feature in Cisco Unified CME 8.5, allows you to display both calling number and callback numbers in appropriate format so that you are not required to edit the phone numbers before placing a call. The calling number is displayed on the phone when you configure the `translation-profile outgoing` command in ephone-dn or voice register dn mode.

The `translate callback-number` configuration in voice translation-profile allows you to translate the callback number and display it in E.164 format. The `translate callback number` configuration is only applicable for outgoing calls on SIP and SCCP IP phones. When `translate callback number` is configured, the extra callback field is displayed and if the number matches the translation rule, it is translated. For more information see Define Translation Rules for Callback-Number on SIP Phones, on page 463.

Similarly, in Cisco Unified SRST 8.5, you can configure `translate calling` under `voice translation-profile` mode to display the calling number. You can configure `translation-profile outgoing` in `call-manager-fallback` mode or `voice register pool` to display the callback number. You can use `translate called` command in `translation-profile` and `call-manager-fallback` or `voice register pool` will try to match the called number to do the translation. See Enabling Translation Profiles for more information.

The leading ‘+’ in the E.164 number is stripped from the called and calling numbers if the called endpoint or gateway, such as H323 or QSIG gateway, does not support the leading ‘+’ sign in the E.164 number translation. You can strip the leading ‘+’ sign from the number you are calling or a called number using the `translation-profile incoming` or `translation-profile outgoing` commands.

Configure Dial Plans

Configure SCCP Dial Plan Patterns

- **Tip**
 In networks that have a single router, you do not need to define dial plan patterns.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. dialplan-pattern tag pattern extension-length length [extension-pattern epattern] [no-reg]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configure SIP Dial Plan Patterns

To create and apply a pattern for expanding individual abbreviated SIP extensions into fully qualified E.164 numbers, follow the steps in this section. dial plan pattern expansion affects calling numbers and for call forward using B2BUA, redirecting, including originating and last reroute, numbers for SIP extensions in Cisco Unified CME.

Before you begin
Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register global
4. dialplan-pattern tag pattern extension-length length [extension-pattern epattern] [no-reg]
5. call-forward system redirecting-expanded
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>dialplan-pattern tag pattern extension-length</td>
<td>Defines pattern that is used to expand abbreviated extension numbers of SIP calling numbers in Cisco Unified CME into fully qualified E.164 numbers.</td>
</tr>
<tr>
<td></td>
<td>extension-length [extension-pattern extension-pattern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>no-reg]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# dialplan-pattern 1 4085550... extension-length 5</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>call-forward system redirecting-expanded</td>
<td>Applies dial plan pattern expansion globally to redirecting, including originating and last reroute, numbers for SIP extensions in Cisco Unified CME for call forward using B2BUA.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# call-forward system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>redirecting-expanded</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Dial Plan Patterns

SUMMARY STEPS

1. show telephony-service
2. SCCP: show telephony-service dial-peer or SIP: show dial-peer summary

DETAILED STEPS

Step 1	show telephony-service	Use this command to verify dial plan patterns in the configuration.
		Example:
		The following example maps the extension pattern 4.. to the last three digits of the dial plan pattern 4085550155:
Define Voice Translation Rules in Cisco CME 3.2 and Later Versions

Step 2

SCCP: `show telephony-service dial-peer` or SIP: `show dial-peer summary`

Use the command to display dial peers that are automatically created by the `dialplan-pattern` command.

Use this command to display the configuration for all VoIP and POTS dial peers configured for a router, including dial peers created by using the `dialplan-expansion (voice register)` command.

Example:

The following example is output from the `show dial-peer summary` command displaying information for four dial peers, one each for extensions 60001 and 60002 and because the `dialplan-expansion` command is configured to expand 6... to 408555...., one each for 4085550001 and 4085550002. The latter two dial peers will not appear in the running configuration.

```
Router# show dial-peer summary
AD   TAG    TYPE  MIN OPER PREFIX  DEST-PATTERN  FER  THRU  SESS-TARGET  STATT
----  ------  -----  ---  ------  -------  ----  ----  --------  ----
20010 pots up up  up  600002$  0      0      0
20011 pots up up  up  600001$  0      0      9
20012 pots up up  up  5105555001$ 0      0      9
20013 pots up up  up  5105555002$ 0      0      0
```

Define Voice Translation Rules in Cisco CME 3.2 and Later Versions

Note

To configure translation rules for voice calls in Cisco CME 3.1 and earlier versions, see Cisco IOS Voice, Video, and FAX Configuration Guide.

Before you begin

- SCCP support—Cisco CME 3.2 or a later version.
- SIP support—Cisco Unified CME 4.1 or a later version.
- To define up to 100 translation rules per translation rule table—Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice translation-rule number`
4. `rule precedence /match-pattern/ replace-pattern/`
5. `exit`
6. `voice translation-profile name`
7. `translate {called | calling | redirect-called | redirect-target} translation-rule-number`
8. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** voice translation-rule *number* | Defines a translation rule for voice calls and enters voice translation-rule configuration mode.
- *number*—Number that identifies the translation rule.
 Range: 1 to 2147483647. |
| **Example:** | Router(config)# voice translation-rule 1 |
| **Step 4** rule *precedence* /match-pattern/ /replace-pattern/ | Defines a translation rule.
- *precedence*—Priority of the translation rule.
 Range: 1 to 100.
 Note Range limited to 15 maximum rules in CME 8.5 and earlier versions.
 - *match-pattern*—Stream Editor (SED) expression used to match incoming call information. The slash (/) is a delimiter in the pattern.
 - *replace-pattern*—SED expression used to replace the match pattern in the call information. The slash (/) is a delimiter in the pattern. |
| **Example:** | Router(cfg-translation-rule)# rule 1 /*9/ // |
| **Step 5** exit | Exits voice translation-rule configuration mode. |
| **Example:** | Router(cfg-translation-rule)# exit |
| **Step 6** voice translation-profile *name* | Defines a translation profile for voice calls.
- *name*—Name of the translation profile. Maximum length of the voice translation profile name is 31 alphanumeric characters. |
| **Example:** | Router(config)# voice translation-profile name1 |
| **Step 7** translate *(called | calling | redirect-called | redirect-target)* translation-rule-number | Associates a translation rule with a voice translation profile.
- *called*—Associates the translation rule with called numbers.
- *calling*—Associates the translation rule with calling numbers. |
| **Example:** | Router(cfg-translation-profile)# translate called 1 |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• redirect-called</td>
<td>Associates the translation rule with redirected called numbers.</td>
</tr>
<tr>
<td>• redirect-target</td>
<td>Associates the translation rule with transfer-to numbers and call-forwarding final destination numbers. This keyword is supported by SIP phones in Cisco Unified CME 4.1 and later versions.</td>
</tr>
<tr>
<td>• translation-rule-number</td>
<td>Reference number of the translation rule configured in Step 3, on page 453. Range: 1 to 2147483647.</td>
</tr>
</tbody>
</table>

Step 8

Example:

```
Router(cfg-translation-profile)# end
```

Returns to privileged EXEC mode.

What to do next

- To apply voice translation profiles to SCCP phones connected to Cisco Unified CME 3.2 or a later version, see [Apply Voice Translation Rules on SCCP Phones in Cisco Unified CME 3.2 and Later Versions](#), on page 454.

- To apply voice translation profiles to SIP phones connected to Cisco Unified CME 4.1 or a later version, see [Apply Voice Translation Rules on SIP Phones in Cisco Unified CME 4.1 and Later](#), on page 457.

- To apply voice translation profiles to SIP phones connected to Cisco CME 3.4 or Cisco Unified CME 4.0(x), see [Apply Voice Translation Rules on SIP Phones Before Cisco Unified CME 4.1](#), on page 458.

Apply Voice Translation Rules on SCCP Phones in Cisco Unified CME 3.2 and Later Versions

To apply a voice translation profile to incoming or outgoing calls to or from a directory number on a SCCP phone, perform the following steps.

Before you begin

- Cisco CME 3.2 or a later version.

- Voice translation profile containing voice translation rules to be applied must be already configured. For configuration information, see [Define Voice Translation Rules in Cisco CME 3.2 and Later Versions](#), on page 452.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn tag</td>
<td>Enters ephone-dn configuration mode to create an extension (ephone-dn)</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• tag—Unique sequence number that identifies this ephone-dn during</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 1</td>
<td>configuration tasks. Range is 1 to the maximum number of ephone-dns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allowed on the router platform. See the CLI help for the maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value for this argument.</td>
</tr>
<tr>
<td>Step 4</td>
<td>translation-profile { incoming</td>
<td>outgoing } name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• You can also use an ephone-dn template to apply this command to</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# translation</td>
<td>one or more directory numbers. If you use an ephone-dn template to</td>
</tr>
<tr>
<td></td>
<td>profile outgoing namel</td>
<td>apply a command and you use the same command in ephone-dn configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode for the same directory number, the value that you set in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ephone-dn configuration mode has priority.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.
Apply Translation Rules on SCCP Phones Before Cisco Unified CME 3.2

To apply a translation rule to an individual directory number in Cisco CME 3.1 and earlier versions, perform the following steps.

Before you begin
Translation rule to be applied must be already configured by using the `translation-rule` and `rule` commands. For configuration information, see Cisco IOS Voice, Video, and FAX Configuration Guide.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn tag`
4. `translate (called | calling) translation-rule-tag`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters ephone-dn configuration mode to create directory number for a Cisco Unified IP phone line, an intercom line, a paging line, a voice-mail port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>ephone-dn tag</td>
<td>Enters ephone-dn configuration mode to create directory number for a Cisco Unified IP phone line, an intercom line, a paging line, a voice-mail port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies rule to be applied to the directory number being configured.</td>
</tr>
<tr>
<td>translate (called</td>
<td>calling) translation-rule-tag</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Apply Voice Translation Rules on SIP Phones in Cisco Unified CME 4.1 and Later

To apply a voice translation profile to incoming calls to a directory number on a SIP phone, perform the following steps.

Before you begin
- Cisco Unified CME 4.1 or a later version.
- Voice translation profile containing voice translation rules to be applied must be already configured. For configuration information, see Define Voice Translation Rules in Cisco CME 3.2 and Later Versions, on page 452.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
4. translation-profile incoming name
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>translation-profile incoming name</td>
<td>Assigns a translation profile for incoming call legs to this directory number.</td>
</tr>
</tbody>
</table>
Apply Voice Translation Rules on SIP Phones Before Cisco Unified CME 4.1

To apply an already-configured voice translation rule to modify the number dialed by extensions on a SIP phone, perform the following steps.

Before you begin

- Cisco CME 3.4 or a later version.
- Voice translation rule to be applied must be already configured. For configuration information, see Define Voice Translation Rules in Cisco CME 3.2 and Later Versions, on page 452.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool *pool-tag*
4. translate-outgoing {called | calling} *rule-tag*
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for SIP phones.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register pool 3</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4 translate-outgoing (called</td>
<td>calling) rule-tag</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# translate-outgoing called 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See [Generate Configuration Profiles for SIP Phones](#), on page 393.

Verify Voice Translation Rules and Profiles

To verify voice translation profiles, and rules, perform the following steps.

SUMMARY STEPS

1. `show voice translation-profile [name]`
2. `show voice translation-rule [number]`
3. `test voice translation-rule number`

DETAILED STEPS

Step 1

`show voice translation-profile [name]`

This command displays the configuration of one or all translation profiles.

Example:

`Router# show voice translation-profile profile-8415`

Translation Profile: profile-8415
 Rule for Calling number: 4
 Rule for Called number: 1
 Rule for Redirect number: 5
 Rule for Redirect-target number: 2

Step 2

`show voice translation-rule [number]`

This command displays the configuration of one or all translation rules.

Example:

`Router# show voice translation-rule 6`

Translation-rule tag: 6
 Rule 1:
Activate Secondary Dial Tone For SCCP Phones

To activate a secondary dial tone after a phone user dials the specified number, perform the following steps.

Before you begin

- Cisco CME 3.0 or a later version.
- PSTN access prefix must be configured for outbound dial peer.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. secondary-dialtone digit-string
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Activate Secondary Dial Tone for SIP Phones

To activate a secondary dial tone after a phone user dials the specified number, perform the following steps.

Before you begin

- Cisco Unified CME 11.6 or later for SIP phones.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register dialplan tag`
4. `type 7940-7960-others`
5. `pattern tag string`
6. `voice register pool tag`
7. `dialplan tag`
8. `voice register global`
9. `create profile`
10. `voice register pool tag`
11. `reset`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
</tr>
<tr>
<td>3</td>
<td><code>voice register dialplan tag</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# voice register dialplan 1</code></td>
</tr>
<tr>
<td>4</td>
<td><code>type 7940-7960-others</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-dialplan)# type 7940-7960-others</code></td>
</tr>
<tr>
<td>5</td>
<td><code>pattern tag string</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-dialplan)# pattern 1 30,</code></td>
</tr>
<tr>
<td></td>
<td><code>string</code>—It is the pattern to be matched while dialing from phone. This string is represented as WORD and the value of this string can be a combination of [0-9.*#].</td>
</tr>
<tr>
<td>6</td>
<td><code>voice register pool tag</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-dialplan)# voice register pool 1</code></td>
</tr>
<tr>
<td>7</td>
<td><code>dialplan tag</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-pool)# dialplan 1</code></td>
</tr>
<tr>
<td>8</td>
<td><code>voice register global</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-pool)# voice register global</code></td>
</tr>
<tr>
<td>9</td>
<td><code>create profile</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-global)# create profile</code></td>
</tr>
<tr>
<td>10</td>
<td><code>voice register pool tag</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-register-global)# voice register pool 1</code></td>
</tr>
</tbody>
</table>
Define Translation Rules for Callback-Number on SIP Phones

Before you begin
- To define up to 100 translation rules per translation rule table—Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice translation-rule number`
4. `rule precedence | match-pattern | replace-pattern`
5. `exit`
6. `voice translation-profile name`
7. `translate {callback-number | called | calling | redirect-called | redirect-target} translation-rule-number`
8. `exit`
9. `voice register pool phone-tag`
10. `number tag dn dn-tag`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>voice translation-rule number</code></td>
<td>Defines a translation rule for voice calls and enters voice translation-rule configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# voice translation-rule 10</td>
<td>- number—Number that identifies the translation rule. Range: 1 to 2147483647.</td>
</tr>
</tbody>
</table>

Step 4

rule precedence | match-pattern | replace-pattern |

Example:

Router(cfg-translation-rule)# rule 1 /^9/ //

Defines a translation rule.

- **precedence**—Priority of the translation rule. Range: 1 to 100.

Note Range limited to 15 maximum rules in CME 8.5 and earlier versions.

- **match-pattern**—Stream Editor (SED) expression used to match incoming call information. The slash (/) is a delimiter in the pattern.

- **replace-pattern**—SED expression used to replace the match pattern in the call information. The slash (/) is a delimiter in the pattern.

Step 5

exit

Example:

Router(cfg-translation-rule)# exit

Exits voice translation-rule configuration mode.

Step 6

voice translation-profile name

Example:

Router(config)# voice translation-profile eastern

Defines a translation profile for voice calls.

- **name**—Name of the translation profile. Maximum length of the voice translation profile name is 31 alphanumeric characters.

Step 7

translate {callback-number | called | calling | redirect-called | redirect-target} translation-rule-number

Example:

Router(cfg-translation-profile)# translate callback-number 10

Associates a translation rule with a voice translation profile.

- **callback-number**—Associates the translation rule with the callback-number.

- **called**—Associates the translation rule with called numbers.

- **calling**—Associates the translation rule with calling numbers.

- **redirect-called**—Associates the translation rule with redirected called numbers.

- **redirect-target**—Associates the translation rule with transfer-to numbers and call-forwarding final destination numbers. This keyword is supported by SIP phones in Cisco Unified CME 4.1 and later versions.
Define Translation Rules for Callback-Number on SIP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• translation-rule-number—Reference number of the translation rule configured in Step 3, on page 463. Range: 1 to 2147483647</td>
</tr>
</tbody>
</table>

Step 8

exit

Example:

Router(cfg-translation-profile)# exit

Exits voice translation-profile configuration mode.

Step 9

voice register pool phone-tag

Example:

Router(config)# voice register pool 3

Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.

Step 10

number tag dn dn-tag

Example:

Router(config-register-pool)# number 1 dn 17

Associates a directory number with the SIP phone being configured.

• dn dn-tag—identifies the directory number for this SIP phone as defined by the voice register dn command.

Step 11

end

Example:

Router(config-translation-profile)# end

Returns to privileged EXEC mode.

Example

The following examples show translation rules defined for callback-number:

```
!
!
voice service voip
ip address trusted list
  ipv4 20.20.20.1
media flow-around
allow-connections sip to sip
!
voice translation-rule 10
!
voice translation-profile eastcoast
!
voice translation-profile eastern
  translate callback-number 10
!
```

What to do next

• To apply voice translation profiles to SIP phones connected to Cisco Unified CME 4.1 or a later version, see Apply Voice Translation Rules on SIP Phones in Cisco Unified CME 4.1 and Later, on page 457.
Configuration Examples for Dial Plan Features

Example for Configuring Secondary Dial Tone on SCCP Phones

telephony-service
 fxo hook-flash
 load 7910 P00403020214
 load 7960-7940 P00305000600
 load 7914 S00103020002
 load 7905 CP7905040000SCCP040701A
 load 7912 CP7912040000SCCP040701A
 max-ephones 100
 max-dn 500
 ip source-address 10.153.233.41 port 2000
 max-redirect 20
 no service directed-pickup
 timeouts ringing 10
 system message XYZ Company
 voicemail 7189
 max-conferences 8 gain -6
 moh music-on-hold.au
 web admin system name admin1 password admin1
 dn-webedit
 time-webedit
 secondary-dialtone 9

Example for Configuring Secondary Dial Tone on SIP Phones

A secondary dial tone is played on the phone when comma (',') is found in the pattern. In this example, secondary dial tone is played after the digit 50.

voice register dialplan 1
 type 7940-7960-others
 pattern 1 50,
voice register pool 1
 busy-trigger-per-button 2
 id mac 0C11.6780.52A3
 type 7841
 number 1 dn 1
 dialplan 1
 dtmf-relay rtp-nre
 username cisco1 password cisco
 codec g711ulaw
 no vad
 provision-tag 1
Example for Configuring Voice Translation Rules

In the following configuration examples, if a user on Cisco Unified CME 1 dials 94155550100, the call matches on dial peer 9415 and uses translation profile profile-9415. The called number is translated from 94155550100 to 4155550100, as specified by the translate called command using translation rule 1.

If a user on Cisco Unified CME 1 calls a phone on Cisco Unified CME 2 by dialing 5105550120, and the call forward number is 94155550100, Cisco Unified CME 1 attempts to forward the call to 94155550100. A 302 message is then sent to Cisco Unified CME 1 with the “Contact:” field translated to 4155550100. When the 302 reaches Cisco Unified CME 1, it matches the To: field in the 302 message (5105550120) with dial peer 510. It does incoming translation from 4155550100 to 84155550100, and an INVITE with 84155550100 is sent, which matches dial-peer 8415.

Figure 14: Translation Rules in SIP Call Transfer

<table>
<thead>
<tr>
<th>Cisco Unified CME 1 with 408555.... dialplan-pattern</th>
<th>Cisco Unified CME 2 with 510555.... dialplan-pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>dial-peer voice 9415 voip</td>
<td>dial-peer voice 8415 voip</td>
</tr>
<tr>
<td>translation-profile outgoing profile-9415</td>
<td>translation-profile outgoing profile-8415</td>
</tr>
<tr>
<td>destination-pattern 941555555....</td>
<td>destination-pattern 841555555....</td>
</tr>
<tr>
<td>session protocol sipv2</td>
<td>session protocol sipv2</td>
</tr>
<tr>
<td>session target ipv4:10.4.187.177</td>
<td>session target ipv4:10.4.187.177</td>
</tr>
<tr>
<td>codec g711ulaw</td>
<td>codec g711ulaw</td>
</tr>
<tr>
<td>voice translation-profile profile-9415</td>
<td>voice translation-profile profile-8415</td>
</tr>
<tr>
<td>translate called 1</td>
<td>translate called 1</td>
</tr>
<tr>
<td>translate redirect-target 1</td>
<td>translate redirect-target 1</td>
</tr>
<tr>
<td>voice translation-rule 1</td>
<td>voice translation-rule 2</td>
</tr>
<tr>
<td>rule 1 /^9415/ /415/</td>
<td>rule 1 /^9415/ /415/</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for Dial Plan Features

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 36: Feature Information for Dialing Plan Features

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Versions</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial Plan Pattern</td>
<td>4.0</td>
<td>Added support for dial plan pattern expansion for call forward and call transfer when the forward or transfer-to target is an individual abbreviated SIP extension or an extension that appear on a SIP phone.</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Strips leading digit pattern from extension number when expanding an extension to an E.164 telephone number. The length of the extension pattern must equal the value configured for the extension-length argument.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Adds a prefix to extensions to transform them into E.164 numbers.</td>
</tr>
<tr>
<td>E.164 Enhancements</td>
<td>8.5</td>
<td>Added support for E.164 enhancements.</td>
</tr>
<tr>
<td>Secondary Dial Tone</td>
<td>11.6</td>
<td>Support for Secondary Dial Tone on SIP phones.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Support for secondary dial tone after dialing specified number string.</td>
</tr>
<tr>
<td>Voice Translation Rules</td>
<td>8.6</td>
<td>Added support for an increased number of translation rules per translation table. Old value is 15 maximum, new value is 100 maximum.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Added support for voice translation profiles for incoming call legs to a directory number on a SIP phone.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for voice translation rules to modify the number dialed by extensions on a SIP phone.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Adds, removes, or transforms digits for calls going to or originating from specified ephone-dns.</td>
</tr>
</tbody>
</table>
Transcoding Resources

This chapter describes the transcoding support available in Cisco Unified Communications Manager Express (Cisco Unified CME).

Note

• To configure a DSP farm profile for multi-party ad hoc and meet-me conferencing in Unified CME, see Meet Me Conference, on page 1333 and Meet-Me Conferencing in Cisco Unified CME 11.7 and Later Versions, on page 1334.

Prerequisites for Configuring Transcoding Resources

• Cisco Unified CME 3.2 or a later version.

Restrictions for Configuring Transcoding Resources

• Before Cisco CME 3.2, only G.729 is supported for two-party voice calls.

• In Cisco CME 3.2 to Cisco Unified CME 4.0, transcoding between G.711 and G.729 does not support the following:
 • Meet-me conferencing
 • Multiple-party ad-hoc conferencing
• Transcoding security

• For Cisco Unified CME Release 11.6, hardware conferencing is not supported with LTI-based transcoding on Cisco 4000 Series Integrated Services Router (ISR).

• In Unified CME 11.6, SCCP based transcoding is not supported.

Information About Transcoding Resources

Transcoding Support

Transcoding compresses and decompresses voice streams to match endpoint-device capabilities. Transcoding is required when an incoming voice stream is digitized and compressed (by means of a codec) to save bandwidth, and the local device does not support that type of compression.

Cisco Unified CME 3.2 and later versions support transcoding between G.711 and G.729 codecs for the following features:

- **Ad hoc conferencing**—One or more remote conferencing parties uses G.729.

- **Call transfer and forward**—One leg of a Voice over IP (VoIP)-to-VoIP hairpin call uses G.711 and the other leg uses G.729. A hairpin call is an incoming call that is transferred or forwarded over the same interface from which it arrived.

- **Cisco Unity Express or Cisco Unity Express Virtual**—An H.323 or SIP call using G.729 is forwarded to Cisco Unity Express or Cisco Unity Express Virtual. Cisco Unity Express or Cisco Unity Express Virtual supports only G.711, so G.729 must be transcoded.

From Cisco Unified CME Release 11.6 onwards, SIP calls coming to Cisco Unity Express or Cisco Unity Express Virtual is supported on Cisco 4000 Series ISR routers using the LTI transcoding infrastructure. For more information on configuring LTI transcoding on Cisco Unified CME, see [Configure LTI-based Transcoding, on page 500](#).

- **Music on hold (MOH)**—The phone receiving MOH is part of a system that uses G.729, G.722, or internet Low Bitrate Codec (iLBC). When the G.711 MOH is transcoded into G.729, it results in a poorer quality sound due to the lower compression of G.729. From Cisco Unified CME Release 11.7 onwards, Music on Hold is supported on Cisco 4000 Series ISR routers using the LTI transcoding infrastructure. For more information on configuring LTI transcoding on Cisco Unified CME, see [Configure LTI-based Transcoding, on page 500](#).

Each of the preceding call situations is illustrated in [Figure 15: Three-Way Conferencing, Call Transfer and Forward, Cisco Unity Express, and MOH Between G.711 and G.729, on page 471](#).
Transcoding is facilitated through DSPs, which are located in network modules. All network modules have single in-line memory module (SIMM) sockets or packet voice/data modules (PVDM) slots that each hold a Packet Voice DSP Module (PVDM). Each PVDM holds DSPs. A router can have multiple network modules.

Cisco Unified CME routers and external voice routers on the same LAN must be configured with digital signal processors (DSPs) that support transcoding. DSPs reside either directly on a voice network module, such as the NM-HD-2VE, on PVDM2s that are installed in a voice network module, such as the NM-HDV2, or on PVDM2s that are installed directly onto the motherboard, such as on the Cisco 2800 and 3800 series voice gateway routers.

- DSPs on the NM-HDV, NM-HDV2, NM-HD-1V, NM-HD-2V, and NM-HD-2VE can be configured for transcoding.
- PVDM2-xx on the Cisco 2800 series and the Cisco 3800 series motherboards can also be configured for transcoding.

Transcoding of G.729 calls to G.711 allows G.729 calls to participate in existing G.711 software-based, three-party conferencing, thus eliminating the need to divide DSPs between transcoding and conferencing.

Figure 16: NM-HDV Supports up to Five PVDMs, on page 472 shows an NM-HDV with five SIMM sockets or PVDM slots that each hold a 12-Channel PVDM (PVDM-12). Each PVDM-12 holds three TI 549 DSPs. Each DSP supports four channels.
Use DSP resources to provide voice termination of the digital voice trunk group or resources for a DSP farm. DSP resources available for transcoding and not used for voice termination are referred to as a DSP farm. Figure 17: DSP Farm, on page 473 shows a DSP farm managed by Cisco Unified CME.
Local Transcoding Interface (LTI) Based Transcoding

From Cisco Unified CME Release 11.6 onwards, Local Transcoding Interface (LTI) based transcoding is supported on Cisco 4000 series ISR. LTI includes an internal API that accesses digital signal processor (DSP) resources. This API does not require the use of Skinny Client Control Protocol (SCCP) based configuration for transcoding to work.

LTI-based transcoding is an alternative to SCCP-based transcoding. The LTI-based transcoding configures transcoding functionality only on the specific Unified CME router. Unlike the SCCP-based transcoding, other Unified CME routers cannot leverage the transcoding capabilities configured on a specific Unified CME router. That is, transcoding resources (DSPFARM) are required to be co-located with Unified CME router for LTI-based configuration to work. When both LTI-based and SCCP-based transcoding are configured, LTI takes precedence.

With LTI-based transcoding, internal APIs are used to access DSP resources for transcoding. The TCP sockets are not opened and no registration is used. Also, you need to configure only the DSPFARM profile configuration.

Voice Class Codec (VCC) is supported with LTI-based Transcoding on Cisco 4000 Series ISR, and is an optional configuration. A VCC defines the codec preference order. When a voice class codec is applied to a dial peer, the preference order defined in the voice class codec is followed.
LTI infrastructure supports the features SIP-to-SIP line to trunk transcoding, DTMF Interworking (with in-band on the trunk and rtp-nte on the line), and mid-call transcoder invocation and deletion with call transfer. Features such as Shared Line, Call Park, Call Pickup, iDivert, and so on are not supported with LTI-based transcoding.

Transcoding When a Remote Phone Uses G.729r8

A situation in which transcoding resources may be used is when you use the `codec` command to select the G.729r8 codec to help save network bandwidth for a remote IP phone. If a conference is initiated, all phones in the conference switch to G.711 mu-law. To allow the phone to retain its G.729r8 codec setting when joined to a conference, you can use the `codec g729r8 dspfarm-assist` command to specify that this phone’s calls should use the resources of a DSP farm for transcoding. For example, there are two remote phones (A and B) and a local phone (C) that initiates a conference with them. Both A and B are configured to use the G.729r8 codec with the assistance of the DSP-farm transcoder. In the conference, the call leg from C to the conference uses the G.711 mu-law codec, and the call legs from A and B to the Cisco Unified CME router use the G.729r8 codec.

Consider your options carefully when deciding to use the `codec g729r8 dspfarm-assist` command. The benefit is that it allows calls to use the G.729r8 codec on the call leg between the IP phone and the Cisco Unified CME router, which saves network bandwidth. The disadvantage is that for situations requiring G.711 codecs, such as conferencing and Cisco Unity Express, DSP resources that are possibly scarce are used to transcode the call, and delay is introduced while voice is shuttled to and from the DSP. In addition, the overuse of this feature can mask configuration errors in the codec selection mechanisms involving dial peers and codec lists.

Therefore, we recommend using the `codec g729r8 dspfarm-assist` command sparingly and only when absolutely required for bandwidth savings or when you know the phone will be participating very little, if at all, in calls that require a G.711 codec.

Because of how Cisco Unified CME uses voice channels with Skinny Client Control Protocol (SCCP) endpoints, you must configure at least two available transcoding sessions when establishing a call that requires transcoding configured with the `codec g729r8` `dspfarm-assist` command. Only one session is used after the voice path is established with transcoding. However, during the SCCP manipulations, a temporary session may be allocated. If this temporary session cannot be allocated, the transcoding request is not honored, and the call continues with the G.711 codec.

If the `codec g729r8 dspfarm-assist` command is configured for a phone and a DSP resource is not available when needed for transcoding, a phone registered to the local Cisco Unified CME router will use G.711 instead of G.729r8. This is not true for nonSCCP call legs; if DSP resources are not available for the transcoding required for a conference, for example, the conference is not created.

Secure DSP Farm Transcoding

Cisco Unified CME uses the secure transcoding DSP farm capability only in the case described in Transcoding When a Remote Phone Uses G.729r8, on page 474. If a call using the `codec g729r8 dspfarm-assist` command is secure, Cisco Unified CME looks for a secure transcoding resource. If it cannot find one, transcoding is not done. If the call is not secure, Cisco Unified CME looks for a nonsecure transcoding resource. If it cannot find one, Cisco Unified CME looks for a secure transcoding resource. Even if Cisco Unified CME uses a secure transcoding resource, the call is not secure, and a more expensive secure DSP Farm resource is not needed for a nonsecure call because Cisco Unified CME cannot find a less expensive nonsecure transcoder.
Configure Transcoding Resources

This section contains the following tasks:

Determine DSP Resource Requirements for Transcoding

To determine if there are enough DSPs available on your router for transcoding services, perform the following steps.

Step 1
Use the `show voice dsp` command to display current status of digital signal processor (DSP) voice channels.

Step 2
Use the `show sdspfarm sessions` command to display the number of transcoder sessions that are active.

Step 3
Use the `show sdspfarm units` command to display the number of DSP farms that are configured.

Provision Network Modules or PVDMs for Transcoding

DSPs can reside directly on any one of the following:

- A voice network module, such as the NM-HD-2VE,
- PVDM2s that are installed in a voice network module, such as the NM-HDV2. A single network module can hold up to five PVDMs.
- PVDM2s that are installed directly onto the motherboard, such as on the Cisco 2800 and 3800 series voice gateway routers.

You must determine the number of PVDM2s or network modules that are required to support your conferencing and transcoding services and install the modules on your router.

SUMMARY STEPS

1. Determine performance requirements.
2. Determine the number of DSPs that are required.
3. Determine the number of DSPs that are supportable.
4. Verify your solution.
5. Install hardware.

DETAILED STEPS

Step 1
Determine the number of transcoding sessions that your router must support.

Step 2
Determine the number of DSPs that are required to support transcoding sessions. See Table 5 and Table 6 in the “Allocation of DSP Resources” section of the “Configuring Enhanced Conferencing and Transcoding for Voice Gateway Routers” chapter of the Cisco Unified Communications Manager and Cisco IOS Interoperability Guide.

If voice termination is also required, determine the additional number of DSPs required.
For example: 16 transcoding sessions (30-ms packetization) and 4 G.711 voice calls require two DSPs.

Step 3 Determine the maximum number of NMs or NM farms that your router can support by using Table 4 in the “Allocation of DSP Resources” section of the “Configuring Enhanced Conferencing and Transcoding for Voice Gateway Routers” chapter of the Cisco Unified Communications Manager and Cisco IOS Interoperability Guide.

Step 4 Ensure that your requirements fall within router capabilities, taking into account whether your router supports multiple NMs or NM farms. If necessary, reassess performance requirement.

Step 5 Install PVDMs, NMs, and NM farms as needed. See the Connecting Voice Network Modules chapter in the Cisco Network Modules Hardware Installation Guide.

What to do next

Perform one of the following options, depending on the type of network module to be configured:

- To set up DSP farms on NM-HDs and NM-HDV2s, see Configure DSP Farms for NM-HDs and NM-HDV2s, on page 476.
- To set up DSP farms for NM-HDVs, see Configure DSP Farms for NM-HDVs, on page 480.

Configure DSP Farms for NM-HDs and NM-HDV2s

SUMMARY STEPS

1. enable
2. configure terminal
3. voice-card slot
4. dsp services dspfarm
5. exit
6. sccp local interface-type interface-number
7. sccp ccm ip-address identifier identifier-number
8. sccp
9. sccp ccm group group-number
10. bind interface interface-type interface-number
11. associate ccm identifier-number priority priority-number
12. associate profile profile identifier register device-name
13. keepalive retries number
14. switchover method [graceful | immediate]
15. switch back method {graceful | guard timeout-guard-value | immediate | uptime uptime-timeout-value}
16. switchback interval seconds
17. exit
18. dspfarm profile profile-identifier transcode [security]
19. trustpoint trustpoint-label
20. codec codec-type
21. maximum sessions number
22. associate application sccp
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable |
• Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal | |
| Step 3 | voice-card slot | Enters voice-card configuration mode for the network module on which you want to enable DSP-farm services.
Example:
Router(config)# voice-card 1 | |
| Step 4 | dsp services dspfarm | Enables DSP-farm services for the voice card.
Example:
Router(config-voicecard)# dsp services dspfarm | |
| Step 5 | exit | Exits voice-card configuration mode.
Example:
Router(config-voicecard)# exit | |
| Step 6 | sccp local interface-type interface-number | Selects the local interface that the SCCP applications (transcoding and conferencing) should use to register with Cisco Unified CME.
Example:
Router(config)# sccp local FastEthernet 0/0 |
• *interface-type*—Interface type that the SCCP application uses to register with Cisco Unified CME. The type can be an interface address or a virtual-interface address such as Ethernet.
• *interface-number*—Interface number that the SCCP application uses to register with Cisco Unified CME. |
| Step 7 | sccp ccm ip-address identifier identifier-number | Specifies the Cisco Unified CME address.
Example:
Router(config)# sccp ccm 10.10.10.1 identifier 1 |
• *ip-address*—IP address of the Cisco Unified CME router.
• *identifier* *identifier-number*—Number that identifies the Cisco Unified CME router.
• Repeat this step to specify the address of a secondary Cisco Unified CME router. |
| Step 8 | sccp | Enables SCCP and its associated transcoding and conferencing applications.
Example: | |
<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates a Cisco Unified CME group and enters SCCP configuration mode for Cisco Unified CME.</td>
<td><code>sccp ccm group group-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# sccp ccm group 1</code></td>
</tr>
<tr>
<td>Note</td>
<td>A Cisco Unified CME group is a naming device under which data for the DSP farms is declared. Only one group is required.</td>
</tr>
<tr>
<td>(Optional) Binds an interface to a Cisco Unified CME group so that the selected interface is used for all calls that belong to the profiles that are associated to this Cisco Unified CME group.</td>
<td><code>bind interface interface-type interface-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# bind interface FastEthernet 0/0</code></td>
</tr>
<tr>
<td>Associates a Cisco Unified CME router with a group and establishes its priority within the group.</td>
<td><code>associate ccm identifier-number priority priority-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# associate ccm 1 priority 1</code></td>
</tr>
<tr>
<td>Associates a DSP farm profile with a Cisco Unified CME group.</td>
<td><code>associate profile profile-identifier register device-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# associate profile 1 register mtp000a8eaca80</code></td>
</tr>
<tr>
<td>Sets the number of keepalive retries from SCCP to Cisco Unified CME.</td>
<td><code>keepalive retries number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# keepalive retries 5</code></td>
</tr>
<tr>
<td>Step 14</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>`switchover method [graceful</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# switchover method immediate</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`switch back method {graceful</td>
<td>guard timeout-guard-value</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# switchback method immediate</code></td>
<td>- graceful—Switchback happens only after all the active sessions have been terminated gracefully.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- guard timeout-guard-value—Switchback happens either when the active sessions have been terminated gracefully or when the guard timer expires, whichever happens first. Timeout value is in seconds. Range: 60 to 172800. Default: 7200.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- immediate—Switches back to the higher order Cisco Unified CME immediately when the timer expires, whether there is an active connection or not.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- uptime uptime-timeout-value—Initiates the uptime timer when the higher-order Cisco Unified CME system comes alive. Timeout value is in seconds. Range: 60 to 172800. Default: 7200.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>switchback interval seconds</code></td>
<td>Sets the amount of time that the DSP farm waits before polling the primary Cisco Unified CME system when the current Cisco Unified CME switchback connection fails.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# switchback interval 5</code></td>
<td>- seconds—Timer value, in seconds. Range: 1 to 3600. Default: 60.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 17</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>exit</code></td>
<td>Exits SCCP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sccp-ccm)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>dspfarm profile profile-identifier transcode [security]</code></td>
<td>Enters DSP farm profile configuration mode and defines a profile for DSP farm services.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# dspfarm profile 1 transcode security</code></td>
<td>- profile-identifier—Number that uniquely identifies a profile. Range: 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- transcode—Enables profile for transcoding.</td>
</tr>
</tbody>
</table>
Configure DSP Farms for NM-HDVs

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice-card slot`
4. `dsp services dspfarm`

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 19 <code>trustpoint trustpoint-label</code></td>
<td>(Optional) Associates a trustpoint with a DSP farm profile.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dspfarm-profile)# trustpoint dspfarm</code></td>
</tr>
<tr>
<td>Step 20 <code>codec codec-type</code></td>
<td>Specifies the codecs supported by a DSP farm profile.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dspfarm-profile)# codec g711ulaw</code></td>
</tr>
<tr>
<td>Step 21 <code>maximum sessions number</code></td>
<td>Specifies the maximum number of sessions that are supported by the profile.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dspfarm-profile)# maximum sessions 5</code></td>
</tr>
<tr>
<td>Step 22 <code>associate application sccp</code></td>
<td>Associates SCCP with the DSP farm profile.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dspfarm-profile)# associate application sccp</code></td>
</tr>
<tr>
<td>Step 23 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dspfarm-profile)# end</code></td>
</tr>
</tbody>
</table>

What to do next

- To register the DSP Farm to Cisco Unified CME in secure mode, see Register the DSP Farm with Cisco Unified CME 4.2 or a Later Version in Secure Mode, on page 491.
5. exit
6. `sccp local interface-type interface-number`
7. `sccp ccm ip-address priority priority-number`
8. `sccp`
9. `dsp farm transcoder maximum sessions number`
10. `dspfarm`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice-card slot</td>
<td>Enters voice-card configuration mode and identifies the slot in the chassis in which the NM-HDV or NM-HDV farm is located.</td>
</tr>
<tr>
<td>Example: Router(config)# voice-card 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 dsp services dspfarm</td>
<td>Enables DSP-farm services on the NM-HDV or NM-HDV farm.</td>
</tr>
<tr>
<td>Example: Router(config-voicecard)# dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-voicecard)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>sccp local interface-type interface-number</code></td>
<td>Selects the local interface that the SCCP applications (transcoding and conferencing) should use to register with Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# sccp local FastEthernet 0/0</td>
<td>• interface-type—Interface type that the SCCP application uses to register with Cisco Unified CME. The type can be an interface address or a virtual-interface address such as Ethernet.</td>
</tr>
<tr>
<td></td>
<td>• interface-number—Interface number that the SCCP application uses to register with Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 7 <code>sccp ccm ip-address priority priority-number</code></td>
<td>Specifies the Cisco Unified CME address.</td>
</tr>
<tr>
<td>Example: Router(config)# sccp ccm 10.10.10.1 priority 1</td>
<td>• ip-address—IP address of the Cisco Unified CME router.</td>
</tr>
</tbody>
</table>
Configure the Cisco Unified CME Router to Act as the DSP Farm Host

Determine the Maximum Number of Transcoder Sessions

To determine the maximum number of transcoder sessions that can occur at one time perform the following steps.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Use the <code>dspfarm transcoder maximum sessions</code> command to set the maximum number of transcoder sessions you have configured.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the <code>show sdspfarm sessions</code> command to display the number of transcoder sessions that are active.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Use the <code>show sdspfarm units</code> command to display the number of DSP farms that are configured.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Obtain the maximum number of transcoder sessions by multiplying the number of transcoder sessions from Step 2 (configured in Step 1 using the <code>dspfarm transcoder maximum sessions</code> command) by the number of DSP farms from Step 3.</td>
<td></td>
</tr>
</tbody>
</table>
Set the Cisco Unified CME Router to Receive IP Phone Messages

You can unregister all active calls’ transcoding streams with the `sdspfarm unregister force` command.

Before you begin

Identify the MAC address of the SCCP client interface. For example, if you have the following configuration:

```
interface FastEthernet 0/0
 ip address 10.5.49.160 255.255.0.0
 .
 .
 sccp local FastEthernet 0/0
  sccp
```

The `show interface FastEthernet 0/0` command will yield a MAC address. In the following example, the MAC address of the Fast Ethernet interface is 000a.8aea.ca80:

```
Router# show interface FastEthernet 0/0
 .
 .
 FastEthernet0/0 is up, line protocol is up
 Hardware is AmdFE, address is 000a.8aea.ca80 (bia 000a.8aea.ca80)
```

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `ip source-address ip-address [port port] [any-match | strict-match]`
5. `sdspfarm units number`
6. `sdspfarm transcode sessions number`
7. `sdspfarm tag number device-name`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td>Enables a router to receive messages from Cisco Unified IP phones through the router’s IP addresses and ports.</td>
</tr>
</tbody>
</table>

Step 4

```
Router(config)# telephony-service
```

Example:

```
Router(config-telephony)# ip source-address 10.10.10.1 port 3000
```

```
ip source-address ip-address [port port] [any-match | strict-match]
```

- **Example:**
 - `Router(config-telephony)# ip source address 10.10.10.1 port 3000`

Step 5

```
sdspfarm units number
```

Example:

```
Router(config-telephony)# sdspfarm units 4
```

Step 6

```
sdspfarm transcode sessions number
```

Example:

```
Router(config-telephony)# sdspfarm transcode sessions 40
```

Step 7

```
sdspfarm tag number device-name
```

Example:

```
Router(config-telephony)# sdspfarm tag 1 mtp000a8eaca80
```

```
or
Router(config-telephony)# sdspfarm tag 1 MTP000a8eaca80
```

Step 8

```
end
```

Example:

```
Router(config-telephony)# end
```

Transcoding Resources

Set the Cisco Unified CME Router to Receive IP Phone Messages

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# telephony-service</td>
<td>Enables a router to receive messages from Cisco Unified IP phones through the router’s IP addresses and ports.</td>
</tr>
</tbody>
</table>

Step 4

```
ip source-address ip-address [port port] [any-match | strict-match]
```

- **Example:**
 - `Router(config-telephony)# ip source address 10.10.10.1 port 3000`

Step 5

```
sdspfarm units number
```

Example:

```
Router(config-telephony)# sdspfarm units 4
```

Step 6

```
sdspfarm transcode sessions number
```

Example:

```
Router(config-telephony)# sdspfarm transcode sessions 40
```

Step 7

```
sdspfarm tag number device-name
```

Example:

```
Router(config-telephony)# sdspfarm tag 1 mtp000a8eaca80
```

```
or
Router(config-telephony)# sdspfarm tag 1 MTP000a8eaca80
```

Step 8

```
end
```

Example:

```
Router(config-telephony)# end
```

Cisco Unified Communications Manager Express System Administrator Guide

484
Configure the Cisco Unified CME Router to Host a Secure DSP Farm

You must configure the Media Encryption Secure Real-Time Transport Protocol (SRTP) feature in the Cisco Unified CME 4.2 and later versions, making it a secure Cisco Unified CME, before it can host a secure DSP farm. For information on configuring a secure Cisco Unified CME, see Configure Security, on page 579.

Modify DSP Farms for NM-HDVs After Upgrading Cisco IOS Software

To ensure continued support for existing DSP farms for NM-HDVs configured after upgrading the Cisco IOS software on your Cisco router, perform the following steps.

Note

Perform this task if previously-configured DSP farms for NM-HDVs fail to register to Cisco Unified CME after you upgrade the Cisco IOS software release.

Before you begin

Confirm that device name for a dspfarm tag in telephony-service configuration is lower case by using the `show-running configuration` command.

Example:

```
Router#show-running configuration
Building configuration...
.
.
.
!
telephony-service
  max-ephones 2
  max-dn 20
  ip source-address 142.103.66.254 port 2000
  auto assign 1 to 2
  system message Your current options
  sdspfarm units 2
  sdspfarm transcode sessions 16
  sdspfarm tag 1 mtp00164767cc20  !<==Device name is MAC address with lower-case "mtp" prefix
  .
  .
```

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no sdspfarm tag number`
4. `sdspfarm tag number device-name`
5. `dsfarm`
6. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no sdspfarm tag number</td>
<td>Disables the DSP farm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no sdspfarm tag 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 sdspfarm tag number device-name</td>
<td>Permits a digital-signal-processor (DSP) farm to be registered to Cisco Unified CME and associates it with a SCCP client interface’s MAC address.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Required only if you blocked automatic registration by using the auto-reg-ephone command.</td>
</tr>
<tr>
<td>Router(config)# sdspfarm tag 1 MTP00164767cc20</td>
<td>• device-name—MAC address of the SCCP client interface with the "MTP" prefix added.</td>
</tr>
<tr>
<td>Step 5 dspfarm</td>
<td>Enables the DSP farm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Modify the Number of Transcoding Sessions for NM-HDVs

SUMMARY STEPS

1. enable
2. configure terminal
3. no dspfarm
4. dspfarm transcoder maximum sessions *number*
5. dspfarm
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>no dspfarm</td>
<td>Disables the DSP farm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>dspfarm transcoder maximum sessions number</td>
<td>Specifies the maximum number of transcoding sessions to be supported by the DSP farm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dspfarm transcoder maximum sessions 12</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>dspfarm</td>
<td>Enables the DSP farm.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Tune DSP-Farm Performance on an NM-HDV

SUMMARY STEPS

1. enable
2. configure terminal
3. sccp ip precedence value
4. dspfarm rtp timeout seconds
5. dspfarm connection interval seconds
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>sccp ip precedence value</code></td>
<td>(Optional) Sets the IP precedence value to increase the priority of voice packets over connections controlled by SCCP.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# sccp ip precedence 5</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>dspfarm rtp timeout seconds</code></td>
<td>(Optional) Configures the Real-Time Transport Protocol (RTP) timeout interval if the error condition "RTP port unreachable" occurs.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# dspfarm rtp timeout 60</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>dspfarm connection interval seconds</code></td>
<td>(Optional) Specifies how long to monitor RTP inactivity before deleting an RTP stream.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# dspfarm connection interval 60</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Verify DSP Farm Operation

To verify that the DSP farm is registered and running, perform the following steps in any order.

Step 1 Use the `show sccp [statistics | connections]` command to display the SCCP configuration information and current status.

Example:

```
Router# show sccp statistics
SCCP Application Service(s) Statistics:

Profile ID:1, Service Type:Transcoding
TCP packets rx 7, tx 7
Unsupported pkts rx 1, Unrecognized pkts rx 0
Register tx 1, successful 1, rejected 0, failed 0
KeepAlive tx 0, successful 0, failed 0
OpenReceiveChannel rx 2, successful 2, failed 0
CloseReceiveChannel rx 0, successful 0, failed 0
StartMediaTransmission rx 2, successful 2, failed 0
StopMediaTransmission rx 0, successful 0, failed 0
Reset rx 0, successful 0, failed 0
MediaStreamingFailure rx 0
Switchover 0, Switchback 0
```

Use the `show sccp connections` command to display information about the connections controlled by the SCCP transcoding and conferencing applications. In the following example, the secure value of the stype field indicates that the connection is encrypted:
Router# show sccp connections

<table>
<thead>
<tr>
<th>sess_id</th>
<th>conn_id</th>
<th>stype</th>
<th>mode</th>
<th>codec</th>
<th>ripaddr</th>
<th>rport</th>
<th>sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>16777222</td>
<td>16777409</td>
<td>secure</td>
<td>-xcode</td>
<td>sendrecv</td>
<td>g729b 10.3.56.120</td>
<td>16772</td>
<td>19534</td>
</tr>
<tr>
<td>16777222</td>
<td>16777393</td>
<td>secure</td>
<td>-xcode</td>
<td>sendrecv</td>
<td>g711u 10.3.56.50</td>
<td>17030</td>
<td>18464</td>
</tr>
</tbody>
</table>

Total number of active session(s) 1, and connection(s) 2

Step 2

Use the `show sdspfarm units` command to display the configured and registered DSP farms.

Example:

Router# show sdspfarm units

`mtp-1 Device:MTP00300218a31 TCP socket:[2] REGISTERED
actual_stream:8 max_stream 8 IP:10.10.10.3 11470 MTP YOKO keepalive 1
Supported codec:G711Ulaw
G711Alaw
G729a
G729ab
max-mtps:1, max-streams:40, alloc-streams:8, act-streams:2`

Step 3

Use the `show sdspfarm sessions` command to display the transcoding streams.

Example:

Router# show sdspfarm sessions

Stream-ID:1 mtp:1 10.10.10.3 18404 Local:2000 START
 usage:Ip-Ip
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:2
Stream-ID:2 mtp:1 10.10.10.3 17502 Local:2000 START
 usage:Ip-Ip
 codec:G729AnnexA duration:20 vad:0 peer Stream-ID:1
Stream-ID:3 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0
Stream-ID:4 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0
Stream-ID:5 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0
Stream-ID:6 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0
Stream-ID:7 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0
Stream-ID:8 mtp:1 0.0.0.0 0 Local:0 IDLE
 usage:
 codec:G711Ulaw64k duration:20 vad:0 peer Stream-ID:0

Step 4

Use the `show sdspfarm sessions summary` command to display a summary view the transcoding streams.

Example:
Step 5

Use the `show sdspfarm sessions active` command to display the transcoding streams for all active sessions.

Example:

```
Router# show sdspfarm sessions active
```

```
Stream-ID:1 mtp:1 10.10.10.3 18404 Local:2000 START
  usage:Ip-Ip
codec:G711Ulaw64k  duration:20 vad:0 peer Stream-ID:2
```

```
Stream-ID:2 mtp:1 10.10.10.3 17502 Local:2000 START
  usage:Ip-Ip
codec:G729AnnexA  duration:20 vad:0 peer Stream-ID:1
```

Step 6

Use the `show sccp connections details` command to display the SCCP connections details such as call-leg details.

Example:

```
Router# show sccp connections details
```

```
bridge-info(bid, cid) - Normal bridge information(Bridge id, Calleg id)
mmbridge-info(bid, cid) - Mixed mode bridge information(Bridge id, Calleg id)
```
Register the DSP Farm with Cisco Unified CME 4.2 or a Later Version in Secure Mode

The DSP farm can reside on the same router with the Cisco Unified CME or on a different router. Some of the steps in the following tasks are optional depending the location of the DSP farm.

Obtain Digital Certificate from a CA Server

The CA server can be the same router as the DSP farm. The DSP farm router can be configured as a CA server. The configuration steps below show how to configure a CA server on the DSP farm router. Additional configurations are required for configuring CA server on an external Cisco router or using a different CA server by itself.

Configure a CA Server

Skip this procedure if the DSP farm resides on the same router as the Cisco Unified CME. Proceed to the Create a Trustpoint, on page 494 section.

The CA server automatically creates a trustpoint where the certificates are stored. The automatically created trustpoint stores the CA root certificate.

Before you begin

- Cisco Unified CME 4.2 or a later version.

SUMMARY STEPS

1. enable
2. **configure terminal**
3. **crypto pki server** *label*
4. **database level complete**
5. **grant auto**
6. **database url** *root-url*
7. **no shutdown**
8. **exit**
9. **crypto pki trustpoint** *label*
10. **revocation-check crl**
11. **rsakeypair** *key-label*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
Example:
Router> enable
| | | • Enter your password if prompted. |
| **Step 2** | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | crypto pki server *label* | Defines a label for the certificate server and enters certificate-server configuration mode.
Example:
Router(config)# crypto pki server dspcert
| | | • *label*—Name for CA certificate server. |
| **Step 4** | database level complete | (Optional) Controls the type of data stored in the certificate enrollment database. The default if this command is not used is **minimal**.
Example:
Router(cs-server)# database level complete
| | | • **complete**—In addition to the information given in the minimal and names levels, each issued certificate is written to the database. |
| **Note** | | The **complete** keyword produces a large amount of information; so specify an external TFTP server in which to store the data using the **database url** command. |
| **Step 5** | grant auto | (Optional) Allows an automatic certificate to be issued to any requester. The recommended method and default if this command is not used is manual enrollment.
Example:
Router(cs-server)# grant auto |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>Use this command only during enrollment when testing and building simple networks. A security best practice is to disable this functionality using the <code>no grant auto</code> command after configuration so that certificates cannot be continually granted.</td>
</tr>
</tbody>
</table>
| **Step 6** | (Optional) Specifies the location where all database entries for the certificate server are to be written out. If this command is not specified, all database entries are written to NVRAM.
 - `root-url`—Location where database entries will be written out. The URL can be any URL that is supported by the Cisco IOS file system.
 - **Note** If the CA is going to issue a large number of certificates, select an appropriate storage location like flash or other storage device to store the certificates.
 - **Note** When the storage location chosen is flash and the file system type on this device is Class B (LEFS), make sure to check free space on the device periodically and use the `squeeze` command to free the space used up by deleted files. This process may take several minutes and should be done during scheduled maintenance periods or off-peak hours. |
| **Step 7** | (Optional) Enables the CA.
 - **Note** You should use this command only after you have completely configured the CA. |
| **Step 8** | Exits certificate-server configuration mode. |
| **Step 9** | (Optional) Declares a trustpoint and enters ca-trustpoint configuration mode.
 - `label`—Name for the trustpoint.
 - **Note** Use this command and the `enrollment url` command if this CA is local to the Cisco Unified CME router. These commands are not needed for a CA running on an external router. The `label` has to be the same as the `label` in Step 3. |
Purpose

Command or Action	Purpose
Step 10 | **revocation-check crl**

Example:

Router(ca-trustpoint)# revocation-check crl

(Optional) Checks the revocation status of a certificate and specifies one or more methods to check the status. If a second and third method are specified, each method is used only if the previous method returns an error, such as a server being down.

- **crl**—Certificate checking is performed by a certificate revocation list (CRL). This is the default behavior.

Step 11 | **rsakeypair** *key-label*

Example:

Router(ca-trustpoint)# rsakeypair caserver

(Optional) Specifies an RSA key pair to use with a certificate.

- **key-label**—Name of the key pair, which is generated during enrollment if it does not already exist or if the `auto-enroll regenerate` command is used.

Note Multiple trustpoints can share the same key.

Create a Trustpoint

The trustpoint stores the digital certificate for the DSP farm. To create a trustpoint, perform the following procedure:

Before you begin

- Cisco Unified CME 4.2 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint label`
4. `enrollment url ca-url`
5. `serial-number none`
6. `fqdn none`
7. `ip-address none`
8. `subject-name [x.500-name]`
9. `revocation-check none`
10. `rsakeypair key-label`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
</tr>
</tbody>
</table>

Example:

Router> enable

Enables privileged EXEC mode.

- Enter your password if prompted.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 2 | configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| 3 | crypto pki trustpoint *label*
Example:
Router(config)# crypto pki trustpoint dspcert | Declares the trustpoint that your RA mode certificate server should use and enters CA-trustpoint configuration mode.
label—Name for the trustpoint and RA. |
| 4 | enrollment url *ca-url*
Example:
Router(ca-trustpoint)# enrollment url http://10.3.105.40:80 | Specifies the enrollment URL of the issuing CA certificate server (root certificate server).
ca-url—URL of the router on which the root CA is installed. |
| 5 | serial-number none
Example:
Router(ca-trustpoint)# serial-number none | Specifies whether the router serial number should be included in the certificate request.
none—Specifies that a serial number will not be included in the certificate request. |
| 6 | fqdn none
Example:
Router(ca-trustpoint)# fqdn none | Specifies a fully qualified domain name (FQDN) that will be included as “unstructuredName” in the certificate request.
none—Router FQDN will not be included in the certificate request. |
| 7 | ip-address none
Example:
Router(ca-trustpoint)# ip-address none | Specifies a dotted IP address or an interface that will be included as “unstructuredAddress” in the certificate request.
none—Specifies that an IP address is not to be included in the certificate request. |
| 8 | subject-name [x.500-name]
Example:
Router(ca-trustpoint)# subject-name cn=vg224, ou=ABU, o=Cisco Systems Inc. | Specifies the subject name in the certificate request.
Note The example shows how to format the certificate subject name to be similar to that of an IP phones. |
| 9 | revocation-check none
Example:
Router(ca-trustpoint)# revocation-check none | (Optional) Checks the revocation status of a certificate and specifies one or more methods to check the status. If a second and third method are specified, each method is used only if the previous method returns an error, such as a server being down.
none—Certificate checking is not required. |
Authenticate and Enroll a Certificate with the CA Server

Before you begin
- Cisco Unified CME 4.2 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki authenticate trustpoint-label`
4. `crypto pki enroll trustpoint-label`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>crypto pki authenticate trustpoint-label</code></td>
<td>Retrieves the CA certificate and authenticates it. Checks the certificate fingerprint if prompted.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# crypto pki authenticate dspcert</code></td>
<td>• <code>trustpoint-label</code>—Trustpoint label.</td>
</tr>
<tr>
<td></td>
<td>Note The <code>trustpoint-label</code> is the trustpoint label specified in the Create a Trustpoint, on page 494 section.</td>
</tr>
<tr>
<td>Step 4 <code>crypto pki enroll trustpoint-label</code></td>
<td>Enrolls with the CA and obtains the certificate for this trustpoint.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# crypto pki enroll dspcert</code></td>
<td>• <code>trustpoint-label</code>—Trustpoint label.</td>
</tr>
</tbody>
</table>
Copy the CA Root Certificate of the DSP Farm Router to the Cisco Unified CME Router

The DSP farm router and Cisco Unified CME router exchanges certificates during the registration process. These certificates are digitally signed by the CA server of the respective router. For the routers to accept each others digital certificate, they should have the CA root certificate of each other. Manually copy the CA root certificate of the DSP farm and Cisco Unified CME router to each other.

Before you begin

- Cisco Unified CME 4.2 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. ```crypto pki trustpoint label```
4. `enrollment terminal`
5. ```crypto pki export trustpoint pem terminal```
6. ```crypto pki authenticate trustpoint-label```
7. You will be prompted to enter the CA certificate. Cut and paste the base 64 encoded certificate at the command line, then press Enter, and type "quit". The router prompts you to accept the certificate. Enter "yes" to accept the certificate.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>crypto pki trustpoint label</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Declares the trustpoint that your RA mode certificate server should use and enters CA-trustpoint configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• <code>label</code>—Name for the trustpoint and RA.</td>
</tr>
<tr>
<td></td>
<td>Note The <code>label</code> is the trustpoint label specified in the Create a Trustpoint, on page 494 section.</td>
</tr>
</tbody>
</table>
Command or Action

Step 4
enrollment terminal

Example:

```bash
Router(ca-trustpoint)# enrollment terminal
```

Purpose: Specifies manual cut-and-paste certificate enrollment.

Step 5
crypto pki export trustpoint pem terminal

Example:

```bash
Router(ca-trustpoint)# crypto pki export dspcert pem terminal
```

Purpose:Exports certificates and RSA keys that are associated with a trustpoint in a privacy-enhanced mail (PEM)-formatted file.

Step 6
crypto pki authenticate trustpoint-label

Example:

```bash
Router(config)# crypto pki authenticate vg224
```

Purpose: Retrieves the CA certificate and authenticates it. Checks the certificate fingerprint if prompted.

- **trustpoint-label**—Trustpoint label.

Note: This command is optional if the CA certificate is already loaded into the configuration.

Step 7
You will be prompted to enter the CA certificate. Cut and paste the base 64 encoded certificate at the command line, then press Enter, and type “quit”. The router prompts you to accept the certificate. Enter “yes” to accept the certificate.

Purpose: Completes the copying of the CA root certificate of the DSP farm router to the Cisco Unified CME router.

Copy CA Root Certificate of the Cisco Unified CME Router to the DSP Farm Router

Repeat the steps in the Copy the CA Root Certificate of the DSP Farm Router to the Cisco Unified CME Router, on page 497 section in the opposite direction, that is, from Cisco Unified CME router to the DSP farm router.

Prerequisites
- Cisco Unified CME 4.2 or a later version.

Configure Cisco Unified CME to Allow the DSP Farm to Register

Before you begin
- Cisco Unified CME 4.2 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `sdsfarm units number`
5. `sdsfarm transcode sessions number`
6. `sdsfarm tag number device-name`
7. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sdspfarm units number</td>
<td>Specifies the maximum number of digital-signal-processor (DSP) farms that are allowed to be registered to the Skinny Client Control Protocol (SCCP) server.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# sdspfarm units 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>sdspfarm transcode sessions number</td>
<td>Specifies the maximum number of transcoding sessions allowed per Cisco Unified CME router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• number—Declares the number of DSP farm sessions. Valid values are numbers from 1 to 128.</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# sdspfarm transcode sessions 30</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>sdspfarm tag number device-name</td>
<td>Permits a DSP farm to register to Cisco Unified CME and associates it with a SCCP client interfaces MAC address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Note: The device-name in this step must be the same as the device-name in the associate profile command in Step 17 of the Configure DSP Farms for NM-HDs and NM-HDV2s, on page 476 section.</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# sdspfarm tag 1 vg224</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Verify DSP Farm Registration with Cisco Unified CME

Use the `show sdspfarm units` command to verify that the DSP farm is registering with Cisco Unified CME. Use the `show voice dsp group slot` command to show the status of secure conferencing.

Prerequisites
- Cisco Unified CME 4.2 or a later version.
show sdspfarm units

Router# show sdspfarm units

mtp-2 Device:choc2851SecCFB1 TCP socket:[1] REGISTERED
actual_stream:8 max_stream 8 IP:10.1.0.20 37043 MTP YOKO keepalive 17391
Supported codec: G711Ulaw
 G711Alaw
 G729
 G729a
 G729ab
 GSM FR

max-mtps:2, max-streams:60, alloc-streams:18, act-streams:0

show voice dsp

Router# show voice dsp group slot 1

dsp 13:
 State: UP, firmware: 4.4.706
 Max signal/voice channel: 16/16
 Max credits: 240
 Group: FLEX_GROUP_VOICE, complexity: FLEX
 Shared credits: 180, reserved credits: 0
 Signaling channels allocated: 2
 Voice channels allocated: 0
 Credits used: 0
 Group: FLEX_GROUP_XCODE, complexity: SECURE MEDIUM
 Transcoding channels allocated: 0
 Credits used: 0

dsp 14:
 State: UP, firmware: 1.0.6
 Max signal/voice channel: 16/16
 Max credits: 240
 Group: FLEX_GROUP_CONF, complexity: SECURE CONFERENCE
 Shared credits: 0, reserved credits: 240
 Conference session: 1
 Credits used: 0

Configure LTI-based Transcoding

SUMMARY STEPS

1. enable
2. configure terminal
3. voice-card slot
4. dsp services sdspfarm
5. exit
6. sdspfarm profile profile-identifier transcode [universal]
7. codec codec-type
8. maximum sessions number
9. associate application CUBE
10. no shutdown
Transcoding Resources

Configure LTI-based Transcoding

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice-card slot</td>
<td>Enters voice-card configuration mode for the network module on which you want to enable DSP-farm services.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice-card 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>dsp services dspfarm</td>
<td>Enables DSP-farm services for the voice card.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voicecard)# dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits voice-card configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-voicecard)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>dspfarm profile profile-identifier transcode [universal]</td>
<td>Enters DSP farm profile configuration mode and defines a profile for DSP farm services.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# dspfarm profile 1 transcode universal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• profile-identifier—Number that uniquely identifies a profile. Range: 1 to 65535.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• transcode—Enables profile for transcoding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• universal—Enables transcoding support between all codecs for DSP farm services. Without universal, transcoding is always from g711ulaw to any other codec. This keyword is supported in Cisco Unified CME 11.6 and later versions for Cisco 4000 Series ISR.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>codec codec-type</td>
<td>Specifies the codecs supported by a DSP farm profile.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-dspfarm-profile)# codec g711ulaw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• codec-type—Specifies the preferred codec. Type ? for a list of supported codecs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Repeat this step for each supported codec.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>maximum sessions number</td>
<td>Specifies the maximum number of sessions that are supported by the profile.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Router(config-dspfarm-profile)# maximum sessions</td>
<td>• number—Number of sessions supported by the profile. If the variable is not configured or if the DSP resources are not available, the value is set to 0.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>• The X value is determined at run time depending on the number of resources available with the resource provider.</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

associate application CUBE

Example:

Router(config-dspfarm-profile)# associate application CUBE

Associates CUBE with the DSP farm profile.

Step 10

no shutdown

Example:

Router(config-dspfarm-profile)# no shutdown

Enables the DSP farm profile.

Step 11

dp

Example:

Router(config-dspfarm-profile)# dp

Returns to privileged EXEC mode.

What to do next

You can use the command `show dspfarm profile profile-number` to verify the configured DSP farm profiles. Use the command to verify if the profile status is UP, and the application status is ASSOCIATED.

Configuration Examples for Transcoding Resources

Example for Setting up DSP Farms for NM-HDV

The following example sets up a DSP farm of 4 DSPs to handle up to 16 sessions (4 sessions per DSP) on a router with an IP address of 10.5.49.160 and a priority of 1 among other servers.

```plaintext
voice-card 1
dsp services dspfarm
exit
sccp local FastEthernet 0/0
sccp
sccp ccm 10.5.49.160 priority 1
dspfarm transcoder maximum sessions 16
dspfarm
telephony-service
ip source-address 10.5.49.200 port 2000
sdspfarm units 4
sdspfarm transcode sessions 40
```
Example for Setting Up DSP Farms for NM-HDs and NM-HDV2s

The following example sets up six transcoding sessions on a router with one DSP farm, an IP address of 10.5.49.160, and a priority of 1 among servers.

```conf
telephony-service
ip source-address 10.5.49.200 port 2000
```

Example for Configuring Cisco Unified CME Router as the DSP Farm Host

The following example configures Cisco Unified CME router address 10.100.10.11 port 2000 to be the farm host using the DSP farm at mtp000a8eaca80 to allow for a maximum of 1 DSP farm and 16 transcoder sessions.

```conf
telephony-service
ip source-address 10.100.10.11 port 2000
```

Example for Configuring LTI-based Transcoding

The following example configures Cisco Unified CME router for LTI-based transcoding.

```conf
voice-card 0
```
Example for Configuring Voice Class Codec

The following example configures voice class codec under a dial peer on Unified CME.

```
voice class codec 10
codec preference 1 g711alaw
codec preference 2 g711ulaw bytes 80
codec preference 3 g723ar53
codec preference 4 g723ar63 bytes 144
codec preference 5 g723r53
codec preference 6 g723r63 bytes 120
codec preference 7 g726r16
codec preference 8 g726r24
codec preference 9 g726r32 bytes 80
codec preference 10 g728
codec preference 11 g729br8
codec preference 12 g729r8 bytes 50

dial-peer voice 100 voip
voice-class codec 10
```

You can also configure voice class codec under a voice register pool on Unified CME.

```
voice register pool 1
id mac 0030.94c2.a22a
preference 5
cor incoming call191 1 91011
translate-outgoing called 1
proxy 192.0.2.0 preference 1 monitor probe icmp-ping
alias 1 94... to 91011 preference 8
voice-class codec 10
```

Where to go Next

Music on Hold

Music on hold can require transcoding resources. See Music on Hold, on page 803.

Teleworker Remote Phones

Transcoding has benefits and disadvantages for remote teleworker phones. See the discussion in Configuring Phones to Make Basic Calls, on page 225.
Feature Information for Transcoding Resources

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 37: Feature Information for Transcoding Resources

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTI-based Transcoding</td>
<td>11.6</td>
<td>Support for LTI-based Transcoding on Cisco 4000 Series ISR.</td>
</tr>
<tr>
<td>Secure Transcoding</td>
<td>4.2</td>
<td>Secure transcoding for calls using the <code>codec g729r8 dspfarm-assist</code> command was introduced.</td>
</tr>
<tr>
<td>Transcoding Support</td>
<td>3.2</td>
<td>Transcoding between G.711 and G.729 was introduced.</td>
</tr>
</tbody>
</table>
Toll Fraud Prevention

- Prerequisites, on page 507
- Overview, on page 507
- IP Address Trusted Authentication, on page 510
- Direct Inward Dial for Incoming ISDN Calls, on page 511
- Disconnect ISDN Calls With No Matching Dial-peer, on page 511
- Block Two-stage Dialing Service on Analog and Digital FXO Ports, on page 511
- Configure Toll Fraud Prevention, on page 511
- Feature Information for Toll Fraud Prevention, on page 519

Prerequisites

The following are the prerequisites for configuring Toll Fraud prevention with Unified CME:

Prerequisites for Configuring Toll Fraud Prevention on Trunk Side

- Cisco Unified CME 8.1 or a later version.
- Cisco IOS Release 15.1(2)T.

Prerequisites for Configuring Toll Fraud Prevention for Line Side SIP

- Unified CME 12.6 or a later version.
- Cisco IOS XE Gibraltar Release 16.11.1a or later.

Overview

Unified CME Release 12.6 enhances the existing Toll Fraud Prevention feature by enforcing security on the SIP line side of Unified CME. The feature enhancement secures the Unified CME system against potential toll fraud exploitation by unauthorized users from the SIP line side.

Some of the key features of Toll Fraud Prevention on Unified CME for secure calls over SIP lines are:

- All the REGISTER messages from SIP lines to be processed.
• REFER message from SIP lines to be processed only on Primary CME, when Secondary CME is enabled (Refer-To: urn:X-cisco-remotecc:token-registration).

• All the SIP line messages that are triggered from the endpoints to Unified CME are authenticated.

• If the IP address of the endpoint is not part of the IP address trusted list, the call is not placed through Unified CME.

For more information on Toll Fraud Prevention on Unified CME 12.6 and later, see Toll Fraud Prevention for SIP Line Side on Unified CME, on page 508.

For Unified CME 8.1 to 12.5 Releases, toll fraud prevention was restricted to securing calls over the SIP trunk only. For more information about Toll Fraud Prevention over a SIP trunk, see Configuring a Trusted IP Address List for Toll-Fraud Prevention.

Toll Fraud Prevention for SIP Line Side on Unified CME

Unified CME 12.6 enforces security and toll fraud prevention for SIP line side on Unified CME. The `ip address trusted authentication` configuration blocks unauthorized calls from the line side. Hence, the Toll fraud Prevention feature secures Unified CME 12.6 and later from unauthorized users on the line side.

As part of the configuration for toll fraud prevention on Unified CME 12.6, all the line side endpoints must register to Unified CME. The following are the configurations of Toll Fraud Prevention in Unified CME, 12.6:

• The CLI command `ip address trusted authentication` is enabled by default in Unified CME. The command ensures that security is enabled on the Unified CME system.

• You can manually configure your Unified CME endpoints as trusted by entering the IP address or subnet of the trusted phone under the `iptrust-list` configuration mode, as follows:

  ```
  Router (conf-voi-serv)#ip address trusted list
  Router(cfg-iptrust-list)#ipv4 192.168.10.11
  ```

• You can verify the manually added IP address of the Unified CME endpoint, as follows:

  ```
  Router(cfg-iptrust-list)#do show run | s voice service voip
  voice service voip
  ip address trusted list
  ipv4 192.168.10.30
  ipv4 192.168.10.31
  ipv4 192.168.10.32
  ipv4 192.168.10.33
  media bulk-stats
  ```

• The CLI command `ip address trusted list` lists the IP address of incoming calls from all the registered directory numbers. The command is configured under `voice service voip` configuration mode.

• The `show ip address trusted list` CLI command displays a list of trusted IP addresses. The trusted IP addresses are displayed under the following lists:

 • Dial Peer (only applicable for trunk side): Provides details on the IP address of the phones that are configured under the dial-peer configuration mode.
• Configured IP Address Trusted List: Provides details on the manually configured IP addresses that are trusted.

• Dynamic IP Address Trusted List: Provides details on the IP address of the registered phones. This list is introduced in Unified CME 12.6 Release.

• Server Group: Provides details on the IP address of the phones that are configured under server-groups configuration mode.

Router>enable
Router#show ip address trusted list
IP Address Trusted Authentication
Administration State: UP
Operation State: UP

IP Address Trusted Call Block Cause: call-reject (21)

VoIP Dial-peer IPv4 and IPv6 Session Targets:
Peer Tag Oper State Session Target
-------- ---------- --------------
4 UP ipv4:10.65.125.155

Configured IP Address Trusted List:
ipv4 192.168.20.1
ipv4 192.168.20.2 255.255.0.0
ipv4 192.168.20.3 255.255.0.0
ipv4 192.168.20.4 255.255.255.0

Dynamic IP Address Trusted List:
IP Address Subnet Mask Count Reason
--------------------------------- ----------------- ----- ----------------
ipv4:8.55.22.36 1 Phone Registered
ipv4:192.168.10.12 2 Phone Registered
ipv6:2001:420:54FF:13::312:0 119 1 Phone Registered
ipv4:8.55.22.15 1 Phone Registered

• The CLI command `ip address trusted list` provides information on the IP address of all trusted IP phones on Unified CME. For information specific to a particular IP phone on Unified CME, use the CLI command `show ip address trusted check`.

Router#show ip address trusted check 8.55.0.139
ip[8.55.0.139] authentication is FAILED!

Router#show ip address trusted check 8.55.0.136
ip[8.55.0.136] authenticate is PASSED by dynamic TrustList

• The CLI command `silent-discard untrusted` in sip configuration mode discards SIP requests from untrusted sources. This command is enabled by default on Unified CME.

Upgrade Considerations
When you upgrade to Unified CME 12.6 version, you need not perform additional configurations for supporting toll fraud prevention. All the endpoints that are manually configured or auto-registered on Unified CME are added to the Unified CME IP Address Trust List. You can view the list of trusted IP addresses under the output of the CLI command `show ip address trusted list`.
IP Address Trusted Authentication

IP address trusted authentication process blocks unauthorized calls and helps secure the Unified CME system against potential toll fraud exploitation by unauthorized users. In Unified CME, **IP address trusted authentication** is enabled by default. When IP address trusted authentication is enabled, Unified CME accepts incoming VoIP (SIP/H.323) calls only if the remote IP address of an incoming VoIP call is successfully validated from the system **IP address trusted list**. If the IP address trusted authentication fails, an incoming VoIP call is then disconnected by the application with a user-defined cause code and a new application internal error code 31 message (TOLL_FRAUD_CALL_BLOCK) is logged. For configuration information, see **Configure IP Address Trusted Authentication for Incoming VoIP Calls**, on page 511.

Unified CME maintains an **IP address trusted list** to validate the remote IP addresses of incoming VOIP calls. Unified CME saves an IPv4 session target of VoIP dial-peer to add the trusted IP addresses to **IP address trusted list** automatically. The IPv4 session target is identified as a trusted IP address only if the status of VoIP dial-peer in operation is “UP”. Up to 100 IPv4 addresses can be defined in the trusted IP address list. No duplicate IP addresses are allowed in the trusted IP address list. You can manually add up to 100 trusted IP addresses for incoming VOIP calls. For more information on manually adding trusted IP addresses, see **Add Valid IP Addresses For Incoming VoIP Calls**, on page 513.

A call detail record (CDR) history record is generated when the call is blocked as a result of IP address trusted authentication failure. A new voice Internal Error Code (IEC) is saved to the CDR history record. The voice IEC error messages are logged to syslog if “voice iec syslog” option is enabled. The following is an IEC toll fraud call rejected syslog display:

```
*Aug 14 19:54:32.507: %VOICE_IEC-3-GW: Application Framework Core: Internal Error (Toll fraud call rejected): IEC=1.1.228.3.31.0 on callID 3 GUID=AE5066C5883E11DE8026A96657501A09
```

The **IP address trusted list** authentication must be suspended when Unified CME is defined with “gateway” and a VoIP dial-peer with “session-target ras” is in operational UP status. The incoming VOIP call routing is then controlled by the gatekeeper. **Table 38: Administration and Operation States of IP Address Trusted Authentication**, on page 510 shows administration state and operational state in different trigger conditions.

Table 38: Administration and Operation States of IP Address Trusted Authentication

<table>
<thead>
<tr>
<th>Trigger Condition</th>
<th>Administration State</th>
<th>Operation State</th>
</tr>
</thead>
<tbody>
<tr>
<td>When ip address trusted authenticate is enabled.</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>When “gateway” is defined and a VoIP dial-peer with “ras” as a session target is in “UP” operational state</td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td>When ip address trusted authenticate is enabled and either “gateway” is not defined or no voip dial-peer with “ras” as session target is in “UP” operational state</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

Note We recommend enabling SIP authentication before enabling Out-of-dialog REFER (OOD-R) to avoid any potential toll fraud threats.
Direct Inward Dial for Incoming ISDN Calls

In Cisco Unified CME 8.1 and later versions the `direct-inward-dial isdn` feature is enabled to prevent the toll fraud for incoming ISDN calls. The called number of an incoming ISDN en bloc dialing call is used to match the outbound dial-peers even if the `direct-inward-dial` option is disabled from a selected inbound plain old telephone service (POTS) dial-peer. If no outbound dial-peer is selected for the outgoing call set up, the incoming ISDN call is disconnected with cause-code “unassigned-number (1)”. For configuration information, see Configure Direct Inward Dial for Incoming ISDN Calls, on page 515.

Disconnect ISDN Calls With No Matching Dial-peer

Cisco Unified CME 8.1 and later versions disconnect unauthorized ISDN calls when no matching inbound voice dial-peer is selected. Cisco Unified CME and voice gateways use the `dial-peer no-match disconnect-cause` command to disconnect an incoming ISDN call when no inbound dial-peer is selected to avoid default POTS dial-peer behavior including two-stage dialing service to handle the incoming ISDN call.

Block Two-stage Dialing Service on Analog and Digital FXO Ports

Cisco Unified CME 8.1 and later versions block the two-stage dialing service which is initiated when an Analog or Digital FXO port goes offhook and the private line automatic ringdown (PLAR) connection is not setup from the voice-port. As a result, no outbound dial-peer is selected for an incoming analog or digital FXO call and no dialed digits are collected from an FXO call. Cisco Unified CME and voice gateways disconnect the FXO call with cause-code “unassigned-number (1)”. Cisco Unified CME uses the `no secondary dialtone` command by default from FXO voice-port to block the two-stage dialing service on Analog or digital FXO ports. For more information on blocking two-stage dialing service on Analog and Digital FXO port, see Block Secondary Dialtone on Analog and Digital FXO Ports, on page 516.

Configure Toll Fraud Prevention

Configure IP Address Trusted Authentication for Incoming VoIP Calls

<table>
<thead>
<tr>
<th>Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IP address trusted authentication is skipped if an incoming call is an IPv6 call.</td>
</tr>
<tr>
<td>• For an incoming VoIP call, IP trusted authentication must be invoked when the IP address trusted authentication is in “UP” operational state.</td>
</tr>
</tbody>
</table>

Before you begin

• Unified CME 12.6 or a later version for SIP line calls.
• Unified CME 8.1 or a later version for secure trunk calls.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. ip address trusted authenticate
5. ip-address trusted call-block cause code
6. end
7. show ip address trusted list

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice service voip configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address trusted authenticate</td>
<td>Enables IP address authentication on incoming H.323 or SIP trunk calls for toll fraud prevention support.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)# ip address trusted authenticate</td>
<td>IP address trusted list authenticate is enabled by default. Use the “no ip address trusted list authenticate” command to disable the IP address trusted list authentication.</td>
</tr>
<tr>
<td>Step 5 ip-address trusted call-block cause code</td>
<td>Issues a cause-code when the incoming call is rejected to the IP address trusted authentication.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)#ip address trusted call-block cause call-reject</td>
<td>Note If the IP address trusted authentication fails, a call-reject (21) cause-code is issued to disconnect the incoming VoIP call.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router()# end</td>
<td></td>
</tr>
</tbody>
</table>
Add Valid IP Addresses For Incoming VoIP Calls

Before you begin

- Unified CME 8.1 and later for secure trunk calls.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. ip address trusted list
5. ipv4 {<ipv4 address> [network mask]}
6. end
7. show ip address trusted list
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>voice service voip
Example:
Router(config)# voice service voip</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address trusted list
Example:
Router(conf-voi-serv)# ip address trusted list</td>
</tr>
<tr>
<td>Step 5</td>
<td>ipv4 <code><ipv4 address> [network mask]></code>
Example:
Router(cfg-iptrust-list)#ipv4 192.168.10.20</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Example:
Router(cfg-iptrust-list)# end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip address trusted list
Example:
Router# show ip address trusted list</td>
</tr>
</tbody>
</table>

Example

The following example shows three IP addresses configured as trusted IP addresses:

```
Router# show ip address trusted list
IP Address Trusted Authentication
   Administration State: UP
   Operation State:     UP

   IP Address Trusted Call Block Cause: call-reject (21)

   IP Address Trusted List:
   ipv4 192.168.10.20
```
Configure Direct Inward Dial for Incoming ISDN Calls

Before you begin

- Direct-inward-dial isdn is not supported for incoming ISDN overlap dialing call.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service pots
4. direct-inward-dial isdn
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice service pots</td>
<td>Enters voice service configuration mode with voice telephone-service</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>encapsulation type (pots).</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice service pots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>direct-inward-dial isdn</td>
<td>Enables direct-inward-dial (DID) for incoming ISDN number. The incoming</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>ISDN (enbloc dialing) call is treated as if the digits were received</td>
</tr>
<tr>
<td></td>
<td>Router(conf-voi-serv)#direct-inward-dial isdn</td>
<td>from the DID trunk. The called number is used to select the outgoing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dial peer. No dial tone is presented to the caller.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits voice service pots configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(conf-voi-serv)#exit</td>
<td></td>
</tr>
</tbody>
</table>
Example

```
voice service voip
  ip address trusted list
  ipv4 172.19.245.1
  ipv4 172.19.247.1
  ipv4 172.19.243.1
  ipv4 171.19.245.1
  ipv4 171.19.10.1
  allow-connections h323 to h323
  allow-connections h323 to sip
  allow-connections sip to h323
  allow-connections sip to sip
  supplementary-service media-renegotiate
  sip
  registrar server expires max 120 min 120
```

```
!

dial-peer voice 1 voip
  destination-pattern 5511...
  session protocol sipv2
  session target ipv4:1.3.45.1
  incoming called-number 5522...
  direct-inward-dial
  dtmf-relay sip-notify
  codec g711ulaw

!  
dial-peer voice 100 pots
  destination-pattern 91...
  incoming called-number 2...
  forward-digits 4

```

Block Secondary Dial tone on Analog and Digital FXO Ports

SUMMARY STEPS

1. enable
2. configure terminal
3. voice-port
4. no secondary dialtone
5. end
6. show run

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>voice-port</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)#voice-p 2/0/0</td>
</tr>
<tr>
<td>4</td>
<td>no secondary dialtone</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-voiceport)# no secondary dialtone</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example: Router(conf-voiceport)# exit</td>
</tr>
<tr>
<td>6</td>
<td>show run</td>
</tr>
<tr>
<td></td>
<td>Example: Router# show run</td>
</tr>
</tbody>
</table>

Example

Router# conf t
Router(config)#voice-p 2/0/0
Router(config-voiceport)# no secondary dialtone
!
end

Router# show run | sec voice-port 2/0/0
Foreign Exchange Office 2/0/0 Slot is 2, Sub-unit is 0, Port is 0
Type of VoicePort is FXO
Operation State is DORMANT
Administrative State is UP
... Secondary dialtone is disabled

Troubleshooting Tips for Toll Fraud Prevention

When incoming VOIP call is rejected by IP address trusted authentication, a specific internal error code (IEC) 1.1.228.3.31.0 is saved to the call history record. You can monitor the failed or rejected calls using the IEC support. Follow these steps to monitor any rejected calls:

Step 1 Use the show voice iec description command to find the text description of an IEC code.

Example:
Step 2 View the IEC statistics information using the `voice statistics type iec` command. The example below shows that 2 calls were rejected due to toll fraud call reject error code.

Example:

```
Router(config)#voice statistics type iec
Router(config)#end
Router#show voice statistics iec since-reboot
Router#show voice statistics iec since-restart
```

Step 3 Use the `enable IEC syslog` command to verify the syslog message logged when a call with IEC error is released.

Example:

```
Router# Enable iec syslog
Router (config)#voice iec syslog
```

Step 4 Verify the source address of an incoming VOIP call using the `show call history voice last` command.

Example:

```
Router# show call history voice last 1
```

Step 5 IEC is saved to VSA of Radius Accounting Stop records. Monitor the rejected calls using the external RADIUS server.

Example:

```
“internal-error-code=1.1.228.3.31.0”
```

Step 6 Retrieve the IEC details from cCallHistoryIec MIB object. More information on IEC is available at: Cisco IOS Voice Troubleshooting and Monitoring Guide

Example:

```
getmany 1.5.14.10 cCallHistoryIec
```
Feature Information for Toll Fraud Prevention

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 39: Feature Information for Toll Fraud Prevention

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll Fraud Prevention for Line Side Unified CME</td>
<td>12.6</td>
<td>Introduced toll fraud prevention support for line side endpoints on Unified CME.</td>
</tr>
<tr>
<td>Toll Fraud Prevention in Cisco Unified CME</td>
<td>8.1</td>
<td>Introduced support for Toll Fraud Prevention feature.</td>
</tr>
</tbody>
</table>
CHAPTER 16

Voice Mail Integration

This chapter describes how to integrate your voice-mail system with Cisco Unified Communications Manager Express (Cisco Unified CME).

• Prerequisites for Voice Mail Integration, on page 521
• Information About Voice-Mail Integration, on page 522
• Configure Voice-Mail Integration, on page 528
• Configuration Examples for Voice-Mail Integration, on page 555
• Feature Information for Voice-Mail Integration, on page 558

Prerequisites for Voice Mail Integration

• Calls can be successfully completed between phones on the same Cisco Unified CME router.

• If your voice-mail system is something other than Cisco Unity Express, such as Cisco Unity, voice mail must be installed and configured on your network.

• If your voice-mail system is Cisco Unity Express:

 Note When you order Cisco Unity Express, Cisco Unity Express software and the purchased license are installed on the module at the factory. Spare modules also ship with the software and license installed. If you are adding Cisco Unity Express to an existing Cisco router, you will be required to install hardware and software components.

• Interface module for Cisco Unity Express is installed. For information about the AIM-CUE or NM-CUE, access documents located at http://www.cisco.com/en/US/products/hw/modules/ps2797/prod_installation_guides_list.html.

• The recommended Cisco IOS release and feature set plus the necessary Cisco Unified CME phone firmware files to support Cisco Unity Express are installed on the Cisco Unified CME router.

To determine whether the Cisco IOS software release and Cisco Unified CME software version are compatible with the Cisco Unity Express version, Cisco router model, and Cisco Unity Express hardware that you are using, see Cisco Unity Express Compatibility Matrix.
To verify installed Cisco Unity Express software version, enter the Cisco Unity Express command environment and use the `show software version` user EXEC command. For information about the command environment, see the appropriate Cisco Unity Express CLI Administrator Guide at http://www.cisco.com/en/US/docs/voice_ip_comm/unity_exp/roadmap/cuedocs.html.

- The proper license for Cisco Unified CME, not Cisco Unified Communications Manager, is installed. To verify installed license, enter the Cisco Unity Express command environment and use the `show software license` user EXEC command. For information about the command environment, see the appropriate Cisco Unity Express CLI Administrator Guide at http://www.cisco.com/en/US/docs/voice_ip_comm/unity_exp/roadmap/cuedocs.html.

This is an example of the Cisco Unified CME license:

```
se-10-0-0-0> show software licenses
Core:
  - application mode: CCME
  - total usable system ports: 8

Voicemail/Auto Attendant:
  - max system mailbox capacity time: 6000
  - max general delivery mailboxes: 15
  - max personal mailboxes: 50

Languages:
  - max installed languages: 1
  - max enabled languages: 1
```


Information About Voice-Mail Integration

Cisco Unity Connection Integration

Cisco Unity Connection transparently integrates messaging and voice recognition components with your data network to provide continuous global access to calls and messages. These advanced, convergence-based communication services help you use voice commands to place calls or listen to messages in “hands-free” mode and check voice messages from your desktop, either integrated into an e-mail inbox or from a Web browser. Cisco Unity Connection also features robust automated-attendant functions that include intelligent routing and easily customizable call-screening and message-notification options.

For instructions on how to integrate Cisco Unified CME with Cisco Unity Connection, see Cisco CallManager Express 3.x Integration Guide for Cisco Unity Connection 1.1.

Cisco Unity Express Integration

Cisco Unity Express offers easy, one-touch access to messages and commonly used voice-mail features that enable users to reply, forward, and save messages. To improve message management, users can create alternate greetings, access envelope information, and mark or play messages based on privacy or urgency. For instructions on how to configure Cisco Unity Express, see the administrator guides for Cisco Unity Express.
Cisco Unity Integration

Cisco Unity is a Microsoft Windows-based communications solution that brings you voice mail and unified messaging and integrates them with the desktop applications you use daily. Cisco Unity gives you the ability to access all of your messages, voice, fax, and e-mail, by using your desktop PC, a touchtone phone, or the Internet. The Cisco Unity voice mail system supports voice-mail integration with Cisco Unified CME. This integration requires that you configure the Cisco Unified CME router and Cisco Unity software to get voice-mail service.

For configuration instructions, see Enable DTMF Integration Using RFC 2833.

DTMF Integration for Legacy Voice-Mail Applications

For dual-tone multifrequency (DTMF) integrations, information on how to route incoming or forwarded calls is sent by a telephone system in the form of DTMF digits. The DTMF digits are sent in a pattern that is based on the integration file in the voice-mail system connected to the Cisco Unified CME router. These patterns are required for DTMF integration of Cisco Unified CME with most voice-mail systems. Voice-mail systems are designed to respond to DTMF after the system answers the incoming calls.

After configuring the DTMF integration patterns on the Cisco Unified CME router, you set up the integration files on the third-party legacy voice-mail system by following the instructions in the documents that accompany the voice-mail system. You must design the DTMF integration patterns appropriately so that the voice-mail system and the Cisco Unified CME router work with each other.

For configuration information, see Enable DTMF Integration for Analog Voice-Mail Applications.

Mailbox Selection Policy

Typically a voice-mail system uses the number that a caller has dialed to determine the mailbox to which a call should be sent. However, if a call has been diverted several times before reaching the voice-mail system, the mailbox that is selected might vary for different types of voice-mail systems. For example, Cisco Unity Express uses the last number to which the call was diverted before it was sent to voice mail as the mailbox number. Cisco Unity and some legacy PBX systems use the originally called number as the mailbox number.

The Mailbox Selection Policy feature allows you to provision the following options from the Cisco Unified CME configuration.

• For Cisco Unity Express, you can select the originally dialed number.

• For PBX voice-mail systems, you can select the last number to which the call was diverted before it was sent to voice mail. This option is configured on the outgoing dial peer for the voice-mail system's pilot number.
• For Cisco Unity voice mail, you can select the last number to which the call was diverted before it was sent to voice mail. This option is configured on the ephone-dn that is associated with the voice-mail pilot number.

To enable Mailbox Selection Policy, see Set a Mailbox Selection Policy for Cisco Unity Express or a PBX Voice-Mail Number or Set a Mailbox Selection Policy for Cisco Unity.

RFC 2833 DTMF MTP Pass through

In Cisco Unified CME 4.1, the RFC 2833 Dual-Tone Multifrequency (DTMF) Media Termination Point (MTP) Passthrough feature provides the capability to pass DTMF tones transparently between SIP endpoints that require transcoding or Resource Reservation Protocol (RSVP) agents.

This feature supports DTMF Relay across SIP WAN devices that support RFC 2833, such as Cisco Unity and SIP trunks. Devices registered to a Cisco Unified CME SIP back-to-back user agent (B2BUA) can exchange RFC 2833 DTMF MTP with other devices that are not registered with the Cisco Unified CME SIP B2BUA, or with devices that are registered in one of the following:

• Local or remote Cisco Unified CME
• Cisco Unified Communications Manager
• Third party proxy

By default, the RFC 2833 DTMF MTP Passthrough feature uses payload type 101 on MTP, and MTP accepts all the other dynamic payload types if it is indicated by Cisco Unified CME. For configuration information, see Enable DTMF Integration Using RFC 2833.

MWI Line Selection

Message waiting indicator (MWI) line selection allows you to choose the phone line that is monitored for voice-mail messages and that lights an indicator when messages are present.

Before Cisco Unified CME 4.0, the MWI lamp on a phone running SCCP could be associated only with the primary line of the phone.

In Cisco Unified CME 4.0 and later versions, you can designate a phone line other than the primary line to be associated with the MWI lamp. Lines other than the one associated with the MWI lamp display an envelope icon when a message is waiting. A logical phone “line” is not the same as a phone button. A button with one or more directory numbers is considered one line. A button with no directory number assigned does not count as a line.

In Cisco Unified CME 4.0 and later versions, a SIP directory number that is used for call forward all, presence BLF status, and MWI features must be configured by using the `dn` keyword in the `number` command; direct line numbers are not supported.

For configuration information, see Configure a Voice Mailbox Pilot Number on a SCCP Phone or Configure a Directory Number for MWI NOTIFY.
AMWI

The AMWI (Audible Message Line Indicator) feature provides a special stutter dial tone to indicate message waiting. This is an accessibility feature for vision-impaired phone users. The stutter dial tone is defined as 10 ms ON, 100 ms OFF, repeat 10 times, then steady on.

In Cisco Unified CME 4.0(3), you can configure the AMWI feature on the Cisco Unified IP Phone 7911 and Cisco Unified IP Phone 7931G to receive audible, visual, or audible and visual MWI notification from an external voice-messaging system. AMWI cannot be enabled unless the number command is already configured for the IP phone to be configured.

Cisco Unified CME applies the following logic based on the capabilities of the IP phone and how MWI is configured:

- If the phone supports (visual) MWI and MWI is configured for the phone, activate the Message Waiting light.
- If the phone supports (visual) MWI only, activate the Message Waiting light regardless of the configuration.
- If the phone supports AMWI and AMWI is configured for the phone, send the stutter dial tone to the phone when it goes off-hook.
- If the phone supports AMWI only and AMWI is configured, send the stutter dial tone to the phone when it goes off-hook regardless of the configuration.

If a phone supports (visual) MWI and AMWI and both options are configured for the phone, activate the Message Waiting light and send the stutter dial tone to the phone when it goes off-hook.

For configuration information, see Configure a SCCP Phone for MWI Outcall.

SIP MWI Prefix Specification

Central voice-messaging servers that provide mailboxes for several Cisco Unified CME sites may use site codes or prefixes to distinguish among similarly numbered ranges of extensions at different sites. In Cisco Unified CME 4.0 and later versions, you can specify that your Cisco Unified CME system should accept unsolicited SIP Notify messages for MWI that include a prefix string as a site identifier.

For example, an MWI message might indicate that the central mailbox number 555-0123 has a voice message. In this example, the digits 555 are set as the prefix string or site identifier using the mwi prefix command. The local Cisco Unified CME system is able to convert 555-0123 to 0123 and deliver the MWI to the correct phone. Without this prefix string manipulation, the system would reject an MWI for 555-0123 as not matching the local Cisco Unified CME extension 0123.

To enable SIP MWI Prefix Specification, see Enable SIP MWI Prefix Specification.

SIP MWI - QSIG Translation

In Cisco Unified CME 4.1 and later, the SIP MWI - QSIG Translation feature extends MWI functionality for SIP MWI and QSIG MWI interoperation to enable sending and receiving MWI over QSIG to a PBX.

When the SIP Unsolicited NOTIFY is received from voice mail, the Cisco router translates this event to activate QSIG MWI to the PBX, via PSTN. The PBX will switch on, or off, the MWI lamp on the corresponding IP phone. This feature supports only Unsolicited NOTIFY. Subscribe NOTIFY is not supported by this feature.
In Figure 18: SIP MWI to ISDN QSIG When Voice Mail and Cisco Router are On the Same LAN, on page 526, the Cisco router receives the SIP Unsolicited NOTIFY, performs the protocol translation, and initiates the QSIG MWI call to the PBX, where it is routed to the appropriate phone.

Figure 18: SIP MWI to ISDN QSIG When Voice Mail and Cisco Router are On the Same LAN

It makes no difference if the SIP Unsolicited NOTIFY is received via LAN or WAN if the PBX is connected to the Cisco router, and not to the remote voice-mail server.

In Figure 19: SIP MWI to ISDN QSIG When PBX is Connected to a Remote Cisco Router, on page 526, a voice mail server and Cisco Unified CME are connected to the same LAN and a remote Cisco Unified CME is connected across the WAN. In this scenario, the protocol translation is performed at the remote Cisco router and the QSIG MWI message is sent to the PBX.

Figure 19: SIP MWI to ISDN QSIG When PBX is Connected to a Remote Cisco Router

VMWI

There are two types of visual message waiting indicator (VMWI) features: Frequency-shift Keying (FSK) and DC voltage. The message-waiting lamp can be enabled to flash on an analog phone that requires an FSK message to activate a visual indicator. The DC Voltage VMWI feature is used to flash the message-waiting lamp on an analog phone which requires DC voltage instead of an FSK message. For all other applications, such as MGCP, FSK VMWI is used even if the voice gateway is configured for DC voltage VMWI. The configuration for DC voltage VMWI is supported only for Foreign Exchange Station (FXS) ports on the Cisco VG224 analog voice gateway with analog device version V1.3 and V2.1.

The Cisco VG224 can only support 12 Ringer Equivalency Number (REN) for ringing 24 onboard analog FXS voice ports. To support ringing and DC Voltage VMWI for 24 analog voice ports, stagger-ringing logic is used to maximize the limited REN resource. When a system runs out of REN because too many voice ports are being rung, the MWI lamp temporarily turns off to free up REN to ring the voice ports.
DC voltage VMWI is also temporarily turned off any time the port's operational state is no longer idle and onhook, such as when one of the following events occur:

- Incoming call on voice port
- Phone goes off hook
- The voice port is shut down or busied out

Once the operational state of the port changes to idle and onhook again, the MWI lamp resumes flashing until the application receives a requests to clear it; for example, if there are no more waiting messages.

For configuration information, see Transfer to Voice Mail.

Transfer to Voice Mail

The Transfer to Voice Mail feature allows a phone user to transfer a caller directly to a voice-mail extension. The user presses the TrnsfVM softkey to place the call on hold, enters the extension number, and then commits the transfer by pressing the TrnsfVM softkey again. The caller hears the complete voice mail greeting. This feature is supported using the TrnsfVM softkey or feature access code (FAC).

For example, a receptionist might screen calls for five managers. If a call comes in for a manager who is not available, the receptionist can transfer the caller to the manager's voice-mail extension by using the TrnsfVM softkey and the caller hears the personal greeting of the individual manager.

For configuration information, see Transfer to Voice Mail.

Live Record

The Live Record feature enables IP phone users in a Cisco Unified CME system to record a phone conversation if Cisco Unity Express is the voice mail system. An audible notification, either by announcement or by periodic beep, alerts participants that the conversation is being recorded. The playing of the announcement or beep is under the control of Cisco Unity Express.

Live Record is supported for two-party calls and ad hoc conferences. In normal record mode, the conversation is recorded after the LiveRcd softkey is pressed. This puts the other party on-hold and initiates a call to Cisco Unity Express at the configured live-record number. To stop the recording session, the phone user presses the LiveRcd softkey again, which toggles between on and off.

The Live-Record number is configured globally and must match the number configured in Cisco Unity Express. You can control the availability of the feature on individual phones by modifying the display of the LiveRcd softkey using an ephone template. This feature must be enabled on both Cisco Unified CME and Cisco Unity Express.

To enable Live Record in Cisco Unified CME, see Configure Live Record on SCCP Phones.

Cisco Unity Express AXL Enhancement

In Cisco Unified CME 7.0(1) and later versions, the Cisco Unity Express AXL enhancement in Cisco Unified CME provides better administrative integration between Cisco Unified CME and Cisco Unity Express by automatically synchronizing passwords.

No configuration is required to enable this feature.
Configure Voice-Mail Integration

Configure a Voice Mailbox Pilot Number on a SCCP Phone

To configure the telephone number that is speed-dialed when the Message button on a SCCP phone is pressed, perform the following steps.

Note

The same telephone number is configured for voice messaging for all SCCP phones in Cisco Unified CME.

Before you begin

• Voicemail phone number must be a valid number; directory number and number for voicemail phone number must be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. voicemail phone-number
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>telephony-service</td>
<td>Enters voice register global configuration mode to set</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# telephony-service</td>
<td>parameters for all supported phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 4</td>
<td>voicemail phone-number</td>
<td>Defines the telephone number that is speed-dialed when</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-telephony)# voice mail 0123</td>
<td>• phone-number—Same phone number is configured for voice messaging for all SCCP phones in a Cisco Unified CME.</td>
</tr>
</tbody>
</table>
What to do next

• (Cisco Unified CME 4.0 or a later version only) To set up a mailbox selection policy, see Configure a Mailbox Selection Policy on SCCP Phone.

• To set up DTMF integration patterns for connecting to analog voice-mail applications, see Enable DTMF Integration for Analog Voice-Mail Applications.

• To connect to a remote SIP-based IVR or Cisco Unity, or to connect to a remote SIP-PSTN that goes through the PSTN to a voice-mail or IVR application, see Enable DTMF Integration Using RFC 2833.

• To connect to a Cisco Unity Express system, configure a nonstandard SIP NOTIFY format. See Enable DTMF Integration Using SIP NOTIFY.

Configure a Mailbox Selection Policy on SCCP Phone

Perform one of the following tasks, depending on which voice-mail application is used:

• Set a Mailbox Selection Policy for Cisco Unity Express or a PBX Voice-Mail Number

• Set a Mailbox Selection Policy for Cisco Unity

Set a Mailbox Selection Policy for Cisco Unity Express or a PBX Voice-Mail Number

To set a policy for selecting a mailbox for calls from a Cisco Unified CME system that are diverted before being sent to a Cisco Unity Express or PBX voice-mail pilot number, perform the following steps.

Restriction

In the following scenarios, the mailbox selection policy can fail to work properly:

• The last redirecting endpoint is not hosted on Cisco Unified CME. This may rarely occur with a PBX.

• A call is forwarded across several SIP trunks. Multiple SIP Diversion Headers (stacking hierarchy) are not supported in Cisco IOS software.

• A call is forwarded across non-Cisco voice gateways that do not support the optional H450.3 originalCalledNr field.

Before you begin

Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip or dial-peer voice tag pots
4. mailbox-selection [last-redirect-num | orig-called-num]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 dial-peer voice tag voip or dial-peer voice tag pots</td>
<td>Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• tag—identifies the dial peer. Valid entries are 1 to 2147483647.</td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 7000 voip or Router(config)# dial-peer voice 35 pots</td>
<td>Note Use this command on the outbound dial peer associated with the pilot number of the voice-mail system. For systems using Cisco Unity Express, this is a VoIP dial peer. For systems using PBX-based voice mail, this is a POTS dial peer.</td>
</tr>
<tr>
<td>Step 4 mailbox-selection [last-redirect-num</td>
<td>orig-called-num]</td>
</tr>
<tr>
<td>Example:</td>
<td>• last-redirect-num—(PBX voice mail only) The mailbox number to which the call will be sent is the last number to divert the call (the number that sends the call to the voice-mail pilot number).</td>
</tr>
<tr>
<td>Router(config-dial-peer)# mailbox-selection orig-called-num</td>
<td>• orig-called-num—(Cisco Unity Express only) The mailbox number to which the call will be sent is the number that was originally dialed before the call was diverted.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
</tbody>
</table>

What to do next
- To use voice mail on a SIP network that connects to a Cisco Unity Express system, configure a nonstandard SIP NOTIFY format. See Enable DTMF Integration Using SIP NOTIFY.
Set a Mailbox Selection Policy for Cisco Unity

To set a policy for selecting a mailbox for calls that are diverted before being sent to a Cisco Unity voice-mail pilot number, perform the following steps.

Restriction

This feature might not work properly in certain network topologies, including when:

- The last redirecting endpoint is not hosted on Cisco Unified CME. This may rarely occur with a PBX.
- A call is forwarded across several SIP trunks. Multiple SIP Diversion Headers (stacking hierarchy) are not supported in Cisco IOS software.
- A call is forwarded across other voice gateways that do not support the optional H450.3 originalCalledNr field.

Before you begin

- Cisco Unified CME 4.0 or a later version.
- Directory number to be configured is associated with a voice mailbox.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `exit`
4. `ephone-dn dn-tag`
5. `mailbox-selection [last-redirect-num]`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Exits dial-peer configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits dial-peer configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-dial-peer)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td><code>ephone-dn dn-tag</code></td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Transfer to Voice Mail

To enable a phone user to transfer a call to voice mail by using the TrnsfVM softkey or a FAC, perform the following steps.

1. **What to do next**
 - To use a remote SIP-based IVR or Cisco Unity, or to connect Cisco Unified CME to a remote SIP-PSTN that goes through the PSTN to a voice-mail or IVR application, see Enable DTMF Integration Using RFC 2833.

Transfer to Voice Mail

To enable a phone user to transfer a call to voice mail by using the TrnsfVM softkey or a FAC, perform the following steps.

Restriction

The TrnsfVM softkey is not supported on the Cisco Unified IP Phone 7905, 7912, or 7921, or analog phones connected to the Cisco VG224 or Cisco ATA. These phones support the trnsfvm FAC.

Before you begin

- Cisco Unified CME 4.3 or a later version.
- Cisco Unity Express 3.0 or a later version, installed and configured.
- For information about standard and custom FACs, see Feature Access Codes.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ephone-template template-tag**
4. **softkeys connected {([Acct] [ConfList] [ConfRn] [Endcall] [Flash] [HLog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Transfer] }**
5. **exit**
6. **ephone phone-tag**
7. **ephone-template template-tag**
8. **exit**
9. **telephony-service**
10. **voicemail phone-number**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ephone-dn 752</td>
<td>Sets a policy for selecting a mailbox for calls that are diverted before being sent to a Cisco Unity voice-mail pilot number.</td>
</tr>
</tbody>
</table>

Step 5

mailbox-selection [last-redirect-num]

Example:

Router(config-ephone-dn)# mailbox-selection last-redirect-num

Step 6

end

Example:

Router(config-ephone-dn)# end

Returns to privileged EXEC mode.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Purpose:</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ephone-template template-tag</code></td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# ephone-template 5</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>softkeys connected { [Acct] [ConfList] [Confrn] [Endcall] [Flash] [HLog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Trnsfer] }</code></td>
<td>(Optional) Modifies the order and type of softkeys that display on an IP phone during the connected call state.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-ephone-template)# softkeys connected TrnsfVM Park Acct ConfList Confrn Endcall Trnsfer Hold</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>exit</code></td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-ephone-template)# exit</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>ephone phone-tag</code></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# ephone 12</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>ephone-template template-tag</code></td>
<td>Applies the ephone template to the phone.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-ephone)# ephone-template 5</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>exit</code></td>
<td>Exits ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-ephone)# exit</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td>Defines the telephone number that is speed-dialed when the Messages button on a Cisco Unified IP phone is pressed.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>voicemail phone-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# voicemail 8900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phone-number—Same phone number is configured for voice messaging for all SCCP phones in a Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>fac *(standard</td>
<td>custom trnsfvm custom-fac)</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# fac custom trnsfvm #22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>standard—Enables standard FACs for all phones. Standard FAC for transfer to voice mail is *6.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>custom—Creates a custom FAC for a FAC type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>custom-fac—User-defined code to be dialed using the keypad on an IP or analog phone. Custom FAC can be up to 256 characters long and contain numbers 0 to 9 and * and #.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows a configuration where the display order of the TrnsfVM softkey is modified for the connected call state in ephone template 5 and assigned to ephone 12. A custom FAC for transfer to voice mail is set to #22.

telephony-service
max-ephones 100
max-dn 240
timeouts transfer-recall 60
voicemail 8900
max-conferences 8 gain -6
transfer-system full-consult
 fac custom trnsfvm #22
|
ephone-template 5
 softkeys connected TrnsfVM Park Acct Confrn Endcall Transfer Hold
 max-calls-per-button 3
 busy-trigger-per-button 2
|
ephone 12
 ephone-template 5
 mac-address 000F.9054.31BD
type 7960
 button 1:10 2:7
What to do next

- If you are finished modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for SCCP Phones.

- For information on how phone users transfer a call to voice mail, see Cisco Unified IP Phone documentation for Cisco Unified CME.

Configure Live Record on SCCP Phones

To configure the Live Record feature so that a phone user can record a conversation by pressing the LiveRcd softkey, perform the followings steps.

Restriction

- Only one live record session is allowed for each conference.

- Only the conference creator can initiate a live record session. In an ad hoc conference, participants who are not the conference creator cannot start a live record session. In a two-party call, the party who starts the live record session is the conference creator.

Note

For legal disclaimer information about this feature, see copyright information section.

Before you begin

- Cisco Unified CME 4.3 or a later version.

- Cisco Unity Express 3.0 or a later version, installed and configured. For information on configuring Live Record in Cisco Unity Express, see Configure Live Record in the Cisco Unity Express Voice-Mail and Auto-Attendant CLI Administrator Guide for 3.0 and Later Versions.

- Ad hoc hardware conference resource is configured and ready to use. See Configure Hardware Conferencing, on page 1347.

- If phone user wants to view the live record session, include ConfList softkey using the softkeys connected command.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. live record number
5. voicemail number
6. exit
7. ephone-dn dn-tag
8. number number [secondary number] [no-reg [both | primary]]
9. call-forward all target-number
10. exit
11. ephone-template template-tag
12. softkeys connected ([Acct] [ConfList] [Conf rm] [Endcall] [Flash] [HLog] [Hold]
 [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Trnsfer])
13. exit
14. ephone phone-tag
15. ephone-template template-tag
16. end

DETAIL STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 live record number</td>
<td>Defines the extension number that is dialed when the LiveRcd softkey is pressed on an SCCP IP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# live record 8900</td>
<td></td>
</tr>
<tr>
<td>Step 5 voicemail number</td>
<td>Defines the extension number that is speed-dialed when the Messages button is pressed on an IP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# voicemail 8000</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 ephone-dn dn-tag</td>
<td>Creates a directory number that forwards all calls to the Cisco Unity Express voice-mail pilot number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone-dn 10</td>
<td></td>
</tr>
<tr>
<td>Step 8 number number [secondary number] [no-reg [both</td>
<td>Assigns an extension number to this directory number.</td>
</tr>
<tr>
<td></td>
<td>primary]]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-dn)# number 8900</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 9 | **call-forward all target-number** Example: Router(config-ephone-dn)# call-forward all 8000 | Forwards all calls to this extension to the specified voice-mail number.
• **target-number**—Phone number to which calls are forwarded. Must match the voice-mail pilot number configured in Step 5, on page 536. |
| 10 | **exit** Example: Router(config-ephone-dn)# exit | Exits ephone-dn configuration mode. |
| 11 | **ephone-template template-tag** Example: Router(config)# ephone-template 5 | Enters ephone-template configuration mode to create an ephone template.
• **template-tag**—Unique identifier for the ephone template. Range: 1 to 20. |
| 12 | **softkeys connected** { [Acct] [ConfList] [Confrn] [Endcall] [Flash] [HLog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [TrnsfR] } Example: Router(config-ephone-template)# softkeys connected LiveRcd Confrn Hold Park TrnsfTrnsfVM | Modifies the order and type of softkeys that display on an IP phone during the connected call state. |
| 13 | **exit** Example: Router(config-ephone-template)# exit | Exits ephone-template configuration mode. |
| 14 | **ephone phone-tag** Example: Router(config)# ephone 12 | Enters ephone configuration mode.
• **phone-tag**—Unique number that identifies this ephone during configuration tasks. |
| 15 | **ephone-template template-tag** Example: Router(config-ephone)# ephone-template 5 | Applies the ephone template to the phone.
• **template-tag**—Unique identifier of the ephone template that you created in Step 11, on page 537. |
| 16 | **end** Example: Router(config-ephone)# end | Exits to privileged EXEC mode. |
Example

The following example shows Live Record is enabled at the system-level for extension 8900. All incoming calls to extension 8900 are forwarded to the voice-mail pilot number 8000 when the LiveRcd softkey is pressed, as configured under ephone-dn 10. Ephone template 5 modifies the display order of the LiveRcd softkey on IP phones.

telephony-service
privacy-on-hold
max-ephones 100
max-dn 240
timeouts transfer-recall 60
live-record 8900
voicemail 8000
max-conferences 8 gain -6
transfer-system full-consult
fac standard
!
!
ephone-template 5
softkeys remote-in-use CBarge Newcall
softkeys hold Resume Newcall Join
softkeys connected LiveRcd Confrn Hold Park Trnsfer TrnsfVM
max-calls-per-button 3
busy-trigger-per-button 2
!
!
ephone-dn 10
number 8900
call-forward all 8000

Configure a Voice Mailbox Pilot Number on a SIP Phone

To configure the telephone number that is speed-dialed when the Message button on a SIP phone is pressed, follow the steps in this section.

Note

The same telephone number is configured for voice messaging for all SIP phones in Cisco Unified CME. The call forward b2bua command enables call forwarding and designates that calls that are forwarded to a busy or no-answer extension be sent to a voicemail box.

Before you begin

- Directory number and number for voicemail phone number must be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. voicemail phone-number
5. exit
6. `voice register dn dn-tag`
7. `call-forward b2bua busy directory-number`
8. `call-forward b2bua mailbox directory-number`
9. `call-forward b2bua noan directory-number timeout seconds`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td><code>voice register global</code></td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# voice register global</code></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td><code>voicemail phone-number</code></td>
<td>Defines the telephone number that is speed-dialed when the Messages button on a Cisco Unified IP phone is pressed.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• <code>phone-number</code>—Same phone number is configured for voice messaging for all SIP phones in a Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-global)# voice mail 1111</code></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td><code>exit</code></td>
<td>Exits voice register global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-global)# exit</code></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td><code>voice register dn dn-tag</code></td>
<td>Enters voice register dn mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# voice register dn 2</code></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td><code>call-forward b2bua busy directory-number</code></td>
<td>Enables call forwarding for a SIP back-to-back user agent so that incoming calls to an extension that is busy will be forwarded to the designated directory number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-dn)# call-forward b2bua busy 1000</code></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td><code>call-forward b2bua mailbox directory-number</code></td>
<td>Designates the voice mailbox to use at the end of a chain of call forwards.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Incoming calls have been forwarded to a busy or no-answer extension will be forwarded to the directory-number specified.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-dn)# call-forward b2bua mailbox 2200</code></td>
<td></td>
</tr>
</tbody>
</table>
Enable DTMF Integration

Perform one of the following tasks, depending on which DTMF-relay method is required:

- Enable DTMF Integration for Analog Voice-Mail Applications—To set up DTMF integration patterns for connecting to analog voice-mail applications.

- Enable DTMF Integration Using RFC 2833—To connect to a remote SIP-based IVR or voice-mail application such as Cisco Unity or when SIP is used to connect Cisco Unified CME to a remote SIP-PSTN voice gateway that goes through the PSTN to a voice-mail or IVR application.

- Enable DTMF Integration Using SIP NOTIFY—To configure a SIP dial peer to point to Cisco Unity Express.

Enable DTMF Integration for Analog Voice-Mail Applications

To set up DTMF integration patterns for analog voice-mail applications, perform the following steps.

Note

You can configure multiple tags and tokens for each pattern, depending on the voice-mail system and type of access.

SUMMARY STEPS

1. enable
2. configure terminal
3. vm-integration
4. pattern direct `tag1` `{CGN | CDN | FDN}` `[tag2 `{CGN | CDN | FDN}`] `[tag3 `{CGN | CDN | FDN}`] [last-tag]
5. pattern ext-to-ext busy `tag1` `{CGN | CDN | FDN}` `[tag2 `{CGN | CDN | FDN}`] `[tag3 `{CGN | CDN | FDN}`] [last-tag]
6. pattern ext-to-ext no-answer `tag1` `{CGN | CDN | FDN}` `[tag2 `{CGN | CDN | FDN}`] `[tag3 `{CGN | CDN | FDN}`] [last-tag]
7. pattern trunk-to-ext busy `tag1` `{CGN | CDN | FDN}` `[tag2 `{CGN | CDN | FDN}`] `[tag3 `{CGN | CDN | FDN}`] [last-tag]
8. pattern trunk-to-ext no-answer `tag1` `{CGN | CDN | FDN}` `[tag2 `{CGN | CDN | FDN}`] [tag3 `{CGN | CDN | FDN}`] [last-tag]
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>vm-integration</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config) vm-integration</td>
</tr>
<tr>
<td></td>
<td>Enters voice-mail integration configuration mode and enables voice-mail integration with DTMF and an analog voice-mail system.</td>
</tr>
<tr>
<td>Step 4</td>
<td>pattern direct <code>tag1</code> `{CGN</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vm-integration) pattern direct 2 CGN *</td>
</tr>
<tr>
<td></td>
<td>Configures the DTMF digit pattern forwarding necessary to activate the voice-mail system when the user presses the messages button on the phone.</td>
</tr>
<tr>
<td></td>
<td>• The <code>tag</code> attribute is an alphanumeric string fewer than four DTMF digits in length. The alphanumeric string consists of a combination of four letters (A, B, C, and D), two symbols (* and #), and ten digits (0 to 9). The tag numbers match the numbers defined in the voice-mail system’s integration file, immediately preceding either the number of the calling party, the number of the called party, or a forwarding number.</td>
</tr>
<tr>
<td></td>
<td>• The keywords, CGN, CDN, and FDN, configure the type of call information sent to the voice-mail system, such as calling number (CGN), called number (CDN), or forwarding number (FDN).</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 5 | pattern ext-to-ext busy \(tag_1 \) \{CGN | CDN | FDN\} [\(tag_2 \) \{CGN | CDN | FDN\}] [\(tag_3 \) \{CGN | CDN | FDN\}] \[last-tag\] | Configures the DTMF digit pattern forwarding necessary to activate the voice-mail system when an internal extension attempts to connect to a busy extension and the call is forwarded to voice mail. **Example:**

```
Router(config-vm-integration) pattern ext-to-ext busy 7 FDN * CGN *
```

| 6 | pattern ext-to-ext no-answer \(tag_1 \) \{CGN | CDN | FDN\} [\(tag_2 \) \{CGN | CDN | FDN\}] [\(tag_3 \) \{CGN | CDN | FDN\}] \[last-tag\] | Configures the DTMF digit pattern forwarding necessary to activate the voice-mail system when an internal extension fails to connect to an extension and the call is forwarded to voice mail. **Example:**

```
Router(config-vm-integration) pattern ext-to-ext no-answer 5 FDN * CGN *
```

| 7 | pattern trunk-to-ext busy \(tag_1 \) \{CGN | CDN | FDN\} [\(tag_2 \) \{CGN | CDN | FDN\}] [\(tag_3 \) \{CGN | CDN | FDN\}] \[last-tag\] | Configures the DTMF digit pattern forwarding necessary to activate the voice-mail system when an external trunk call reaches a busy extension and the call is forwarded to voice mail. **Example:**

```
Router(config-vm-integration) pattern trunk-to-ext busy 6 FDN * CGN *
```

| 8 | pattern trunk-to-ext no-answer \(tag_1 \) \{CGN | CDN | FDN\} [\(tag_2 \) \{CGN | CDN | FDN\}] [\(tag_3 \) \{CGN | CDN | FDN\}] \[last-tag\] | Configures the DTMF digit pattern forwarding necessary to activate the voice-mail system when an external trunk call reaches an unanswered extension and the call is forwarded to voice mail. **Example:**

```
Router(config-vm-integration)# pattern trunk-to-ext no-answer 4 FDN * CGN *
```

| 9 | end | Exits configuration mode and enters privileged EXEC mode. **Example:**

```
Router(config-vm-integration)# exit
```

What to do next

After configuring DTMF relay, you are ready to configure Message Waiting Indicator (MWI) notification for either the MWI outcall, unsolicited notify, or subscribe/notify mechanism. See **Configure a SCCP Phone for MWI Outcall**.

Enable DTMF Integration Using RFC 2833

To configure a SIP dial peer to point to Cisco Unity and enable SIP dual-tone multifrequency (DTMF) relay using RFC 2833, use the commands in this section on both the originating and terminating gateways.

This DTMF relay method is required in the following situations:

- When SIP is used to connect Cisco Unified CME to a remote SIP-based IVR or voice-mail application such as Cisco Unity.
• When SIP is used to connect Cisco Unified CME to a remote SIP-PSTN voice gateway that goes through the PSTN to a voice-mail or IVR application.

Note
If the T.38 Fax Relay feature is also configured on this IP network, we recommend that you either configure the voice gateways to use a payload type other than PT96 or PT97 for fax relay negotiation, or depending on whether the SIP endpoints support different payload types, configure Cisco Unified CME to use a payload type other than PT96 or PT97 for DTMF.

Before you begin
• Configure the **codec** or **voice-class codec** command for transcoding between G.711 and G.729.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **dial-peer voice** *tag voip*
4. **description** *string*
5. **destination-pattern** *string*
6. **session protocol** sipv2
7. **session target** (dns: *address* | ipv4: *destination-address*)
8. **dtmf-relay** rtp-nte
9. **dtmf-interworking** rtp-nte
10. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| ```
Router> enable
``` | • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| ```
Router# configure terminal
``` | |
| **Step 3** dial-peer voice *tag voip* | Enters dial-peer configuration mode to define a VoIP dial peer for the voice-mail system. |
| **Example:** | |
| ```
Router (config)# dial-peer voice 123 voip
``` | • *tag*—Defines the dial peer being configured. Range is 1 to 2147483647. |
<p>| <strong>Step 4</strong> description <em>string</em> | (Optional) Associates a description with the dial peer being configured. Enter a string of up to 64 characters. |
| <strong>Example:</strong> | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-voice-dial-peer)# description CU pilot</td>
<td>Specifies the pattern of the numbers that the user must dial to place a call.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>destination-pattern string</strong></td>
</tr>
<tr>
<td><strong>Example:</strong> Router (config-voice-dial-peer)# destination-pattern 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>session protocol sipv2</strong></td>
</tr>
<tr>
<td><strong>Example:</strong> Router (config-voice-dial-peer)# session protocol sipv2</td>
<td>Specifies that Internet Engineering Task Force (IETF) Session Initiation Protocol (SIP) is protocol to be used for calls between local and remote routers using the packet network.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>**session target { dns : address</td>
</tr>
<tr>
<td><strong>Example:</strong> Router (config-voice-dial-peer)# session target ipv4:10.8.17.42</td>
<td>Designates a network-specific address to receive calls from the dial peer being configured.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>dtmf-relay rtp-nte</strong></td>
</tr>
<tr>
<td><strong>Example:</strong> Router (config-voice-dial-peer)# dtmf-relay rtp-nte</td>
<td>Sets DTMF relay method for the voice dial peer being configured.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>dtmf-interworking rtp-nte</strong></td>
</tr>
<tr>
<td><strong>Example:</strong> Router (config-voice-dial-peer)# dtmf-interworking rtp-nte</td>
<td>(Optional) Enables a delay between the dtmf-digit begin and dtmf-digit end events in the RFC 2833 packets.</td>
</tr>
</tbody>
</table>
What to do next

After configuring DTMF relay, you are ready to configure Message Waiting Indicator (MWI) notification for either the MWI outcall, unsolicited notify, or subscribe/notify mechanism. See Configure a SCCP Phone for MWI Outcall.

Enable DTMF Integration Using SIP NOTIFY

To configure a SIP dial peer to point to Cisco Unity Express and enable SIP dual-tone multi-frequency (DTMF) relay using SIP NOTIFY format, follow the steps in this task.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag voip
4. description string
5. destination-pattern string
6. b2bua
7. session protocol sipv2
8. session target { dns:address | ipv4:destination-address }
9. dtmf-relay sip-notify
10. codec g711ulaw
11. no vad
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal#</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>dial-peer voice tag voip</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# dial-peer voice 2 voip</td>
</tr>
<tr>
<td></td>
<td>Enters dial-peer configuration mode to define a VoIP dial peer for the voice-mail system.</td>
</tr>
<tr>
<td></td>
<td>• tag—Defines the dial peer being configured. Range is 1 to 2147483647.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Associates a description with the dial peer being configured. Enter a string of up to 64 characters.</td>
</tr>
<tr>
<td>description string</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# description cue pilot</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies the pattern of the numbers that the user must dial to place a call.</td>
</tr>
<tr>
<td>destination-pattern string</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# destination-pattern 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) Includes the Cisco Unified CME address as part of contact in 3XX response to point to Cisco Unity Express and enables SIP-to-SCCP call forward.</td>
</tr>
<tr>
<td>b2bua</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# b2bua</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Specifies that Internet Engineering Task Force (IETF) Session Initiation Protocol (SIP) is protocol to be used for calls between local and remote routers using the packet network.</td>
</tr>
<tr>
<td>session protocol sipv2</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# session protocol sipv2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Designates a network-specific address to receive calls from the dial peer being configured.</td>
</tr>
<tr>
<td>session target (dns: address</td>
<td>ipv4: destination-address)</td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# session target ipv4:10.5.49.80</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Sets the DTMF relay method for the voice dial peer being configured.</td>
</tr>
<tr>
<td>dtmf-relay sip-notify</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# dtmf-relay sip-notify</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Specifies the voice coder rate of speech for a dial peer being configured.</td>
</tr>
<tr>
<td>codec g711ulaw</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# codec g711ulaw</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Disables voice activity detection (VAD) for the calls using the dial peer being configured.</td>
</tr>
<tr>
<td>no vad</td>
<td></td>
</tr>
<tr>
<td>Example: Router (config-voice-dial-peer)# no vad</td>
<td></td>
</tr>
</tbody>
</table>
Configure a SCCP Phone for MWI Outcall

To designate a phone line or directory number on an individual SCCP phone to be monitored for voice-mail messages, or to enable audible MWI, perform the following steps.

**Restriction**
- Audible MWI is supported only in Cisco Unified CME 4.0(2) and later versions.
- Audible MWI is supported only on Cisco Unified IP Phone 7931G and Cisco Unified IP Phone 7911.

**Before you begin**
- Directory number and number for MWI line must be configured.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `mwi-line line-number`
5. `exit`
6. `ephone-dn dn-tag`
7. `mwi {off | on | on-off}`
8. `mwi-type {visual | audio | both}`
9. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Configure a SCCP Phone for MWI Outcall

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 3**  
**Command:** `ephone phone-tag`  
**Example:**  
Router(config)# ephone 36  
**Purpose:** Enters ephone configuration mode.

**Step 4**  
**Command:** `mwi-line line-number`  
**Example:**  
Router(config-ephone)# mwi-line 3  
**Purpose:** (Optional) Selects a phone line to receive MWI treatment.  
- `line-number`—Number of phone line to receive MWI notification. Range: 1 to 34. Default: 1.

**Step 5**  
**Command:** `exit`  
**Example:**  
Router(config-ephone)# exit  
**Purpose:** Exits ephone configuration mode.

**Step 6**  
**Command:** `ephone-dn dn-tag`  
**Example:**  
Router(config)# ephone-dn 11  
**Purpose:** Enters ephone-dn configuration mode.

**Step 7**  
**Command:** `mwi {off | on | on-off}`  
**Example:**  
Router(config-ephone-dn)# mwi on-off  
**Purpose:** (Optional) Enables a specific directory number to receive MWI notification from an external voice-messaging system.  
**Note** This command can also be configured in ephone-dn-template configuration mode. The value that you set in ephone-dn configuration mode has priority over the value set in ephone-dn-template mode.

**Step 8**  
**Command:** `mwi-type {visual | audio | both}`  
**Example:**  
Router(config-ephone-dn)# mwi-type audible  
**Purpose:** (Optional) Specifies which type of MWI notification to be received.  
**Note** This command is supported only on the Cisco Unified IP Phone 7931G and Cisco Unified IP Phone 7911.  
**Note** This command can also be configured in ephone-dn-template configuration mode. The value that you set in ephone-dn configuration mode has priority over the value set in ephone-dn-template mode. For configuration information, see Create an Ephone-dn Template.

**Step 9**  
**Command:** `end`  
**Example:**  
Router(config-ephone-dn)# end  
**Purpose:** Returns to privileged EXEC mode.
Enable MWI at the System-Level on SIP Phones

To enable a message waiting indicator (MWI) at a system-level, perform the following steps.

Before you begin

• Cisco CME 3.4 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. mwi reg-e164
5. mwi stutter
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure terminal Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example: voice register global Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mwi reg-e164</td>
<td>Registers full E.164 number to the MWI server in Cisco Unified CME and enables MWI.</td>
</tr>
<tr>
<td></td>
<td>Example: mwi reg-e164 Router(config-register-global)# mwi reg-e164</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mwi stutter</td>
<td>Enables Cisco Unified CME router at the central site to relay MWI notification to remote SIP phones.</td>
</tr>
<tr>
<td></td>
<td>Example: mwi stutter Router(config-register-global)# mwi stutter</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: end Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure a Directory Number for MWI on SIP Phones

Perform one of the following tasks, depending on whether you want to configure MWI outcall or MWI notify (unsolicited notify or subscribe/notify) for SIP endpoints in Cisco Unified CME.

- Define Pilot Call Back Number for MWI Outcall
- Configure a Directory Number for MWI NOTIFY

Define Pilot Call Back Number for MWI Outcall

To designate a phone line on an individual SIP directory number to be monitored for voice-mail messages, perform the following steps.

**Restriction**

For Cisco Unified CME 4.1 and later versions, the Call Forward All, Presence, and MWI features require that SIP phones must be configured with a directory number by using the `number` command with the `dn` keyword; direct line numbers are not supported.

**Before you begin**

- Cisco CME 3.4 or a later version.
- Directory number and number for receiving MWI must be configured.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `voice register dn dn-tag`
4. `mwi`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>voice register dn dn-tag</code></td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# voice register dn 1</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong> mwi</td>
<td>Enables a specific directory number to receive MWI notification.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# mwi</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

## Configure a Directory Number for MWI NOTIFY

To identify the MWI server and specify a directory number for receiving MWI Subscribe/NOTIFY or MWI Unsolicited NOTIFY, follow the steps in this section.

**Note**

We recommend using the Subscribe/NOTIFY method instead of an Unsolicited NOTIFY when possible.

**Restriction**

- For Cisco Unified CME 4.1 and later versions, the Call Forward All, Presence, and MWI features require that SIP phones must be configured with a directory number by using the `number` command with the `dn` keyword; direct line numbers are not supported.

- The SIP MWI - QSIG Translation feature in Cisco Unified CME 4.1 does not support Subscribe NOTIFY.

- Cisco Unified IP Phone 7960, 7940, 7905, and 7911 support only Unsolicited NOTIFY for MWI.

### Before you begin

- Cisco CME 3.4 or a later version.

- For Cisco Unified CME 4.0 and later, QSIG supplementary services must be configured on the Cisco router. For information, see Enable H.450.7 and QSIG Supplementary Services at System-Level, on page 1157 or Enable H.450.7 and QSIG Supplementary Services on a Dial Peer, on page 1159.

- Directory number and number for receiving MWI must be configured.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `sip-ua`
4. `mwi-server {ipv4:destination-address | dns:host-name} [unsolicited]`
5. `exit`
6. `voice register dn dn-tag`
7. `mwi`
8. `end`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td><strong>Step 2</strong></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters Session Initiation Protocol (SIP) user agent (ua) configuration mode for configuring the user agent.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td><strong>Step 3</strong></td>
</tr>
<tr>
<td>sip-ua</td>
<td><strong>Step 4</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>voice register dn dn-tag</td>
</tr>
<tr>
<td>Router(config)# sip-ua</td>
<td><strong>Step 5</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>exit</td>
</tr>
<tr>
<td>Router(config-sip-ua)# exit</td>
<td><strong>Step 6</strong></td>
</tr>
<tr>
<td>voice register dn dn-tag</td>
<td>end</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>mwi</td>
</tr>
<tr>
<td>Router(config)# voice register dn 1</td>
<td><strong>Step 7</strong></td>
</tr>
<tr>
<td>mwi</td>
<td><strong>Step 8</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>end</td>
</tr>
<tr>
<td>Router(config-register-dn)# mwi</td>
<td><strong>Step 9</strong></td>
</tr>
<tr>
<td>end</td>
<td>Enables a specific directory number to receive MWI notification.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enables a specific directory number to receive MWI notification.</td>
</tr>
<tr>
<td>Router(config-register-dn)# end</td>
<td>Enables a specific directory number to receive MWI notification.</td>
</tr>
</tbody>
</table>

---

### Enable SIP MWI Prefix Specification

To accept unsolicited SIP Notify messages for MWI that include a prefix string as a site identifier, perform the following steps.
**Before you begin**

- Cisco Unified CME 4.0 or a later version.
- Directory number for receiving MWI Unsolicited NOTIFY must be configured. For information, see [Configure a Directory Number for MWI NOTIFY](#).

**SUMMARY STEPS**

1. `enable`
2. `telephony-service`
3. `mwi prefix prefix-string`
4. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mwi prefix prefix-string</td>
<td>Specifies a string of digits that, if present before a known Cisco Unified CME extension number, are recognized as a prefix.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# mwi prefix 555</td>
<td>• <code>prefix-string</code>—Digit string. The maximum prefix length is 32 digits.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Configure VMWI on SIP Phones**

To enable a VMWI, perform the following steps.

**Before you begin**

- Cisco IOS Release 12.4(6)T or a later version

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `voice-port port`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
configure terminal	
Example:	
Router# configure terminal	

**Step 3**	Enters voice-port configuration mode.
voice-port port	• *port*—Syntax is platform-dependent. Type ? to determine.
Example:	
Router(config)# voice-port 2/0	

**Step 4**	Enables MWI for a specified voice port.
mwi	
Example:	
Router(config-voiceport)# mwi	

**Step 5**	(Optional) Enables DC voltage or FSK VMWI on a Cisco VG224 onboard analog FXS voice port.
vmwi dc-voltage or vmwi fsk	You do not need to perform this step for the Cisco VG202 and Cisco VG204. They support FSK only. VMWI is configured automatically when MWI is configured on the voice port.
Example:	This step is required for the VG224. If an FSK phone is connected to the voice port, use the *fsk* keyword. If a DC voltage phone is connected to the voice port, use the *dc-voltage* keyword.
Router(config-voiceport)# vmwi dc-voltage	

**Step 6**	Exits to the next highest mode in the configuration mode hierarchy.
exit	
Example:	
Router(config-sip-ua)# exit	

**Step 7**	Enters Session Initiation Protocol user agent configuration mode for configuring the user agent.
sip-ua	
Example:	
Router(config)# sip-ua	
Purpose
Command or Action

Step 8  
**mwi-server (ipv4:destination-address | dns:host-name)**  
[unsolicited]

Example:
Router(config-sip-ua)# mwi-server ipv4:1.5.49.200
or
Router(config-sip-ua)# mwi-server
dns:server.yourcompany.com unsolicited

Purpose
Specifies voice-mail server settings on a voice gateway or user agent (ua).

Note  
The **sip-server** and **mwi expires** commands under the telephony-service configuration mode have been migrated to **mwi-server** to support DNS format of the Session Initiation Protocol (SIP) server.

Step 9  
**end**

Example:
Router(config-voiceport)# end

Purpose
Exits voice-port configuration mode and returns to privileged EXEC mode.

---

**Verify Voice-Mail Integration**

- Press the **Messages** button on a local phone in Cisco Unified CME and listen for the voice mail greeting.
- Dial an unattended local phone and listen for the voice mail greeting.
- Leave a test message.
- Go to the phone that you called. Verify that the [Message] indicator is lit.
- Press the **Messages** button on this phone and retrieve the voice mail message.

**Configuration Examples for Voice-Mail Integration**

**Example for Setting up a Mailbox Selection Policy for SCCP Phones**

The following example sets a policy to select the mailbox of the originally called number when a call is diverted to a Cisco Unity Express or PBX voice-mail system with the pilot number 7000.

```plaintext
dial-peer voice 7000 voip
destination-pattern 7000
session target ipv4:10.3.34.211
codec g711ulaw
no vad
mailbox-selection orig-called-num
```

The following example sets a policy to select the mailbox of the last number that the call was diverted to before being diverted to a Cisco Unity voice-mail system with the pilot number 8000.

```plaintext
ephone-dn 825
number 8000
mailbox-selection last-redirect-num
```
Example for Configuring Voice Mailbox for SIP Phones

The following example shows how to configure the call forward b2bua mailbox for SIP endpoints:

```plaintext
voice register global
 voicemail 1234
voice register dn 2
 number 2200
call-forward b2bua all 1000
call-forward b2bua mailbox 2200
call-forward b2bua noan 2201 timeout 15
mwi
```

Example for Configuring DTMF Integration Using RFC 2833

The following example shows the configuration for DTMF Relay using RFC 2833:

```plaintext
dial-peer voice 1 voip
 destination-pattern 4...
 session target ipv4:10.8.17.42
 session protocol sipv2
dtmf-relay sip-notify rtp-nte
```

Example for Configuring DTMF Integration Using SIP Notify

The following example shows the configuration for DTMF using SIP Notify:

```plaintext
dial-peer voice 1 voip
 destination-pattern 4...
 session target ipv4:10.5.49.80
 session protocol sipv2
dtmf-relay sip-notify
 b2bua
```

Example for Configuring DTMF Integration for Legacy Voice-Mail Applications

The following example sets up DTMF integration for an analog voice-mail system.

```plaintext
vm-integration
 pattern direct 2 CGN *
pattern ext-to-ext busy 7 FDN * CGN *
pattern ext-to-ext no-answer 5 FDN * CGN *
pattern trunk-to-ext busy 6 FDN * CGN *
pattern trunk-to-ext no-answer 4 FDN * CGN *
```

Example for Enabling SCCP Phone Line for MWI

The following example enables MWI on ephone 18 for line 2 (button 2), which has overlaid ephone-dns. Only a message waiting for the first ephone-dn (2021) on this line will activate the MWI lamp. Button 4 is unused. The line numbers in this example are as follows:

- Line 1—Button 1—Extension 2020
- Line 2—Button 2—Extension 2021, 2022, 2023, 2024
- Line 3—Button 3—Extension 2021, 2022, 2023, 2024 (rollover line)
• Button 4—Unused
• Line 4—Button 5—Extension 2025

ephone-dn 20
  number 2020
ephone-dn 21
  number 2021
ephone-dn 22
  number 2022
ephone-dn 23
  number 2023
ephone-dn 24
  number 2024
ephone-dn 25
  number 2025
ephone 18
  button 1:20 2021,22,23,24,25 3x2 5:26
  mwi-line 2

The following example enables MWI on ephone 17 for line 3 (extension 609). In this example, the button numbers do not match the line numbers because buttons 2 and 4 are not used. The line numbers in this example are as follows:
• Line 1—Button 1—Extension 607
• Button 2—Unused
• Line 2—Button 3—Extension 608
• Button 4—Unused
• Line 3—Button 5—Extension 609

ephone-dn 17
  number 607
ephone-dn 18
  number 608
ephone-dn 19
  number 609
ephone 25
  button 1:17 3:18 5:19
  mwi-line 3

Example for Configuring SIP MWI Prefix Specification

The following example identifies the SIP server for MWI notification at the IP address 172.16.14.22. It states that the Cisco Unified CME system will accept unsolicited SIP Notify messages for known mailbox numbers using the prefix 555.
Example for Configuring SIP Directory Number for MWI Outcall

The following example shows an MWI callback pilot number:

```
sip-ua
 mwi-server 172.16.14.22 unsolicited

telephony-service
 mwi prefix 555
```

Example for Configuring SIP Directory Number for MWI Unsolicited Notify

The following example shows how to specify voice-mail server settings on a UA. The example includes the unsolicited keyword, enabling the voice-mail server to send a SIP notification message to the UA if the mailbox status changes and specifies that voice dn 1, number 1234 on the SIP phone in Cisco Unified CME will receive the MWI notification:

```
sip-ua
 mwi-server dns:server.yourcompany.com expires 60 port 5060 transport udp unsolicited

voice register dn 1
 number 1234
 mwi
```

Example for Configuring SIP Directory Number for MWI Subscribe/NOTIFY

The following example shows how to define an MWI server and specify that directory number 1, number 1234 on a SIP phone in Cisco Unified CME is to receive the MWI notification:

```
sip-ua
 mwi-server ipv4:1.5.49.200

voice register dn 1
 number 1234
 mwi
```

Feature Information for Voice-Mail Integration

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 40: Feature Information for Voice-Mail Integration

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audible MWI</td>
<td>4.0(2)</td>
<td>Provides support for selecting audible, visual, or audible and visual Message Waiting Indicator (MWI) on supported Cisco Unified IP phones.</td>
</tr>
<tr>
<td>Cisco Unity Express AXL Enhancement</td>
<td>7.0(1)</td>
<td>Cisco Unified CME and Cisco Unity Express passwords are automatically synchronized. No configuration is required for this feature.</td>
</tr>
<tr>
<td>DTMF Integration</td>
<td>3.4</td>
<td>Added support for voice messaging systems connected via a SIP trunk or SIP user agent. The standard Subscribe/NOTIFY method is preferred over an Unsolicited NOTIFY.</td>
</tr>
<tr>
<td>Live Record</td>
<td>4.3</td>
<td>Enables IP phone users in a Cisco Unified CME system to record a phone conversation if Cisco Unity Express is the voice mail system.</td>
</tr>
<tr>
<td>Mailbox Selection Policy</td>
<td>4.0</td>
<td>Mailbox selection policy was introduced.</td>
</tr>
<tr>
<td>MWI</td>
<td>4.0</td>
<td>MWI line selection of a phone line other than the primary line on a SCCP phone was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Voice messaging systems (including Cisco Unity) connected via a SIP trunk or SIP user agent can pass a Message Waiting Indicator (MWI) that will be received and understood by a SIP phone directly connected to Cisco Unified CME.</td>
</tr>
<tr>
<td>SIP MWI Prefix Specification</td>
<td>4.0</td>
<td>SIP MWI prefix specification was introduced.</td>
</tr>
<tr>
<td>SIP MWI - QSIG Translation</td>
<td>4.1</td>
<td>Extends message waiting indicator (MWI) functionality for SIP MWI and QSIG MWI interoperation to enable sending and receiving of MWI over QSIG to PBX.</td>
</tr>
<tr>
<td>Transfer to Voice Mail</td>
<td>4.3</td>
<td>Enables a phone user to transfer a caller directly to a voice-mail extension.</td>
</tr>
</tbody>
</table>


Feature Information for Voice-Mail Integration
This chapter describes the phone authentication support in Cisco Unified Communications Manager Express (Cisco Unified CME), Hypertext Transfer Protocol Secure (HTTPS) provisioning for Cisco Unified IP Phones, and the Media Encryption (SRTP) on Cisco Unified CME feature that provides the following secure voice call capabilities:

- Secure call control signaling and media streams in Cisco Unified CME networks using Secure Real-Time Transport Protocol (SRTP) and H.323 protocols.
- Secure supplementary services for Cisco Unified CME networks using H.323 trunks.
- Secure Cisco VG224 Analog Phone Gateway endpoints.

Prerequisites for Security

- Cisco Unified CME 4.0 or a later version for Phone Authentication.
- Cisco Unified CME 4.2 or a later version for Media Encryption (SRTP) on Cisco Unified CME.
- Cisco IOS feature set Advanced Enterprise Services (adventerprisek9) or Advanced IP Services (advipservicesk9) on supported platforms.
- Firmware 9.0(4) or a later version must be installed on the IP phone for HTTPS provisioning.
- System clock must be set by using one of the following methods:
  - Configure Network Time Protocol (NTP). For configuration information, see Enable Network Time Protocol, on page 138.
  - Manually set the software clock using the `clock set` command. For information about this command, see Cisco IOS Network Management Command Reference.
Restrictions for Security

Phone Authentication

- Cisco Unified CME phone authentication is not supported on the Cisco IAD 2400 series or the Cisco 1700 series.

Media Encryption

- Secure three-way software conferencing is not supported. A secure call beginning with SRTP will always fall back to nonsecure Real-Time Transport Protocol (RTP) when it is joined to a conference.

- If a party drops from a three-party conference, the call between the remaining two parties returns to secure if the two parties are SRTP-capable local Skinny Client Control Protocol (SCCP) endpoints to a single Cisco Unified CME and the conference creator is one of the remaining parties. If either of the two remaining parties are only RTP-capable, the call remains nonsecure. If the two remaining parties are connected through FXS, PSTN, or VoIP, the call remains nonsecure.

- Calls to Cisco Unity Express are not secure.
- Music On Hold (MOH) is not secure.
- Video calls are not secure.
- Modem relay and T.3 fax relay calls are not secure.
- Media flow-around is not supported for call transfer and call forward.
- Conversion between inband tone and RFC 2833 DTMF is not supported. RFC 2833 DTMF handling is supported when encryption keys are sent to secure DSP Farm devices but is not supported for codec passthrough.

- Secure Cisco Unified CME supports SIP trunks and H.323 trunks only on the Cisco Integrated Services Router Generation 2 platform. Secure Unified CME is not supported on Cisco 4000 Series Integrated Services Routers.

- Secure calls are supported in the default session application only.

Information About Security

Unified CME Password Policy

From Unified CME 12.6 Release (Cisco IOS XE Gibraltar 16.11.1a) onwards, all configurations on Unified CME must meet the Unified CME password policy.

General password policy guidelines:

- Passwords must have a minimum of 6 alphanumeric characters, and a maximum of 15 alphanumeric characters.
- Passwords must not contain symbols or special characters.
• Passwords must contain at least one numeral, one uppercase alphabet, and one lowercase alphabet.

If the password is not configured as per the policy, the Unified CME router displays an error message:

Error: The password you have entered is incorrect.
Your password must contain:
1. A minimum of 6 and a maximum of 15 alphanumeric characters, excluding symbols and special characters.
2. A minimum of one numeral, one uppercase alphabet, and one lowercase alphabet.

Guidelines for Password Configuration and Encryption

Configure the passwords relevant to Unified CME using the CLI commands as follows:
• voice reg pool configuration mode
  • username name password [0|6] password
  • ata-ivr-pwd [0|6] password
• voice register global (for auto register) configuration mode
  • password [0|6] password
• ephone configuration mode
  • username name password [0|6] password
• telephony-service configuration mode
  • ssh userid user-id-name password [0|6] password
  • service local-directory authenticate username [0|6] password
  • xml user username password [0|6] password privilege-level
  • standby user username password [0|6] password
• Extension Mobility Related (under telephony-service configuration mode) configuration mode
  • url authentication url-address application-name password [0|6] password
  • authentication credential application-name password [0|6] password
• Extension Mobility Related (under voice logout-profile configuration mode) configuration mode
The following are some of the configuration recommendations for Unified CME Password Policy:

- The 0 in the parameter [0|6] mentioned in the CLI command represents plain, unencrypted text and 6 represents level 6 password encryption.

- Apart from the parameter configurations ([0|6]) at the command level, the Unified CME router must be configured to support encryption. Configure the CLI command encrypt password to support type 6 encryption on the Unified CME router.

- The CLI command encrypt password is enabled by default on Unified CME router. However, you must mandatorily configure key config-key password-encrypt [key] and password encryption aes to support encryption on the Unified CME router. For a sample configuration, see Example for Configuring Unified CME for Password Policy, on page 624

- If the key used to encrypt the password is replaced with a new key (replace key or re-key), then the password is re-encrypted with the new key.

- You must adhere to CME Password Policy for both type 0 and type 6 parameters that you configure on Unified CME. For more information on CME Password Policy, see Unified CME Password Policy, on page 562.

For the CLI command ata-ivr-pwd, you need to use a four digit character string as password. For more information, see the CLI command ata-ivr-pwd in Unified CME Command Reference Guide.

The following table provides information on password encryption levels that are supported in Unified CME:

<table>
<thead>
<tr>
<th>User Input</th>
<th>encrypt password + key config-key password-encrypt [key] + password encryption aes</th>
<th>Password Encryption Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypted text (Type 6)</td>
<td>• encrypt password — Enabled</td>
<td>Encrypted</td>
</tr>
<tr>
<td></td>
<td>• key config-key password-encrypt [key] — Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• password encryption aes — Enabled</td>
<td></td>
</tr>
</tbody>
</table>
Configure the CLI command `no encrypt password` to disable password encryption.

**Downgrade Consideration for Password Encryption**

If you are performing a downgrade from Unified CME 12.6 to an earlier version, then you must execute the CLI command `no encrypt password`. If the CLI command `no encrypt password` is configured, the password is presented as plain text.

**Removal of Passwords and Keys from Logs**

From Unified CME Release 12.6 onwards, passwords and sRTP keys are not printed to logs to enhance security of Unified CME. The information about keys is available only in the show commands from Unified CME 12.6 release onwards. The CLI command `show ephone offhook` for SCCP and `show sip-ua calls` for SIP are enhanced to display the keys that are in use per media stream, along with the sRTP Ciphers.

For a sample output, see Example for Password and Key Removal from Logs, on page 623.
Deprecation of CLI Commands

From Unified CME Release 12.6 onwards, the following CLI commands that are configured under `telephony-service` configuration mode are deprecated to enhance product security:

- `log password password-string`
- `xmltest`
- `xmlschema schema-url`
- `xmlthread number`

For more information on the deprecated commands, see Cisco Unified Communications Manager Express Command Reference.

Phone Authentication Overview

Phone authentication is a security infrastructure for providing secure SCCP signaling between Cisco Unified CME and IP phones. The goal of Cisco Unified CME phone authentication is to create a secure environment for a Cisco Unified CME IP telephony system.

Phone authentication addresses the following security needs:

- Establishing the identity of each endpoint in the system
- Authenticating devices
- Providing signaling-session privacy
- Providing protection for configuration files

Cisco Unified CME phone authentication implements authentication and encryption to prevent identity theft of the phone or Cisco Unified CME system, data tampering, call-signaling tampering, or media-stream tampering. To prevent these threats, the Cisco Unified IP telephony network establishes and maintains authenticated communication streams, digitally signs files before they are transferred to phones, and encrypts call signaling between Cisco Unified IP phones.

Cisco Unified CME phone authentication depends on the following processes:

- Phone Authentication, on page 566
- File Authentication, on page 567
- Signaling Authentication, on page 567

Phone Authentication

The phone authentication process occurs between the Cisco Unified CME router and a supported device when each entity accepts the certificate of the other entity; only then does a secure connection between the entities occur. Phone authentication relies on the creation of a Certificate Trust List (CTL) file, which is a list of known, trusted certificates and tokens. Phones communicate with Cisco Unified CME using a Transport Layer Security (TLS) session connection, which requires that the following criteria be met:

- A certificate must exist on the phone.
• A phone configuration file must exist on the phone, and the Cisco Unified CME entry and certificate must exist in the file.

File Authentication

The file authentication process validates digitally signed files that a phone downloads from a Trivial File Transfer Protocol (TFTP) server—for example, configuration files, ring list files, locale files, and CTL files. When the phone receives these types of files from the TFTP server, the phone validates the file signatures to verify that file tampering did not occur after the files were created.

Signaling Authentication

The signaling authentication process, also known as signaling integrity, uses the TLS protocol to validate that signaling packets have not been tampered with during transmission. Signaling authentication relies on the creation of the CTL file.

Public Key Infrastructure

Cisco Unified CME phone authentication uses the public-key-infrastructure (PKI) capabilities in Cisco IOS software for certificate-based authentication of IP phones. PKI provides customers with a scalable, secure mechanism for distributing, managing, and revoking encryption and identity information in a secure data network. Every entity (a person or a device) participating in the secure communication is enrolled in the PKI using a process in which the entity generates a Rivest-Shamir-Adleman (RSA) key pair (one private key and one public key) and has its identity validated by a trusted entity (also known as a certification authority [CA] or trustpoint).

After each entity enrolls in a PKI, every peer (also known as an end host) in a PKI is granted a digital certificate that has been issued by a CA.

When peers must negotiate a secure communication session, they exchange digital certificates. Based on the information in the certificate, a peer can validate the identity of another peer and establish an encrypted session with the public keys contained in the certificate.

Phone Authentication Components

A variety of components work together to ensure secure communications in a Cisco Unified CME system. Table 42: Cisco Unified CME Phone Authentication Components, on page 567 describes the Cisco Unified CME phone authentication components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>certificate</td>
<td>An electronic document that binds a user’s or device’s name to its public key. Certificates are commonly used to validate digital signatures. Certificates are needed for authentication during secure communication. An entity obtains a certificate by enrolling with the CA.</td>
</tr>
<tr>
<td>signature</td>
<td>An assurance from an entity that the transaction it accompanies is authentic. The entity’s private key is used to sign transactions and the corresponding public key is used for decryption.</td>
</tr>
</tbody>
</table>
### Component | Definition
--- | ---
RSA key pair | RSA is a public key cryptographic system developed by Ron Rivest, Adi Shamir, and Leonard Adleman. An RSA key pair consists of a public key and a private key. The public key is included in a certificate so that peers can use it to encrypt data that is sent to the router. The private key is kept on the router and used both to decrypt the data sent by peers and to digitally sign transactions when negotiating with peers. You can configure multiple RSA key pairs to match policy requirements, such as key length, key lifetime, and type of keys, for different certificate authorities or for different certificates.
certificate server trustpoint | A certificate server generates and issues certificates on receipt of legitimate requests. A trustpoint with the same name as the certificate server stores the certificates. Each trustpoint has one certificate plus a copy of the CA certificate.
certification authority (CA) | The root certificate server. It is responsible for managing certificate requests and issuing certificates to participating network devices. This service provides centralized key management for participating devices and is explicitly trusted by the receiver to validate identities and to create digital certificates. The CA can be a Cisco IOS CA on the Cisco Unified CME router, a Cisco IOS CA on another router, or a third-party CA.
registration authority (RA) | Records or verifies some or all of the data required for the CA to issue certificates. It is required when the CA is a third-party CA or Cisco IOS CA is not on the Cisco Unified CME router.
certificate trust list (CTL) file | A mandatory structure that contains the public key information (server identities) of all the servers with which the IP phone needs to interact (for example, the Cisco Unified CME server, TFTP server, and CAPF server). The CTL file is digitally signed by the SAST. After you configure the CTL client, it creates the CTL file and makes it available in the TFTP directory. The CTL file is signed using the SAST certificate’s corresponding private key. An IP phone is then able to download this CTL file from the TFTP directory. The filename format for each phone’s CTL file is CTLSEP<mac-addr>.tlv. When the CTL client is run on a router in the network that is not a Cisco Unified CME router, you must configure a CTL provider on each Cisco Unified CME router in the network. Similarly, if a CTL client is running on one of two Cisco Unified CME routers in a network, a CTL provider must be configured on the other Cisco Unified CME router. The CTL protocol transfers information to and from the CTL provider that allows the second Cisco Unified CME router to be trusted by phones and vice versa.
certificate revocation list (CRL) | File that contains certificate expiration dates and used to determine whether a certificate that is presented is valid or revoked.
**Component** | **Definition**
--- | ---
System administrator security token (SAST) | Part of the CTL client that is responsible for signing the CTL file. The Cisco Unified CME certificate and its associated key pair are used for the SAST function. There are actually two SAST records pertaining to two different certificates in the CTL file for security reasons. They are known as SAST1 and SAST2. If one of the certificates is lost or compromised, then the CTL client regenerates the CTL file using the other certificate. When a phone downloads the new CTL file, it verifies with only one of the two original public keys that was installed earlier. This mechanism is to prevent IP phones from accepting CTL files from unknown sources.

Certificate authority proxy function (CAPF) | Entity that issues certificates (LSCs) to phones that request them. The CAPF is a proxy for the phones, which are unable to directly communicate with the CA. The CAPF can also perform the following certificate-management tasks:
- Upgrade existing locally significant certificates on the phones.
- Retrieve phone certificates for viewing and troubleshooting.
- Delete LSCs on the phone.

Manufacture-installed certificate (MIC) and locally significant certificate (LSC) | Phones need certificates to engage in secure communications. Many phones come from the factory with MICs, but MICs may expire or become lost or compromised. Some phones do not come with MICs. LSCs are certificates that are issued locally to the phones using the CAPF server.

Transport Layer Security (TLS) protocol | IETF standard (RFC 2246) protocol, based on Netscape Secure Socket Layer (SSL) protocol. TLS sessions are established using a handshake protocol to provide privacy and data integrity.

The TLS record layer fragments and defragments, compresses and decompresses, and performs encryption and decryption of application data and other TLS information, including handshake messages.

*Figure 20: Cisco Unified CME Phone Authentication, on page 570* shows the components in a Cisco Unified CME phone authentication environment.
Figure 20: Cisco Unified CME Phone Authentication

Phone Authentication Process

The following is a high-level summary of the phone-authentication process.

To enable Cisco Unified CME phone authentication:

1. Certificates are issued.

   The CA issues certificates to Cisco Unified CME, SAST, CAPF, and TFTP functions.

2. The CTL file is created, signed and published.

   a. The CTL file is created by the CTL client, which is configuration driven. Its goal is to create a 
      CTLfile.tlv for each phone and deposit it in the TFTP directory. To complete its task, the CTL client 
      needs the certificates and public key information of the CAPF server, Cisco Unified CME server, 
      TFTP server, and SASTs.

   b. The CTL file is signed by the SAST credentials. There are two SAST records pertaining to two 
      different certificates in the CTL file for security reasons. If one of the certificates is lost or 
      compromised, then the CTL client regenerates the CTL file using the other certificate. When a phone 
      downloads the new CTL file, it verifies the download with only one of the two original public keys 
      that was installed earlier. This mechanism prevents IP phones from accepting CTL files from unknown 
      sources.
c. The CTL file is published on the TFTP server. Because an external TFTP server is not supported in secure mode, the configuration files are generated by the Cisco Unified CME system itself and are digitally signed by the TFTP server’s credentials. The TFTP server credentials can be the same as the Cisco Unified CME credentials. If desired, a separate certificate can be generated for the TFTP function if the appropriate trustpoint is configured under the CTL-client interface.

3. The telephony service module signs phone configuration files and each phone requests its file.

4. When an IP phone boots up, it requests the CTL file (CTLfile.tlv) from the TFTP server and downloads its digitally signed configuration file, which has the filename format of SEP<mac-address>.cnf.xml.sgn.

5. The phone then reads the CAPF configuration status from the configuration file. If a certificate operation is needed, the phone initiates a TLS session with the CAPF server on TCP port 3804 and begins the CAPF protocol dialogue. The certificate operation can be an upgrade, delete, or fetch operation. If an upgrade operation is needed, the CAPF server makes a request on behalf of the phone for a certificate from the CA. The CAPF server uses the CAPF protocol to obtain the information it needs from the phone, such as the public key and phone ID. After the phone successfully receives a certificate from the server, the phone stores it in its flash memory.

6. With the certificate in its flash, the phone initiates a TLS connection with the secure Cisco Unified CME server on a well-known TCP port (2443) if the device security mode settings in the .cnf.xml file are set to authenticated or encrypted. This TLS session is mutually authenticated by both parties. The IP phone knows the Cisco Unified CME server’s certificate from the CTL file, which it initially downloaded from the TFTP server. The phone’s LSC is a trusted party for the Cisco Unified CME server because the issuing CA certificate is present in the router.

**Startup Messages**

If the certificate server is part of your startup configuration, you may see the following messages during the boot procedure:

% Failed to find Certificate Server's trustpoint at startup
% Failed to find Certificate Server's cert.

These messages are informational messages that show a temporary inability to configure the certificate server because the startup configuration has not been fully parsed yet. The messages are useful for debugging if the startup configuration has been corrupted.

**Configuration File Maintenance**

In a secure environment, several types of configuration files must be digitally signed before they can be hosted and used. The filenames of all signed files have a .sgn suffix.

The Cisco Unified CME telephony service module creates phone configuration files (.cnf.xml suffix) and hosts them on a Cisco IOS TFTP server. These files are signed by the TFTP server’s credentials.

In addition to the phone configuration files, other Cisco Unified CME configuration files such as the network and user-locale files must be signed. These files are internally generated by Cisco Unified CME, and the signed versions are automatically created in the current code path whenever the unsigned versions are updated or created.
Other configuration files that are not generated by Cisco Unified CME, such as ringlist.xml, distinctiveringlist.xml, audio files, and so forth, are often used for Cisco Unified CME features. Signed versions of these configuration files are not automatically created. Whenever a new configuration file that has not been generated by Cisco Unified CME is imported into Cisco Unified CME, use the `load-cfg-file` command, which does all of the following:

- Hosts the unsigned version of the file on the TFTP server.
- Creates a signed version of the file.
- Hosts the signed version of the file on the TFTP server.

You can also use the `load-cfg-file` command instead of the `tftp-server` command when only the unsigned version of a file needs to be hosted on the TFTP server.

### CTL File Maintenance

The CTL file contains the SAST records and other records. (A maximum of two SAST records may exist.) The CTL file is digitally signed by one of the SAST credentials that are listed in the CTL file before the CTL file is downloaded by the phone and saved in its flash. After receiving the CTL file, a phone trusts a newer or changed CTL file only if it is signed by one of the SAST credentials that is present in the original CTL file.

For this reason, you should take care to regenerate the CTL file only with one of the original SAST credentials. If both SAST credentials are compromised and a CTL file must be generated with a new credential, you must reset the phone to its factory defaults.

### CTL Client and Provider

The CTL client generates the CTL file. The CTL client must be provided with the names of the trustpoints it needs for the CTL file. It can run on the same router as Cisco Unified CME or on another, standalone router. When the CTL client runs on a standalone router (not a Cisco Unified CME router), you must configure a CTL provider on each Cisco Unified CME router. The CTL provider securely communicates the credentials of the Cisco Unified CME server functions to the CTL client that is running on another router.

When the CTL client is running on either a primary or secondary Cisco Unified CME router, you must configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running.

The CTL protocol is used to communicate between the CTL client and a CTL provider. Using the CTL protocol ensures that the credentials of all Cisco Unified CME routers are present in the CTL file and that all Cisco Unified CME routers have access to the phone certificates that were issued by the CA. Both elements are prerequisites to secure communications.

To enable CTL clients and providers, see Configure the CTL Client, on page 589 and Configure the CTL Provider, on page 601.

### Manually Importing MIC Root Certificate

When a phone uses a MIC for authentication during the TLS handshake with the CAPF server, the CAPF server must have a copy of the MIC to verify it. Different certificates are used for different types of IP phones.

A phone uses a MIC for authentication when it has a MIC but no LSC. For example, you have a Cisco Unified IP Phone 7970 that has a MIC by default but no LSC. When you schedule a certificate upgrade
with the authentication mode set to MIC for this phone, the phone presents its MIC to the Cisco Unified CME CAPF server for authentication. The CAPF server must have a copy of the MIC's root certificate to verify the phone's MIC. Without this copy, the CAPF upgrade operation fails.

To ensure that the CAPF server has copies of the MICs it needs, you must manually import certificates to the CAPF server. The number of certificates that you must import depends on your network configuration. Manual enrollment refers to copy-and-paste or TFTP transfer methods.

To manually import the MIC root certificate, see Manually Import the MIC Root Certificate, on page 608.

Feature Design of Media Encryption

Companion voice security Cisco IOS features provide an overall architecture for secure end-to-end IP telephony calls on supported network devices that enable the following:

- SRTP-capable Cisco Unified CME networks with secure interoperability
- Secure Cisco IP phone calls
- Secure Cisco VG224 Analog Phone Gateway endpoints
- Secure supplementary services

These features are implemented using media and signaling authentication and encryption in Cisco IOS H.323 networks. H.323, the ITU-T standard that describes packet-based video, audio, and data conferencing, refers to a set of other standards, including H.450, to describe its actual protocols. H.323 allows dissimilar communication devices to communicate with each other by using a standard communication protocol and defines a common set of codecs, call setup and negotiating procedures, and basic data transport methods. H.450, a component of the H.323 standard, defines signaling and procedures that are used to provide telephony-like supplementary services. H.450 messages are used in H.323 networks to implement secure supplementary service support and also empty capability set (ECS) messaging for media capability negotiation.

Secure Cisco Unified CME

The secure Cisco Unified CME solution includes secure-capable voice ports, SCCP endpoints, and a secure H.323 or SIP trunk between Cisco Unified CME and Cisco Unified Communications Manager for audio media. Figure 21: Secure Cisco Unified CME System, on page 574 shows the components of a secure Cisco Unified CME system.

Note

Secure Unified CME is not supported on Cisco 4000 Series Integrated Services Routers.
Secure Cisco Unified CME implements call control signaling using Transport Layer Security (TLS) or IPsec (IP Security) for the secure channel and uses SRTP for media encryption. Secure Cisco Unified CME manages the SRTP keys to endpoints and gateways.

The Media Encryption (SRTP) on Cisco Unified CME feature supports the following features:

- SCCP endpoints.
- Secure voice calls in a mixed shared line environment that allows both RTP- and SRTP-capable endpoints; shared line media security depends on the endpoint configuration.
- Secure supplementary services using H.450 including:
  - Call forward
  - Call transfer
  - Call hold and resume
  - Call park and call pickup
  - Nonsecure software conference

**Note**

SRTP conference calls over H.323 may experience a zero- to two-second noise interval when the call is joined to the conference.

- Secure calls in a non-H.450 environment.
- Secure Cisco Unified CME interaction with secure Cisco Unity.
- Secure Cisco Unified CME interaction with Cisco Unity Express (interaction is supported and calls are downgraded to nonsecure mode).
- Secure transcoding for remote phones with DSP Farm transcoding configured.

These features are discussed in the following sections.
Secure Supplementary Services

The Media Encryption (SRTP) feature supports secure supplementary services in both H.450 and non-H.450 Cisco Unified CME networks. A secure Cisco Unified CME network should be either H.450 or non-H.450, not a hybrid.

Secure SIP Trunk Support on Cisco Unified CME

Prior to Cisco Unified CME Release 10 release, supplementary services were not supported on the secure SIP trunk of the secure SCCP Cisco Unified CME. This feature supports the following supplementary services in the secure SRTP and SRTP fallback modes on the SIP trunk of the SCCP Cisco Unified CME:

- Basic secure calls
- Call hold and resume
- Call transfer (blind and consult)
- Call forward (CFA,CFB,CFNA)
- DTMF support
- Call park and pickup
- Voice mail systems using CUE (works only with SRTP fallback mode)

To enable the supplementary services, use the existing “supplementary-service media-renegotiate” command as shown in the following example:

```
(config)# voice service voip
(config-voi-serv)# no ip address trusted authenticate
(config-voi-serv)# srtp
(config-voi-serv)# allow-connections sip to sip
(config-voi-serv)# no supplementary-service sip refer
(config-voi-serv)# supplementary-service media-renegotiate
```

Note

In the SRTP mode, nonsecure media (RTP) format is not allowed across the secure SIP trunk. For Music On Hold, Tone On Hold, and Ring Back Tone, the tone is not played across the SIP trunk. In SRTP fallback mode, media across the secure SIP trunk is switched over to RTP if the remote end is nonsecure or while playing the MMusic On Hold, Tone On Hold, and Ring Back Tone.
Secure Cisco Unified CME in an H.450 Environment

Signalizing and media encryption among secure endpoints is supported, enabling supplementary services such as call transfer (H.450.2) and call forward (H.450.3) between secure endpoints. Call park and pick up use H.450 messages. Secure Cisco Unified CME is H.450-enabled by default; however, secure music on hold (MOH) and secure conferences (three-way calling) are not supported. For example, when supplementary services are initiated as shown in Figure 22: Music on Hold in an H.450 Environment, on page 576, ECS and Terminal Capabilities Set (TCS) are used to negotiate the initially secure call between A and B down to RTP so A can hear MOH. When B resumes the call to A, the call goes back to SRTP. Similarly, when a transfer is initiated, the party being transferred is put on hold and the call is negotiated down to RTP. When the call is transferred, it goes back to SRTP if the other end is SRTP capable.

Figure 22: Music on Hold in an H.450 Environment

Secure Cisco Unified CME in a Non H.450 Environment

Security for supplementary services requires midcall key negotiation or midcall media renegotiation. In an H.323 network where there are no H.450 messages, media renegotiation is implemented using ECS for scenarios such as mismatched codecs and secure calls. If you disable H.450 on the router globally, the configuration is applied to RTP and SRTP calls. The signaling path is hairpin on XOR for Cisco Unified CME and Cisco Unified Communications Manager. For example, in Figure 23: Transfer in a Non-H.450 Environment, on page 577, the signaling path goes from A through B (the supplementary services initiator) to C. When deploying voice security in this scenario, consider that the media security keys will pass through XOR, that is, through B, the endpoint that issued the transfer request. To avoid the man-in-the-middle attack, the XOR must be a trusted entity.
The media path is optional. The default media path for Cisco Unified CME is hairpin. However, whenever possible media flow around can be configured on Cisco Unified CME. When configuring media flow through, which is the default, remember that chaining multiple XOR gateways in the media path introduces more delay and thus reduces voice quality. Router resources and voice quality limit the number of XOR gateways that can be chained. The requirement is platform dependent and may vary between signaling and media. The practical chaining level is three.

A transcoder is inserted when there is a codec mismatch and ECS and TCS negotiation fails. For example, if Phone A and Phone B are SRTP capable, but Phone A uses the G.711 codec and Phone B uses the G.729 codec, a transcoder is inserted if Phone B has one. However, the call is negotiated down to RTP to fulfill the codec requirement so the call is not secure.

### Secure Transcoding for Remote Phones with DSP Farm Transcoding Configured

Transcoding is supported for remote phones that have the `dspfarm-assist` keyword of the `codec` command configured. A remote phone is a phone that is registered to a Cisco Unified CME and is residing on a remote location across the WAN. To save bandwidth across the WAN connection, calls to such a phone can be made to use the G.729r8 codec by configuring the `codec g729r8 dspfarm assist` command for the ephone. The `g729r8` keyword forces calls to such a phone to use the G.729 codec. The `dspfarm-assist` keyword enables using available DSP resources if an H.323 call to the phone needs to be transcoded.

**Note**

Transcoding is enabled only if an H.323 call with a different codec from the remote phone tries to make a call to the remote phone. If a local phone on the same Cisco Unified CME as the remote phone makes a call to the remote phone, the local phone is forced to change its codec to G.729 instead of using transcoding.

Secure transcoding for point-to-point SRTP calls can only occur when both the SCCP phone that is to be serviced by Cisco Unified CME transcoding and its peer in the call are SRTP capable and have successfully negotiated the SRTP keys. Secure transcoding for point-to-point SRTP calls cannot occur when only one of the peers in the call is SRTP capable.

If Cisco Unified CME transcoding is to be performed on a secure call, the Media Encryption (SRTP) on Cisco Unified CME feature allows Cisco Unified CME to provide the DSP Farm with the encryption keys for the secure call as additional parameters so that Cisco Unified CME transcoding can be performed successfully. Without the encryption keys, the DSP Farm would not be able to read the encrypted voice data to transcode it.

**Note**

The secure transcoding described here does not apply to IP-IP gateway transcoding.

Cisco Unified CME transcoding is different from IP-to-IP gateway transcoding because it is invoked for an SCCP endpoint only, instead of for bridging VoIP call legs. Cisco Unified CME transcoding and IP-to-IP gateway transcoding are mutually exclusive, that is, only one type of transcoding can be invoked for a call.
If no DSP Farm capable of SRTP transcoding is available, Cisco Unified CME secure transcoding is not performed and the call goes through using G.711.

For configuration information, see Register the DSP Farm with Cisco Unified CME 4.2 or a Later Version in Secure Mode, on page 491.

Secure Cisco Unified CME with Cisco Unity Express

Cisco Unity Express does not support secure signaling and media encryption. Secure Cisco Unified CME interoperates with Cisco Unity Express but calls between Cisco Unified CME and Cisco Unity Express are not secure.

In a typical Cisco Unity Express deployment with Cisco Unified CME in a secure H.323 network, Session Initiation Protocol (SIP) is used for signaling and the media path is G.711 with RTP. For Call Forward No Answer (CFNA) and Call Forward All (CFA), before the media path is established, signaling messages are sent to negotiate an RTP media path. If codec negotiation fails, a transcoder is inserted. The Media Encryption (SRTP) on Cisco Unified CME feature’s H.323 service provider interface (SPI) supports fast start calls. In general, calls transferred or forwarded back to Cisco Unified CME from Cisco Unity Express fall into existing call flows and are treated as regular SIP and RTP calls.

The Media Encryption (SRTP) on Cisco Unified CME feature supports blind transfer back to Cisco Unified CME only. When midcall media renegotiation is configured, the secure capability for the endpoint is renegotiated regardless of which transfer mechanism, H.450.2 or Empty Capability Set (ECS), is used.

Secure Cisco Unified CME with Cisco Unity

The Media Encryption (SRTP) on Cisco Unified CME feature supports Cisco Unity 4.2 or a later version and Cisco Unity Connection 1.1 or a later version using SCCP. Secure Cisco Unity for Cisco Unified CME acts like a secure SCCP phone. Some provisioning is required before secure signaling can be established. Cisco Unity receives Cisco Unified CME device certificates from the Certificate Trust List (CTL) and Cisco Unity certificates are inserted into Cisco Unified CME manually. Cisco Unity with SIP is not supported.

The certificate for the Cisco Unity Connection is in the Cisco Unity administration web application under the “port group settings.”

HTTPS Provisioning For Cisco Unified IP Phones

This section contains the following topics:

- HTTPS support for an External Server, on page 578
- HTTPS Support in Cisco Unified CME, on page 579

HTTPS support for an External Server

There is an increasing need to securely access web content on Cisco Unified IP phones using HTTPS. The X.509 certificate of a third-party web server must be stored in the IP phone's CTL file to authenticate the web server but the server command used to enter trustpoint information cannot be used to import the certificate to the CTL file. Because the server command requires the private key from the third-party web server for certificate chain validation and you cannot obtain that private key from the web server, the import certificate command is added to save the trusted certificate in the CTL file.
For information on how to import a trusted certificate to an IP phone’s CTL file for HTTPS provisionning, see HTTPS Provisioning for Cisco Unified IP Phones, on page 617.

For information on phone authentication support in Cisco Unified CME, see Phone Authentication Overview, on page 566.

**HTTPS Support in Cisco Unified CME**

Cisco Unified IP phones use HTTP for some of the services offered by Cisco Unified CME. These services, which include local-directory lookup on Cisco Unified CME, My Phone Apps, and Extension Mobility, are invoked by pressing the “Services” button on the phones.

With Hypertext Transfer Protocol Secure (HTTPS) support in Cisco Unified CME 9.5 and later versions, these services can be invoked using an HTTPS connection from the phones to Cisco Unified CME.

---

**Note**

Ensure that the configured phone is provisioned for HTTPS-based services that run on Cisco Unified CME before configuring HTTPS globally or locally. Please refer to the appropriate phone administrator guide to know if your Cisco Unified IP phone supports HTTPS access. HTTP services continue to run for other phones that do not support HTTPS.

---

For information on provisioning Cisco Unified IP phones for secure access to web content using HTTPS, see HTTPS Provisioning for Cisco Unified IP Phones, on page 617.

For configuration examples, see Example for Configuring HTTPS Support for Cisco Unified CME, on page 638.

---

**Configure Security**

**Configure the Cisco IOS Certification Authority**

To configure a Cisco IOS Certification Authority (CA) on a local or external router, perform the following steps.

---

**Note**

If you use a third-party CA, follow the provider’s instructions instead of performing these steps.

---

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip http server
4. crypto pki server *label*
5. database level (minimal | names | complete)
6. database url *root-url*
7. lifetime certificate *time*
8. issuer-name CN=*label*
9. exit
10. crypto pki trustpoint label
11. enrollment url ca-url
12. exit
13. crypto pki server label
14. grant auto
15. no shutdown
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
Example:  
Router> enable |  
- Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.  
Example:  
Router# configure terminal |
| **Step 3** ip http server | Enables the Cisco web-browser user interface on the local Cisco Unified CME router.  
Example:  
Router(config)# ip http server |
| **Step 4** crypto pki server label | Defines a label for the Cisco IOS CA and enters certificate-server configuration mode.  
Example:  
Router(config)# crypto pki server sanjose1 |
| **Step 5** database level {minimal | names | complete} | (Optional) Controls the type of data stored in the certificate enrollment database.  
Example:  
Router(config-cs-server)# database level complete |

- minimal—Enough information is stored only to continue issuing new certificates without conflict. This is the default value.
- names—In addition to the minimal information given, the serial number and subject name of each certificate are also provided.
- complete—In addition to the information given in the minimal and names levels, each issued certificate is written to the database. If you use this keyword, you must also specify an external TFTP server in which to store the data by using the database url command.
<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>database url <strong>root-url</strong></td>
<td>(Optional) Specifies the location, other than NVRAM, where all database entries for the certificate server are to be written out.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-cs-server)# database url nvram:</td>
<td>- Required if you configured the <strong>complete</strong> keyword with the <strong>database level</strong> command in the previous step.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>root-url</strong>—URL that is supported by the Cisco IOS file system and where database entries are to be written out. If the CA is going to issue a large number of certificates, select an appropriate storage location like flash or other storage device to store the certificates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- When the storage location chosen is flash and the file system type on this device is Class B (LEFS), make sure to check free space on the device periodically and use the <strong>squeeze</strong> command to free the space used up by deleted files. This process may take several minutes and should be done during scheduled maintenance periods or off-peak hours.</td>
</tr>
<tr>
<td>Step 7</td>
<td>lifetime certificate <strong>time</strong></td>
<td>(Optional) Specifies the lifetime, in days, of certificates issued by this Cisco IOS CA.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-cs-server) lifetime certificate 888</td>
<td>- <strong>time</strong>—Number of days until a certificate expires. Range is 1 to 1825 days. Default is 365. The maximum certificate lifetime is 1 month less than the lifetime of the CA certificate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configure this command before the Cisco IOS CA is enabled by using the <strong>no shutdown</strong> command.</td>
</tr>
<tr>
<td>Step 8</td>
<td>issuer-name <strong>CN=label</strong></td>
<td>(Optional) Specifies a distinguished name (DN) as issuer name for the Cisco IOS CA.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-cs-server)# issuer-name CN=sanjose1</td>
<td>- Default is already-configured label for the Cisco IOS CA. See Step 4, on page 580.</td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
<td>Exits certificate-server configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-cs-server)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>crypto pki trustpoint <strong>label</strong></td>
<td>(Optional) Declares a trustpoint and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config)# crypto pki trustpoint sanjose1</td>
<td>- For local CA only. This command is not required for Cisco IOS CA on an external router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If you must use a specific RSA key for the Cisco IOS CA, use this command to create your own trustpoint</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>by using the same label to be used with the <code>crypto pki server</code> command. If the router sees a configured trustpoint with the same label as the crypto pki server, it uses this trustpoint and does not automatically create a trustpoint.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Step 11**

```plaintext
enrollment url `ca-url`
```

*Example:*

```
Router(config-ca-trustpoint)# enrollment url http://ca-server.company.com
```

Specifies the enrollment URL of the issuing Cisco IOS CA.

- For local Cisco IOS CA only. This command is not required for Cisco IOS CA on an external router.
- `ca-url`—URL of the router on which the Cisco IOS CA is installed.

**Step 12**

```plaintext
exit
```

*Example:*

```
Router(config-ca-trustpoint)# exit
```

Exits ca-trustpoint configuration mode.

**Step 13**

```plaintext
crypto pki server `label`
```

*Example:*

```
Router(config)# crypto pki server sanjose1
```

Enters certificate-server configuration mode.

- `label`—Name of the Cisco IOS CA being configured.

**Step 14**

```plaintext
grant auto
```

*Example:*

```
Router(config-cs-server)# grant auto
```

(Optional) Allows certificates to be issued automatically to any requester.

- Default and recommended method is manual enrollment.
- Use this command only when testing and building simple networks. Use the `no grant auto` command after configuration is complete to prevent certificates from being automatically granted.

**Step 15**

```plaintext
no shutdown
```

*Example:*

```
Router(config-cs-server)# no shutdown
```

(Optional) Enables the Cisco IOS CA.

- Use this command only after you are finished configuring the Cisco IOS CA.

**Step 16**

```plaintext
end
```

*Example:*

```
Router(config-cs-server)# end
```

Returns to privileged EXEC mode.

---

**Example**

The following partial output from the `show running-config` command shows the configuration for a Cisco IOS CA named sanjose1 running on the local Cisco Unified CME router:
Obtain Certificates for Server Functions

The CA issues certificates for the following server functions:

- Cisco Unified CME—Requires a certificate for TLS sessions with phones.
- TFTP—Requires a key pair and certificate for signing configuration files.
- HTTPS—Requires a key pair and certificate for signing configuration files.
- CAPF—Requires a certificate for TLS sessions with phones.
- SAST—Required for signing the CTL file. We recommend creating two SAST certificates, one for primary use and one for backup.

To obtain a certificate for a server function, perform the following steps for each server function.

You can configure a different trustpoint for each server function or you can configure the same trustpoint for more than one server function as shown in Configuration Examples for Security, on page 623 at the end of this module.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. crypto pki trustpoint trustpoint-label
4. enrollment url url
5. revocation-check method1 [method2 [method3]]
6. rsakeypair key-label [key-size [encryption-key-size]]
7. exit
8. crypto pki authenticate trustpoint-label
9. crypto pki enroll trustpoint-label
10. exit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router&gt; enable</td>
<td>Enables privileged EXEC mode.&lt;br&gt;• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>crypto pki trustpoint trustpoint-label</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# crypto pki trustpoint capf</td>
<td>Declares the trustpoint that the CA should use and enters ca-trustpoint configuration mode.&lt;br&gt;• <code>trustpoint-label</code>—Label for server function being configured.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>enrollment url url</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-ca-trustpoint)# enrollment url <a href="http://ca-server.company.com">http://ca-server.company.com</a></td>
<td>Specifies the enrollment URL of the issuing CA.&lt;br&gt;• <code>url</code>—URL of the router on which the issuing CA is installed.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>revocation-check method1 [method2 [method3]]</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-ca-trustpoint)# revocation-check none</td>
<td>(Optional) Specifies the method to be used to check the revocation status of a certificate.&lt;br&gt;• <code>method</code>—If a second and third method are specified, each subsequent method is used only if the previous method returns an error, such as a server being down.&lt;br&gt;• <code>crl</code>—Certificate checking is performed by a certificate revocation list (CRL). This is the default behavior.&lt;br&gt;• <code>none</code>—Certificate checking is not required.&lt;br&gt;• <code>ocsp</code>—Certificate checking is performed by an Online Certificate Status Protocol (OCSP) server.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>rsakeypair key-label [key-size [encryption-key-size]]</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-ca-trustpoint)# rsakeypair capf 1024 1024</td>
<td>(Optional) Specifies a key pair to use with a certificate.&lt;br&gt;• <code>key-label</code>—Name of the key pair, which is generated during enrollment if it does not already exist or if the <code>auto-enroll regenerate</code> command is configured.&lt;br&gt;• <code>key-size</code>—Size of the desired RSA key. If not specified, the existing key size is used.&lt;br&gt;• <code>encryption-key-size</code>—Size of the second key, which is used to request separate encryption, signature keys, and certificates.&lt;br&gt;• Multiple trustpoints can share the same key.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
<th>Command/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong></td>
<td>Exits ca-trustpoint configuration mode.</td>
<td><code>exit</code>&lt;br&gt;<code>Router(config-ca-trustpoint)# exit</code></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Retrieves the CA certificate, authenticates it, and checks the certificate fingerprint if prompted.</td>
<td><code>crypto pki authenticate trustpoint-label</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>Router(config)# crypto pki authenticate capf</code>&lt;br&gt;<code>- This command is optional if the CA certificate is already loaded into the configuration</code>&lt;br&gt;<code>- </code>trustpoint-label`—Already-configured label for server function being configured.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Enrolls with the CA and obtains the certificate for this trustpoint.</td>
<td><code>crypto pki enroll trustpoint-label</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>crypto pki enroll trustpoint-label</code>&lt;br&gt;<code>Router(config)# crypto pki enroll capf</code>&lt;br&gt;<code>- </code>trustpoint-label`—Already-configured label for server function being configured.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Returns to privileged EXEC mode.</td>
<td><code>exit</code>&lt;br&gt;<code>Router(config)# exit</code></td>
</tr>
</tbody>
</table>

### Example

The following partial output from the `show running-config` command shows how to obtain certificates for a variety of server functions:

**Obtaining a certificate for the CAPF server function**

```
!configuring a trust point
 crypto pki trustpoint capf-server
 enrollment url http://192.168.1.1:80
 revocation-check none
!authenticate w/ the CA and download its certificate
 crypto pki authenticate capf-server
! enroll with the CA and obtain this trustpoint's certificate
 crypto pki enroll capf-server
```

**Obtaining a certificate for the Cisco Unified CME server function**

```
crypto pki trustpoint cme-server
 enrollment url http://192.168.1.1:80
 revocation-check none

crypto pki authenticate cme-server
crypto pki enroll cme-server
```
Obtaining a certificate for the TFTP server function

crypto pki trustpoint tftp-server
    enrollment url http://192.168.1.1:80
    revocation-check none

crypto pki authenticate tftp-server
crypto pki enroll tftp-server

Obtaining a certificate for the first SAST server function (sast1)

crypto pki trustpoint sast1
    enrollment url http://192.168.1.1:80
    revocation-check none

crypto pki authenticate sast1
crypto pki enroll sast1

Obtaining a certificate for the second SAST server function (sast2)

crypto pki trustpoint sast2
    enrollment url http://192.168.1.1:80
    revocation-check none

crypto pki authenticate sast2
crypto pki enroll sast2

Configure Telephony-Service Security Parameters

To configure security parameters for telephony service, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. secure-signaling trustpoint label
5. tftp-server-credentials trustpoint label
6. device-security-mode {'authenticated' | 'none' | 'encrypted'}
7. cnf-file perphone
8. load-cfg-file file-url alias file-alias [sign] [create]
9. server-security-mode {'erase' | 'non-secure' | 'secure'}
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>telephony-service</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures trustpoint to be used for secure signalling.</td>
</tr>
<tr>
<td>secure-signaling trustpoint label</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# secure-signaling trustpoint cme-sccp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Configures the TFTP server credentials (trustpoint) to be used for signing the configuration files.</td>
</tr>
<tr>
<td>tftp-server-credentials trustpoint label</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# tftp-server-credentials trustpoint cme-tftp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Enables security mode for endpoints.</td>
</tr>
<tr>
<td>device-security-mode {authenticated</td>
<td>none</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# device-security-mode authenticated</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Specifies that the system generate a separate XML configuration file for each IP phone.</td>
</tr>
<tr>
<td>cnf-file perphone</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# cnf-file perphone</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong> load-cfg-file <strong>file-url alias file-alias [sign] [create]</strong></td>
<td>(Optional) Signs configuration files that are not created by Cisco Unified CME. Also loads the signed and unsigned versions of a file on the TFTP server.</td>
</tr>
</tbody>
</table>
| **Example:** Router(config-telephony)# load-cfg-file slot0:Ringlist.xml alias Ringlist.xml sign create | - **file-url**—Complete path of a configuration file in a local directory.  
- **alias file-alias**—Alias name of the file to be served on the TFTP server.  
- **sign**—(Optional) The file needs to be digitally signed and served on the TFTP server.  
- **create**—(Optional) Creates the signed file in the local directory.  
- The first time that you use this command for each file, use the **create** and **sign** keywords. The **create** keyword is not maintained in the running configuration to prevent signed files from being recreated during every reload.  
- To serve an already-signed file on the TFTP server, use this command without the **create** and **sign** keywords. |

| **Step 9** server-security-mode **{erase | non-secure | secure}** | (Optional) Changes the security mode of the server. |
| **Example:** Router(config-telephony)# server-security-mode non-secure |  
- **erase**—Deletes the CTL file.  
- **non-secure**—Nonsecure mode.  
- **secure**—Secure mode.  
- This command has no impact until the CTL file is initially generated by the CTL client. When the CTL file is generated, the CTL client automatically sets server security mode to secure. |

| **Step 10** end | Returns to privileged EXEC mode. |
| **Example:** Router(config-ephone)# end |

---

### Verify Telephony-Service Security Parameters

#### Step 1

**show telephony-service security-info**

Use this command to display the security-related information that is configured in telephony-service configuration mode.

**Example:**
Router# show telephony-service security-info

Skinny Server Trustpoint for TLS: cme-sccp
TFTP Credentials Trustpoint: cme-tftp
Server Security Mode: Secure
Global Device Security Mode: Authenticated

Step 2 show running-config
Use this command to display the running configuration to verify telephony and per-phone security configuration.

Example:

Router# show running-config

telephony-service
  secure-signaling trustpoint cme-sccp
  server-security-mode secure
device-security-mode authenticated
  tftp-server-credentials trustpoint cme-tftp

Configure the CTL Client

Perform one of the following tasks, depending upon your network configuration:

- Configure the CTL Client on a Cisco Unified CME Router, on page 589
- Configure the CTL Client on a Router That is Not a Cisco Unified CME Router, on page 592

Configure the CTL Client on a Cisco Unified CME Router

To configure a CTL client for creating a list of known, trusted certificates and tokens on a local Cisco Unified CME router, perform the following steps.

Note
If you have primary and secondary Cisco Unified CME routers, you can configure the CTL client on either one of them.

SUMMARY STEPS

1. enable
2. configure terminal
3. ctl-client
4. sast1 trustpoint label
5. sast2 trustpoint label
6. server {capf | cme | cme-tftp | tftp} ip-address trustpoint trustpoint-label
7. server cme ip-address username name-string password {0 | 1} password-string
### Configure the CTL Client on a Cisco Unified CME Router

8. regenerate
9. end

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ctl-client</td>
<td>Enters CTL-client configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# ctl-client</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>sast1 trustpoint <em>label</em></td>
<td>Configures credentials for the primary SAST.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ctl-client)# sast1 trustpoint sast1tp</td>
<td>• <em>label</em>- Name of SAST1 trustpoint.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>SAST1 and SAST2 certificates must be different from each other. The CTL file is always signed by SAST1. The SAST2 credentials are included in the CTL file so that if the SAST1 certificate is compromised, the file can be signed by SAST2 to prevent phones from being reset to the factory default.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>sast2 trustpoint <em>label</em></td>
<td>Configures credentials for the secondary SAST.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ctl-client)# sast2 trustpoint</td>
<td>• <em>label</em>- name of SAST2 trustpoint.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>SAST1 and SAST2 certificates must be different from each other. The CTL file is always signed by SAST1. The SAST2 credentials are included in the CTL file so that if the SAST1 certificate is compromised, the file can be signed by SAST2 to prevent phones from being reset to the factory default.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>server (capf</td>
<td>cme</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ctl-client)# server capf 10.2.2.2 trustpoint capftp</td>
<td>• <em>ip-address</em>- IP address of the Cisco Unified CME router. If there are multiple network interfaces, use the interface address in the local LAN to which the phones are connected.</td>
</tr>
</tbody>
</table>
**Command or Action** | **Purpose**
--- | ---
| **trustpoint trustpoint-label** | Name of the PKI trustpoint for the server function being configured.
| **repeat this command for server each function that is running locally on the Cisco Unified CME router.** |  |
| **Step 7** server cme ip-address username name-string password {0 | 1} password-string | (Optional) Provides information for another Cisco Unified CME router (primary or secondary) in the network.
| **ip-address** | IP address of the other Cisco Unified CME router.
| **username name-string** | Username that is configured on the CTL provider.
| **password** | Defines the way that you want the password to appear in show command output and not to the way that you enter the password.
| **0** | Not encrypted.
| **1** | Encrypted using Message Digest 5 (MD5).
| **password-string** | Administrative password of the CTL provider running on the remote Cisco Unified CME router.
| **Step 8** regenerate | Creates a new CTLFile.tlv after you make changes to the CTL client configuration.
| **Step 9** end | Returns to privileged EXEC mode.

**Examples**

The following sample output from the `show ctl-client` command displays the trustpoints in the system:

```
Router# show ctl-client

CTL Client Information

SAST 1 Certificate Trustpoint: cmeserver
 SAST 1 Certificate Trustpoint: sast2
List of Trusted Servers in the CTL
 CME 10.1.1.1 cmeserver
 TFTP 10.1.1.1 cmeserver
 CAPF 10.1.1.1 cmeserver
```
What to do next
You are finished configuring the CTL client. See Configure the CAPF Server, on page 594.

Configure the CTL Client on a Router That is Not a Cisco Unified CME Router

To configure a CTL client on a stand-alone router that is not a Cisco Unified CME router, perform the following steps.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ctl-client`
4. `sast1 trustpoint label`
5. `sast2 trustpoint label`
6. `server cme ip-address username name-string password {0 | 1} password-string`
7. `regenerate`
8. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ctl-client</td>
<td>Enters ctl-client configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ctl-client</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> sast1 trustpoint label</td>
<td>Configures credentials for the primary SAST.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>label</code>—Name of SAST1 trustpoint.</td>
</tr>
<tr>
<td>Router(config-ctl-client)# sast1 trustpoint sast1tp</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

SAST1 and SAST2 certificates must be different from each other but either of them may use the same certificate as the Cisco Unified CME router to conserve memory. The CTL file is always signed by SAST1. The SAST2 credentials are included in the CTL file so that if the SAST1 certificate is compromised, the file can be signed by SAST2 to prevent phones from being reset to the factory default.
## Configure the CTL Client on a Router That is Not a Cisco Unified CME Router

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
<th>Purpose Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><strong>sast2 trustpoint</strong> <em>label</em></td>
<td>Configures credentials for the secondary SAST.</td>
<td>• <em>label</em>—name of SAST2 trustpoint.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
<td><strong>Note</strong>  SAST1 and SAST2 certificates must be different from each other but either of them may use the same certificate as the Cisco Unified CME router to conserve memory. The CTL file is always signed by SAST1. The SAST2 credentials are included in the CTL file so that if the SAST1 certificate is compromised, the file can be signed by SAST2 to prevent phones from being reset to the factory default.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ctl-client)# sast2 trustpoint</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>server cme</strong> <em>ip-address</em>  <strong>username</strong> <em>name-string</em>  <strong>password</strong> *(0</td>
<td>1)* <em>password-string</em></td>
<td>(Optional) Provides information about another Cisco Unified CME router (primary or secondary) in the network, if one exists.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
<td><strong>Note</strong>  This option refers to the way that you want the password to appear in show command output and not to the way that you enter the password in this command.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ctl-client)# server cme 10.2.2.2</code></td>
<td></td>
<td>• <em>username</em> <em>name-string</em>—Username that is configured on the CTL provider.</td>
</tr>
<tr>
<td></td>
<td><code>username user3 password 0</code> <code>38h2KL</code></td>
<td></td>
<td>• <em>password</em>—Encryption status of the password string.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0—Not encrypted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1—Encrypted using Message Digest 5 (MD5).</td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>regenerate</strong></td>
<td>Creates a new CTLFile.tlv after you make changes to the CTL client configuration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ctl-client)# regenerate</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ctl-client)# end</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples
The following sample output from the \texttt{show ctl-client} command displays the trustpoints in the system:

\begin{verbatim}
Router# show ctl-client

CTL Client Information
---------------------------
SAST 1 Certificate Trustpoint: cmeserver
SAST 1 Certificate Trustpoint: sast2
List of Trusted Servers in the CTL
  CME 10.1.1.1 cmeserver
  TFTP 10.1.1.1 cmeserver
  CAPF 10.1.1.1 cmeserver
\end{verbatim}

Configure the CAPF Server

A certificate must be obtained for the CAPF server so that it can establish a TLS session with the phone during certificate operation. The CAPF server can install, fetch, or delete locally significant certificates (LSCs) on security-enabled phones. To enable the CAPF server on the Cisco Unified CME router, perform the following steps.

\textbf{Tip}
When you use the CAPF server to install phone certificates, arrange to do so during a scheduled period of maintenance. Generating many certificates at the same time may cause call-processing interruptions.

\textbf{SUMMARY STEPS}

\begin{enumerate}
  \item enable
  \item configure terminal
  \item capf-server
  \item trustpoint-label \textit{label}
  \item cert-enroll-trustpoint \textit{label} password \{0 | 1\} \textit{password-string}
  \item source-addr \textit{ip-address}
  \item auth-mode \{auth-string | LSC | MIC | none | null-string\}
  \item auth-string \{delete | generate\} \{all | ephone-tag\} \{digit-string\}
  \item phone-key-size \{512 | 1024 | 2048\}
  \item port tcp-port
  \item keygen-retry \textit{number}
  \item keygen-timeout \textit{minutes}
  \item cert-oper \{delete all | fetch all | upgrade all\}
  \item end
\end{enumerate}

\textbf{DETAILED STEPS}

\begin{center}
\begin{tabular}{|c|c|}
\hline
\textbf{Command or Action} & \textbf{Purpose} \\
\hline
\textbf{Step 1} enable & Enables privileged EXEC mode.  \\
  Example:             & \begin{itemize}
                        \item Enter your password if prompted.
                      \end{itemize} \\
\hline
\end{tabular}
\end{center}
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters capf-server configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 capf-server</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# capf-server</td>
<td></td>
</tr>
<tr>
<td>Step 4 trustpoint-label label</td>
<td>Specifies the label for the trustpoint.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-capf-server)# trustpoint-label tp1</td>
<td></td>
</tr>
<tr>
<td>Step 5 cert-enroll-trustpoint label password {0</td>
<td>1} password-string</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-capf-server)# cert-enroll-trustpoint ral password 0 x8oWiet</td>
<td></td>
</tr>
<tr>
<td>Step 6 source-addr ip-address</td>
<td>Defines the IP address of the CAPF server on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-capf-server)# source addr 10.10.10.1</td>
<td></td>
</tr>
<tr>
<td>Step 7 auth-mode {auth-string</td>
<td>LSC</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-capf-server)# auth-mode auth-string</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>null-string—No authentication.</td>
<td></td>
</tr>
<tr>
<td>auth-string (delete</td>
<td>(Optional) Creates or removes authentication strings for one or all secure phones.</td>
</tr>
<tr>
<td>generate) (all</td>
<td>- delete—Remove authentication strings for the specified secure devices.</td>
</tr>
<tr>
<td>ephone-tag) [digit-string]</td>
<td>- generate—Create authentication strings for the specified secure devices.</td>
</tr>
<tr>
<td>Example:</td>
<td>- all—All phones.</td>
</tr>
<tr>
<td>auth-string generate all</td>
<td>- ephone-tag—identifier for the ephone to receive the authentication string.</td>
</tr>
<tr>
<td>- delete—Remove authentication strings for the specified secure devices.</td>
<td></td>
</tr>
<tr>
<td>- generate—Create authentication strings for the specified secure devices.</td>
<td></td>
</tr>
<tr>
<td>- all—All phones.</td>
<td></td>
</tr>
<tr>
<td>- ephone-tag—identifier for the ephone to receive the authentication string.</td>
<td></td>
</tr>
<tr>
<td>- digit-string—Digits that phone user must dial for CAPF authentication. Length of string is 4 to 10 digits that can be pressed on the keypad. If this value is not specified, a random string is generated for each phone.</td>
<td></td>
</tr>
<tr>
<td>- You can also define an authentication string for an individual SCCP IP phone by using the capf-auth-str command in ephone configuration mode.</td>
<td></td>
</tr>
<tr>
<td>phone-key-size (512</td>
<td>(Optional) Specifies the size of the RSA key pair that is generated on the phone for the phone’s certificate, in bits.</td>
</tr>
<tr>
<td>1024</td>
<td>- 512—512.</td>
</tr>
<tr>
<td>2048)</td>
<td>- 1024—1024. This is the default.</td>
</tr>
<tr>
<td>Example:</td>
<td>- 2048—2048.</td>
</tr>
<tr>
<td>port tcp-port</td>
<td>(Optional) Defines the TCP port number on which the CAPF server listens for socket connections from the phones.</td>
</tr>
<tr>
<td>Example:</td>
<td>- tcp-port—TCP port number. Range is 2000 to 9999. Default is 3804.</td>
</tr>
<tr>
<td>keygen-retry number</td>
<td>(Optional) Specifies the number of times that the server sends a key generation request.</td>
</tr>
<tr>
<td>Example:</td>
<td>- number—Number of retries. Range is 0 to 100. Default is 3.</td>
</tr>
<tr>
<td>keygen-timeout minutes</td>
<td>(Optional) Specifies the amount of time that the server waits for a key generation response from the phone.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-capf-server)# keygen-timeout 45</td>
<td>• <em>minutes</em>—Number of minutes before the generation process times out. Range is 1 to 120. Default is 30.</td>
</tr>
</tbody>
</table>

#### Step 13
cert-oper {delete all | fetch all | upgrade all}

**Example:**

Router(config-capf-server)# cert-oper upgrade all

(Optional) Initiates the indicated certificate operation on all configured endpoints in the system.

• **delete all**—Remove all phone certificates.

• **fetch all**—Retrieve all phone certificates for troubleshooting.

• **upgrade all**—Upgrade all phone certificates.

• This command can also be configured in ephone configuration mode to initiate certificate operations on individual phones. This command in ephone configuration mode has priority over this command in CAPF-server configuration mode.

#### Step 14
end

**Example:**

Router(config-capf-server)# end

Returns to privileged EXEC mode.

---

### Verify the CAPF Server

Use the `show capf-server summary` command to display CAPF-server configuration information.

**Example:**

```
Router# show capf-server summary
CAPF Server Configuration Details
 Trustpoint for TLS With Phone: tp1
 Trustpoint for CA operation: ra1
 Source Address: 10.10.10.1
 Listening Port: 3804
 Phone Key Size: 1024
 Phone KeyGen Retries: 3
 Phone KeyGen Timeout: 30 minutes
```

### Configure Ephone Security Parameters

To configure security parameters for individual phones, perform the following steps for each phone.

#### Before you begin

- Phones to be configured for security must be configured for basic calling in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.

#### SUMMARY STEPS

1. `enable`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ephone  phone-tag</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# ephone 24</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>capf-ip-in-cnfn</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ephone)# capf-ip-in-cnfn</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>device-security-mode  { authenticated</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ephone)# device-security-mode authenticated</td>
</tr>
</tbody>
</table>

- **authenticatend**—Instructs device to establish a TLS connection with no encryption. There is no Secure Real-Time Transport Protocol (SRTP) in the media path.
- **none**—SCCP signaling is not secure. This is the default.
- **encrypted**—Instructs device to establish an encrypted TLS connection to secure media path using SRTP.

This command can also be configured in telephony-service configuration mode. The value set in ephone configuration mode has priority over the value set in telephony-service configuration mode.
**Step 6**

**Command or Action:**
```
codec {g711ulaw | g722r64 | g729r8 [dspfarm-assist] }
```

**Example:**
```
Router(config-ephone)# codec g711ulaw dspfarm-assist
```

**Purpose:** (Optional) Sets the security mode for SCCP signaling for a phone communicating with the Cisco Unified CME router.

- **dspfarm-assist**—Required for secure transcoding with Cisco Unified CME. Causes the system to attempt to use DSP Farm resources for transcoding the segment between the phone and the Cisco Unified CME router if G.711 is negotiated for the call. This keyword is ignored if the SCCP endpoint type is ATA, VG224, or VG248.

**Step 7**

**Command or Action:**
```
capf-auth-str digit-string
```

**Example:**
```
Router(config-ephone)# capf-auth-str 2734
```

**Purpose:** (Optional) Defines a string to use as a personal identification number (PIN) for CAPF authentication.

**Note**
For instructions on how to enter the string on a phone, see Enter the Authentication String on the Phone, on page 606.

- **digit-string**—Digits that the phone user must dial for CAPF authentication. The length of string is 4 to 10 digits.
- This command can also be configured in telephony-service configuration mode. The value set in ephone configuration mode has priority over the value set in telephony-service configuration mode.
- You can also define a PIN for CAPF authentication by using the `auth-string` command in CAPF-server configuration mode.

**Step 8**

**Command or Action:**
```
cert-oper {delete | fetch | upgrade} auth-mode {auth-string | LSC | MIC | null-string}
```

**Example:**
```
Router(config-ephone)# cert-oper upgrade auth-mode auth-string
```

**Purpose:** (Optional) Initiates the indicated certificate operation on the ephone being configured.

- **delete**—Removes the phone certificate.
- **fetch**—Retrieves the phone certificate for troubleshooting.
- **upgrade**—Upgrades the phone certificate.
- **auth-mode**—Type of authentication to use during CAPF sessions to verify endpoints that request certificates.
- **auth-string**—Authentication string to be entered on the phone by the phone user. Use the `capf-auth-str` command to configure the auth-string. For configuration information, see Enter the Authentication String on the Phone, on page 606.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSC — Phone provides its phone certificate for authentication. Precedence is given to an LSC if one exists.</td>
<td></td>
</tr>
<tr>
<td>MIC — Phone provides its phone certificate for authentication. Precedence is given to an MIC if one exists. MIC's issuer certificate must be imported into a PKI trustpoint. For information, see Manually Import the MIC Root Certificate, on page 608.</td>
<td></td>
</tr>
<tr>
<td>null-string — No authentication.</td>
<td></td>
</tr>
<tr>
<td>This command can also be configured in CAPF-server configuration mode to initiate certificate operations at a global level. This command in ephone configuration mode has priority over this command in CAPF-server configuration mode.</td>
<td></td>
</tr>
<tr>
<td>You can also use the auth-mode command in CAPF-server configuration mode to configure authentication at a global level.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 9**  
`reset`  
**Example:**  
```
Router(config-epphone)# reset
```
Performs a complete reboot of the phone.

**Step 10**  
`end`  
**Example:**  
```
Router(config-epphone)# end
```
Returns to privileged EXEC mode.

### Verify Ephone Security Parameters

Use the `show capf-server auth-string` command to display configured authentication strings (PINs) that users enter at the phone to establish CAPF authentication.

**Example:**
```
Router# show capf-server auth-string
```

<table>
<thead>
<tr>
<th>Authentication Strings for configured Ephones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac-Addr</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>000CCE3A817C</td>
</tr>
<tr>
<td>001121116BDD</td>
</tr>
<tr>
<td>000D299D50DF</td>
</tr>
<tr>
<td>000ED7B10D8C</td>
</tr>
<tr>
<td>000F90485077</td>
</tr>
<tr>
<td>0013C352E7F1</td>
</tr>
</tbody>
</table>
What to do next

- When you have more than one Cisco Unified CME router in your network, you must configure a CTL provider on each Cisco Unified CME router that is not running the CTL client. To configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running, see Configure the CTL Provider, on page 601.

- If the CA is a third-party CA or if the Cisco IOS CA is on a Cisco IOS router external to the Cisco Unified CME router, you must configure an RA to issue certificates to phones. For information, see Configure the Registration Authority, on page 603.

- If the specified authentication mode for the CAPF session is authentication-string, you must enter an authentication string on each phone that is receiving an updated LSC. For information, see Enter the Authentication String on the Phone, on page 606.

- If the specified authentication mode for the CAPF session is MIC, the MIC’s issuer certificate must be imported into a PKI trustpoint. For information, see Manually Import the MIC Root Certificate, on page 608.

- To configure Media Encryption, see Configure Media Encryption (SRTP) in Cisco Unified CME, on page 610.

Configure the CTL Provider

When you have more than one Cisco Unified CME router in your network, you must configure a CTL provider on each Cisco Unified CME router that is not running the CTL client. To configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. credentials
4. ip source-address [ip-address [port [port-number]]]
5. trustpoint trustpoint-label
6. ctl-service admin username secret {0 | 1} password-string
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 3</strong> credentials</td>
<td>Enters credentials-interface mode to configure a CTL provider.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# credentials</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip source-address [ip-address [port [port-number]]]</td>
<td>identifies the local router on which this CTL provider is being configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-credentials)# ip source-address 172.19.245.1 port 2444</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> trustpoint trustpoint-label</td>
<td>Configures the trustpoint.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-credentials)# trustpoint ctlpv</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ctl-service admin username secret {0</td>
<td>1 } password-string</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-credentials)# ctl-service admin user4 secret 0 c89L8o</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-credentials)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Verify the CTL Provider**

Use the `show credentials` command to display credentials settings.

**Example:**

```
Router# show credentials

Credentials IP: 172.19.245.1
```
What to do next

• If the CA is a third-party CA or if the Cisco IOS CA is on a Cisco IOS router external to the Cisco Unified CME router, you must configure an RA to issue certificates to phones. For information, see Configure the Registration Authority, on page 603.

• If the specified authentication mode for the CAPF session is authentication-string, you must enter an authentication string on each phone that is receiving an updated LSC. For information, see Enter the Authentication String on the Phone, on page 606.

• If the specified authentication mode for the CAPF session is MIC, the MIC’s issuer certificate must be imported into a PKI trustpoint. For information, see Manually Import the MIC Root Certificate, on page 608.

• To configure Media Encryption, see Configure Media Encryption (SRTP) in Cisco Unified CME, on page 610.

Configure the Registration Authority

A registration authority (RA) is the authority charged with recording or verifying some or all of the data required for the CA to issue certificates. In many cases the CA undertakes all of the RA functions itself, but where a CA operates over a wide geographical area or when there is security concern over exposing the CA at the edge of the network, it may be advisable to delegate some of the tasks to an RA and let the CA concentrate on its primary tasks of signing certificates.

You can configure a CA to run in RA mode. When the RA receives a manual or Simple Certificate Enrollment Protocol (SCEP) enrollment request, the administrator can either reject or grant it on the basis of local policy. If the request is granted, it is forwarded to the issuing CA, and the CA automatically generates the certificate and returns it to the RA. The client can later retrieve the granted certificate from the RA.

To configure an RA, perform the following steps on the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint label
4. enrollment url ca-url
5. revocation-check method1 [method2 [method3]]
6. serial-number [none]
7. rsakeypair key-label [key-size encryption-key-size]
8. exit
9. crypto pki server label
10. mode ra
11. lifetime certificate time
12. grant auto
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | enable            | Enables privileged EXEC mode.  
|      |                   | • Enter your password if prompted.  
|      | Example:          |         |
|      | Router> enable    |         |
| 2    | configure terminal | Enters global configuration mode. |
|      | Example:          |         |
|      | Router# configure terminal |         |
| 3    | crypto pki trustpoint \( label \) | Declares the trustpoint that your RA mode certificate server should use and enters CA-trustpoint configuration mode.  
|      | Example:          | • label—Name for the trustpoint and RA.  
|      | Router(config)# crypto pki trustpoint ra12 |         |
|      | **Tip** This label is also required for the cert-enroll-trustpoint command when you set up the CA proxy. See Configure the CAPF Server, on page 594. |
| 4    | enrollment url \( ca-url \) | Specifies the enrollment URL of the issuing CA (root CA).  
|      | Example:          | • ca-url—URL of the router on which the root CA has been installed.  
|      | Router(config-ca-trustpoint)# enrollment url http://ca-server.company.com |         |
| 5    | revocation-check \( method1 \ [method2 \ [method3]] \) | (Optional) Checks the revocation status of a certificate and specifies one or more methods to check the status. If a second and third method are specified, each method is used only if the previous method returns an error, such as a server being down.  
|      | Example:          | Valid values for methodn are as follows:  
|      | Router(config-ca-trustpoint)# revocation-check none | • crl—Certificate checking is performed by a certificate revocation list (CRL). This is the default behavior.  
|      |                   | • none—Certificate checking is not required.  
|      |                   | • ocsp—Certificate checking is performed by an Online Certificate Status Protocol (OCSP) server. |
| 6    | serial-number \[ none \] | (Optional) Specifies whether the router serial number should be included in the certificate request. When this command is not used, you are prompted for the serial number during certificate enrollment.  
|      | Example:          | • none—(Optional) A serial number is not included in the certificate request.  
<p>|      | Router(config-ca-trustpoint)# serial-number |         |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 7    | **rsakeypair** *key-label* [key-size [encryption-key-size]] | (Optional) Specifies an RSA key pair to use with a certificate.  
- *key-label*—Name of the key pair, which is generated during enrollment if it does not already exist or if the auto-enroll regenerate command is used.  
- *key-size*—(Optional) Size of the desired RSA key. If not specified, the existing key size is used.  
- *encryption-key-size*—(Optional) Size of the second key, which is used to request separate encryption, signature keys, and certificates.  
- Multiple trustpoints can share the same key. |
|      | **Example:** | Router(config-ca-trustpoint)# rsakeypair exampleCAkeys 1024 1024 |
| 8    | exit             | Exits ca-trustpoint configuration mode. |
|      | **Example:** | Router(config-ca-trustpoint)# exit |
| 9    | crypto pki server *label* | Defines a label for the certificate server and enters certificate-server configuration mode.  
- *label*—Name for the trustpoint and RA. Use the same label that you previously created as a trustpoint and RA in Step 3, on page 604. |
|      | **Example:** | Router(config)# crypto pki server ra12 |
| 10   | mode ra          | Places the PKI server into certificate-server mode for the RA. |
|      | **Example:** | Router(config-cs-server)# mode ra |
| 11   | lifetime certificate *time* | (Optional) Specifies the lifetime, in days, of a certificate.  
- *time*—Number of days until the certificate expires. Range is 1 to 1825. Default is 365. The maximum certificate lifetime is 1 month less than the lifetime of the CA certificate.  
- This command must be used before the server is enabled with the no shutdown command. |
|      | **Example:** | Router(config-cs-server)# lifetime certificate 1800 |
| 12   | grant auto       | Allows a certificate to be issued automatically to any requester.  
- Configure this command only during enrollment when testing and building simple networks.  
- As a security best practice, use the no grant auto command to disable this functionality after configuration so that certificates are not continually granted. |
|      | **Example:** | Router(config-cs-server)# grant auto |
## Enter the Authentication String on the Phone

This procedure is required only for the one-time installation of an LSC on a phone and only if you configured the authentication mode for the CAPF session as authentication-string. The authentication string must be communicated to the phone user so that it can be entered on the phone before the LSC is installed.

### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 13 no shutdown | (Optional) Enables the certificate server.  
- When prompted, provide input regarding acceptance of the CA certificate, the router certificate, the challenge password, and a password for protecting the private key.  
- Use this command only after you have completely configured your certificate server. |
| Step 14 end | Returns to privileged EXEC mode. |

### What to do next

- When you have more than one Cisco Unified CME router in your network, you must configure a CTL provider on each Cisco Unified CME router that is not running the CTL client. To configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running, see [Configure the CTL Provider](#), on page 601.
- If the specified authentication mode for the CAPF session is authentication-string, you must enter an authentication string on each phone that is receiving an updated LSC. For information, see [Enter the Authentication String on the Phone](#), on page 606.
- If the specified authentication mode for the CAPF session is MIC, the MIC's issuer certificate must be imported into a PKI trustpoint. For information, see [Manually Import the MIC Root Certificate](#), on page 608.
- To configure Media Encryption, see [Configure Media Encryption (SRTP) in Cisco Unified CME](#), on page 610.

### Note

- Authentication string applies for one-time use only.

### Restriction

You can list authentication strings for phones by using the `show capf-server auth-string` command.
Before you begin

- Signed image exists on the IP phone; see the Cisco Unified IP phone administration documentation that supports your phone model.
- IP phone is registered in Cisco Unified CME.
- CAPF certificate exists in the CTL file. For information, see Configure the CTL Client, on page 589.
- Authentication string to be entered is configured using `auth-string` command in CAPF-server configuration mode or the `capf-auth-str` command in ephone configuration mode. For information, see Configure Telephony-Service Security Parameters, on page 586.
- The `device-security-mode` command is configured using the `none` keyword. For information, see Configure Telephony-Service Security Parameters, on page 586.

Step 1
Press the **Settings** button. On the Cisco Unified IP Phone 7921, press **Down Arrow** to access the **Settings** menu.

Step 2
If the configuration is locked, press **##** (asterisk, asterisk, pound sign) to unlock it.

Step 3
Scroll down the **Settings** menu. Highlight Security Configuration and press the **Select** softkey.

Step 4
Scroll down the **Security Configuration** menu. Highlight LSC and press the **Update** softkey. On the Cisco Unified IP Phone 7921, press **##** to unlock the Security Configuration menu.

Step 5
When prompted for the authentication string, enter the string provided by the system administrator and press the **Submit** softkey.

The phone installs, updates, deletes, or fetches the certificate, depending on the CAPF configuration.

You can monitor the progress of the certificate operation by viewing the messages that display on the phone. After you press **Submit**, the message “Pending” appears under the LSC option. The phone generates the public and private key pair and displays the information on the phone. When the phone successfully completes the process, the phone displays a successful message. If the phone displays a failure message, you entered the wrong authentication string or did not enable the phone for upgrade.

You can stop the process by choosing Stop at any time.

Step 6
Verify that the certificate was installed on the phone. From the **Settings** menu on the phone screen, choose **Model Information** and then press the **Select** softkey to display the Model Information.

Step 7
Press the navigation button to scroll to LSC. The value for this item indicates whether LSC is Installed or Not Installed.

What to do next

- When you have more than one Cisco Unified CME router in your network, you must configure a CTL provider on each Cisco Unified CME router that is not running the CTL client. To configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running, see Configure the CTL Provider, on page 601.

- If the CA is a third-party CA or if the Cisco IOS CA is on a Cisco IOS router external to the Cisco Unified CME router, you must configure an RA to issue certificates to phones. For information, see Configure the Registration Authority, on page 603.

- If the specified authentication mode for the CAPF session is MIC, the MIC’s issuer certificate must be imported into a PKI trustpoint. For information, see Manually Import the MIC Root Certificate, on page 608.
To configure Media Encryption, see Configure Media Encryption (SRTP) in Cisco Unified CME, on page 610.

Manually Import the MIC Root Certificate

The MIC root certificate must be present in the Cisco Unified CME router to allow Cisco Unified CME to authenticate the MIC that is presented to it. To manually import the MIC root certificate on the Cisco Unified CME router, perform the following steps for each type of phone that requires a MIC for authentication.

Before you begin

One of the following must be true before you perform this task:

- The device-security-mode command is configured using the none keyword. For information, see Configure Telephony-Service Security Parameters, on page 586.
- MIC is the specified authentication mode for phone authentication during a CAPF session.
- A phone’s MIC, rather than an LSC, is used to establish the TLS session for SCCP signaling.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. revocation-check none
5. enrollment terminal
6. exit
7. crypto pki authenticate name
8. Download the four MIC root certificate files. Cut and paste the appropriate text for each certificate. Accept the certificates.
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>crypto pki trustpoint name</td>
<td>Declares the CA that your router should use and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint sanjose1</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> revocation-check none</td>
<td>Specifies that revocation check is not performed and the certificate is always accepted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(ca-trustpoint)# revocation-check none</td>
</tr>
<tr>
<td><strong>Step 5</strong> enrollment terminal</td>
<td>Specifies manual (copy-and-paste) certificate enrollment.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(ca-trustpoint)# enrollment terminal</td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(ca-trustpoint)# exit</td>
</tr>
<tr>
<td><strong>Step 7</strong> crypto pki authenticate name</td>
<td>Authenticates the CA by getting the certificate from the CA.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# crypto pki authenticate sanjose1</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Download the four MIC root certificate files. Cut and paste the appropriate text for each certificate. Accept the certificates.</td>
</tr>
<tr>
<td>a. Click on the link to the certificate:</td>
<td>The certificates are available at the following links:</td>
</tr>
<tr>
<td></td>
<td>• CMCA: <a href="http://www.cisco.com/security/pki/certs/cmca.cer">http://www.cisco.com/security/pki/certs/cmca.cer</a></td>
</tr>
<tr>
<td></td>
<td>• CiscoRootCA2048: <a href="http://www.cisco.com/security/pki/certs/crca2048.cer">http://www.cisco.com/security/pki/certs/crca2048.cer</a></td>
</tr>
<tr>
<td>b. When the <strong>Downloading Certificate</strong> dialog window opens, select the option to view the certificate. Do not install the certificate.</td>
<td></td>
</tr>
<tr>
<td>c. Select the <strong>Detail</strong> tab on top.</td>
<td></td>
</tr>
<tr>
<td>d. Click <strong>Export</strong> on the bottom and save the certificate into a file.</td>
<td></td>
</tr>
<tr>
<td>e. Open the file with WordPad.</td>
<td></td>
</tr>
<tr>
<td>f. Cut and paste the text between -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- into the IOS console.</td>
<td></td>
</tr>
<tr>
<td>g. When prompted, press <strong>Enter</strong> and type <strong>quit</strong>. After pasting the certificate, press <strong>Enter</strong> and type <strong>quit</strong> on a line by itself.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>h. Enter y to accept the certificate. The system responds to the pasted certificate text by providing the MD5 and SHA1 fingerprints, and asks whether you accept the certificate. Enter y to accept the certificate or n to reject it.</td>
<td></td>
</tr>
<tr>
<td>i. Repeat steps a. through h. for each certificate.</td>
<td></td>
</tr>
</tbody>
</table>

### Step 9

**Example:**

```
Router(config)# exit
```

Returns to privileged EXEC mode.

### What to do next

- When you have more than one Cisco Unified CME router in your network, you must configure a CTL provider on each Cisco Unified CME router that is not running the CTL client. To configure a CTL provider on each Cisco Unified CME router on which the CTL client is not running, see Configure the CTL Provider, on page 601.

- If the CA is a third-party CA or if the Cisco IOS CA is on a Cisco IOS router external to the Cisco Unified CME router, you must configure an RA to issue certificates to phones. For information, see Configure the Registration Authority, on page 603.

- If the specified authentication mode for the CAPF session is authentication-string, you must enter an authentication string on each phone that is receiving an updated LSC. For information, see Enter the Authentication String on the Phone, on page 606.

- To configure Media Encryption, see Configure Media Encryption (SRTP) in Cisco Unified CME, on page 610.

### Configure Media Encryption (SRTP) in Cisco Unified CME

To configure the network for secure calls between Cisco Unified CME systems across an H.323 trunk, perform the following steps on the Cisco Unified CME router.
Secure three-way software conferencing is not supported. A secure call beginning with SRTP always falls back to nonsecure Real-Time Transport Protocol (RTP) when it is joined to a conference.

If a party drops from a three-party conference, the call between the remaining two parties returns to secure if the two parties are SRTP-capable local Skinny Client Control Protocol (SCCP) endpoints to a single Cisco Unified CME and the conference creator is one of the remaining parties. If either of the two remaining parties are only RTP-capable, the call remains nonsecure. If the two remaining parties are connected through FXS, PSTN, or VoIP, the call remains nonsecure.

Calls to Cisco Unity Express are not secure.

Music on Hold (MOH) is not secure.

Video calls are not secure.

Modem relay and T.3 fax relay calls are not secure.

Media flow-around is not supported for call transfer and call forward.

Conversion between inband tone and RFC 2833 DTMF is not supported. RFC 2833 DTMF handling is supported when encryption keys are sent to secure DSP Farm devices but is not supported for codec passthrough.

Secure Cisco Unified CME does not support SIP trunks; only H.323 trunks are supported.

Media Encryption (SRTP) supports secure supplementary services in both H.450 and non-H.450 Cisco Unified CME networks. A secure Cisco Unified CME network should be either H.450 or non-H.450, not a hybrid.

Secure calls are supported in the default session application only.

Before you begin

Cisco Unified CME 4.2 or a later version.

To make secure H.323 calls, telephony-service security parameters must be configured. See Configure Telephony-Service Security Parameters, on page 586.

Compatible Cisco IOS Release on the Cisco VG224 Analog Phone Gateway. For information, see Cisco Unified CME and Cisco IOS Release Compatibility Matrix.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. supplementary-service media-renegotiate
5. srtp fallback
6. h323
7. emptycapability
8. exit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
* Enter your password if prompted.  |
| Example: | Router> enable | |
| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal | |
| Step 3 | voice service voip | Enters voice-service configuration mode.  
* The voip keyword specifies VoIP encapsulation.  |
| Example: | Router(config)# voice service voip | |
| Step 4 | supplementary-service media-renegotiate | Enables midcall renegotiation of SRTP cryptographic keys. |
| Example: | Router(conf-voi-serv)# supplementary-service media-renegotiate | |
| Step 5 | srtp fallback | Globally enables secure calls using SRTP for media encryption and authentication and enables SRTP-to-RTP fallback to support supplementary services such as ringback tone and MOH.  
* Skip this step if you are going to configure fallback on individual dial peers.  
* This command can also be configured in dial-peer configuration mode. This command in dial-peer configuration command takes precedence over this command in voice service voip configuration mode. |
| Example: | Router(conf-voi-serv)# srtp fallback | |
| Step 6 | h323 | Enters H.323 voice-service configuration mode. |
| Example: | Router(conf-voi-serv)# h323 | |
| Step 7 | emptycapability | Eliminates the need for identical codec capabilities for all dial peers in the rotary group. |
| Example: | Router(conf-serv-h323)# emptycapability | |
| Step 8 | exit | Exits H.323 voice-service configuration mode. |
| Example: | Router(conf-serv-h323)# exit | |
What to do next
You have completed the required task for configuring Media Encryption (SRTP) on Cisco Unified CME. Configuring Cisco Unified CME SRTP Fallback for H.323 Dial Peers. You can now perform the following optional tasks:

- Configure Cisco Unified CME SRTP Fallback for H.323 Dial Peers, on page 613 (Optional)
- Configure Cisco Unity for Secure Cisco Unified CME Operation, on page 614 (Optional)

Configure Cisco Unified CME SRTP Fallback for H.323 Dial Peers
To configure SRTP fallback for an individual dial peer, perform the following steps on the Cisco Unified CME router.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice class codec tag
4. codec preference value codec-type
5. exit
6. dial-peer voice tag voip
7. srtp fallback
8. voice-class codec tag
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice class codec tag</td>
<td>Enters voice-class configuration mode and assigns an identification tag number for a codec voice class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice class codec 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 codec preference value codec-type</td>
<td>Specifies a list of preferred codecs to use on a dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Repeat this step to build a list of preferred codecs.</td>
</tr>
<tr>
<td>Router(config-voice-class)# codec preferenc e1 g711alaw</td>
<td>• Use the same preference order for the codec list on both Cisco Unified CMEs on either side of the H.323 trunk.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5** ```exit```  
**Example:**  
```Router(config-voice-class)# exit``` | Exits voice-class configuration mode. |
| **Step 6** ```dial-peer voice tag voip```
Example:
```Router(config)# dial-peer voice 101 voip``` | Enters dial peer voice configuration mode. |
| **Step 7** ```srtp fallback```  
**Example:**  
```Router(config-dial-peer)# srtp fallback``` | Enables secure calls that use SRTP for media encryption and authentication and specifies fallback capability.  
- Using the `no srtp` command disables SRTP and causes the dial peer to fall back to RTP mode.
- `fallback`—Enables fallback to nonsecure mode (RTP) on an individual dial peer. The `no srtp fallback` command disables fallback and SRTP.
- This command can also be configured in voice service voip configuration mode. This command in dial-peer configuration command takes precedence over this command in voice service voip configuration mode. |
| **Step 8** ```voice-class codec tag```
Example:
```Router(config-dial-peer)# voice-class codec 1``` | Assigns a previously configured codec selection preference list (codec voice class) to a Voice over IP (VoIP) dial peer.  
- The `tag` argument in this step is the same as the `tag` in Step 3. |
| **Step 9** ```exit```  
**Example:**  
```Router(config-dial-peer)# exit``` | Exits dial-peer voice configuration mode. |

Configure Cisco Unity for Secure Cisco Unified CME Operation

This section contains the following tasks:

- Prerequisites for Configuring Cisco Unity for Secure Cisco Unified CME Operation, on page 614
- Configure Integration Between Cisco Unified CME and Cisco Unity, on page 615
- Import the Cisco Unity Root Certificate to Cisco Unified CME, on page 615
- Configure Cisco Unity Ports for Secure Registration, on page 617
- Verify that Cisco Unity are Registering Securely, on page 617

Prerequisites for Configuring Cisco Unity for Secure Cisco Unified CME Operation

- Cisco Unity 4.2 or later version.
Configure Integration Between Cisco Unified CME and Cisco Unity

To change the settings for the integration between Cisco Unified CME and Cisco Unity, perform the following steps on the Cisco Unity server:

- **Step 1** If Cisco Unity Telephony Integration Manager (UTIM) is not yet open on the Cisco Unity server, choose Programs > Cisco Unity > Manage Integrations from the Windows Start menu. The UTIM window appears.
- **Step 2** In the left pane, double-click Cisco Unity Server. The existing integrations appear.
- **Step 3** Click Cisco Unified Communications Manager integration.
- **Step 4** In the right pane, click the cluster for the integration.
- **Step 5** Click the Servers tab.
- **Step 6** In the Cisco Unified Communications Manager Cluster Security Mode field, click the applicable setting.
- **Step 7** If you clicked Non-secure, click Save and skip the remaining steps in this procedure. If you clicked Authenticated or Encrypted, the Security tab and the Add TFTP Server dialog box appear. In the IP Address or Host Name field of the Add TFTP Server dialog box, enter the IP address (or DNS name) of the primary TFTP server for the Cisco Unified Communications Manager cluster and click OK.
- **Step 8** If there are more TFTP servers that Cisco Unity will use to download the Cisco Unified Communications Manager certificates, click Add. The Add TFTP Server dialog box appears.
- **Step 9** In the IP Address or Host Name field, enter the IP address (or DNS name) of the secondary TFTP server for the Cisco Unified Communications Manager cluster and click OK.
- **Step 10** Click Save. Cisco Unity creates the voice messaging port device certificates, exports the Cisco Unity server root certificate, and displays the Export Cisco Unity Root Certificate dialog box.
- **Step 11** Note the filename of the exported Cisco Unity server root certificate and click OK.
- **Step 12** On the Cisco Unity server, navigate to the CommServer\SkinnyCerts directory.
- **Step 13** Locate the Cisco Unity server root certificate file that you exported in Step 11.
- **Step 14** Right-click the file and click Rename.
- **Step 15** Change the file extension from .0 to .pem. For example, change the filename “12345.0” to “12345.pem” for the exported Cisco Unity server root certificate file.
- **Step 16** Copy this file to a PC from which you can access the Cisco Unified CME router.

Import the Cisco Unity Root Certificate to Cisco Unified CME

To import the Cisco Unity root certificate to Cisco Unified CME, perform the following steps on the Cisco Unified CME router:

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. revocation-check none
5. enrollment terminal
6. `exit`
7. `crypto pki authenticate trustpoint-label`
8. Open the root certificate file that you copied from the Cisco Unity Server in **Step 16, on page 615**.
9. You will be prompted to enter the CA certificate. Cut and paste the entire contents of the base 64 encoded certificate between BEGIN CERTIFICATE and END CERTIFICATE at the command line. Press **Enter** and type `quit`. The router prompts you to accept the certificate. Enter yes to accept the certificate.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>crypto pki trustpoint name</code></td>
<td>Declares the trustpoint that your RA mode certificate server should use and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>crypto pki trustpoint PEM</code></td>
<td>• <code>label</code>—Name for the trustpoint and RA.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>revocation-check none</code></td>
<td>(Optional) Specifies that certificate checking is not required.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>revocation-check none</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>enrollment terminal</code></td>
<td>Specifies manual cut-and-paste certificate enrollment.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>enrollment terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>exit</code></td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>crypto pki authenticate trustpoint-label</code></td>
<td>Retrieves the CA certificate and authenticates it. Checks the certificate fingerprint when prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>crypto pki authenticate pem</code></td>
<td>• <code>trustpoint-label</code>—Already-configured name for the trustpoint and RA. See Step 3, on page 616.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Open the root certificate file that you copied from the Cisco Unity Server in Step 16, on page 615.</td>
<td>Completes the copying of the Cisco Unity root certificate to the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Step 9</td>
<td>You will be prompted to enter the CA certificate. Cut and paste the entire contents of the base 64 encoded certificate between BEGIN CERTIFICATE and END CERTIFICATE at the command line. Press Enter and type <code>quit</code>.</td>
<td>The router prompts you to accept the certificate. Enter yes to accept the certificate.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>router prompts you to accept the certificate. Enter yes to accept the certificate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configure Cisco Unity Ports for Secure Registration

To configure Cisco Unity ports for registration in secure mode, perform the following steps:

Step 1 Choose the Cisco voice-mail port that you want to update.

Step 2 From the Device Security Mode drop-down list, choose **Encrypted**.

Step 3 Click **Update**.

Verify that Cisco Unity are Registering Securely

Use the `show sccp connections` command to verify that Cisco Unity ports are registered securely with Cisco Unified CME.

In the following example, the secure value of the type field shows that the connections are secure.

```plaintext
Router# show sccp connections

<table>
<thead>
<tr>
<th>sess_id</th>
<th>conn_id</th>
<th>stype</th>
<th>mode</th>
<th>codec</th>
<th>ripaddr</th>
<th>rport</th>
<th>sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>16777222</td>
<td>16777409</td>
<td>secure</td>
<td>xcode</td>
<td>sendrecv</td>
<td>10.3.56.120</td>
<td>16772</td>
<td>19534</td>
</tr>
<tr>
<td>16777222</td>
<td>16777393</td>
<td>secure</td>
<td>xcode</td>
<td>sendrecv</td>
<td>10.3.56.50</td>
<td>17030</td>
<td>18464</td>
</tr>
</tbody>
</table>

Total number of active session(s) 1, and connection(s) 2
```

HTTPS Provisioning for Cisco Unified IP Phones

To provision a Cisco Unified IP phone for secure access to web content using HTTPS, perform the following steps:

Before you begin

- Firmware 9.0 (4) or a later version must be installed on the IP phone to prevent an infinite registration loop.

- Certificate file to be imported from flash memory to the IP phone must be in privacy-enhanced mail format.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip http server`
4. `crypto pki server cs-label`
5. `database level {minimum | names | complete}`
6. `database url root url`
7. grant auto
8. exit
9. crypto pki trustpoint name
10. enrollment url url
11. exit
12. crypto pki server cs-label
13. no shutdown
14. exit
15. crypto pki trustpoint name
16. enrollment url url
17. revocation-check method1 [method2 [method3]]
18. rsakeypair key-label
19. exit
20. crypto pki authenticate name
21. crypto pki enroll name
22. crypto pki trustpoint name
23. enrollment url url
24. revocation-check method1 [method2 [method3]]
25. rsakeypair key-label
26. exit
27. crypto pki authenticate name
28. crypto pki enroll name
29. ctl-client
30. sasl trustpoint label
31. sast2 trustpoint label
32. import certificate tag description flash: cert_name
33. server application server address trustpoint label
34. regenerate
35. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ip http server</td>
<td>Enables the HTTP server on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4 | crypto pki server *cs-label* | Enables a Cisco IOS certificate server and enters certificate server configuration mode.
 - *cs-label*—Name of the certificate server.
 Note The certificate server name should not exceed 13 characters. |
| 5 | database level *(minimum | names | complete)* | Controls what type of data is stored in the certificate enrollment database.
 - *complete*—Each issued certificate is written to the database. If this keyword is used, you should enable the database url command. |
| 6 | database url *root url* | Specifies the location where database entries for the certificate server will be stored or published.
 - *root url*—Location where database entries will be written. |
| 7 | grant auto | (Optional) Allows an automatic certificate to be issued to any requester. The recommended method and default if this command is not used is manual enrollment. |
| 8 | exit | Exits certificate server configuration mode. |
| 9 | crypto pki trustpoint *name* | Declares a trustpoint and enters ca-trustpoint configuration mode.
 - *name*—Name for the trustpoint. |
| 10 | enrollment url *url* | Specifies the enrollment parameters of a certification authority.
 - *url*—Specifies the URL of the file system where your router should send certificate requests. |
| 11 | exit | Exits ca-trustpoint configuration mode. |
| 12 | crypto pki server *cs-label* | Enables a Cisco IOS certificate server and enters certificate server configuration mode.
 - *cs-label*—Name of the certificate server. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 13** no shutdown | Enables the Cisco IOS Certification Authority.
Example:
Router(cs-server)# no shutdown |
| **Note** | The certificate server name should not exceed 13 characters. |
| **Step 14** exit | Exits certificate server configuration mode.
Example:
Router(cs-server)# exit |
| **Step 15** crypto pki trustpoint *name* | Declares a trustpoint and enters ca-trustpoint configuration mode.
Example:
Router(config)# crypto pki trustpoint primary-cme |
| *name* | Name for the trustpoint. |
| **Step 16** enrollment url *url* | Specifies the enrollment parameters of the certification authority.
Example:
Router(ca-trustpoint)# enrollment url http://10.1.1.1:80 |
| *url* | Specifies the URL of the file system where your router should send certificate requests. |
| **Step 17** revocation-check *method1 [method2 [method3]]* | Checks the revocation status of a certificate.
Example:
Router(ca-trustpoint)# revocation-check none |
| *none* | Certificate checking is not required. |
| **Step 18** rsakeypair *key-label* | Specifies which RSA key pair to associate with the certificate.
Example:
Router(ca-trustpoint)# rsakeypair primary-cme |
| *key-label* | Name of the key pair, which is generated during enrollment if it does not already exist or if the auto-enroll regenerate command is configured. |
| **Step 19** exit | Exits ca-trustpoint configuration mode.
Example:
Router(ca-trustpoint)# exit |
| **Step 20** crypto pki authenticate *name* | Authenticates the certification authority by getting the authority's certificate.
Example:
Router(config)# crypto pki authenticate primary-cme |
| *name* | Name of the certification authority. |
| **Step 21** crypto pki enroll *name* | Obtains the certificates for the router from the certificate authority.
Example:
Router(config)# crypto pki enroll primary-cme |
<p>| name | Name of the certification authority. Use the same name as when you declared the certification authority using the crypto pki trustpoint command. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td><code>crypto pki trustpoint name</code>
Example:
Router(config)# crypto pki trustpoint sast-secondary</td>
<td>Declares a trustpoint and enters ca-trustpoint configuration mode.
• name—Name for the trustpoint.</td>
</tr>
<tr>
<td>23</td>
<td><code>enrollment url url</code>
Example:
Router(ca-trustpoint)# enrollment url http://10.1.1.1:80</td>
<td>Specifies the enrollment parameters of a certification authority.
• url—Specifies the URL of the file system where your router should send certificate requests.</td>
</tr>
<tr>
<td>24</td>
<td><code>revocation-check method1 [method2 [method3]]</code>
Example:
Router(ca-trustpoint)# revocation-check none</td>
<td>Checks the revocation status of a certificate.
• none—Certificate checking is not required.</td>
</tr>
<tr>
<td>25</td>
<td><code>rsakeypair key-label</code>
Example:
Router(ca-trustpoint)# rsakeypair sast-secondary</td>
<td>Specifies which RSA key pair to associate with the certificate.
• key-label—Name of the key pair, which is generated during enrollment if it does not already exist or if the <code>auto-enroll regenerate</code> command is configured.</td>
</tr>
<tr>
<td>26</td>
<td><code>exit</code>
Example:
Router(ca-trustpoint)# exit</td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>27</td>
<td><code>crypto pki authenticate name</code>
Example:
Router(config)# crypto pki authenticate sast-secondary</td>
<td>Authenticates the certification authority by getting the authority’s certificate.
• name—Name of the certification authority.</td>
</tr>
<tr>
<td>28</td>
<td><code>crypto pki enroll name</code>
Example:
Router(config)# crypto pki enroll sast-secondary</td>
<td>Obtains the certificates for the router from the certificate authority.
• name—Name of the certification authority. Use the same name as when you declared the certification authority using the <code>crypto pki trustpoint</code> command.</td>
</tr>
<tr>
<td>29</td>
<td><code>ctl-client</code>
Example:
Router(config)# ctl-client</td>
<td>Enters CTL-client configuration mode to set parameters for the CTL client.</td>
</tr>
<tr>
<td>30</td>
<td><code>sast1 trustpoint label</code>
Example:
Router(config-ctl-client)# sast1 trustpoint first-sast</td>
<td>Configures the credentials for the primary SAST.
• label—Name of SAST1 trustpoint.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 31**
`sast2 trustpoint label`
Example:
Router(config-ctl-client)# sast2 trustpoint second-sast | Configures the credentials for the secondary SAST.
Note
- `label`—Name of SAST2 trustpoint.
Note
SAST1 and SAST2 certificates must be different from each other. The CTL file is always signed by SAST1. The SAST2 credentials are included in the CTL file so that if the SAST1 certificate is compromised, the file can be signed by SAST2 to prevent phones from being reset to the factory default. |
| **Step 32**
`import certificate tag description flash: cert_name`
Example:
Router(config-ctl-client)# import certificate 5 FlashCert flash:flash_cert.cer | Imports a trusted certificate in PEM format from flash memory to the CTL file of an IP phone.
Note
This step is required to provision HTTPS service running on external server.
- `tag`—identifier for the trusted certificate.
- `description`—Descriptive name of the trusted certificate.
- `flash:cert_cert`—Specifies the filename of the trusted certificate stored in flash memory. |
| **Step 33**
`server application server address trustpoint label`
Example:
Router(config-ctl-client)# server application 10.1.2.3 trustpoint first-sast | Configures the server application and the credentials for the SAST. |
| **Step 34**
`regenerate`
Example:
Router(config-ctl-client)# regenerate | Creates a new CTLFile.tlv after you make changes to the CTL client configuration. |
| **Step 35**
`end`
Example:
Router(config-ctl-client)# end | Exits to privileged EXEC mode. |
Configuration Examples for Security

Example for Password and Key Removal from Logs

The following is a sample output for the show command, `show sip-ua calls`. The lines that are added to the show command output as part of the Unified CME 12.6 enhancement are the local crypto key and the remote crypto key.

```plaintext
SIP UAC CALL INFO
Number of SIP User Agent Client(UAC) calls: 0

SIP UAS CALL INFO
Call 1
SIP Call ID : 007278df-12e00376-6ed02377-6ffbaca908.55.0.195
State of the call : STATE_ACTIVE (7)
Substate of the call : SUBSTATE_NONE (0)
Calling Number : 1001
Called Number : 6901%23
Called URI : sip:6901%23@8.39.25.11;user=phone
Bit Flags : 0x10C0401C 0x10000100 0x4
CC Call ID : 196
Local UUID : 61488a9100105000a00007278df12e0
Remote UUID : c4b7f9475629538096ef61699b96746f
Source IP Address (Sig) : 8.39.25.11
Destn SIP Req Addr:Port : [8.55.0.195]:52704
Destn SIP Resp Addr:Port: [8.55.0.195]:52704
Destination Name : 8.55.0.195
Number of Media Streams : 1
Number of Active Streams: 1
RTP Fork Object : 0x0
Media Mode : flow-through
Media Stream 1
State of the stream : STREAM_ACTIVE
Stream Call ID : 196
Stream Type : voice+dtmf (1)
Stream Media Addr Type : 1
Negotiated Codec : g711ulaw (160 bytes)
Codec Payload Type : 0
Negotiated Dtmf-relay : rtp-nte
Dtmf-relay Payload Type : 101
QoS ID : -1
Local QoS Strength : BestEffort
Negotiated QoS Strength : BestEffort
Negotiated QoS Direction : None
Local QoS Status : None
Media Source IP Addr:Port: [8.39.25.11]:8080
Media Dest IP Addr:Port : [8.55.0.195]:23022
Local Crypto Suite : AEAD_AES_256_GCM
Remote Crypto Suite : AEAD_AES_256_GCM
AEAD_AES_256_GCM
AEAD_AES_128_GCM
AES_CM_128_HMAC_SHA1_80
AES_CM_128_HMAC_SHA1_32

Local Crypto Key : 3taqc13ClF6BBpwd65WTMPрад/10uyQ6iNouh+jYXbsf48d4TFmsOGyh4Vs=
Remote Crypto Key : 2/NTY4Rc1Imh/wbGj0GSwisLrJ41+N2jKWGczoiEnf7sA6Q9AElz0a4eg=
Mid-Call Re-Association Count: 0
SRTP-RTP Re-Association DSP Query Count: 0
```
The following is a sample output for the show command, `show ephone offhook`. The lines that are added to the show command output as part of the Unified CME 12.6 enhancement are local key and remote key.

ephone-1[0] Mac:549A.EBB5.8000 TCP socket:[1] activeLine:1 whisperLine:0 REGISTERED in SCCP ver 21/17 max_streams=1 + Authentication + Encryption with TLS connection mediaActive:1 whisper_mediaActive:0 startMedia:1 offhook:1 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:8 IP:8.44.22.63 * 17872 SCCP Gateway (AN) keepalive 28 max_line 1 available_line 1 port 0/0/0 button 1: cw:1 ccw:(0 0) dn 1 number 6901 CM Fallback CH1 CONNECTED CH2 IDLE Preferred Codec: g711ulaw Lpcor Type: none Active Secure Call on DN 1 chan 1 :6901 8.44.22.63 18116 to 8.39.25.11 8066 via 8.39.0.1 SRTTP cipher: AES_CM_128_HMAC_SHA1_32 local key: 00PV0yxcnRPMzHfmYbgHfdxcuS1uPbp5j/T]jk remote key: eSDQl3Kvk7LjZlipaCoMg9TMrEMiPsFmNIVHwIA Tx Pkts 0 bytes 0 Rx Pkts 0 bytes 0 Lost 0 Jitter 0 Latency 0 callingDn -1 calledDn -1

Example for Configuring Unified CME for Password Policy

The following is a sample configuration on Unified CME router to support password encryption:

```
Router(config)#key config-key password-encrypt <cisco123>
Router(config)#password encryption aes
Router(config)#telephony-service
Router(config-telephony)encrypt password
```

Note Configure `no encrypt password` for password unencryption (type 0) on the Unified CME router. If type 0 is configured, the password is displayed as unencrypted plain text.

Example for Configuring Cisco IOS CA

```
crypto pki server iosca
  grant auto
database url flash:
! crypto pki trustpoint iosca
  revocation-check none
  rsakeypair iosca
! crypto pki certificate chain iosca
certificate ca 01
  308201F9 30820162 ...
```

Example for Manually Importing MIC Root Certificate on the Cisco Unified CME Router

The following example shows three certificates imported to the router (7970, 7960, PEM):
Example for Manually Importing MIC Root Certificate on the Cisco Unified CME Router

Router(config)# crypto pki trustpoint 7970
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# enrollment terminal
Router(config)# crypto pki authenticate 7970

Enter the base 64 encoded CA certificate.
End with a blank line or the word "quit" on a line by itself

MIIDqDCCApCgAwIBAgIQNT+yS9cPFKNGwfOpRHJWdTANBgkgkhi1G9w0BAQFAfDADU
MRyWFAYDVQQDEw1DaXNjbyBTeXNO2ZWlzMRQwEgYDVQQDEwtQVAtUlRQLTAwMjAe
FwW0MzEwMTAYME4DND1aWF0yMWZMTATMDI3ZdaMC4xYjAUBNgNVBAoTDSUnc2Nv
IFN5c3RlbmFwQBMGBgNVBAMTC0NBUfC1VUfMDAMY1BIBDBANBgkgkhi1G9w0BAQEF
AAOCQAQAIMIIECAKCAQEMcB1CZX19w/2NZVZVpjcPw1cCy7Vq91hZI855ZdQ9D
2M4Cu1Qz9a3xvOJ1AIeFrcRECnMBf54Ax+i7Xh1UeuzE87UPQK+7580wUCYqUH1t
AVY5NSQg3Yk0NNX5sMnONb8lT6555EzYVacQXGne+775Tbide1rjg7YQXGZ2MJX
Qhw+SQILGFxRzhlBHf48D4v2Nmes+l+5GmQ080k1cRqkE9w3/ZXC5JihXZENXVgBd+-mv
Hct2H5ZxKAAKXASTGRLSX1jNS8tveJ3Gi5+aJ9+F5KX2D01DHwHCRKucJ7h7g
1/t+/5+5Snw/1dIAPh17150s2rnhkGMqLP8DFucpW1BA0B2wCBwDABqNVHq8E
BAMCMAXwDw0V0TAQhj/BaAuAMEE0z/2dBGnvNHQ4EFQfU040juLgK75nLpA
mrTuMn5ybwVDV0Rf6gbw2jBkoGKgqY1TaHR0cDovL2Nhcc1y9AT4ATMDAY5L1nCrf
bnJvBwVGWQFLYIUOCmdMDuy1J3sh19anaWx108vTXFjjXYAcnnW TAwx1x02ZJ0
RW5y2xszXEBBUC1VFATAMclyMyvDAQBgkrBqEAY1y1FQFEEAwIBADNkBgkhi1G
9w0BAQUFAAQACQjAeOVOMT78a0THq7j7SvL5/s5VChlyvXU68f0pl1JNNWp2vDRihm
E+ZdXwM55JaQutaADn/m/xzxcpcRMz42RZwG6veaiQGfJu2e5J5EikSK7EhG
tup4HF/zK5sFWA401lsG5Xy6RmJi30C0QCMQZ021KPS/eQBQ5s1wQ67yuH54yCJ
NPNnRwRFLf06hnSTC2HtSpvEhNH13Qy3h/ERWbnb0UMhdhr20Fjuji6G1Lj391
AjeD0782f2zy9wn9Ep2zntZKzese3uf1羁1q9d1x9yuoP388C1BMDmCj4OVTXUX
V6Y471lyv/GUM8FvdgKĻExbGTFn1hPfGioGtC==

Certificate has the following attributes:
Fingerprint MD5: F7E150EA 5E6E3AC5 615FC696 66415C9F
Fingerprint SHA1: 1BE2B503 DC72EE28 0C0F6B18 798236D8 D3B18BE6

% Do you accept this certificate? [yes/no]: y
Trustpoint CA certificate accepted.
% Certificate successfully imported

Router(config)# crypto pki trustpoint 7960
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# enrollment terminal
Router(config)# crypto pki authenticate 7960

Enter the base 64 encoded CA certificate.
End with a blank line or the word "quit" on a line by itself

MIICKDCCAZGgAwIBAgIC8wEwDQYJKoZIhvcNAQEFBQAwQDELMAkGA1UEBhMCVVMx
GjAYBgNVBAoTEUNp0c2VnF1N5c3RlbmFwNVJ5OEMwEwDYDVQQDEwZQBGILdTAeQo9wQO
QaWAhlcHdNMDQxNzE1MjIzOkNDNTNhRnthXlfMDMyQIMaBDXGh0BMwQCCy7pWzEeMDAIDCg
OeRk50Oe30Oe20
U2EaMwB2G1EUCMRQ2I12Y2gU3xIzdVrtyJ3bmXmATBQgNBVMBTmDENVYtEQtQ73Q
RDBMDNzAnvB2Qg0G9wOBAQEEFA0CjQAwYKCYgkEAOHvZ29ENWml1EY1W3g
it2vE3NK/eqhn8P9e9BI9jvf+ffBEGqAVGZ5BOSFedU8tBcmFpndvEAp5sfrz3h
x+s58f80E1EBRQLqGnd2+nWnYN2wXcXxQXQpRkNwL14Y7hW75C/rBT5sx4C4B5XNoE
kDQNozR31P7qkaCshdh/3CwAEXAAxwMCxMcBwDqgYV0PFAQH/BAQDAq5EBGf8MBAGwIDA
UgJQQWMDGGCqf2QAqMUBEgpRBEqBEdQqCDTBANGkghk1Gi9w0BAQIr1AQBGdQCA16x
esL5MN5lDezpB03Q3muUvYXMFRVNY2yssRxc2Xhu0gJ9MSJ8Tuwf1qMvaz4f7S1fS8
YVY010diScXbR0r+/EO07kkm8FM8Zta5m7UMJhB8eAr4L2qA3RzQaDwvJqNWT9Ffh
GgfuFA0ihSLaiKxsxv1vmD1ldZyCMoqJld7B2Q==

Certificate has the following attributes:
Fingerprint SHA1: A9917775 F86BB37A 5C130ED2 3E528BB8 286E83C0
% Do you accept this certificate? [yes/no]: y
Trustpoint CA certificate accepted.
% Certificate successfully imported

Router(config)# crypto pki trustpoint PEM
Router(config-trustpoint)# revocation-check none
Router(config-trustpoint)# enrollment terminal
Router(config-trustpoint)# exit
Router(config)# crypto pki authenticate PEM

Enter the base 64 encoded CA certificate. End with a blank line or the word "quit" on a line by itself

Certificate has the following attributes:
Fingerprint MD5: 233C8E33 8632EA4E 76D79FEB FFB061C6
Fingerprint SHA1: F7B40B94 5831D2AB 447AB8F2 25990732 227631BE

% Do you accept this certificate? [yes/no]:
y
Trustpoint CA certificate accepted.
% Certificate successfully imported

Use the show crypto pki trustpoint status command to show that enrollment has succeeded and that five CA certificates have been granted. The five certificates include the three certificates just entered, the CA server certificate, and the router certificate.
Example for Configuring Telephony-Service Security Parameters

The following example shows Cisco Unified CME security parameters:

telephony-service
device-security-mode authenticated
secure-signaling trustpoint cme-sccp
tftp-server-credentials trustpoint cme-tftp
load-cfg-file slot0:Ringlist.xml alias Ringlist.xml sign create
ephone 24
device-security-mode authenticated
capf-auth-str 2734
cert-oper upgrade auth-mode auth-string
Example for Configuring CTL Client Running on Cisco Unified CME Router

cntl-client
server capf 10.1.1.1 trustpoint cmeserver
server cme 10.1.1.1 trustpoint cmeserver
server tftp 10.1.1.1 trustpoint cmeserver
sast1 trustpoint cmeserver
sast2 trustpoint sast2

CTL Client Running on Another Router: Example

cntl-client
server cme 10.1.1.100 trustpoint cmeserver
server cme 10.1.1.1 username cisco password 1 0822455D0A16544541
sast1 trustpoint cmeserver
sast2 trustpoint sast1

CAPF Server: Example

! ip dhcp pool cme-pool
 network 10.1.1.0 255.255.255.0
 option 150 ip 10.1.1.1
default-router 10.1.1.1
!
capf-server
port 3804
auth-mode null-string
cert-enroll-trustpoint iosra password 1 00071A1507545A545C
trustpoint-label cmeserver
source-addr 10.1.1.1
!
crypto pki server iosra
grant auto
mode ra
database url slot0:
!
crypto pki trustpoint cmeserver
enrollment url http://10.1.1.100:80
serial-number
revocation-check none
rsakeypair cmeserver
!
crypto pki trustpoint sast2
enrollment url http://10.1.1.100:80
serial-number
revocation-check none
rsakeypair sast2
!
!
crypto pki trustpoint iosra
enrollment url http://10.1.1.200:80
revocation-check none
rsakeypair iosra
!
!
crypto pki certificate chain cmeserver
certificate 1B
30820207 30820170 A0030201 0202011B 300D0609 2A864886 F70D0101 04050030
....
quit
certificate ca 01
3082026B 308201D4 A0030201 02020101 300D0609 2A864886 F70D0101 04050030
....
quit
crypto pki certificate chain sast2
certificate 1C
30820207 30820170 A0030201 0202011C 300D0609 2A864886 F70D0101 04050030
....
credentials
ctl-service admin cisco secret 1 094F471A1A0A464058
ip source-address 10.1.1.1 port 2444
trustpoint cmeserver
!

telephony-service
no auto-reg-ephone
load 7960-7940 P00307010200
load 7914 S00104000100
load 7941GE TERM41.7-0-0-129DEV
load 7970 TERM70.7-0-0-77DEV
max-ephones 20
max-dn 10
ip source-address 10.1.1.1 port 2000 secondary 10.1.1.100
secure-signaling trustpoint cmeserver
cnf-file location flash:
cnf-file perphone
dialplan-pattern 1 2... extension-length 4
max-conferences 8 gain -6
transfer-pattern
tftp-server-credentials trustpoint cmeserver
server-security-mode secure
device-security-mode encrypted
load-cfg-file slot0:Ringlist.xml alias Ringlist.xml sign
load-cfg-file slot0:P00307010200.bin alias P00307010200.bin
load-cfg-file slot0:P00307010200.loads alias P00307010200.loads
load-cfg-file slot0:P00307010200.sh2 alias P00307010200.sh2
load-cfg-file slot0:P00307010200.sbn alias P00307010200.sbn
load-cfg-file slot0:cnu41.2-74-116dev.sbn alias cnu41.2-74-116dev.sbn
load-cfg-file slot0:Jar41.2-9-0-101dev.sbn alias Jar41.2-9-0-101dev.sbn
load-cfg-file slot0:CMV41.2-0-0-96dev.sbn alias CMV41.2-0-0-96dev.sbn
load-cfg-file slot0:TERM41.DEFAULT.loads alias TERM41.DEFAULT.loads
load-cfg-file slot0:TERM70.DEFAULT.loads alias TERM70.DEFAULT.loads
load-cfg-file slot0:Jar70.2-9-0-54dev.sbn alias Jar70.2-9-0-54dev.sbn
load-cfg-file slot0:cnu70.2-74-58dev.sbn alias cnu70.2-74-58dev.sbn
load-cfg-file slot0:CVM70.2-0-0-49dev.sbn alias CVM70.2-0-0-49dev.sbn
load-cfg-file slot0:DistinctiveRingList.xml alias DistinctiveRingList.xml sign
load-cfg-file slot0:Piano1.raw alias Piano1.raw sign
load-cfg-file slot0:S00104000100.sbn alias S00104000100.sbn
!
ephone 1
device-security-mode encrypted
cert-oper upgrade auth-mode null-string
mac-address 000C.CE3A.817C
type 7960 addon 1 7914
button 1:2 8:8
!
!
ephone 2
device-security-mode encrypted
capf-auth-str 2476
cert-oper upgrade auth-mode null-string
mac-address 0011.2111.6BDD
type 7970
button 1:1
!
!
ephone 3
device-security-mode encrypted
capf-auth-str 5425
cert-oper upgrade auth-mode null-string
mac-address 000D.299D.50DF
type 7970
button 1:3
!
!
ephone 4
device-security-mode encrypted
capf-auth-str 7176
cert-oper upgrade auth-mode null-string
mac-address 000E.D7B1.0DAC
type 7960
button 1:4
!
!
ephone 5
device-security-mode encrypted
mac-address 000F.9048.5077
type 7960
button 1:5
!
!
ephone 6
device-security-mode encrypted
mac-address 0013.C352.E7F1
type 7941GE
button 1:6
!

Example for Secure Unified CME

Router# show running-config

Building configuration...

Current configuration : 12735 bytes
!
! No configuration change since last restart
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service internal
!
hostname Router
!
boot-start-marker
boot-end-marker
!
card type el 1 1
logging queue-limit 1000
logging buffered 9999999 debugging
logging rate-limit 10000
no logging console
!
 aaa new-model
!
!
 aaa accounting connection h323 start-stop group radius
!
 aaa session-id common
!
 resource policy
!
 clock timezone IST 5
no network-clock-participate slot 1
!
!
ip cef
!
!
isdn switch-type primary-net5
!
voice-card 0
 no dspfarm
!
voice-card 1
 no dspfarm
!
!
ctl-client
 server capf 10.13.32.11 trustpoint mytrustpoint1
 server tftp 10.13.32.11 trustpoint mytrustpoint1
 server cme 10.13.32.11 trustpoint mytrustpoint1
 sast1 trustpoint mytrustpoint1>
sast2 trustpoint sast2
!
capf-server
 port 3804
 auth-mode null-string
 cert-enroll-trustpoint iosra password 1 mypassword
 trustpoint-label mytrustpoint1
 source-addr 10.13.32.11
 phone-key-size 512
!
voice call debug full-guid
!
voice service voip
 srtp fallback
 allow-connections h323 to h323
 no supplementary-service h450.2
 no supplementary-service h450.3
 no supplementary-service h450.7
 supplementary-service media-renegotiate
 h323
 emptycapability
 ras rrq ttl 4000
!
!
voice class codec 2
 codec preference 1 g711alaw
codec preference 2 g711ulaw

voice class codec 3
codec preference 1 g729a8
codec preference 8 g711alaw
codec preference 9 g711ulaw

voice class codec 1
codec preference 1 g729a8
codec preference 2 g728
codec preference 3 g723ar63
codec preference 4 g711ulaw

!
voice iec syslog
voice statistics type iec
voice statistics time-range since-reset

!
crypto pki server myra
database level complete
grant auto
lifetime certificate 1800

!
crypto pki trustpoint myra
enrollment url http://10.13.32.11:80
revocation-check none
rsakeypair iosra

!
crypto pki trustpoint mytrustpoint1
enrollment url http://10.13.32.11:80
revocation-check none
rsakeypair mytrustpoint1

!
crypto pki trustpoint sast2
enrollment url http://10.13.32.11:80
revocation-check none
rsakeypair sast2

!
crypto pki certificate chain myra
certificate ca 01
308201F9 30820162 A0030201 02020101 300D0609 2A864886 F70D0101 04050030 10310E30 0C063055 04033105 696F7372 61301E17 0D303E30 37303730 35343031 375A170D 30393037 30363035 34303137 5A301031 0E300C06 03550403 1305696F 73726130 819F300D 06092A86 4886F70D 01010105 0003818D 00308189 02818100

!
crypto pki certificate chain mytrustpoint1
certificate 02
308201F9 30820162 A0030201 02020101 300D0609 2A864886 F70D0101 04050030 10310E30 0C063055 04033105 696F7372 61301E17 0D303E30 37303730 35343233
Example for Secure Unified CME

Cisco Unified Communications Manager Express System Administrator Guide

Security

Example for Secure Unified CME
Example for Secure Unified CME

180B61E8 85E19873 96DB3AE3 E6B70726 9BF93521 CA2FA906 99194ECA 8F
quit
!
username admin password 0 mypassword2
username cisco password 0 mypassword2
!
controller E1 1/0
 pri-group timeslots 1-31
!
controller E1 1/1
 pri-group timeslots 1-31
gw-accounting aaa
!
!
interface GigabitEthernet0/0
 ip address 10.13.32.11 255.255.255.0
duplex auto
 speed auto
 fair-queue 64 256 32
h323-gateway voip interface
h323-gateway voip id GK1 ipaddr 10.13.32.13 1719
h323-gateway voip id GK2 ipaddr 10.13.32.16 1719
h323-gateway voip h323-id 2851-CiscoUnifiedCME
h323-gateway voip tech-prefix 1#
ip rsvp bandwidth 1000 100
!
interface GigabitEthernet0/1
no ip address
shutdown
duplex auto
 speed auto
!
interface Serial1/0:15
 no ip address
capsulation hdlc
isdn switch-type primary-net5
isdn protocol-emulate network
isdn incoming-voice voice
 no cdp enable
!
interface Serial1/1:15
 no ip address
capsulation hdlc
isdn switch-type primary-net5
isdn protocol-emulate network
isdn incoming-voice voice
 no cdp enable
!
ip route 0.0.0.0 0.0.0.0 10.13.32.1
!
ip http server
ip http authentication local
no ip http secure-server
ip http path flash:
!
!
tftp-server flash:music-on-hold.au

radius-server host 10.13.32.241 auth-port 1645 acct-port 1646
radius-server timeout 40
radius-server deadtime 2
radius-server key cisco
radius-server vsa send accounting

control-plane

voice-port 1/0/0
voice-port 1/0/1
voice-port 1/0:15
voice-port 1/1:15
voice-port 1/1:15

dial-peer voice 1 voip
 destination-pattern
 voice-class codec 2
 session target ras
 incoming called-number 9362....
 dtmf-relay h245-alphanumeric
 req-qos controlled-load audio

dial-peer voice 2 pots
 destination-pattern 93621101

dial-peer voice 3 pots
 destination-pattern 93621102

dial-peer voice 10 voip
 destination-pattern 2668....
 voice-class codec 1
 session target ipv4:10.13.46.200

dial-peer voice 101 voip
 shutdown
 destination-pattern 5694....
 voice-class codec 1
 session target ipv4:10.13.32.10
 incoming called-number 9362....

Cisco Unified Communications Manager Express System Administrator Guide 635

Example for Secure Unified CME
dial-peer voice 102 voip
 shutdown
 destination-pattern 2558....
 voice-class codec 1
 session target ipv4:10.13.32.12
 incoming called-number 9362....
!
dial-peer voice 103 voip
 shutdown
 destination-pattern 9845....
 voice-class codec 1
 session target ipv4:10.13.32.14
 incoming called-number 9362....
!
dial-peer voice 104 voip
 shutdown
 destination-pattern 9844....
 voice-class codec 1
 session target ipv4:10.13.32.15
 incoming called-number 9362....
!
dial-peer voice 201 pots
 destination-pattern 93625....
 no digit-strip
 direct-inward-dial
 port 1/0:15
!
dial-peer voice 202 pots
 destination-pattern 93625....
 no digit-strip
 direct-inward-dial
 port 1/1:15
!

gateway
timer receive-rtp 1200
!
!
telephony-service
 load 7960-7940 p00308000300
 max-ephones 4
 max-dn 4
 ip source-address 10.13.32.11 port 2000
 auto assign 1 to 4
 secure-signaling trustpoint mytrustpoint1
cnf-file location flash:
cnf-file perphone
voicemail 25589000
max-conferences 4 gain -6
call-forward pattern .T
moh flash:music-on-hold.au
web admin system name admin password mypassword2
dn-webedit
time-webedit
transfer-system full-consult
transfer-pattern
tftp-server-credentials trustpoint mytrustpoint1
server-security-credentials trustpoint mytrustpoint1
device-security-mode secure
device-security-mode encrypted
!
!
ephone-dn 1
number 93621000
name 2851-PH1
call-forward noan 25581101 timeout 10
!
ephone-dn 2
number 93621001
name 2851-PH2
call-forward noan 98441000 timeout 10
!
ephone-dn 3
number 93621002
name 2851-PH3
!
ephone-dn 4
number 93621003
name 2851-PH4
!
ephone 1
capf-ip-in-cnf
no multicast-moh
device-security-mode encrypted
mac-address 0012.4302.A7CC
type 7970
button 1:1
!
ephone 2
capf-ip-in-cnf
no multicast-moh
device-security-mode encrypted
mac-address 0017.94CA.9CCD
type 7960
button 1:2
!
ephone 3
capf-ip-in-cnf
no multicast-moh
device-security-mode encrypted
mac-address 0017.94CA.9833
type 7960
button 1:3
!
ephone 4
capf-ip-in-cnf
no multicast-moh
device-security-mode none
mac-address 0017.94CA.A141
type 7960
button 1:4
!
!
line con 0
logging synchronous level all limit 20480000
line aux 0
Example for Configuring HTTPS Support for Cisco Unified CME

Configurations similar to the following example are required before HTTPS support for services like local-directory lookup, My Phone Apps, and Extension Mobility in Cisco Unified CME can be configured at four different levels:

Router(config)# ip http server
Router(config)# crypto pki server IOS-CA
Router(cs-server)# database level complete
Router(cs-server)# database url flash:
Router(cs-server)# grant auto
Router(cs-server)# exit
Router(config)# crypto pki trustpoint IOS-CA
Router(ca-trustpoint)# enrollment url http://10.1.1.1:80
Router(ca-trustpoint)# exit
Router(config)# crypto pki server IOS-CA
Router(cs-server)# no shutdown
Router(cs-server)# exit
Router(config)# crypto pki trustpoint primary-cme
Router(ca-trustpoint)# enrollment url http://10.1.1.1:80
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# rsakeypair primary-cme
Router(ca-trustpoint)# exit
Router(config)# crypto pki authenticate primary-cme
Router(config)# crypto pki enroll primary-cme
Router(config)# crypto pki trustpoint sast-secondary
Router(ca-trustpoint)# enrollment url http://10.1.1.1:80
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# rsakeypair sast-secondary
Router(ca-trustpoint)# exit
Router(config)# crypto pki authenticate sast-secondary
Router(config)# crypto pki enroll sast-secondary
Router(config)# ctl-client
Router(config-ctl-client)# sast1 trustpoint first-sast
Router(config-ctl-client)# sast2 trustpoint second-sast
Router(config-ctl-client)# server application 10.1.2.3 trustpoint first-sast
Router(config-ctl-client)# regenerate
Router(config-ctl-client)# end

For Cisco Unified SCCP IP Phones at the global level:

cfg service https

For Cisco Unified SCCP IP Phones at the ephone-template level:
configure terminal
ephone-template 1
 service https

For Cisco Unified SIP IP Phones at the global level:

configure terminal
voice register global
 service https

For Cisco Unified SIP IP Phones at the voice register template level:

configure terminal
voice register template 1
 service https

Where to Go Next

PKI Management

Cisco IOS public key infrastructure (PKI) provides certificate management to support security protocols such as IP Security (IPsec), secure shell (SSH), and secure socket layer (SSL).

Cisco VG224 Analog Phone Gateway

- To configure secure endpoints on the Cisco VG224 Analog Phone Gateway, see the Configuring Secure Signalling and Media Encryption on the Cisco VG224 section of Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide.

Feature Information for Security

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified CME Password Policy</td>
<td>12.6</td>
<td>Introduces password policy enforcement for Unified CME</td>
</tr>
<tr>
<td>HTTPS Support in Cisco Unified CME</td>
<td>9.5</td>
<td>Introduces HTTPS support on Cisco Unified CME.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>HTTPS Provisioning for Cisco Unified IP Phones</td>
<td>8.8</td>
<td>Allows you to import an IP phone's trusted certificate to an IP phone's CTL file using the import certificate command.</td>
</tr>
<tr>
<td>Media Encryption (SRTP) on Cisco Unified CME</td>
<td>4.2</td>
<td>Introduces media encryption on Cisco Unified CME.</td>
</tr>
<tr>
<td>Phone Authentication</td>
<td>4.0</td>
<td>Introduces phone authentication for Cisco Unified CME phones.</td>
</tr>
</tbody>
</table>
Directory Services

- Information About Directory Services, on page 641
- Configure Directory Services, on page 643
- Configuration Examples for Directory Services, on page 653
- Feature Information for Directory Services, on page 658

Information About Directory Services

Local Directory

Cisco Unified CME automatically creates a local phone directory containing the telephone numbers that are assigned in the directory number configuration of the phone. You can make additional entries to the local directory in telephony services configuration mode. Additional entries can be nonlocal numbers such as telephone numbers on other Cisco Unified CME systems used by your company.

When a phone user selects the Directories > Local Directory menu, the phone displays a search page from Unified CME. After a user enters the search information, the phone sends the information to Cisco Unified CME, which searches for the requested number or name pattern in the directory number configuration and sends the response back to the phone, which displays the matched results. The phone can display up to 32 directory entries. If a search results in more than 32 entries, the phone displays an error message and the user must refine the search criteria to narrow the results.

The order of the names in the directory entries is first-name-first or last-name-first. Character strings for directory names can contain a spaces and a comma (,.) and cannot contain an ampersand (&).

The local directory that is displayed on an IP phone is an XML page that is accessed through HTTP without password protection. The directory HTTP service can be disabled to suppress the availability of the local directory.

For configuration information, see Configure Local Directory Service, on page 643.

From CME 12.0 onwards, an optional username and password can be configured for authenticating the local directory services.

For more information on the CLI command service local-directoryauthenticateusername password, see Cisco Unified Communications Manager Express Command Reference.
External Directory

Cisco Unified IP Phones can support URLs in association with the four programmable feature buttons on IP phones, including the Directories button. Operation of these services is determined by the Cisco Unified IP phone capabilities and the content of the referenced URL. Provisioning the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.

Called-Name Display

When phone agents answer calls for different departments or people, it is often helpful for them to see a display of the name, rather than the number of the called party. The Dialed Number Identification Service (or Called-Name Display) feature supports the display of the name associated with a called number for incoming calls to IP phones configured on a Unified CME. The display name is obtained from the list of Unified CME directory names using directory lookup.

You need to configure the CLI command `service dnis dir-lookup` under telephony-service configuration mode to use this directory lookup service. For more information on the CLI command `service dnis dir-lookup`, see Cisco Unified Communications Manager Express Command Reference Guide. If the display name for a called number is not available in Unified CME directory names, the display name can be added using the CLI command `directory entry`. For more information on the CLI command `directory entry`, see Cisco Unified Communications Manager Express Command Reference Guide.

When a phone receives two simultaneous calls, there is a slight time difference between the calls being acknowledged by the phone. Called-name Display is only for the first call acknowledged by the phone. Even when the first call is disconnected and the second call is in ringing state, Called-name Display feature does not work for the second call.

For an example of Called-Name Display, see Example for Called-Name Display for Voice Hunt Group, on page 654

The called-name display feature for ephone-dns can display either of the following types of name:

- Name for a directory number in a local directory
- Name associated with an overlay directory number. Calls to the first directory number in a set of overlay numbers will display a caller ID. Calls to the remaining directory numbers in the overlay set will display the name associated with the directory number.

This is an example of Called-Name Display for ephone-dns. If order-entry agents are servicing three catalogs with individual 800 numbers configured in one overlay ephone-dn set, they need to know which catalog is being called to give the correct greeting, such as “Thank you for calling catalog N. May I take your order?”

From Unified CME Release 12.0 onwards, the Dialed Number Identification Service feature is supported for phones configured under voice hunt group on on Cisco 4000 Series Integrated Services Routers. The Dialed Number Identification Service is supported on Peer, Sequential, Parallel, and Longest-Idle voice hunt groups. Support is introduced for SIP Phones on Cisco IP Phones 7800 and 8800 Series as part of the Unified CME 12.0 Release. For information on configuring Called-Name Display feature, see Called-Name Display, on page 648.
Directory Search

Cisco Unified CME 4.3 increases the number of entries supported in a search results list from 32 to up to 240 when using the directory search feature. For example, if a user enters smith as the last name, all 240 matches are displayed on eight different pages, with 30 entries per page. If multiple pages are required, the phone displays two new softkeys, “Next” and “Prev” that the phone user can press to move back and forth between the previous and next pages. Text such as “Page 2 of 3” displays to indicate the current and total pages on the search results.

Configure Directory Services

Configure Local Directory Service

To define the format for local directory names or block the local directory display on all phones, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. directory (first-name-first | last-name-first)
5. no service local-directory
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 directory (first-name-first</td>
<td>last-name-first)</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# directory last-name-first</td>
<td>• Default is first-name-first.</td>
</tr>
</tbody>
</table>
Define a Name for a Directory Number on SCCP Phone

To define a name to be used for caller-ID displays and as a local directory entry, perform the following steps.

Restriction
- The name to be associated with a directory number cannot contain special characters, such as an ampersand (&). The only special characters allowed in the name are the comma (,) and the percent sign (%).

Before you begin
- Cisco CME 3.0 or a later version.
- Directory number for which you are defining a directory entry must already have a number assigned by using the `ephone-dn` command. For configuration information, see [Create Directory Numbers for SCCP Phones](#), on page 260.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn dn-tag`
4. `name name`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Purpose

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ephone-dn</code></td>
<td><code>dn-tag</code></td>
</tr>
</tbody>
</table>

Example:

Router(config)# ephone-dn 55

Enters `ephone-dn` configuration mode.

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td><code>name</code></td>
</tr>
</tbody>
</table>

Example:

- Router(config-ephone-dn)# name Smith, John
- Router(config-ephone-dn)# name Shipping and Handling

Associates a name with this directory number.

- Must follow the name order that is specified with the directory command: first-name-first or last-name-first.
- `name`—Alphanumeric string to be displayed.
 - You must separate the two parts, first last or last first, of the `name` string with a space.
 - The second part of the `name` string can contain spaces, such as "and Shipping". The first part of the `name` string cannot contain spaces.
 - You can include a comma (,) in the `name` string for display purposes, for example, when you use the last-name-first pattern (last, first).

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config-telephony)# end

Returns to privileged EXEC mode.

Add an Entry to a Local Directory on SCCP Phone

To add an entry to the local directory, perform the following steps.

- If the directory entry being configured is to be used for called-name display, the number being configured must contain at least one wildcard character.
- Entry for local directory cannot include opening or closing quotation marks (', ', "", or ").

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `directory entry {directory-tag number name name | clear}`
5. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** Enables privileged EXEC mode. | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| `enable`
 Example:
 Router> enable |
| **Step 2** Enters global configuration mode. | Enters global configuration mode. |
| `configure terminal`
 Example:
 Router# configure terminal |
| **Step 3** Enters telephony-service configuration mode. | Enters telephony-service configuration mode. |
| `telephony-service`
 Example:
 Router(config)# telephony-service |
| **Step 4** Creates a telephone directory entry that is displayed on an IP phone. Entries appear in the order in which they are entered.
 - directory-tag—Unique sequence number that identifies this directory entry during all configuration tasks. Range is 1 to 250.
 - If this name is to be used for called-name display, the number associated with the names must contain at least one wildcard character.
 - name—1 to 24 alphanumeric characters, including spaces. Name cannot include opening or closing quotation marks (, , , or). |
| `directory entry (directory-tag number name name | clear)`
 Example:
 Router(config-telephony)# directory entry 1
 5550111 name Sales |
| **Step 5** Returns to privileged EXEC mode. | Returns to privileged EXEC mode. |
| `end`
 Example:
 Router(config-telephony)# end |

Configure External Directory Service on SCCP Phone

To enable an external directory resource on supported Cisco Unified IP phones and disable local directory services on those same phones, perform the following steps.
Restriction

- Provisioning of the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.

- Configuring external directory service only works with non-Java based phones. Any Java based phone will display duplicate directories for the following:
 - Missed
 - Received
 - Placed

Before you begin

To use a Cisco Unified Communications Manager directory as an external directory source for Cisco Unified CME phones, the Cisco Unified Communications Manager must be made aware of the phones. You must list the MAC addresses of the Cisco Unified CME phones in the Cisco Unified Communications Manager and reset the phones from the Cisco Unified Communications Manager. It is not necessary for you to assign ephone-dns to the phones or for the phones to register with Cisco Unified Communications Manager.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. url directories url
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>url directories url</td>
<td>Associates a URL with the programmable Directories feature button on supported Cisco Unified IP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# url directories http://10.0.0.11/localdirectory</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
• Provisioning the directories URL to select an external directory resource disables the Cisco Unified CME local directory service.	
• Operation of these services is determined by the Cisco Unified IP phone capabilities and the content of the specified URL.

Step 5 end
Example:
Router(config-telephony)# end

Exits configuration mode and enters privileged EXEC mode.

Called-Name Display

To enable called-name display, perform the following steps.

Restriction

• The service dnis overlay command can only be used to configure overlaid ephone-dns.

Before you begin

• For directory numbers other than overlaid directory numbers—To display a name in the called-name display, the name to be displayed must be defined in the local directory. See Add an Entry to a Local Directory on SCCP Phone, on page 645.

• For overlaid directory numbers—To display a name in the called-name display for a directory number that is in a set of overlaid directory numbers, the name to be displayed must be defined. See Define a Name for a Directory Number on SCCP Phone, on page 644.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. service dnis dir-lookup
5. service dnis overlay
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
Example:
Router> enable
Command or Action

Step 2

configure terminal

Example:

Router# configure terminal

Purpose

Enters global configuration mode.

Step 3

telephony-service

Example:

Router(config)#

Purpose

Enters telephony-service configuration mode.

Step 4

service dnis dir-lookup

Example:

Router(config-telephony)# service dnis dir-lookup

Purpose

Specifies that incoming calls to a called number should display the name that was defined for this directory number with the **directory entry** command.

- If the **service dnis dir-lookup** and **service dnis overlay** commands are both used in one configuration, the **service dnis dir-lookup** command takes precedence.

Step 5

service dnis overlay

Example:

Router(config-telephony)# service dnis overlay

Purpose

(For overlaid directory numbers only.) Specifies that incoming calls to a called number should display the name that was defined for this directory number with the **name** command.

Note

- If the **service dnis dir-lookup** and **service dnis overlay** commands are both used in one configuration, the **service dnis dir-lookup** command takes precedence.

Step 6

end

Example:

Router(config-telephony)# end

Purpose

Returns to privileged EXEC mode.

Verify Called-Name Display

Step 1

Use the **show running-config** command to verify your configuration. Called-name display is shown in the telephony-service part of the output.

Example:

Router# show running-config
telephony-service
 service dnis overlay

Step 2

Use the **show telephony-service directory-entry** command to display current directory entries.

Example:

Router# show telephony-service directory-entry

directory entry 1 5550341 name doctor1
Define a Name for a Directory Number on SIP Phone

To define name for a directory number on a SIP phone, perform the following steps.

Before you begin

- Cisco CME 3.4 or a later version.
- Directory number for which you are defining a name must already have a number assigned by using the
 number (voice register dn) command. For configuration information, see Create Directory Numbers for SIP Phones, on page 270.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# voice register dn 17</td>
<td></td>
</tr>
<tr>
<td>Step 4 name name</td>
<td>Associates a name with a directory number in Cisco Unified CME and provides caller ID for calls originating from a SIP phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# name Smith, John or Router(config-register-dn)# name John Smith</td>
<td>• Name must follow the order specified by using the directory (telephony-service) command.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure External Directory Service on SIP Service

To enable an external directory resource on supported Cisco Unified IP phones and disable local directory services on those same phones, perform the following steps.

Restriction

- Provisioning of the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.
- Supported only on Cisco Unified IP Phone 7960s and 7960Gs and Cisco Unified IP Phone 7940s and 7940Gs.

Before you begin

Cisco CME 3.4 or a later version.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. url directory url
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 url directory url</td>
<td>Associates a URL with the programmable Directories feature button on supported Cisco Unified IP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Provisioning the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.</td>
</tr>
<tr>
<td></td>
<td>• Operation of these services is determined by the Cisco Unified IP phone capabilities and the content of the specified URL.</td>
</tr>
<tr>
<td>Router(config-register-global)# url</td>
<td></td>
</tr>
<tr>
<td>directory http://10.0.0.11/localdirectory</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Directory Services

To verify the configuration for local directory services, perform the following steps.

Step 1 show running-config

This command displays the running configuration. Directory configuration commands are listed in the telephony-service portion of the output.
Example:

Router# show running-config
.
.
.timeout busy 10
.timeout ringing 100
caller-id name-only: enable
.system message XYZ Company
.web admin system name admin1 password admin1
.web admin customer name Customer
edit DN through Web: enabled.
edit TIME through web: enabled.
.Log (table parameters):
 .max-size: 150
 .retain-timer: 15
.create cnf-files version-stamp Jan 01 2002 00:00:00
.transfer-system full-consult
.multicast moh 239.12.20.123 port 2000
.fxo hook-flash
.local directory service: enabled.

Step 2 show telephony-service
This command displays only the telephony-service configuration information.

Step 3 Use the show telephony-service directory-entry command to display the entries made using the directory entry command.

Configuration Examples for Directory Services

Example for Configuring Local Directory

The following example defines the naming order for the local directory on IP phones served by the Cisco Unified CME router:

telephony-service
directory last-name-first

The following example creates a directory of three telephone listings:

telephony-service
directory entry 1 14045550111 name Sales
directory entry 2 13125550122 name Marketing
directory entry 3 12135550144 name Support Center

The following example disables the local directory on IP phones served by the Cisco Unified CME router:

telephony-service
no service local-directory
Example for Configuring Called-Name Display

This section contains the following examples:

Example for Called-Name Display for Voice Hunt Group

The following is an example of a voice hunt group configuration, where the CLI command `service dnis dir-lookup` allows the directory entry names to be displayed on the IP phones when a call is placed to a number declared using the CLI command `directory entry`. In this example, the pilot number is configured as 11...

This means that the user can dial the numbers 1100 to 1199. When the user dials 1111, the directory name `dept1` is displayed for the directory numbers 2001, 2002, and 2003. If user dials 1155, then the directory name `dept2` is displayed and if user dials 5500, then the directory name `dept3` is displayed for the directory numbers 2001, 2002, and 2003.

```plaintext
telephony-service
  service dnis dir-lookup
  directory entry 1 1111 name dept1
  directory entry 2 1155 name dept2
  directory entry 3 5500 name dept3

voice hunt-group 1 sequential
  pilot 11..
  final 8888
  timeout 10
```

Example for Configuring First Ephone-dn in the Overlay Set

The following example shows a configuration for three phones that use the same set of overlaid ephone-dns for each phone’s button 1.

```plaintext
telephony-service
  service dnis overlay

ephone-dn 1
  number 18005550100

ephone-dn 2
  name department1
  number 18005550101

ephone-dn 3
  name department2
  number 18005550102

ephone 1
  button 1o1,2,3

ephone 2
  button 1o1,2,3

ephone 3
  button 1o1,2,3
```

The default display for all three phones is the number of the first ephone-dn listed in the overlay set (18005550100). A call is made to the first ephone-dn (18005550100), and the caller ID (for example, 4085550123) is displayed on all three phones. The user for phone 1 answers the call. The caller ID (4085550123) remains displayed on phone 1, and the displays on phone 2 and phone 3 return to the default
Example for Configuring Directory Name for an Overlaid Ephone-dn Set

The following is an example of a configuration of overlaid ephone-dns that uses wildcards in the secondary numbers for the ephone-dns. The wildcards allow you to control the display according to the number that was dialed. The example is for a medical answering service with three IP phones that accept calls for nine doctors on one button. When a call to 5550001 rings on button 1 on ephone 1 through ephone 3, “doctor1” is displayed on all three ephones.

telephony-service
service dnis dir-lookup
directory entry 1 5550001 name doctor1
directory entry 2 5550002 name doctor2
directory entry 3 5550003 name doctor3
directory entry 4 5550010 name doctor4
directory entry 5 5550011 name doctor5
directory entry 6 5550012 name doctor6
directory entry 7 5550020 name doctor7
directory entry 8 5550021 name doctor8
directory entry 9 5550022 name doctor9
ephone-dn 1
 number 5500 secondary 555000.
ephone-dn 2
 number 5501 secondary 555001.
ephone-dn 3
 number 5502 secondary 555002.
ephone 1
 button 101,2,3
 mac-address 1111.1111.1111
ephone 2
 button 101,2,3
 mac-address 2222.2222.2222
ephone 3
 button 101,2,3
 mac-address 3333.3333.3333

For more information about making directory entries, see Local Directory, on page 641. For more information about overlaid ephone-dns, see Call Coverage Features, on page 1195.

Example for Configuring Directory Name for a Hunt Group with Overlaid Ephone-dns

The following example shows a hunt-group configuration for a medical answering service with two phones and four doctors. Each phone has two buttons, and each button is assigned two doctors’ numbers. When a patient calls 5550341, Cisco Unified CME matches the hunt-group pilot secondary number (555....), rings button 1 on one of the two phones, and displays “doctor1.”

telephony-service
 service dnis dir-lookup
 max-redirect 20
directory entry 1 5550341 name doctor1
directory entry 2 5550772 name doctor1
directory entry 3 5550263 name doctor3
directory entry 4 5550150 name doctor4

ephone-dn 1
number 1001

ephone-dn 2
number 1002

ephone-dn 3
number 1003

ephone-dn 4
number 104

ephone 1
button 1 o1,2
button 2 o3,4
mac-address 1111.1111.1111

ephone 2
button 1 o1,2
button 2 o3,4
mac-address 2222.2222.2222

ephone-hunt 1 peer
pilot 5100 secondary 555....
list 1001, 1002, 1003, 1004
final number 5556000
hops 5
preference 1
timeout 20
no-reg

For more information about hunt-group behavior, see Call Coverage Features, on page 1195. Note that wildcards are used only in secondary numbers and cannot be used with primary numbers. For more information about making directory entries, see Call Coverage Features, on page 1195. For more information about overlaid ephone-dns, see Call Coverage Features, on page 1195.

Example for Configuring Directory Name for Non-Overlaid Ephone-dns

The following is a configuration for three IP phones, each with two buttons. Button 1 receives calls from doctor1, doctor2, and doctor3, and button 2 receives calls from doctor4, doctor5, and doctor6.

telephony-service
service dnis dir-lookup
directory entry 1 5550001 name doctor1
directory entry 2 5550002 name doctor2
directory entry 3 5550003 name doctor3
directory entry 4 5550010 name doctor4
directory entry 5 5550011 name doctor5
directory entry 6 5550012 name doctor6
ephone-dn 1
number 1001 secondary 555000.
ephone-dn 2
number 1002 secondary 555001.
ephone 1
Example for Configuring Ephone-dn Name for Overlaid Ephone-dns

The following example shows three phones that have button 1 assigned to pick up three 800 numbers for three different catalogs.

The default display for all four phones is the number of the first ephone-dn listed in the overlay set (18005550000). A call is made to the first ephone-dn (18005550000), and the caller ID (for example, 4085550123) is displayed on all phones. The user for phone 1 answers the call. The caller ID (4085550123) remains displayed on phone 1, and the displays on phone 2 and phone 3 return to the default display (18005550000). A call to the second ephone-dn (18005550001) is made. The default display on phone 2 and phone 3 is replaced with the called ephone-dn's name (catalog1) and number (18005550001).

telephony-service
 service dnis overlay
 ephone-dn 1
 number 18005550000
 ephone-dn 2
 name catalog1
 number 18005550001
 ephone-dn 3
 name catalog2
 number 18005550002
 ephone-dn 4
 name catalog3
 number 18005550003
 ephone 1
 button 1o1,2,3,4
 ephone 2
 button 1o1,2,3,4
 ephone 3
 button 1o1,2,3,4

For more information about overlaid ephone-dns, see Call Coverage Features, on page 1195.
Feature Information for Directory Services

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 44: Feature Information for Directory Services

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Local Directory</td>
<td>12.0</td>
<td>The CLI command for accessing local directory service was enhanced to configure username and password, as service local-directory authenticate username password.</td>
</tr>
<tr>
<td>Directory Search</td>
<td>7.0/4.3</td>
<td>Number of entries supported in a search results list was increased from 32 to 240 when using directory search.</td>
</tr>
<tr>
<td>Called-Name Display</td>
<td>12.0</td>
<td>Support for Called-Name Display on phones configured under voice hunt group.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Called-Name Display was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Local Directory Service</td>
<td>4.0(2)</td>
<td>Added support for transferring a call directly to a selected number listed in the directory. If directory transfer is not supported, the user must press Transfer and then use the keypad to manually enter the number of the monitored line to transfer the incoming call.</td>
</tr>
<tr>
<td>External Directory Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support of directory services for SIP phones directly connected in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>The ability to add local directory entries in addition to those that are automatically added from phone configurations was introduced. Authentication for local directory display was introduced.</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>The ability to block the display of the local directory on phones was introduced.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>The specification of name format in the local directory was introduced.</td>
</tr>
</tbody>
</table>
Do Not Disturb

Information About Do Not Disturb

Do Not Disturb on SCCP Phone

The Do Not Disturb (DND) feature allows phone users to disable audible ringing for incoming calls. When DND is enabled, incoming calls do not ring on the phone, however there is visual alerting and the call information displays, and a call can be answered if desired. When a local IP phone calls another local IP phone that is in the DND state, the message “Ring out DND” displays on the calling phone indicating that the target phone is in the DND state.

Phone users can toggle DND on and off by using the DND softkey in the idle or ringing call states. A SCCP phone user can toggle DND on or off in the ringing state only if DND is not already active on the phone. If DND is already active when a new call comes in, the SCCP phone user cannot change the DND state by pressing the DND softkey.

If an SCCP phone user toggles DND on during an incoming call, the DND state remains active for the current call only. If a SIP phone user toggles DND on during an incoming call, the DND state remains active during the current call and for all future calls until the user explicitly toggles DND off.

Pressing the DND softkey during an incoming call forwards the call to the call-forward no answer destination if Call Forward No Answer is enabled. If Call Forward is not enabled, pressing the DND softkey disables audible ringing and visual alerting, but the call information is visible on the phone display.

In Cisco CME 3.2.1 and later versions, DND can be blocked from phones with the feature-ring function. A feature ring is a triple-pulse ring, a type of ring cadence in addition to internal call and external call ring cadences. For example, an internal call in the United States rings for 2 seconds on and 4 seconds off (single-pulse ring), and an external call rings for 0.4 seconds on, 0.2 seconds off, 0.4 seconds on, and 0.2 seconds off (double-pulse ring).

The triple-pulse ring is used as an audio identifier for phone users. For example, each salesperson in a sales department could have an IP phone with a button sharing the same set of ephone-dns with the sales staff and another button for their private line for preferred customers. To help a salesperson identify an incoming call
to his or her private line, the private line can be configured with the feature-ring function. You can disable the DND function on feature-ring lines. In the preceding example, salespeople could activate DND on their phones and still hear calls to their private lines.

Do Not Disturb on SIP Phone

In Cisco Unified CME 7.1 and later versions, the Do Not Disturb (DND) feature for SIP phones prevents incoming calls from audibly ringing a phone. When DND is enabled, the phone flashes an alert to visually indicate an incoming call instead of ringing and the call can be answered if desired. The message “Do Not Disturb is active” displays on the phone and calls are logged to the Missed Calls directory.

In versions earlier than Cisco Unified CME 7.1, the DND feature blocks incoming calls to a SIP phone with a busy tone. Cisco Unified CME rejects calls to all lines on the phone and plays a busy tone to the caller. Received calls are not logged to the Missed Calls directory on the phone.

DND applies to all lines on the phone. If DND and Call Forward All are both enabled on a phone, Call Forward All takes precedence on incoming calls.

You must enable DND for a SIP phone through Cisco Unified CME. The DND softkey displays by default on supported SIP phones in both the Ringing and idle states. You can remove or change the order of this softkey using a voice register template.

A phone user can toggle DND on and off at the phone by using the DND softkey. If a SIP phone user activates DND during an incoming call, the DND state remains active during the current call and for all future calls until the user explicitly toggles DND off.

If a phone user toggles DND on or off at the phone, Cisco Unified CME restores the DND state after the phone resets or restarts, if you save the running configuration before Cisco Unified CME reboots.

For configuration information, see **Configure Do Not Disturb on SIP Phones**, on page 665.

Table 45: DND Feature Comparison for SIP Phones, on page 662 compares the DND configuration for SIP phones with different phone load versions:

<table>
<thead>
<tr>
<th></th>
<th>Cisco Unified IP Phone 7911, 7941, 7961, 7970, or 7971 with 8.3 Phone Load</th>
<th>Cisco Unified IP Phone 7911, 7941, 7961, 7970, or 7971 with 8.2 Phone Load or Cisco Unified IP Phone 7940 or 7960</th>
</tr>
</thead>
<tbody>
<tr>
<td>DND support</td>
<td>dnd command in voice register pool mode</td>
<td>dnd command in voice register pool mode</td>
</tr>
<tr>
<td>DND softkey display</td>
<td>softkey idle and softkey ringIn command in voice register template mode</td>
<td>dnd-control command in voice register template mode</td>
</tr>
<tr>
<td>Behavior when configured</td>
<td>Ringer is turned off for incoming calls. Visual alerting is provided.</td>
<td>Call is rejected and busy tone is played to the caller.</td>
</tr>
</tbody>
</table>
Configure Do Not Disturb

Blocking Do Not Disturb on SCCP Phone

To block DND on phones that have buttons configured for feature ringing, perform the following steps. DND is enabled by using the DND softkey on Cisco Unified IP phones that support softkeys.

Restriction

- Phone users cannot enable DND for a shared line in a hunt group. The softkey displays in the idle and ringing states but does not enable DND for shared lines in hunt groups.

Before you begin

- Cisco Unified 3.2.1 or a later version.
- Phone line must be configured for feature ring with the button f command.
- Call-forwarding no-answer must be set for a phone to use DND to forward calls. For configuration information, see Configure Call Transfer and Forwarding, on page 1134. No other configuration is necessary for basic DND.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. no dnd feature-ring
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 10</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enables ringing on phone buttons configured for feature ring when the phone is in DND mode.</td>
</tr>
<tr>
<td>no dnd feature-ring</td>
<td>Enables ringing on phone buttons configured for feature ring when the phone is in DND mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# no dnd feature-ring</td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# end</td>
</tr>
</tbody>
</table>

Example

In the following configuration example, when DND is activated on ephone 1 and ephone 2, button 1 will ring, but button 2 will not.

```plaintext
ephone-dn 1
   number 1001

ephone-dn 2
   number 1002

ephone-dn 10
   number 1110
   preference 0
   no huntstop

ephone-dn 11
   number 1111
   preference 1

ephone 1
   button 1f1
   button 2o10,11
   no dnd feature-ring

ephone 2
   button 1f2
   button 2o10,11
   no dnd feature-ring
```

Verify Do Not Disturb on SCCP Phones

show ephone dnd

Use this command to display a list of SCCP phones that have DND enabled.

```plaintext
Router# show ephone dnd
ephone-1 Mac:0007.0EA6.353A TCP socket:[1] activeLine:0 REGISTERED
   mediaActive:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0
   IP:1.2.205.205 52486 Telecaster 7960  keepalive 2729 max_line 6 DnD
   button 1: dn 11 number 60011 CH1 IDLE
```
Configure Do Not Disturb on SIP Phones

To enable the Do Not Disturb (DND) feature on a SIP phone, perform the following steps.

Restriction

- In versions earlier than Cisco Unified CME 7.1, you enable the DND softkey on SIP phones by using the `dnd-control` command.
- If you enable DND on the phone and remove the DND softkey, the user cannot toggle DND off at the phone.

Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE

- For SIP phones using firmware 8.3 or a later version, the DND feature prevents calls from ringing; it does not block calls or play a busy tone to the caller.
- If DND is disabled by a phone user, it is not enabled after the phone resets or restarts. DND must be enabled both in Cisco Unified CMEand by using the DND softkey on the phone.

Before you begin

- Cisco CME 3.4 or a later version.
- Cisco Unified CME 7.1 or a later version to use the DND softkey.
- Call-forwarding busy must be set for a SIP IP phone to use DND to forward calls. For configuration information, see *Configure Call Transfer and Forwarding*, on page 1134.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register template template-tag`
4. `softkeys idle { Cfwdall | DND | Gpickup | Newcall | Pickup | Redial }`
5. `softkeys ringIn { Answer | DND }`
6. `exit`
7. `voice register pool phone-tag`
8. `dnd`
9. `template template-tag`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register template 5</td>
<td></td>
</tr>
<tr>
<td>• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
<td></td>
</tr>
<tr>
<td>Step 4 softkeys idle { Cfwdall } { DND } { Gpickup } { Newcall } { Pickup } { Redial }</td>
<td>Modifies the order and type of softkeys that display on a SIP phone during the idle call state.</td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# softkeys idle</td>
<td></td>
</tr>
<tr>
<td>Step 5 softkeys ringIn { Answer } { DND }</td>
<td>Modifies the order and type of softkeys that display on a SIP phone during the ringing call state.</td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# softkeys ringIn dnd answer</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 voice register pool phone-tag</td>
<td>Enters voice register pool configuration mode to set parameters for the SIP phone.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 1</td>
<td></td>
</tr>
<tr>
<td>Step 8 dnd</td>
<td>Enables DND on the phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# dnd</td>
<td></td>
</tr>
<tr>
<td>• If Call Forward No Answer is not configured for the extension, pressing the DND softkey mutes the ringer for incoming calls.</td>
<td></td>
</tr>
<tr>
<td>Step 9 template template-tag</td>
<td>Applies the ephone template to the phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# template 5</td>
<td></td>
</tr>
<tr>
<td>• template-tag—Unique identifier of the template that you created in Step 3, on page 666.</td>
<td></td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>
Example

The following example shows DND is enabled on phone 130, and the DND softkey is modified in template 6, which is assigned to the phone:

voice register template 6
 softkeys idle Gpickup Pickup DND Redial
 softkeys ringIn DND Answer

voice register pool 130
 id mac 001A.A11B.500E
 type 7941
 number 1 dn 30
 template 6
dnd

Where to Go Next

Agent Status Control for Ephone Hunt Groups and Cisco Unified CME B-ACD

Ephone hunt group agents can control their ready/not-ready status (their ability to receive calls) using the DND function or the HLog function of their phones. When they use the DND softkey, they do not receive calls on any extension on their phones. When they use the HLog softkey, they do not receive calls on hunt group extensions, but they do receive calls on other extensions. For more information on agent status control and the HLog function, see Call Coverage Features, on page 1195.

Call Forwarding

To use the DND softkey to forward calls, enable call-forwarding no-answer for SCCP phones or call-forward busy for SIP IP phones. See Configure Call Transfer and Forwarding, on page 1134.

Feature Access Codes (FACs)

DND can be activated and deactivated using a feature access code (FAC) instead of the DND softkey when standard or custom FACs are enabled. The following is the standard FAC for DND:

- DND **7

See Feature Access Codes, on page 733.

Softkey Display

You can remove or change the position of the DND softkey. See Customize Softkeys, on page 897.

Feature Information for Do Not Disturb

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 46: Feature Information for Do Not Disturb

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Not Disturb</td>
<td>7.1</td>
<td>Enhanced DND support on SIP phones to allow incoming calls to visually flash an alert.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for Do-not-disturb (DND) softkey on SIP phones.</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
<td>DND bypass for feature-ring phones was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>DND was introduced.</td>
</tr>
</tbody>
</table>

Prerequisites for Enhanced 911 Services

- SCCP or SIP phones must be registered to Cisco Unified CME.
- At least one CAMA or ISDN trunk must be configured from Cisco Unified CME to each of the 911 service provider’s public safety answering point (PSAP).
- An Enhanced 911 network must be designed for each customer’s voice network.
- Cisco Unified CME has an FXS, FXO, SIP, or H.323 trunk interface configured.

Cisco Unified CME

- Cisco Unified CME 4.2 or a later version.

Cisco Unified CME in SRST Fallback Mode

- Cisco Unified CME 4.1 or a later version, configured in SRST fallback mode. See SRST Fallback Mode, on page 1479.

Restrictions for Enhanced 911 Services

- Enhanced 911 Services for Cisco Unified CME does not interface with the Cisco Emergency Responder.
• The information about the most recent phone that called 911 is not preserved after a reboot of Cisco Unified CME.

• Cisco Emergency Responder does not have access to any updates made to the emergency call history table when remote Cisco Unified IP phones are in SRST fallback mode. Therefore, if the PSAP calls back after the IP phones register back to Cisco Unified Communications Manager, Cisco Emergency Responder has no history of those calls. As a result, those calls are not routed to the original 911 caller. Instead, the calls are routed to the default destination that is configured on Cisco Emergency Responder for the corresponding ELIN.

• For Cisco Unified Wireless 7920 and 7921 IP phones, a caller’s location can only be determined by the static information configured by the system administrator. For more information, see Precautions for Mobile Phones, on page 675.

• The extension numbers of 911 callers can be translated to only two emergency location identification numbers (ELINs) for each emergency response location (ERL). For more information, see Overview of Enhanced 911 Services, on page 670.

• Using ELINs for multiple purposes can result in unexpected interactions with existing Cisco Unified CME features. These multiple uses of an ELIN can include configuring an ELIN for use as an actual phone number (ephone-dn, voice register dn, or FXS destination-pattern), a Call Pickup number, or an alias rerouting number. For more information, see Multiple Usages of an ELIN, on page 677.

• Your configuration of Enhanced 911 Services can interact with existing Cisco Unified CME features and cause unexpected behavior. For a complete description of interactions between Enhanced 911 Services and existing Cisco Unified CME features, see Interactions with Existing Cisco Unified CME Features, on page 677.

Information About Enhanced 911 Services

Overview of Enhanced 911 Services

Enhanced 911 Services enable 911 operators to:

• Immediately pinpoint the location of the 911 caller based on the calling number

• Callback the 911 caller if a disconnect occurs

Before this feature was introduced, Cisco Unified CME supported only outbound calls to 911. With basic 911 functionality, calls were simply routed to a public safety answering point (PSAP). The 911 operator at the PSAP then had to verbally gather the emergency information and location from the caller, before dispatching a response team from the ambulance service, fire department, or police department. Calls could not be routed to different PSAPs, based on the specific geographic areas that they cover.

With Enhanced 911 Services, 911 calls are selectively routed to the closest PSAP based on the caller’s location. In addition, the caller’s phone number and address automatically display on a terminal at the PSAP. Therefore, the PSAP can quickly dispatch emergency help, even if the caller is unable to communicate the location. Also, if the caller disconnects prematurely, the PSAP has the information it needs to contact the 911 caller.

To use Enhanced 911 Services, you must define an emergency response location (ERL) for each of the geographic areas needed to cover all of the phones supported by Cisco Unified CME. The geographic specifications for ERLs are determined by local law. For example, you might have to define an ERL for each
floor of a building because an ERL must be less than 7000 square feet in area. Because the ERL defines a known, specific location, this information is uploaded to the PSAP’s database and is used by the 911 dispatcher to help the emergency response team to quickly locate a caller.

To determine which ERL is assigned to a 911 caller, the PSAP uses the caller’s unique phone number, which is also known as the emergency location identification number (ELIN). Before you can use Enhanced 911 Services you must supply the PSAP with a list of your ELINs and street addresses for each ERL. This information is saved in the PSAP’s automatic location identification (ALI) database. Typically, you give this information to the PSAP when your phone system is installed.

With the address information in the ALI database, the PSAP can find the caller’s location and can also use the ELIN to callback the 911 caller within a specified time limit. This limit applies to the Last Caller table, which provides the PSAP with the 911 caller’s ELIN. If no time limit is specified for the Last Caller table, the default expiry time is three hours.

In addition to saving call formation in the temporary Last Caller table, you can configure permanent call detail records. You can view the attributes in these records from RADIUS accounting, the syslog service, or Cisco IOS `show` commands.

You have the option of configuring zero, one, or two ELINs for each ERL. If you configure two ELINs, the system uses a round-robin algorithm to select which ELIN is sent to the PSAP. If you do not define an ELIN for an ERL, the PSAP sees the original calling number. You may not want to define an ELIN if Cisco Unified CME is using direct-inward-dial numbers or the call is from another Cisco voice gateway that has already translated the extension to an ELIN.

 Optionally define a default ELIN that the PSAP can use if a 911 caller’s IP phone’s address does not match the IP subnet of any location in any zone. This default ELIN can be an existing ELIN that is already defined for one of the ERLs or it can be a unique ELIN. If no default ELIN is defined and the 911 caller’s IP Address does not match any of the ERLs’ IP subnets, a syslog message is issued stating that no default ELIN is defined, and the original ANI remains intact.

You can also define a designated callback number that is used when the callback information is lost in the Last Caller table because of an expiry timeout or system restart. You can use this designated callback number if the PSAP cannot reach the 911 caller at the caller’s ELIN or the default ELIN for any other reason. You can further customize your system by specifying the expiry time for data in the Last Caller table and by enabling syslog messages that announce all emergency calls.

For large installations, you can optionally specify that calls from specific ERLs are routed to specific PSAPs. This is done by configuring emergency response zones, which lists the ERLs within each zone. This list of ERLs also includes a ranking of the locations which controls the order of ERL searches when there are multiple PSAPs. You do not need to configure emergency response zones if all 911 calls on your system are routed to a single PSAP.

One or more ERLs can be grouped into a zone which could be equivalent to the area serviced by a PSAP. When an outbound emergency call is placed, configured emergency response zones allow the searching of a subset of the ERLs in any order. The ERLs can be ranked in the order of desired usage.

Zones are also used to selectively route 911 calls to different PSAPs. You can configure selective routing by creating a zone with a list of unique locations and assigning each zone to a different outbound dial peer. In this case, zones route the call based on the caller’s ERL. When an emergency call is made, each dial peer matching the called number uses the zone’s list of locations to find a matching IP subnet to the calling phone’s IP address. If an ERL and ELIN are found, the dial peer’s interface is used to route the call. If no ERL or ELIN is found, the next matched dial peer checks its zone.
If a caller’s IP address does not match any location in its dial-peers zone, the last dial peer that matched is used for routing and the default ELIN is used.

If you want 911 calls from any particular phone to always use the same dial peer when you have multiple dial peers going to the same destination-pattern (911) and the zones are different, you must configure the preferred dial peer to be the highest priority by setting the preference field.

Duplicate location tags are not allowed in the same zone. However, the same location tag can be defined in multiple zones. You are allowed to enter duplicate location priorities in the same zone, however, the existing location’s priority is then increased to the next number. For example, if you configure “location 36 priority 5” followed by “location 19 priority 5,” location 19 has priority 5 and location 36 becomes priority 6. Also, if two locations are assigned priority 100, rather than bump the first location to priority 101, the first location becomes the first nonprioritized location.

Figure 24: Implementation of Enhanced 911 for Cisco Unified CME, on page 672 shows an example configuration for 911 services. In this example, the phone system handles calls from multiple floors in multiple buildings. Five ERLs are defined, with one ELIN defined for each ERL. At the PSAP, the ELIN is used to find the caller’s physical address from the ALI database. Building 2 is closer to the PSAP in San Francisco and Building 40 is closer to the PSAP in San Jose. Therefore, in this case, we recommend that you configure two emergency response zones to ensure that 911 calls are routed to the PSAP closest to the caller. In this example, you can configure an emergency response zone that includes all of the ERLS in building 2 and another zone that includes the ERLs in building 40. If you choose to not configure emergency response zones, 911 calls are routed based on matching the destination number configured for the outgoing dial peers.

Figure 26: Implementation of Enhanced 911 for Cisco Unified CME

Call Processing for E911 Services

When a 911 call is received by Cisco Unified CME, the initial call processing is the same as for any other call. Cisco Unified CME takes the called-number and searches for dial peers that can be used to route the call to that called-number.
The Enhanced 911 feature also analyzes the outgoing dial peer to see if it is going to a PSAP. If the outgoing dial peer is configured with the emergency response zone command, the system is notified that the call needs Enhanced 911 handling. If the outgoing dial peer is not configured with the emergency response zone command, the Enhanced 911 functionality is not activated and the caller’s number is not translated to an ELIN.

When the Enhanced 911 functionality is activated, the first step in Enhanced 911 handling is to determine which ERL is assigned to the caller. There are two ways to determine the caller’s ERL.

- Explicit Assignment—If a 911 call arrives on an inbound dial peer that has an ERL assignment, this ERL is automatically used as the caller’s location.
- Implicit Assignment—If a 911 call arrives from an IP phone, its IP address is determined and Enhanced 911 searches for the IP address of the caller’s phone in one of the IP subnets configured in the ERLs. The ERLs are stored as an ordered list according to their tag numbers, and each subnet is compared to the caller’s IP address in the order listed.

After the caller’s ERL is determined, the caller’s number is translated to that ERL’s ELIN. If no ERLs are implicitly or explicitly assigned to a call, you can define a default ERL for IP phones. This default ERL does not apply to nonIP-phone endpoints, such as phones on VoIP trunks or FXS/FXO trunks.

After an ELIN is determined for the call, the following information is saved to the Last Caller table:

- Caller’s ELIN
- Caller’s original extension
- Time the call originated

The Last Caller table contains this information for the most recent emergency callers from each ERL. A caller’s information is purged from the table when the specified expiry time has passed after the call was originated. If no time limit is specified, the default expiry time is three hours.

After the 911 call information is saved to the Last Caller table, the system determines whether an emergency response zone is configured that contains the caller’s ERL. If no emergency response zone is configured with the ERL, all ERLs are searched sequentially to match the caller’s IP address and then route the 911 call to the appropriate PSAP. If an ERL is included in a zone, the 911 call is routed to the PSAP associated with that zone.

After the 911 call is routed to appropriate PSAP, Enhanced 911 processing is complete. Call processing then proceeds as it does for basic calls, except that the ELIN replaces the original calling number for the outbound setup request.

Figure 25: Processing a 911 Call, on page 674 summarizes the procedure for processing a 911 call.
The 911 operator is unable to find information about a call in the Last Caller table if the router was rebooted or specified expiry time (three hours by default) has passed after the call was originated. If this is the case, the 911 operator hears the reorder tone. To prevent the 911 operator from getting this tone, you can configure the default callback as described in Customize E911 Settings, on page 690. Alternately, you can configure a call forward number on the dial peer that goes to an operator or primary contact at the business.

Because the 911 callback feature tracks the last caller by its extension number, if you change the configuration of your ephone-dns in-between a 911 call and a 911 callback and within the expiry time, the PSAP might not be able to successfully contact the last 911 caller.

If two 911 calls are made from different phones in the same ERL within a short period of time, the first caller’s information is overwritten in the Last Caller table with the information for the second caller. Because the table can contain information about only one caller from each ERL, the 911 operator does not have the information needed to contact the first caller.

In most cases, if Cisco Emergency Responder is configured, you should configure Enhanced 911 Services with the same data for the ELIN and ERL as used by Cisco Emergency Responder.
Precautions for Mobile Phones

Emergency calls placed from phones that have been removed from their primary site might not be answered by local safety authorities. IP phones should not be used to place emergency calls if removed from the site where it was initially configured. Therefore, we recommend that you require your mobile phone users to agree to a policy similar to the one stated below.

Telecommuters, remote office, and traveling personnel must place emergency calls on a locally configured hotel, office, or home phone (in other words, their landline). If they must use a remote IP phone for emergency calls while away from their configured site, they must be prepared to provide specific information regarding their location (their country, city, state, street address, and so on) to the answering safety authority or security operations center personnel.

By accepting this policy your mobile phone users are confirming that they:

- Understand this advisory
- Agree to take reasonable precautions to prevent use of any remote IP phone device for emergency calls when it is removed from its configured site

By not responding to or declining to accept this policy, your mobile phone users are confirming that they understand that all remote IP phone devices associated with them will be disconnected, and no future requests for these services will be fulfilled.

Plan Your Implementation of Enhanced 911 Services

Before you configure Enhanced 911 Services for Cisco Unified CME:

Step 1
Make a list of your sites that are serviced by Cisco Unified CME, and the PSAPs serving each site.

Be aware that you must use a CAMA/PRI interface to connect to each PSAP. Table 47: List of Sites and PSAPs, on page 675 shows an example of the information that you need to gather.

Table 47: List of Sites and PSAPs

<table>
<thead>
<tr>
<th>Building Name and Address</th>
<th>Responsible PSAP</th>
<th>Interface to which Calls Are Routed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 2, 201 Maple Street, San Francisco</td>
<td>San Francisco, CA</td>
<td>Port 1/0:D</td>
</tr>
<tr>
<td>Building 40, 801 Main Street, San Jose</td>
<td>San Jose, CA</td>
<td>Port 1/1:D</td>
</tr>
</tbody>
</table>

Step 2
Use local laws to determine the number of ERLs you need to configure.

According to the National Emergency Number Association (NENA) model legislation, make the location specific enough to provide a reasonable opportunity for the emergency response team to quickly locate a caller anywhere within it. Table 48: ERL Calculation, on page 675 shows an example.

Table 48: ERL Calculation

<table>
<thead>
<tr>
<th>Building</th>
<th>Size in Square Feet</th>
<th>Number of Floors</th>
<th>Number of ERLs Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 2</td>
<td>200,000</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Step 3
(Optional) Assign one or two ELINs to each ERL.
You must contact your phone service provider to request phone numbers that are designated as ELINs.

Step 4
(Optional) Assign each of your ERLs to an emergency response zone to enable 911 calls to be routed to the PSAP that is closest to the caller. Use the **voice emergency response zone** command.

Step 5
Configure one or more dial peers for your 911 callers with the **emergency response zone** command.
You might need to configure multiple dial peers for different destination-patterns.

Step 6
Configure one or more dial peers for the PSAP’s 911 callbacks with the **emergency response callback** command.

Step 7
Decide what method to use to assign ERLs to phones.
You have the following choices:

- For a group of phones that are on the same subnet, you can create an IP subnet in the ERL that includes each phone’s IP address. Each ERL can have one or two unique IP subnets. This is the easiest option to configure.
Table 49: Definitions of ERL, Description, IP Subnets, and ELIN, on page 676 shows an example.

<table>
<thead>
<tr>
<th>ERL Number</th>
<th>Description</th>
<th>IP Address Assignment</th>
<th>ELIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Building 2, 1st floor</td>
<td>10.5.124.xxx</td>
<td>408 555-0142</td>
</tr>
<tr>
<td>2</td>
<td>Building 2, 2nd floor</td>
<td>10.7.xxx.xxx</td>
<td>408 555-0143</td>
</tr>
<tr>
<td>3 & 4</td>
<td>Building 2, 3rd floor</td>
<td>10.8.xxx.xxx and 10.9.xxx.xxx</td>
<td>408 555-0144 and 408 555-0145</td>
</tr>
</tbody>
</table>

- You can assign an ERL explicitly to a group of phones by using the ephone-template or voice register template configurations. Instead of assigning an ERL to phones individually, you can use these templates to save time if you want to apply the same set of features to several SCCP phones or SIP phones.

- You can assign an ERL to a phone individually. Depending on which type of phone you have, you can use one of three methods. You can assign an ERL to a phone’s:
 - Dial-peer configuration
 - Ephone configuration (SCCP phones)
 - Voice register pool configuration (SIP phones)

Table 50: Explicit ERL Assignment Per Phone, on page 676 shows examples of each of these options.

<table>
<thead>
<tr>
<th>Phone Configuration</th>
<th>ERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-peer voice 213 pots</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 49: Definitions of ERL, Description, IP Subnets, and ELIN

Table 50: Explicit ERL Assignment Per Phone
Interactions with Existing Cisco Unified CME Features

Enhanced 911 Services interacts with several Cisco Unified CME features. The interactions with each of the following features are described in separate sections below:

Note
Your version of Cisco Unified CME may not support all of these features.

Multiple Usages of an ELIN

Note
We recommend that you do not use ELINs for any other purpose because of possible unexpected interactions with existing Cisco Unified CME features.

Examples of using ELINs for other purposes include configuring an ELIN for use as an actual phone number (ephone-dn, voice register dn, FXS destination-pattern), a Call Pickup number, or an alias rerouting number. Using ELINs as an actual phone number causes problems when calls are made to that number. If a 911 call occurs and the last caller information has not expired from the Last Caller table, any outside callers will reach the last 911 caller instead of the actual phone. We recommend that you do not share the phone numbers used for ELINs with real phones.

There is no impact on outbound 911 calls if you use the same number for an ELIN and a real phone number.

Number Translation

The Enhanced 911 feature translates the calling number to an ELIN during an outbound 911 call, and translates the called-number to the last caller’s extension during a 911 callback (when the PSAP makes a callback to the 911 caller). Alternative methods of number translation can conflict with the translation done by the Enhanced 911 software, such as:

- **Dialplan-pattern**—Prefixes a pattern to an extension configured under telephony-service

Phone Configuration

<table>
<thead>
<tr>
<th></th>
<th>ERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial-peer voice 214 voip</td>
<td>4</td>
</tr>
<tr>
<td>Ephone 100</td>
<td>3</td>
</tr>
<tr>
<td>Voice register pool 1</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 8 *(Optional)* Define a default ELIN to be sent to the PSAP for use if a 911 caller’s IP phone’s address does not match the IP subnet of any location in any zone.

Step 9 *(Optional)* Define a designated callback number that is used if the callback information is removed from the Last Caller table because of an expiry timeout or system restart.

Step 10 *(Optional)* Change the expiry time for data in the Last Caller table from the default time of three hours.

Step 11 *(Optional)* Enable RADIUS accounting or the syslog service to permanently record call detail records.
• Num-expansion—Expands extensions to full E.164 numbers
• Voice-port translation of called and calling numbers
• Outgoing number translation for dial peers
• Translate-profile for dial peers
• Voice translation profiles done for the dial peer, voice-port, POTS voice service, trunk group, trunk group member, voice source-group, call-manager-fallback, and ephone-dn
• Ephone-dn translation
• Voice register dn’s outgoing translation

Configuring these translation features impacts the Enhanced 911 feature if they translate patterns that are part of your ELINs’ patterns. For an outgoing 911 call, these features might translate an Enhanced 911 ELIN to a different number, giving the PSAP a number they cannot look-up in their ALI databases. If the 911 callback number (ELIN) is translated before Enhanced 911 callback processing, the Enhanced 911 feature is unable to find the last caller’s history.

Call Transfer

If a phone in a Cisco Unified CME environment performs a semi attended or consultative transfer to the PSAP that involves another phone that is in a different ERL, the PSAP will use the wrong ELIN. The PSAP will see the ELIN of the transferor party, not the transferred party.

There is no impact on 911 callbacks (calls made by the PSAP back to a 911 caller) or transfers that are made by the PSAP.

A 911 caller can transfer the PSAP to another party if there is a valid reason to do so. Otherwise, we recommend that the 911 caller remain connected to the PSAP at all times.

Call Forward

There is no impact if an IP phone user calls another phone that is configured to forward calls to the PSAP.

If the PSAP makes a callback to a 911 caller that is using a phone that has Call Forward enabled, the PSAP is redirected to a party that is not the original 911 caller.

Call Blocking Features

Outbound 911 calls can be blocked by features such as After-Hours Call Blocking if the system administrator does not create an exception to 911 calls.

911 callbacks will not reach the 911 caller if the phone is configured with a blocking feature (for example, Do Not Disturb).

Call Waiting

After a 911 call is established with a PSAP, call waiting can interrupt the call. The 911 caller has the choice of putting the operator on hold. Although holding is not prohibited, we recommend that the 911 caller remain connected to the PSAP until the call is over.
Three-Way Conference

Although the 911 caller is allowed to activate three-way conferencing when talking to the PSAP, we recommend that the 911 caller remain connected privately to the PSAP until the call is over.

Dial-Peer Rotary

If a 911 caller uses a rotary phone, you must configure each dial peer with the emergency response zone command for the call to be processed as an Enhanced 911 call. Otherwise, calls received on dial peers that are not configured for Enhanced 911 functionality are treated as regular calls and there is no ELIN translation.

Do not configure two dial peers with the same destination-pattern to route to different PSAPs. The caller’s number will not be translated to two different ELINs and the two dial peers will not route to different PSAPs. However, you can route calls to different PSAPs if you configure the dial peers with different destination-patterns (for example, 9911 and 95105558911). You might need to use the number translation feature or add prefix/forward-digits to change the 95105558911 to 9911 for the second dial peer if a specific called-number is required by the service provider.

Caution

We recommend that you do not configure the same dial peer using both the emergency response zone and emergency response callback commands.

Dial Plan Patterns

Dial plan patterns expand the caller’s original extension number into a fully qualified E.164 number. If an ERL is found for a 911 caller, the expanded number is translated to an ELIN.

For 911 callbacks, the called-number is translated to the 911 caller’s expanded number.

Caller ID Blocking

When you set Caller ID Blocking for an ephone or voice-port configuration, the far-end gateway device blocks the display of the calling party information. This feature is overridden when an Enhanced 911 call is placed because the PSAP must receive the ELIN (the calling party information).

The Caller ID Blocking feature does not impact callbacks.

Shared Line

The Shared Line feature allows multiple phones to share a common directory number. When a shared line receives an incoming call, each phone rings. Only the first user that answers the call is connected to the caller.

The Shared Line feature does not affect outbound 911 calls.

For 911 callbacks, all phones sharing the directory number will ring. Therefore, someone who did not originate the 911 call might answer the phone and get connected to the PSAP. This could cause confusion if the PSAP needs to talk only with the 911 caller.
Configure Enhanced 911 Services

Configure the Emergency Response Location

Perform this procedure to create the ERL. The ERL defines an area that allows emergency teams to quickly locate a caller.

The ERL can define zero, one, or two ELINs. If one ELIN is defined, this ELIN is always used for phones calling from this ERL. If you define two ELINs, the system alternates using each ELIN for phones calling from this ERL. If you define no ELINs and phones use this ERL, the outbound calls do not have their calling numbers translated. The PSAP sees the original calling numbers for these 911 calls.

If multiple ERLs are created, the Enhanced 911 software uses the ERL tag number to determine which ELIN to use. The Enhanced 911 software searches the ERLs sequentially from tag 1 to 2147483647. The first ERL that has a subnet mask encompassing the caller’s IP address is used for ELIN translation.

Before you begin

- Cisco Unified CME 4.1 or a later version.
- The `address` and `name` commands are supported in Cisco Unified CME 4.2 and later versions.
- Plan your 911 configuration as described in Plan Your Implementation of Enhanced 911 Services, on page 675

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice emergency response location tag`
4. `elin [1 | 2] E.164-number`
5. `address address`
6. `name name`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Enters emergency response location configuration mode to define parameters for an ERL.</td>
<td>voice emergency response location \textit{tag} \bigg\langle 3 \bigg\rangle</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config)# voice emergency response location 4</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Specifies the ELIN, an E.164 PSTN number that replaces the caller’s extension.</td>
<td>\textit{elin} \bigg\langle 1</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(cfg-emrgncy-resp-location)# elin 14085550100</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Defines a comma-separated string used for the automatic location identification (ALI) database upload of the caller’s address.</td>
<td>\textit{address} \bigg\langle 3 \bigg\rangle</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(cfg-emrgncy-resp-location)# address 1,604,5550100, ,184 ,Main St,Kansas City,KS,1,</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Defines a 30-character string used internally to identify or describe the emergency response location.</td>
<td>\textit{name} \bigg\langle 3 \bigg\rangle</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(cfg-emrgncy-resp-location)# name Bldg C, Floor 2</td>
</tr>
<tr>
<td>Step 7</td>
<td>Returns to privileged EXEC mode.</td>
<td>\textit{end} \bigg\langle 3 \bigg\rangle</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(cfg-emrgncy-resp-location)# end</td>
</tr>
</tbody>
</table>

Configure Locations under Emergency Response Zones

In the configuration of emergency response zones, a list of locations within a zone is created using location tags. The zone configuration allows a ranking of the locations which controls the order of ERL searches when there are multiple PSAPs. The \textit{zone} command is not used if all 911 calls on the system are routed to a single PSAP.
Before you begin

- Cisco Unified CME 4.2 or a later version
- Define your ERLs as described in Configure the Emergency Response Location, on page 680.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice emergency response zone tag
4. location location-tag [priority number]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice emergency response zone tag</td>
<td>Enters voice emergency response zone configuration mode to define parameters for an emergency response zone.</td>
</tr>
<tr>
<td>Example: Router(config)# voice emergency response zone 10</td>
<td>• tag—Range is 1-100.</td>
</tr>
<tr>
<td>Step 4 location location-tag [priority number]</td>
<td>Each location tag must correspond to a location tag created using the voice emergency response location command.</td>
</tr>
<tr>
<td>Example: Router(cfg-emrgncy-resp-zone)# location 8 priority 2</td>
<td>• number—(optional) Ranks the location in the zone list. Range is 1-100, with 1 being the highest priority.</td>
</tr>
<tr>
<td></td>
<td>• Repeat this command for each location included in the zone.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(cfg-emrgncy-resp-zone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure Outgoing Dial Peers for Enhanced 911 Services

Depending on whether you decided to configure emergency response zones while you planned your 911 configuration as described in Plan Your Implementation of Enhanced 911 Services, on page 675, use one of the following procedures:
Configure Dial Peers for Emergency Calls

Perform this procedure to create a dial peer for emergency calls to the PSAP. The destination-pattern of this dial peer is usually some variation of 911, such as 9911. This dial peer uses the port number of the CAMA or PRI network interface card. The new command emergency response zone specifies that this dial peer translates the calling number of any outgoing call’s to an ELIN.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice number pots
4. destination-pattern n 911
5. prefix number
6. emergency response zone
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 dial-peer voice number pots</td>
<td>Enters dial-peer configuration mode to define parameters for an individual dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 911 pots</td>
<td></td>
</tr>
<tr>
<td>Step 4 destination-pattern n 911</td>
<td>Matches dialed digits to a telephony device. The digits included in this command specify the E.164 or private dialing plan telephone number. For Enhanced 911 Services, the digits are usually some variation of 911.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# destination-pattern 9911</td>
<td></td>
</tr>
<tr>
<td>Step 5 prefix number</td>
<td>(Optional) Includes a prefix that the system adds automatically to the front of the dial string before passing it to the telephony interface. For Enhanced 911 Services, the dial string is some variation of 911.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# prefix 911</td>
<td></td>
</tr>
<tr>
<td>Step 6 emergency response zone</td>
<td>Defines this dial peer as the one to use to route all ERLs defined in the system to the PSAP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# emergency response zone</td>
<td></td>
</tr>
</tbody>
</table>
Configure Dial Peers for Emergency Response Zones

You can selectively route a 911 call based on the ERL by assigning different zones to dial peers. The emergency response zone command identifies the dial peer that routes the 911 call and the voice interface to use. Only ERLs that are defined in the zone can be routed on the dial peer. Callers dialing the same emergency number are routed to different voice interfaces based on the zone of the ERL.

Before you begin

- Cisco Unified CME 4.2 or a later version
- Define your ERLs and emergency response zones as described in:
 - Configure the Emergency Response Location, on page 680
 - Configure Locations under Emergency Response Zones, on page 681

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice number pots
4. destination-pattern n911
5. prefix number
6. emergency response zone tag
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 dial-peer voice number pots</td>
<td>Enters dial-peer configuration mode to define parameters for an individual dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 911 pots</td>
<td></td>
</tr>
</tbody>
</table>
Configure a Dial Peer for Callbacks from the PSAP

Perform this procedure to create a dial peer for 911 callbacks from the PSAP. This dial peer enables the PSAP to use the ELIN to make callbacks. When a call arrives that matches this dial peer, the emergency response callback command instructs the system to find the last caller that used the ELIN and translate the destination number of the incoming call to the extension of the last caller.

SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice number pots
4. incoming called-number number
5. direct-inward-dial
6. emergency response callback
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Assign ERLs to Phones

You must specify an ERL for each phone. The type of phones that you have determines which of the following tasks you use to associate an ERL with your phones, as explained in Step 7 in Plan Your Implementation of Enhanced 911 Services, on page 675.

- To create an IP subnet in the ERL that includes each phone’s IP address, you must also configure each ERL to specify which phones are part of the ERL. See Assign an ERL to a Phone’s IP Subnet, on page 687. You can optionally specify up to two different subnets.

- To assign an ERL to a SIP phone, you must specify the ERL in the voice register pool configuration. See Assign an ERL to a SIP Phone, on page 687.

- To assign an ERL to a SCCP phone, you must specify the ERL in the ephone configuration. See Assign an ERL to a SCCP Phone, on page 688.

- To assign an ERL to a phone’s dial peer, you must specify the ERL in the dial-peer configuration. See Assign an ERL to a Dial Peer, on page 689.

Prerequisites for Assigning ERLs to Phones

Define your ERLs and emergency response zones as described in the Configure the Emergency Response Location, on page 680.
Assign an ERL to a Phone’s IP Subnet

Use this procedure when you have a group of phones that are on the same subnet. You can configure an ERL to be associated with one or two unique IP subnets. This indicates that all IP phones in a specific subnet use the ELIN defined in this ERL.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice emergency response location tag subnet [1 | 2] IPAddress-mask
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice emergency response location tag</td>
<td>Enters emergency response location configuration mode to define parameters for an ERL.</td>
</tr>
<tr>
<td>Example: Router(config)# voice emergency response location 4</td>
<td></td>
</tr>
<tr>
<td>Step 4 subnet [1</td>
<td>2] IPAddress-mask</td>
</tr>
<tr>
<td>Example: Router(cfg-emrgncy-resp-location)# subnet 1 192.168.0.0 255.255.0.0</td>
<td>• To include all IP phones on a single ERL, use the command subnet 1 0.0.0.0 0.0.0.0 to configure a default subnet. This subnet does not apply to nonIP-phone endpoints, such as phones on VoIP trunks or FXS/FXO trunks.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(cfg-emrgncy-resp-location)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assign an ERL to a SIP Phone

Perform this procedure if you chose to assign a specific ERL to a SIP phone instead of using the phone’s IP address to match a subnet defined for an ERL. For more information about this decision, see Step 7 in Plan Your Implementation of Enhanced 911 Services, on page 675.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool tag
4. emergency response location tag
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice register pool mode to define parameters for an individual voice register pool.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register pool 8</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Assigns an ERL to a phone’s voice register pool using an ERL’s tag.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)# emergency response location 12</td>
<td>• tag—Range is 1 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• If the ERL’s tag is not a configured tag, the phone is not associated to an ERL and the phone defaults to its IP address to find the inclusive ERL subnet.</td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in voice register template configuration mode and applied to one or more phones. The voice register pool configuration has priority over the voice register template configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assign an ERL to a SCCP Phone

Perform this procedure if you chose to assign an ERL to a SCCP phone instead of configuring an ERL to be associated with IP subnets. For more information about this decision, see Step 7 in Plan Your Implementation of Enhanced 911 Services, on page 675.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone tag
4. emergency response location tag
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone tag</td>
<td>Enters ephone configuration mode to define parameters for an individual ephone.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 224</td>
<td></td>
</tr>
<tr>
<td>Step 4 emergency response location tag</td>
<td>Assigns an ERL to a phone s ephone configuration using an ERL s tag.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# emergency response location 12</td>
<td>• tag—Range is 1 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• If the ERL’s tag is not a configured tag, the phone is not associated to an ERL and the phone defaults to its IP address to find the inclusive ERL subnet.</td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assign an ERL to a Dial Peer

Perform this procedure to assign an ERL to a FXS/FXO or VoIP dial peer. Because these interfaces do not have IP addresses associated with them, you must use this procedure instead of configuring an ERL to be associated with IP subnets. For more information about this decision, see Step 7 in Plan Your Implementation of Enhanced 911 Services, on page 675.
SUMMARY STEPS

1. enable
2. configure terminal
3. dial-peer voice tag type
4. emergency response location tag
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 dial-peer voice tag type</td>
<td>Enters dial peer configuration mode to define parameters for an individual dial peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial-peer voice 100 pots</td>
<td></td>
</tr>
<tr>
<td>Step 4 emergency response location tag</td>
<td>Assigns an ERL to a phone’s dial peer configuration using an ERL’s tag. The tag is an integer from 1 to 2147483647. If the ERL’s tag is not a configured tag, no translation occurs and no Enhanced 911 information is saved to the last emergency caller table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# emergency response location 12</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# end</td>
<td></td>
</tr>
</tbody>
</table>

Customize E911 Settings

The E911 settings you can customize are:

- **Elin**: The default ELIN. If a 911 caller’s IP phone address does not match the subnet of any location in any zone, the default ELIN is used to replace the original automatic number identification (ANI). The default ELIN can be already defined in one of the ERLs or can be unique. If a default ELIN is not defined and there is no match for the 911 caller’s IP address, the PSAP sees the ANI for callback purposes. A syslog message is sent requesting the default ELIN, and no caller location information is available to the PSAP.

- **Expiry**: The number of minutes a 911 call is associated to an ELIN in case of a callback from the 911 operator. The callback expiry can be changed from a default of 3 hours to any time between 2 minutes and 48 hours. The timer is started the moment the 911 call goes to the PSAP. The PSAP can call back the ELIN and reach the last caller within this expiry time.
• **Callback**: The default phone number to contact if a 911 callback cannot find the last 911 caller from the Last Caller table. This can happen if the callback occurs after a router has rebooted or if the expiration has elapsed.

• **Logging**: A syslog informational message is printed to the console every time an emergency call is made. Such a message is required for third party applications to send an e-mail or page to an in-house emergency administrator. This is a default feature that can be disabled using the `no logging` command. The following is an example of a syslog notification message:

```
%E911-5-EMERGENCY_CALL_PLACED: calling #[4085550100] called #[911] ELIN [4085550199]
```

Before you begin

• Cisco Unified CME 4.2 or a later version

SUMMARY STEPS

1. enable
2. configure terminal
3. voice emergency response settings
4. expiry time
5. callback number
6. logging
7. elin number
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice emergency response settings</td>
<td>Enters voice emergency response settings mode to define settings you can customize for E911 calls.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice emergency response settings</td>
<td></td>
</tr>
<tr>
<td>Step 4 expiry time</td>
<td>(Optional) Defines the time period (in minutes) that the emergency caller history information for each ELIN is stored in the Last Caller table. The time can be an integer in the range of 2 minutes to 2880 minutes. The default value is 180 minutes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-emrgncy-resp-settings)# expiry 300</td>
<td></td>
</tr>
</tbody>
</table>
Using the Address Command for Two ELINS

For ERLs that have two ELINs defined, you cannot use just one `address` field to have two address entries for each ELIN in the ALI database. Instead of entering the specific phone number, a key phrase is entered to represent each ELIN. The `show voice emergency address` command produces output that replaces the key phrase with the ELIN information and generates two lines of addresses.

To define the expression, use the keyword `elin` (context-insensitive), followed by a period, the starting position of the ELIN to use, followed by another period, and finally the ending position of the ELIN. For example:

```plaintext
address I,ELIN.1.3,ELIN.4.7,678,Alder Drive,Milpitas,CA,95035
```

In the example, the second parameter of `address` following I are digits 1-3 of each ELIN. The third parameter are digits 4-7 of each ELIN. When you enter the `show voice emergency address` command, the output will replace the key phrase as seen in the following:

```plaintext
I,408,5550101,678,Alder Drive,Milpitas,CA,95035
I,408,5550190,678,Alder Drive,Milpitas,CA,95035
```

Enable Call Detail Records

To conform to internal policy or external regulations, you may be required to save 911 call history data including the following information:

- Original caller’s extension
- ELIN information
- ERL information (the integer tag and the text name)
- Original caller’s phone IP address

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>callback number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-emrgncy-resp-settings)# callback 7500</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Defines the E.164 callback number (for example, a company operator or main help desk) if a 911 callback cannot find the last caller associated to the ELIN.</td>
</tr>
<tr>
<td>Step 6</td>
<td>logging</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-emrgncy-resp-settings)# no logging</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Enables syslog messages that announce every emergency call. The syslog messages can be tracked to send pager or e-mail notifications to an in-house support number. By default, logging is enabled. Use the no form of this command to disable logging.</td>
</tr>
<tr>
<td>Step 7</td>
<td>elin number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-emrgncy-resp-settings)# elin 4085550100</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the E.164 number to be used as the default ELIN if no ERL has a subnet mask that matches the current 911 caller’s IP phone address.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (cfg-emrgncy-resp-settings)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
These attributes are visible from the RADIUS accounting server and syslog server output, or by using the `show call history voice` command.

Note

You must enable the RADIUS server or the syslog server to display these details. See your RADIUS or syslog server documentation.

Output from a RADIUS Accounting Server

For RADIUS accounting, the emergency call information is under a feature-vsa record. The fields are:

- **EMR**: Emergency call
- **CGN**: Original calling number
- **ELIN**: Emergency line identification number; the translated number
- **CDN**: Called number
- **ERL**: Emergency response location tag number
- **ERLN**: Emergency response location name; the name entered for the ERL, if one exists
- **CIP**: Caller’s IP address; nonzero for implicit ERL assignments
- **ETAG**: ERL tag; nonzero for explicit ERL assignments

The following shows an output example from a RADIUS server:

```
```

Output from a Syslog Server

If gateway accounting is directed to the syslog server, a VOIP_FEAT_HISTORY system message appears. The feature-vsa parameters are the same ones described for RADIUS accounting.

The following shows an output example from a syslog server:

```
```

Output from the show call history voice Command

View emergency call information on the gateway using `show call active voice` and `show call history voice`. Some emergency call information is already in existing fields. The original caller’s number is under `OriginalCallingNumber`. The ELIN is at `TranslatedCallingNumber`. The four new fields are the ERL, ERL name, the calling phone’s IP address, and any explicit ERL assignments. These fields only appear if an ELIN translation occurs. For example, any 911 calls from an ERL with no ELIN defined do not print the four emergency fields in the `show call` commands. If no ERLs match the calling phone and the default ELIN is used, the ERL field displays *No Match*.
The following shows an output example using the `show call history voice` command:

```
EmergencyResponseLocation=3 (Cisco Systems 3)
ERLAssignment=3
DeviceIPAddress=1.5.6.202
```

Verify E911 Configuration

New `show` commands are introduced to display E911 configuration or usage.

- Use the `show voice emergency callers` command to see the translations made by outbound 911 calls. This command lists the originating number, the ELIN used, and the time for each 911 call. This history is active for only three hours after the call is placed. Expired calls are not shown in this output.

```
router# show voice emergency callers

EMERGENCY CALLS CALL BACK table
ELIN                      | CALLER                     | TIME
6045550100                | 6045550150                 | Oct 12 2006 03:59:43
6045550110                | 8155550124                 | Oct 12 2006 04:05:21
```

- Use the `show voice emergency` command to display IP addresses, subnet masks, and ELINs for each ERL.

```
Router# show voice emergency

EMERGENCY RESPONSE LOCATIONS
ERL               | ELIN 1     | ELIN2      | SUBNET 1 | SUBNET 2
1                 | 6045550101 |            | 10.0.0.0 | 255.0.0.0
2                 | 6045550102 | 6045550106 | 192.168.0.0 | 255.255.0.0
3                 | 6045550107 |            | 172.16.0.0 | 255.255.0.0
4                 | 6045550103 |            | 192.160.0.0 | 255.255.0.0
5                 | 6045550105 |            | 209.165.200.224 | 255.0.0.0
6 6045550198      |            | 6045550109 | 209.165.201.0 | 255.255.255.224
```

- Use the `show voice emergency addresses` command to display address information for each ERL.

```
Router# show voice emergency addresses

3850 Zanker Rd, San Jose, 604,5550101
225 W Tasman Dr, San Jose, 604,5550102
275 W Tasman Dr, San Jose, 604,5550103
518 Bellew Dr, Milpitas, 604,5550104
400 Tasman Dr, San Jose, 604,5550105
3675 Cisco Way, San Jose, 604,5550106
```

- Use the `show voice emergency all` command to display all ERL information.

```
Router# show voice emergency all

VOICE EMERGENCY RESPONSE SETTINGS
Callback Number: 6045550103
Emergency Line ID Number: 6045550155
Expiry: 2 minutes
Logging Enabled

EMERGENCY RESPONSE LOCATION 1
Name: Cisco Systems 1
```
• Use the `show voice emergency zone` command to display each zone’s list of locations in order of priority.

```
Router# show voice emergency zone
```

```
EMERGENCY RESPONSE ZONES
zone 90
    location 4
    location 5
    location 6
    location 7
    location 2147483647
zone 100
    location 1 priority 1
    location 2 priority 2
    location 3 priority 3
```

Troubleshooting Enhanced 911 Services

Use the `debug voice application error` and the `debug voice application callsetup` command. These are existing commands for calls made using the default session or TCL applications.

This example shows the debug output when a call to 911 is made:

```
Router# debug voice application error
Router# debug voice application callsetup

callingNum[6046692003]
Nov 10 23:49:05.855: //ER_HistTbl_Find_CallHistory: 6046699100
6046699100
```

This example shows the debug output when a PSAP calls back an emergency caller:

```
Router# debug voice application error
Router# debug voice application callsetup

Nov 10 23:49:37.279: //emrgncy_resp_xlate_calledNum: calledNum[6046699100], dpeerTag[6046699]
```
Error Messages

The Enhanced 911 feature introduces a new system error message. The following error message displays if a 911 callback cannot route to the last 911 caller because the saved history was lost because of a reboot, an expiration of an entry, or a software error:

%E911_NO_CALLER: Unable to contact last 911 caller.

Configuration Examples for Enhanced 911 Services

Example for Configuring Enhanced E911 Services with Cisco Unified CME 4.2

Emergency response settings are:

- default elin if no elin match is found: 604 555-0120
- expiry time for information in the Last Caller table: 180 minutes
- callback number if the PSAP operator must call back the 911 caller and the call back history has expired: 604 555-0199

Zone 1 has four locations, 1, 2, 3, and 4, and a name, address, and elin are defined for each location. Each of the four locations is assigned a priority. In this example, because location 4 has been assigned the highest priority, it is the first that is searched for IP subnet matches to identify the ELIN assigned to the 911 caller’s phone. A dial peer is configured to route 911 calls to the PSAP (voice port 1/0/0). Callback dial peers are also configured.

```plaintext
voice emergency response settings
elin 6045550120
expiry 180
callback 6045550199

voice emergency response location 1
name Bldg C, Floor 1
address 1,604,5550135, ,184 ,Main St,Kansas City,KS,1,
elin 1 6045550125
subnet 1 172.16.0.0 255.255.0.0

voice emergency response location 2
name Bldg C, Floor 2
address 1,elin.1.3,elin.4.7, ,184 ,Main St,Kansas City,KS,2,
elin 1 6045550126
elin 2 6045550127
subnet 1 192.168.0.0 255.255.0.0
```
Example for Configuring Enhanced E911 Services with Cisco Unified CME 4.1 in SRST Fallback Mode

In this example, Enhanced 911 Services is configured to assign an ERL to the following:

- The 10.20.20.0 IP subnet
- Two dial peers
- An ephone
- A SIP phone

Router# show running-config
Building configuration...
Current configuration : 7557 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname rm-uut3-2821
!
boot-start-marker
boot-end-marker
!
no logging console
!
no aaa new-model
network-clock-participate wic 1
network-clock-participate wic 2
no network-clock-participate wic 3
!
!
ip cef
no ip dhcp use vrf connected
!
ip dhcp pool sccp-7912-phone1
host 10.20.20.122 255.255.0.0
client-identifier 0100.1200.3482.cd
default-router 10.20.20.3
option 150 ip 10.21.20.218
!
ip dhcp pool sccp-7960-phone2
host 10.20.20.123 255.255.0.0
client-identifier 0100.131a.a67d.cf
default-router 10.20.20.3
option 150 ip 10.21.20.218
dns-server 10.20.20.3
!
ip dhcp pool sip-phone1
host 10.20.20.121 255.255.0.0
client-identifier 0100.15f9.b38b.a6
default-router 10.20.20.3
option 150 ip 10.21.20.218
dns-server 10.20.20.3
!
!
no ip domain lookup
ip host rm-uut3-c2821 10.20.20.3
ip host RescuMe01 10.21.20.218
multilink bundle-name authenticated
!
isdnt switch-type basic-net3
!

voice service voip
allow-connections h323 to h323
allow-connections h323 to sip
allow-connections sip to h323
allow-connections sip to sip
supplementary-service h450.12
sip
registrar server
!
voice register global
system message RM-SIP-SRST
max-dn 192
max-pool 48
!
voice register dn 1
number 32101
!
voice register dn 185
number 38301
!
voice register dn 190
number 38201
!
voice register dn 191
number 38202
!
voice register dn 192
number 38204
!
voice register pool 1
id mac DCC0.2222.0001
number 1 dn 1

 emergency response location 2100
!
voice register pool 45
id mac 0015.F9B3.8BA6
number 1 dn 185
!

voice emergency response location 1
elin 1 22222
subnet 1 10.20.20.0 255.255.255.0
!
voice emergency response location 2
elin 1 21111
elin 2 21112
!
!
voice-card 0
no dspfarm
!
archive
log config
hidekeys
!
controller T1 0/1/0
framing esf
linecode b8zs
pri-group timeslots 8,24
!
controller T1 0/1/1
framing esf
linecode b8zs
pri-group timeslots 2,24
Example for Configuring Enhanced E911 Services with Cisco Unified CME 4.1 in SRST Fallback Mode

```
! controller T1 0/2/0
framing esf
clock source internal
linecode b8zs
ds0-group 1 timeslots 2 type e&m-immediate-start
!
controller T1 0/2/1
framing esf
linecode b8zs
pri-group timeslots 2,24
!
translation-rule 5
Rule 0 ^37103 1
!
translation-rule 6
Rule 6 ^2 911
!
interface GigabitEthernet0/0
ip address 31.20.0.3 255.255.0.0
duplex auto
speed auto
!
interface GigabitEthernet0/1
ip address 10.20.20.3 255.255.0.0
duplex auto
speed auto
!
interface Serial0/1/0:23
no ip address
encapsulation hdlc
isdn switch-type primary-5ess
isdn incoming-voice voice
no cdp enable
!
interface Serial0/1/1:23
no ip address
encapsulation hdlc
isdn switch-type primary-net5
isdn incoming-voice voice
no cdp enable
!
interface Serial0/2/1:23
no ip address
encapsulation hdlc
isdn switch-type primary-net5
isdn incoming-voice voice
no cdp enable
!
interface BRI0/3/0
no ip address
isdn switch-type basic-5ess
isdn twait-disable
isdn point-to-point-setup
isdn autodetect
isdn incoming-voice voice
no keepalive
!
interface BRI0/3/1
no ip address
isdn switch-type basic-5ess
```
iadn point-to-point-setup
!
!
ip http server
!

voice-port 0/0/0
!
voice-port 0/0/1
!
voice-port 0/1/0:23
!
voice-port 0/2/0:1
!
voice-port 0/1/1:23
!
voice-port 0/2/1:23
!
voice-port 0/3/0
!
voice-port 0/3/1
!
!
dial-peer voice 2002 pots
shutdown
destination-pattern 2....
port 0/2/0:1
forward-digits all
!
dial-peer voice 2005 pots
description for-cme2-408-pri
 emergency response location 2000
shutdown
incoming called-number 911
direct-inward-dial
port 0/2/1:23
forward-digits all
!
dial-peer voice 2004 voip
description for-cme2-408-thru-ip
 emergency response location 2000
shutdown
session target loopback:rtp
incoming called-number 911
!
dial-peer voice 1052 pots
description 911callbackto-cme2-3
shutdown
incoming called-number
direct-inward-dial
port 0/1/1:23
forward-digits all
!
dial-peer voice 1013 pots
description for-analog
destination-pattern 39101
port 0/0/0
forward-digits all
!
dial-peer voice 1014 pots
description for-analog-2
destination-pattern 39201
port 0/0/1
forward-digits all
Example for Configuring Enhanced 911 Services with Cisco Unified CME 4.1 in SRST Fallback Mode

!
dial-peer voice 3111 pots

emergency response Zone
destination-pattern 9....
port 0/1/0:23
forward-digits all
!
dial-peer voice 3121 pots

emergency response callback
incoming called-number 2....
direct-inward-dial
port 0/1/0:23
forward-digits all
!
telephony-service
srst mode auto-provision none
load 7960-7940 P000307020200
load 7970 TERM70.7-0-1-0s
load 7912 CF7912B60101SCCP050429B.sbin
max-ephones 50
max-dn 190
ip source-address 10.20.20.3 port 2000
system message RM-SCCP-CME-SRST
max-conferences 8 gain -6
moh flash:music-on-hold.au
multicast moh 236.1.1.1 port 3000
transfer-system full-consult
transfer-pattern transfer-pattern 911
!
ephone-dn 1 dual-line
number 31101
!
ephone-dn 2 dual-line
number 31201
!
ephone-dn 3 dual-line
number 31301
!
ephone-dn 100 dual-line
number 37101 secondary 37111
name 7960-sccp-1
!
ephone-dn 101 dual-line
number 37102
!
ephone-dn 102 dual-line
number 37103
!
ephone-dn 105 number 37201
!
ephone-dn 106 dual-line
type 7960
number 37101
!
!
ephone-dn 107 dual-line
type 7960
number 37302
!
!
ephone-dn 108 dual-line
type 7960
number 37303
!
!
ephone-dn 110 dual-line
type 7960
number 37401
!
!
ephone-dn 111 dual-line
type 7960
number 37402
!
!
ephone 1
mac-address DCC0.1111.0001
type 7960
button 1:1
!
!
ephone 2
mac-address DCC0.1111.0002
type 7960
button 1:2
!
!
ephone 3
mac-address DCC0.1111.0003
type 7970
button 1:3
!
!
ephone 40
mac-address 0013.1AA6.7DCF
type 7960
button 1:100 2:101 3:102
!
!
ephone 41
mac-address 0012.0034.82CD
type 7912
button 1:105
!
!
ephone 42
mac-address 0014.F237.E000
emergency response location 2
type 7940
button 1:107 2:108
!
!
ephone 43
mac-address 000F.90B0.BE0B
type 7960
button 1:110 2:111
!
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
login
! scheduler allocate 20000 1000
! end

Feature Information for Enhanced 911 Services

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 51: Feature Information for Enhanced 911 Services

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Enhanced 911 Services for Cisco Unified CME | 4.2 | • Assigns ERLs to zones to enable routing to the PSAP that is closest to the caller
• Customizes E911 by defining a default ELIN, identifying a designated number if the 911 caller cannot be reached on callback, specifying the expiry time for data in the Last Caller table, and enabling syslog messages that announce all emergency calls
• Expands the E911 location information to include name and address
• Uses templates to assign ERLs to a group of phones
• Adds new permanent call detail records |
| Enhanced 911 Services | 4.1 | Enhanced 911 Services was introduced for Cisco Unified CME in SRST Fallback Mode. |
CHAPTER 21

Extension Mobility

This chapter describes features in Cisco Unified Communications Manager Express (Cisco Unified CME) that provide support for phone mobility for end users.

- Prerequisites for Configuring Extension Mobility, on page 705
- Restrictions for Configuring Extension Mobility, on page 705
- Information About Configuring Extension Mobility, on page 706
- Enable Extension Mobility, on page 710
- Configuration Examples for Extension Mobility, on page 723
- Where to Go Next, on page 725
- Feature Information for Extension Mobility, on page 725

Prerequisites for Configuring Extension Mobility

- Cisco Unified CME 4.2 or a later version.
- To use the phone user interface to configure personal speed dials directly on an Extension Mobility phone, Cisco Unified CME 4.3 or a later version must be installed.
- SIP phone support is available with Cisco Unified CME 8.6 or a later version.

Restrictions for Configuring Extension Mobility

- Extension Mobility on remote Unified CME routers isn’t supported. You can log in only to a local Cisco Unified IP phone.
- Extension Mobility isn’t supported if you log in to a Cisco Unified IP phone in a different subnet.
Information About Configuring Extension Mobility

Extension Mobility

Extension Mobility in Cisco Unified CME 4.2 and later versions provides the benefit of phone mobility for end users.

A user login service allows phone users to temporarily access a physical phone other than their own phone and utilize their personal settings, such as directory number, speed-dial lists, and services, as if the phone is their own desk phone. The phone user can make and receive calls on that phone using the same personal directory number as is on their own desk phone.

Each Cisco Unified IP phone that is enabled for Extension Mobility is configured with a logout profile. This profile determines the default appearance of a phone that is enabled for Extension Mobility when there is no phone user logged into that phone. Minimally, the logout profile allows calls to emergency services such as 911. A single logout profile can be applied to multiple phones.

After a Cisco Unified IP phone that is enabled for Extension Mobility boots up, the Services feature button on the phone is configured with a login service URL hosted by Cisco Unified CME that points to the Extension Mobility Login page. No feature-button-specific configuration is required to add Extension Assigner to the Services feature button. The option for Extension Mobility appears last in the list of options displayed when the phone user presses the Services feature button.

A phone user logs into a Cisco Unified IP phone that is enabled for Extension Mobility by pressing the Services button or a Unified CCX agent can log in using a Unified CCX Cisco Agent Desktop. User authentication and authorization is performed by Cisco Unified CME. If the login is successful, Cisco Unified CME retrieves the appropriate user profile, based on user name and password match, and replaces the phone’s logout profile with the user profile.

After the phone user is logged in, the service URL points to a logout URL hosted by Cisco Unified CME to provide a logout prompt on the phone. Logging into a different device automatically closes the first session and start a new session on the new device. When a phone user is not logged in to any phone, incoming calls to the phone user’s directory number are sent to the phone user’s voice mailbox.

For button appearance, Extension Mobility associates directory numbers then speed-dial numbers in the logout profile or user profile to phone buttons. The sequence in which directory numbers are associated is based on line type and ring behavior as follows: first normal, then silent ring, beep ring, feature ring, monitor ring, and overlay, followed by speed dials. If the profile contains more numbers than there are buttons on the physical phone to which the profile is downloaded, the remaining numbers in the profile are ignored.

For configuration information, see Enable Extension Mobility, on page 710.

Personal Speed Dials on an Extension Mobility Phone

Unified CME phone users can use the Cisco IOS CLI commands to configure personal speed dials on an Extension Mobility phone.

In Cisco Unified CME 4.3 and later versions, Extension Mobility users can configure their own speed-dial settings directly on the phone. Speed-dial settings are added or modified on the phone by using a menu available with the Services feature button. Any changes to the speed-dial settings made through the phone user interface are applied to the user’s profile in Extension Mobility. For information about using the phone user interface on a Cisco Unified IP phone, see Cisco Unified IP Phone 7900 Series End-User Guides.
The phone user-interface is enabled by default on all phones with displays. You can disable the capability for an individual phone to prevent a phone user from accessing the interface. For configuration information, see Enable Phone User Interface for Configuring Speed-Dial and Fast-Dial, on page 947.

Cisco Unified CME Extension Mobility Enhancements

Enhancements to Extension Mobility in Cisco Unified CME 4.3 include the following:

- Configurable Automatic Logout
- Automatic Clear Call History

Automatic Logout

Cisco Unified CME 4.3 and later versions includes an Automatic Timeout feature for Extension Mobility. After an automatic logout is executed, Cisco Unified CME sends the logout profile to the phone and restarts the phone. After an automatic logout, Extension Mobility users can log in again.

You can configure up to three different times on a 24-hour clock for automatically logging out Extension Mobility users based on time-of-day. The system clock triggers an alarm at the specified time and the EM Manager in Cisco Unified CME logs outs every logged in Extension Mobility user in the system. If an Extension Mobility user is using the phone when automatic logout occurs, the user is logged out after the active call is completed.

For configuration information, see Configure Cisco Unified CME for Extension Mobility, on page 710.

Users log out from Extension Mobility by pressing the Services button and choosing Logout. If a user does not manually log out before leaving the phone, the phone is idle and the individual’s user profile remains loaded on that phone. To automatically log out individual users from idle Extension Mobility phones, configure an idle-duration timer for Extension Mobility. The timer monitors the phone and if the specified maximum idle time is exceeded, the EM Manager logs out the user. The idle-duration timer is reset whenever the phone goes offhook.

For configuration information, see Configure a User Profile, on page 720.

Automatic Clear Call History

In Cisco Unified CME 4.3 and later versions, the EM manager in Cisco Unified CME issues commands to phones to clear call history whenever a user logs out of Extension Mobility. An HTTP GET/POST is sent between the Extension Mobility phone and the authentication server in Cisco Unified CME. The authentication server authorizes the request and the call history is cleared based on the result.

You can configure Cisco Unified CME to disable Automatic Clear Call History. For configuration information, see Configure Cisco Unified CME for Extension Mobility, on page 710.

Privacy on an Extension Mobility Phone

In Cisco Unified CME 4.3 and later versions, the Privacy feature enables phone users to block other users from seeing call information or barging into a call on a shared octo-line directory number. When a phone receives an incoming call on a shared octo-line, the user can make the call private by pressing the Privacy feature button, which toggles between on and off to allow the user to alter the privacy setting on their phone. The privacy state is applied to all new calls and current calls owned by the phone user.
For Extension Mobility phones, you can enable the privacy button in the user profile and logout profile. To enable the privacy button, see Configure a Logout Profile for an IP Phone, on page 713 and Configure a User Profile, on page 720.

For more information about Privacy, see Barge and Privacy, on page 1011.

Extension Mobility for SIP Phones Enhancement

Cisco Unified CME 8.6 enhances the Extension Mobility feature to allow support for SIP phones.

Extension Mobility allows you to access any EM enabled physical phone and utilize your own personal settings, such as directory numbers, speed-dials, after-hour personal identification number (PIN), and feature button layout, as if the phone is your own desk phone.

A user login service allows you to temporarily access a physical phone other than your own phone and utilize your personal settings, such as directory number, speed-dial lists, and services, as if the phone is your own desk phone.

The features of Extension Mobility for SIP phones is identical to SCCP phones, only the configuration procedure is different. For information on configuring Extension Mobility for SIP phones, see Configure Extension Mobility for SIP Phones, on page 717.

Note
You can login to either an SCCP phone or a SIP phone with the same user profile.

Note
Only the normal lines configured in your user profile are applied when you login to a SIP phone. Other lines such as overlay, monitor, and feature-ring lines are ignored.

Note
Only Cfwdall, Confrn, DnD, Endcall, Hold, NewcallGroup Pickup, Park, Privacy, Redial, and Trnsfer feature buttons configured in your user profile will be applied when you login to a SIP phone. Other feature buttons will be ignored.

MIB Support for Extension Mobility in Cisco Unified SCCP IP Phones

In Cisco Unified CME 9.0 and later versions, new MIB objects are added to monitor Cisco Unified SCCP IP Extension Mobility (EM) phones. These enhancements allow the retrieval of the following information:

- user-profile tag for a Cisco Unified SCCP IP EM phone, when it is logged in
- logout-profile tag for a Cisco Unified SCCP IP EM phone
- DN and its type, and the overlay or call waiting numbers if applicable, for each user-profile
- DN and its type, and the overlay or call waiting numbers if applicable, for each logout-profile
- number of Cisco Unified SCCP IP phones configured as EM phones
- number of registered Cisco Unified SCCP IP EM phones
Table 52: MIB Variables and Object Identifiers for EM in Cisco Unified SCCP IP Phones, on page 709 lists the MIB variables and object identifiers for retrieving the new MIB database.

Table 52: MIB Variables and Object Identifiers for EM in Cisco Unified SCCP IP Phones

<table>
<thead>
<tr>
<th>MIB Variables</th>
<th>Object identifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccmeEMUserProfileTag</td>
<td>1.3.6.1.4.1.9.9.439.1.1.43.1.19</td>
</tr>
<tr>
<td>ccmeEMLogOutProfileTag</td>
<td>1.3.6.1.4.1.9.9.439.1.1.43.1.20</td>
</tr>
<tr>
<td>ccmeEMUserDirNumConfTable</td>
<td>1.3.6.1.4.1.9.9.439.1.1.68</td>
</tr>
<tr>
<td>ccmeEMUserDirNumConfEntry</td>
<td>1.3.6.1.4.1.9.9.439.1.1.68.1</td>
</tr>
<tr>
<td>ccmeEMUserDirNum</td>
<td>1.3.6.1.4.1.9.9.439.1.1.68.1.3</td>
</tr>
<tr>
<td>ccmeEMUserDirNumOverlay</td>
<td>1.3.6.1.4.1.9.9.439.1.1.68.1.4</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNumConfTable</td>
<td>1.3.6.1.4.1.9.9.439.1.1.69</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNumConfEntry</td>
<td>1.3.6.1.4.1.9.9.439.1.1.69.1</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNum</td>
<td>1.3.6.1.4.1.9.9.439.1.1.69.1.3</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNumOverlay</td>
<td>1.3.6.1.4.1.9.9.439.1.1.69.1.4</td>
</tr>
<tr>
<td>ccmeEMphoneTot</td>
<td>1.3.6.1.4.1.9.9.439.1.1.12.9</td>
</tr>
<tr>
<td>ccmeEMphoneTotRegistered</td>
<td>1.3.6.1.4.1.9.9.439.1.1.12.10</td>
</tr>
</tbody>
</table>

Table 53: Descriptions of MIB Variables for EM in Cisco Unified SCCP IP Phones, on page 709 provides a description of each of the MIB variables for EM in Cisco Unified SCCP IP Phones.

Table 53: Descriptions of MIB Variables for EM in Cisco Unified SCCP IP Phones

<table>
<thead>
<tr>
<th>MIB Variables</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccmeEMUserProfileTag</td>
<td>User-profile tag for the EM phone</td>
</tr>
<tr>
<td>ccmeEMLogOutProfileTag</td>
<td>Logout-profile tag for the EM phone</td>
</tr>
<tr>
<td>ccmeEMUserDirNumConfTable</td>
<td>Table of entries for the EM phone’s user profile</td>
</tr>
<tr>
<td>ccmeEMUserDirNumConfEntry</td>
<td>A user-profile entry for the EM phone</td>
</tr>
<tr>
<td>ccmeEMUserDirNum</td>
<td>A directory number for the user profile</td>
</tr>
<tr>
<td>ccmeEMUserDirNumOverlay</td>
<td>Number type for the user profile, including the overlay identifier</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNumConfTable</td>
<td>Table of entries for the EM phone’s logout profile</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNumConfEntry</td>
<td>A logout entry for the EM phone</td>
</tr>
<tr>
<td>ccmeEMLogoutDirNum</td>
<td>A directory number for the logout profile</td>
</tr>
</tbody>
</table>
Enable Extension Mobility

Configure Cisco Unified CME for Extension Mobility

To configure Extension Mobility in Cisco Unified CME, perform the following steps.

Before you begin

• For authentication server in Cisco Unified CME, Cisco Unified CME 4.3 or a later version.
• For Automatic Logout, Cisco Unified CME 4.3 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http server
4. telephony-service
5. url authentication url-address application-name password
6. service phone webAccess 0
7. authentication credential application-name password
8. em keep-history
9. em logout time1 [time2] [time3]
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Extension mobility is supported in Cisco Unified CME but not in Cisco Unified SRST.

<table>
<thead>
<tr>
<th>MIB Variables</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccmeEMLogoutDirNumOverlay</td>
<td>Number type for the logout profile, including the overlay identifier</td>
</tr>
<tr>
<td>ccmeEMphoneTot</td>
<td>Total number of EM phones</td>
</tr>
<tr>
<td>ccmeEMphoneTotRegistered</td>
<td>Total number of registered EM phones</td>
</tr>
</tbody>
</table>
Command or Action

| Step 3 | ip http server
Example:
Router(config)# ip http server |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Enables the HTTP server on the Cisco Unified CME router that hosts the service URL for the Extension Mobility Login and Logout pages.</td>
</tr>
</tbody>
</table>

| Step 4 | telephony-service
Example:
Router(config)# telephony-service |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
</tbody>
</table>

| Step 5 | url authentication url-address application-name password
Example:
Router(config-telephony)# url authentication http://192.0.2.0/CCMCIP/authenticate.asp secretname psswrd
or
To support Extension Mobility and VoiceView Express 3.2 or earlier versions
Router(config-telephony)# url authentication http://192.0.2.0/voiceview/authentication/authenticate.do secretname psswrd |
|--------|---|
| Purpose | Instructs phones to send HTTP requests to the authentication server and specifies which credential to use in the requests.
- This command is supported in Cisco Unified CME 4.3 and later versions. Required to support Automatic Clear Call history.
- URL for internal authentication server in Cisco Unified CME is http://CME IP Address/CCMCIP/authenticate.asp.
- To support Extension Mobility and Cisco VoiceView Express 3.2 or an earlier version only:
 - In Cisco Unified CME: Configure the url authentication command using the URL for Cisco Unity Express. The URL for Cisco Unity Express is http://CUE IPAddress/voiceview/authentication/authenticate.do.
 - In Cisco Unity Express: Configure the fallback-url command using the URL for the authentication server in Cisco Unified CME.
 - See Examples, on page 712. |

| Step 6 | service phone webAccess 0
Example:
Router(config-telephony)# service phone webAccess 0 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Enables webAccess for IP phones. This is required for 9.x firmware because the web server is disabled by default. 8.x firmware and lower had the web server enabled by default.</td>
</tr>
</tbody>
</table>

| Step 7 | authentication credential application-name password
Example:
Router(config-telephony)# authentication credential secretname psswrd |
|--------|---|
| Purpose | (Optional) Creates an entry for an application's credential in the database used by the Cisco Unified CME authentication server.
- This command is supported in Cisco Unified CME 4.3 and later versions.
- Required to support requests requests from applications other than Extension Mobility, such as Cisco VoiceView Express. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>em keep-history
Example:
Router(config-telephony)# em keep-history</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies that Extension Mobility will keep, and not automatically clear, call histories when users log out from Extension Mobility phones.</td>
</tr>
<tr>
<td></td>
<td>• This command is supported in Cisco Unified CME 4.3 and later versions.</td>
</tr>
<tr>
<td></td>
<td>• Default: Automatic Clear Call History is enabled.</td>
</tr>
<tr>
<td>Step 9</td>
<td>em logout time1 [time2] [time3]
Example:
Router(config-telephony)# em logout 19:00 24:00</td>
</tr>
<tr>
<td></td>
<td>(Optional) Defines up to three time-of-day timers for automatically logging out all Extension Mobility users.</td>
</tr>
<tr>
<td></td>
<td>• This command is supported in Cisco Unified CME 4.3 and later versions.</td>
</tr>
<tr>
<td></td>
<td>• time—Time of day after which logged-in users are automatically logged out from Extension Mobility. Range: 00:00 to 24:00 on a 24-hour clock.</td>
</tr>
<tr>
<td></td>
<td>• To configure an idle-duration timer for automatically logging out an individual user, see Configure a User Profile, on page 720.</td>
</tr>
<tr>
<td>Step 10</td>
<td>end
Example:
Router(config-telephony)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure Cisco Unified CME 4.3 or a later version and Cisco Unity Express 3.2 or an earlier version to support Extension Mobility and Cisco VoiceView Express.

Note

When running Extension Mobility and Cisco VoiceView Express 3.2 or an earlier version, you must also configure the **fallback-url** command in Cisco Unity Express. For configuration information, see the appropriate [Cisco Unity Express Administrator Guide](#).

Cisco Unified CME 4.3 or a later version

```
telephony-service
  url authentication http://192.0.2.0/voiceview/authentication/authenticate.do secretname psswrd
  authentication credentials secretname psswrd
```

Cisco Unity Express 3.2 or an earlier version

```
service phone-authentication
```
Configure a Logout Profile for an IP Phone

To create a logout profile to define the default appearance for a Cisco Unified IP phone that is enabled for Extension Mobility, perform the following steps.

Restriction

- For button appearance, Extension Mobility associates directory numbers, then speed-dial definitions in the logout profile or user profile to phone buttons. The sequence in which directory numbers are associated is based on line type and ring behavior as follows: first normal, then silent ring, beep ring, feature ring, monitor ring, and overlay, followed by speed dials. If the profile contains more directory numbers and speed-dial numbers than there are buttons on the physical phone to which the profile is downloaded, not all numbers are downloaded to buttons.

- The first number to be configured for line appearance cannot be a monitored directory number.

- The user name parameter of any authentication credential must be unique. Do not use the same value for a user name when you configure any two or more authentication credentials in Cisco Unified CME, such as the user name in a logout or user profile for Extension Mobility.

Before you begin

- All directory numbers to be included in a logout profile or a user profile must be already configured in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.

- For Privacy on extension mobility phones, Cisco Unified 4.3 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice logout-profile profile-tag
4. user name password password
5. number number type type
6. speed-dial speed-tag number [label label] [blf]
7. pin number
8. privacy-button
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters voice logout-profile configuration mode for creating</td>
</tr>
<tr>
<td></td>
<td>a logout profile to define the default appearance for a Cisco Unified</td>
</tr>
<tr>
<td></td>
<td>IP phone enabled for Extension Mobility.</td>
</tr>
<tr>
<td>Step 3 voice logout-profile profile-tag</td>
<td>Enters voice logout-profile configuration mode for creating</td>
</tr>
<tr>
<td></td>
<td>a logout profile to define the default appearance for a Cisco Unified</td>
</tr>
<tr>
<td></td>
<td>IP phone enabled for Extension Mobility.</td>
</tr>
<tr>
<td></td>
<td>• profile-tag—Unique number that identifies this profile</td>
</tr>
<tr>
<td></td>
<td>during configuration tasks. Range: 1 to maximum number of phones</td>
</tr>
<tr>
<td></td>
<td>supported by the Cisco Unified CME router. Type ? to display the</td>
</tr>
<tr>
<td></td>
<td>maximum number.</td>
</tr>
<tr>
<td>Step 4 user name password password</td>
<td>Creates credential to be used by a TAPI phone device to log into Cisco</td>
</tr>
<tr>
<td></td>
<td>Unified CME.</td>
</tr>
<tr>
<td></td>
<td>• name—Unique alphanumeric string to identify a user for this</td>
</tr>
<tr>
<td></td>
<td>authentication credential only.</td>
</tr>
<tr>
<td></td>
<td>• password—Alphanumeric string.</td>
</tr>
<tr>
<td>Step 5 number number type type</td>
<td>Creates line definition.</td>
</tr>
<tr>
<td></td>
<td>• number—Directory number to be associated with and displayed next</td>
</tr>
<tr>
<td></td>
<td>to a button on a Cisco Unified IP phone that is configured with this</td>
</tr>
<tr>
<td></td>
<td>profile.</td>
</tr>
<tr>
<td></td>
<td>• [{... number}]—(Optional) For overlay lines only, with or without</td>
</tr>
<tr>
<td></td>
<td>call waiting. The directory number that is the far left in command</td>
</tr>
<tr>
<td></td>
<td>list is the highest priority. Can contain up to 25 numbers. Individual</td>
</tr>
<tr>
<td></td>
<td>numbers must be separated by commas (,).</td>
</tr>
<tr>
<td></td>
<td>• type—Denotes characteristics to be associated with this line.</td>
</tr>
<tr>
<td></td>
<td>Type ? for list of options.</td>
</tr>
<tr>
<td>Step 6 speed-dial speed-tag number [label label] [blf]</td>
<td>Creates speed-dial definition.</td>
</tr>
<tr>
<td></td>
<td>• speed-tag—Unique sequence number that identifies a speed-dial</td>
</tr>
<tr>
<td></td>
<td>definition during configuration tasks. Range: 1 to 36.</td>
</tr>
<tr>
<td></td>
<td>• number—Digits to be dialed when the speed-dial button is pressed.</td>
</tr>
<tr>
<td></td>
<td>• label—(Optional) String that contains identifying text to be</td>
</tr>
<tr>
<td></td>
<td>displayed next to the speed-dial button. Enclose the string in</td>
</tr>
<tr>
<td></td>
<td>quotation marks if the string contains a space.</td>
</tr>
<tr>
<td></td>
<td>• blf—(Optional) Enables Busy Lamp Field (BLF) monitoring for a</td>
</tr>
<tr>
<td></td>
<td>speed-dial number.</td>
</tr>
</tbody>
</table>
Enable an IP Phone for Extension Mobility

To enable the Extension Mobility feature on an individual Cisco Unified IP phone in Cisco Unified CME, perform the following steps.

Note

All SCCP Cisco Unified IP phones with displays that support URL provisioning for Feature buttons are supported by Extension Mobility, including the Cisco Unified Wireless IP Phone 7920, Cisco Unified Wireless IP Phone 7921, and Cisco IP Communicator.

Restriction

- Extension Mobility is not supported on Cisco Unified IP phones without phone screens.
- Extension Mobility is not supported for analog devices.

Before you begin

- HTTP server is enabled on the Cisco Unified CME router. For configuration information, see Configure Cisco Unified CME for Extension Mobility, on page 710.
- Logout profile to be assigned to a phone must be configured in Cisco Unified CME.
- Cisco IP Communicator to be enabled for Extension Mobility must be already registered in Cisco Unified CME.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `mac-address mac-address`
5. `type phone-type`
6. `logout-profile profile-tag`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ephone phone-tag</code></td>
<td>Enables phone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 1</td>
<td>• <code>phone-tag</code>—Unique number that identifies this phone during configuration tasks. Range is 1 to maximum number supported phones, where maximum is platform and version dependent and defined by using the <code>max-ephone</code> command.</td>
</tr>
<tr>
<td>Step 4 <code>mac-address mac-address</code></td>
<td>Associates a physical phone with this ephone configuration.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# mac-address 000D.EDAB.3566</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>type phone-type</code></td>
<td>Defines a phone type for the phone being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# type 7960</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>logout-profile profile-tag</code></td>
<td>Enables Cisco Unified IP phone for Extension Mobility and assigns a logout profile to this phone.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# logout-profile 1</td>
<td>• <code>tag</code>—Unique identifier of logout profile to be used when no phone user is logged in to this phone. This tag number corresponds to a tag number created when this logout profile was configured by using the <code>voice logout-profile</code> command.</td>
</tr>
<tr>
<td>Step 7 <code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configure Extension Mobility for SIP Phones

To prepare Extension Mobility for use with SIP phones, perform the following steps.

Before you begin
- Cisco IOS Release 15.1(4)M.
- Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ip http server**
4. **voice register global**
5. **url authentication url-address application-name password**
6. **exit**
7. **telephony-service**
8. **authentication credential application-name password**
9. **em keep-history**
10. **em logout time1 [time2] [time3]**
11. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Note: Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables the HTTP server on the Cisco Unified CME router which hosts the service URL for the Extension Mobility login and logout pages.</td>
</tr>
<tr>
<td>ip http server</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Defines global voice register commands.</td>
</tr>
<tr>
<td>voice register global</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>url authentication url-address application-name password</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)# url authentication http://192.0.2.0/CCMCIP/authenticate.asp secretname psswrd</td>
</tr>
<tr>
<td></td>
<td>Instructs phones to send HTTP requests to the authentication server and specifies which credential to use in the requests.</td>
</tr>
<tr>
<td></td>
<td>• Required to support Automatic Clear Call history.</td>
</tr>
<tr>
<td></td>
<td>• application-name—user name you choose and define in this command.</td>
</tr>
<tr>
<td></td>
<td>• password—password you define using this command.</td>
</tr>
<tr>
<td></td>
<td>• URL—URL address for the authentication server in Cisco Unified CME is http://CMEIP Address/CCMCIP/authenticate.asp.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits voice register global configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>telephony-service</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# telephony-service</td>
</tr>
<tr>
<td></td>
<td>Enters telephony service configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>authentication credential application-name password</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# authentication credential application-name password</td>
</tr>
<tr>
<td></td>
<td>Specifies authorized credentials. Use credentials from Step 5.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 9</td>
<td>em keep-history</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# em keep-history</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies that Extension Mobility will keep, and not automatically clear, call histories when users log out from Extension Mobility phones.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 10</td>
<td>em logout time1 [time2] [time3]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# em logout 19:00 24:00</td>
</tr>
<tr>
<td></td>
<td>(Optional) Defines up to three time-of-day timers for automatically logging out all Extension Mobility users.</td>
</tr>
<tr>
<td></td>
<td>• time—Time of day after which logged-in users are automatically logged out from Extension Mobility. Range: 00:00 to 24:00 on a 24-hour clock.</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Enable SIP Phones for Extension Mobility

To enable the Extension Mobility feature on a SIP phone in Cisco Unified CME, perform the following steps.

Note

All Cisco Unified SIP phones with displays that support URL provisioning are supported by Extension Mobility.

Before you begin

- HTTP server is enabled on the Cisco Unified CME router.
- Default logout and user profiles to be assigned to a phone must be configured in Cisco Unified CME.
- The voice register directory numbers in default logout and user profiles must be configured in Cisco Unified CME. To configure SIP directory numbers, see *Cisco Unified Communications Manager Express Command Reference Guide*.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register pool pool-tag`
4. `id mac mac-address`
5. `type phone-type`
6. `logout-profile profile-tag`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Step 2 configure terminal</td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enables phone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Step 4 id mac mac-address</td>
</tr>
<tr>
<td>Router(config)# voice register pool 22</td>
<td>• pool-tag—Unique number that identifies this register pool during configuration tasks. Range is 1 to 42.</td>
</tr>
<tr>
<td>Step 4 id mac mac-address</td>
<td>Associates a physical phone with this ephone configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>Step 4 id mac mac-address</td>
</tr>
<tr>
<td>Router(config-register-pool)# id mac 0123.4567.89AB</td>
<td>• mac-address—mac address of the physical phone</td>
</tr>
</tbody>
</table>
Configure a User Profile

To configure a user profile for a phone user who logs into a Cisco Unified IP phone that is enabled for Extension Mobility, perform the following steps.

Templates created using the ephone-template and ephone-dn-template commands can be applied to a user profile for Extension Mobility.

Restriction

- For button appearance, Extension Mobility associates directory numbers, then speed-dial definitions in the logout profile or user profile to phone buttons. The sequence in which directory numbers are associated is based on line type and ring behavior as follows: first normal, then silent ring, beep ring, feature ring, monitor ring, and overlay, followed by speed dials. If the profile contains more directory numbers and speed-dial numbers than there are buttons on the physical phone to which the profile is downloaded, not all numbers are downloaded to buttons.

- The first number to be configured for line appearance cannot be a monitored directory number.

- The user name parameter of any authentication credential must be unique. Do not use the same value for a user name when you configure any two or more authentication credentials in Cisco Unified CME, such as the user name in a logout or user profile for Extension Mobility.

Before you begin

- All directory numbers to be included in a logout profile or user profile must be already configured in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 type phone-type</td>
<td>Defines a phone type for the phone being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# type 7970</td>
<td></td>
</tr>
<tr>
<td>Step 6 logout-profile profile-tag</td>
<td>Enables Cisco Unified SIP phone for Extension Mobility and assigns a logout profile to this phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# logout-profile 22</td>
<td>• profile tag—Unique identifier of a logout profile to be used when no phone user is logged in to this phone. This tag number corresponds to a tag number created when this logout profile was configured by using the voice logout-profile command.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
• For Automatic Logout, Cisco Unified CME 4.3 or a later version.
• For Privacy on extension mobility phones, Cisco Unified CME 4.3 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice user-profile profile-tag
4. user name password password
5. number number type type
6. speed-dial speed-tag number [label label] [blf]
7. pin number
8. max-idle-time minutes
9. privacy-button
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice user-profile profile-tag</td>
<td>Enters voice user-profile configuration mode for configuring a user profile for Extension Mobility.</td>
</tr>
<tr>
<td>Example: Router(config)# voice user-profile 1</td>
<td>• profile-tag—Unique number that identifies this profile during configuration tasks. Range: 1 to three times the maximum number supported phones, where maximum is platform dependent. Type ? to display value.</td>
</tr>
<tr>
<td>Step 4 user name password password</td>
<td>Creates credential to be authenticated by Cisco Unified CME before allowing the phone user to log into a Cisco Unified IP phone enabled for Extension Mobility.</td>
</tr>
<tr>
<td>Example: Router(config-user-profile)# user me password pass123</td>
<td>• name—Unique alphanumeric string to identify a user for this authentication credential only.</td>
</tr>
<tr>
<td></td>
<td>• password—Password for authorized user.</td>
</tr>
<tr>
<td>Step 5 number number type type</td>
<td>Creates line definition.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configure a User Profile

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-user-profile)# number 2001 type silent-ring</td>
<td>- number—Directory number to be associated with and displayed next to a button on a phone that is configured with this profile.</td>
</tr>
<tr>
<td>Router(config-user-profile)# number 2002 type beep-ring</td>
<td>- [...]number—(Optional) For overlay lines only, with or without call waiting. The directory number that is far left in the command list is given the highest priority. Can contain up to 25 numbers. Individual numbers must be separated by commas (,).</td>
</tr>
<tr>
<td>Router(config-user-profile)# number 2003 type feature-ring</td>
<td>- type—Denotes characteristics to be associated with this line. Type ? for list of options.</td>
</tr>
<tr>
<td>Router(config-user-profile)# number 2004 type monitor-ring</td>
<td></td>
</tr>
<tr>
<td>Router(config-user-profile)# number 2005,2006 type overlay</td>
<td></td>
</tr>
<tr>
<td>Router(config-user-profile)# number 2007,2008 type cw-overly</td>
<td></td>
</tr>
<tr>
<td>Step 6 speed-dial speed-tag number [label label] [blf]</td>
<td>Creates speed-dial definition.</td>
</tr>
<tr>
<td>Example: Router(config-user-profile)# speed-dial 1 3001 blf</td>
<td>- speed-tag—Unique sequence number that identifies a speed-dial definition during configuration tasks. Range: 1 to 36.</td>
</tr>
<tr>
<td></td>
<td>- number—Digits to be dialed when the speed-dial button is pressed.</td>
</tr>
<tr>
<td></td>
<td>- label label—(Optional) String that contains identifying text to be displayed next to the speed-dial button. Enclose the string in quotation marks if the string contains a space.</td>
</tr>
<tr>
<td></td>
<td>- blf—(Optional) Enables Busy Lamp Field (BLF) monitoring for a speed-dial number.</td>
</tr>
<tr>
<td>Step 7 pin number</td>
<td>Sets a personal identification number (PIN) to be used by a phone user to disable the call blocking configuration for a Cisco Unified IP phone on which this profile is downloaded.</td>
</tr>
<tr>
<td>Example: Router(config-user-profile)# pin 12341</td>
<td>- number—Numeric string containing four to eight digits.</td>
</tr>
<tr>
<td>Step 8 max-idle-time minutes</td>
<td>(Optional) Creates an idle-duration timer for automatically logging out an Extension Mobility user.</td>
</tr>
<tr>
<td>Example: Router(config-user-profile)# max-idle-time 30</td>
<td>- This command is supported in Cisco Unified CME 4.3 and later versions.</td>
</tr>
<tr>
<td></td>
<td>- minutes—Maximum number of minutes after which a user is logged out from an idle Extension Mobility phone. Range: 1 to 9999.</td>
</tr>
<tr>
<td>Step 9 privacy-button</td>
<td>(Optional) Enables the privacy feature button on the IP phone.</td>
</tr>
<tr>
<td>Example: Router(config-user-profile)# privacy-button</td>
<td>- Enable this command only on phones that share an octo-line directory number.</td>
</tr>
</tbody>
</table>
Configuration Examples for Extension Mobility

Example for Configuring Extension Mobility for Use with SIP Phones

The following example shows a sample configuration for enabling Extension Mobility for use with SIP phones:

```conf
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#ip http server
Router(config)#voice register global
Router(config-register-global)#6.2.0/CCMCIP/authenticate.asp admin password
Router(config-register-global)#exit
Router(config)#telephony-service
Router(config-telephony)#authentication credential admin password
Router(config-telephony)#em keep-history
Router(config-telephony)#em logout 19:00
Router(config-telephony)#end
```

Example for Configuring SIP Phones for Use with Extension Mobility

The following example shows a sample configuration for enabling a SIP phone to use Extension Mobility:

```conf
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.

Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#voice register pool 1
Router(config-register-pool)#id mac 12.34.56
Router(config-register-pool)#type 7960
Router(config-register-pool)#logout-profile 22
Enabling extension mobility will replace current phone configuration with logout profile, continue?? [yes]: y
Router(config-register-pool)#end
```
Example for Configuring Logout Profile

The following example shows the configuration for a logout profile that defines the default appearance for a Cisco Unified IP phone that is enabled for Extension Mobility. Which lines and speed-dial buttons in this profile are configured on a phone depends on the phone type. For example, for a Cisco Unified IP Phone 7970, all buttons are configured according to logout profile 1. However, if the phone is a Cisco Unified IP Phone 7960, all six lines are mapped to phone buttons and the speed dial is ignored because there is no button available for speed dial.

```
voice logout-profile 1
  pin 9999
  user 23C2-8 password 43214
  number 3001 type silent-ring
  number 3002 type beep-ring
  number 3003 type feature-ring
  number 3004 type monitor-ring
  number 3005,3006 type overlay
  number 3007,3008 type cw-overly
  speed-dial 1 2000
  speed-dial 2 2001 blf
```

Example for Enabling an IP Phone for Extension Mobility

The following example shows the ephone configurations for three IP phones. All three phones are enabled for Extension Mobility and share the same logout profile number 1, to be downloaded when these phones boot and when no phone user is logged into the phone.

```
ephone 1
  mac-address 000D.EDAB.3566
  type 7960
  logout-profile 1

ephone 2
  mac-address 0012.DA8A.C43D
  type 7970
  logout-profile 1

ephone 3
  mac-address 1200.80FC.9B01
  type 7911
  logout-profile 1
```

Example for Configuring User Profile

The following example shows the configuration for a user profile to be downloaded when a phone user logs into a Cisco Unified IP phone that is enabled for Extension Mobility. Which lines and speed-dial buttons in this profile are configured on a phone after the user logs in depends on the phone type. For example, if the user logs into a Cisco Unified IP Phone 7970, all buttons are configured according to voice-user profile 1. However, if the phone user logs into a Cisco Unified IP Phone 7960, all six lines are mapped to phone buttons and the speed dial is ignored because there is no button available for speed dial.

```
voice user-profile 1
  pin 12345
  user me password pass123
  number 2001 type silent-ring
  number 2002 type beep-ring
  number 2003 type feature-ring
  number 2004 type monitor-ring
```
Where to Go Next

- If you created a new or modified an existing logout or user profile, you must restart the phones to propagate the changes. See Reset and Restart Cisco Unified IP Phones, on page 399.
- If you enabled one or more Cisco Unified IP phones for Extension Mobility, generate a new configuration file and restart the phones. See Configuration Files for Phones, on page 389.

Feature Information for Extension Mobility

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for SIP phones</td>
<td>8.6</td>
<td>Adds support for SIP phones.</td>
</tr>
</tbody>
</table>
| Extension Mobility Enhancement | 7.0/4.3 | Adds support for the following:
 - Automatic Logout, including:
 - Configurable time-of-day timers for automatically logging out all Extension Mobility users.
 - Configurable idle-duration timer for logging out an individual user from an idle Extension Mobility phone.
 - Automatic Clear Call History when a user logs out from Extension Mobility. |
<p>| Phone User-Interface for Speed Dial | 7.0/4.3 | Adds a phone user interface allowing Extension Mobility users to configure their own speed-dial settings directly on the phone. |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension Mobility</td>
<td>4.2</td>
<td>Provides the benefit of phone mobility for end users by enabling the user to log into any local Cisco Unified IP Phone that is enabled for Extension Mobility.</td>
</tr>
</tbody>
</table>
CHAPTER 22

Fax Relay

This chapter describes how to enable Skinny Client Control Protocol (SCCP) Fax Relay for analog foreign exchange service (FXS) ports under the control of Cisco Unified CME.

- Prerequisites for Fax Relay, on page 727
- Restrictions for Fax Relay, on page 728
- Information About Fax Relay, on page 728
- Configure Fax Relay, on page 730
- Configuration Examples for Fax Relay, on page 732
- Feature Information for Fax Relay, on page 732

Prerequisites for Fax Relay

- Cisco Unified CME 4.0(3) or a later version.

- If your voice gateway is a separate router than the Cisco Unified CME router, an IP voice image of Cisco IOS Release 12.4(11)T or later is required.

- SCCP Telephony Control (STC) application is enabled.

Note

- For Cisco Unified CME versions before Cisco Unified CME 4.0(3), there are two manually-controlled options for setting up facsimiles:
 - Fax Gateway Protocol
 Configure the Cisco VG224, FXS port, or analog telephone adaptor (ATA) to use H.323 or Session Initiation Protocol (SIP) with a specific fax relay protocol. See Fax, Modem, and Text Support over IP Configuration Guide.
 - G.711 Fax Pass-Through with SCCP
 This is the default setup for facsimile on the Cisco VG224 and FXS ports before Cisco Unified CME 4.0(3). See Fax, Modem, and Text Support over IP Configuration Guide.
Restrictions for Fax Relay

- RFC2833 dual tone multifrequency (DTMF) digit relay under Cisco Unified CME for SCCP FXS ports is not supported.
- SCCP FXS ports under Cisco Unified CME control do not natively support RFC2833 DTMF-relay. However, Cisco Unified CME can support conversion of DTMF digits to and from RFC2833 DTMF-relay on its H323 and SIP interfaces when used with SCCP-controlled FXS ports.
- Cisco Fax Relay is only supported on those Cisco IOS gateways and network modules listed in Table 55: Supported Gateways, Modules, and VICs for Fax Relay, on page 729.

Information About Fax Relay

Fax Relay and Equipment

- The fax relay feature supports the use of existing customer premises equipment (CPE) in voice networks by allowing legacy analog phones attached to a Cisco IOS gateway to be controlled by Cisco Unified CME, and by providing feature interoperability between analog and IP endpoints.
- The voice gateway can be the same router that is being used for Cisco Unified CME or it may be a separate router (for example, the Cisco VG224).
- The fax relay feature facilitates replacement of the PSTN time-division multiplexing (TDM) infrastructure with VoIP.

Feature Design of Cisco Fax Relay

Cisco Fax Relay is a proprietary fax relay implementation that uses Real-time Transport Protocol (RTP) to transport fax data. It is the default fax relay type on Cisco voice gateways and the only supported fax option for Cisco Unified CME 4.0(3) and later versions. The fax relay feature provides enhanced supplementary feature capability on analog ports connected to a Cisco integrated services router (ISR) or Cisco VG224 analog gateway. Calls through the analog FXS ports are controlled by the Cisco Unified CME system.

Before the introduction of SCCP-enhanced features, SCCP gateways supported fax pass-through only. SCCP-enhanced features add support for Cisco Fax Relay and Super Group 3 (SG3) to G3 fax relay. This feature allows the fax stream between two SG3 fax machines to negotiate down to G3 speeds (less than 14.4 kbps) allowing SG3 fax machines to interoperate over fax relay with G3 fax machines.

The SCCP telephony control (STC) application on the Cisco voice gateway presents the locally attached analog telephones as individual endpoints to the call-control system, which allows the analog phones to be controlled in the same way as IP phones. With this capability, gateway-attached endpoints share the same telephony features that are available on IP phones directly connected to Cisco Unified CME. SCCP-enhanced features provide analog endpoint to analog endpoint interoperability within the IP telephony network.

Figure 26: Cisco Unified CME Fax Relay Deployment, on page 729 shows a multisite deployment of the fax relay feature in a Cisco Unified CME topology.
Figure 26: Cisco Unified CME Fax Relay Deployment

For information on configuring gateway-controlled fax relay features, see Configure Fax Relay, on page 730.

Supported Gateways, Modules, and Voice Interface Cards for Fax Relay

Table 55: Supported Gateways, Modules, and VICs for Fax Relay, on page 729 lists supported gateways, modules, and voice interface cards (VICs).

<table>
<thead>
<tr>
<th>Gateways</th>
<th>Extension Modules</th>
<th>Network Modules and Expansion Modules</th>
<th>VICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco 2801</td>
<td>—</td>
<td>• NM-HD-1V</td>
<td>• VIC2-2FXS</td>
</tr>
<tr>
<td>• Cisco 2811</td>
<td></td>
<td>• NM-HD-2V</td>
<td>• VIC-4FXS/DID</td>
</tr>
<tr>
<td>• Cisco 2821</td>
<td></td>
<td>• NM-HD-2VE</td>
<td>• VIC2BRI107E</td>
</tr>
<tr>
<td>• Cisco 2851</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cisco 3825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cisco 3845</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configure Fax Relay

Configure Fax Relay on SCCP Phones

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. fax protocol cisco
5. fax-relay sg3-to-g3

<table>
<thead>
<tr>
<th>Gateways</th>
<th>Extension Modules</th>
<th>Network Modules and Expansion Modules</th>
<th>VICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 2801</td>
<td>• EVM-HD</td>
<td>• EVM-HD-8FXS/DID • EM-3FXS/4FXO</td>
<td>—</td>
</tr>
<tr>
<td>Cisco 2821</td>
<td>• EVM-HD</td>
<td>• EM-HDA-8FXS</td>
<td>—</td>
</tr>
<tr>
<td>Cisco 2821</td>
<td>• EM-4BRI-NT/TE</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 2851</td>
<td>• EM-3FXS/4FXO</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 3825</td>
<td>• EM-HDA-8FXS</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 3845</td>
<td>• EM-4BRI-NT/TE</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 2801</td>
<td>• NM-HDV2</td>
<td>• NM-HDV2-1T1/E1 • NM-HDV2-2T1/E1</td>
<td>• VIC2-2FXS</td>
</tr>
<tr>
<td>Cisco 2811</td>
<td>• NM-HDV2</td>
<td></td>
<td>• VIC-4FXS/DID</td>
</tr>
<tr>
<td>Cisco 2821</td>
<td>• NM-HDV2-1T1/E1</td>
<td></td>
<td>• VIC2-2BRI/NT/TE</td>
</tr>
<tr>
<td>Cisco 2851</td>
<td>• NM-HDV2-2T1/E1</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 3825</td>
<td>• NM-HDV2-2T1/E1</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco 3845</td>
<td>• NM-HDV2-2T1/E1</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cisco VG 224</td>
<td>• VIC2-2FXS</td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice service configuration mode and specifies VoIP encapsulation.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 fax protocol cisco</td>
<td>Specifies the Cisco-proprietary fax protocol as the fax protocol for SCCP analog endpoints.</td>
</tr>
<tr>
<td>Example: Router(config-voi-serv)# fax protocol cisco</td>
<td></td>
</tr>
<tr>
<td>Step 5 fax-relay sg3-to-g3</td>
<td>(Optional) Enables the fax stream between two SG3 fax machines to negotiate down to G3 speeds.</td>
</tr>
<tr>
<td>Example: Router(config-voi-serv)# fax relay sg3-to-g3</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-voi-serv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Verify and Troubleshoot Fax Relay Configuration

To verify the Cisco Fax Relay configuration, use the `show-running config` command. Sample output is located in the Example for Configuring Fax Relay, on page 732.

Use the following commands to verify and troubleshoot SCCP gateway-controlled Fax Relay:

- **show voice call summary**—Displays fax relay voice port settings.
- **show voice dsp**—Displays fax relay digital signal processor (DSP) channel status.
- **debug voip application stcapp all**—Displays SCCP telephony control (STC) application fax relay information.
- **debug voip dsm all**—Displays fax relay DSP stream manager (DSM) messages.
- **debug voip dsmp all**—Displays fax relay distributed stream media processor (DSMP) messages.
- **debug voip hpi all**—Displays gateway DSP fax relay information on RTP packet events.
- **debug voip vtsp all**—Displays gateway voice telephony service provider (VTSP) debugging information for fax calls.

Note

For more information on these and other commands, see Cisco IOS Voice Command Reference, Cisco Unified Communications Manager Express Command Reference, and Cisco IOS Configuration Fundamentals Command Reference.

Configuration Examples for Fax Relay

Example for Configuring Fax Relay

```
voice service voip
   fax-relay sg3-to-g3

   ephone-dn 44
      number 1234
      name fax machine

   ephone 33
      mac-address 1111.2222.3333
      button 1:44
      type anl
```

Feature Information for Fax Relay

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 56: Feature Information for Cisco Fax Relay

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fax Relay</td>
<td>4.0(3)</td>
<td>Enables Fax Relay on analog FXS ports on Cisco IOS voice gateways under the control of Cisco Unified CME.</td>
</tr>
</tbody>
</table>
Feature Access Codes

Feature Access Codes

Feature Access Codes (FACs) are special patterns of characters for dialing from a phone keypad to invoke particular features. For example, you can press **1, then press 2345 to forward all incoming calls to extension 2345.

Invokes FACs using a short sequence of digits for dialing the keypad on an analog phone. Similarly, on an IP phone you can select softkeys to invoke the same features. In Cisco Unified Communications Manager Express 4.0 and later, enable the same FACs that are available for analog phones on IP phones. It allows you to select a particular feature or activate and deactivate a function in the same manner regardless of the phone type.

Disable FACs on IP phones until they are explicitly enabled. You can enable all standard FACs for all registered SCCP phones in Cisco Unified Communications Manager Express. Similarly you can define a custom FAC or alias to enable one or more individual FACs.

All FACs except the call-park FAC are valid only immediately after a phone is off hook. The call-park FAC is considered transfer to a call-park slot and therefore is only valid after initiating transfer using the Transfer softkey (IP phones) or hookflash (analog phones).

Note

Configured directory numbers on the Cisco Unified Communications Manager Express router cannot overlap with the numbers you assign for FAC Standard or FAC Custom in a FAC configuration. Also, ensure that the FAC code always starts with an asterisk, followed by digits.
For Custom FAC configuration, two FAC codes cannot overlap with one another. A sample configuration (with 54 overlapping) that you must avoid, is as follows:

```
telephony-service fac custom
dnd *54
ephone-hunt hlog-phone *5432
```

Table 57: Standard Feature Access Codes, on page 734 Contains a list of the standard predefined FACs.

Table 57: Standard Feature Access Codes

<table>
<thead>
<tr>
<th>Standard FAC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>**1 plus optional extension number</td>
<td>Call Forward All.</td>
</tr>
<tr>
<td>**2</td>
<td>Call forward all cancel.</td>
</tr>
<tr>
<td>**3</td>
<td>Select a local group.</td>
</tr>
<tr>
<td>**4 plus group number</td>
<td>Select an incoming call in the specified pickup group. Specified pickup group must be already configured in Cisco Unified Communications Manager Express.</td>
</tr>
<tr>
<td>**5 plus extension number</td>
<td>Select a direct extension.</td>
</tr>
<tr>
<td>**6 plus optional park-slot number</td>
<td>Call park, if you have an active call and if you press the Transfer softkey (IP phone) or hookflash (analog phone) before dialing this FAC. Configure the target park slot in Cisco Unified Communications Manager Express.</td>
</tr>
<tr>
<td>**7</td>
<td>Do Not Disturb.</td>
</tr>
<tr>
<td>**8</td>
<td>Redial.</td>
</tr>
<tr>
<td>**9</td>
<td>Dial voicemail number.</td>
</tr>
<tr>
<td>*3 plus hunt group pilot number</td>
<td>Join ephone-hunt group. If you have created multiple hunt groups allowing dynamic membership, identify the joining hunt group by its pilot number.</td>
</tr>
<tr>
<td>*4</td>
<td>Activate or deactivate the hunt group logout functionality to toggle between ready or not-ready status of an extension when the hunt group agent is off-hook.</td>
</tr>
<tr>
<td>*5</td>
<td>Activate or deactivate a phone-level hunt group logout to toggle between ready or not-ready status of all extensions on an individual phone. The individual phone member must be of an ephone hunt group when the phone is idle.</td>
</tr>
<tr>
<td>*6</td>
<td>Dials the voicemail number.</td>
</tr>
<tr>
<td>#3</td>
<td>Leave ephone-hunt group. Configure the Phone or extension number as a dynamic member of a hunt group.</td>
</tr>
</tbody>
</table>
For FAC feature to work on SIP phones configuring call-park system application under telephony-service is mandatory. The following FAC is supported with SIP phones:

- CALL_PICKUP - Allows a phone user to answer a call that is ringing on another phone by pressing the FAC digit **5 and then dialing the extension.

- GROUP_PICKUP - Allows a phone user to answer a call that is ringing phone in any pickup group by pressing the FAC digit **3 and then dialing the pickup group number.

- LOCAL_GPICKUP - Allows a phone user to select a call that is ringing on another phone by pressing the FAC digit **4 and then the asterisk (*) if both phones are in the same pickup group.

- DPARK_RETRIEVE - Allows a phone user to retrieve a parked call on an SCCP phone by pressing the FAC digit *0 and dialing the extension number of the call-park slot.

- REGULAR_PARK - Allows a phone user to place a call on hold by pressing the FAC digit **6 at a special extension so it can be retrieved from any other phone in the system.

- VOICE_HUNTGRP_JOIN - Allows a phone user to join to or from voice hunt groups by selecting the Join FAC digit *3 which is displayed on the voice hunt group page.

- VOICE_HUNTGRP_UNJOIN_ALL - Allows a phone user to unjoin from all voice hunt groups by selecting the unJoin FAC digit #4 which is displayed on the voice hunt group page.

- VOICE_HUNTGRP_UNJOIN_PARTICULAR - Allows a phone user to unjoin from a particular voice hunt group by selecting the unJoin FAC digit #4 which is displayed on the voice hunt group page.

- VOICE_HUNTGRP_TEMP_LOGOUT - Allows a phone user to use the HLog FAC digit *5 to change from the ready to not-ready status or from the not-ready to ready status.

- SIP_NIGHT_SERVICE_CODE - Allows a phone user to enter a night-service code to toggle night-service treatment on and off from any phone that is assigned to the night service.

Configure Feature Access Codes

To enable standard FACs or create custom FACs, perform the following steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `call-park system application`
5. `fac { standard | custom { alias alias-tag custom-fac to existing-fac [extra-digits] } | feature custom-fac }`
6. `end`
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
 - Enter your password if prompted.
 Example:
  ```text
  Router> enable
  ``` |
| **Step 2** | configure terminal | Enters global configuration mode.
 Example:
  ```text
  Router# configure terminal
  ``` |
| **Step 3** | telephony-service | Enters telephony-service configuration mode.
 Example:
  ```text
  Router(config)# telephony-service
  ``` |
| **Step 4** | call-park system application | Configure **call-park system application** for FAC feature to work on SIP phones.
 Example:
  ```text
  Router(config-telephony)# call-park system application
  ``` |
| **Step 5** | fac {standard | custom {alias alias-tag custom-fac to existing-fac [extra-digits]} | feature custom-fac} | Enables standard FACs or creates a custom FAC or alias.
 - **standard**—Enables standard FACs for all phones.
 - **custom**—Creates a custom FAC for a FAC type.
 - **alias**—Creates a custom FAC for an existing FAC or an existing FAC plus extra digits.
 - **alias-tag**—Unique identifying number for this alias. Range: 0 to 9.
 - **custom-fac**—User-defined code to be dialed using the keypad on an IP or analog phone. Custom FAC can be up to 256 characters long and contain numbers 0 to 9 and *, and #.
 - **to**—Maps custom FAC to specified target.
 - **existing-fac**—Already configured custom FAC that is automatically dialed when the phone user dials the custom FAC being configured.
 - **extra-digits**—(Optional) Additional digits that are automatically dialed when the phone user dials the custom FAC being configured.
 - **feature**—Predefined alphabetic string that identifies a particular feature or function. Type ? for a list.
 Example:
  ```text
  Router(config-telephony)# fac custom callfwd *#5
  ``` |
| **Step 6** | end | Returns to privileged EXEC mode.
 Example:
  ```text
  ``` |
Verify Feature Access Codes

To verify the FAC configuration, perform the following step.

show telephony-service fac

Example:

This command displays a list of FACs that are configured on the Cisco Unified CME router. The following example shows the output when standard FACs are enabled:

```
Router# show telephony-service fac

telephony-service fac standard
callfwd all **1
callfwd cancel **2
pickup local **3
pickup group **4
pickup direct **5
park **6
dnd **7
redial **8
voicemail **9
ephone-hunt join *3
ephone-hunt cancel #3
ephone-hunt hlog *4
ephone-hunt hlog-phone *5
trnsfvm *6
```

The following example shows the output when custom FACs are configured:

```
Router# show telephony-service fac

telephony-service fac custom
callfwd all #45
alias 0 #1 to **4121
alias 1 #2 to **4122
alias 4 #4 to **4124
```

Configuration Examples for Feature Access Codes

Example for Enabling Standard FACs for All Phones

The following example shows how to enable standard FACs for all phones:

```
Router# telephony-service
```
Router(config-telephony)# **fac standard**
fac standard is set!

The following example shows how the standard FAC for the Call Forward All feature is changed to a custom FAC (#45). Then an alias is created to map a second custom fac to #45 plus an extension (1111). The custom FAC (#44) allows the phone user to press #44 to forward all calls to extension 1111, without requiring the phone user to dial the extra digits that are the extension number.

Router# **telephony-service**
Router(config-telephony)# **fac custom callfwd all #45**
fac callfwd all code has been configured to #45

Router(config-telephony)# **fac custom alias 0 #44 to #451111**
fac alias0 code has been configurated to #44!
alias0 map code has been configurated to #451111!

The following example shows how to define an alias for the group pickup of group 123. The alias substitutes the digits #4 for the standard FAC for group pickup (**4) and adds the group number (123) to the dial pattern. Using this custom FAC, a phone user can dial #4 to pick up a ringing call in group 123, instead of dialing the standard FAC **4 plus the group number 123.

Router# **telephony-service**
Router(config-telephony)# **fac custom alias 5 #4 to **4123**

Feature Information for Feature Access Codes

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer to Voice Mail.</td>
<td>7.0/4.3</td>
<td>FAC for Transfer to Voice Mail was added.</td>
</tr>
<tr>
<td>Feature Access Codes (FACs)</td>
<td>4.0</td>
<td>FACs were introduced.</td>
</tr>
</tbody>
</table>
Forced Authorization Code

Information About Forced Authorization Code

Forced Authorization Code Overview

Cisco Unified CME 8.5 allows you to manage call access and call accounting through the Forced Authorization Code (FAC) feature. The FAC feature regulates the type of call a certain caller may place and forces the caller to enter a valid authorization code on the phone before the call is placed. FAC allows you to track callers dialing non-toll-free numbers, long distance numbers, and also for accounting and billing purposes.

In Cisco Unified CME and Cisco Voice Gateways, devices and endpoints are logically partitioned into different logical partitioning class of restriction (LPCOR) groups. For example, IP phones, Analog phones, PSTN trunks, and IP (h323/SIP) trunks as shown in Figure 27: Forced Authorization Code Network Overview, on page 740, are partitioned into five LPCOR groups under the voice lpcor custom mode, such as:

- voice lpcor custom
- group 10 Manager
- group 11 LocalUser
- group 12 RemoteUser
- group 13 PSTNTrunk
- group 14 IPTrunk
For each group, the LPCOR group policy of a routing endpoint is enhanced to define incoming calls from individual LPCOR groups that are restricted by FAC. A LPCOR group call to a destination is accepted only when a valid FAC is entered. FAC service for a routing endpoint is enabled through the service fac defined in a LPCOR group policy. For more information, see Enable Forced Authorization Code (FAC) on LPCOR Groups, on page 744.

The following are the group policy rules applicable to the PSTNTrunk LPCOR group:

- FAC is required by PSTNTrunk if a call is initiated from either LocalUser or RemoteUser group.
- Any calls from Manager group are allowed to terminate to PSTNTrunk without restriction.
- Any incoming calls from either IPTrunk or PSTNTrunk group are rejected and terminated to PSTNTrunk group.

For information on configuring LPCOR groups and associating LPCOR group with different device types, see Call Restriction Regulations, on page 1063.

FAC Call Flow

FAC is required for an incoming call based on the LPCOR policy defined for the call destination. Once the authentication is finished, the success or failure status and the collected FAC digits are saved to the call detail records (CDRs).

Calls are handled by a new built-in application authorization package which first plays a user-prompt for the caller to enter a username (in digits), then the application plays a passwd-prompt for the caller to collect the password (in digits). The collected username and password digits are then used for FAC, see Define Parameters for Authorization Package, on page 746.

When FAC authentication is successful, the outgoing call setup is continued to the same destination. If FAC authentication fails, the call is then forwarded to the next destination. FAC operations are invoked to the call if FAC service is enabled in the next destination and no valid FAC status is saved for the call.

Any calls failing because of FAC blocking are disconnected with a LPCOR Q.850 disconnect cause code. Once the FAC is invoked for a call, the collected authorization digits and the authentication status information is collected by call active or call history records. You can retrieve the FAC information through the show call active voice and show call history voice commands.
Forced Authorization Code Specification

The authorization code used for call authentication must follow these specifications:

- The authorization code must be in numeric (0 – 9) format.
- A digit collection operation must be completed if either one of the following conditions occur:
 - maximum number of digits are collected
 - digit input times out
 - a terminating digit is entered

Once digit collection is completed, the authentication is done by either the external Radius server or Cisco Unified CME or Cisco Voice Gateways by using AAA Login Authentication setup. For more information on AAA login authentication methods, see Configuring Authentication.

When authentication is done by local Cisco Unified CME or Cisco Voice Gateways, the `username ac-code password 0 password` command is required to authenticate the collected authorization code digits.

FAC data is stored through the CDR and new **AAA fac-digits** and **fac-status** attributes and are supported in a CDR STOP record. This CDR STOP record is formatted for file accounting, RADIUS or Syslog accounting purpose.

FAC Requirement for Different Types of Calls

Table 59: FAC Support for Different Types of Calls, on page 741 shows FAC support for different types of calls.

<table>
<thead>
<tr>
<th>Types of Calls</th>
<th>FAC Behavior for Different Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Call</td>
<td>A calls B. B requires A to enter a FAC. A is routed to B only when A enters a valid FAC.</td>
</tr>
<tr>
<td>Call Forward All Call</td>
<td>When A (with no FAC) calls B, A is call forwarded to C:</td>
</tr>
<tr>
<td>Forward Busy</td>
<td>- No FAC is required when B enables Call Forward All or Call Forward Busy to C.</td>
</tr>
<tr>
<td></td>
<td>- FAC is required on A when A is call forwarded to C.</td>
</tr>
<tr>
<td>Call Forward No Answer</td>
<td>When A (with no FAC) calls B and A (with FAC) calls C:</td>
</tr>
<tr>
<td></td>
<td>A calls B:</td>
</tr>
<tr>
<td></td>
<td>- No FAC is required when A calls B.</td>
</tr>
<tr>
<td></td>
<td>A is Call Forward No Answer (CFNA) to C.</td>
</tr>
<tr>
<td></td>
<td>- FAC is required on A when A is call forward to C.</td>
</tr>
<tr>
<td>Types of Calls</td>
<td>FAC Behavior for Different Calls</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Call Transfer (Blind) | FAC is required, if B calls C and A, and A calls C.
Example: |
| | A calls B. B answers the call. B initiates a blind transfer call to C. A is prompted to enter FAC. A is routed to C only if a valid FAC is entered by A. |
| Call Transfer (Consultation) | 1. FAC is required if B calls C. FAC is not required when A calls C,
Example: |
| Transfer Complete at Alerting State | a. A calls B. B answers the call and initiates a consultation transfer to C.
| | b. B is prompted to enter a FAC and B is not allowed to complete the call transfer when FAC is not completed.
| | c. B (the transfer call) is forwarded to C after a valid FAC is entered. B completes the transfer while the transfer call is still ringing on C. A is then transferred to C. |
| | 2. FAC is required if B calls C and A calls C.
Example: |
| | a. A calls B. B answers the call and initiates a consultation transfer to C.
| | b. B is prompted to enter a FAC and B is not allowed to complete the call transfer when FAC is not completed.
| | c. No FAC is required to A, A is then transferred to C. |
| | 3. FAC is not required if B calls C but FAC is required if A calls C.
Example: |
| | a. A calls B, B answers the call.
| | b. B initiates a consultation transfer to C and completes the transfer.
| | c. No FAC required to A, A is then transferred to C. |
| Transfer Complete at Connected State | 1. FAC is required when A calls C.
Example: |
| | a. A calls B, B answers the call and initiates a consultation transfer to C.
| | b. C answers the transfer call and B completes the transfer.
<p>| | c. No FAC required to connect to A (including local hairpin calls because the call transfer is complete) and A is connected to C. |</p>
<table>
<thead>
<tr>
<th>Types of Calls</th>
<th>FAC Behavior for Different Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Call (Software/Adhoc)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. FAC is not invoked when a call is joined to a conference connection.</td>
</tr>
<tr>
<td></td>
<td>2. FAC is required between A and C, B and C.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>a. A calls B, B answers the call and initiates a conference call to C.</td>
</tr>
<tr>
<td></td>
<td>b. B enters a valid authorization code and is routed to C.</td>
</tr>
<tr>
<td></td>
<td>c. C answers the conference call and the conference is complete.</td>
</tr>
<tr>
<td></td>
<td>d. No FAC is required to connect to A and A is joined to a conference connection.</td>
</tr>
<tr>
<td>Meetme Conference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. FAC is not invoked for a caller to join the meetme conference.</td>
</tr>
<tr>
<td></td>
<td>2. FAC is required between A and C, B and C.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>a. C joins the meetme conference first.</td>
</tr>
<tr>
<td></td>
<td>b. No FAC is required if B joins the same meetme conference.</td>
</tr>
<tr>
<td></td>
<td>c. No FAC is required if C also joins the same meetme conference.</td>
</tr>
<tr>
<td>Call Park and Retrieval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. FAC is not invoked for the parked call.</td>
</tr>
<tr>
<td></td>
<td>2. FAC is required if C calls A.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>a. A calls B, B answers the call and parks the caller on A.</td>
</tr>
<tr>
<td></td>
<td>b. C retrieves the parked call (A), no FAC is required to reach C, and C is connected to A.</td>
</tr>
<tr>
<td>Call Park Restore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. FAC is required if A calls D.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>a. A calls B, B answers the call and parks the caller on A.</td>
</tr>
<tr>
<td></td>
<td>b. Parked call (A) is timed out from a call-park slot and is forwarded to D.</td>
</tr>
<tr>
<td></td>
<td>c. No FAC is required for D and the parked call (A) will ring on D.</td>
</tr>
</tbody>
</table>
FAC Behavior for Different Calls

<table>
<thead>
<tr>
<th>Types of Calls</th>
<th>FAC Behavior for Different Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Pickup</td>
<td>1. FAC is not provided if a caller picks up a group call.</td>
</tr>
<tr>
<td></td>
<td>2. FAC is required if C calls A.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>a. A calls B, A is ringing on B, and C attempts to pickup call A.</td>
</tr>
<tr>
<td></td>
<td>b. No FAC is required for C and C is connected to A.</td>
</tr>
<tr>
<td>Single Number Redirection (SNR)</td>
<td>FAC is not supported for an SNR call.</td>
</tr>
<tr>
<td>Third Party Call Control (3pcc)</td>
<td>FAC is not supported for a three-party call control (3pcc) outgoing call.</td>
</tr>
<tr>
<td>Parallel Hunt Groups</td>
<td>FAC is not supported on parallel hunt groups.</td>
</tr>
<tr>
<td>Whisper intercom</td>
<td>FAC is not supported for whisper intercom calls.</td>
</tr>
</tbody>
</table>

Configure Forced Authorization Code

Enable Forced Authorization Code (FAC) on LPCOR Groups

- **Restriction**: Authenticated FAC data is saved to a call-log from which the authorization code is collected. When a call-forward or blind transfer call scenario triggers a new call due to the SIP notify feature, the same caller is required to enter the authorization code again for FAC authentication.

- **Warning**: A FAC pin code must be unique and not the same as an extension number. Cisco Unified CME, Cisco Unified SRST, and Cisco Voice Gateways will not validate whether a collected FAC pin code matches an extension number.

Before you begin
- You must enable the voice lpcor enable command before configuring FAC.
- Trunks (IP and PSTN) must be associated with phones into different LPCOR groups. See Associate a LPCOR Policy with Analog Phone or PSTN Trunk Calls, on page 1073 for more information.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>voice lpcor enable</td>
<td>Enables LPCOR functionality on the Cisco Unified CME router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice lpcor enable</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>voice lpcor custom</td>
<td>Defines the name and number of LPCOR resource groups on the Cisco Unified CME router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice lpcor custom</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>group number lpcor-group</td>
<td>Adds a LPCOR resource group to the custom resource list.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• number—Group number of the LPCOR entry. Range: 1 to 64.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 10 Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 11 LocalUser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 12 RemoteUser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 13 PSTNTrunk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 14 IPTrunk</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>exit</td>
<td>Exits voice-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>voice lpcor policy lpcor-group</td>
<td>Creates a LPCOR policy for a resource group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• lpcor-group—Name of the resource group that you defined in Step 5.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 10 Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 11 LocalUser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(cfg-lpcor-custom)#group 12 RemoteUser</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| Router\(cfg-lpcor-custom\)#group 13 PSTNTrunk
Router\(cfg-lpcor-custom\)#group 14 IPTrunk | |

Step 8

accept lpcor-group fac

Example:

Router\(cfg-lpcor-policy\)# accept PSTNTrunk fac
Router\(cfg-lpcor-policy\)# accept Manager fac

Allows a LPCOR policy to accept calls associated with the specified resource group.

- Default: Calls from other groups are rejected; calls from the same resource group are accepted.
- fac—Valid forced authorization code that the caller needs to enter before the call is routed to its destination.
- Repeat this command for each resource group whose calls you want this policy to accept.

Step 9

service fac

Example:

Router\(cfg-lpcor-policy\)#service fac

Enables force authorization code service for a LPCOR group.

- Default: No form of the service fac command is the default setting of a LPCOR group policy.

Step 10

end

Example:

Router\(config-ephone\)# end

Returns to privileged EXEC mode.

Example

Example:

Router# show voice lpcor policy
voice lpcor policy PSTNTrunk (group 13):
service fac is enabled
(accept) Manager (group 10)
(reject) LocalUser (group 11)
(reject) RemoteUser (group 12)
(accept) PSTNTrunk (group 13)
(reject) IPTrunk (group 14)

Define Parameters for Authorization Package

To define required parameters for user name and password, follow these steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. application
4. package auth
5. param passwd
6. `param user-prompt filename`
7. `param passwd-prompt filename`
8. `param max-retries`
9. `param term-digit`
10. `param abort-digit`
11. `param max-digits`
12. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters the application configuration mode.</td>
</tr>
<tr>
<td><code>application</code></td>
<td>Enters the application configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#application</td>
<td></td>
</tr>
<tr>
<td>Router(config-app)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters package authorization configuration mode.</td>
</tr>
<tr>
<td><code>package auth</code></td>
<td>Enters package authorization configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-app)#package auth</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Character string that defines a predefined password for authorization.</td>
</tr>
<tr>
<td><code>param passwd</code></td>
<td>Character string that defines a predefined password for authorization.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: Password digits collection is optional if password digits are predefined in the <code>param passwd</code> command.</td>
</tr>
<tr>
<td>Router(config-app)#package param passwd 12345</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Allows you to enter the user name parameters required for package authorization for FAC authentication.</td>
</tr>
<tr>
<td><code>param user-prompt filename</code></td>
<td>Allows you to enter the user name parameters required for package authorization for FAC authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td>user-prompt filename — Plays an audio prompt requesting the caller to enter a valid username (in digits) for authorization.</td>
</tr>
<tr>
<td>Router(config-app-param)#param user-prompt flash:en_bacd_enter_dest.au</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Allows you to enter the password parameters required for package authorization for FAC authentication.</td>
</tr>
<tr>
<td><code>param passwd-prompt filename</code></td>
<td>Allows you to enter the password parameters required for package authorization for FAC authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td>passwd-prompt filename — Plays an audio prompt requesting the caller to enter a valid password (in digits) for authorization.</td>
</tr>
<tr>
<td>Router(config-app-param)#param passwd-prompt flash:en_welcome.au</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 8 | param max-retries | Specifies number of attempts to re-enter an account or a password.
- **max-retries**—Value ranges from 0-10, default value is 0. |
| 9 | param term-digit | Specifies digit for terminating an account or a password digit collection. |
| 10 | param abort-digit | Specifies the digit for aborting username or password digit input. Default value is *. |
| 11 | param max-digits | Maximum number of digits in a username or password.
- Range of valid value: 1 - 32. Default value is 32. |
| 12 | exit | Exits package authorization parameter configuration mode. |

Configuration Example for Forced Authorization Code

Example for Configuring Forced Authorization Code

This section provides configuration example for Forced Authorization Code.

```
!  
gw-accounting aaa  
!  
aaa new-model  
!  
  aaa authentication login default local  
  aaa authentication login h323 local  
  aaa authorization exec h323 local  
  aaa authorization network h323 local  
!  
  aaa session-id common  
!  
voice lpcor enable  
voice lpcor custom  
group 11 LocalUser  
group 12 AnalogPhone  
!  
voice lpcor policy LocalUser  
service fac  
accept LocalUser fac  
accept AnalogPhone fac
```
Feature Information for Forced Authorization Code

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced Authorization Code</td>
<td>8.5</td>
<td>Introduced the FAC feature.</td>
</tr>
</tbody>
</table>
Headset Auto Answer

Information About Headset Auto Answer

Auto Answering Calls Using a Headset

In Cisco Unified CME 4.0 and later versions you can configure lines on specific phones to automatically connect to incoming calls when the headset key is activated. The phone cannot be busy with an active call and the headset key must be engaged to automatically answer calls. Incoming calls are automatically answered one by one on the phone as long as the headset light remains lit. For each ephone, you can specify one or more lines for headset auto answer.

After a phone is configured for headset auto answer, the phone user must press the headset key to start auto answer. The headset light is lit to indicate that auto answer is active for the lines that are designated in the configuration. When the phone auto answers a call, a zip tone is played to alert the phone user that a call is present. To stop auto answer, the phone user presses the headset key again and the headset light goes out. At this time, the phone user can answer calls in a normal manner using the handset.

Difference Between a Line and a Button

Note that a line is similar to, but not exactly the same as, a button on the phone. A line represents a phone’s capability to make a call connection, so each button that can make a call connection becomes a line. (For example, unoccupied buttons or speed-dial buttons are not lines.) Note also that a line is not the same as an ephone-dn. A button with overlaid ephone-dns is only one line, regardless of whether it has several ephone-dns (extension numbers) associated with it. In most cases an ephone’s line numbers do match its button numbers, but in a few cases they do not.

Figure 28: When is a Line the Same as a Button?, on page 752 illustrates a comparison of line numbers and button numbers for different types of ephone configurations.
Figure 28: When is a Line the Same as a Button?

Most of the time, a line number is the same as the button number on which it appears.
In this example, line 1 is button 1, line 2 is button 2, and line 3 is button 3.

But not always. In the following case, line 2 is button 3, because button 3 is the second button that has an ephone-dn to be connected to a phone call. Button 2 is unoccupied and cannot take calls.

In the following example, button 2 has three overlay ephone-dns (22, 23, and 24). Button 2 is defined as one line because only one of those ephone-dns can be connected to a call using this button at any one time.

An expansion, or overlay, line for overlay ephone-dns also counts as one line. Button 2 in this example is also line 2.
Configure Headset Auto Answer

Enable Headset Auto Answer

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `headset auto-answer line line-number`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 25</td>
<td></td>
</tr>
<tr>
<td>Step 4 headset auto-answer line line-number</td>
<td>Specifies a line on an ephone that will be answered automatically when the headset button is depressed.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# headset auto-answer line 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verify Headset Auto Answer

Step 1 Use the show running-config command to verify your configuration. Headset auto answer is listed in the ephone portion of the output.

```
Router# show running-config

ephone 1
   headset auto-answer line 1
   headset auto-answer line 2
   headset auto-answer line 3
   headset auto-answer line 4
   username "Front Desk"
   mac-address 011F.92B0.BE03
   speed-dial 1 330 label "Billing"
   type 7960 addon 1 7914
   no dnd feature-ring
   keep-conference
   button 1f40 2f41 3f42 4:30
   button 5:405 7m20 8m21 9m22
   button 10m23 11m24 12m25 13m26
   button 14m499 15:1 16m31 17f498
   button 18s500
   night-service bell
```

Step 2 Use the show telephony-service ephone command to display only the ephone configuration portion of the running configuration.

Configuration Example for Headset Auto Answer

Example for Enabling Headset Auto Answer

The following example enables headset auto answer on ephone 3 for line 1 (button 1) and line 4 (button 4).

```
ephone 3
   button 1:2 2:4 3:6 4o21,22,23,24,25
   headset auto-answer line 1
   headset auto-answer line 4
```

The following example enables headset auto answer on ephone 17 for line 2 (button 2), which has overlaid ephone-dns, and line 3 (button 3), which is an overlay rollover line.

```
ephone 17
   button 1:2 2o21,22,23,24,25 3x2
   headset auto-answer line 2
   headset auto-answer line 3
```

The following example enables headset auto answer on ephone 25 for line 2 (button 3) and line 3 (button 5). In this case, the button numbers do not match the line numbers because buttons 2 and 4 are not used.

```
ephone 25
   button 1:2 3:4 5:6
```
Feature Information for Headset Auto Answer

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 61: Feature Information for Headset Auto Answer

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headset Auto Answer</td>
<td>4.0</td>
<td>Headset auto answer was introduced.</td>
</tr>
</tbody>
</table>
Intercom Lines

Information About Intercom Lines

Intercom Auto-Answer Lines

An intercom line is a dedicated two-way audio path between two phones. Cisco Unified CME supports intercom functionality for one-way and press-to-answer voice connections using a dedicated pair of intercom directory numbers on two phones that speed-dial each other.

When an intercom speed dial button is pressed, a call is speed-dialed to the directory that is the other half of the dedicated pair. The called phone automatically answers the call in speaker-phone mode with mute activated, providing a one-way voice path from the initiator to the recipient. A beep is sounded when the call is auto-answered to alert the recipient to the incoming call. To respond to the intercom call and open a two-way voice path, the recipient deactivates the mute function by pressing the Mute button or, on phones such as the Cisco Unified IP Phone 7910, lifting the handset.

Intercom lines cannot be used in shared-line configurations. If a directory number is configured for intercom operation, it must be associated with one IP phone only. The intercom attribute causes an IP phone line to operate as an autodial line for outbound calls and as an autoanswer-with-mute line for inbound calls. Figure 29: Intercom Lines, on page 758 shows an intercom between a receptionist and a manager.

To prevent an unauthorized phone from dialing an intercom line (and creating a situation in which a phone automatically answers a nonintercom call), you can assign the intercom a directory number that includes an alphabetic character. No one can dial the alphabetic character from a normal phone, but the phone at the other end of the intercom can be configured to dial the number that contains the alphabetic character through the
Cisco Unified CME router. For example, the intercom ephone-dns in Figure 29: Intercom Lines, on page 758 are assigned numbers with alphabetic characters so that only the receptionist can call the manager on his or her intercom line, and no one except the manager can call the receptionist on his or her intercom line.

An intercom requires the configuration of two ephone-dns, one each on a separate phone.

Whisper Intercom

When a phone user dials a whisper intercom line, the called phone automatically answers using speaker-phone mode, providing a one-way voice path from the caller to the called party, regardless of whether the called party is busy or idle.

Unlike the standard intercom feature, this feature allows an intercom call to a busy extension. The calling party can only be heard by the recipient. The original caller on the receiving phone does not hear the whisper page. The phone receiving a whisper page displays the extension and name of the party initiating the whisper page and Cisco Unified CME plays a zipzip tone before the called party hears the caller's voice. If the called party wants to speak to the caller, the called party selects the intercom line button on their phone. The lamp for intercom buttons are colored amber to indicate one-way audio for whisper intercom and green to indicate two-way audio for standard intercom.

You must configure a whisper intercom directory number for each phone that requires the Whisper Intercom feature. A whisper intercom directory number can place calls only to another whisper intercom directory number. Calls between a whisper intercom directory number and a standard directory number or intercom directory number are rejected with a busy tone.

This feature is supported in Cisco Unified CME 7.1 and later versions. For configuration information, see Configure Whisper Intercom on SCCP Phones, on page 762.

SIP Intercom

In Cisco Unified CME 8.8, the SIP Intercom feature is released as part of the 8.3(1) IP Phone firmware.
The SIP intercom line provides a one-way voice path from the caller to the called phone. When a phone user dials the intercom line, the called phone automatically answers the call in speaker-phone mode with Mute activated. If the called SIP phone is busy with a connected call or with an outgoing call that has not been connected, the call is whispered into the called phone.

As soon as the called phone auto-answers, the intercom call recipient has three options:

- Listen to the one-way audio of the intercom caller without answering.
- End the call by pressing the speaker-phone button or the EndCall softkey.
- Press the intercom button to create a two-way voice path and respond to the intercom caller.

If the called phone is busy when the intercom call arrives and a response is requested, the active call is put on hold and the outgoing call that is not connected yet is canceled before the intercom call is connected for a two-way voice path.

The lamp for the intercom line button displays an amber light for one-way intercom and green for a two-way voice path.

Table 62: SIP-SCCP Interactions for the SIP Intercom Feature

<table>
<thead>
<tr>
<th>Originator</th>
<th>Terminator</th>
<th>Intercom</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP normal line</td>
<td>SIP intercom line</td>
<td>Supported</td>
</tr>
<tr>
<td>SIP intercom line</td>
<td>SIP intercom line</td>
<td>Supported</td>
</tr>
<tr>
<td>SIP normal line</td>
<td>SCCP whisper intercom line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SIP intercom line</td>
<td>SCCP whisper intercom line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP normal line</td>
<td>SIP intercom line</td>
<td>Supported</td>
</tr>
<tr>
<td>SCCP normal line</td>
<td>SCCP whisper intercom line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP whisper intercom line</td>
<td>SCCP whisper intercom line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP whisper intercom line</td>
<td>SIP intercom line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP whisper intercom line</td>
<td>SCCP whisper intercom line</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Extension Number

The extension number of an intercom line can be included in an extension mobility user-profile or extension mobility logout-profile.

The BLF feature can define the extension number of an intercom line as a speed dial on a Cisco Unified CME phone, allowing the line status of the intercom line to be monitored.

For configuration information, see Configure Extension Mobility for SIP Phones, on page 717.

Configure Intercom Lines

Configure an Intercom Auto-Answer Line on SCCP Phones

To enable a two-way audio path between two phones, perform the following steps for each Cisco Unified SCCP IP phone at both ends of the two-way voice path.

Restriction

- Intercom lines cannot be dual-line.
- If a directory number is configured for intercom operation, it can be associated with only one Cisco Unified IP phone.
- Each phone, at both ends of the two-way voice path, requires a separate configuration.

<table>
<thead>
<tr>
<th>Originator</th>
<th>Terminator</th>
<th>Intercom</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP normal line</td>
<td>SIP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SIP intercom line</td>
<td>SIP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP normal line</td>
<td>SIP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP intercom line</td>
<td>SIP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SIP normal line</td>
<td>SCCP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SIP intercom line</td>
<td>SCCP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP normal line</td>
<td>SCCP normal line</td>
<td>Not Supported</td>
</tr>
<tr>
<td>SCCP intercom line</td>
<td>SCCP normal line</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ephone-dn dn-tag**
4. **number number**
5. **name name**
7. **exit**
8. **ephone phone-tag**
9. **button button-number: dn-tag [[button-number: dn-tag] ...]**
10. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 11</td>
<td>• Do not use the dual-line keyword with this command. Intercom ephone-dns cannot be dual-line.</td>
</tr>
<tr>
<td>Step 4</td>
<td>number number</td>
<td>Assigns a valid intercom number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# number A2345</td>
<td>• Using one or more alphabetic characters in an intercom number ensures that the number can only be dialed from the one other intercom number that is programmed to dial this number. The number cannot be dialed from a normal phone if it contains an alphabetic character.</td>
</tr>
<tr>
<td>Step 5</td>
<td>name name</td>
<td>Sets a name to be associated with the ephone-dn.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# name intercom</td>
<td>• This name is used for caller-ID displays and also shows up in the local directory associated with the ephone-dn.</td>
</tr>
<tr>
<td>Step 6</td>
<td>**intercom extension-number [[barge-in [no-mute]</td>
<td>no-auto-answer</td>
</tr>
</tbody>
</table>
Configure Whisper Intercom on SCCP Phones

To enable the Whisper Intercom feature on a directory number, perform the following steps.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ephone-dn)# intercom A2346 label</td>
<td>Security</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 24</td>
<td></td>
</tr>
<tr>
<td>Step 9 button button-number:dn-tag [[button-number:dn-tag] ...]</td>
<td>Assigns a button number to the intercom ephone-dn being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# button 1:1 2:4 3:14</td>
<td>• Use the colon separator (:) between the button number and the intercom ephone-dn tag to indicate a normal ring for the intercom line.</td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Exits ephone configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Restriction

- Single-line phone models, such as the Cisco Unified IP Phone 7906 or 7911, are not supported.
- Whisper intercom directory numbers can place calls only to other whisper intercom numbers.
- A directory number can be configured as either a regular intercom or a whisper intercom, not both.
- Dual-line and octo-line directory numbers are not supported as intercom lines.
- Only one intercom call, either incoming or outgoing, is allowed on the phone at one time.
- Call features are not supported on intercom calls.

Before you begin

- Cisco Unified CME 7.1 or a later version.
- IP phones require SCCP 12.0 or a later version.

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `ephone-dn dn-tag`
4. `whisper-intercom [label string | speed-dial number [label string]]`
5. `end`
6. `show ephone-dn whisper`

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ephone-dn dn-tag</code> Enters ephone configuration mode to create a directory number for a SCCP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 1</td>
</tr>
<tr>
<td>Step 4</td>
<td>`whisper-intercom [label string</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# whisper intercom</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code> Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show ephone-dn whisper</code> Displays information about whisper intercom ephone-dns that have been created.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show ephone-dn whisper</td>
</tr>
</tbody>
</table>

Example

The following example shows Whisper Intercom configured on extension 2004:

```
ephone-dn 24
number 2004
whisper-intercom label "sales"!
!
ephone 24
```
Configure an Intercom Auto-Answer Line on SIP Phones

To enable the Intercom Auto-Answer feature for Cisco Unified SIP IP phones, perform the following steps for each IP phone at both ends of the two-way voice path.

Restriction

- If a directory number is configured for intercom operation, it can be associated with only one Cisco Unified IP phone.
- Each phone, at each end of the two-way voice path, requires a separate configuration.

Before you begin

Cisco CME 3.4 or a later version.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **voice register dn** *dn-tag*
4. **number** *number*
5. **auto-answer**
6. **exit**
7. **voice register pool** *pool-tag*
8. **id** *(mac address)*
9. **type** *phone-type*
10. **number** *tag* *dn* *dn-tag*
11. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>voice register dn dn-tag</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# voice register dn 1</td>
</tr>
<tr>
<td>4</td>
<td>number number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# number A5001</td>
</tr>
<tr>
<td></td>
<td>• To prevent non-intercom originators from manually dialing an intercom destination, the number string can contain alphabetic characters enabling the number to be dialed only by the Cisco Unified CME router and not from telephone keypads.</td>
</tr>
<tr>
<td>5</td>
<td>auto-answer</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# auto-answer</td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# exit</td>
</tr>
<tr>
<td>7</td>
<td>voice register pool pool-tag</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register pool 3</td>
</tr>
<tr>
<td>8</td>
<td>id {mac address}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# id mac 0009.A3D4.1234</td>
</tr>
<tr>
<td>9</td>
<td>type phone-type</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# type 7960-7940</td>
</tr>
<tr>
<td>10</td>
<td>number tag dn-tag</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# number 1 dn 17</td>
</tr>
<tr>
<td>11</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# end</td>
</tr>
</tbody>
</table>
Configure Intercom Call Option on SIP Phones

Restriction

- The Intercom feature is not supported on single-line phones because the intercom line cannot be the primary line of a Cisco Unified CME SIP IP phone.
- The intercom line cannot be shared among SIP phones.
- FAC is not supported on a SIP intercom call because the keys are disabled.

Before you begin

- Cisco Unified CME 8.8 or a later version.
- 8.3(1) phone firmware or a later version is installed on the Cisco Unified SIP IP phone.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
4. number number
5. intercom [speed-dial digit-string] [label label-text]
6. exit
7. voice register pool pool-tag
8. id {network address mask mask | ip address mask mask | mac address}
9. type phone-type
10. number tag dn dn-tag
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode to define an extension for a SIP intercom line.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register dn 4</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 4 | number number | Associates a telephone or extension number with a Cisco Unified SIP phone in a Cisco Unified CME system. Example:
Router(config-register-dn)# number 4001 |
| 5 | intercom [speed-dial digit-string] [label label-text] | Enables the intercom call option on a Cisco Unified SIP IP phone.
- (Optional) **speed-dial**—Enables the intercom line user to place a call to a pre-configured destination. If the speed dial is not configured, it simply initiates a new call on the intercom line and waits for the user to dial the destination number.
- (Optional) **label label-text**—String that contains identifying text to be displayed next to the speed dial button. Enclose the string in quotation marks if the string contains a space. Example:
Router(config-register-dn)# intercom [speed-dial 4002] [label intercom4001] |
| 6 | exit | Exits configuration mode to the next highest mode in the configuration mode hierarchy. Example:
Router(config-register-dn)# exit |
| 7 | voice register pool pool-tag | Enters voice register pool configuration mode to set phone-specific parameters for a Cisco Unified SIP phone in Cisco Unified CME. Example:
Router(config)# voice register pool 3 |
| 8 | id {network address mask | ip address mask | mac address} | Explicitly identifies a locally available individual Cisco Unified SIP phone to support a degree of authentication. Example:
| 9 | type phone-type | Defines a phone type for the Cisco Unified SIP phone being configured. Example:
Router(config-register-pool)# type 7940 |
| 10 | number tag dn dn-tag | Associates a directory number tag with the Cisco Unified SIP IP phone being configured. Example:
Router(config-register-pool)# number 1 dn 17 |
| 11 | end | Exits to privileged EXEC mode. Example:
Router(config-register-dn)# end |
Configuration Examples for Intercom Lines

Example for Configuring Intercom Lines

The following example shows an intercom between two Cisco Unified IP phones. In this example, ephone-dn 2 and ephone-dn 4 are normal extensions, while ephone-dn 18 and ephone-dn 19 are set as an intercom pair. Ephone-dn 18 is associated with line button 2 on Cisco Unified IP phone 4. ephone-dn 19 is associated with line button 2 on Cisco Unified IP phone 5. The two ephone-dns provide a two-way intercom between the two Cisco Unified IP phones.

ephone-dn 2
 number 5333
ephone-dn 4
 number 5222
ephone-dn 18
 number 5001
 name “intercom”
 intercom 5002 barge-in
ephone-dn 19
 name “intercom”
 number 5002
 intercom 5001 barge-in
ephone 4
 button 1:2 2:18
ephone 5
 button 1:4 2:19

Example for Configuring SIP Intercom Support

The following example shows SIP Intercom configured on extension 1001:

voice register dn 1
 number 1001
 intercom [speed-dial 1002] [label intercom1001]

voice register pool 1
 id mac 001D.452D.580C
 type 7962
 number 1 dn 2
 number 2 dn 1

Where to Go Next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.
Paging
The paging feature sets up a one-way audio path to deliver information to a group of phones at one time. For more information, see Paging, on page 831.

Feature Information for Intercom Lines

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 63: Feature Information for Intercom Lines

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP Intercom</td>
<td>8.8</td>
<td>Adds intercom support to Cisco Unified SIP IP phones connected to a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Whisper Intercom</td>
<td>7.1</td>
<td>Introduces whisper intercom feature.</td>
</tr>
<tr>
<td>Intercom Lines</td>
<td>3.4</td>
<td>Adds intercom feature, with no-mute function, for supported Cisco Unified IP phones that are connected to a Cisco Unified CME router and running SIP.</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
<td>Introduces the no-mute function.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>Introduces the Intercom feature.</td>
</tr>
</tbody>
</table>
Loopback Call Routing

Information About Loopback Call Routing

Loopback call routing in a Cisco Unified CME system is provided through a mechanism called loopback-dn, which provides a software-based limited emulation of back-to-back physical voice ports connected together to provide a loopback call-routing path for voice calls.

Loopback call routing and loopback-dn restricts the passage of call-transfer and call-forwarding supplementary service requests through the loopback. Instead of passing these requests through, the loopback-dn mechanism attempts to service the requests locally. This allows loopback-dn configurations to be used in call paths where one of the external devices does not support call transfer or call forwarding (Cisco-proprietary or H.450-based). Control messages that request call transfer or call forwarding are intercepted at the loopback virtual port and serviced on the local voice gateway. If needed, this mechanism creates VoIP-to-VoIP call-routing paths.

Loopback call routing may be used for routing H.323 calls to Cisco Unity Express. For information on configuring Cisco Unity Express, see the Cisco Unity Express documentation.

A preferred alternative to loopback call routing was introduced in Cisco CME 3.1. This alternative blocks H.450-based supplementary service requests by using the following Cisco IOS commands:

- `no supplementary-service h450.2`
- `no supplementary-service h450.3`
- `supplementary-service h450.12`

For more information, see Configure Call Transfer and Forwarding, on page 1134.

Use of loopback-dn configurations within a VoIP network should be restricted to resolving critical network interoperability service problems that cannot otherwise be solved. Loopback-dn configurations are intended for use in VoIP network interworking where the alternative would be to make use of back-to-back-connected physical voice ports. Loopback-dn configurations emulate the effect of a back-to-back physical voice-port arrangement without the expense of the physical voice-port hardware. Because digital signal processors (DSPs) are not involved in loopback-dn arrangements, the configuration does not support interworking or transcoding.
between calls that use different voice codecs. In many cases, use of back-to-back physical voice ports that do involve DSPs to resolve VoIP network interworking issues is preferred, because it introduces fewer restrictions in terms of supported codecs and call flows.

Loopback call routing requires two extensions (ephone-dns) to be separately configured, each as half of a loopback-dn pair. Ephone-dns that are defined as a loopback-dn pair can only be used for loopback call routing. In addition to defining the loopback-dn pair, you must specify preference, huntstop, class of restriction (COR), and translation rules.

Configure Loopback Call Routing

Enable Loopback Call Routing

To enable loopback call-routing, perform the following steps for each ephone-dn that is part of the loopback-dn pair.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. number number [secondary number] [no-reg {both | primary }]
5. caller-id {local | passthrough}
6. no huntstop
7. preference preference-order [secondary secondary-order]
8. cor {incoming | outgoing} cor-list-name
9. translate {called | calling} translation-rule-tag
10. loopback-dn dn-tag [forward number-of-digits | strip number-of-digits] [prefix prefix-digit-string] [suffix suffix-digit-string] [retry seconds] [auto-con] [codec {g711alaw | g711ulaw}]
11. end

Restriction

Loopback-dns do not support T.38 fax relay.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| Step 3 | **ephone-dn dn-tag** | Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.
- **dn-tag**—Unique sequence number that identifies this ephone-dn during configuration tasks. Range is platform- and version-dependent. |
| **Example:** | Router(config)# ephone-dn 15 |
| Step 4 | **number number [secondary secondary] [no-reg [both | primary |]]** | Associates a number with this extension (ephone-dn).
- **number**—String of up to 16 digits that represents a telephone or extension number to be associated with this ephone-dn.
- **secondary**—(Optional) Allows you to associate a second telephone number with an ephone-dn.
- **no-reg**—(Optional) Specifies that this number should not register with the H.323 gatekeeper. The **no-reg** keyword indicates that only the secondary number should not register. The **no-reg both** keywords indicate that both numbers should not register, and the **no-reg primary** keywords indicate that only the primary number should not register. |
| **Example:** | Router(config-ephone-dn)# number 2001 |
| Step 5 | **caller-id (local | passthrough)** | Specifies caller-ID treatment for outbound calls originated from the ephone-dn. The default if this command is not used is as follows. For transferred calls, caller ID is provided by the number and name fields from the outbound side of the loopback-dn. For forwarded calls, caller ID is provided by the original caller ID of the incoming call. Settings for the **caller-id block** command and translation rules on the outbound side are executed.
- **local**—Passes the local caller ID on redirected calls. This is the preferred usage.
- **passthrough**—Passes the original caller ID on redirected calls. |
| **Example:** | Router(config-ephone-dn)# caller-id local | |
| Step 6 | **no huntstop** | Disables huntstop and allows call hunting behavior for an extension (ephone-dn). |
| **Example:** | Router(config-ephone-dn)# no huntstop |
| Step 7 | **preference preference-order [secondary secondary-order]** | Sets dial-peer preference for an extension (ephone-dn).
- **preference-order**—Preference order for the primary number associated with an extension (ephone-dn). Range is 0 to 10, where 0 is the highest preference and 10 is the lowest preference. Default is 0. |
| **Example:** | Router(config-ephone-dn)# preference 1 |
Loopback Call Routing

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>secondary secondary-order—(Optional) Preference order for the secondary number associated with the ephone-dn. Range is 0 to 10, where 0 is the highest preference and 10 is the lowest preference. Default is 9.</td>
<td></td>
</tr>
</tbody>
</table>

Step 8

cor {incoming | outgoing} cor-list-name

Example:

Router(config-ephone-dn)# cor incoming corlist1

Applies a class of restriction (COR) to the dial peers associated with an extension. COR specifies which incoming dial peer can use which outgoing dial peer to make a call. Each dial peer can be provisioned with an incoming and an outgoing COR list.

For information about COR, see [Dial Peer Configuration on Voice Gateway Routers](#).

Step 9

translate {called | calling} translation-rule-tag

Example:

Router(config-ephone-dn)# translate called 1

Selects an existing translation rule and applies it to a calling number or a number that has been called. This command enables the manipulation of numbers as part of a dial plan to manage overlapping or nonconsecutive numbering schemes.

- **called**—Translates the called number.
- **calling**—Translates the calling number.
- **translation-rule-tag**—Unique sequence number of the previously defined translation rule. Range is 1 to 2147483647.

Note This command requires that you have previously defined appropriate translation rules using the `voice translation-rule` and `rule` commands.

Step 10

loopback-dn dn-tag [forward number-of-digits | strip number-of-digits] [prefix prefix-digit-string] [suffix suffix-digit-string] [retry seconds] [auto-con] [codec {g711alaw | g711ulaw}]

Example:

Router(config-ephone-dn)# loopback-dn 24 forward 15 prefix 415353....

Enables H.323 call transfer and call forwarding by using hairpin call routing for VoIP endpoints that do not support Cisco-proprietary or H.450-based call-transfer and call-forwarding.

- **dn-tag**—Unique sequence number that identifies the ephone-dn that is being paired for loopback with the ephone-dn that is being configured. The paired ephone-dn must be one that is already defined in the system.
- **forward number-of-digits**—(Optional) Number of digits in the original called number to forward to the other ephone-dn in the loopback-dn pair. Range is 1 to 32. Default is to forward all digits.
- **strip number-of-digits**—(Optional) Number of leading digits to be stripped from the original called number.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number before forwarding to the other ephone-dn in the loopback-dn pair. Range is 1 to 32. Default is to not strip any digits.</td>
</tr>
<tr>
<td>prefix prefix-digit-string—(Optional) Defines a string of digits to add in front of the forwarded called number. Maximum number of digits in the string is 32. Default is that no prefix is defined.</td>
<td></td>
</tr>
<tr>
<td>suffix suffix-digit-string—(Optional) Defines a string of digits to add to the end of the forwarded called number. Maximum number of digits in the string is 32. Default is that no suffix is defined. If you add a suffix that starts with the pound character (#), the string must be enclosed in quotation marks.</td>
<td></td>
</tr>
<tr>
<td>retry seconds—(Optional) Number of seconds to wait before retrying the loopback target when it is busy or unavailable. Range is 0 to 32767. Default is that retry is disabled and appropriate call-progress tones are passed to the call originator.</td>
<td></td>
</tr>
<tr>
<td>auto-con—(Optional) Immediately connects the call and provides in-band alerting while waiting for the far-end destination to answer. Default is that automatic connection is disabled.</td>
<td></td>
</tr>
<tr>
<td>codec—(Optional) Explicitly forces the G.711 A-law or G.711 mu-law voice coding type to be used for calls that pass through the loopback-dn. This overrides the G.711 coding type that is negotiated for the call and provides conversion from mu-law to A-law, if needed. Default is that Real-Time Transport Protocol (RTP) voice packets are passed through the loopback-dn without considering the G.711 coding type negotiated for the calls.</td>
<td></td>
</tr>
<tr>
<td>g711alaw—G.711 A-law, 64000 bits per second, for T1.</td>
<td></td>
</tr>
<tr>
<td>g711ulaw—G.711 mu-law, 64000 bits per second, for E1.</td>
<td></td>
</tr>
</tbody>
</table>

Step 11

```
end
```

Example:
```
Router(config-ephone-dn)# end
```

Exits to privileged exec mode.
Verify Loopback Call Routing

Use the `show running-config` or `show telephony-service ephone-dn` command to display ephone-dn configurations.

Configuration Example for Loopback Call Routing

Example for Enabling Loopback Call Routing

The following example uses ephone-dns 15 and 16 as a loopback-dn pair. Calls are routed through this loopback ephone-dn pair in the following way:

- An incoming call to 4085552xxx enters the loopback pair through ephone-dn 16 and exits the loopback via ephone-dn 15 as an outgoing call to 2xxx (based on the forward 4 digits setting).
- An incoming call to 6xxx enters the loopback pair through ephone-dn 15 and exits the loopback via ephone-dn 16 as an outgoing call to 4157676xxx (based on the prefix 415767 setting).

```plaintext
ephone-dn 15
  number 6...
  loopback-dn 16 forward 4 prefix 415767
  caller-id local
  no huntstop
!
ephone-dn 16
  number 4085552...
  loopback-dn 15 forward 4
  caller-id local
  no huntstop
```

Feature Information for Loopback Call Routing

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback Call Routing</td>
<td>2.0</td>
<td>Loopback call routing was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 28

Multilevel Precedence and Preemption

This document describes the Multilevel Precedence and Preemption (MLPP) service introduced in Cisco Unified Communications Manager Express 7.1 (Cisco Unified CME).

- Prerequisites for MLPP, on page 777
- Information About MLPP, on page 777
- Configure MLPP, on page 787
- Feature Information for MLPP, on page 800

Prerequisites for MLPP

- Cisco Unified CME 7.1
- Cisco IOS Release 12.4(24)T
- To use Cisco Unified CME basic automatic call distribution (B-ACD) and auto-attendant (AA) service as the MLPP attendant-console application, you must download and install the B-ACD scripts. These scripts are available from the Cisco Unified CME Software Download site at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.
- You can use your own audio files for the blocked precedence announcement and busy station not equipped for preemption announcement or you can use the audio files available from the Cisco Unified CME Software Download site at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.

Information About MLPP

Multilevel Precedence and Preemption (MLPP) service allows validated users to place priority calls, and if necessary, to preempt lower-priority calls. Precedence indicates the priority level of a call. Preemption is the process of terminating a lower-precedence call so a call of higher precedence can proceed. This capability assures high-ranking personnel can communicate with critical organizations and personnel during network stress situations, such as a national emergency or degraded network situation.

Precedence

Precedence indicates the priority level associated with an MLPP call. Phone users can apply a precedence level when making a call.
You define an MLPP access digit in Cisco Unified CME and assign a maximum precedence level to individual phones. Phone users request a precedence call by dialing the access code NP, where N specifies the pre-configured access digit and P specifies the requested precedence level, followed by the phone number.

Table 65: DSN Precedence Levels lists the precedence levels that can be associated with an MLPP call in the Defense Switched Network (DSN) domain.

<table>
<thead>
<tr>
<th>Level</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (high)</td>
<td>Flash Override</td>
</tr>
<tr>
<td>1</td>
<td>Flash</td>
</tr>
<tr>
<td>2</td>
<td>Immediate</td>
</tr>
<tr>
<td>3</td>
<td>Priority</td>
</tr>
<tr>
<td>4 (low)</td>
<td>Routine</td>
</tr>
</tbody>
</table>

Table 66: DRSN Precedence Levels lists the precedence levels that can be associated with an MLPP call in the Defense Red Switched Network (DRSN) domain.

<table>
<thead>
<tr>
<th>Level</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (high)</td>
<td>Flash Override Override</td>
</tr>
<tr>
<td>1</td>
<td>Flash Override</td>
</tr>
<tr>
<td>2</td>
<td>Flash</td>
</tr>
<tr>
<td>3</td>
<td>Immediate</td>
</tr>
<tr>
<td>4</td>
<td>Priority</td>
</tr>
<tr>
<td>5 (low)</td>
<td>Routine</td>
</tr>
</tbody>
</table>

A precedence call is any call with a precedence level higher than Routine. If precedence is not specifically invoked, the system processes a call using normal call processing and call forwarding.

Emergency 911 calls are automatically assigned precedence level 0.

Cisco Unified CME provides precedence indications to the source and destination of a precedence call, respectively, if either has MLPP indication enabled. For the source, this indication includes a precedence ringback tone and display of the precedence level of the call, if the device supports display. For the destination, the indication includes a precedence ringer tone and display of the precedence level of the call, if the device supports display.

Basic Precedence Call Setup

The following sequence of events occurs during the setup of a precedence call:
1. Phone user goes off hook and dials a precedence call. The call pattern is NP-xxxx, where N is the precedence access digit, P is the precedence level for the call, and xxx is the extension or phone number of the called party.

2. The calling party receives the precedence ringback tone and the precedence display while the call is processing.

3. The called party receives the precedence ringer tone and the precedence display that indicates the precedence call.

Example

Party 1000 makes a precedence call to party 1001. To do so, party 1000 dials the precedence call pattern, such as 80-1001.

While the call processes, the calling party (1000) receives the precedence ringback tone and precedence display on their Cisco Unified IP Phone. After acknowledging the precedence call, the called party (1001) receives a precedence ringer tone and a precedence display on their Cisco Unified IP Phone.

Preemption

Preemption is the process of terminating an active call of lower precedence so a call of higher precedence can proceed. Preemption includes the notification and acknowledgment of preempted users and the reservation of shared resources immediately after preemption and before call termination. Preemption can take one of the following two forms:

• User Access Preemption—This type of preemption applies to phones and other end-user devices. If a called party is busy with a lower precedence call, both the called party and the party to which it is connected, receive preemption notification and the existing call is cleared immediately.

For calls to Cisco Unified IP phones, the called party can hang up immediately to connect to the new higher precedence call, or if the called party does not hang up, Cisco Unified CME forces the phone on-hook after the configured preemption tone timer expires and connects the call.

For FXS ports, the called party must acknowledge the preemption by going on-hook, before being connected to the new higher precedence call.

• Common Network Facility Preemption—This type of preemption applies to trunks. If all channels of a PRI trunk are busy with calls of lower precedence, a call of lower precedence is preempted to complete the higher precedence call.

Cisco Unified CME selects a trunk by first searching for an idle channel on all corresponding trunks (based on matching the called number in the dial peer).

If an idle channel is not found, Cisco Unified CME performs a preemptive-search by searching one trunk at a time for an idle channel. If no idle-channel is available on a trunk, preemption is performed on the lowest of lower-precedence calls corresponding to the trunk. If none of the calls corresponding to the trunk is of lower precedence, the next trunk is searched and so on.

SCCP phones support up to eight calls per directory number. When all lines are busy and a higher precedence MLPP call comes in, Cisco Unified CME preempts a lower precedence call on one of the channels of the directory number.
The maximum precedence level that a user can assign to an MLPP call originating from a specific phone is set using ephone templates and applied to individual phones. Calls from directory numbers that are shared by SCCP phones can have different maximum precedence levels, based on the precedence level of the phone.

Basic Preemption Call

Figure 30: User Access Preemption Example shows an example of user access preemption.

In this example, the following sequence of events occurs:

1. User 1000 places a call with precedence level 1 (flash) to user 1001, and preemption is enabled for user 1001. In this example, user 1000 dials 81-1001 to place the precedence call.
2. User 1002 places a precedence call to user 1001 by dialing 80-1001. This call, which is of precedence level 0 (flash override), is a higher precedence call than the active precedence call.
3. Phone 1002 receives precedence display (flash override display), and the phones that are involved in the existing lower precedence call both play preemption tones (users 1000 and 1001).
4. To complete preemption, the parties who are involved in the lower precedence call hang up (users 1000 and 1001).
5. The higher level precedence call is offered to user 1001, who receives a precedence ringer tone (if MLPP indication is enabled). The calling party, user 1002, receives precedence ringback.

DSN Dialing Format

Cisco Unified CME 8.0 and later releases provide complete support of the DSN dialing format, as outlined in Table 67: DSN Dialing Format.

<table>
<thead>
<tr>
<th>Access-digit {Precedence-level</th>
<th>Route-code</th>
<th>Area-code</th>
<th>Switch-code</th>
<th>Line-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service-digit}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Service Digit

The service digit provides information to the switch for connecting calls to government or public telephone services or networks. The services are reached through the trunk or route that is selected based on the dialed digits. Phone users request a service by dialing the access code NS, where N specifies the pre-configured access digit and S specifies the requested service, followed by the phone number.

Table 68: Service Digit lists the service digits supported in Cisco Unified CME 8.0 and later versions.

<table>
<thead>
<tr>
<th>Service Digit</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Off-net 700 services</td>
</tr>
<tr>
<td>6</td>
<td>Not assigned</td>
</tr>
<tr>
<td>7</td>
<td>DSN CONUS FTS</td>
</tr>
<tr>
<td>8</td>
<td>Not assigned</td>
</tr>
<tr>
<td>9</td>
<td>Local PSTN</td>
</tr>
</tbody>
</table>

In Cisco Unified CME, the route pattern is configured to supply secondary dial-tone and the remainder of the digits are collected and passed to the PSTN trunk as the called number. The digits that follow the access digit and service digit must be NANP compliant (E.164 number).

Cisco Unified CME provides secondary dial tone after the two digits and then routes the call based on the remaining collected digits (using the dial plan configuration). These services are assumed to be reached through the trunk (or route) selected based on the dialed digits (dialed after the route digits).

Route Code

The route code allows a phone user to inform the switch of special routing or termination requirements. The route code determines whether a call uses circuit-switched data or voice-grade trunking and can be used to disable echo suppressors and cancellers, and override satellite link control.

The first digit of the route code is 1. It is a required part of the dialing plan to inform the switch that the next digit, the route digit, provides network instructions for specialized routing. Phone users dial route codes in the form 1X, where X is the route digit. The supported route digits that a user can dial are 0 and 1.

Table 69: Route Codes lists the route codes supported in Cisco Unified CME 8.0 and later versions:

<table>
<thead>
<tr>
<th>Route Code</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Voice call (default)</td>
<td>Any codec that carries voice or voice band data, such as G.711, G.729, or fax or modem pass-through.</td>
</tr>
<tr>
<td>Route Code</td>
<td>Use</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Circuit-switched data</td>
<td>Any codec that carries unaltered DS0 traffic over IP (circuit emulation).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Cisco Unified CME, this is the audio/clearmode codec (RFC-4040).</td>
</tr>
</tbody>
</table>

Example for Dialing

If the first digit that the user dials is the configured access digit, this indicates an access code where the next digit is either a precedence digit or a service digit. If the next digit dialed is:

- 0-4—This is a precedence call. Cisco Unified CME sets the precedence indication, stores the precedence value, and discards the digits.
- 5-9—This is a call to a particular service. Cisco Unified CME passes the call to the designated trunk, discards the digits, and plays secondary dial tone.

If the first digit that the user dials or the next digit dialed after the access code is:

- 1—This is a route code and the next digit is a route digit. The supported route digits that a user can dial are 0 and 1. Cisco Unified CME stores the route code for use later in route selection, sets a trunk-type indication, and discards the route code digits.

If the first digit that the user dials or the next digit dialed after the access code or route code is:

- 2-8—This is the first digit of the area code or switch code. Area codes and switch codes in the DSN are allocated so there is no overlap. The area code and/or switch code are used for route selection.

MLPP Service Domains

Cisco Unified CME 8.0 and later versions support MLPP service domains. A service domain consists of a group of MLPP subscribers and network resources. Calls and resources can only be preempted by higher-priority calls from MLPP subscribers within the same domain.

You can configure each device with a domain type, such as DSN or DRSN, and a domain identifier. You can assign a global MLPP domain type and identifier to the Cisco Unified CME router and assign different service domains to the individual phones registered to Cisco Unified CME through an ephone template. Calls from any phone that is not configured with a specific service domain use the global domain type and identifier.

The MLPP precedence and preemption applies only within the same domain. Only calls within the same domain can be preempted. If a call is placed between two subscribers with different MLPP service domains, Cisco Unified CME assigns the service domain of the originator to the call.

Figure 31: Service Domains with Different identifiers shows an example of preemption attempted across domains with different identifier numbers.
In the example shown in Figure 31: Service Domains with Different identifiers, the following sequence of events occurs:

1. User 1000, from service domain 0100, places a call with precedence level 1 (flash) to user 1001 in service domain 0200. The call is assigned domain number 0100 because that is the service domain of the call originator.

2. User 1002, from domain number 0200, places a precedence call to user 1001. This call, which is of precedence level 0 (flash override), is a higher precedence call than the active precedence call.

3. The active call is not preempted because the incoming call is from a different service domain than the active call; a call from domain 0200 cannot preempt a call from domain 0100.

In the example shown in Figure 32: Service Domains with Different Domain Types, the active call is not preempted because the incoming call is from a different domain type than the active call; a call from the DSN cannot preempt a call from the DRSN.

In the example shown in Figure 33: Service Domains with Same Type and identifier, the active call is successfully preempted because the incoming call has the same domain type and identifier as the active call.
MLPP Indication

For basic MLPP calls with MLPP indication enabled, Cisco Unified CME instructs SCCP phones to play the precedence ringer tone and display the precedence level.

For basic MLPP calls with preemption involved and MLPP indication enabled, Cisco Unified CME instructs both parties to play the preemption tone and display the precedence level of the MLPP call on the phone.

For an MLPP call with call waiting, if MLPP indication is enabled, Cisco Unified CME instructs SCCP phones to play priority the call waiting tone instead of the regular call waiting tone.

Users receive an error tone if they attempt to make a call with a higher level of precedence than the highest precedence level that is authorized for their phone.

For example, user 1002 dials 80 to start a precedence call. Eight (8) represents the precedence access digit, and zero (0) specifies the precedence level that the user attempts to use. If this user is not authorized to make level 0 (flash override) precedence calls, the user receives an error tone.

MLPP Announcements

Users who are unable to place MLPP calls receive announcements that detail the reasons why a call was unsuccessful. Table 70: MLPP Announcements lists the supported MLPP announcements.

Table 70: MLPP Announcements

<table>
<thead>
<tr>
<th>Announcement</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocked Precedence Announcement (BPA)</td>
<td></td>
</tr>
</tbody>
</table>
Announcement

<table>
<thead>
<tr>
<th>Announcement</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Switch name and Location). Equal or higher precedence calls have prevented completion of your call. Please hang up and try again. This is a recording. (Switch name and Location).</td>
<td>An equal or higher precedence call is in progress. Users receive the BPA if the destination party for the precedence call is off hook or if the destination party is busy with a precedence call of an equal or higher precedence. BPA is not played if the destination party is configured for Call Waiting or Call Forwarding, or uses automatic call diversion to an attendant-console service. Supported in Cisco Unified CME 7.1 and later versions.</td>
</tr>
</tbody>
</table>

Busy Not Equipped Announcement (BNEA)

<table>
<thead>
<tr>
<th>Announcement</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Switch name and Location). A service disruption has prevented the completion of your call. Please wait 30 minutes and try again. In case of emergency call your operator. This is a recording. (Switch name and Location).</td>
<td>Busy station not equipped for preemption. Users receive the BNEA if the dialed number is busy and non-preemptable. BNEA is not played if the dialed number is configured for Call Waiting or Call Forwarding, or has alternate party designations. Supported in Cisco Unified CME 7.1 and later versions.</td>
</tr>
</tbody>
</table>

Isolated Code Announcement (ICA)

<table>
<thead>
<tr>
<th>Announcement</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Switch name and Location). A service disruption has prevented the completion of your call. Please wait 30 minutes and try again. In case of emergency call your operator. This is a recording. (Switch name and Location).</td>
<td>Operating or equipment problems encountered. The complete trunk group including all routes is busied manually at either end of the circuit or the complete trunk group including all routes is in a carrier group alarm state (for example, Loss of Signal, Remote Alarm Indication, or Alarm Indication Signal). Supported in Cisco Unified CME 8.0 and later versions.</td>
</tr>
</tbody>
</table>

Loss of C2 Features Announcement (LOC2)
Condition Announcement

- Call leaves DSN.
 Users receive the LOC2 announcement when the call leaves the Cisco Unified CME router on the trunk or when the user places a call to a different domain.
 For example, DSN callers who place calls to locations that permit off-net terminations may receive an announcement informing them that they have left the DSN.
 Supported in Cisco Unified CME 8.0 and later versions.

Unauthorized Precedence Level Announcement (UPA)

(Switch name and Location). The precedence used is not authorized for your line. Please use an authorized precedence or ask your attendant for assistance. This is a recording. (Switch name and Location).
 Unauthorized precedence level is attempted.
 Users receive the UPA when they attempt to make a precedence call by using a higher level of precedence than the highest precedence level that is authorized for their line.
 Supported in Cisco Unified CME 8.0 and later versions.

Vacant Code Announcement (VCA)

(Switch name and Location). Your call cannot be completed as dialed. Please consult your directory and call again or ask your operator for assistance. This is a recording. (Switch name and Location).
 No such service or invalid code.
 Users receive the VCA when they dial an invalid or unassigned number.
 Supported in Cisco Unified CME 8.0 and later versions.

Automatic Call Diversion (Attendant Console)

Cisco Unified CME supports automatic diversion of all unanswered precedence calls above Routine to a designated directory number or attendant console after a selected period of time.

If automatic call diversion of MLPP calls is configured in Cisco Unified CME, it overrides the Call Forward settings on the phone for all incoming precedence calls above Routine and forwards these calls to the attendant-console application specified in the MLPP configuration. Cisco Unified CME treats MLPP calls with a precedence level of Routine as normal calls and honors the Call Forward setting configured on the phone.

How Cisco Unified CME handles forwarded MLPP calls depends on the following Call Forward options:

- Call Forward All (CFA)—Precedence calls are routed to the target number of the attendant console immediately. The CFA target is not used for MLPP calls.
• Call Forward Busy (CFB)—Precedence calls are forwarded to the configured CFB destination. If the CFB destination is Voice Mail or an off-net endpoint, the call is forwarded to the target number of the attendant-console service.

• Call Forward No Answer (CFNA)—Precedence calls are forwarded to the configured CFNA destination. If the CFNA destination does not answer before the CFNA timer expires, or it is voice mail or an off-net endpoint, the call is forwarded to the target number of the attendant-console service.

Calls diverted to the attendant console are indicated by a visual signal and placed in the queue for attendant service by precedence and time interval. The call with the highest precedence and longest holding time is answered first. Attendant Queue Announcement is played to calls waiting in the queue for attendant service. Call distribution is performed to reduce excessive waiting time and each attendant position operates from a common queue. Cisco Unified CME supports attendant console service for MLPP using Basic Automatic Call Distribution (B-ACD) and auto-attendant (AA) service.

Configure MLPP

Enable MLPP Service Globally in Cisco Unified CME

This task covers the basic steps necessary to enable MLPP on the router.

Restriction

- SIP phones are not supported.
- Cisco Unified IP Phone 6900 Series phones are not supported.
- Cisco Unified CME in SRST Fallback mode is not supported.
- Supports only ISDN PRI E1 and T1 interfaces.
- Supports MLPP service within the local Cisco Unified CME router only.
- Cisco Unified CME 7.1 supports only Basic Calls, Call Forward, Call Hold and Resume, Consultative Call-Transfer, and Call Waiting. Blind Transfer is not supported.
- Cisco Unified CME 8.0 and later versions support Three-Party Ad Hoc Conferencing and Call Pickup.
- Call Park Retrieval based on precedence level is not supported; Cisco Unified CME must be configured to accept only one call per park slot.

Before you begin

Trunks must belong to a trunk group and have preemption enabled. For configuration information, see Enabling Preemption on the Trunk Group in *Integrating Data and Voice Services for ISDN PRI Interfaces on Multiservice Access Routers*.

SUMMARY STEPS

1. enable
2. configure terminal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable

Example:
Router> enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| Step 2 | configure terminal

Example:
Router# configure terminal | Enters global configuration mode. |
| Step 3 | voice mlpp

Example:
Router(config)# voice mlpp | Enters voice MLPP configuration mode. |
| Step 4 | access-digit *digit*

Example:
Router(config-voice-mlpp)# access-digit 8 | Defines the access digit that phone users dial to make an MLPP call.
- *digit*—Single-digit number that users dial.
 Range: 0 to 9. Default: 0.
 Note
 Your domain type must support the access digit that you select. For example, the valid range for the DSN is 2 to 9. |
| Step 5 | bnea audio-url

Example:
Router(config-voice-mlpp)# bnea flash:bnea.au | Specifies the audio file to play for the busy station not equipped for preemption announcement.
- *audio-url*—Location of the announcement audio file in URL format. Valid storage locations are TFTP, FTP, HTTP, and flash memory. |
| Step 6 | bpa audio-url

Example:
Router(config-voice-mlpp)# bpa flash:bpa.au | Specifies the audio file to play for the blocked precedence announcement. |
| Step 7 | upa audio-url

Example:
Router(config-voice-mlpp)# upa flash:upa.au | Specifies the audio file to play for the unauthorized precedence announcement.
- This command is supported in Cisco Unified CME 8.0 and later versions. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>service-domain</td>
<td>(Optional) Sets the global MLPP domain type and number.</td>
</tr>
<tr>
<td>{ drsn</td>
<td>dsn } identifier</td>
</tr>
<tr>
<td>domain-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-mlpp)# service-domain dsn 0010</td>
</tr>
<tr>
<td>Step 9</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-mlpp)# end</td>
</tr>
</tbody>
</table>

Example
The following example shows MLPP enabled on the Cisco Unified CME router.

```plaintext
voice mlpp
  access-digit 8
  bpa flash:bpa.au
  bnea flash:bnea.au
  upa flash:upa.au
  service-domain dsn identifier 000010
```

Enable MLPP Service on SCCP Phones

Restriction
The `mlpp max-precedence` command is not supported in Cisco Unified CME 8.0 and later versions; it is replaced by the `mlpp service-domain` command.

Before you begin
MLPP must be enabled globally on the Cisco Unified CME router. See Enable MLPP Service Globally in Cisco Unified CME.

SUMMARY STEPS
1. enable
2. configure terminal
3. `ephone-template template-tag`

4. `mlpp service-domain {drsn | dsn} identifier domain-number max-precedence level`

5. `mlpp preemption`

6. `mlpp indication`

7. `exit`

8. `ephone phone-tag`

9. `ephone-template template-tag`

10. `restart`

11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
* Example:
 `Router> enable`
| | • Enter your password if prompted. |
| **Step 2** `configure terminal` | Enters global configuration mode.
* Example:
 `Router# configure terminal` |
| **Step 3** `ephone-template template-tag` | Enters ephone-template configuration mode to create an ephone template.
* Example:
 `Router(config)# ephone-template 15`
| | • `template-tag`—Unique identifier for the ephone template that is being created. Range: 1 to 20. |
| **Step 4** `mlpp service-domain {drsn | dsn} identifier domain-number max-precedence level` | Sets the service domain and maximum precedence (priority) level for MLPP calls from this phone.
* Example:
 `Router(config-ephone-template)# mlpp service-domain dsn identifier 0010 max-precedence 0`
| | • `drsn`—Phone belongs to the Defense Red Switched Network (DRSN).
 • `dsn`—Phone belongs to the Defense Switched Network (DSN). This is the default value.
 • `domain-number`—Number to identify the global domain, in three-octet format. Range: 0x000000 to 0xFFFFFFFF.
 • `level`—Maximum precedence level. Phone user can specify a precedence level that is less than or equal to this value.
 • `DSN`—Range: 0 to 4, where 0 is the highest priority.
 • `DRSN`—Range: 0 to 5, where 0 is the highest priority. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
</tbody>
</table>
| mlpp preemption | (Optional) Enables calls on the phone to be preempted.
| Example: | • Preemption is enabled by default. Skip this step unless you want to disable preemption with the no mlpp preemption command. |
| | |
| Step 6 | |
| mlpp indication | (Optional) Enables the phone to play precedence and preemption tones, and display the preemption level of calls.
| Example: | • MLPP indication is enabled by default. Skip this step unless you want to disable MLPP indication with the no mlpp indication command. |
| | |
| Step 7 | |
| exit | Exits ephone-template configuration mode.
| Example: | |
| | |
| Step 8 | |
| ephone phone-tag | Enters ephone configuration mode.
| Example: | • phone-tag—Unique sequence number that identifies this ephone during configuration tasks. |
| | |
| Step 9 | |
| ephone-template template-tag | Applies an ephone template to the ephone that is being configured.
| Example: | |
| | |
| Step 10 | |
| restart | Performs a fast reboot of this ephone. Does not contact the DHCP or TFTP server for updated information.
| Example: | Note Restart all ephones using the restart all command in telephony-service configuration mode. |
| | |
| Step 11 | |
| end | Returns to privileged EXEC mode.
| Example: | |

Examples

The following example shows a basic configuration for three phones, all using template 1 with MLPP defined. Figure 34: Preemption Call Example shows an example of a precedence call using this configuration.

```plaintext
voice mlpp
  access-digit 8
  bpa flash:BPA.au
```
bnea flash:BNEA.au
upa flash:UPA.au

ephone-template 1
 mlpp service-domain dsn identifier 000000 max-precedence 0
 !Configures MLPP domain as DSN, identifier as 000000, and max-precedence set to 0

ephone-dn 1
 number 1001

ephone-dn 2
 number 1002

ephone-dn 3 dual-line
 number 1003
 huntstop channel

ephone 1
 description Phone-A
 mac-address 1111.2222.0001
 button 1:1
 ephone-template 1
 ! MLPP configuration inherited from ephone-template 1

ephone 2
 description Phone-B
 mac-address 1111.2222.0002
 button 1:2
 ephone-template 1

ephone 3
 description Phone-C
 mac-address 1111.2222.0003
 button 1:3
 ephone-template 1

Note The **huntstop channel** command must be configured on dual-line and octo-line directory numbers to preempt a call on those types of lines. Otherwise the dual-line or octo-line receives Call Waiting indication and the call is not preempted.
In this example, the following sequence of events occurs:

1. Phone A places a precedence call to Phone C by dialing 831003 (access digit 8 + precedence level 3 + destination number 1003).
 Phone C answers the call.
2. Phone C hears the precedence ringer tone and Phone A hears the precedence ringback.
3. Phone B places a higher precedence call to Phone C by dialing 821003. Phone A and Phone C both hear the preemption tone for the duration of the preemption tone timer command (default value is three seconds).
4. Phone A is preempted after three seconds.
5. Phone C starts ringing (precedence ringer) and Phone B hears the precedence ringback.
6. Phone C answers the call.

Enable MLPP Service on Analog FXS Phone Ports

Before you begin

MLPP must be enabled globally on the Cisco Unified CME router. See [Enable MLPP Service Globally in Cisco Unified CME](#).

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice-port port`
4. `mlpp service-domain {drsn | dsn} identifier domain-number max-precedence level`
5. `mlpp preemption`
Enable MLPP Service on Analog FXS Phone Ports

6. **mlpp indication**
7. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.
Example:
`Router> enable`
- Enter your password if prompted. |
| Step 2 | `configure terminal` | Enters global configuration mode.
Example:
`Router# configure terminal` |
| Step 3 | `voice-port port` | Enters voice-port configuration mode.
Example:
`Router(config)# voice-port 0/1/0`
- *Port* argument is platform-dependent; type ? to display syntax. |
| Step 4 | `mlpp service-domain {drsn | dsn} identifier domain-number max-precedence level` | Sets the service domain and maximum precedence (priority) level for MLPP calls from this port.
Example:
`Router(config-voiceport)# mlpp service-domain dsn identifier 0020 max-precedence 0`
- **drsn**—Port belongs to the Defense Red Switched Network (DRSN).
- **dsn**—Port belongs to the Defense Switched Network (DSN).
- **domain-number**—Number to identify the global domain, in three-octet format. Range: 0x000000 to 0xFFFFFFFF.
- **level**—Maximum precedence level. Phone user can specify a precedence level that is less than or equal to this value.
 - DSN—Range: 0 to 4, where 0 is the highest priority.
 - DRSN—Range: 0 to 5, where 0 is the highest priority.
 - This command is supported in Cisco Unified CME 8.0 and later versions. |
| Step 5 | `mlpp preemption` | (Optional) Enables calls on the port to be preempted.
Example:
`Router(config-voiceport)# no mlpp preemption`
- Preemption is enabled by default. Skip this step unless you want to disable preemption with the **no mlpp preemption** command. |
Configure an MLPP Service Domain for Outbound Dial Peers

To assign a service domain to MLPP calls that must leave the Cisco Unified CME router through the trunk, perform the following steps for the corresponding dial peer.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice class mlpp tag
4. service-domain {drsn | dsn}
5. exit
6. dial-peer voice tag {pots | voip}
7. voice-class mlpp tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example

The following example shows that the analog FXS phone connected to voice port 0/1/0 can make MLPP calls with the highest precedence and its calls cannot be preempted.

```bash
voice-port 0/1/0
  mlp service-domain dsn identifier 000020 max-precedence 0
  no mlpp preemption
  station-id name uut1-fxs1
  caller-id enable
```

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 mlpp indication</td>
<td>(Optional) Enables the phone to play precedence and preemption tones, and display the preemption level of calls.</td>
</tr>
<tr>
<td>Example:</td>
<td>• MLPP indication is enabled by default. Skip this step unless you want to disable MLPP indication with the no mlpp indication command.</td>
</tr>
<tr>
<td>Router(config-voiceport)# no mlpp indication</td>
<td></td>
</tr>
</tbody>
</table>

Step 7 end	Returns to privileged EXEC mode.
Example:	
Router(config-voiceport)# end	
Configure an MLPP Service Domain for Outbound Dial Peers

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>voice class mlpp tag</td>
<td>Creates a voice class for the MLPP service.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice class mlpp 1</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>service-domain {dsn</td>
<td>Sets the network domain in the MLPP voice class.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-class)# service-domain dsn</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice-class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-class)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>dial-peer voice tag {pots</td>
<td>Enters dial peer voice configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 1011 pots</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>voice-class mlpp tag</td>
<td>Assigns a previously configured MLPP voice class to a</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# voice-class mlpp 1</td>
</tr>
<tr>
<td></td>
<td>POTS or VoIP dial peer.</td>
</tr>
<tr>
<td></td>
<td>tag—Unique number of the voice class that you created</td>
</tr>
<tr>
<td></td>
<td>in Step 3.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits dial-peer voice configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# end</td>
</tr>
</tbody>
</table>

Example

The following example shows an MLPP voice class defined for the DSN service domain. This voice class is assigned to a POTS dial peer so that calls leaving port 0/1/0 use the DSN protocol.

```plaintext
voice class mlpp 1
  service-domain dsn
  !
  !
dial-peer voice 1011 pots
  destination-pattern 19101
  voice-class mlpp 1
  port 0/1/0
```
Configure MLPP Options

To configure optional MLPP features or modify default settings, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice mlpp
4. preemption trunkgroup
5. preemption user
6. preemption tone timer seconds
7. preemption reserve timer seconds
8. service-domain midcall-mismatch {method1 | method2 | method3 | method4}
9. service-digit
10. route-code
11. attendant-console number redirect-timer seconds
12. ica audio-url
13. loc2 audio-url
14. vca audio-url voice-class cause-code tag
15. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
* Enter your password if prompted. |
<p>| Example: | Router> enable |
| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| Step 3 | voice mlpp | Enters voice MLPP configuration mode. |
| Example: | Router(config)# voice mlpp |
| Step 4 | preemption trunkgroup | Enables preemption capabilities on a trunk group. |
| Example: | Router(config-voice-mlpp)# preemption trunkgroup |
| Step 5 | preemption user | Enables all supported phones to preempt calls. |
| Example: | Router(config-voice-mlpp)# preemption user |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6** preemption tone timer *seconds* | Sets the amount of time that the preemption tone plays on the called phone when a lower precedence call is being preempted.
 seconds—Expiry time, in seconds. Range: 3 to 30. Default: 0 (disabled). |
| **Example:**
 Router(config-voice-mlpp)# preemption tone timer 15 | |
| **Step 7** preemption reserve timer *seconds* | Sets the amount of time to reserve a channel for a preemption call.
 seconds—Range: 3 to 30. Default: 0 (disabled). |
| **Example:**
 Router(config-voice-mlpp)# preemption reserve timer 10 | |
| **Step 8** service-domain midcall-mismatch (method1 | method2 | method3 | method4) | Defines the behavior when there is a domain mismatch between the two legs of a call.
 method1—Domain remains unchanged for each of the connections and the precedence level of the lower priority call changes to that of the higher priority call. This is the default value.
 method2—Domain and precedence level of the lower priority call changes to that of the higher priority call.
 method3—Domain remains unchanged for each of the connections and the precedence levels change to Routine for both calls.
 method4—Domains change to that of the connection for which supplementary service was invoked (for example, transferee in case of transfer). Precedence levels change to Routine for both calls.
 This command is supported in Cisco Unified CM 8.0 and later versions. |
| **Example:**
 Router(config-voice-mlpp)# service-domain midcall-mismatch method2 | |
| **Step 9** service-digit | Enables phone users to request off-net services by dialing a service digit.
 This command is supported in Cisco Unified CM 8.0 and later versions. |
| **Example:**
 Router(config-voice-mlpp)# service-digit | |
| **Step 10** route-code | Enables phone users to specify special routing for a call by dialing a route code.
 This command is supported in Cisco Unified CM 8.0 and later versions. |
| **Example:**
 Router(config-voice-mlpp)# route-code | |
| **Step 11** attendant-console *number* redirect-timer *seconds* | Specifies the telephone number of the MLPP attendant-console service where calls are redirected if the phone does not answer. |
| **Example:**
 Router(config-voice-mlpp)# attendant-console 8100 redirect-timer 10 | |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>• number—Extension or E.164 telephone number of the Cisco Unified CME basic automatic call distribution (B-ACD) and auto-attendant (AA) service.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>• seconds—Number of seconds to wait for the phone to answer before redirecting the call.</td>
</tr>
</tbody>
</table>

Step 12

ica audio-url

Example:

```
Router(config-voice-mlpp)# ica flash:ica.au
```

(Optional) Specifies the audio file to play for the isolated code announcement.

• This command is supported in Cisco Unified CME 8.0 and later versions.

Step 13

loc2 audio-url

Example:

```
Router(config-voice-mlpp)# loc2 flash:loc2.au
```

(Optional) Specifies the audio file to play for the loss of C2 features announcement.

• This command is supported in Cisco Unified CME 8.0 and later versions.

Step 14

vca audio-url voice-class cause-code tag

Example:

```
Router(config-voice-mlpp)# vca flash:vca.au
voice-class cause-code 29
```

(Optional) Specifies the audio file to play for the vacant code announcement.

• *tag*—Number of the voice class that defines the cause codes for which the VCA is played. Range: 1 to 64.

• This command is supported in Cisco Unified CME 8.0 and later versions.

Step 15

end

Example:

```
Router(config-voice-mlpp)# end
```

Exits to privileged EXEC mode.

Examples

The following example shows an MLPP configuration with optional parameters.

```
voice mlpp
    preemption trunkgroup
    preemption user
    preemption tone timer 15
    preemption reserve timer 10
    access-digit 8
    attendant-console 8100 redirect-timer 10
    service-digit
    route-code
    bpa flash:bpa.au
    bnea flash:bnea.au
    upa flash:upa.au
    ica flash:ica.au
    loc2 flash:loc2.au
    vca flash:vca.au voice-class cause-code 29
```
Troubleshooting MLPP Service

SUMMARY STEPS

1. enable
2. debug ephone mlpp
3. debug voice mlpp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>debug ephone mlpp</td>
<td>Displays debugging information for MLPP calls to phones in a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug ephone mlpp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>debug voice mlpp</td>
<td>Displays debugging information for the MLPP service.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug voice mlpp</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for MLPP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLPP Enhancements</td>
<td>8.0</td>
<td>Adds support for the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional MLPP announcements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple service domains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route codes and service digits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interaction with supplementary services, such as Three-Way Conference, Call Pickup, and Cancel Call Waiting on Analog FXS ports</td>
</tr>
<tr>
<td>MLPP for Cisco Unified CME</td>
<td>7.1</td>
<td>Allows validated users to place priority calls, and if necessary, to preempt lower-priority calls.</td>
</tr>
</tbody>
</table>
CHAPTER 29

Music on Hold

• Prerequisites for Music on Hold, on page 803
• Restrictions for Music on Hold, on page 803
• Information About Music on Hold, on page 804
• Configure Music on Hold, on page 809
• Feature Information for Music on Hold, on page 828

Prerequisites for Music on Hold

• For Unified CME Release 11.6 and previous releases, phones receiving Music on Hold (MOH) in a system using G.729 require transcoding between G.711 and G.729. From Unified CME Release 11.7 onwards, transcoding is not required if G.729 codec format MOH file is configured on Unified CME. For information about transcoding, see Configure Transcoding Resources, on page 475.

• Transcoding for MOH is supported on Cisco 4000 Series Integrated Services Router from Unified CME Release 11.7 onwards.

Restrictions for Music on Hold

• IP phones do not support multicast at 224.x.x.x addresses.

• Cisco Unified CME 3.3 and earlier versions do not support MOH for local Cisco Unified CME phones that are on hold with other Cisco Unified CME phones; these parties hear a periodic repeating tone instead.

• Cisco Unified CME 4.0 and later versions support MOH for internal calls on SCCP Phones only if the multicast moh command is used to enable the flow of packets to the subnet on which the phones are located.

• Internal extensions that are connected through a Cisco VG224 Analog Voice Gateway or through a WAN (remote extensions) do not hear MOH on internal calls.

• Multicast MOH is not supported on a phone if the phone is configured with the mtp command or the paging-dn command with the unicast keyword.

• For calls from SCCP to SCCP phones, Unicast MoH is not supported. Multicast MoH is supported if it is enabled. If Multicast MoH is not enabled, Tone on Hold is supported.
Information About Music on Hold

Music on Hold Summary

MOH is an audio stream that is played to PSTN and VoIP G.711 or G.729 callers who are placed on hold by phones in a Cisco Unified CME system. This audio stream is intended to reassure callers that they are still connected to their calls.

Table 72: Music on Hold (MOH) provides a summary of options for MOH for PSTN and multicast MOH for local IP phones.

Table 72: Music on Hold (MOH)

<table>
<thead>
<tr>
<th>Audio Source</th>
<th>Description</th>
<th>How to Configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash memory</td>
<td>No external audio input is required.</td>
<td>Configure Music on Hold from an Audio File to Supply Audio Stream</td>
</tr>
<tr>
<td>Live feed</td>
<td>The multicast audio stream has minimal delay for local IP phones. The MOH stream for PSTN callers is delayed by a few seconds. If the live feed audio input fails, callers on hold hear silence.</td>
<td>Configure Music on Hold from a Live Feed</td>
</tr>
<tr>
<td>Live feed and flash memory</td>
<td>The live feed stream has a few seconds of delay for both PSTN and local IP phone callers. The flash MOH acts as backup for the live-feed MoH. If MOH from a live feed is not found or fails, Unified CME switch to playback of MOH from the flash memory.</td>
<td>Configure Music on Hold from an Audio File to Supply Audio Stream and Configure Music on Hold from a Live Feed</td>
</tr>
</tbody>
</table>
Music on Hold

MOH is an audio stream that is played to PSTN and VoIP G.711 or G.729 callers who are placed on hold by phones in a Cisco Unified CME system. This audio stream is intended to reassure callers that they are still connected to their calls.

For Unified CME Release 11.6 and previous releases, when the phone receiving MOH is part of a system that uses a G.729 codec, transcoding is required between G.711 and G.729. The G.711 MOH must be translated to G.729. Note that because of compression, MOH using G.729 is of significantly lower fidelity than MOH using G.711. From Unified CME Release 11.7 onwards, transcoding is not required if G.711 and G.729 codec format MOH files are configured on Unified CME. For information about transcoding, see Configure Transcoding Resources.

The audio stream that is used for MOH can derive from one of two sources:

- Audio file—A MOH audio stream from an audio file is supplied from a .au or .wav file held in router flash memory. For configuration information, see Configure Music on Hold from an Audio File to Supply Audio Stream.

- Live feed—A MOH audio stream from a live feed is supplied from a standard line-level audio connection that is directly connected to the router through an FXO or “ear and mouth” (E&M) analog voice port. For configuration information, see Configure Music on Hold from a Live Feed.

Note E&M is not supported on Cisco 4000 Series Integrated Services Routers for Unified CME.

Music on Hold from a Live Feed

The live-feed feature is typically used to connect to a CD jukebox player. To configure MOH from a live feed, you establish a voice port and dial peer for the call and also create a “dummy” ephone-dn. The ephone-dn must have a phone or extension number assigned to it so that it can make and receive calls, but the number is never assigned to a physical phone. Only one live MOH feed is supported per system.

Using an analog E&M port as the live-feed MOH interface requires the minimum number of external components. You connect a line-level audio feed (standard audio jack) directly to pins 3 and 6 of an E&M RJ-45 connector. The E&M voice interface card (VIC) has a built-in audio transformer that provides appropriate electrical isolation for the external audio source. An audio connection on an E&M port does not require loop-current. The signal immediate and auto-cut-through commands disable E&M signaling on this voice port. A G.711 audio packet stream is generated by a digital signal processor (DSP) on the E&M port.

Note E&M is not supported for MOH from a live feed on the Cisco 4000 Series Integrated Services Routers. Only an FXO based live MOH feed is supported.

If you use an FXO port as the live-feed MOH interface, connect the MOH source to the FXO port using a MOD-SC cable if the MOH source has a different connector than the FXO RJ-11 connector. MOH from a live feed is supported on the VIC2-2FXO, VIC2-4FXO, EM-HDA-3FXS/4FXO, EM-HDA-6FXO, and EM2-HDA-4FXO.
For Cisco 4000 Series Integrated Services Routers, MOH from a live feed is supported on the following Cisco network interface modules (NIMs):

- NIM-2FXO
- NIM-4FXO
- NIM-2FXS/4FXO
- NIM-2FXS/4FXOP

You can directly connect a live-feed source to an FXO port if the **signal loop-start live-feed** command is configured on the voice port; otherwise, the port must connect through an external third-party adapter to provide a battery feed. An external adapter must supply normal telephone company (telco) battery voltage with the correct polarity to the tip and ring leads of the FXO port and it must provide transformer-based isolation between the external audio source and the tip and ring leads of the FXO port.

Music from a live feed is continuously fed into the MOH playout buffer instead of being read from a flash file, so there is typically a 2-second delay. An outbound call to a MOH live-feed source is attempted (or reattempted) every 30 seconds until the connection is made by the directory number that has been configured for MOH. If the live-feed source is shut down for any reason, the flash memory source will be automatically activated.

A live-feed MOH connection is established as an automatically connected voice call that is made by the Unified CME MOH system or by an external source directly calling in to the live-feed MOH port. An MOH call can be from or to the PSTN or can proceed via VoIP with voice activity detection (VAD) disabled. The call is assumed to be an incoming call unless the optional **out-call** keyword is used with the **moh** command during configuration.

The Unified CME router uses the audio stream from the call as the source for the MOH stream, displacing any audio stream that is available from a flash file. An example of an MOH stream received over an incoming call is an external H.323-based server device that calls the ephone-dn to deliver an audio stream to the Cisco Unified CME router.

For configuration information, see **Configure Music on Hold from a Live Feed**.

For configuration example, see **Examples**.

Music on Hold from a Live Feed on Cisco 4000 Series Integrated Services Routers

From Unified CME Release 12.2 onwards, MOH from a live feed is supported on the Cisco 4000 Series Integrated Services Routers for all phone types (SIP, SCCP, PSTN, SIP Trunk). As part of the feature support introduced in Unified CME Release 12.2, only FXO based live feed is supported. If the FXO based live feed is not available, Unified CME switches to flash based MOH playback. If the MOH options are disabled, the caller does not hear either the tone on hold or the MOH playback.

If you configure both live feed and flash-based audio file as the source for MOH, the router seeks the live feed first. If the live feed is found, it displaces the audio file source. If the live feed is not found or fails at any time, the router falls back to the audio file source specified in the MOH audio file configuration. This is the recommended configuration.

MOH from a live feed supports only G.711 codec. If the MOH live feed over a SIP trunk has a codec other than G.711, transcoder insertion is required to play MOH from the live feed. TDM trunks support G.711 codecs. Hence, no transcoder insertion is required to play MOH for calls from a TDM trunk.

For an MOH from a live feed supported on the Cisco 4000 Series Integrated Services Routers:
• When the SIP trunk or line side has G.729 codec and a DSP resource is not available for transcoding, MOH is played from the G.729 codec format file in the router flash memory.

• When the SIP trunk or line side has G.729 codec and a DSP resource is available for transcoding, MOH from a live feed is played. If the MOH from live feed fails, MOH is played from the G.711 codec format file in the router flash memory using the DSP resource.

• When the SIP trunk or line side has a codec other than G.729 or G.711 and a DSP resource is not available for transcoding, MOH is not played (dead air).

Multicast MOH

In Cisco CME 3.0 and later versions, you can configure the MOH audio stream as a multicast source. A Cisco Unified CME router that is configured for multicast MOH also transmits the audio stream on the physical IP interfaces of the specified router to permit access to the stream by external devices.

From Unified CME Release 12.2 (Cisco IOS XE Fuji 16.8.1 Release), you can configure MOH audio stream from a live feed as the multicast source. The live feed MoH is supported when a SCCP phone puts any remote party (SCCP phone, SIP phone, TDM trunk or SIP trunk) on hold. The MoH is sourced on multicast address, only if the remote party is SCCP phone. For other parties, it would be unicast address. The support is introduced on the Cisco 4000 Series Integrated Services Routers.

Certain IP phones do not support multicast MOH because they do not support IP multicast. In Cisco Unified CME 4.0 and later versions, you can disable multicast MOH to individual phones that do not support multicast. Callers hear a repeating tone when they are placed on hold.

Music on Hold for SIP Phones

In Cisco Unified CME 4.1 and later versions, the MOH feature is supported when a call is put on hold from a SIP phone and when the user of a SIP phone is put on hold by a SIP, SCCP, or POTS endpoint. The holder (party that pressed the hold key) or holdee (party who is put on hold) can be on the same Cisco Unified CME or a different Cisco Unified CME connected through a SIP trunk. MOH is also supported for call transfers and conferencing, with or without a transcoding device.

Configuring MOH for SIP phones is the same as configuring MOH for SCCP phones. For configuration information, see Configure Music on Hold.

Music On Hold Enhancement

Cisco Unified CME 8.0 and later versions enhance the MOH feature by playing different media streams to PSTN and VoIP callers who are placed on hold. The MOH enhancement allows you to configure up to five additional media streams supplied from multiple media files stored in a router’s flash memory and eliminates the need for separate routers for streaming MOH media files.

Cisco Unified CME 8.0 MOH enhancement allows you to create MOH groups and assign ephone extension numbers to these MOH groups to receive different media streams. Callers to the extension numbers configured under the MOH groups can listen to different MOH media streams when they are placed on hold.

You can configure up to five MOH groups. The size of each media source file can range between 64KB to 10MB long on the Cisco Unified CME router for ephones in different departments in a branch. A MOH group is linked to an ephone using the extension number of that ephone. For configuration information, see Configure Music on Hold Groups to Support Different Media Sources.
You can also configure individual directory numbers to select any MOH group as a MOH source on the Cisco Unified CME router. The extension number of a directory associates an ephone to a specific MOH group and callers to these extension numbers can listen to different media streams when placed on hold. For configuration information, see Assign a MOH Group to a Directory Number.

Similarly, callers from internal directory numbers can listen to different media streams when a MOH group is assigned for an internal call. For configuration information, see Assign a MOH Group to all Internal Calls Only to SCCP Phones.

Following precedence rules are applicable when an ephone caller is placed on hold:

- **MOH group** defined for internal calls takes highest precedence.
- **MOH group** defined in ephone-dn takes the second highest precedence.
- **MOH group** defined in ephone-dn-template takes precedence if MOH group is not defined in ephone-dn or internal call.
- Extension numbers defined in a **MOH-group** has the least precedence.
- Phones not associated with any MOH groups default to the MOH parameters defined in the `moh` command under telephony-service configuration mode.

Note

If a selected MOH group does not exist, the caller will hear tone on hold.

Note

We recommend that departments in a branch must have mutually exclusive extension numbers and multicast destinations for configuring MOH groups.

Caching MOH Files for Enhanced System Performance

Caching MOH files helps enhance the system performance by reducing the CPU usage. However, caching requires memory buffer to store a large MOH file. You can set up a buffer file size for caching MOH files that you might use in the future. The default MOH file buffer size is 64 KB (8 seconds). The maximum buffer size (per file) can be configured anywhere between 64 KB (8 seconds) to 10000 KB (approximately 20 minutes). You can use the `moh-file-buffer` command to allocate MOH file buffer for future MOH files, see Configure Buffer Size for MOH Files. To verify if a file is being cached and to update a cached moh-file, see Verify MOH File Caching.

Note

If the file size is too large, buffer size falls back to 64 KB.

Configure G.711 and G.729 Files for Music on Hold

From Cisco Unified CME 11.7 Release onwards, G.711 and G.729 codec format MOH files can be configured on Unified CME. For calls (line or trunk calls) that need to be placed on hold and MOH needs to be played, transcoding insertion is not required if the codec used is G.729 or G.711. The new feature dynamically selects
the matching codec (either G.729 or G.711) based on the codec used on phones or trunk. Transcode insertion is required only if the codec on the phone playing Music on Hold is neither G.729 nor G.711. For more information on configuration of MOH, see Configure Music on Hold, on page 809.

If G.711 and G.729 codec format MOH files are configured on Unified CME, you will need transcoding only to support other codec format MOH files, such as iLBC. You need the G.711 codec format MOH file to be configured under telephony-service for MOH to be supported on Unified CME.

Note
You have to configure the primary G.711 codec format MOH file before configuring the G.729 or G.729A codec format MOH file.

We recommend that G.711 and G.729 codec format MOH files are available on the flash memory of Unified CME router.

Note
In a scenario where a call between an SCCP line and SIP trunk has a codec other than G.729 or G.711, then MOH is not played when the SCCP line places the SIP phone on hold.

In a scenario where a call is placed between an SCCP line and a SIP line, and the call is placed on hold from the SIP end, MOH is played only from the G.711 codec format MOH file.

Configure Music on Hold

Configure Music on Hold from an Audio File to Supply Audio Stream

Note
If you configure MOH from an audio file and from a live feed, the router seeks the live feed first. If a live feed is found, it displaces an audio file source. If the live feed is not found or fails at any time, the router falls back to the audio file source.

Note
The MOH file packaged with the CME software is completely royalty free.

Restriction
• To change the audio file to a different file, you must remove the first file using the no moh command before specifying a second file. If you configure a second file without removing the first file, the MOH mechanism stops working and may require a router reboot to clear the problem.

• The volume level of a MOH file cannot be adjusted through Cisco IOS software, so it cannot be changed when the file is loaded into the flash memory of the router. To adjust the volume level of a MOH file, edit the file in an audio editor before downloading the file to router flash memory.
Before you begin

• SIP phones require Cisco Unified CME 4.1 or a later version.

• A music file must be in stored in the router’s flash memory. This file should be in G.711 format. The file can be in .au or .wav file format, but the file format must contain 8-bit 8-kHz data; for example, ITU-T A-law or mu-law data format.

• From Cisco Unified CME Release 11.7 onwards, you can configure and store an MOH file in G.729 codec format in the router’s flash memory. The G.729 file can be used as MOH source.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. moh filename
5. multicast moh ip-address port port-number [route ip-address-list]
6. exit
7. ephone phone-tag
8. multicast-moh
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable
• Enter your password if prompted. |
| 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| 3 | telephony-service | Enters telephony-service configuration mode.
Example:
Router(config)# telephony-service |
| 4 | moh filename | Enables music on hold using the specified file.
Example:
Router(config-telephony)# moh minuet.au
OR
Router(config-telephony)# moh
flash:moh_g711u_music.wav
Router(config-telephony)# moh g729
flash:SampleAudioSource.g729.wav
• If you specify a file with this command and later want to use a different file, you must disable use of the first file with the no moh command before configuring the second file.
• G.729 MOH file can be configured along with the G.711 MOH file. Unified CME would pick the MOH file to be played based on the negotiated codec on line or trunk. |
<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>multicast moh ip-address port port-number [route ip-address-list]</td>
<td>Specifies that this audio stream is to be used for multicast and also for MOH.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# multicast moh 239.10.16.4 port 16384 route 10.10.29.17 10.10.29.33</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This command is required to use MOH for internal calls and it must be configured after MOH is enabled with the moh command.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ip-address—Destination IP address for multicast.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• port port-number—Media port for multicast. Range is 2000 to 65535. We recommend port 2000 because it is already used for normal RTP media transmissions between IP phones and the router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valid port numbers for multicast include even numbers that range from 16384 to 32767. (The system reserves odd values.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• route—(Optional) List of explicit router interfaces for the IP multicast packets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ip-address-list—(Optional) List of up to four explicit routes for multicast MOH. The default is that the MOH multicast stream is automatically output on the interfaces that correspond to the address that was configured with the ip source-address command.</td>
</tr>
<tr>
<td>Note</td>
<td>For MOH on internal calls, packet flow must be enabled to the subnet on which the phones are located.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 6 | exit | Exits telephony-service configuration mode. |
| Example: | Router(config-telephony)# exit | |

| Step 7 | ephone phone-tag | Enters ephone configuration mode. |
| Example: | Router(config)# ephone 28 | |

<p>| Step 8 | multicast-moh | (Optional) Enables multicast MOH on a phone. This is the default. |
| Example: | Router(config-ephone)# no multicast-moh | |
| | | • This command is supported in Cisco Unified CME 4.0 and later versions. |
| | | • The no form of this command disables MOH for phones that do not support multicast. Callers hear a repeating tone when they are placed on hold. |
| | | • This command can also be configured in ephone-template configuration mode. The value set in... |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9
 end
 Example:
 Router(config-ephone)# end</td>
<td>ephone configuration mode has priority over the value set in ephone-template mode. Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Examples

The following example enables music on hold and specifies the music file to use:

```
telephony-service
  moh minuet.wav
```

The following example enables MOH and specifies a multicast address for the audio stream:

```
telephony-service
  moh minuet.wav
  multicast moh 239.23.4.10 port 2000
```

Configure Music on Hold from a Live Feed

To configure music on hold from a live feed, perform the following steps.

Note

If you configure MOH from an audio file and from a live feed, the router seeks the live feed first. If a live feed is found, it displaces an audio file source. If the live feed is not found or fails at any time, the router falls back to the audio file source.

Restriction

- A foreign exchange station (FXS) port cannot be used for a live feed.

Before you begin

- SIP phones require Cisco Unified CME 4.1 or a later version.
- VIC2-2FXO, VIC2-4FXO, EM-HDA-3FXS/4FXO, EM-HDA-6FXO, or EM2-HDA-4FXO on Cisco Integrated Services Routers Generation 2 (ISR G2) family of routers.
 - NIM-2FXO, NIM-4FXO, NIM-2FXS/4FXO, and NIM-2FXS/4FXOP are the Cisco network interface modules (NIMs) supported on Cisco 4000 Series Integrated Services Routers.
- For a live feed from VoIP (over a SIP trunk), VAD must be disabled.
SUMMARY STEPS

1. enable
2. configure terminal
3. voice-port port
4. input gain decibels
5. auto-cut-through
6. operation 4-wire
7. signal immediate
8. signal loop-start live-feed
9. no shutdown
10. exit
11. dial peer voice tag pots
12. destination-pattern string
13. port port
14. exit
15. ephone-dn dn-tag
16. number number
17. moh [out-call outcall-number] [ip ip-address port port-number [route ip-address-list]]
18. exit
19. ephone phone-tag
20. multicast-moh
21. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice-port port</td>
<td>Enters voice-port configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice-port 1/1/0</td>
<td>• Port argument is platform-dependent; type ? to display syntax.</td>
</tr>
<tr>
<td>Step 4 input gain decibels</td>
<td>Specifies, in decibels, the amount of gain to be inserted at the receiver side of the interface.</td>
</tr>
<tr>
<td>Example: Router(config-voice-port)# input gain 0</td>
<td>• decibels—Acceptable values are integers –6 to 14.</td>
</tr>
<tr>
<td>Step 5 auto-cut-through</td>
<td>(E&M ports only) Enables call completion when a PBX does not provide an M-lead response.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>(E&M ports only) Selects the 4-wire cabling scheme.</td>
</tr>
<tr>
<td>Operation 4-wire</td>
<td>MOH requires that you specify 4-wire operation with this command for E&M ports.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-port)# operation 4-wire</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>(E&M ports only) For E&M tie trunk interfaces, directs the calling side to seize a line by going off-hook on its E-lead and to send address information as dual tone multifrequency (DTMF) digits.</td>
</tr>
<tr>
<td>Signal immediate</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-port)# signal immediate</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>(FXO ports only) Enables an MOH audio stream from a live feed to be directly connected to the router through an FXO port.</td>
</tr>
<tr>
<td>Signal loop-start live-feed</td>
<td>This command is supported in Cisco IOS Release 12.4(15)T and later releases.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-port)# signal loop-start live-feed</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Activates the voice port.</td>
</tr>
<tr>
<td>No shutdown</td>
<td>To shut the voice port down and disable MOH from a live feed, use the shutdown command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-port)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Exits voice-port configuration mode.</td>
</tr>
<tr>
<td>Exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-port)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td>Dial peer voice tag pots</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# dial peer voice 7777 pots</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Specifies either the prefix or the full E.164 telephone number to be used for a dial peer.</td>
</tr>
<tr>
<td>Destination-pattern string</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# destination-pattern 7777</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Associates the dial peer with the voice port that was specified in Step 3.</td>
</tr>
<tr>
<td>Port port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# port 1/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Exits dial-peer configuration mode.</td>
</tr>
<tr>
<td>Exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-dial-peer)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Ephone-dn dn-tag</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ephone-dn 55</td>
<td>• dn-tag—Unique sequence number that identifies this ephone-dn during configuration tasks. Range is 1 to 288.</td>
</tr>
</tbody>
</table>

Step 16

number number

Example:

Router(config-ephone-dn)# number 5555

Configures a valid extension number for this ephone-dn.

- This number is not assigned to any phone; it is only used to make and receive calls that contain an audio stream to be used for MOH.
- *number*—String of up to 16 digits that represents a telephone or extension number to be associated with this ephone-dn.

Step 17

moh [out-call outcall-number] [ip ip-address port port-number [route ip-address-list]]

Example:

Router(config-ephone-dn)# moh out-call 7777 ip 239.10.16.8 port 2311 route 10.10.29.3 10.10.29.45

or

Router(config-ephone-dn)# moh out-call 7777

Specifies that this ephone-dn is to be used for an incoming or outgoing call that is the source for an MOH stream.

- (Optional) *out-call outcall-number*—Indicates that the router is calling out for a live feed for MOH and specifies the number to be called. Forces a connection to the local voice port that was specified in Step 3. If this command is used without this keyword, the MOH stream is received from an incoming call.
- (Optional) *ip ip-address*—Destination IP address for multicast.

If you are configuring MOH from a live feed and from an audio file for backup, do not configure a multicast IP address for this command. If the live feed fails or is not found, MOH will fall back to the ip address that you configured using the *multicast moh* command in telephony-service configuration mode. See Configure Music on Hold from an Audio File to Supply Audio Stream.

If you specify an address for multicast with this command and a different address with the multicast *moh* command in telephony-service configuration mode, you can send the MOH audio stream to two multicast addresses.

- (Optional) *port port-number*—Media port for multicast. Range is 2000 to 65535. We recommend port 2000 because it is already used for RTP media transmissions between IP phones and the router.
- (Optional) *route ip-address-list*—Indicates specific router interfaces on which to transmit the IP multicast packets. Up to four IP addresses can be listed. Default: The MOH multicast stream is automatically output on the interfaces that correspond to the address that was configured with the *ip source-address* command.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 18</td>
<td>exits ephone-dn configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config-ephone-dn)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>enters ephone configuration mode.</td>
</tr>
<tr>
<td><code>ephone phone-tag</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config)# ephone 28</code></td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>(Optional) Enables multicast MOH on a phone. This is the default.</td>
</tr>
<tr>
<td><code>multicast-moh</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config-ephone)# no multicast-moh</code></td>
<td></td>
</tr>
<tr>
<td>Step 21</td>
<td>returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config-ephone)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example enables MOH from an outgoing call on voice port 1/1/0 and dial peer 7777:

```
voice-port 1/1/0
  auto-cut-through
  operation 4-wire
  signal immediate
! dial-peer voice 7777 pots
  destination-pattern 7777
  port 1/1/0
!
ephone-dn 55
  number 5555
  moh out-call 7777
```

The following example enables MOH from a live feed and if the live feed is not found or fails at any time, the router falls back to the music file (music-on-hold.au) and multicast address for the audio stream specified in the telephony-service configuration:

```
voice-port 0/1/0
  auto-cut-through
  operation 4-wire
  signal immediate
```
Configure Music on Hold Groups to Support Different Media Sources

Restriction

• Media files from live-feed source are not supported.

• Each MOH group must contain a unique flash media file name, extension numbers, and multicast destination. If you enter any extension ranges, MOH filenames, and multicast IP addresses that already exist in another MOH-group, an error message is issued and the new input in the current voice MOH-group is discarded.

• Media file CODEC format is limited to G.711 and G.729.

Before you begin

• Cisco Unified CME 8.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice moh-group moh-group-tag
4. description string
5. moh filename
6. multicast moh ip-address port port-number route ip-address-list
7. extension-range starting-extension to ending-extension
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

Router# configure terminal

Enters the voice moh-group configuration mode. You can create up to five voice moh-groups for ephones receiving music on hold audio files when placed on hold. Range for the voice moh-groups is 1 to 5.

Step 3

voice moh-group moh-group-tag

Example:

Router(config-telephony)# voice moh-group 1

(Optional) Allows you to add a brief description specific to a voice MOH group. You can use up to 80 characters to describe the voice MOH group.

Step 4

description string

Example:

Router(config-voice-moh-group)# description moh group for sales

Enables music on hold using the specified MOH source file. The MOH file must be in .au and .wav format. MOH filename length should not exceed 128 characters. You must provide the directory and filename of the MOH file in URL format. For example: `moh flash:/minuet.au`

- If you specify a file with this command and later want to use a different file, you must disable use of the first file with the `no moh` command before configuring the second file.

Step 5

moh filename

Example:

Router(config-voice-moh-group)# moh flash:/minuet.au

Specifies that this audio stream is to be used for multicast and also for MOH.

Step 6

multicast moh ip-address port port-number route ip-address-list

Example:

Router((config-voice-moh-group)# multicast moh 239.10.16.4 port 16384 route 10.10.29.17 10.10.29.33

Note This command is required to use MOH for internal calls and it must be configured after MOH is enabled with the `moh` command.

- **ip-address**—Destination IP address for multicast.
- **port port-number**—Media port for multicast. Range is 2000 to 65535. We recommend port 2000 because it is already used for normal RTP media transmissions between IP phones and the router.

Note Valid port numbers for multicast include even numbers that range from 16384 to 32767. (The system reserves odd values.)

- **route**—(Optional) List of explicit router interfaces for the IP multicast packets.
- **ip-address-list**—(Optional) List of up to four explicit routes for multicast MOH. The default is that the MOH multicast stream is automatically output on the
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interfaces that correspond to the address that was configured with the <code>ip source-address</code> command.</td>
</tr>
<tr>
<td></td>
<td>For MOH on internal calls, packet flow must be enabled to the subnet on which the phones are located.</td>
</tr>
</tbody>
</table>

Step 7

extension-range starting-extension to ending-extension

Example:

```plaintext
Router(config-voice-moh-group)#extension-range 1000 to 1999
Router(config-voice-moh-group)#extension-range 2000 to 2999
```

(Optional) identifies MOH callers calling the extension numbers specified in a MOH group. Extension number must be in hexadecimal digits (0-9) or (A-F). Both extension numbers (starting extension and ending extension) must contain equal number of digits. Repeat this command to add additional extension ranges.

- **starting-extension**—(Optional) Lists the starting extension number for a moh-group.
- **ending-extension**—(Optional) Lists the ending extension number for a moh-group.

Note

The ending extension number must be greater than or equal to the starting extension number. Extension-ranges must not overlap with any other extension-range configured in any other MOH group.

Note

If extension range is defined and a moh-group is also defined in an `ephone-dn`, the `ephone-dn` parameters takes precedence.

Step 8

end

Example:

```plaintext
Router(config-voice-moh-group)# end
```

Returns to privileged EXEC mode.

Examples

In the following example, total six MOH groups are configured. MOH group 1 through 5 are configured under voice-moh-group configuration mode and MOH group 0 is the MOH source file configured under telephony-services.

```plaintext
router# show voice moh-group
telephony-service
moh alaska.wav
Moh multicast 239.1.1.1 port 16384 route 10.1.4.31 10.1.1.2

voice moh-group 1
description this moh group is for sales
moh flash:/hello.au
multicast moh 239.1.1.1 port 16386 route 239.1.1.3 239.1.1.3
extension-range 1000 to 1999
extension-range 2000 to 2999
extension-range 3000 to 3999
extension-range A1000 to A1999
```
voice moh-group 2
 description (not configured)
 moh flash1:/minuet.au
 multicast moh 239.23.4.10 port 2000
 extension-range 7000 to 7999
 extension-range 8000 to 8999

voice moh-group 3
 description This is for marketing
 moh flash2:/happy.au
 multicast moh 239.15.10.1 port 3000
 extension-range 9000 to 9999

voice moh-group 4
 description (not configured)
 moh flash:/audio/sun.au
 multicast moh 239.16.12.1 port 4000
 extension-range 10000 to 19999

voice moh-group 5
 description (not configured)
 moh flash:/flower.wav
 multicast moh 239.12.1.2 port 5000
 extension-range 0012 to 0024
 extension-range 0934 to 0964

=== Total of 6 voice moh-groups ===

Assign a MOH Group to a Directory Number

Restriction

- Do not use same extension number for different MOH groups.

Before you begin

- Cisco Unified CME 8.0 or a later version.
- MOH groups must be configured under global configuration mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn tag
4. number
5. moh-group tag
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
 Example:
 `Router> enable`
 • Enter your password if prompted. |
| 2 | configure terminal | Enters global configuration mode.
 Example:
 `Router# configure terminal` |
| 3 | ephone-dn tag | Enters `ephone-dn` configuration mode.
 In `ephone-dn` configuration mode, you assign an extension number using the `number` command.
 You can also configure a MOH group to an `ephone-dn`-template for use across a range of `ephone-dns`. If two different MOH groups are configured as a result of this command, the MOH group configured under the `ephone-dn` configuration takes precedence.
 Note
 MOH group configuration for `ephone-template-dn` configuration command is temporarily prohibited when any directory number using that template is on hold.
 Example:
 `Router(config)# ephone-dn 1` |
| 4 | number | Allows you to define an extension number and associate this number to a telephone.
 Example:
 `Router(config)# ephone-dn 1`
 `Router(config-ephone-dn)# number 1001` |
| 5 | moh-group tag | Allows you to assign a MOH group to a directory number.
 • MOH group `tag`—identifies the unique number assigned to a MOH group for configuration tasks.
 Example:
 `Router(config-telephony)# voice moh-group 1`
 `Router(config-voice-moh-group)#` |
| 6 | end | Returns to privileged EXEC mode.
 Example:
 `Router(config-ephone)# end` |

Examples

In the following example different moh groups are assigned to different directory numbers (ephone-dn)
`moh group1` is assigned to `ephone-dn 1`, `moh-group 4` is assigned to `ephone-dn 4`, and `moh-group 5` is assigned to `ephone-dn 5`.

```
ephone-dn 1 octo-line  
  number 7001
```
Assign a MOH Group to all Internal Calls Only to SCCP Phones

Restriction

- Do not use same extension number for different MOH groups.

Before you begin

- Cisco Unified CME 8.0 or a later version.
- MOH groups must be configured under global configuration mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. internal-call moh-group tag
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

```cisco
name DN7001
moh-group 1
!
ephone-dn 2 dual-line
number 7002
ame DN7002
call-forward noan 6001 timeout 4
!
ephone-dn 3
number 7003
name DN7003
snr 7005 delay 3 timeout 10
allow watch
call-forward noan 8000 timeout 30
!
ephone-dn 4 dual-line
number 7004
allow watch
call-forward noan 7001 timeout 10
moh-group 4
!
ephone-dn 5
number 7005
name DN7005
moh-group 5
!
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>In ephone-dn configuration mode, you assign an extension number using the number command.</td>
</tr>
<tr>
<td>Router(config-telephony)# ephone-dn 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 internal-call moh-group tag</td>
<td>Allows to assign a MOH-group for all internal directory numbers.</td>
</tr>
<tr>
<td>Example:</td>
<td>Moh group tag — identifies the unique number assigned to a MOH group for configuration tasks, Range for the tag is from 0 to 5, where 0 represents MOH configuration in telephony service.</td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# internal call moh-group 4</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following examples shows moh-group 4 configured for internal directory calls.

telephony-service
sdspfarm conference mute-on *6 mute-off *8
sdspfarm units 4
sdspfarm transcode sessions 2
sdspfarm tag 1 moto-HW-Conf
moh flash1:/minuet.au
Moh multicast 239.1.1.1 port 16384 route 10.1.4.31 10.1.1.2
internal-call moh-group 4
em logout 0:0 0:0 0:0
max-ephones 110
max-dn 288
ip source-address 15.2.0.5 port 2000
auto assign 1 to 1
caller-id block code *9999
service phone settingsAccess 1
service phone spanTOPCPort 0
service dss
timeouts transfer-recall 12
Configure Buffer Size for MOH Files

Restriction

• MOH file caching is prohibited if live-feed is enabled for MOH-group 0.
• MOH file buffer size must be larger than the MOH file (size) that needs to be cached.
• Sufficient system memory must be available for MOH file caching.

Before you begin

• Cisco Unified CME 8.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. moh-file-buffer file size
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# ephone-dn 1</td>
<td>In ephone-dn configuration mode, you assign an extension number using the number command.</td>
</tr>
<tr>
<td>Step 4 moh-file-buffer file size</td>
<td>(Optional) Allows to set a buffer for the MOH file size.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# moh-file-buffer 2000</td>
<td>You can configure a max file buffer size (per file) anywhere between 64 KB (8 seconds) to 10000 KB (approximately 20 minutes), Default moh-file-buffer size is 64 KB (8 seconds).</td>
</tr>
<tr>
<td>Note</td>
<td>A large buffer size is desirable to cache the largest MOH file and a better system performance.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 5 |
end | Returns to privileged EXEC mode.

Example:

```
Router(config-ephone)# end
```

Examples

The following examples show 90 KB as the configured moh-file-buffer size.

```
telephony-service
  sdpfarm conference mute-on *6 mute-off *8
  sdpfarm units 4
  sdpfarm transcode sessions 2
  sdpfarm tag 1 moto-HW-Conf
  moh flash1:/minuet.au
  Moh multicast 239.1.1.1 port 16384 route 10.1.4.31 10.1.1.2
  **moh-file-buffer 90**
  em logout 0:0 0:0 0:0
  max-ephones 110
  max-dn 288
  ip source-address 15.2.0.5 port 2000
  auto assign 1 to 1
  caller-id block code *9999
  service phone settingsAccess 1
  service phone spanTOPCPort 0
  service dss
  timeouts transfer-recall 12
```

Verify MOH File Caching

Use the `show ephone moh` command to verify if the MOH file is being cached.

The following examples show that the minuet.au music file in MOH group 1 is not cached. Follow steps a through d to verify the MOH file is being cached.

Example:

```
Router #show ephone moh
Skinny Music On Hold Status (moh-group 1)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/minuet.au (not cached) type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast 239.10.16.6 port 2000
```

a) If the file is not cached as in MOH group 1 in the above example, then check file size in the flash.

Example:

```
Router#dir flash:/minuet.au
Directory of flash:/minuet.au 32 -rw- 1865696 Apr 25 2009 00:47:12 +00:00 moh1.au
```

b) Under telephony-service, configure “moh-file-buffer <file size>”. Default file size is 64 KB (8 seconds). Make sure you enter a larger file size to cache large MOH files that you may use in future.
Verify Music on Hold Group Configuration

Step 1 Use the `show voice moh-group` command to display one or the entire moh-group configuration.

The following example shows all six MOH groups with extension ranges, MOH files, and multicast destination addresses.

```
router# show voice moh-group
telephony-service
moh alaska.wav
Meh multicast 239.1.1.1 port 16384 route 10.1.4.31 10.1.1.2

voice moh-group 1
description this moh group is for sales
moh flash:/audio?minuet.au
multicast moh 239.1.1.1 port 16386 route 239.1.1.2 239.1.1.3
extension-range 1000 to 1999
extension-range 2000 to 2999
extension-range 3000 to 3999
extension-range 20000 to 22000
extension-range 1A000 to 1A999

voice moh-group 2
description (not configured)
moh flash:/audio/hello.au
multicast moh 239.23.4.10 port 2000
extension-range 7000 to 7999
extension-range 8000 to 8999
```
Step 2 Use the show ephone moh command to display information about the different MOH group configured.

The following example displays information about five different MOH groups.

Router # show ephone moh
Skinny Music On Hold Status (moh-group 1)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/minuet.au (not cached) type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast on 239.10.16.6 port 2000 via 0.0.0.0

Skinny Music On Hold Status (moh-group 2)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/audio/hello.au type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast on 239.10.16.6 port 2000 via 0.0.0.0

Skinny Music On Hold Status (moh-group 3)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/bells.au type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast on 239.10.16.6 port 2000 via 0.0.0.0

Skinny Music On Hold Status (moh-group 4)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/3003.au type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast on 239.10.16.6 port 2000 via 0.0.0.0

Skinny Music On Hold Status (moh-group 5)
Active MOH clients 0 (max 830), Media Clients 0
File flash:/4004.au type AU Media_Payload_G711Ulaw64k 160 bytes
Moh multicast on 239.10.16.6 port 2000 via 0.0.0.0

Step 3 Use the show voice moh-group statistics command to display the MOH subsystem statistics information.

In the following example, the MOH Group Streaming Interval Timing Statistics shows the media packet counts during streaming intervals. Each packet counter is of 32 bit size and holds a count limit of 4294967296. This means that with 20 milliseconds packet interval (for G.711), the counters will restart from 0 any time after 2.72 years (2 years 8 months). Use the clear voice moh-group statistics once in every two years to reset the packet counters.
MOH Group Packet Transmission Timing Statistics shows the maximum and minimum amount of time (in microseconds) taken by the MOH groups to send out media packets. The MOH Group Loopback Interval Timing Statistics is available when loopback interface is configured as part of the multicast MOH routes as in the case of SRST. These counts are loopback packet counts within certain streaming timing intervals.

```
router# show voice moh-group statistics

MOH Group Streaming Interval Timing Statistics:
Grp#  ~19 msec  20~39  40~59  60~99  100~199  200+ msec
0:     25835  17559966  45148  0  0  1
1:     19766  17572103  39079  0  0  1
2:     32374  17546886  51687  0  0  1
3:     27976  17555681  47289  0  0  1
4:     34346  17542940  53659  0  0  1
5:     14971  17581689  34284  0  0  1

MOH Group Packet Transmission Timing Statistics:
Grp#  max(usec)  min(usec)
0:          97          7.
1:          95          7.
2:          97          7.
3:          96          7.
4:          94          7.
5:          67          7.

MOH Group Loopback Interval Timing Statistics:
loopback event array: svc_index=1542, free_index=1549, max_q_depth=31
Grp#  ~19 msec  20~39  40~59  60~99  100~199  200+ msec
0:    8918821  8721527  10023  0  1  1
1:    9007373  8635813  7184  0  1  1
2:    8864760  8772851  12758  0  1  1
3:    8924447  8715457  10464  0  1  1
4:    8858393  8778957  13017  0  1  1
5:    9005511  8639936  4919  0  1  1

Statistics collect time: 4 days 2 hours 5 minutes 39 seconds.
```

Step 4

Use the `clear voice moh-group statistics` command to clear the display of MOH subsystem statistics information.

For Example:

```
router# clear voice moh-group statistics
All moh group stats are cleared
```

Feature Information for Music on Hold

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 73: Feature Information for Music on Hold

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music on Hold</td>
<td>12.2</td>
<td>Support for Music on Hold from a live feed on Unified CME is introduced on the Cisco 4000 Series Integrated Services Routers.</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>Support for Multicast Music on Hold from a live feed is introduced for SCCP to SCCP calls on the Cisco 4000 Series Integrated Services Routers.</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>Support for configuration of G.711 and G.729 codec format MOH file on Unified CME is added.</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>Music on hold from different media sources is added.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Music on hold for SIP phones is supported.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>• Music on hold is introduced for internal calls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The ability to disable multicast MOH per phone is introduced.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>The ability to use a live audio feed as a multicast source is introduced.</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>Music on hold from a live audio feed is introduced for external calls.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>Music on hold from an audio file is introduced for external calls.</td>
</tr>
</tbody>
</table>
Paging

Restrictions for Paging

• Paging is not supported on IP phones without speaker phones.
• Paging is not supported on Cisco Unified 3905 SIP IP phones.
• Paging is only supported on G711ulaw codec.
• Cisco Unified IP Conference Phone 8831 does not support paging when busy.
• Paging Group is supported in Unified CME, but not in Unified SRST.
• Paging is not supported on Cisco Unified 3905 SIP IP phones.
• Cisco Unified SCCP IP phones do not support Whisper Paging. Only idle IP phones can receive paging requests.

Information About Paging

Audio Paging

A paging number can be defined to relay audio pages to a group of designated phones. When a caller dials the paging number (ephone-dn), each idle IP phone that has been configured with the paging number automatically answers using its speaker-phone mode. Displays on the phones that answer the page show the caller ID that has been set using the `name` command under the paging ephone-dn. When the caller finishes speaking the message and hangs up, the phones are returned to their idle states.
Audio paging provides a one-way voice path to the phones that have been designated to receive paging. It does not have a press-to-answer option like the intercom feature. A paging group is created using a dummy ephone-dn, known as the paging ephone-dn, that can be associated with any number of local IP phones. The paging ephone-dn can be dialed from anywhere, including on-net.

After you have created two or more simple paging groups, you can unite them into combined paging groups. By creating combined paging groups, you provide phone users with the flexibility to page a small local paging group (for example, paging four phones in a store’s jewelry department) or to page a combined set of several paging groups (for example, by paging a group that consists of both the jewelry department and the accessories department).

The paging mechanism supports audio distribution using IP multicast, replicated unicast, and a mixture of both (so that multicast is used where possible, and unicast is used for specific phones that cannot be reached using multicast).

Figure 35: Paging Group, on page 832 shows a paging group with two phones.
The paged phone receives a page when it is idle or busy. When it is busy with a connected call, the user of the paged phone can hear both the active conversation and whisper paging.

Before Cisco Unified CME 9.0, you can specify a paging-dn tag and dial the paging extension number to page the Cisco Unified SCCP IP phone associated with the paging-dn tag or paging group using the **paging-dn** command in ephone or ephone-template configuration mode. You can also page a combined paging group composed of two or more previously established paging groups of Cisco Unified SCCP IP phone directory numbers using the **paging group** command in ephone-dn configuration mode.

In Cisco Unified CME 9.0 and later versions, support is extended so that you can specify a paging-dn tag and dial the paging extension number to page the Cisco Unified SIP IP phone associated with the paging-dn tag or paging group using the **paging-dn** command in voice register pool or voice register template configuration mode. Paging on Cisco Unified SIP IP phones support both unicast and multicast paging in the same way that these features are supported on Cisco Unified SCCP IP Phones.

In Cisco Unified CME 9.0 and later versions, support is also extended so that you can create a combined paging group composed of two or more previously established paging groups of ephone and voice register directory numbers using the same **paging group** command used for paging groups of Cisco Unified SCCP IP phone directory numbers.

Note

The paging port for Cisco Unified SIP IP phones is an even number from 20480 to 32768. If you enter a wrong port number, a SIP REFER message request is sent to the IP phone but the Cisco Unified SIP IP phone is not paged.

With a paging-dn, there is only one paging endpoint and there is only one paging number for both Cisco Unified SCCP and Cisco Unified SIP IP phones. However, when paging to a Cisco Unified SIP shared line, each phone on the shared line is treated separately.

A phone that can be paged by two paging-dns receives the page from the first paging-dn and ignores the page from the second paging-dn. When the first paging-dn is disconnected, the phone can receive the page from the second paging-dn.

The paging group support for Cisco Unified SIP IP phones uses an ephone paging-dn to dial the paging number before branching out to each Cisco Unified SCCP and Cisco Unified SIP IP phone.

The show **ephone-dn paging** command displays which paging-dn is specified and which phone is being paged.

Because paging is not considered a call, a paging phone that is in a connected state can press another line to make a call using the phone’s softkeys.

The Cisco Unified SIP IP phone Paging feature also supports:

- multicast paging (default)
- unicast paging

For more information, see **Configure Paging Group Support for SIP IP Phones**, on page 838.
Configure Paging

Configure a Simple Paging Group on SCCP Phones

To set up a paging number that relays incoming pages to a group of phones, perform the following steps.

Restriction

IP phones do not support multicast at 224.x.x.x addresses.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn paging-dn-tag
4. number number
5. name name
6. paging [ip multicast-address port udp-port-number]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>ephone-dn paging-dn-tag</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• paging-dn-tag—A unique sequence number that identifies this paging ephone-dn during all configuration tasks. This is the ephone-dn that is dialed to initiate a page. This ephone-dn is not associated with a physical phone. Range is 1 to 288.</td>
</tr>
<tr>
<td>Router(config)# ephone-dn 42</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Defines an extension number associated with the paging ephone-dn. This is the number that people call to initiate a page.</td>
</tr>
<tr>
<td>number number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-dn)# number 3556</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Do not use the dual-line keyword with this command. Paging ephone-dns cannot be dual-line.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>name name</td>
<td>Assigns to the paging number a name to appear in caller-ID displays and directories.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# name paging4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>paging [ip multicast-address port udp-port-number]</td>
<td>Specifies that this ephone-dn is to be used to broadcast paging messages to the idle IP phones that are associated with the paging dn-tag. If the optional keywords and arguments are not used, IP phones are paged individually using IP unicast transmission (to a maximum of ten IP phones). The optional keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# paging ip 239.1.1.10 port 2000</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure a Combined Paging Group for SCCP Phones

To set up a combined paging group consisting of two or more simple paging groups, perform the following steps.

Before you begin

Simple paging groups must be configured. See Configure a Simple Paging Group on SCCP Phones, on page 834.

SUMMARY STEPS

1. enable
Configure a Combined Paging Group for SCCP Phones

2. configure terminal
3. ephone-dn paging-dn-tag
4. number number
5. name name
7. exit
8. ephone phone-tag
9. paging-dn paging-dn-tag { multicast | unicast }
10. exit
11. Repeat Step 8 to Step 10 to add additional IP phones to a paging group.
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ephone-dn paging-dn-tag</td>
<td>Enters ephone-dn configuration mode to create a paging number for a combined paging group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• paging-dn-tag—A unique sequence number that identifies this paging ephone-dn during all configuration tasks. This is the ephone-dn that is dialed to initiate a page. This ephone-dn is not associated with a physical phone. Range is 1 to 288.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 42</td>
<td>Note Do not use the dual-line keyword with this command. Paging ephone-dns cannot be dual-line.</td>
</tr>
<tr>
<td>4</td>
<td>number number</td>
<td>Defines an extension number associated with the combined group paging ephone-dn. This is the number that people call to initiate a page to the combined group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# number 3556</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>name name</td>
<td>(Optional) Assigns to the combined group paging number a name to appear in caller-ID displays and directories.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# name paging4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>paging group paging-dn-tag, paging-dn-tag [[paging-dn-tag] ...]</td>
<td>Sets the paging directory number for a combined group. This command combines the individual paging group ephone-dns that you specify into a combined group so that a page can be sent to more than one paging group at a time.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-dn)# paging group 20,21</td>
<td>• paging-dn-tag—Unique sequence number associated with the paging number for an individual paging group. Lists the paging-dn-tags of all the individual groups that you want to include in this combined group, separated by commas. You can include up to ten paging ephone-dn tags in this command.</td>
<td></td>
</tr>
</tbody>
</table>

Note Configure the paging command for all ephone-dns in a paging group before configuring the paging group command for that group. |

<table>
<thead>
<tr>
<th>Step 7</th>
<th>exit</th>
<th>Exits ephone-dn configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>ephone phone-tag</th>
<th>Enters ephone configuration mode to add IP phones to the paging group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# ephone 2</td>
<td>• phone-tag—Unique sequence number of a phone to receive audio pages when the paging ephone-dn is called.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>paging-dn paging-dn-tag *multicast</th>
<th>unicast*</th>
<th>Associates this ephone with an ephone-dn tag that is used for a paging ephone-dn (the number that people call to deliver a page). Note that the paging ephone-dn tag is not associated with a line button on this ephone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# paging-dn 42 multicast</td>
<td>The paging mechanism supports audio distribution using IP multicast, replicated unicast, and a mixture of both (so that multicast is used where possible and unicast is allowed to specific phones that cannot be reached through multicast).</td>
<td></td>
</tr>
</tbody>
</table>

	• *paging-dn-tag*—Unique sequence number for a paging ephone-dn.	
	• *multicast*—(Optional) Multicast paging for groups. By default, paging is transmitted to the Cisco Unified IP phone using multicast.	
	• *unicast*—(Optional) Unicast paging for a single Cisco Unified IP phone. This keyword indicates that the Cisco Unified IP phone is not capable of receiving paging through multicast and requests that the phone receive paging through a unicast transmission directed to the individual phone.	

Note The number of phones supported through unicast is limited to a maximum of ten phones.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>exit</td>
<td>Exits ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# exit</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Repeat Step 8 to Step 10 to add additional IP phones to a paging group.</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure Paging Group Support for SIP IP Phones

To configure Paging group support for Unified SIP IP Phones, perform the following steps.

Before you begin

Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. number number
5. paging [ip multicast-address port udp-port-number]
6. Repeat Step 3 to Step 5 to add more Cisco Unified SCCP IP phones to the paging group. Skip Step 7 for each IP phone except for the last one.
7. paging group paging-dn-tag, paging-dn-tag
8. exit
9. voice register dn dn-tag
10. number number
11. exit
12. Repeat Step 9 to Step 11 to associate more telephone or extension numbers with Cisco Unified SIP IP phones.
13. voice register pool pool-tag
14. id mac address
15. type phone-type
16. number tag dn dn-tag
17. paging-dn paging-dn-tag
18. Repeat Step 13 to Step 17 to register additional Cisco Unified SIP IP phones to ephone-dn paging directory numbers. Exit from voice register pool configuration mode after each additional phone is registered. After the last phone is added, go directly to Step 19.
19. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# <code>configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ephone-dn dn-tag</code></td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# <code>ephone-dn 20</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>dn-tag</code>—Unique number that identifies an ephone-dn during configuration tasks. Range is 1 to the number set by the <code>max-dn</code> command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>number</code> <code>number</code></td>
<td>Associates a telephone or extension number with this ephone-dn.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# <code>number 2000</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>number</code>—String of up to 16 characters that represents an E.164 telephone number. Normally, the string is composed of digits, but the string may contain alphabetic characters when the number is dialed only by the router, as with an intercom number. One or more periods (.) can be used as wildcard characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>paging [ip multicast-address port udp-port-number]</code></td>
<td>Defines an extension (ephone-dn) as a paging extension that can be called to broadcast an audio page to a set of Cisco Unified IP phones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# <code>paging ip 239.0.1.20 port 20480</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>ip multicast-address</code>—(Optional) Uses an IP multicast address to multicast voice packets for audio paging; for example, 239.0.1.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>port udp-port-number</code>—(Optional) Uses this UDP port for the multicast. Range: 2000 to 65535.</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
<td>IP phones do not support multicast at 224.x.x.x addresses. Default is that multicast is not used and IP phones are paged individually using IP unicast transmission (up to ten phones).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>port udp-port-number</code>—(Optional) Uses this UDP port for the multicast. Range: 2000 to 65535.</td>
</tr>
<tr>
<td></td>
<td>Note:</td>
<td>If any of the paged phones is a Cisco Unified SIP IP phone, the correct paging port for the paging-dn is an even number from 20480 to 32768. If you enter a wrong port number, a SIP REFER message request is sent to the IP phone but the Cisco Unified SIP IP phone is not paged.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Repeat Step 3 to Step 5 to add more Cisco Unified SCCP IP phones to the paging group. Skip Step 7 for each IP phone except for the last one.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 7** | Creates a combined paging group from two or more previously established paging sets.
- *paging-dn-tag*—Comma-separated list of paging-dn-tags that have previously been associated with the paging extension of a paging set using the `paging-dn` command. You can include up to ten paging-dn-tags separated by commas; for example, 4, 6, 7, 8. |
| **Step 8** | Exits ephone-dn configuration mode. |
| **Step 9** | Enters voice register dn configuration mode.
- *dn-tag*—Unique sequence number that identifies a particular directory number during configuration tasks. Range is 1 to 150 or the maximum defined by the `max-dn` command. |
| **Step 10** | Associates a telephone or extension number with a Cisco Unified SIP IP phone in a Cisco Unified CME system.
- *number*—String of up to 16 characters that represents an E.164 telephone number. Normally, the string is composed of digits, but the string may contain alphabetic characters when the number is dialed only by the router, as with an intercom number. |
| **Step 11** | Exits voice register dn configuration mode. |
| **Step 12** | — |
| **Step 13** | Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME.
- *pool-tag*—Unique number assigned to the pool. Range: 1 to 100.
Note For Cisco Unified CME systems, the upper limit for this argument is defined by the `max-pool` command. |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>id mac address</td>
<td>identifies a locally available Cisco Unified SIP IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# id mac 0019.305D.82B8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>type phone-type</td>
<td>Defines a phone type for a Cisco Unified SIP IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# type 7961</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>number tag dn dn-tag</td>
<td>Indicates the E.164 phone numbers that the registrar permits to handle the Register message from the Cisco Unified SIP IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# number 1 dn 1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>paging-dn paging-dn-tag</td>
<td>Registers a Cisco Unified SIP IP phone to an ephone-dn paging directory number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# paging-dn 20</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Repeat Step 13 to Step 17 to register additional Cisco Unified SIP IP phones to ephone-dn paging directory numbers. Exit from voice register pool configuration mode after each additional phone is registered. After the last phone is added, go directly to Step 19.</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>end</td>
<td>Exits voice register pool configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips

Use the `debug ephone paging` command to collect debugging information on paging for both Cisco Unified SIP IP and Cisco Unified SCCP IP phones.

Verify Paging

Step 1

Use the `show running-config` command to display the running configuration. Paging ephone-dns are listed in the ephone-dn portion of the output. Phones that belong to paging groups are listed in the ephone part of the output.
Router# show running-config

ephone-dn 48
 number 136
 name PagingCashiers
 paging ip 239.1.1.10 port 2000

ephone 2
 headset auto-answer line 1
 headset auto-answer line 4
 ephone-template 1
 username "FrontCashier"
 mac-address 011F.2A0.A490
 paging-dn 48
 type 7960
 no dnd feature-ring
 no auto-line
 button 1f43 2f44 3f45 4:31

Step 2 Use the show telephony-service ephone-dn and show telephony-service ephone commands to display only the configuration information for ephone-dns and ephones.

Configuration Examples for Paging

Example for Configuring Simple Paging Group

The following example sets up an ephone-dn for multicast paging. This example creates a paging number for 5001 on ephone-dn 22 and adds ephone 4 as a member of the paging set. Multicast is set for the paging-dn.

ephone-dn 22
 name Paging Shipping
 number 5001
 paging ip 239.1.1.10 port 2000

ephone 4
 mac-address 0030.94c3.8724
 button 1:1 2:2
 paging-dn 22 multicast

In this example, paging calls to 2000 are multicast to Cisco Unified IP phones 1 and 2, and paging calls to 2001 go to Cisco Unified IP phones 3 and 4. Note that the paging ephone-dns (20 and 21) are not assigned to any phone buttons.

ephone-dn 20
 number 2000
 paging ip 239.0.1.20 port 2000

ephone-dn 21
 number 2001
 paging ip 239.0.1.21 port 2000

ephone 1
 mac-address 3662.024.6ae2
 button 1:1
Example for Configuring Combined Paging Groups

This example sets the following paging behavior:

- When extension 2000 is dialed, a page is sent to ephones 1 and 2 (single paging group).
- When extension 2001 is dialed, a page is sent to ephones 3 and 4 (single paging group).
- When extension 2002 is dialed, a page is sent to ephones 1, 2, 3, 4, and 5 (combined paging group).

Ephones 1 and 2 are included in paging ephone-dn 22 through the membership of ephone-dn 20 in the combined paging group. Ephones 3 and 4 are included in paging ephone-dn 22 through membership of ephone-dn 21 in the combined paging group. Ephone 5 is directly subscribed to paging-dn 22.
Example for Configuring a Combined Paging Group of Cisco Unified SIP IP Phones and Cisco Unified SCCP IP Phones

The following example shows how to configure a combined paging group composed of Cisco Unified SIP IP phones and Cisco Unified SCCP IP phones.

In the following configuration tasks, paging sets 20 and 21 are defined and then combined into paging group 22. Paging set 20 has a paging extension of 2000. When someone dials extension 2000 to deliver a page, the page is sent to Cisco Unified SCCP IP phones (ephones) 1 and 2. Paging set 21 has a paging extension of 2001. When someone dials extension 2001 to deliver a page, the page is sent to ephones 3 and 4. Paging group 22 combines sets 20 and 21, and when someone dials its paging extension, 2002, the page is sent to all the phones in both sets and to ephone 5, which is directly subscribed to the combined paging group.

ephone-dn 20
 number 2000
 paging ip 239.0.1.20 port 2000

ephone-dn 21
 number 2001
 paging ip 239.0.1.21 port 2000

ephone-dn 22
 number 2002
 paging ip 239.0.2.22 port 2000
 paging group 20,21
The following configuration tasks show how to configure a combined paging group composed of Cisco Unified SCCP IP phone directory numbers only.

When extension 2000 is dialed, a page is sent to ephones 1 and 2 (first single paging group). When extension 2001 is dialed, a page is sent to ephones 3 and 4 (second single paging group). Finally, when extension 2002 is dialed, a page is sent to ephones 1, 2, 3, 4, and 5, producing the combined paging group (composed of the first single paging group, the second single paging group, and ephone 5).

Ephones 1 and 2 are included in paging ephone-dn 22 through the membership of ephone-dn 20 as paging group 20 in the combined paging group. Ephones 3 and 4 are included in paging ephone-dn 22 through membership of ephone-dn 21 as paging group 21 in the combined paging group. Ephone 5 is directly subscribed to paging-dn 22.

```plaintext
ephone-dn 20
   number 2000
   paging ip 239.0.1.20 port 20480

ephone-dn 22
   number 2002
   paging ip 239.1.1.22 port 20480
   paging group 20,21

ephone-dn 6
   number 1103

ephone-dn 7
   number 1104

ephone-dn 8
   number 1105

ephone-dn 9
   number 1199

ephone-dn 10
   number 1198

ephone 1
   mac-address 1234.8903.2941
   button 1:6
   paging-dn 20

ephone 2
```
In the following configuration tasks, the paging group command is used to configure combined paging groups composed of ephone and voice register directory numbers.

When extension 2000 is dialed, a page is sent to ephones 1 and 2 and voice register pools 1 and 2 (new first single paging group). When extension 2001 is dialed, a page is sent to ephones 3 and 4 and voice register pools 3 and 4 (new second single paging group). Finally, when extension 2002 is dialed, a page is sent to ephones 1, 2, 3, 4, and 5 and voice register pools 1, 2, 3, 4, and 5 (new combined paging group). Ephones 1 and 2 and voice register pools 1 and 2 are included in paging ephone-dn 22 through the membership of ephone-dn 20 as paging group 20 in the combined paging group. Ephones 3 and 4 and voice register pools 3 and 4 are included in paging ephone-dn 22 through membership of ephone-dn 21 as paging group 21 in the combined paging group. Ephone 5 and voice register pool 5 are directly subscribed to paging-dn 22.
Where to Go Next

Intercom

The intercom feature is similar to paging because it allows a phone user to deliver an audio message to a phone without the called party having to answer. The intercom feature is different than paging because the audio path between the caller and the called party is a dedicated audio path and because the called party can respond to the caller. See Intercom Lines, on page 757.

Speed Dial

Phone users who make frequent pages may want to include the paging ephone-dn numbers in their list of speed-dial numbers. See Speed Dial, on page 935.

Feature Information for Paging

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 74: Feature Information for Paging

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paging</td>
<td>2.0</td>
<td>Paging was introduced.</td>
</tr>
<tr>
<td>Paging Group Support for Cisco Unified SIP IP Phones</td>
<td>9.0</td>
<td>Allows you to specify a paging-dn tag and dial the paging extension number to page the Cisco Unified SIP IP phone associated with the paging-dn tag or paging group using the paging-dn command in voice register pool or voice register template configuration mode.</td>
</tr>
</tbody>
</table>
Presence Service

• Prerequisites for Presence Service, on page 849
• Restrictions for Presence Service, on page 849
• Information About Presence Service, on page 849
• Configure Presence Service, on page 853
• Configuration Examples for Presence Service, on page 866
• Feature Information for Presence Service, on page 870

Prerequisites for Presence Service

• Cisco Unified CME 4.1 or a later version.

Restrictions for Presence Service

• Presence features such as Busy Lamp Field (BLF) notification are supported for SIP trunks only; these features are not supported on H.323 trunks.

• Presence requires that SIP phones are configured with a directory number (using dn keyword in number command); direct line numbers are not supported.

Information About Presence Service

Presence Service

A presence service, as defined in RFC 2778 and RFC 2779, is a system for finding, retrieving, and distributing presence information from a source, called a presence entity (presentity), to an interested party called a watcher. When you configure presence in a Cisco Unified CME system with a SIP WAN connection, a phone user, or watcher, can monitor the real-time status of another user at a directory number, the presentity. Presence enables the calling party to know before dialing whether the called party is available. For example, a directory application may show that a user is busy, saving the caller the time and inconvenience of not being able to reach someone.
Presence uses SIP SUBSCRIBE and NOTIFY methods to allow users and applications to subscribe to changes in the line status of phones in a Cisco Unified CME system. Phones act as watchers and a presentity is identified by a directory number on a phone. Watchers initiate presence requests (SUBSCRIBE messages) to obtain the line status of a presentity. Cisco Unified CME responds with the presentity’s status. Each time a status changes for a presentity, all watchers of this presentity are sent a notification message. SIP phones and trunks use SIP messages; SCCP phones use presence primitives in SCCP messages.

Presence supports Busy Lamp Field (BLF) notification features for speed-dial buttons and directory call lists for missed calls, placed calls, and received calls. SIP and SCCP phones that support the BLF speed-dial and BLF call-list features can subscribe to status change notification for internal and external directory numbers. Figure 36: BLF Notification Using Presence shows a Cisco Unified CME system supporting BLF notification for internal and external directory numbers. If the watcher and the presentity are not both internal to the Cisco Unified CME router, the subscribe message is handled by a presence proxy server.

![Figure 36: BLF Notification Using Presence](image)

The following line states display through BLF indicators on the phone:

- **Line is idle**—Displays when this line is not being used.
- **Line is in-use**—Displays when the line is in the ringing state and when a user is on the line, whether or not this line can accept a new call.
- **BLF indicator unknown**—Phone is unregistered or this line is not allowed to be watched.

Cisco Unified CME acts as a presence agent for internal lines (both SIP and SCCP) and as a presence server for external watchers connected through a SIP trunk, providing the following functionality:

- Processes SUBSCRIBE requests from internal lines to internal lines. Notifies internal subscribers of any status change.
- Processes incoming SUBSCRIBE requests from a SIP trunk for internal SCCP and SIP lines. Notifies external subscribers of any status change.
- Sends SUBSCRIBE requests to external presentities on behalf of internal lines. Relays status responses to internal lines.

Presence subscription requests from SIP trunks can be authenticated and authorized. Local subscription requests cannot be authenticated.
For configuration information, see Configure Presence Service.

BLF Monitoring of Ephone-DNs with DnD, Call Park, Paging, and Conferencing

In versions earlier than Cisco Unified CME 7.1, BLF monitoring does not provide notification of status changes when a monitored directory number becomes DND-enabled, and the Busy Lamp Field (BLF) indicators for directory numbers configured as call-park slots, paging numbers, or ad hoc or meet-me conference numbers display only the unknown line-status.

Cisco Unified CME 7.1 and later versions support idle, in-use, and unknown BLF status indicators for monitored ephone-dns configured as call-park slots, paging numbers, and ad hoc or meet-me conference numbers. This allows an administrator (watcher) to monitor a call-park slot to see if calls are parked and not yet retrieved, which paging number is available for paging, or which conference number is available for a conference.

An ephone-dn configured as a park-slot is not registered with any phone. In Cisco Unified CME 7.1 and later versions, if a monitored park-slot is idle, the BLF status shows idle on the watcher. If there is a call parked on the monitored park-slot, the BLF status indicates in-use. If the monitored park-slot is not enabled for BLF monitoring with the `allow watch` command, the BLF indicator for unknown status displays on the watcher.

An ephone-dn configured for paging or conferencing is also not registered with any phone. The indicators for the idle, in-use, and unknown BLF status are displayed for the monitored paging number and ad hoc or meet-me conference numbers, as with the call-park slots.

Cisco Unified CME 7.1 and later versions support the Do Not Disturb (DnD) BLF status indicator for ephone-dns in the DnD state. When a user presses the DnD softkey on an SCCP phone, all directory numbers assigned to the phone become DnD-enabled and a silent-ring is played for all calls to any directory number on the phone. If a monitored ephone-dn becomes DnD-enabled, the corresponding BLF speed-dial lamp (if available) on the watcher displays solid red with the DnD icon for both the idle and in-use BLF status.

The BLF status notification occurs if the monitored ephone-dn is:

- The primary directory number on only one SCCP phone
- A directory number that is not shared
- A shared directory number and all associated phones are DnD-enabled

No new configuration is required to support these enhancements. For information on configuring BLF monitoring of directory numbers, see Enable BLF Monitor for Speed-Dials and Call Lists Using SCCP Phones.

Table 75: Feature Comparison of Directory Number BLF Monitoring compares the different BLF monitoring features that can be configured in Cisco Unified CME.

<table>
<thead>
<tr>
<th>Monitor Mode (Button “m”)</th>
<th>Watch Mode (Button “w”)</th>
<th>BLF Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Operation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLF Monitoring

<table>
<thead>
<tr>
<th>Monitor Mode (Button “m”)</th>
<th>Watch Mode (Button “w”)</th>
<th>BLF Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCP phones only.</td>
<td>SCCP phones only.</td>
<td>SCCP and SIP phones.</td>
</tr>
<tr>
<td>Watches a single ephone-dn instance.</td>
<td>Watches all activity on the phone for which the designated ephone-dn is the primary extension.</td>
<td>Watches all ephone-dn instances with the same (primary) extension number. The BLF lamp is on if any instance of the monitored extension is in use.</td>
</tr>
<tr>
<td>If there are multiple ephone-dns with the same extension (such as in an overlay), this mode watches only a single ephone-dn (specified with the button command using m keyword).</td>
<td>(The ephone-dn is “primary” for a phone if the extension appears on button 1 or on the button indicated by the auto-line command.)</td>
<td>Indicates DND state of the phone.</td>
</tr>
<tr>
<td>Does not indicate DND state of the phone.</td>
<td>Ephone-dn can be shared but cannot be the primary extension on any other phone.</td>
<td>Note BLF monitoring is supported only if the presence entity (presentity) is an SCCP phone. If you enable DND on a SIP phone, LED doesn’t glow. Hence, the phone user or administrator (watcher) isn’t notified.</td>
</tr>
</tbody>
</table>

Shared Lines

Can not distinguish which phone is using the ephone-dn if the DN is shared across multiple phones. Designed for cases where ephone-dns are shared across multiple phones. Cannot distinguish which phone is using the ephone-dn, if the DN is shared across multiple phones.

Each phone must have a unique primary ephone-dn. Used to indicate that a specific phone is in use as opposed (button m) to indicating that a specific ephone-dn is in use.

Local vs. Remote

Monitors only DNs on the local Cisco Unified CME system. Can only monitor DNs that are on the local Cisco Unified CME system. Can monitor extension numbers on a remote Cisco Unified CME using SIP Subscribe and Notify. Cannot monitor local and remote at the same time.

Device-Based BLF Monitoring

Device-based BLF monitoring provides a phone user or administrator (watcher) information about the status of a monitored phone (presentity). Cisco Unified CME 4.1 and later versions support BLF monitoring of directory numbers associated with speed-dial buttons, call logs, and directory listings. Cisco Unified CME 7.1 and later versions support device-based BLF monitoring, allowing a watcher to monitor the status of a phone, not only a line on the phone.
To identify the phone being monitored for BLF status, Cisco Unified CME selects the phone with the monitored directory number assigned to the first button, or the directory number whose button is selected by the `auto-line` command (SCCP only). If more than one phone uses the same number as its primary directory number, the phone with the lowest phone tag is monitored for BLF status.

For Extension Mobility phones, the first number configured in the user profile indicates the primary directory number of the Extension Mobility phone. If the Extension Mobility phone is being monitored, the BLF status of the corresponding phone is sent to the watcher when an extension-mobility user logs in or out, is idle, or busy.

If a shared directory number is busy on a monitored SCCP phone, and the monitored device is on-hook, the monitored phone is considered idle.

When a monitored phone receives a page, if the paging directory number is also monitored, the BLF status of the paging directory number shows busy on the watcher.

If device-based monitoring is enabled on a directory number configured as a call-park slot, and there is a call parked on this park-slot, the device-based BLF status indicates busy.

All directory numbers associated with a phone are in the DnD state when the DnD softkey is pressed. If a monitored phone becomes DnD-enabled, watchers are notified of the DnD status change.

For configuration information, see Enable BLF Monitor for Speed-Dials and Call Lists Using SCCP Phones or Enable BLF Monitoring for Speed-Dials and Call Lists on SIP Phones.

Phone User Interface for BLF-Speed-Dial

Cisco Unified CME 8.5 and later versions allows the extension mobility (EM) users to configure dn-based Busy Lamp Field (BLF)-speed-dial settings directly on the phone through the services feature button. BLF-speed-dial settings are added or modified (changed or deleted) on the phone using a menu available with the Services button. Any changes to the BLF-speed-dial settings made through the phone user interface are applied to the user's profile in extension mobility. You can configure the BLF-speed-dial menu for SCCP phones using the `blf-speed-dial` command in ephone or ephone-template mode. For more information, see Enable BLF-Speed-Dial Menu.

For information on how phone users configure BLF-speed-dial using the phone user-interface, see the Cisco Unified IP Phone documentation for Cisco Unified CME.

For phones that do not have EM feature, the BLF-speed-dial service is available in service url page. You can disable the BLF-speed-dial feature using the `no phone-ui blf-speed-dial` command on phones that do not have Extension Mobility.

Configure Presence Service

Enable Presence for Internal Lines

Perform the following steps to enable the router to accept incoming presence requests from internal watchers and SIP trunks.
The command `presence call-list` is an optional configuration, and it is not required to enable Presence on Unified CME. To enable a phone to monitor the line status of directory numbers or call list, such as a missed calls, placed calls, or received calls list, you can configure `presence call-list`.

Note

- A presentity can be identified by a directory number only.
- BLF monitoring indicates the line status only.
- Instant Messaging is not supported.

Restriction

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `sip-ua`
4. `presence enable`
5. `exit`
6. `presence`
7. `max-subscription number`
8. `presence call-list`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>sip-ua</code></td>
<td>Enters SIP user-agent configuration mode to configure the user agent.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# sip-ua</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>presence enable</code></td>
<td>Allows the router to accept incoming presence requests.</td>
</tr>
<tr>
<td>Example: <code>Router(config-sip-ua)# presence enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>exit</code></td>
<td>Exits SIP user-agent configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-sip-ua)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-sip-ua)# exit</td>
<td>Enables presence service and enters presence configuration mode.</td>
</tr>
</tbody>
</table>

Step 6 presence

Example:

Router(config)# presence

Step 7 max-subscription number

Example:

Router(config-presence)# max-subscription 128

(Optional) Sets the maximum number of concurrent watch sessions that are allowed.

- **number**—Maximum watch sessions. Range: 100 to the maximum number of directory numbers supported on the router platform. Type ? to display range. Default: 100.

Step 8 presence call-list

Example:

Router(config-presence)# presence call-list

(Optional) Globally enables BLF monitoring for directory numbers in call lists and directories on all locally registered phones.

- Only directory numbers that you enable for watching with the allow watch command display BLF status indicators.
- This command enables the BLF call-list feature globally. To enable the feature for a specific phone, see Enable BLF Monitor for Speed-Dials and Call Lists Using SCCP Phones.

Step 9 end

Example:

Router(config-presence)# end

Exits to privileged EXEC mode.

Enable a Directory Number to be Watched

To enable a line associated with a directory number to be monitored by a phone registered to a Cisco Unified CME router, perform the following steps. The line is enabled as a presentity and phones can subscribe to its line status through the BLF call-list and BLF speed-dial features. There is no restriction on the type of phone that can have its lines monitored; any line on any IP phone or on an analog phone on supported voice gateways can be a presentity.

- **Restriction**
 - A presentity is identified by a directory number only.
 - BLF monitoring indicates the line status only.

SUMMARY STEPS

1. enable
Enable a Directory Number to be Watched

2. **configure terminal**
3. **ephone-dn dn-tag [dual-line]** or **voice register dn dn-tag**
4. **number number**
5. **allow watch**
6. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag [dual-line] or voice register dn dn-tag</td>
<td>Enters the configuration mode to define a directory number for an IP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
</tbody>
</table>
| **Example:** | Router(config)# ephone-dn 1
 or
 Router(config)# voice register dn 1 | • **dn-tag**—identifies a particular directory number during configuration tasks. Range is 1 to the maximum number of directory numbers allowed on the router platform, or the maximum defined by the **max-dn** command. Type ? to display range. |
| **Step 4** | **number number** | Associates a phone number with a directory number to be assigned to an IP phone in Cisco Unified CME. |
| **Example:** | Router(config-ephone-dn)# number 3001
 or
 Router(config-register-dn)# number 3001 | • **number**—String of up to 16 characters that represents an E.164 telephone number. |
| **Step 5** | **allow watch** | Allows the phone line associated with this directory number to be monitored by a watcher in a presence service. |
| **Example:** | Router(config-ephone-dn)# allow watch
 or
 Router(config-register-dn)# allow watch | • This command can also be configured in ephone-dn template configuration mode and applied to one or more phones. The ephone-dn configuration has priority over the ephone-dn template configuration. |
| **Step 6** | **end** | Exits to privileged EXEC mode. |
| **Example:** | Router(config-ephone-dn)# end
 or
 Router(config-register-dn)# end | |
Enable BLF Monitor for Speed-Dials and Call Lists Using SCCP Phones

A watcher can monitor the status of lines associated with internal and external directory numbers (presentities) through the BLF speed-dial and BLF call-list presence features. To enable the BLF notification features on an IP phone using SCCP, perform the following steps.

Restriction

- Device-based BLF monitoring for call lists is not supported.
- Device-based BLF-speed-dial monitoring is not supported for a remote watcher or presentity.

BLF Call-List

- Not supported on Cisco Unified IP Phone 7905, 7906, 7911, 7912, 7931, 7940, 7960, or 7985, Cisco Unified IP Phone Expansion Modules, or Cisco Unified IP Conference Stations.

BLF Speed-Dial

- Not supported on Cisco Unified IP Phone 7905, 7906, 7911, 7912, or 7985, or Cisco Unified IP Conference Stations.

Cisco Unified IP Phone 7931

- BLF status is displayed through monitor lamp only; BLF status icons are not displayed.

Before you begin

- Presence must be enabled on the Cisco Unified CME router. See Enable Presence for Internal Lines.
- A directory number must be enabled as a presentity with the `allow watch` command to provide BLF status notification. See Enable a Directory Number to be Watched.
- Device-based monitoring requires Cisco Unified CME 7.1 or a later version. All directory numbers associated with the monitored phone must be configured with the `allow watch` command. Otherwise, if any of the directory numbers is missing this configuration, an incorrect status could be reported to the watcher.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `button button-number {separator} dn-tag [{dn-tag}...] [button-number {x} overlay-button-number] [button-number...]`
5. `blf-speed-dial tag number label string [device]`
6. `presence call-list`
7. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
`configure terminal`	
Example:	
`Router# configure terminal`	

Step 3	Enters ephone configuration mode to set phone-specific parameters for a SIP phone.
`ephone phone-tag`	- `phone-tag`—Unique sequence number of the phone to be configured. Range is version and platform-dependent; type `?` to display range. You can modify the upper limit for this argument with the `max-ephones` command.
Example:	
`Router(config)# ephone 1`	

| **Step 4** | Associates a button number and line characteristics with a directory number on the phone. |
| `button button-number {separator} dn-tag [...] [button-number {x} overlay-button-number] [button-number...]` | - `button-number`—Number of a line button on an IP phone. |
| - `separator`—Single character that denotes the type of characteristics to be associated with the button. |
| - `dn-tag`—Unique sequence number of the ephone-dn that you want to appear on this button. For overlay lines (separator is `o` or `c`), this argument can contain up to 25 ephone-dn tags, separated by commas. |
| - `x`—Separator that creates an overlay rollover button. |
| - `overlay-button-number`—Number of the overlay button that should overflow to this button. |
| Example: | |
| `Router(config-ephone)# button 1:10 2:11 3b12 4o13,14,15` | |

| **Step 5** | Enables BLF monitoring of a directory number associated with a speed-dial number on the phone. |
| `blf-speed-dial tag number label string [device]` | - `tag`—Number that identifies the speed-dial index. Range: 1 to 33. |
| - `number`—Telephone number to speed dial. |
| - `string`—Alphanumeric label that identifies the speed-dial button. String can contain a maximum of 30 characters. |
| - `device`—(Optional) Enables phone-based monitoring. This keyword is supported in Cisco Unified CME 7.1 and later versions. |
| Example: | |
| `Router(config-ephone)# blf-speed-dial 3 3001 label sales device` | |
Enable BLF Monitoring for Speed-Dials and Call Lists on SIP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 presence call-list</td>
<td>Enables BLF monitoring of directory numbers that appear in call lists and directories on this phone.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# presence call-list</td>
<td>• For a directory number to be monitored, it must have the allow watch command enabled.</td>
</tr>
<tr>
<td></td>
<td>• To enable BLF monitoring for call lists on all phones in this Cisco Unified CME system, use this command in presence mode. See Enable Presence for Internal Lines, on page 853.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example
The following example shows that the directory numbers for extensions 2001 and 2003 are allowed to be watched and the BLF status of these numbers display on phone 1.

ephone-dn 201
number 2001
allow watch
!
!
ephone-dn 203
number 2003
allow watch
!
!
ephone 1
mac-address 0012.7F54.EDC6
blf-speed-dial 2 201 label "sales" device
blf-speed-dial 3 203 label "service" device
button 1:100 2:101 3b102

What to do next
If you are done modifying parameters for SCCP phones in Cisco Unified CME, generate a new configuration profile by using the create cnf-files command and then restart the phones with the restart command. See Generate Configuration Files for SCCP Phones and Use the restart Command on SCCP Phones.

Enable BLF Monitoring for Speed-Dials and Call Lists on SIP Phones

A watcher can monitor the status of lines associated with internal and external directory numbers (presentities) through the BLF speed-dial and BLF call-list presence features. To enable the BLF notification features on a SIP phone, perform the following steps.
Enable BLF Monitoring for Speed-Dials and Call Lists on SIP Phones

Restriction

- Device-based BLF-speed-dial monitoring is not supported for a remote watcher or presentity.
- TCP based, device-based BLF-speed-dial monitoring is not supported on Unified CME.

BLF Call-List

- Not supported on Cisco Unified IP Phone 7905, 7906, 7911, 7912, 7931, 7940, 7960, or 7985, Cisco Unified IP Phone Expansion Modules, or Cisco Unified IP Conference Stations.

BLF Speed-Dial

- Not supported on Cisco Unified IP Phone 7905, 7906, 7911, 7912, or 7985, or Cisco Unified IP Conference Stations.

Before you begin

- Presence must be enabled on the Cisco Unified CME router. See Enable Presence for Internal Lines.
- A directory number must be enabled as a presentity with the allow watch command to provide BLF status notification. See Enable a Directory Number to be Watched.
- SIP phones must be configured with a directory number under voice register pool configuration mode (use dn keyword in number command); direct line numbers are not supported.
- Device-based monitoring requires Cisco Unified CME 7.1 or a later version. All directory numbers associated with the monitored phone must be configured with the allow watch command. Otherwise, if any of the directory numbers is missing this configuration, an incorrect status could be reported to the watcher.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag
4. number tag dn dn-tag
5. blf-speed-dial tag number label string [device]
6. presence call-list
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Room> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.</td>
</tr>
</tbody>
</table>
| **Step 3** voice register pool *pool-tag*
Example: Router(config)# voice register pool 1 | **Pool-tag**—Unique sequence number of the SIP phone to be configured. Range is version and platform-dependent; type `?` to display range. You can modify the upper limit for this argument with the `max-pool` command. |
| **Step 4** number *tag* dn *dn-tag*
Example: Router(config-register-pool)# number 1 dn 2 | Assigns a directory number to the SIP phone. |
| **Step 5** blf-speed-dial *tag* number *label* string [*device*]
Example: Router(config-register-pool)# blf-speed-dial 3 3001 label sales device | Enables BLF monitoring of a directory number associated with a speed-dial number on the phone. |
| **Step 6** presence call-list
Example: Router(config-register-pool)# presence call-list | Enables BLF monitoring of directory numbers that appear in call lists and directories on this phone. |
| **Step 7** end
Example: Router(config-register-pool)# end | Exits to privileged EXEC mode. |
What to do next

If you are done modifying parameters for SIP phones in Cisco Unified CME, generate a new configuration profile by using the `create profile` command and then restart the phones with the `restart` command. See Generate Configuration Profiles for SIP Phones and Use the `restart` Command on SIP Phones.

Enable BLF-Speed-Dial Menu

Restriction

- EM user cannot modify the logout profile from phone user interface (UI).
- Extension Mobility (EM) users must log into EM profile to update BLF-speed-dial number.

Before you begin

- Cisco Unified CME 8.5 or later versions.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `blf-speed-dial [index index number] [phone-number number] [label label text]`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code> Example: Router> enable</td>
<td>Enables privileged EXEC mode. - Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code> Example: Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 <code>ephone phone-tag</code> Example: Router(config)# ephone 10</td>
<td>Enters ephone configuration mode. - phone-tag—Unique number of the phone for which you want to configure BLF-speed-dial numbers.</td>
</tr>
<tr>
<td>Step 4 <code>blf-speed-dial [index index number] [phone-number number] [label label text]</code> Example: Router(config-ephone)#blf-speed-dial 1 2001 label "customer support"</td>
<td>Creates an entry for a BLF-speed-dial number on this phone. - BLF-speed-dial index—Unique identifier to identify this entry during configuration. Range is 1 to 75. - phone number—Telephone number or extension to be dialed.</td>
</tr>
</tbody>
</table>
Configure Presence to Watch External Lines

To enable internal watchers to monitor external directory numbers on a remote Cisco Unified CME router, perform the following steps.

Before you begin
Presence service must be enabled for internal lines. See Enable Presence for Internal Lines.

SUMMARY STEPS

1. enable
2. configure terminal
3. presence
4. server ip-address
5. allow subscribe
6. watcher all
7. sccp blf-speed-dial retry-interval seconds limit number
8. exit
9. voice register global
10. authenticate presence
11. authenticate credential tag location
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>presence</td>
<td>Enables presence service and enters presence configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# presence</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>4</td>
<td>server ip-address</td>
<td>Specifies the IP address of a presence server for sending presence requests from internal watchers to external presentities.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-presence)# server 10.10.10.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>allow subscribe</td>
<td>Allows internal watchers to monitor external directory numbers.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-presence)# allow subscribe</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>watcher all</td>
<td>Allows external watchers to monitor internal directory numbers.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-presence)# watcher all</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>sccp blf-speed-dial retry-interval seconds limit number</td>
<td>(Optional) Sets the retry timeout for BLF monitoring of speed-dial numbers on phones running SCCP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-presence)# sccp blf-speed-dial retry-interval 90 limit number 15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits presence configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-presence)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>voice register global</td>
<td>Enters voice register global configuration mode to set global parameters for all supported SIP phones in a Cisco Unified CME environment.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>authenticate presence</td>
<td>(Optional) Enables authentication of incoming presence requests from a remote presence server.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# authenticate presence</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>authenticate credential tag location</td>
<td>(Optional) Specifies the credential file to use for authenticating presence subscription requests.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# authenticate credential 1 flash:cred1.csv</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verify Presence Configuration

Step 1 show running-config

Use this command to verify your configuration.

```
Router# show running-config
!
voice register global
   mode cme
   source-address 10.1.1.2 port 5060
load 7971 SIP70.8-0-1-11S
load 7970 SIP70.8-0-1-11S
load 7961GE SIP41.8-0-1-0DEV
load 7961 SIP41.8-0-1-0DEV
authenticate presence
   authenticate credential 1 tftp://172.18.207.15/labtest/cred1.csv
create profile sync 0004550081249644
.
.
.
presence
   server 10.1.1.4
   sccp blf-speed-dial retry-interval 70 limit 20
presence call-list
   max-subscription 128
   watcher all
   allow subscribe
!
sip-ua
   presence enable
```

Step 2 show presence global

Use this command to display presence configuration settings.

```
Router# show presence global
Presence Global Configuration Information:
---------------------------------------------
Presence feature enable : TRUE
Presence allow external watchers : FALSE
Presence max subscription allowed : 100
Presence number of subscriptions : 0
Presence allow external subscribe : FALSE
Presence call list enable : TRUE
Presence server IP address : 0.0.0.0
Presence sccp blfsd retry interval : 60
Presence sccp blfsd retry limit : 10
Presence router mode : CME mode
```

Step 3 show presence subscription [details | presentity telephone-number | subid subscription-id summary]

Use this command to display information about active presence subscriptions.

```
Router# show presence subscription summary
Presence Active Subscription Records Summary: 15 subscription
Watcher  Presentity  SubID Expires SibID  Status
```
Troubleshooting Presence Service

You can use the following commands to troubleshoot presence service:

- **debug presence**
 (all | asnl | errors | event | info | timer | trace | xml)

- **debug ephone blf**
 [mac-address mac-address]

Configuration Examples for Presence Service

Example for Configuring Presence in Cisco Unified CME

```bash
Router# show running-config

Building configuration...

Current configuration : 5465 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname CME-3825
!
boot-start-marker
boot-end-marker
!
logging buffered 200000 debugging
enable password lab
!
no aaa new-model
!
resource policy
!
no network-clock-participate slot 1
no network-clock-participate slot 2
```
ip cef
!
!
no ip domain lookup
!
voice-card 1
no dspfarm
!
voice-card 2
no dspfarm
!
!
voice service voip
allow-connections sip sip
h323
sip
registrar server expires max 240 min 60
!
voice register global
mode cme
source-address 11.1.1.2 port 5060
load 7971 SIP70.8-0-1-1IS
load 7970 SIP70.8-0-1-1IS
load 7961GE SIP41.8-0-1-0DEV
load 7961 SIP41.8-0-1-0DEV
authenticate presence
authenticate credential 1 tftp://172.18.207.15/labtest/cred1.csv
create profile sync 0004550081249644
!
voice register dn 1
number 2101
allow watch
!
voice register dn 2
number 2102
allow watch
!
voice register pool 1
id mac 0015.6247.EF90
type 7971
number 1 dn 1
blf-speed-dial 1 1001 label "1001"
!
voice register pool 2
id mac 0012.0007.8D82
type 7912
number 1 dn 2

interface GigabitEthernet0/0
description "$ETH-LAN$ETH-SW-LAUNCH$INTF-INFO-GE 0/0$"
ip address 11.1.1.2 255.255.255.0
duplex full
speed 100
media-type rj45
no negotiation auto
!
interface GigabitEthernet0/1
no ip address
shutdown
duplex auto
speed auto
media-type rj45
negotiation auto
!
ip route 0.0.0.0 0.0.0.0 11.1.1.1
!
ip http server
!
!
tftp-server flash:Jar41sccp.8-0-0-103dev.sbn
tftp-server flash:cvm41sccp.8-0-0-102dev.sbn
tftp-server flash:SCCP41.8-0-1-0DEV.loads
tftp-server flash:P00303010102.bin
tftp-server flash:P00308000100.bin
tftp-server flash:P00308000100.loads
tftp-server flash:P00308000100.sbn2
tftp-server flash:P00308000100.sbn
tftp-server flash:SIP41.8-0-1-0DEV.loads
tftp-server flash:apps41.1-1-0-82dev.sbn
tftp-server flash:cnv41.3-0-1-82dev.sbn
tftp-server flash:cvm41sip.8-0-0-103dev.sbn
tftp-server flash:dspl41.1-1-0-82dev.sbn
tftp-server flash:Jar41sip.8-0-0-103dev.sbn
tftp-server flash:P003-08-1-00.bin
tftp-server flash:P003-08-1-00.sbn
tftp-server flash:P003-08-1-00.loads
tftp-server flash:P003-08-1-00.sbn2
tftp-server flash:CP9120800006IP60111A.sbin
tftp-server flash:CP9120800011SCCP051117A.sbin
tftp-server flash:SCCP70.8-0-1-11S.loads
tftp-server flash:cvm70sccp.8-0-1-13.sbn
tftp-server flash:jar70sccp.8-0-1-13.sbn
tftp-server flash:SIP70.8-0-1-11S.loads
tftp-server flash:apps70.1-1-1-11.sbn
tftp-server flash:cnv70.3-1-1-11.sbn
tftp-server flash:cvm70sip.8-0-1-13.sbn
tftp-server flash:dspl70.1-1-1-11.sbn
tftp-server flash:jar70sip.8-0-1-13.sbn
!
control-plane
!
dial-peer voice 2001 voip
preference 2
destination-pattern 1...
session protocol sipv2
session target ipv4:11.1.1.4
dtmf-relay sip-notify
!
presence
server 11.1.1.4
scmp b1f-speed-dial retry-interval 70 limit 20
presence call-list
max-subscription 128
watcher all
allow subscribe
!
sip-ua
authentication username jack password 021201481F
presence enable
!
!
telephony-service
load 7960-7940 P00308000100
load 7941GE SCCP41.8-0-1-0DEV
load 7941 SCCP41.8-0-1-0DEV
load 7961GE SCCP41.8-0-1-0DEV
load 7961 SCCP41.8-0-1-0DEV
load 7971 SCCP70.8-0-1-11S
load 7970 SCCP70.8-0-1-11S
load 7912 CP7912080000SIP060111A.sbin
max-ephones 100
max-dn 300
ip source-address 11.1.1.2 port 2000
url directories http://11.1.1.2/localdirectory
max-conferences 6 gain -6
call-forward pattern .T
transfer-system full-consult
transfer-pattern .T
create cnf-files version-stamp Jan 01 2002 00:00:00
!
ephone-dn 1 dual-line
number 2001
allow watch
!
ephone-dn 2 dual-line
number 2009
allow watch
application default
!
ephone-dn 3
number 2005
allow watch
!
ephone-dn 4 dual-line
number 2002
!
ephone 1
mac-address 0012.7F57.62A5
fastdial 1 1002
blf-speed-dial 1 2101 label "2101"
blf-speed-dial 2 1003 label "1003"
blf-speed-dial 3 2002 label "2002"
type 7960
button 1:1 2:2
!
ephone 3
mac-address 0015.6247.EF91
blf-speed-dial 2 1003 label "1003"
type 7971
button 1:3 2:4
!
line con 0
exec-timeout 0 0
password lab
stopbits 1
line aux 0
stopbits 1
line vty 0 4
password lab
login
!
scheduler allocate 20000 1000
Feature Information for Presence Service

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 76: Feature Information for Presence Service

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone User Interface for BLF-Speed-Dial</td>
<td>8.5</td>
<td>Added support for BLF Speed Dial through Phone User Interface.</td>
</tr>
<tr>
<td>BLF Monitoring</td>
<td>7.1</td>
<td>• Added support for device-based BLF monitoring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added support for BLF Monitoring of ephone-DNs with DnD, Call Park, Paging, and Conferencing</td>
</tr>
<tr>
<td>Presence Service</td>
<td>4.1</td>
<td>Presence with BLF was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 32

Ringtones

- Information About Ringtones, on page 871
- Configure Ringtones, on page 872
- Configuration Examples for Ringtones, on page 877
- Feature Information for Ringtones, on page 877

Information About Ringtones

Distinctive Ringing

Distinctive ring is used to identify internal and external incoming calls. An internal call is defined as a call originating from any Cisco Unified IP phone that is registered in Cisco Unified CME or is routed through the local FXS port.

In Cisco CME 3.4 and earlier versions, the standard ring pattern is generated for all calls to local SCCP endpoints. In Cisco Unified CME 4.0, the following distinctive ring features are supported for SCCP endpoints:

- Specify one of three ring patterns to be used for all types of incoming calls to a particular directory number, on all phones on which the directory number appears. If a phone is already in use, an incoming call is presented as a call-waiting call and uses a distinctive call-waiting beep.

- Specify whether the distinctive ring is used only if the incoming called number matches the primary or secondary number defined for the ephone-dn. If no secondary number is defined for the ephone-dn, the secondary ring option has no effect.

- Associate a feature ring pattern with a specific button on a phone so that different phones that share the same directory number can use a different ring style.

For local SIP endpoints, the type of ring sound requested is signaled to the phone using an alert-info signal. If distinctive ringing is enabled, Cisco Unified CME generates the alert-info for incoming calls from any phone that is not registered in Cisco Unified CME, to the local endpoint. Alert-info from an incoming leg can be relayed to an outgoing leg with the internally generated alert-info taking precedence.

Cisco Unified IP phones use the standard Telcordia Technologies distinctive ring types.
Customized Ringtones

Cisco Unified IP Phones have two default ring types: Chirp1 and Chirp2. Cisco Unified CME also supports customized ringtones using pulse code modulation (PCM) files.

An XML file called RingList.xml specifies the ringtone options available for the default ring on an IP phone registered to Cisco Unified CME. An XML file called DistinctiveRingList.xml specifies the ringtones available on each individual line appearance on an IP phone registered to Cisco Unified CME.

On-Hold Indicator

On-hold indicator is an optional feature that generates a ring burst on idle IP phones that have placed a call on hold. An option is available to generate call-waiting beeps for occupied phones that have placed calls on hold. This feature is disabled by default. For configuration information, see Configure On-Hold Indicator, on page 875.

LED color display for hold state, also known as I-Hold, is supported in Cisco Unified CME 4.0(2) and later versions. The I-Hold feature provides a visual indicator for distinguishing a local hold from a remote hold on shared lines on supported phones, such as the Cisco Unified IP Phone 7931G. This feature requires no additional configuration.

Configure Ringtones

Configure Distinctive Ringing

To set the ring pattern for all incoming calls to a directory number, perform the following steps.

Before you begin
Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag [dual-line]
4. number number [secondary number] [no-reg [both | primary]]
5. ring {external | internal | feature} [primary | secondary]
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Configure Customized Ringtones

To create a customized ringtone, perform the following steps.

Before you begin
Cisco Unified CME 4.0 or a later version.

Step 1
Create a PCM file for each customized ringtone (one ring per file). The PCM files must comply with the following format guidelines.

- Raw PCM (no header)
- 8000 samples per second
- 8 bits per sample
- mLaw compression
- Maximum ring size—16080 samples
- Minimum ring size—240 samples
- Number of samples in the ring must be evenly divisible by 240
- Ring should start and end at the zero crossing
Use an audio editing package that supports these file format requirements to create PCM files for customized phone rings. Sample ring files are in the ringtone.tar file at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.

Step 2

Edit the RingList.xml and DistinctiveRingList.xml files using a text editor. The RingList.xml and DistinctiveRingList.xml files contain a list of phone ring types. Each file shows the PCM file used for each ring type and the text that is displayed on the Ring Type menu on a Cisco Unified IP Phone for each ring. Sample XML files are in the ringtone.tar file at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.

The RingList.xml and DistinctiveRingList.xml files use the following format to specify customized rings:

```
<CiscoIPPhoneRingList>
  <Ring>
    <DisplayName/> <FileName/>
  </Ring>
</CiscoIPPhoneRingList>
```

The XML ring files use the following tag definitions:

- Ring files contain two fields, DisplayName and FileName, which are required for each phone ring type. Up to 50 rings can be listed.
- DisplayName defines the name of the customized ring for the associated PCM file that will be displayed on the Ring Type menu of the Cisco Unified IP Phone.
- FileName specifies the name of the PCM file for the customized ring to associate with DisplayName.
- The DisplayName and FileName fields can not exceed 25 characters.

The following sample RingList.xml file defines two phone ring types:

```
<CiscoIPPhoneRingList>
  <Ring>
    <DisplayName>Piano1</DisplayName>
    <FileName>Piano1.raw</FileName>
  </Ring>
  <Ring>
    <DisplayName>Chime</DisplayName>
    <FileName>Chime.raw</FileName>
  </Ring>
</CiscoIPPhoneRingList>
```

Step 3

Copy the PCM and XML files to system Flash on the Cisco Unified CME router. For example:

```
copy tftp://192.168.1.1/RingList.xml flash:
copy tftp://192.168.1.1/DistinctiveRingList.xml flash:
copy tftp://192.168.1.1/Piano1.raw flash:
copy tftp://192.168.1.1/Chime.raw flash:
```

Step 4

Use the `tftp-server` command to enable access to the files. For example:

```
tftp-server flash:RingList.xml
tftp-server flash:DistinctiveRingList.xml
tftp-server flash:Piano1.raw
tftp-server flash:Chime.raw
```
Step 5 Reboot the IP phones. After reboot, the IP phones download the XML and ringtone files. Select the customized ring by pressing the Settings button followed by the Ring Type menu option on a phone.

Configure On-Hold Indicator

The Call Hold feature is available by default. To define an audible indicator as a reminder that a call is waiting on hold, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag [dual-line]
4. hold-alert timeout {idle | originator | shared | shared-idle} [recurrence recurrence-timeout] [ring-silent-dn]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 20</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hold-alert timeout {idle</td>
<td>originator</td>
</tr>
<tr>
<td>Note</td>
<td>From the perspective of the originator of the call on hold, the originator and shared keywords provide the same functionality.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# hold-alert 15 idle recurrence 3</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>
Enable Distinctive Ringing on SIP Phones

To set the ring pattern for distinguishing between external and internal incoming calls, perform the following steps.

Restriction

Bellcore-dr1 to Bellcore-dr5 are the only Telcordia options that are supported for SIP phones.

Before you begin

Cisco Unified CME 3.4 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `external-ring {bellcore-dr1 | bellcore-dr2 | bellcore-dr3 | bellcore-dr4 | bellcore-dr5}`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>voice register global</code></td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# voice register global</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `external-ring {bellcore-dr1</td>
<td>bellcore-dr2</td>
</tr>
<tr>
<td>Example: <code>Router(config-register-global)# external-ring bellcore-dr3</code></td>
<td>• Default—Internal ring sound is used for all incoming calls.</td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-register-global)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Ringtones

Example for Configuring Distinctive Ringing for Internal Calls

The following example sets distinctive ringing for internal calls on extension 2333.

```plaintext
ephone-dn 34
  number 2333
  ring internal
```

Example for Configuring On-Hold Indicator

In the following example, extension 2555 is configured to not forward local calls that are internal to the Cisco Unified CME system. Extension 2222 dials extension 2555. If 2555 is busy, the caller hears a busy tone. If 2555 does not answer, the caller hears ringback. The internal call is not forwarded.

```plaintext
ephone-dn 25
  number 2555
  no forward local-calls
  call-forward busy 2244
  call-forward noan 2244 timeout 45
```

Feature Information for Ringtones

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinctive Ringing</td>
<td>4.0</td>
<td>Supports ringtone choices for all incoming calls to an individual directory number, for all SCCP phones on which the directory number appears.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Generate the alert-info for incoming calls from any phone that is not registered in Cisco Unified CME, to local SIP endpoints.</td>
</tr>
<tr>
<td>Customized Ringtones</td>
<td>4.0</td>
<td>Customized Ringtones feature was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>On-Hold Indicator</td>
<td>4.0(2)</td>
<td>Controls LED color display for hold state to provide visual indicator for distinguishing a local hold from a remote hold on shared lines on supported phones, such as the Cisco Unified IP Phone 7931G.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>Audible on-hold indicator was introduced.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Call Hold was introduced.</td>
</tr>
</tbody>
</table>
Single Number Reach

Information About Single Number Reach

Overview of Single Number Reach

The Single Number Reach (SNR) feature allows users to answer incoming calls to their extension on either their desktop IP phone or at a remote destination, such as a mobile phone. Users can pick up active calls on the desktop phone or the remote phone without losing the connection. This enables callers to dial a single number to reach the phone user. Calls that are not answered can be forwarded to voice mail.

Remote destinations may include the following devices:

- Mobile (cellular) phones.
- Smart phones.
- IP phones not belonging to the same Cisco Unified CME router as the desktop phone.
- Home phone numbers in the PSTN. Supported PSTN interfaces include PRI, BRI, SIP, and FXO.

For incoming calls to the SNR extension, Cisco Unified CME rings the desktop IP phone first. If the IP phone does not answer within the configured amount of time, it rings the configured remote number while continuing to ring the IP phone. Unanswered calls are sent to a configured voice-mail number.

The IP phone user has these options for handling calls to the SNR extension:

- Pull back the call from the remote phone—Phone user can manually pull back the call to the SNR extension by pressing the Resume softkey, which disconnects the call from the remote phone.
- Send the call to remote phone—Phone user can send the call to the remote phone by using the Mobility softkey. While connected to the call, the phone user can press the Mobility softkey and select Send call to mobile. The call is forwarded to the remote phone.
- Enable or disable Single Number Reach—While the IP phone is in the idle state, the user can toggle the SNR feature on and off by using the Mobility softkey. If the user disables SNR, Cisco Unified CME does not ring the remote number.
IP phone users can modify their own SNR settings directly from the phone by using the menu available with the Services feature button. You must enable the feature on the phone to allow a phone user to access the user interface.

This feature is supported in Cisco Unified CME 7.1 and later versions on SCCP IP phones that support softkeys.

SNR Enhancements

Cisco Unified CME 8.5 supports the following enhancements in the Single Number Reach (SNR) feature:

Hardware Conference

In Cisco Unified CME 8.5, you can send a call to a mobile phone after joining a hardware conference. After joining the hardware conference, all conference callers are blind-transferred to hardware DN. The call character of the ephone changes from incoming call to outgoing call and you are able to send a call to the mobile.

Call Park, Call Pickup, and Call Retrieval

In earlier versions of Cisco Unified CME, Call Park, Call Pickup, and Call Retrieval features were not supported for SNR. Cisco Unified CME 8.5 and later versions allows you to park, pickup, or retrieve an SNR call.

Cisco Unified CME 8.5 enhances the SNR feature to allow you to see the local number on your cell phone instead of the calling party number. You can configure the snr calling number local command under ephone-dn configuration mode to view the caller ID of the SNR phone. For information on configuring SNR calling number local, see Configure Single Number Reach Enhancements on SCCP Phones, on page 887.

Answer Too Soon Timer

On non-FXO ports, you can set an snr answer too soon timer to prevent the calls from rolling to the voice mailbox of your cell phone. When the cell phone rolls to the voice mail within the answer too soon timer range (1 to 5 seconds), the mobile phone call leg is immediately disconnected. You can configure the snr answer too soon command under ephone-dn mode. For more information, see Configure Single Number Reach Enhancements on SCCP Phones, on page 887. The answer-too soon timer is not applicable when sending the call to a mobile.

SNR Phone Stops Ringing After Mobile Phone Answers

When SNR is deployed on non-FXO ports, if cell phone picks up an SNR call, you are connected to the call. The ephone stops ringing further and is placed on hold. You can configure the snr ring-stop command under ephone-dn configuration mode to stop the ephone from ringing and to place the phone on hold. For more information, see Configure Single Number Reach Enhancements on SCCP Phones, on page 887.

Single Number Reach for Cisco Unified SIP IP Phones

Before Cisco Unified CME 9.0, the Single Number Reach (SNR) feature enabled the user to be reached on two numbers: a regular directory number (DN) on the ephone and a public switched telephone network (PSTN) connection (either a PRI/BRI/FXO port or a SIP interface). For incoming calls to the ephone, the Cisco Unified CME called the ephone DN first. When the ephone DN did not answer within a configured time, the Cisco Unified CME called a preconfigured PSTN number while continually calling the ephone DN.
In Cisco Unified CME 9.0 and later versions, the following SNR features are supported for Cisco Unified SIP IP phones:

- Enable and disable the Extension Mobility (EM) feature on a Cisco Unified SIP IP phone—Use the Mobility softkey or PLK as a toggle or use the `mobility` and `no mobility` commands to enable or disable the Mobility feature on a Cisco Unified SIP IP phone.

- Manual pull back of a call on a mobile phone—Use the Resume softkey to manually bring a call back to the SNR DN.

- Send a call to a mobile PSTN phone—Send a call to the mobile PSTN phone using the Mobility softkey while the Cisco Unified SIP IP phone is on a call. Select “Send call to mobile” and the call is handed off to the mobile phone.

- Send a call to a mobile phone regardless of whether the SNR phone is the originating or the terminating side—Ensure that the SNR feature is configured in voice register dn or ephone-dn configuration mode to send a call to a mobile phone regardless of whether the SNR phone is the originating or terminating side. Use the Mobility softkey, select “Send call to mobile,” and the call is handed off to the mobile phone.

For calls from a PSTN, local, or VoIP phone to a Cisco Unified SIP IP phone configured as an SNR phone, the Cisco Unified CME calls the SIP SNR or the mobile phone DN.

When you answer the call on the SIP SNR phone, you can send the call to the PSTN/BRI/PRI/SIP phone.

When you answer the call on the mobile phone, the Resume softkey is displayed on the SIP SNR phone and allows the call to be pulled back to the SIP SNR phone. You can repeatedly pull the call back from the PSTN phone to the SIP SNR phone or from the SIP SNR phone to the PSTN phone.

If the cfwd-noan keyword is configured and both the mobile and SIP SNR phones do not answer, the call is redirected to a preconfigured extension number when the end of a preconfigured time delay is reached.

The following shows how SNR phones configured with Cisco Unified SIP IP phones behave differently from those configured with Cisco Unified SCCP IP phones when sending a call to a mobile:

- For Cisco Unified SCCP IP phones, the Resume softkey is displayed on the SCCP SNR phone as soon as the call is sent to the mobile phone.

- For Cisco Unified SIP IP phones, the Resume softkey is displayed on the SIP SNR phone as soon as the mobile phone answers the call.

Note

When the Resume softkey is pressed, the call is returned to the SNR phone.

Cisco Unified CME 9.0 and later supports the SNR feature in Cisco Unified SIP 7906, 7911, 7941, 7942, 7945, 7961, 7962, 7965, 7970, 7971, 7975, 8961, 9951, and 9971 IP Phones.

Note

Single Number Reach (SNR) support through MyPhoneApps on Unified CME is available for SIP Phones on the Cisco IP Phones 7800 and 8800 Series.
Virtual SNR DN for Cisco Unified SCCP IP Phones

A virtual SNR DN is a DN not associated with any registered phone. It can be called, forwarded to a preconfigured mobile phone, or put on an Auto Hold state when the mobile phone answers the call or the time delay is reached. In the Auto Hold state, the DN can either be floating or unregistered. A floating DN is a DN not configured for any phone while an unregistered DN is one associated with phones not registered to a Cisco Unified CME system.

Before Cisco Unified CME 9.0, an SNR DN feature did not launch when the SNR DN was not associated with any registered phone. Although a call could be forwarded to the mobile phone using the `call-forward busy` command, the SNR DN had to be configured under a phone. Users who were assigned floating DNs could not forward calls unless they had a phone assigned to them.

In Cisco Unified CME 9.0 and later versions, an SNR DN is not required to be associated with a registered phone to have the SNR DN feature launched. A call can be made to a virtual SNR DN and the SNR feature can be launched even when the SNR DN is not associated with any phone. A call to a virtual SNR DN can be forwarded to an auto-attendant service when the preconfigured mobile phone is out of service and the voice mail can be retrieved using the telephone or extension number assigned to the voice mailbox.

Although the virtual SNR DN feature is designed for SNR DNs that are not associated with registered phones, this feature also supports virtual SNR DNs that complete phone registration or login and registered DNs that become virtual when all associated registered phones become unregistered.
Configure Single Number Reach

Configure Single Number Reach on SCCP Phones

Restriction

- Each IP phone supports only one SNR directory number.
- SNR feature is not supported for the following:
 - SCCP-controlled analog FXS phones
 - MLPP calls
 - Secure calls
 - Video calls
 - Hunt group directory numbers (voice or ephone)
 - MWI directory numbers
 - Trunk directory numbers
- An overlay set can support only one SNR directory number and that directory number must be the primary directory number.
- Call forward no answer (CFNA), configured with the call-forward noan command, is disabled if SNR is configured on the directory number. To forward unanswered calls to voice mail, use the cfwd-noan keyword in the snr command.
- Call forwarding of unanswered calls, configured with the cfwd-noan keyword in the snr command, is not supported for PSTN calls from FXO trunks because the calls connect immediately.
- Calls from an internal extension to an extension which is busy, is forwarded to the SNR destination even if no forward local-calls is configured under the Directory Number.
- Calls always remain private. If a call is answered on a remote phone, the desktop IP phone can not listen to the call unless it resumes the call.
- U.S. English is the only locale supported for SNR calls.

Before you begin

- Cisco Unified CME 7.1 or a later version
- Cisco IP Communicator requires version 2.1.4 or later

SUMMARY STEPS

1. enable
2. configure terminal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 10</td>
</tr>
<tr>
<td></td>
<td>Enters directory number configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>number number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# number 1001</td>
</tr>
<tr>
<td></td>
<td>Associates an extension number with this directory number.</td>
</tr>
<tr>
<td></td>
<td>• number—String of up to 16 digits that represents an extension or E.164 telephone number.</td>
</tr>
<tr>
<td>Step 5</td>
<td>mobility</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# mobility</td>
</tr>
<tr>
<td></td>
<td>Enables the Mobility feature on the directory number.</td>
</tr>
<tr>
<td>Step 6</td>
<td>snr e164-number delay seconds timeout seconds [cfwd-noan extension-number]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# snr 4085550133 delay 5 timeout 15 cfwd-noan 2001</td>
</tr>
<tr>
<td></td>
<td>Enables SNR on the extension.</td>
</tr>
<tr>
<td></td>
<td>• e164-number—E.164 telephone number to ring if IP phone extension does not answer.</td>
</tr>
<tr>
<td></td>
<td>• delay seconds—Sets the number of seconds that the call rings the IP phone before ringing the remote phone. Range is from 0 to 10. Default: disabled.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout seconds—Sets the number of seconds that the call rings after the configured delay. Call continues to ring for this length of time on the IP phone even if the remote phone answers the call. Range is from 5 to 60. Default: disabled.</td>
<td></td>
</tr>
<tr>
<td>cfwd-noan extension-number—(Optional) Forwards the call to this target number if the phone does not answer after both the delay and timeout seconds have expired. This is typically the voice-mail number.</td>
<td></td>
</tr>
</tbody>
</table>

Note The `cfwd-noan` option is not supported for calls from FXO trunks because the calls connect immediately.

Step 7

- **snr calling-number local**
 - **Example:**
    ```
    Router(config-ephone-dn)# snr calling-number local
    ```
 - (Optional) Replaces the original calling party number with the SNR extension number in the caller ID display of the remote phone.
 - This command is supported in Cisco Unified CME 8.0 and later versions.

Step 8

- **exit**
 - **Example:**
    ```
    Router(config-ephone-dn)# exit
    ```
 - Exits ephone-dn configuration mode.

Step 9

- **ephone-template template-tag**
 - **Example:**
    ```
    Router(config)# ephone-template
    ```
 - Enters ephone-template configuration mode to create an ephone template.
 - **template-tag**—Unique identifier for the ephone template that is being created. Range is from 1 to 20.

Step 10

- **softkeys connected**
 - **Example:**
    ```
    Router(config-ephone-template)# softkeys connected
eacct confnfrm endcall flash hlog hold join
    livechild mobility park rmstc select
    transfvm transfer
    ```
 - Modifies the order and type of softkeys that display on an IP phone during the connected call state.
 - Pressing the Mobility softkey during the connected call state forwards the call to the PSTN number defined in Step 6.

Step 11

- **softkeys idle**
 - **Example:**
    ```
    Router(config-ephone-template)# softkeys idle
cfwdall conflist dnd gpickup
    hlog join login mobility newcall
    pickup redial rmstc
    ```
 - Modifies the order and type of softkeys that display on an IP phone during the idle call state.
 - Pressing the Mobility softkey during the idle call state enables the SNR feature. This key is a toggle; pressing it a second time disables SNR.

Step 12

- **exit**
 - **Example:**
    ```
    Router(config-ephone-template)# exit
    ```
 - Exits ephone-template configuration mode.
Configure Single Number Reach on SCCP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 21</td>
<td>phone-tag—Unique number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>ephone-template template-tag</td>
<td>Applies the ephone template to the phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# ephone-template 1</td>
<td>template-tag—Unique identifier of the ephone template that you created in Step 12.</td>
</tr>
<tr>
<td>Step 15</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows extension 1001 is enabled for SNR on IP phone 21. After a call rings at this number for 5 seconds, the call also rings at the remote number 4085550133. The call continues ringing on both phones for 15 seconds. If the call is not answered after a total of 20 seconds, the call no longer rings and it is forwarded to the voice-mail number 2001.

```plaintext
ephone-template 1
  softkeys idle Dnd Gpickup Pickup Mobility
  softkeys connected Endcall Hold LiveRcd Mobility

 ephone-dn 10
  number 1001
  mobility
  snr 4085550133 delay 5 timeout 15 cfwd-noan 2001
  snr calling-number local

 ephone 21
  mac-address 02EA.EAEA.0001
  ephone-template 1
  button 1:10
```
Configure Single Number Reach Enhancements on SCCP Phones

Restriction

• Software Conference— After a software conference is initiated and committed on an ephone, you cannot send the call to a mobile phone. You can only enable or disable mobility after software conference is committed.

• SNR Call Pickup on FXO port— For a call routed through FXO port to the PSTN, the call is signaled as “connected” as soon as FXO port is seized outbound. The mobile phone is on FXO interface and the call (session) is in active state as soon as FXO is in connect state. The ephone will be in ringing state but you can not pick up the ephone call.

• Music on hold (MOH) is not supported if the SNR call originates from the line side. MOH is supported on an SNR call if the call originates from the trunk side.

Before you begin

Cisco Unified CME 8.5 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. number number [secondary number] [no-reg [both | primary]]
5. mobility
6. snr calling number local
7. snr answer too soon time
8. snr ring-stop
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag</td>
<td>Enters directory number configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# ephone-dn 10</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>number number [secondary number] [no-reg [both</td>
<td>primary]]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# number 1001</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mobility</td>
<td>Enables the Mobility feature on the directory number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# mobility</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>snr calling number local</td>
<td>Displays local number as calling number on your SNR mobile phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# snr calling-number local</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>snr answer too soon time</td>
<td>Enables a timer for answering the call on SNR mobile phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# snr answer-too-soon 4</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>snr ring-stop</td>
<td>Allows you to stop the IP phone from ringing after the SNR call is answered on a mobile phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# snr ring-stop</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
<td>Exits ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows SNR enhancements configured for ephone-dn 10:

```bash
Router#show running config
!
! telephony-service
dsdpfarm units 1
dsdpfarm tag 1 confprof1
cconference hardware
max-ephones 262
max-dn 720
ip source-address 172.19.153.114 port 2000
service phone thumbButton PTTH6
load 7906 SCCP11.8-5-3S.loads
load 7911 SCCP11.8-5-3S.loads
!
ephone-template 6
feature-button 1 Hold
!
! ephone-dn 10
mobility
```
Configure Single Number Reach on SIP Phones

Restriction

- Hardware Conferencing and Privacy on Hold for Cisco Unified SIP IP phones are not supported.
- Mixed shared lines between Cisco Unified SIP and SCCP IP phones are not supported.
- Subscribe and Notify modes for SIP shared lines are not supported.
- Incoming calls from the H323 IP trunk are not supported.
- Media flow around for SIP-SIP trunk calls is not supported.
- SIP SNR phones that initiate software conferencing are unable to send or receive calls to or from mobile phones because the Cisco Unified SIP IP phones are put on hold after a software conference is committed.

Before you begin
Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register template template-tag
4. softkeys idle \{ [Cfwdall] [DND] [Gpickup] [Newcall] [Pickup] [Redial] \}
5. softkeys connected \{ [Confrn] [Endcall] [Hold] [Park] [Trnsfer] [iDivert] \}
6. exit
7. voice register pool pool-tag
8. session-transport \{ tcp \}
9. exit
10. voice register dn dn-tag
11. number number
12. name name
13. mobility
14. snr calling-number local
15. snr e164-number delay seconds timeout seconds \{ cfwd-noan extension-number \}
16. snr ring-stop
17. snr answer-too-soon time
18. end
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>voice register template template-tag</code></td>
<td>Enters voice register template configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>template-tag—identifier for the template being created. Range: 1 to 10.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# voice register template 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>softkeys idle { [Cfwdall] [DND] [Gpickup] [Newcall] [Pickup] [Redial] }</code></td>
<td>Modifies the display of softkeys on Cisco Unified SIP IP phones during the idle call state.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-temp)# softkeys idle Redial Cfwdall</code></td>
<td>(Optional) Softkey for “call forward all.” Forwards all calls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that enables the Do-Not-Disturb feature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that allows a user to pickup a call that is ringing on another phone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that opens a line on a speakerphone to place a new call.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that allows a user to pickup a call that is ringing on another phone that is a member of the same pickup group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that redials the last number dialed.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>softkeys connected { [Confrn] [Endcall] [Hold] [Park] [Transfer] [iDivert] }</code></td>
<td>Modifies the display of softkeys on Cisco Unified SIP IP phones during the connected call state.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-temp)# softkeys connected Confrn Hold Endcall</code></td>
<td>(Optional) Softkey that connects callers to a conference call.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that ends the current call.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that places an active call on hold and resumes the call.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Softkey that places an active call on hold, so it can be retrieved from another phone in the system.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>• Transfer—(Optional) Softkey that transfers active calls to another extension.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• iDivert—(Optional) Softkey that immediately diverts a call to a voice-messaging system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits voice register template configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-temp)#</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register</td>
<td>pool 10</td>
<td></td>
</tr>
<tr>
<td>pool-tag</td>
<td>Note For Cisco Unified CME systems, the upper limit for this argument is defined by the max-pool command.</td>
<td></td>
</tr>
<tr>
<td>Step 8 session-transport { tcp}</td>
<td>Specifies the transport layer protocol that a Cisco Unified SIP IP phone uses to connect to Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)#</td>
<td>session-transport tcp</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits voice register pool configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-pool)#</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register</td>
<td>dn 3</td>
<td></td>
</tr>
<tr>
<td>Session task</td>
<td>Note—Unique sequence number that identifies a particular directory number during configuration tasks. Range is 1 to 150 or the maximum defined by the max-dn command.</td>
<td></td>
</tr>
<tr>
<td>Step 11 number number</td>
<td>Associates a telephone or extension number with a Cisco Unified SIP IP phone in a Cisco Unified CME system.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)#</td>
<td>number 1004</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>Note—String of up to 16 characters that represents an E.164 telephone number. Normally, the string is composed of digits, but the string may contain alphabetic characters when the number is dialed only by the router, as with an intercom number.</td>
<td></td>
</tr>
<tr>
<td>Step 12 name name</td>
<td>Associates a name with a directory number in Cisco Unified CME.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)#</td>
<td>name John Smith</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>Note—Name of the person associated with a given extension. Name must follow the order specified in the order command.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Enables the Mobility feature on an extension of a Cisco Unified SIP IP phone.</td>
<td></td>
</tr>
<tr>
<td>Example:
Router(config-register-dn)# mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Replaces the calling party number displayed on the configured mobile phone with the local SNR number.</td>
<td></td>
</tr>
<tr>
<td>Example:
Router(config-register-dn)# snr calling-number local</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Enables the SNR feature on an extension of a Cisco Unified SIP IP phone.</td>
<td></td>
</tr>
<tr>
<td>Example:
Router(config-register-dn)# snr e164-number delay 1 timeout 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>snr e164-number delay seconds timeout seconds [cfwd-noan extension-number]</td>
<td>- e164-number—E.164 telephone number to call when the Cisco Unified SIP IP phone extension does not answer.
- delay seconds—Sets the number of seconds that the Cisco Unified SIP IP phone rings when called. When the time delay is reached, the call is transferred to the PSTN phone and the SNR directory number. Range: 0 to 30. Default: 5.
- timeout seconds—Sets the number of seconds that the Cisco Unified SIP IP phone rings after the configured time delay. When the timeout value is reached, no call is displayed on the phone. You have to use the Resume softkey to pull back or the Mobility softkey to send the call to a mobile phone. Range: 30 to 60. Default: 60.
Note When the default is enabled, the Cisco Unified SIP IP phone continues to ring for 60 seconds even if the remote phone answers the call.
- cfwd-noan extension-number—(Optional) Forwards the call to the extension number when the phone does not answer after both the time delay and timeout values are reached. The extension number is typically the voice mail number.**
Note This option is not supported for calls from FXO trunks because the calls connect immediately.</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Ends the ringing on a Cisco Unified SIP IP phone after the SNR call is answered on the configured mobile phone.</td>
<td></td>
</tr>
<tr>
<td>Example:
Router(config-register-dn)# snr ring-stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 17 | snr answer-too-soon time | Sets the time in which SNR calls are prevented from being diverted to the voice mailbox of a mobile phone.
| | Example: | |
| | Router(config-register-dn)# snr answer-too-soon 2 | |
| 18 | end | Exits voice register dn configuration mode and enters privileged EXEC mode. |
| | Example: | |
| | Router(config-register-dn)# end | |

Configure a Virtual SNR DN on SCCP Phones

Restriction
- Virtual SNR DN only supports Cisco Unified SCCP IP phone DNs.
- Virtual SNR DN provides no mid-call support.

Mid-calls are either of the following:
- Calls that arrive before the DN is associated with a registered phone and is still present after the DN is associated with the phone.
- Calls that arrive for a registered DN that changes state from registered to virtual and back to registered.
- Mid-calls cannot be pulled back, answered, or terminated from the phone associated with the DN.
- State of the virtual DN transitions from ringing to hold or remains on hold as a registered DN.

Before you begin
Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. ephone-dn dn-tag
4. number number
5. mobility
6. snr mode [virtual]
7. snr e164-number delay seconds timeout seconds [cfwd-noan extension-number]
8. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>ephone-dn dn-tag</code></td>
<td>Enters ephone-dn configuration mode to configure a directory number for an IP phone line.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>dn-tag</code>—Unique number that identifies an ephone-dn during configuration tasks. Range is 1 to the number set by the <code>max-dn</code> command.</td>
</tr>
<tr>
<td><code>Router(config)# ephone-dn 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>number number</code></td>
<td>Associates a telephone or extension number with this ephone-dn.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>number</code>—String of up to 16 characters that represents an E.164 telephone number. Normally, the string is composed of digits, but the string may contain alphabetic characters when the number is dialed only by the router, as with an intercom number.</td>
</tr>
<tr>
<td><code>Router(config-ephone-dn)# number 1001</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>mobility</code></td>
<td>Enables the Mobility feature on an extension of a Cisco Unified SCCP IP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-ephone-dn)# mobility</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>snr mode [virtual]</code></td>
<td>Sets the mode for the SNR directory number.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>virtual</code>—Enables the virtual mode for an SNR DN when it is unregistered or floating.</td>
</tr>
<tr>
<td><code>Router(config-ephone-dn)# snr mode virtual</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>snr e164-number delay seconds timeout seconds [cfwd-noan extension-number]</code></td>
<td>Enables the Single Number Reach feature on the extension of a Cisco Unified SCCP IP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>e164-number</code>—E.164 telephone number to ring if IP phone extension does not answer.</td>
</tr>
<tr>
<td><code>Router(config-ephone-dn)# snr 408550133 delay 5 timeout 15 cfwd-noan 2001</code></td>
<td>• <code>delay seconds</code>—Sets the number of seconds that the call rings the IP phone before ringing the remote phone. Range: 0 to 10. Default: disabled.</td>
</tr>
<tr>
<td></td>
<td>• <code>timeout seconds</code>—Sets the number of seconds that the call rings after the configured delay. Call continues to ring for this length of time on the IP phone even if the remote phone answers the call. Range: 5 to 60. Default: disabled.</td>
</tr>
</tbody>
</table>
Command or Action

cfwd-noan extension-number—(Optional) Forwards the call to this target number if the phone does not answer after both the delay and timeout seconds have expired. This is typically the voice mail number.

Step 8

Example:

```
Router(config-ephone-dn)# end
```

Exits to privileged EXEC mode.

Feature Information for Single Number Reach

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 78: Feature Information for Single Number Reach

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
</table>
| Single Number Reach for Cisco Unified SIP IP Phones | 9.0 | Supports the following SNR features for Cisco Unified SIP IP phones:
 - Enable and disable the EM feature.
 - Manual pull back of a call on a mobile phone.
 - Send a call to a mobile PSTN phone.
 - Send a call to a mobile phone regardless of whether the SNR phone is the originating or the terminating side. |
<p>| Virtual SNR DN for Cisco Unified SCCP IP Phones | | Allows a call to be made to a virtual SNR DN and allows the SNR feature to be launched even when the SNR DN is not associated with any phone. |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR Enhancements</td>
<td>8.5</td>
<td>Added support for the following SNR enhancements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hardware Conference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Call Park, Call Pickup, and Call Retrieval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Answer Too Soon Timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SNR Phone Stops Ringing After Mobile Phone Answers</td>
</tr>
<tr>
<td>Calling Number Local</td>
<td>8.0</td>
<td>Added the <code>snr calling-number local</code> command to replace the calling party number with the SNR extension in the caller ID display.</td>
</tr>
<tr>
<td>Single Number Reach</td>
<td>7.1</td>
<td>Introduced the SNR feature.</td>
</tr>
</tbody>
</table>
Customize Softkeys

- Information About Softkeys, on page 897
- Configure Softkeys, on page 910
- Configuration Example for Softkeys, on page 928
- Feature Information for Softkeys, on page 932

Information About Softkeys

Softkeys on IP Phones

You can customize the display and order of softkeys that appear during various call states on individual IP phones. Softkeys that are appropriate in each call state are displayed by default. Using phone templates, you can delete softkeys that would normally appear or change the order in which the softkeys appear. For example, you might want to display the CFwdAll and Confm softkeys on a manager's phone and remove these softkeys from a receptionist's phone.

You can modify softkeys for the following call states:

- Alerting—When the remote point is being notified of an incoming call and the status of the remote point is being relayed to the caller as either ringback or busy.
- Connected—When the connection to a remote point is established.
- Hold—When a connected party is still connected but there is temporarily no voice connection.
- Idle—Before a call is made and after a call is completed.
- Seized—When a caller is attempting a call but has not yet been connected.
- Remote-in-Use—When another phone is connected to a call on an octo-line directory number shared by this phone (Cisco Unified CME 4.3 or a later version).
- Ringing—After a call is received and before the call is connected (Cisco Unified CME 4.2 or a later version).

Not all softkeys are available in all call states. Use the CLI help to see the available softkeys for each call state. The softkeys are as follows:

- Acct—Short for “account code.” Provides access to configured accounts.
- Answer—Picks up incoming call.
- Barge—Allows a user to join (barge) a call on a SIP shared line (Cisco Unified CME 7.1 or a later version).
- Callback—Requests callback notification when a busy called line becomes free.
• CBarge—Barges (joins) a call on a shared octo-line directory number (Cisco Unified CME 4.3 or a later version).
• CFwdALL—Short for “call forward all.” Forwards all calls.
• ConfList—Lists all parties in a conference (Cisco Unified CME 4.1 or a later version). Press Update softkey to update the list of parties in the conference, for instance, to verify that a party has been removed from the conference. Press Remove softkey to remove the appropriate parties.
• Confm—Short for “conference.” Connects callers to a conference call.
• Details—Lists all the participants in a conference. This softkey is supported only on Cisco 7800 Series IP Phones. Press Update to update the list of parties in the conference. Press Remove softkey to remove the appropriate parties. The suboption Remove is available to the conference admin configured.
• DND—Short for “do not disturb.” Enables the do-not-disturb features.
• EndCall—Ends the current call.
• GPickUp—Short for “group call pickup.” Selectively picks up calls coming into a phone number that is a member of a pickup group.
• Flash—Short for “hookflash.” Provides hookflash functionality for public switched telephone network (PSTN) services on calls connected to the PSTN via a foreign exchange office (FXO) port.
• HLog—Places the phone of an ephone-hunt group agent into the not-ready status or, if the phone is in the not-ready status, places the phone into the ready status.
• Hold—Places an active call on hold and resumes the call.
• iDivert—Immediately diverts a call to a voice messaging system (Cisco Unified CME 8.5 or a later version)
• Join—Joins an established call to a conference (Cisco Unified CME 4.1 or a later version).
• LiveRcd—Starts the recording of a call (Cisco Unified CME 4.3 or a later version).
• Login—Provides personal identification number (PIN) access to restricted phone features.
• MeetMe—Initiates a meet-me conference (Cisco Unified CME 4.1 or a later version).
• Mobility—Forwards a call to the PSTN number defined by the Single Number Reach (SNR) feature (Cisco Unified CME 7.1 or a later version).
• NewCall—Opens a line on a speakerphone to place a new call.
• Park—Places an active call on hold so it can be retrieved from another phone in the system.
• PickUp—Selectively picks up calls coming into another extension.
• Redial—Redials the last number dialed.
• Resume—Connects to the call on hold.
• RmLstC—Removes the last party added to a conference. This softkey only works for the conference creator (Cisco Unified CME 4.1 or a later version).
• Select—Selects a call or a conference on which to take action (Cisco Unified CME 4.1 or a later version).
• Show detail—Lists all the participants in a conference. This softkey is supported only on Cisco 8800 Series IP Phones. Press Update to update the list of parties in the conference. Press Remove softkey to remove the appropriate parties. The suboption Remove is available to the conference creator and phones that have conference admin configured.
• Trnsf—Short for “call transfer.” Transfers an active call to another extension.
• TrnsfVM—Transfers a call to a voice-mail extension number (Cisco Unified CME 4.3 or a later version).

You change the softkey order by defining a phone template and applying the template to one or more phones. You can create up to 20 phone templates for SCCP phones and 10 templates for SIP phones. Only one template can be applied to a phone. If you apply a second phone template to a phone that already has a template applied to it, the second template overwrites the first phone template information. The new information takes effect.
only after you generate a new configuration file and restart the phone; otherwise, the previously configured template remains in effect.

In Cisco Unified CME 4.1, customizing the softkey display for IP phones running SIP is supported only for the Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE.

For configuration information, see Customize Softkeys, on page 897.

Softkeys Introduced in Unified CME Release 12.3 and Later Releases

From Unified CME Release 12.3, support is introduced for Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832. The following Softkeys are available on Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832:

- Recents – Displays the call history.
- Contacts – Displays the directory list.
- Apps – Displays the service options (My Phone Apps, Extension Mobility).
- Favorites – Displays the configured speed dials.
- Messages – Provides voicemail accessibility.
- Settings – Displays the phone settings options.

The softkeys that are introduced in Unified CME Release 12.3 supports the following templates:

- Personal user softkey template
- Public user softkey template

The personal template supports all the softkeys necessary to provide full functionality of the phone. The public template supports a restricted softkey set, which is defined for basic conference room use cases. The personal softkey template is enabled by configuring the CLI command `softkeys personal-conf-user` under voice register template configuration mode. You can use the no form of the CLI command `softkeys personal-conf-user` to switch to the default configuration of public user softkey template. In a scenario where no configuration is provided, the default configuration of public user softkey template is applied. The softkeys that are introduced in Unified CME Release 12.3 are supported only on Cisco IP Conference Phones 7832 and 8832. Hence, `softkeys personal-conf-user` is an optional configuration that is required only when the phone template has to be applied to Cisco IP Conference Phones 7832 or 8832. For more information on configuring softkeys for SIP phones, see Modify Softkey Display on SIP Phone, on page 913.

A personal user softkey template supports the following softkeys, apart from the softkeys supported on a public softkey user template:

- Messages
- CfwdAll
- DND
- Redial

The following is a sample configuration for a personal user softkey template:

```
voice register template 7
softkeys personal-conf-user
```
For Unified CME Release 12.7 and later releases, Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832 introduces support for:

- Custom softkey template

Custom softkey template is already supported on other SIP phones on Unified CME. Before Unified CME Release 12.7, the support on Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832 was limited to personal user softkey template and public user softkey template. To enable custom softkey template, configure `softkeys` command under `voice register template` configuration mode.

The following is a sample configuration for a custom user softkey template:

```
voice register template 7
  softkeys hold {{Newcall} {Resume}}
```

For more information on configuration of softkeys, see Modify Softkey Display on SIP Phone, on page 913.

Note

If you configure `softkeys personal-conf-user` command under `voice register template`, personal user softkey template is enabled. If you do not configure any of the softkeys command under `voice register template` configuration mode, the default public user softkey template is enabled.

Account Code Entry

The Cisco Unified IP Phones 7940 and 7940G and the Cisco Unified IP Phones 7960 and 7960G allow phone users to enter account codes during call setup or when connected to an active call using the `Acct` softkey. Account codes are inserted into call detail records (CDRs) on the Cisco Unified CME router for later interpretation by billing software.

An account code is visible in the output of the `show call active` command and the `show call history` command for telephony call legs and is supported by the CISCO-VOICE-DIAL-CONTROL-MIB. The account code also appears in the "account-code" RADIUS vendor-specific attribute (VSA) for voice authentication, authorization, and accounting (AAA).

To enter an account code during call setup or when in a connected state, press the `Acct` softkey, enter the account code using the phone keypad, then press the # key to notify Cisco Unified CME that the last digit of the code has been entered. The account code digits are processed upon receipt of the # and appear in the show output after processing.

No configuration is required for this feature.

Note

If the # key is not pressed, each account code digit is processed only after a timer expires. The timer is 30 seconds for the first digit entered, then n seconds for each subsequent digit, where n equals the number of seconds configured with the `timeouts interdigit (telephony-service)` command. The default value for the interdigit timeout is 10 seconds. The account code digits do not appear in the `show` command output until after being processed.
Hookflash Softkey

The Flash softkey provides hookflash functionality for calls made on IP phones that use FXO lines attached to the Cisco Unified CME system. Certain PSTN services, such as three-way calling and call waiting, require hookflash intervention from a phone user.

When a Flash softkey is enabled on an IP phone, it can provide hookflash functionality during all calls except for local IP-phone-to-IP-phone calls. Hookflash-controlled services can be activated only if they are supported by the PSTN connection that is involved in the call. The availability of the Flash softkey does not guarantee that hookflash-based services are accessible to the phone user.

For configuration information, see Enable Flash Softkey, on page 917.

Feature Blocking

In Cisco Unified CME 4.0 and later versions, individual softkey features can be blocked on one or more phones. You specify the features that you want blocked by adding the `features blocked` command to an ephone template. The template is then applied under ephone configuration mode to one or more epPhones.

If a feature is blocked using the `features blocked` command, the softkey is not removed but it does not function. For configuration information, see Configure Feature Blocking, on page 918.

To remove a softkey display, use the appropriate `no softkeys` command. See Modify Softkey Display on SCCP Phone, on page 910.

Feature Policy Softkey Control

Cisco Unified CME 8.5 allows you to control the display of softkeys on the Cisco Unified SIP IP Phones 8961, 9951, and 9971 using the Feature Policy template. The Feature Policy template allows you to enable and disable a list of feature softkeys on Cisco Unified SIP IP Phones 8961, 9951, and 9971. Table 79: Feature IDs and Default State of the Controllable Features, on page 901 lists the controllable feature softkeys with specific feature IDs and their default state on Cisco Unified SIP IP Phones 8961, 9951, and 9971.

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>Feature Name</th>
<th>Description</th>
<th>Default State on CME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ForwardAll</td>
<td>Forward all calls</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Park</td>
<td>Parks a call</td>
<td>Enabled</td>
</tr>
<tr>
<td>3</td>
<td>iDivert</td>
<td>Divert to Voicemail</td>
<td>Enabled</td>
</tr>
<tr>
<td>4</td>
<td>ConfList</td>
<td>Conference List</td>
<td>Disabled</td>
</tr>
<tr>
<td>5</td>
<td>SpeedDial</td>
<td>Abbreviated Dial</td>
<td>Disabled</td>
</tr>
<tr>
<td>6</td>
<td>Callback</td>
<td>Call back</td>
<td>Disabled</td>
</tr>
<tr>
<td>7</td>
<td>Redial</td>
<td>Redial a call</td>
<td>Enabled</td>
</tr>
<tr>
<td>8</td>
<td>Barge</td>
<td>Barge into a call</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Immediate Divert for SIP IP Phones

The immediate divert (iDivert) feature allows you to immediately divert a call to a voice messaging system. You can divert a call by pressing the iDivert softkey on Cisco Unified SIP IP phones with voice messaging systems (Cisco Unity Express or Cisco Unity), such as 7940, 7040G, 7960 G, 7945, 7965, 7975, 8961, 9951, and 9971. When the call is diverted, the line becomes available to place or receive new calls.

The call that is diverted using the iDivert feature can be in ringing, active, or hold state. When the call diversion is successful, the caller receives greetings from the voice messaging system.

Callers can only divert the calls to their own voice mailbox. But calls on the receiver side can be diverted either to the voice mailbox of the caller who invoked the iDivert feature (last redirected party) or to the voice mailbox of the original called party.

The iDivert softkey is added to the phones when they register with Cisco Unified CME using softkeyxxxx.xml file. Cisco Unified CME generates the softkeyxxxx.xml file when the create profile command is executed in voice register global configuration mode. You can disable or change the position of the iDivert softkey on the phone’s display using the softkey command. For more information, see Configure Immediate Divert (iDivert) Softkey on SIP Phone, on page 920.

Enhanced Immediate Divert (Enhanced iDivert)

The Enhanced iDivert feature is an enhanced version of the iDivert feature supported on Unified CME. Enhanced iDivert is supported in Unified CME 8.5 and later releases. The support for Enhanced iDivert is across both SIP and SCCP phones. iDivert is supported as a softkey on Cisco Unified IP Phones. The feature is enabled by default on Unified CME, by using the iDivert softkey.

While iDivert immediately diverts a call to a voice messaging system, Enhanced iDivert feature allows you to immediately divert a call to the voice messaging system of the phone you dialed or to the voice messaging system of the phone to which call forward is set.

Consider a scenario with a voice message from Phone A to Phone B registered with Unified CME. Call forward is set from Phone B to Phone C, which is also registered to Unified CME. Both Phone B and C support voice messaging. When the voice message is delivered to the voice messaging server of Unified CME, Phone B forwards the message as it has call-forward mailbox configured. If Phone C presses the iDivert softkey, then Phone A gets an audio prompt. Using the Enhanced iDivert feature, the user at Phone A can decide if the voice message needs to be delivered to Phone A or Phone B.

Programmable Line Keys (PLK)

The Programmable Line Key (PLK) feature allows you to program feature buttons or services URL buttons on line key buttons. You can configure line keys with line buttons, speed dials, BLF speed dials, feature buttons, and URL buttons.
When button layout is not specified, buttons are assigned to the phone lines in the following order: line, speed-dial, blf-speed-dial, feature, and services URL buttons.

Note

You can program a line key to function as a services URL button on your Cisco Unified phone using the `url-button` command (see Configure Service URL Line Key Button on SCCP Phone, on page 922 and Configure Service URL Line Key Button on SIP Phone, on page 924). Similarly, you can program a line key on your Cisco IP phone to function as a feature button using the `feature-button` command (see Configure Feature Buttons on SCCP Phone Line Key, on page 925 and Configure Feature Buttons on SIP Phone Line Key, on page 927 for more information).

You can also program line keys to function as feature buttons using the user-profile in phones that have Extension Mobility (EM) enabled on them. For configuring line keys to function as feature buttons on EM phones, see Cisco Unified IP Phone documentation.

Table 80: PLK Feature Availability on Different Phone Models, on page 903 lists the softkeys supported as PLKs on various Cisco Unified IP Phone models.

Table 80: PLK Feature Availability on Different Phone Models

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys (PLK)</th>
<th>7914, 7915, 7916 SCCP Phones</th>
<th>7931 Phone</th>
<th>6900 Series SCCP Phones</th>
<th>7942, 7962, 7965, 7975 SIP Phones</th>
<th>8961, 9951, and 9971 SIP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Call Back</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Conference</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Conference List</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Customized URL</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Do Not Disturb</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>End Call</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Extension Mobility</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Forward All</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>GPickUp</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Hold</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Hook Flash</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Live Record</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Programmable Line Keys (PLK)

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys (PLK)</th>
<th>7914, 7915, 7916 SCCP Phones</th>
<th>7931 Phone</th>
<th>6900 Series SCCP Phones</th>
<th>7942, 7962, 7965, 7975 SIP Phones</th>
<th>8961, 9951, and 9971 SIP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Meet Me</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Mobility</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>MyPhone/Apps</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>New Call</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Night Service</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Park</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Personal Speed Dial</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>PickUp</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Privacy</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Redial</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Remove Last Participant</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Reset Phone</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Services URL</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Speed Dial Buttons</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Single Number Reach</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Transfer</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Transfer to VM</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

9 This feature is available through a hard button.
10 This feature is available through the application button.
11 This feature is available through the Set button.

Table 81: PLK Feature Availability on the Cisco Unified 6945, 8941, and 8945 SCCP IP Phones in Cisco Unified CME 8.8, on page 905 lists the PLK features available on the Cisco Unified 6945, 8941, and 8945 SCCP IP Phones in Cisco Unified CME 8.8.
Table 81: PLK Feature Availability on the Cisco Unified 6945, 8941, and 8945 SCCP IP Phones in Cisco Unified CME 8.8

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys</th>
<th>Cisco Unified 6945, 8941, and 8945 SCCP IP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct</td>
<td>Supported</td>
</tr>
<tr>
<td>Call Back</td>
<td>Supported</td>
</tr>
<tr>
<td>Cancel Call Waiting</td>
<td>Supported</td>
</tr>
<tr>
<td>Conference List</td>
<td>Supported</td>
</tr>
<tr>
<td>Customized URL</td>
<td>Supported</td>
</tr>
<tr>
<td>Do Not Disturb</td>
<td>Supported</td>
</tr>
<tr>
<td>End Call</td>
<td>Supported</td>
</tr>
<tr>
<td>Extension Mobility</td>
<td>Supported</td>
</tr>
<tr>
<td>Forward All</td>
<td>Supported</td>
</tr>
<tr>
<td>Group Pickup</td>
<td>Supported</td>
</tr>
<tr>
<td>Hook Flash</td>
<td>Supported</td>
</tr>
<tr>
<td>Hunt Group Login (HLog)</td>
<td>Supported</td>
</tr>
<tr>
<td>Live Record</td>
<td>Supported</td>
</tr>
<tr>
<td>Login</td>
<td>Supported</td>
</tr>
<tr>
<td>Meet Me</td>
<td>Supported</td>
</tr>
<tr>
<td>Mobility</td>
<td>Supported</td>
</tr>
<tr>
<td>My Phone Apps</td>
<td>Supported</td>
</tr>
<tr>
<td>New Call</td>
<td>Supported</td>
</tr>
<tr>
<td>Night Service</td>
<td>Supported</td>
</tr>
<tr>
<td>Park</td>
<td>Supported</td>
</tr>
<tr>
<td>Personal Speed Dial</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Pickup</td>
<td>Supported</td>
</tr>
<tr>
<td>Privacy</td>
<td>Supported</td>
</tr>
<tr>
<td>Redial</td>
<td>Supported</td>
</tr>
<tr>
<td>Remove Last Participant</td>
<td>Supported</td>
</tr>
<tr>
<td>Reset Phone</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Services URL</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Programable Line Keys (PLK)

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys</th>
<th>Cisco Unified 6945, 8941, and 8945 SCCP IP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Dial Buttons</td>
<td>Supported</td>
</tr>
<tr>
<td>Single Number Reach</td>
<td>Supported</td>
</tr>
<tr>
<td>Transfer to VM</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Table 82: PLK Feature Availability on the Cisco Unified 6911, 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones in Cisco Unified CME 9.0, on page 906 lists the PLK features available on the Cisco Unified 6911, 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones in Cisco Unified CME 9.0.

Table 82: PLK Feature Availability on the Cisco Unified 6911, 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones in Cisco Unified CME 9.0

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys</th>
<th>Cisco Unified 6911 SIP IP Phones</th>
<th>Cisco Unified 6921, 6941, 6945, and 6961 SIP IP Phones</th>
<th>Cisco Unified 8941 and 8945 SIP IP Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Call Back</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Conference List</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Customized URL</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Do Not Disturb</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>End Call</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Extension Mobility</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Forward All</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Group Pickup</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Hold</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Hook Flash</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Hunt Group</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Live Record</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Login</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Meet Me</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Mobility</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>My Phone Apps</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>New Call</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Softkeys Supported as Programmable Line Keys</td>
<td>Cisco Unified 6911 SIP IP Phones</td>
<td>Cisco Unified 6921, 6941, 6945, and 6961 SIP IP Phones</td>
<td>Cisco Unified 8941 and 8945 SIP IP Phone</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Night Service</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Park</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Personal Speed Dial</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Pickup</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Privacy</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Redial</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Remove Last Participant</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Reset Phone</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Services URL</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Single Number Reach</td>
<td>Not Supported</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Speed Dial</td>
<td>Supported</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Transfer</td>
<td>Not Supported</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Transfer to VM</td>
<td>Not Supported</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

12 These phones are equipped with “conference” hard keys.
13 These phones are equipped with “transfer” hard keys.

Cisco Unified IP Phones 7902, 7905, 7906, 7910, 7911, 7912, 7935, 7936, 7937, 7940, 7960, and 7985 do not support the PLK feature. The services URL button is not supported on the following Cisco Unified IP phones: 7920, 7921, 7925 (supports DnD and Privacy only), 3911, and 3951.

Table 83: PLK Feature Availability on the Cisco Unified 7800, 8800 Series SIP IP Phones from Cisco Unified CME 11.0 Onwards, on page 907 lists the PLK features available on the Cisco Unified 7800 and 8800 series SIP IP Phones from Cisco Unified CME Release 11.0 onwards. As part of Unified CME Release 11.7, new phone support for Cisco IP Phones 8821, 8845, 8865 was introduced. With this addition, Unified CME supports all phone models in Cisco IP Phone 7800 Series and Cisco IP Phone 8800 Series.

Table 83: PLK Feature Availability on the Cisco Unified 7800, 8800 Series SIP IP Phones from Cisco Unified CME 11.0 Onwards

<table>
<thead>
<tr>
<th>Softkeys Supported as Programmable Line Keys</th>
<th>Cisco Unified 7800 Series SIP IP Phones</th>
<th>Cisco Unified 8800 Series SIP IP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Call Back</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Conference</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Conference List</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Softkeys Supported as Programmable Line Keys</td>
<td>Cisco Unified 7800 Series SIP IP Phones</td>
<td>Cisco Unified 8800 Series SIP IP Phones</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Customized URL</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Do Not Disturb</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>End Call</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Extension Mobility</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Forward All</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Group Pickup</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Hold</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Hook Flash</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>HLog (From Unified CME Release 11.6 onwards)</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Live Record</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Login</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Meet Me</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Mobility</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>My Phone Apps</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>New Call</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Park</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Personal Speed Dial</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Pickup</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Privacy</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Redial</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Remove Last Participant</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Reset Phone</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Services URL</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Single Number Reach</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Speed Dial</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Transfer</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Transfer to VM</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>
Table 84: LED Behavior, on page 909 lists the feature buttons and their corresponding LED behavior. Only features with radio icons will indicate their state via LED.

Table 84: LED Behavior

<table>
<thead>
<tr>
<th>Feature</th>
<th>Label/Tagged ID</th>
<th>Label/Extended Tagged ID</th>
<th>Icon</th>
<th>LED Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redial</td>
<td>Redial/SkRedialTag 0x01</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Hold</td>
<td>Hold/SkHoldTag 0x03</td>
<td>—</td>
<td>Hold</td>
<td>—</td>
</tr>
<tr>
<td>Transfer</td>
<td>Transfer/SkTransferTag 0x04</td>
<td>—</td>
<td>Transfer</td>
<td>—</td>
</tr>
<tr>
<td>Forward All</td>
<td>Forward All/0x2D</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>MeetMe</td>
<td>MeetMe/SkMeetMeConfTag 0x10</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Conference</td>
<td>Conference/SkConfTag 0x34</td>
<td>—</td>
<td>Conference</td>
<td>—</td>
</tr>
<tr>
<td>Park</td>
<td>Park/SkParkTag 0x0E</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>PickUp</td>
<td>PickUp/SkCallPickUpTag 0x11</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>GPickUp</td>
<td>—</td>
<td>Group PickUp/0x2F</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Mobility</td>
<td>—</td>
<td>Mobility/0x2B</td>
<td>Mobility</td>
<td>—</td>
</tr>
<tr>
<td>Do Not Disturb</td>
<td>—</td>
<td>Do Not Disturb/0x0f</td>
<td>Radio Button</td>
<td>Off—inactive</td>
</tr>
<tr>
<td>Conference List</td>
<td>—</td>
<td>Conference List/0x34</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Remove Last Participant</td>
<td>—</td>
<td>Remove Last Participant/0x30</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>CallBack</td>
<td>CallBack/SkCallBackTag 0x41</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>New Call</td>
<td>NewCall/SkNewCallTag 0x02</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>End Call</td>
<td>—</td>
<td>End Call/0x33</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Cancel Call Waiting</td>
<td>CW Off</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Feature</td>
<td>Label/Tagged ID</td>
<td>Label/Extended Tagged ID</td>
<td>Icon</td>
<td>LED Behavior</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>HLog</td>
<td>—</td>
<td>Hunt Group/0x36</td>
<td>Default</td>
<td>On—hlog in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off—hlog out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blink—call in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>queue at Hlogout state</td>
</tr>
<tr>
<td>Privacy</td>
<td>Private/ SkPrivacy 0x36</td>
<td>—</td>
<td>Radio Button</td>
<td>On—active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off—inactive</td>
</tr>
<tr>
<td>Acct</td>
<td>Acct/ TAGS_ACCT_.40 TAGS_Acct[]</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Flash</td>
<td>Flash/ TAGS_FLASH_.41 TAGS_Flash[]</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Login</td>
<td>Login/ TAGS_LOGIN_.42 TAGS_Login[]</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>TrnsfVM</td>
<td>TrnsfVM/SkTrnsfVMTag 0x3e</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>LiveRcd</td>
<td>LiveRcd</td>
<td>—</td>
<td>Default</td>
<td>—</td>
</tr>
<tr>
<td>Night Service</td>
<td>Night Service/ TAGS_Night_Service[]</td>
<td>—</td>
<td>Radio Button</td>
<td>On—active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Off—inactive</td>
</tr>
<tr>
<td>Myphoneapp URL service</td>
<td>My Phone Apps</td>
<td>—</td>
<td>URL service</td>
<td>—</td>
</tr>
<tr>
<td>EM URL service</td>
<td>Extension Mobility</td>
<td>—</td>
<td>URL service</td>
<td>—</td>
</tr>
<tr>
<td>SN URL service</td>
<td>Single Number Reach</td>
<td>—</td>
<td>URL service</td>
<td>—</td>
</tr>
<tr>
<td>Customized URL</td>
<td>The configured name</td>
<td>—</td>
<td>URL service</td>
<td>—</td>
</tr>
</tbody>
</table>

Configure Softkeys

Modify Softkey Display on SCCP Phone

To modify the display of softkeys, perform the following steps.
• Enable the ConfList and MeetMe softkeys only if you have hardware conferencing configured. For information on conferencing, see Hardware Conference, on page 1330.
• The third softkey button on the Cisco Unified IP Phone 7905G and Cisco Unified IP Phone 7912G is reserved for the Message softkey. For these phones’ templates, the third softkey button defaults to the Message softkey. For example, the `softkeys idle Redial Dnd Pickup Login Gpickup` command configuration displays, in order, the Redial, DND, Message, PickUp, Login, and GPickUp softkeys.
• The NewCall softkey cannot be disabled on the Cisco Unified IP Phone 7905G or Cisco Unified IP Phone 7912G.

Before you begin

• Cisco CME 3.2 or a later version.
• Cisco Unified CME 4.2 or a later version to enable softkeys during the ringing call state.
• Cisco Unified CME 4.3 or a later version to enable softkeys during the remote-in-use state.
• The HLog softkey must be enabled with the `hunt-group logout HLog` command before it will be displayed. For more information, see Configure Ephone-Hunt Groups on SCCP Phones, on page 1247.
• The Flash softkey must be enabled with the `fxo hook-flash` command before it will be displayed. For configuration information, see Enable Flash Softkey, on page 917.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-template template-tag`
4. `softkeys alerting [{Acct} [Callback] [Endcall]}
5. `softkeys connected [{Acct} [ConfList] [Confrn] [Endcall] [Flash] [Hlog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Trnser]}
6. `softkeys hold [{Join} [Newcall] [Resume] [Select]}
7. `softkeys idle [{Cfwdall} [ConfList] [Dnd] [Gpickup] [Hlog] [Join] [Login] [Newcall] [Pickup] [Redial] [RmLstC]}
8. `softkeys remote-in-use [{CBarge} [Newcall]}
9. `softkeys ringing [{Answer} [Dnd] [HLog]}
10. `softkeys seized [{CallBack} [Cfwdall] [Endcall] [Gpickup] [Hlog] [MeetMe] [Pickup] [Redial]}
11. `exit`
12. `ephone phone-tag`
13. `ephone-template template-tag`
14. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephone-template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# ephone-template 15</td>
<td>template-tag—Unique identifier for the ephone template. Range is 1 to 20.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys alerting [[Acct] [Callback] [Endcall]]</td>
<td>(Optional) Configures an ephone template for softkey display during the alerting call state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys alerting Callback Endcall</td>
<td>• You can enter any of the keywords in any order. • Default is all softkeys are displayed in alphabetical order. • Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys connected [[Acct] [ConfList] [Confrn] [Endcall] [Flash] [HLog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Transfer]]</td>
<td>(Optional) Configures an ephone template for softkey display during the call-connected state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys connected Endcall Hold Transfer Hlog</td>
<td>• You can enter any of the keywords in any order. • Default is all softkeys are displayed in alphabetical order. • Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys hold [[Join] [Newcall] [Resume] [Select]]</td>
<td>(Optional) Configures an ephone template for softkey display during the call-hold state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys hold Resume</td>
<td>• You can enter any of the keywords in any order. • Default is all softkeys are displayed in alphabetical order. • Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys idle [[Cfwdall] [ConfList] [Dnd] [Gpickup] [HLog] [Join] [Login] [Newcall] [Pickup] [Redial] [RmLstC]]</td>
<td>(Optional) Configures an ephone template for softkey display during the idle state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys idle Newcall Redial Pickup Cfwdall Hlog</td>
<td>• You can enter any of the keywords in any order. • Default is all softkeys are displayed in alphabetical order. • Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys remote-in-use [[CBarge] [Newcall]]</td>
<td>Modifies the order and type of softkeys that display on an IP phone during the remote-in-use call state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys remote-in-use CBarge Newcall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>softkeys ringing [[Answer] [Dnd] [HLog]]</td>
<td>(Optional) Configures an ephone template for softkey display during the ringing state.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys ringing Answer Dnd Hlog</td>
<td>• You can enter any of the keywords in any order.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Default is all softkeys are displayed in alphabetical order.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) Configures an ephone template for softkey display during the seized state.</td>
<td></td>
</tr>
<tr>
<td>softkeys seized</td>
<td>• You can enter any of the keywords in any order.</td>
<td></td>
</tr>
<tr>
<td>[CallBack]</td>
<td>• Default is all softkeys are displayed in alphabetical order.</td>
<td></td>
</tr>
<tr>
<td>[Cfwdall]</td>
<td>• Any softkey that is not explicitly defined is disabled.</td>
<td></td>
</tr>
<tr>
<td>[Endcall]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Gpickup]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Hlog]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[MeetMe]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Pickup]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Redial]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# softkeys seized Endcall Redial Pickup Cfwdall Hlog</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 11

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Step 12

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• phone-tag—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Router(config)# ephone 36</td>
<td></td>
</tr>
</tbody>
</table>

Step 13

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ephone-template template-tag</td>
<td>Applies an ephone template to the ephone that is being configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# ephone-template 15</td>
<td></td>
</tr>
</tbody>
</table>

Step 14

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are done modifying the parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for SCCP Phones, on page 390.

Modify Softkey Display on SIP Phone

Restriction

• This feature is supported only for Cisco Unified IP Phones 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE.

• You can download a custom softkey XML file from a TFTP server. However, if the softkey XML file contains an error, the softkeys might not work properly on the phone. We recommend the following procedure for creating a softkey template in Cisco Unified CME.

• HLog softkey is supported only on Cisco Unified IP Phones 7800 and 8800 series.
Before you begin
Cisco Unified CME 4.1 or a later version. From Cisco Unified CME Release 11.6 onwards, HLog softkey is supported. From Unified CME Release 12.3 onwards, the CLI command softkeys personal-conf-user is supported.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register template template-tag
4. softkeys connected {[Conf}rn] [Endcall] [Hold] [Trnsfer] [HLog] }
5. softkeys hold {[Newcall] {Resume}}
6. softkeys idle {[Cfwdall] [Newcall] [Redial] [HLog] }
7. softkeys seized {[Cfwdall] [Endcall] [Redial]}
8. softkeys personal-conf-user
9. exit
10. voice register pool pool-tag
11. template template-tag
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** voice register template template-tag | Enters voice register template configuration mode to create a SIP phone template.
 Example:
 Router(config)# voice register template 9 |
| **Step 4** softkeys connected {[Conf}rn] [Endcall] [Hold] [Trnsfer] [HLog] } | (Optional) Configures a SIP phone template for softkey display during the call-connected state.
 Example:
 Router(config-register-template)# softkeys connected Endcall Hold Transfer HLog |
| **Step 5** softkeys hold {[Newcall] {Resume}} | (Optional) Configures a phone template for softkey display during the call-hold state.
 Example:
 Router(config-register-template)# softkeys hold Resume |

Modify Softkey Display on SIP Phone

Customize Softkeys
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6** softkeys idle \{[Cfwdall] [Newcall] [Redial] [HLog] \} | - Any softkey that is not explicitly defined is disabled. (Optional) Configures a phone template for softkey display during the idle state.
 - You can enter the keywords in any order.
 - Default is all softkeys are displayed in alphabetical order.
 - Any softkey that is not explicitly defined is disabled. |
| **Example:** | Router(config-register-template)# softkeys idle Newcall Redial Cfwdall HLog |
| **Step 7** softkeys seized \{[Cfwdall] [Endcall] [Redial]\} | (Optional) Configures a phone template for softkey display during the seized state.
 - You can enter the keywords in any order.
 - Default is all softkeys are displayed in alphabetical order.
 - Any softkey that is not explicitly defined is disabled. |
| **Example:** | Router(config-register-template)# softkeys seized Endcall Redial Cfwdall |
| **Step 8** softkeys personal-conf-user | (Optional) Configures a personal user phone template for softkey display.
 - The CLI command is disabled by default, and applies a public user phone template.
 - When you configure the no form of this command, support switches to public user phone template.
 - When the CLI command softkeys personal-conf-user is configured, you cannot configure other state specific softkeys.
 - The CLI command is supported only for the Cisco IP Conference Phone 7832 and Cisco IP Conference Phone 8832 phone types. |
| **Example:** | Router(config-register-template)# softkeys personal-conf-user |
| **Step 9** exit | Exits voice register template configuration mode. |
| **Example:** | Router(config-register-template)# exit |
| **Step 10** voice register pool *pool-tag* | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone. |
| **Example:** | Router(config)# voice register pool 36 |
| **Step 11** template *template-tag* | Applies a SIP phone template to the phone you are configuring.
 - *template-tag*— Template tag that was created with the voice register template command in Step 3. |
| **Example:** | Router(config-register-pool)# template 9 |
| **Step 12** end | Exits to privileged EXEC mode. |
| **Example:** | Router(config-register-pool)# end |
What to do next

If you are done modifying the parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Profiles for SIP Phones, on page 393.

Verify Softkey Configuration

Step 1

show running-config

Use this command to verify your configuration. In the following example, the softkey display is modified in phone template 7 and the template is applied to SIP phone 2. All other phones use the default arrangement of softkeys.

Example:

```
Router# show running-config
!
voice register dn 1 dual-line
ring feature secondary
number 126 secondary 1261
description Sales
name Smith
call-forward busy 500 secondary
call-forward noan 500 timeout 10
huntstop channel
no huntstop
no forward local-calls
!
voice register template 7
session-transport tcp
softkeys hold Resume Newcall
softkeys idle Newcall Redial Cfwdall HLog
softkeys connected Endcall Trnsfer Confrn Hold Hlog
voicemail 52001 timeout 30
.
.
voice register pool 2
id mac 0030.94C2.A22A
number 1 dn 4
template 7
dialplan 3
```

Step 2

show telephony-service ephone-template or show voice register template template-tag

Example:

```
Router# show telephony-service ephone-template
ephone-template 1
softkey ringing Answer Dnd
cconference drop-mode never
cconference add-mode all
cconference admin: No
Always send media packets to this router: No
Preferred codec: g711ulaw
User Locale: US
Network Locale: US
```
Enable Flash Softkey

Restriction

The IP phone must support softkey display.

Before you begin

To enable the Flash softkey, perform the following steps

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. fxo hook-flash
5. restart all
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>telephony-service</td>
<td>Enables the Flash softkey on phones that support softkey display on PSTN calls using an FXO port.</td>
</tr>
<tr>
<td>fxo hook-flash</td>
<td>Enables the Flash softkey on phones that support softkey display on PSTN calls using an FXO port. Note The Flash softkey display is automatically disabled for local IP-phone-to-IP-phone calls.</td>
</tr>
<tr>
<td>restart all</td>
<td>Performs a fast reboot of all phones associated with this Cisco Unified CME router. Does not contact the DHCP or TFTP server for updated information.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Verify Flash Softkey Configuration

Step 1

Use the `show running-config` command to display an entire configuration, including Flash softkey, which is listed in the telephony-service portion of the output.

Example:

```
Router# show running-config
telephony-service
fxo hook-flash
load 7960-7940 P00305000600
load 7914 S00103020002
max-ephones 100
max-dn 500
```

Step 2

Use the `show telephony-service` command to show only the telephony-service portion of the configuration.

Configure Feature Blocking

To configure feature blocking for SCCP phones, perform the following steps.

Before you begin

Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. `enable`
2. configure terminal
3. ephone-template template-tag
4. features blocked [CFwdAll] [Confrn] [GpickUp] [Park] [PickUp] [Trnsfer]
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. restart
9. Repeat Step 5 to Step 8 for each phone to which the template should be applied.
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
Example:
Router> enable |
| **Step 2** | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | ephone-template template-tag
Example:
Router(config)# ephone-template 1 | Enters ephone-template configuration mode.
- *template-tag*—Unique sequence number that identifies this template during configuration tasks. Range is 1 to 20.
Example:
Router(config-ephone-template)# features blocked Park Trnsfer |
| **Step 4** | features blocked [CFwdAll] [Confrn] [GpickUp] [Park] [PickUp] [Trnsfer]
Example:
Router(config-ephone-template)# features blocked Park Trnsfer | Prevents the specified softkey from invoking its feature.
- *CFwdAll*—Call forward all calls.
- *Confrn*—Conference.
- *GpickUp*—Group call pickup.
- *Park*—Call park.
- *PickUp*—Directed or local call pickup. This includes pickup last-parked call and pickup from another extension or park slot.
- *Trnsfer*—Call transfer.
Example:
Router(config-ephone-template)# features blocked Park Trnsfer |
| **Step 5** | exit | Exits ephone-template configuration mode.
Example:
Router(config-ephone-template)# exit |
| **Step 6** | ephone phone-tag
Example:
Router(config)# ephone 25 | Enters ephone configuration mode.
- *phone-tag*—Unique sequence number that identifies this ephone during configuration tasks. The maximum number of ephones for a particular Cisco Unified CME system is version- and... |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 7** ephone-template template-tag | Applies an ephone template to an ephone.
 * template-tag—Template number that you want to apply to this ephone.
 Note To view your ephone-template configurations, use the show telephony-service ephone-template command. |
| **Example:** Router(config-ephone)# ephone-template 1 |
| **Step 8** restart | Performs a fast reboot of this ephone. Does not contact the DHCP or TFTP server for updated information.
 Note If you are applying the template to more than one ephone, you can use the restart all command in telephony-service configuration mode to reboot all the phones so they have the new template information. |
| **Example:** Router(config-ephone)# restart |
| **Step 9** | Repeat Step 5 to Step 8 for each phone to which the template should be applied. |
| **Step 10** end | Returns to privileged EXEC mode.
 Example: Router(config-ephone)# end |

Verify Block Softkey Configuration

Step 1 Use the show running-config command to display the running configuration, including ephone templates and ephone configurations.

Step 2 Use the show telephony-service ephone-template command and the show telephony-service ephone command to display only the contents of ephone templates and the ephone configurations, respectively.

Configure Immediate Divert (iDivert) Softkey on SIP Phone

To configure iDivert softkey (in connected state) on Cisco Unified SIP IP phones, perform the following step.

Note When one participant in a conference (Meetme, Ad Hoc, cBarge, or Join) presses the iDivert softkey, all remaining participants receive an outgoing greeting of the participant who pressed iDivert softkey.
Restriction

- iDivert feature is disabled when **call-forward all** is activated for a phone.
- iDivert feature is not activated for the second call when **call-forward busy** is activated for a phone and the phone is busy with the first call.
- If iDivert softkey is pressed before call forward no answer (CFNA) timeout, then the call is forwarded to voice mail.
- The calling and called parties can divert the call to their voice messaging mailboxes if both the parties press the iDivert softkey at the same time. The voice messaging mailbox of the calling party will receive a portion of the outgoing greeting of the called party. Similarly, the voice messaging mailbox of the called party will receive a portion of the outgoing greeting of the calling party.
- iDivert softkey is not supported when SIP phones fall back to SRST mode in Cisco Unified CME.
- iDivert after connect towards the voicemail with transcoding is not supported.

SUMMARY STEPS

1. **enable**
2. configure terminal
3. voice register template *template-tag*
4. softkeys connected [Confmr] [Endcall] [Hold] [Trnsfer] [iDivert]
5. softkeys hold [Newcall] [Resume] [iDivert]
6. softkeys ringing [Answer] [DND] [iDivert]
7. exit
8. voice register pool *pool-tag*
9. template *template-tag*
10. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register template template-tag</td>
<td>Enters voice register template configuration mode to create a SIP phone template.</td>
</tr>
<tr>
<td>Example:</td>
<td>• template-tag—Range: 1 to 10.</td>
</tr>
<tr>
<td>Router(config)# voice register template 9</td>
<td></td>
</tr>
<tr>
<td>Step 4 softkeys connected [Confmr] [Endcall] [Hold] [Trnsfer] [iDivert]</td>
<td>(Optional) Configures a SIP phone template for softkey display during the call-connected state.</td>
</tr>
<tr>
<td>Example:</td>
<td>• You can enter the keywords in any order.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Router(config-register-template)# softkeys connected Endcall Hold Transfer iDivert | • Default is all softkeys are displayed in alphabetical order.
• Any softkey that is not explicitly defined is disabled. |
| **Step 5** softkeys hold [Newcall] [Resume] [iDivert]
Example:
Router(config-register-template)# softkeys hold Newcall Resume | (Optional) Configures a phone template for softkey display during the call-hold state.
• Default is that the NewCall and Resume softkeys are displayed in alphabetical order.
• Any softkey that is not explicitly defined is disabled. |
| **Step 6** softkeys ringing [Answer] [DND] [iDivert]
Example:
Router(config-register-template)# softkeys ringing dnd answer idivert | Modifies the order and type of softkeys that display on a SIP phone during the ringing call state. |
| **Step 7** exit
Example:
Router(config-register-template)# exit | Exits voice register template configuration mode. |
| **Step 8** voice register pool *pool-tag*
Example:
Router(config)# voice register pool 36 | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone. |
| **Step 9** template *template-tag*
Example:
Router(config-register-pool)# template 9 | Applies a SIP phone template to the phone you are configuring.
• *template-tag*— Template tag that was created with the voice register template command in Step 3. |
| **Step 10** end
Example:
Router(config-register-pool)# end | Exits configuration mode. |

Configure Service URL Line Key Button on SCCP Phone

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone template *template-tag*
4. url-button *index* type | url [name]
5. exit
6. ephone *phone-tag*
7. ephone-template *template-tag*
8. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>template-tag</code>—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
</tr>
<tr>
<td>Router(config)# ephone template 5</td>
<td></td>
</tr>
<tr>
<td>Step 4 url-button index type</td>
<td>url [name]</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>index</code>—Unique index number. Range: 1 to 8.</td>
</tr>
<tr>
<td>Router#(config-ephone-template)#url-button 1 myphoneapp</td>
<td>• <code>type</code>—Type of service URL button. The following types of service URL buttons are available:</td>
</tr>
<tr>
<td>Router#(config-ephone-template)#url-button 2 em</td>
<td>• <code>myphoneapp</code>: My phone application configured under phone user interface.</td>
</tr>
<tr>
<td>Router#(config-ephone-template)#url-button 3 snr</td>
<td>• <code>em</code>: Extension Mobility.</td>
</tr>
<tr>
<td>Router (config-ephone-template)#url-button 4 http://www.cisco.com</td>
<td>• <code>snr</code>: Single Number Reach.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>phone-tag</code>—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Router(config)# ephone 36</td>
<td></td>
</tr>
<tr>
<td>Step 7 ephone-template template-tag</td>
<td>Applies an ephone template to the ephone that is being configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# ephone-template 5</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Service URL Line Key Button on SIP Phone

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register template template-tag
4. url-button [index number] [url location] [url name]
5. exit
6. voice register pool phone-tag
7. template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register template template-tag</td>
<td>Enters voice register template configuration mode to create a SIP phone template.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register template 5</td>
<td>• template-tag—Unique identifier for the template that is being created. Range: 1 to 10.</td>
</tr>
<tr>
<td>Step 4 url-button [index number] [url location] [url name]</td>
<td>Configures a service URL button on a line key.</td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# url-button 1 http://www.cisco.com</td>
<td>• index number—Unique index number. Range: 1 to 8.</td>
</tr>
<tr>
<td></td>
<td>• url location—Location of the URL.</td>
</tr>
<tr>
<td></td>
<td>• url name—Service URL with maximum length of 31 characters.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits voice register template configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 voice register pool phone-tag</td>
<td>Enters voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 12</td>
<td>• phone-tag—Unique number that identifies this voice register pool during configuration tasks.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 template template-tag</td>
<td>Applies the SIP phone template to the phone.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# template 5</td>
<td>• template-tag—Unique identifier of the template that you created in Step 3.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are done configuring the URL buttons for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Profiles for SIP Phones, on page 393.

Configure Feature Buttons on SCCP Phone Line Key

Restriction

- Answer, Select, cBarge, Join, and Resume features are not supported as PLKs.
- Feature buttons are only supported on Cisco Unified IP Phones 6911, 7941, 7942, 7945, 7961, 7962, 7965, 7970, 7971, and 7975 with SCCP v12 or later versions.
- Any features available through hard buttons are not provisioned. Use the `show ephone register detail` command to verify why the features buttons are not provisioned.
- Not all feature buttons are supported on Cisco Unified IP Phone 6911 phone. Call Forward, Pickup, Group Pickup, and MeetMe are the only feature buttons supported on the Cisco Unified IP Phone 6911.
- The `privacy-button` command is available on Cisco Unified IP phones running a SCCP Version 8 or later versions. The `privacy-button` command is overridden by any other available feature buttons.
- Locales are not supported on Cisco Unified IP Phone 7914.
- Locales are not supported for Cancel Call Waiting or Live Recording feature buttons.
- The feature state for DnD, Hlog, Privacy, Login, and Night Service feature buttons are indicated by an LED. For a list of LED behavior for PLK, see Table 84: LED Behavior, on page 909

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone template template-tag
4. feature-button index `<feature identifier>` [label `<label>`]
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone template 10</td>
<td>template-tag- Unique identifier for the ephone template that is being created. Range: 1 to 10</td>
</tr>
<tr>
<td>Step 4 feature-button index <code><feature identifier></code> [label <code><label></code>]</td>
<td>Configures a feature button on a line key.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)feature-button 1 label hold</td>
<td>index- Index number, one from 25 for a specific feature type.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 ephone <code>phone-tag</code></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 5</td>
<td>phone-tag- Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 7 ephone-template template-tag</td>
<td>Applies an ephone template to the ephone that is being configured.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# ephone-template 10</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are done configuring the feature buttons for phones in Cisco Unified CME, restart the phones.
Configure Feature Buttons on SIP Phone Line Key

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register template template-tag`
4. `feature-button [index] [feature identifier]`
5. `exit`
6. `voice register pool phone-tag`
7. `template template-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>voice register template template-tag</code></td>
<td>Enters voice register template configuration mode to create a SIP phone template.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# voice register template 5</td>
<td>- <code>template-tag</code> - Unique identifier for the template that is being created. Range: 1 to 10.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>Feature button can be configured under voice register pool or voice register template configuration mode. If both configurations are applied, the feature button configuration under voice register pool takes precedence.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>feature-button [index] [feature identifier]</code></td>
<td>Configures a feature button on a line key.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-voice-register-template)feature-button 1 DnD Router(config-voice-register-template)feature-button 2 EndCall Router(config-voice-register-template)feature-button 3 Cfwdall</td>
<td>- <code>index</code> - One of the 12 index numbers for a specific feature type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>feature identifier</code> — Unique identifier for a feature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One of the following feature or stimulus IDs: Redial, Hold, Trnsfer, Cfwdall, Privacy, MeetMe, Confrm, Park, Pickup, Gpickup, Mobility, Dnd, ConfList, RmLstC, CallBack, NewCall, EndCall, HLog, NiteSrv, Acct, Flash, Login, TrnsfVM, or LiveRcd.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-register-temp)# exit</td>
</tr>
</tbody>
</table>

Purpose

Exits voice register template configuration mode.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>voice register pool phone-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 12</td>
</tr>
</tbody>
</table>

Purpose

Enters voice register pool configuration mode.

- *phone-tag*—Unique number that identifies this voice register pool during configuration tasks.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>template template-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# template 5</td>
</tr>
</tbody>
</table>

Purpose

Applies the template to the phone.

- *template-tag*—Unique identifier of the template that you created in Step 3.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# end</td>
</tr>
</tbody>
</table>

Purpose

Returns to privileged EXEC mode.

What to do next

If you are done configuring the feature buttons for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See *Generate Configuration Profiles for SIP Phones, on page 393*

Configuration Example for Softkeys

Example for Modifying Softkey Display

The following example modifies the softkey display on four phones by creating two ephone templates. Ephone template 1 is applied to ephone 11, 13, and 15. Template 2 is applied to ephone 34. The softkey displays on all other phones use the default arrangement of keys.

```plaintext
ephone-template 1
softkeys idle Redial Newcall
softkeys connected Endcall Hold Trnsfer
ephone-template 2
softkeys idle Redial Newcall
softkeys seized Redial Endcall Pickup
softkeys alerting Redial Endcall
softkeys connected Endcall Hold Trnsfer
ephone 11
ephone-template 1
ephone 13
ephone-template 1
```
Example for Modifying HLog Softkey for SCCP Phones

The following example establishes the appearance and order of softkeys for phones that are configured with ephone-template 7. The HLog key is available when a phone is idle, when it has seized a line, or when it is connected to a call. Phones without softkeys can use the standard HLog codes to toggle ready and not-ready status.

```
telephony-service
hunt-group logout HLog
fac standard
.
.
ephone-template 7
softkeys connected Endcall Hold Transfer Hlog
softkeys idle Newcall Redial Pickup Cfwdall Hlog
softkeys seized Endcall Redial Pickup Cfwdall Hlog
```

Example for Modifying HLog Softkey for SIP Phones

The following example establishes the appearance and order of softkeys for phones that are configured with voice register template 7. The HLog key is available when a phone is idle, when there is a ringIn, or when it is connected to a call. Phones without softkeys can use the standard HLog codes to toggle ready and not-ready status.

```
telephony-service
  hunt-group logout HLog
  fac standard
  .
  .

voice register template 7
softkeys connected Endcall Hold Transfer Hlog
softkeys idle Newcall Redial Pickup Cfwdall Hlog
softkeys ringIn Answer DND iDivert Hlog
```

Example for Enabling Flash Softkey for PSTN Calls

The following example enables the Flash softkey for PSTN calls through an FXO voice port:

```
telephony-service
  fxo hook-flash
```
Example for Park and Transfer Blocking

The following example blocks the use of Park and Transfer softkeys on extension 2333:
ephone-template 1
features blocked Park Trnsfr
ephone-dn 2
number 2333
ephone 3
button 1:2
ephone-template 1

Example for Conference Blocking

The following example blocks the conference feature on extension 2579, which is on an analog phone:
ephone-template 1
features blocked Confrn
ephone-dn 78
number 2579
ephone 3
ephone-template 1
mac-address C910.8E47.1282
type anl
button 1:78

Example for Immediate Divert (iDivert) Configuration

The following example shows iDivert softkey in connected state:
Router# show voice register template 1
Temp Tag 1
Config:
 Attended Transfer is enabled
 Blind Transfer is enabled
 Semi-attended Transfer is enabled
 Conference is enabled
 Caller-ID block is disabled
 DnD control is enabled
 Anonymous call block is disabled
 Softkeys connected iDivert
Example for Configuring URL Buttons on a SCCP Phone Line Key

The following example shows three URL buttons configured for line keys:

```
ephone-template 5
url-button 1 em
url-button 2 mphoneapp mphoneapp
url-button 3 snr
!
ephone 36
ephone-template 5
```

Example for Configuring URL Buttons on a SIP Phone Line Key

The following example shows URL buttons configured in voice register template 1:

```
Router# show run
voice register template 1
url-button 1 http://9.10.10.254:80/localdirectory/query My_Dir
url-button 5 http://www.yahoo.com Yahoo
!voice register pool 50
!
```

Example for Configuring Feature Button on a SCCP Phone Line Key

The following example shows feature buttons configured for line keys:

```
ephone-template 10
feature-button 1 Park
feature-button 2 MeetMe
feature-button 3 CallBack
!
!
ephone-template 10
```

Example for Configuring Feature Button on a SIP Phone Line Key

The following example shows three feature buttons configured for line keys:

```
voice register template 5
```
feature-button 1 DnD
feature-button 2 EndCall
feature-button 3 Cfwdall
feature-button 4 HLog

!!
voice register pool 12
template 5

Note
For more details on HLog functionality, see Call Coverage Features, on page 1195 chapter.

Where to Go Next
If you are done modifying the parameters for phones in CiscoUnifiedCME, generate a new configuration file and restart the phones. For more information, see Generate Configuration Files for Phones, on page 390.

Ephone Templates
The softkeys commands are included in ephone templates that are applied to one or more individual ephones. For more information about templates, see Templates, on page 1393.

HLog Softkey
The HLog softkey must be enabled with the hunt-group logout HLog command before it will be displayed. For more information, see Configure Call Coverage Features, on page 1234.

Feature Information for Softkeys

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 85: Feature Information for Softkeys

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Code Entry</td>
<td>3.0</td>
<td>Account code entry was introduced.</td>
</tr>
<tr>
<td>Barge Softkey</td>
<td>4.3</td>
<td>The Barge, LiveRcd, and TrnsfVM softkeys were added.</td>
</tr>
<tr>
<td>Conferencing Softkeys</td>
<td>4.1</td>
<td>The ConfList, Join, MeetMe, RmLstC, and Select softkeys were added.</td>
</tr>
<tr>
<td>Feature Blocking</td>
<td>4.0</td>
<td>Feature blocking was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Feature Policy Softkey Control</td>
<td>8.5</td>
<td>Allows control display of softkeys on the Cisco Unified SIP IP Phones 8961, 9951, and 9971 using the feature policy template.</td>
</tr>
<tr>
<td>Flash Softkey</td>
<td>3.0</td>
<td>Flash softkey was introduced.</td>
</tr>
<tr>
<td>Immediate Divert Softkey for SIP Phones</td>
<td>8.5</td>
<td>Added support for iDivert softkey for SIP IP phones.</td>
</tr>
<tr>
<td>Programmable Line Keys</td>
<td>8.5</td>
<td>Allows you to configure a feature button or a URL button on a line key on both SIP and SCCP IP Phones.</td>
</tr>
<tr>
<td>Programmable Line Keys Enhancement</td>
<td>8.8</td>
<td>Adds support for softkeys as programmable line keys on Cisco Unified 6945, 8941, and 8945 SCCP IP Phones.</td>
</tr>
<tr>
<td>Programmable Line Keys for Cisco Unified SIP IP Phones</td>
<td>9.0</td>
<td>Adds support for softkeys as programmable line keys on Cisco Unified 6911, 6921, 6941, 6945, 6961, 8941, and 8945 SIP IP Phones.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Softkey Display</td>
<td>12.3</td>
<td>Support added for the softkeys 'Recents', 'Contacts', 'Apps', 'Favorites', 'Messages', and 'Settings' on Cisco IP Conference Phones 7832 and 8832.</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>Support added for the softkeys 'Details' on Cisco IP Phone 7800 Series, and 'Show detail' on Cisco IP Phone 8800 Series.</td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td>HLog Softkey support for SIP Phone was introduced.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Configurable softkey display for IP phones running SIP is supported for the Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>• An optional HLog softkey was added to the connected, idle, and seized call states.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The ability to customize softkey display in the hold call state was added. The ability to customize softkey display in the hold call state was added.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Configurable softkey display (the ability to customize softkey display in the alerting, connected, idle, and seized call states) was introduced.</td>
</tr>
</tbody>
</table>
Speed Dial

- Information About Speed Dial, on page 935
- Configure Speed Dial, on page 939
- Configuration Examples for Speed Dial, on page 950
- Where to Go Next, on page 952
- Feature Information for Speed Dial, on page 952

Information About Speed Dial

Speed Dial Summary

Speed dial allows a phone user to quickly dial a number from a list. The different types of speed dial are summarized in Table 86: Speed Dial Types, on page 935.

Table 86: Speed Dial Types

<table>
<thead>
<tr>
<th>Speed Dial Type</th>
<th>Availability of Numbers</th>
<th>Description</th>
<th>How Configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Speed Dial Menu</td>
<td>System-level list of frequently called numbers that can be programmed on all phones.</td>
<td>Users invoke entries from the Directories > Local Speed Dial menu on IP phones.</td>
<td>Enable a Local Speed Dial Menu, on page 939</td>
</tr>
</tbody>
</table>

A maximum of 32 numbers can be defined.
Numbers are set up by an administrator using an XML File speeddial.xml, which is placed in the Cisco Unified CME router’s flash memory.
<table>
<thead>
<tr>
<th>Speed Dial Type</th>
<th>Availability of Numbers</th>
<th>Description</th>
<th>How Configured</th>
</tr>
</thead>
</table>
| Personal Speed Dial Menu | Speed dial entries are local to a specific IP phone. A maximum of 24 numbers per phone can be defined. | Users invoke entries from the Directories > Local Services > Personal Speed Dials menu on IP phones. | • Enable a Personal Speed Dial Menu on SCCP Phones, on page 942
• Enable a Personal Speed Dial Menu on SIP Phones, on page 949 |
| Speed Dial Buttons and Abbreviated Dialing | Up to 99 speed-dial codes per phone. | For IP phones, the first entries that are set up occupy any unused line buttons and are invoked when a user presses one of these line buttons. Subsequent entries are invoked when a phone user dials the speed-dial code (tag) and the Abbr soft key. Note: The feature to invoke subsequent entries by dialing the speed-dial code (tag) and the Abbr soft key is supported only on SCCP phones.
Analog phone users invoke speed dial by entering an asterisk and the speed-dial code (tag) number of the desired entry. | • Define Speed-Dial Buttons and Abbreviated Dialing on SCCP Phones, on page 943
• Define Speed-Dial Buttons on SIP Phones, on page 948 |
| Bulk-Loading Speed Dial Numbers | There can be up to ten text files containing lists of many speed-dial numbers that are loaded into flash, slot, or TFTP locations to be accessed by phone users. The ten files can hold 10,000 numbers. | Phone users dial the following sequence: prefix-code list-id index [extension-digits]
There can be as many numbers as there are monitor lines on a phone. |
| Monitor-Line Button for Speed Dial | Speed dial entries are local to a specific IP phone. There can be as many numbers as there are monitor lines on a phone. | IP phone buttons that are configured as monitor lines can be used to speed-dial the line that is being monitored.
No additional configuration required. | Enable Bulk-Loading Speed-Dial, on page 945 |
| Direct Station Select (DSS) Service | All phones on which speed-dial line or monitor line button is configured. | Allows phone user to fast transfer a call by pressing a single speed-dial line or monitor line button. | Enable DSS Service, on page 941 |
Speed Dial Buttons and Abbreviated Dialing

In a Cisco Unified CME system, each phone can have up to 32 local speed-dial numbers (codes 1 to 32), up to 99 system-level speed-dial numbers (codes 1 to 99), or a combination of the two. If you program both a local and a system-level speed-dial number with the same speed-dial code (tag), the local number takes precedence. Typically you will want to reserve codes 1 to 32 for local, per-phone speed-dial numbers and use codes 33 to 99 for system-level speed-dial numbers so that there is no conflict.

On an IP phone, speed-dial entries are assigned to unused line buttons. Then, after all line buttons are used, subsequent entries are added but do not have an assigned line button. The speed-dial entry is not related to the physical button layout of the phone. Entries are assigned in order of speed-dial tag.

You can create local speed-dial codes with locked numbers that cannot be changed from the phone. You can also create empty local speed-dial codes on an IP phone without a telephone number. These empty speed-dial codes can be changed by the phone user to add a telephone number.

Changes to speed-dial entries are saved into the router’s nonvolatile random-access memory (NVRAM) configuration after a timer-based delay.

For configuration information, see Define Speed-Dial Buttons and Abbreviated Dialing on SCCP Phones, on page 943.

Bulk-Loading Speed Dial Numbers

In Cisco Unified CME 4.0 and later versions, up to ten text files containing lists of many speed-dial numbers can be loaded into flash, slot, or TFTP locations to be accessed by phone users. The ten files can hold a total of up to 10,000 numbers. Each list holds numbers that are in an appropriate format for dialing from IP phones and SCCP-enabled analog phones.

Up to ten bulk speed-dial lists can be created. These lists might be corporate directory lists, regional lists, or local lists, for example. The speed-dial numbers in these lists can be system-level (available to all ephones) or personal (available to one or more specified ephones). Each list receives a unique speed-dial list ID number (sd-id) between 0 and 9.

Speed-dial list ID numbers that are not used for global speed-dial lists are available to identify personal, custom lists that are associated with individual phones.

Bulk speed-dial lists contain entries of speed-dial codes and the associated phone numbers to dial. Each entry in a speed-dial list must appear on a separate line. The fields in each entry are separated by commas (,). A line that begins with a semicolon (;) is handled as a comment. The format of each entry is shown in the following line.

```
index,digits,[name],[hide],[append]
```

Table 87: Bulk Speed-Dial List Entry, on page 937 explains the fields in a bulk speed-dial list entry.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>Zero-filled number that uniquely identifies this index entry. Maximum length: 4 digits. All index entries must be the same length.</td>
</tr>
</tbody>
</table>
Monitor-Line Button for Speed Dial

For Cisco CME 3.2 and later versions, a monitor-line button can be used to speed-dial the monitor line’s number. A monitor line is a line that is shared by two people. Only one person can make and receive calls on the shared line at a time, while the other person, whose line is in monitor mode, is able to see that the line is in use. Speed dialing is available when monitor lines’ lamps are off, indicating that the line is not in use. For example, an assistant who wants to talk with a manager can press an unlit monitor-line button to speed-dial the manager’s number.

A monitor-line lamp is off or unlit only when its line is in the idle call state. The idle state occurs before a call is made and after a call is completed. For all other call states, the monitor-line lamp is on or lit.

The following example shows a monitor-line configuration. Extension 2311 is the manager’s line, and ephone 1 is the manager’s phone. The manager’s assistant monitors extension 2311 on button 1 of ephone 2. When the manager is on the line, the lamp is lit on the assistant’s phone. If the lamp is not lit, the assistant can speed-dial the manager by pressing button 2.

```plaintext
ephone-dn 11
  number 2311

ephone-dn 22
  number 2322

ephone 1
  button 1:11

ephone 2
  button 1:22 2m11
```

No additional configuration is required to enable a phone user to speed dial the number of a monitored shared line, when the monitored line is in an idle call state.
DSS (Direct Station Select) Service

In Cisco Unified CME 4.0(2) and later versions, the DSS (Direct Station Select) Service feature allows the phone user to press a single speed-dial line button to transfer an incoming call when the call is in the connected state. This feature is supported on all phones on which monitor line buttons for speed dial or speed-dial line buttons are configured.

When the DSS service is enabled, the system automatically generates a simulated transfer key event when needed, eliminating the requirement for the phone user to press the Transfer button.

Disabling the service changes the behavior of the speed-dial line button on all IP phones so that a user pressing a speed-dial button in the middle of a connected call will play out the speed-dial digits into the call without transferring the call. When DSS service is disabled, the phone user must first press Transfer and then press the monitor or speed-dial line button to transfer the incoming call.

For configuration information, see Enable a Local Speed Dial Menu, on page 939.

Phone User-Interface for Speed Dial and Fast Dial

In Cisco Unified CME 4.3 and later versions, IP phone users can configure their own speed-dial and fast-dial settings directly from the phone. The speed-dial and fast-dial settings can be added or modified on the phone by using a menu available with the Services feature button. Extension Mobility users can add or modify speed-dial settings in their user profile after logging in. Fast-dial settings are not configurable from Extension Mobility phones, nor is the logout profile configurable from the phone.

The speed-dial and fast-dial feature in Unified CME gives phone users the convenience of configuring their speed-dial and fast-dial settings directly from their phones.

The speed-dial and fast-dial user interface is enabled by default on all phones with displays. You can disable the capability for an individual phone in Cisco Unified CME to prevent a phone user from accessing the interface. If a phone's speed-dial or fast-dial setting is configured with an ephone-template, the configuration from the phone applies only to the specific phone and does not change the ephone-template configuration.

For configuration information, see Enable Phone User Interface for Configuring Speed-Dial and Fast-Dial, on page 947.

For information on how phone users configure speed-dial and fast-dial buttons using the phone user-interface, see the Cisco Unified IP Phone documentation for Cisco Unified CME.

Configure Speed Dial

Enable a Local Speed Dial Menu

To enable a local speed-dial menu for all phones, SCCP and SIP, in Cisco Unified CME, perform the following steps:
Enable a Local Speed Dial Menu

Restriction

- If a speed dial XML file contains incomplete information, for example the name or telephone number is missing for an entry, any information in the file that is listed after the incomplete entry is not displayed when the local speed dial directory option is used on a phone.

- Before Cisco Unified CME 4.1, local speed-dial menu is not supported on SIP phones.

- Before Cisco CME 3.3, analog phones are limited to nine speed-dial numbers.

Before you begin

An XML file called speeddial.xml must be created and copied to the TFTP server application on the Cisco Unified CME router. The contents of speeddial.xml must be valid as defined in the Cisco-specified directory DTD. See Example for Enabling a Local Speed Dial Menu, on page 950 and the Cisco Unified IP Phone Services Application Development Notes.

SUMMARY STEPS

1. enable
2. copy tftp flash
3. configure terminal
4. ip http server
5. ip http path flash:
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td>- Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<p>| Step 2 copy tftp flash | Copies the file from the TFTP server to the router flash memory. |
| Example: Router# copy tftp flash | - At the first prompt, enter the IP address or the DNS name of the remote host. |
| | - At both filename prompts, enter speeddial.xml. |
| | - At the prompt to erase flash, enter no. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ip http server</td>
<td>Enables the Cisco web-browser user interface on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ip http path flash:</td>
<td>Sets the base HTTP path to flash memory.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip http path flash:</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Enable DSS Service

To enable DSS Service for all on all SCCP phones on which monitor line buttons for speed dial or speed-dial line buttons are configured, perform the following steps.

Before you begin

Cisco Unified CME 4.0(2) or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. service dss
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Enable a Personal Speed Dial Menu on SCCP Phones

To enable a personal speed-dial menu, perform the following steps.

Restriction

- A personal speed-dial menu is available only on certain Cisco Unified IP phones, such as the 7940, 7960, 7960G, 7970G, and 7971G-GE. To determine whether personal speed-dial menu is supported on your IP phone, see the Cisco Unified CME User Guides for your IP phone model.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. fastdial dial-tag number name name-string
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:
Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:
Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config)# ephone 1</td>
<td>• phone-tag—Unique number of the phone for which you want to program personal speed-dial numbers.</td>
</tr>
</tbody>
</table>
Define Speed-Dial Buttons and Abbreviated Dialing on SCCP Phones

To define speed-dial buttons and abbreviated dialing codes, perform the following steps for each speed-dial definition to be configured.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| Creates an entry for a personal speed-dial number on this phone. | **Step 4** fastdial dial-tag number name name-string
Example:
Router(config-ephone)# fastdial 1 5552 name Sales |
| Returns to privileged EXEC mode. | **Step 5** end
Example:
Router(config-ephone)# end |

Note
The range for dial-tag is 1 to 24 for Cisco Unified CME versions earlier than 10.5

- **dial-tag**—Unique identifier to identify this entry during configuration. Range is 1 to 100.
- **number**—Telephone number or extension to be dialed.
- **name**—Label to appear in the Personal Speed Dial menu, containing a string of up to 24 alphanumeric characters. Personal speed dial is handled through an XML request, so characters that have special meaning to HTTP, such as ampersand (&), percent sign (%), semicolon (;), angle brackets (<>), and vertical bars (||), are not allowed.

Restriction
- On-hook abbreviated dialing using the Abbr soft key is supported only on the following phones:
 - Cisco Unified IP Phone 7905G
 - Cisco Unified IP Phone 7912G
 - Cisco Unified IP Phone 7920G
 - Cisco Unified IP Phone 7970G
 - Cisco Unified IP Phone 7971G-GE
- System-level speed-dial codes cannot be changed by the phone user, at the phone.
- Before Cisco CME 3.3, analog phones were limited to nine speed-dial numbers.
- Before to Cisco CME 3.3, speed-dial entries that were in excess of the number of physical phone buttons available were ignored by IP phones.

SUMMARY STEPS

1. enable
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 55</td>
<td>• phone-tag—Unique sequence number that identifies the phone on which you are adding speed-dial capability.</td>
</tr>
<tr>
<td>Step 4 speed-dial speed-tag digit-string [label label-text]</td>
<td>Defines a unique speed-dial identifier, a digit string to dial, and an optional label to display next to the button.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# speed-dial 1 +5001 label “Head Office”</td>
<td>• speed-tag—identifier for a speed-dial definition. Range is 1 to 33.</td>
</tr>
<tr>
<td>Step 5 restart</td>
<td>Performs a fast reboot of this ephone. Does not contact the DHCP or TFTP server for updated information.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# restart</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits configuration mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 8 directory entry { (directory-tag number name name)</td>
<td>Adds a system-level directory and speed-dial definition.</td>
</tr>
<tr>
<td>clear}</td>
<td>• directory-tag—Digit string that provides a unique identifier for this entry. Range is 1 to 99.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Enable Bulk-Loading Speed-Dial

To enable bulk-loading speed-dial numbers, perform the following steps:

Restriction

- Bulk speed dial is not supported on FXO trunk lines.

Before you begin

- Cisco Unified CME 4.0 or a letter version.
- The bulk speed-dial text files containing the lists must be available in a location that is available to the Cisco Unified CME router: flash, slot, or TFTP location.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. bulk-speed-dial list list-id location
5. bulk-speed-dial prefix prefix-code
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Verify Bulk Speed-Dial Parameters on SCCP Phones

Command or Action

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bulk-speed-dial list list-id location</code></td>
<td>identifies the location of a bulk speed-dial list.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# bulk-speed-dial list 6 flash:sd_dept_0_1_8.txt</td>
<td></td>
</tr>
<tr>
<td>• <code>list-id</code>—Digit that identifies the list to be used. Range is 0 to 9.</td>
<td></td>
</tr>
<tr>
<td>• <code>location</code>—Location of the bulk speed-dial text file in URL format. Valid storage locations are TFTP, Slot 0/1, and flash memory.</td>
<td></td>
</tr>
<tr>
<td>This command can also be configured in ephone configuration mode for specific phones.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bulk-speed-dial prefix prefix-code</code></td>
<td>Sets the prefix code that phone users dial to access speed-dial numbers from a bulk speed-dial list.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# bulk-speed-dial prefix #7</td>
<td></td>
</tr>
<tr>
<td>• <code>prefix-code</code>—One- or two-character access code for speed dial. Valid characters are digits from 0 to 9, asterisk (*), and pound sign (#). Default is #.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Bulk Speed-Dial Parameters on SCCP Phones

Command or Action

show telephony-service bulk-speed-dial

Use this command to display information on speed-dial lists.

Example:

Router# `show telephony-service bulk-speed-dial summary`

<table>
<thead>
<tr>
<th>List-id</th>
<th>Entries</th>
<th>Size</th>
<th>Reference</th>
<th>url</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40</td>
<td>3840</td>
<td>Global</td>
<td>tftp://192.168.254.254/phonedirs/uut.csv</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>1920</td>
<td>Global</td>
<td>phoneBook.csv</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>1440</td>
<td>Global</td>
<td>tftp://192.168.254.254/phonedirs/big.txt</td>
</tr>
<tr>
<td>6</td>
<td>24879</td>
<td>2388384</td>
<td>ephone-2</td>
<td>tftp://192.168.254.254/phonedirs/big.txt1</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>1920</td>
<td>ephone-2</td>
<td>phoneBook.csv</td>
</tr>
<tr>
<td>6</td>
<td>24879</td>
<td>2388384</td>
<td>ephone-3</td>
<td>big.txt1</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>1920</td>
<td>ephone-3</td>
<td>phoneBook.csv</td>
</tr>
</tbody>
</table>

4 Global List(s) 4 Local List(s)
Enable Phone User Interface for Configuring Speed-Dial and Fast-Dial

To enable a phone user to configure speed-dial and fast-dial numbers from a menu on their phone, perform the following steps. This feature is enabled by default. You must perform this task only if the feature was previously disabled on a phone.

Restriction
Extension Mobility users cannot configure fast-dial settings (for personal speed-dial) from their phone.

Before you begin
- Cisco Unified CME 4.3 or a later release.
- The Service URL must be configured. See Provision URLs for Feature Buttons for SCCP Phones, on page 1439.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `phone-ui speeddial-fastdial`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router# enable</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ephone phone-tag</code></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ephone 12</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>phone-ui speeddial-fastdial</code></td>
<td>Enables a phone user to configure speed-dial and fast-dial numbers on their phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ephone)# phone-ui speeddial-fastdial</code></td>
<td>This command is enabled by default.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ephone)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
What to do next
For information on how phone users configure speed dial and fast dial buttons using the UI, see Cisco Unified IP Phone documentation for Cisco Unified CME.

Define Speed-Dial Buttons on SIP Phones
To define speed-dial buttons for Cisco SIP Phones, perform the following steps.

Restriction
• Certain SIP phones, such as the Cisco Unified IP Phone 7960 and 7940, cannot be configured to enable speed dialing. Phone users with these phones must manually configure speed-dial numbers by using the user interface at their Cisco Unified IP phone.

• On Cisco Unified IP phones, speed-dial definitions are assigned to available buttons that have not been assigned to actual extensions. Speed-dial definitions are assigned in the order of their identifier numbers.

• Phones with Cisco ATA devices are limited to a maximum of nine speed-dial numbers. Speed-dial numbers cannot be programmed by using the user interface at the phone.

Before you begin
Cisco CME 3.4 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register pool pool-tag
4. speed-dial speed-tag digit-string [label label-text]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set parameters for specified SIP phone.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 23</td>
<td></td>
</tr>
</tbody>
</table>
Enable a Personal Speed Dial Menu on SIP Phones

To enable a personal speed-dial menu, perform the following steps.

Restriction

• A personal speed-dial menu is available only on certain Cisco Unified IP phones, such as the 7811, 7821, 7841, 7861, 8841, and 8861. To determine whether personal speed-dial menu is supported on your IP phone, see the Cisco Unified CME User Guides for your IP phone model.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag
4. fastdial entry-tag number name name-string
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router# enable</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Speed Dial

Example for Enabling a Local Speed Dial Menu

The following commands enable the Cisco web browser and set the HTTP path to flash memory so that the speeddial.xml file in flash memory is accessible to IP phones:

```plaintext
ip http server
ip http path flash:
```

The following XML file—speeddial.xml, defines three speed-dial numbers that will appear to the user after they press the Directories button on an IP phone.

```xml
<CiscoIPPhoneDirectory>
  <Title>Local Speed Dial</Title>
</CiscoIPPhoneDirectory>
```
Example for Configuring Personal Speed Dial Menu on SIP Phone

The following example creates a directory of three personal speed-dial listings for one IP phone:

```
ephone 1
  fastdial 1 5489 name Marketing
  fastdial 2 12125550155 name NY Sales
  fastdial 3 12135550112 name LA Sales
```

Example for Configuring Speed-Dial Buttons and Abbreviated Dialing

The following example defines two locked speed-dial numbers with labels to appear next to the speed-dial buttons on ephone 1. These speed-dial definitions are assigned to the next empty buttons after all extensions are assigned. For instance, if two extensions are assigned on the Cisco Unified IP Phones 7960 and 7960G, these speed-dial definitions appear on the third and fourth buttons.

This example also defines two system-level speed-dial numbers with the directory entry command. One is a local extension and the other is a ten-digit telephone number.

```
ephone 1
  mac-address 1234.5678.ABCD
  button 1:24 2:25
  speed-dial 1 +5002 label Receptionist
  speed-dial 2 +5001 label Security

telephony-service
  directory entry 34 5003 name Accounting
  directory entry 45 8185550143 name Corp Acctg
```

Example for Configuring Bulk-Loading Speed Dial

The following example changes the default bulk speed-dial prefix to #7 and enables global bulk speed-dial list number 6 for all phones. It also enables a personal bulk speed-dial list for ephone 25.

```
telephony-service
  bulk-speed-dial list 6 flash:sd_dept_01_1_87.txt
  bulk-speed-dial prefix #7

ephone-dn 3
  number 2555
```
Example for Configuring Speed-Dial and Fast-Dial User Interface

The following example shows that the user interface for speed-dial and fast-dial configuration is disabled on phone 12:

```
ephone 12
  no phone-ui speeddial-fastdial
ephone-template 5
  mac-address 000F.9054.31BD
  type 7960
  button 1:10 2:7
```

Where to Go Next

If you are finished creating or modifying speed-dial configurations for individual phones, you must reboot phones to download the modified configuration. See Reset and Restart Cisco Unified IP Phones, on page 399.

DSS Call Transfer

Monitor-line button speed dial, also known as direct station select (DSS) call transfer, allows you to use a monitored line button to speed-dial a call to that extension. If you want to allow consultation during DSS transfers, see Information About Call Transfer and Forward, on page 1107.

Feature Information for Speed Dial

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 88: Feature Information for Speed Dial

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Dial</td>
<td>4.3</td>
<td>Added user interface on SCCP phones for programming Speed Dial and Fast Dial.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Added support for local and personal speed-dial menus for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>4.0(2)</td>
<td>Added support for DSS Service which allows phone user to fast transfer a call by pressing a single speed-dial line or monitor line button.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>Added support for bulk speed-dial list for SCCP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for speed dial buttons on SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>• Added support for personal speed-dial from SCCP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Number of speed-dial definitions that can be created was increased from 4 to 33.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The ability to program speed-dial numbers at the phone was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The ability to lock speed-dial numbers was introduced.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Speed dial using the <code>speed-dial</code> command was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 36

Video Support

- Prerequisites for Video Support, on page 955
- Restrictions for Video Support, on page 956
- Information About Video Support, on page 957
- Configure Video Support, on page 961
- Where to Go Next, on page 973
- Feature Information for Video Support, on page 973

Prerequisites for Video Support

- H.323 or SIP network for voice calls is operational.

- Cisco Unified CME 4.0 or a later version.

- Cisco Unified IP phones are registered in Cisco Unified CME.

- Connection between Cisco Unified Video Advantage (CUVA) 1.02 or a later version and the Cisco Unified IP phone is up. From a PC with CUVA 1.02 or a later version installed, ensure that the line between the CUVA and the Cisco Unified IP phone is green. For more information, see Cisco Unified Video Advantage User Guide.

- Correct video firmware is installed on the Cisco Unified IP phone.
 - For Cisco Unified IP Phone 7940G and 7960G, 6.0(4) or a later version.
 - Cisco Unified IP Phone 7970G, 7.0(3) or a later version.
 - Cisco Unified IP Phone 7941G and 7961G, 7.0(3) or a later version.

Note

Other video-enabled endpoints registered with a Cisco Unified Communications Manager (Cisco Unified CM) can place video calls to Cisco Unified IP phones only if the phones are registered with a Cisco Unified CME and the appropriate video firmware is installed on the Cisco Unified IP phone.
Restrictions for Video Support

- This feature supports only the following video codecs:
 - H.261—Cisco Unified CME 4.0 and later versions
 - H.263—Cisco Unified CME 4.0 and later versions
 - H.264—Cisco Unified CME 7.1 and later versions

- This feature supports only the following video formats:
 - 4CIF—Resolution 704x576
 - 16CIF—Resolution 1408x1152
 - Common Intermediate Format (CIF)—Resolution 352x288
 - One-Quarter Common Intermediate Format (QCIF)—Resolution 176x144
 - Sub QIF (SQCIF)—Resolution 128x96

- The call start fast feature is not supported with an H.323 video connection. You must configure call start slow for H.323 video. For configuration information, see Enable Support for Video Streams Across H.323 Networks, on page 968.

- Video capabilities are configured per phone, not per line.

- All call feature controls (for example, mute and hold) apply to both audio and video calls, if applicable.

- This feature does not support the following:
 - Dynamic addition of video capability—The video capability must be present before the call setup starts to allow the video connection.
 - T-120 data connection between two SCCP endpoints.
 - Video security
 - Far-end camera control (FECC) for SCCP endpoints.
 - Video codec renegotiation—The negotiated video codec must match or the call falls back to audio-only. The negotiated codec for the existing call can be used for a new call.
 - SIP endpoints—When a video-capable SCCP endpoint connects to a SIP endpoint, the call falls back to audio-only (prior to Cisco Unified CME 8.6).
 - Video supplementary services between Cisco Unified CME and Cisco Unified CM.

- If the Cisco Unified CM is configured for Media Termination Point (MTP) transcoding, a video call between Cisco Unified CME and Cisco Unified CM is not supported.

- Video telephony is not supported with Cisco Unified CME MTP and codec g729/dspfarm-assist configuration under ephone.
• If an SCCP endpoint calls an SCCP endpoint on the local Cisco Unified CME and one of the endpoints transferred across an H.323 network, a video-consult transfer between the Cisco Unified CME systems is not supported.

• When a video-capable endpoint connects to an audio-only endpoint, the call falls back to audio-only. During audio-only calls, video messages are skipped.

• For Cisco Unified CME, the video capabilities in the vendor configuration firmware is a global configuration. This means that, although video can be enabled per ephone, the video icon shows on all Cisco Unified IP phones supported by Cisco Unified CME.

• Because of the extra CPU consumption on RTP-stream mixing, the number of video calls supported on Cisco Unified CME crossing an H.323 network is less than the maximum number of ephones supported.

• Cisco Unified CME cannot differentiate audio-only streams and audio-in-video streams. You must configure the DSCP values of audio and video streams in the H.323 dial-peers.

• If RSVP is enabled on the Cisco Unified CME, a video call is not supported.

• A separate VoIP dial peer, configured for fast-connect procedures, is required to complete a video call from a remote H.323 network to a Cisco Unity Express system.

• Video call is enabled on Cisco Unified CME, when the active call is held and resumed.

Information About Video Support

Video Support Overview

Video support allows you to pass a video stream, with a voice call, between two video-capable SCCP endpoints and between SCCP and H.323 endpoints. Through the Cisco Unified CME router, the video-capable endpoints can communicate with each other locally to a remote H.323 endpoint through a gateway or through an H.323 network.

Video capabilities are disabled by default, and enabling video capabilities on Cisco Unified CME does not automatically enable video on all ephones. You must first enable video globally for all video-capable SCCP phones associated with a Cisco Unified CME router and then enable video for each phone individually. Video parameters, like maximum bit rate, are set at a system level.

For information about the global configuration for video capabilities, see Enable System-Level Video Capabilities, on page 969.

For information about configuring an individual phone for video capabilities, see Enable Video Capabilities on a Phone, on page 970.

Note

After video is enabled globally, all video-capable ephones display the video icon.

SIP Trunk Video Support

Cisco Unified CME 7.1 adds the following support for video calls:
• Support for video calls between SCCP endpoints across different Cisco Unified CME routers connected through a SIP trunk. All previously supported SCCP video endpoints and video codecs are supported.

• H.264 video support—H.264 provides high-quality images at low bit rates and is widely used in commercial video conferencing systems. The H.264 codec supports the following video calls:
 • SCCP to SCCP
 • SCCP to SIP
 • SCCP to H.323
 • Dynamic payload negotiation for H.264 (both SCCP to SIP and SCCP to H323)

Restriction

• On Cisco Unified CME 8.6, calls made from SIP endpoints across a SIP trunk terminating on a non-CME endpoint (such as those controlled by a Cisco Unified CM or video conferencing MTU) require the following CLI to be configured to allow video:

```
voice service voip
sip
  asymmetric payload full
```

• The no supplementary-service sip moved-temporarily and no supplementary-service sip refer commands are not supported for video calls through a SIP trunk.

• Supplementary services like call hold, call resume and call transfer are not supported on video calls between SCCP and SIP endpoints that are registered with CME. The call gets converted into audio-only mode when these supplementary services are invoked.

Restriction

No new configuration is required to support these enhancements. For configuration information, see Configure Video Support, on page 961.

Matching Endpoint Capabilities

During phone registration, information about endpoint capabilities is stored in the Cisco Unified CME. These capabilities are used to match with other endpoints during call setup. Endpoints can update at any time; however, the router recognizes endpoint-capability changes only during call setup. If a video feature is added to a phone, the information about it is updated in the router’s internal data structure but that information does not become effective until the next call. If a video feature is removed, the router continues to see the video capability until the call is terminated but no video stream is exchanged between the two endpoints.

Note

The endpoint-capability match is executed each time a new call is set up or an existing call is resumed.

Retrieving Video Codec Information

Voice gateways use dial-peer configurations to retrieve codec information for audio codecs. Video codec selection is done by the endpoints and is not controlled by the H.323 service-provider interface (SPI) through...
dial-peer or other configuration. The video-codec information is retrieved from the SCCP endpoint using a capabilities request during call setup.

Call Fallback to Audio-Only

When a video-capable endpoint connects to an audio-only endpoint, the call falls back to an audio-only connection. Also, for certain features such as conferencing, where video support is not available, the call falls back to audio-only.

Cisco Unified CME routers use a call-type flag to indicate whether the call is video-capable or audio-only. The call-type flag is set to video when the video capability is matched or set to audio-only when connecting to an audio-only TDM or an audio-only SIP endpoint.

Note

During an audio-only connection, all video-related media messages are skipped.

Call Setup for Video Endpoints

The process for handling SCCP video endpoints is the same as that for handling SCCP audio endpoints. The video call must be part of the audio call. If the audio call setup fails, the video call fails.

During the call setup for video, media setup handling determines if a video-media-path is required. If so, the corresponding video-media-path setup actions are taken.

- For an SCCP endpoint, video-media-path setup includes sending messages to the endpoints to open a multimedia path and start the multimedia transmission.
- For an H.323 endpoint, video-media-path setup includes an exchange between the endpoints to open a logical channel for the video stream.

A call-type flag is set during call setup on the basis of the endpoint-capability match. After call setup, the call-type flag is used to determine whether an additional video media path is required. Call signaling is managed by the Cisco Unified CME router and the media stream is directly connected between the two video-enabled SCCP endpoints on the same router. Video-related commands and flow-control messages are forwarded to the other endpoint. Routers do not interpret these messages.

Call Setup Between Two Local SCCP Endpoints

For interoperation between two local SCCP endpoints on the same router, video call setup uses all existing audio-call-setup handling, except during media setup. During media setup, a message is sent to establish the video-media-path. If the endpoint responds, the video-media-path is established and a start-multimedia-transmission function is called.

Call Setup Between SCCP and H.323 Endpoints

Call setup between SCCP and H.323 endpoints is the same as it is between SCCP endpoints except that if video capability is selected, the event is posted to the H.323 call leg to send out a video open logical channel (OLC) and the gateway generates an OLC for the video channel. Because the router needs to both terminate and originate the media stream, video must be enabled on the router before call setup begins.
Call Setup Between Two SCCP Endpoints Across an H.323 Network

If call setup between SCCP endpoints occurs across an H.323 network, the setup is a combination of the processes listed in the previous two sections. The router controls the video media setup between the two endpoints and the event is posted to the H.323 call leg so that the gateway can generate an OLC.

Because the endpoint capability negotiation and match occur after the H.323 connect message, video streams over H.323 network require slow-start on call setup procedures for Cisco Unified CME. An H.323 network can connect to a remote Cisco Unified CME router, Cisco Unified CM, remote IP to IP gateway, or a video-capable H.323 endpoint. For configuration information, see Enable System-Level Video Capabilities, on page 969.

SIP Endpoint Video and Camera Support for Cisco Unified IP Phones 8961, 9951, and 9971

Cisco Unified CME 8.6 and later versions add phone-based video support and Universal Serial Bus (USB) camera support for Cisco Unified IP Phones 8961, 9951, and 9971. The Cisco Unified IP Phones 8961, 9951, and 9971 display local video using the USB camera. Cisco Unified IP Phones 9951 and 9971 with phone load 9.1.1 decode remote incoming video RTP streams and display the video on the phone’s display screen. However, the video and USB camera capabilities of these two phones are disabled on Cisco Unified CME by default and are enabled by setting up the video and camera parameters in the phone provisioning file.

Cisco Unified CME 8.6 supports local SIP-video-to-SIP-video calls and SIP-video-to-SCCP-CUVA-video calls on Cisco Unified IP Phones 8961, 9951, and 9971 on the line side. On the trunk side, SIP video call is only supported with SIP trunk. H323 trunk is not supported for video calls on Cisco Unified IP Phones 9951 and 9971.

The media path for SIP video call is flow through and media flow-around is not supported for SIP line in Cisco Unified CME.

Video and Camera Configuration for Cisco Unified IP Phones

Cisco Unified CME uses the **video** and **camera** commands to allow video or camera to be enabled per phone, per template, or for global configuration. The **video** and **camera** commands are configured under the voice register pool, voice register template, and voice register global configuration modes. Once the commands are configured, the **create profile** command is required to have the phones provision file update with new configuration. For more information on enabling camera and video parameters on phones, see Enable Video and Camera Support on Cisco Unified SIP Phones, on page 961.

The changes in video and camera configuration are applied to the phones when Cisco Unified CME sends the request to a phone through a service-control event in a SIP NOTIFY message. In earlier versions of Cisco Unified CME, SIP phones were required to reset and restart to update the new configuration parameters.

In Cisco Unified CME 8.6 and later versions, you use the **apply-config** command under voice register pool and voice register global configuration modes to dynamically apply the video and camera configuration changes to the phone configuration of Cisco Unified IP Phones 8961, 9951, and 9971 without restarting or resetting the phones and without causing any service interruption.

When Cisco Unified IP Phones 8961, 9971 and 9951 receive the apply-config request, the phones retrieve the new configuration file from the TFTP server and compare it with the existing configuration. The phones may restart themselves if there are any changes that requires a restart; otherwise, the phones apply the changes dynamically without restarting.

For more information, see Apply Video and Camera Configuration to Cisco Unified SIP Phones, on page 965.
Bandwidth Control for SIP Video Calls

Video call bandwidth control is critical when there is a limit in resources. Typically, video calls require much higher bandwidth usage than audio-only calls. Video calls on Cisco Unified IP Phones 9951 and 9971 can use up to 1 Mbps for VGA quality video compared to 64 kbps plus overhead for a G711 audio call.

In Cisco Unified CME 8.6, the Cisco Unified SIP IP Phones 9951 and 9971 with VGA resolution offer 1-Mbps maximum bit-rate and answer with a lower value of received offer and 1 Mbps. Phones transmit video resolution and frame rate is set according to the maximum bandwidth bit-rate negotiated in the SIP offer or answer. Cisco Unified CME controls the SIP global bandwidth by configuring the `bandwidth video tias-modifier bandwidth value [negotiate end-to-end]` command in voice register global configuration mode. The bandwidth control configuration is applied to the SIP phone dial-peer.

There are no new bandwidth changes in the SCCP CUVA side and the bandwidth configuration works the same as in earlier versions of Cisco Unified CME.

For more information on configuring bandwidth control, see Configure Video Bandwidth Control for SIP to SIP Video Calls, on page 966.

Flow of the RTP Video Stream

For video streams between two local SCCP endpoints, the Real-Time Transport Protocol (RTP) stream is in flow-around mode. For video streams between SCCP and H.323 endpoints or two SCCP endpoints on different Cisco Unified CME routers, the RTP stream is in flow-through mode.

- Media flow-around mode enables RTP packets to stream directly between the endpoints of a VoIP call without the involvement of the gateway. By default, the gateway receives the incoming media, terminates the call, and then reoriginates it on the outbound call leg. In flow-around mode, only signaling data is passed to the gateway, improving scalability and performance.

- With flow-through mode, the video media path is the same as for an audio call. Media packets flow through the gateway, thus hiding the networks from each other.

Use the `show voip rtp connection` command to display information about RTP named-event packets, such as caller-ID number, IP address, and port for both the local and remote endpoints, as shown in the following sample output:

```
Router# show voip rtp connections
VoIP RTP active connections : 
No. Callid dstCallid LocalRTP RmtRTP LocalIP RemoteIP
1 102 103 18714 18158 10.1.1.1 192.168.1.1
2 105 104 17252 19088 10.1.1.1 192.168.1.1
Found 2 active RTP connections
```

Configure Video Support

Enable Video and Camera Support on Cisco Unified SIP Phones

To enable video and camera support on Cisco Unified SIP Phones such as 8845, 8865, 9951, and 9971, perform the following steps:
Enable Video and Camera Support on Cisco Unified SIP Phones

NOTE

- Shared line is not supported.
- Video transfer and forward supplementary service is not supported when no supplementary-service sip refer/move-temporary is configured.

BEFORE YOU BEGIN

- Cisco Unified CME 8.6 or a later version.
- The mode cme command is configured under voice register global configuration mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. camera
5. video
6. create profile
7. exit
8. voice register pool pool tag
9. id mac address
10. camera
11. video
12. exit
13. voice register template template-tag
14. camera
15. video
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#voice register global</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 4 camera</td>
<td>Enables the camera command under voice register global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)#camera</td>
</tr>
<tr>
<td>Step 5 video</td>
<td>Enables the video command under voice register global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)#video</td>
</tr>
<tr>
<td>Note</td>
<td>Make sure you configure video command without configuring the camera command so that Cisco Unified SIP phones can switch from phone-based video camera to CUVA. If you configure both video and camera commands together, you may need to manually remove the USB camera from Cisco Unified SIP phones.</td>
</tr>
<tr>
<td>Step 6 create profile</td>
<td>Generates provisioning files required for SIP phones and writes the file to the location specified with the tftp-path command.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)# create profile</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits voice register global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-global)#exit</td>
</tr>
<tr>
<td>Step 8 voice register pool pool tag</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)#voice register pool 5</td>
</tr>
<tr>
<td>Step 9 id mac address</td>
<td>Explicitly identifies a locally available individual SIP phone to support a degree of authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)#id mac 0009.A3D4.1234</td>
</tr>
<tr>
<td>Step 10 camera</td>
<td>Enables the camera command under voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)#camera</td>
</tr>
<tr>
<td>Step 11 video</td>
<td>Enables the video command under voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)#video</td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Exits voice register pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)#exit</td>
</tr>
<tr>
<td>Step 13 voice register template template-tag</td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)#voice register template 10</td>
</tr>
</tbody>
</table>
Enable Video and Camera Support on Cisco Unified SIP Phones

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Range: 1 to 5.</td>
<td></td>
</tr>
</tbody>
</table>

Step 14
camera

Example:

```
Router(config-register-template)#camera
```

Configures the `camera` command under voice register template configuration mode.

Step 15
video

Example:

```
Router(config-register-template)#video
```

Configures the `video` command under voice register template configuration mode.

Step 16
end

Example:

```
Router(config-register-template)# end
```

Returns to privileged EXEC mode.

Examples

The following example shows the `camera` and `video` commands configured in voice register global configuration mode:

```
Router#show run
!
!
voice service voip
  allow-connections sip to sip
  fax protocol t38 version 0 ls-redundancy 0 hs-redundancy 0 fallback none
!
!
voice register global
  mode cme
  bandwidth video tias-modifier 512000 negotiate end-to-end
  max-pool 10
  **camera**
  **video**
!
voice register template 10
```

The following example shows the `video` and `camera` commands configured under voice register pool 5. You can also configure both `camera` and `video` commands under voice register template configuration mode.

```
Router#show run
!
!
voice service voip
  allow-connections sip to sip
  fax protocol t38 version 0 ls-redundancy 0 hs-redundancy 0 fallback none
!
!
voice register global
  mode cme
  bandwidth video tias-modifier 512000 negotiate end-to-end
  max-pool 10
  **camera**
  **video**
!
voice register template 10
```
What to do next

To apply the video and camera configuration to your Cisco Unified SIP IP phones, see Apply Video and Camera Configuration to Cisco Unified SIP Phones, on page 965.

Apply Video and Camera Configuration to Cisco Unified SIP Phones

Apply-config is similar to resetting or restarting the phones and allowing the phones to update phone configuration files. Phones only reboot if needed. To apply video configuration to Cisco Unified IP phones 8845, 8865, 8961, 9951, and 9971, perform the following steps:

Before you begin

Cisco Unified CME 8.6 or a later version.

<table>
<thead>
<tr>
<th>SUMMARY STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. enable</td>
</tr>
<tr>
<td>2. configure terminal</td>
</tr>
<tr>
<td>3. voice register global</td>
</tr>
<tr>
<td>4. apply-config</td>
</tr>
<tr>
<td>5. exit</td>
</tr>
<tr>
<td>6. voice register pool pool tag</td>
</tr>
<tr>
<td>7. apply-config</td>
</tr>
<tr>
<td>8. end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DETAILED STEPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 | **voice register global**
Example:
Router(config)#voice register global
Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.

Step 4 | **apply-config**
Example:
Router(config-register-global)#apply-config
Applies configuration for the Cisco Unified SIP IP phones and restarts all other SIP phones. The **apply-config** command acts as a reset if configured on any other phone type.

Step 5 | **exit**
Example:
Router(cfg-translation-rule)# exit
Exits voice register global configuration mode.

Step 6 | **voice register pool** pool tag
Example:
Router(config)#voice register pool 5
Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.

Step 7 | **apply-config**
Example:
Router(config-register-pool)#apply-config
Applies configuration for the Cisco Unified SIP IP phones and restarts all other SIP phones.

Step 8 | **end**
Example:
Router(config-register-pool)# end
Returns to privileged EXEC mode.

Examples

The following example shows the **apply-config** command configured in voice register pool 5:

```
Router# configure terminal
Router(config)#voice register pool 5
Router(config-register-pool)#apply-config
```

Configure Video Bandwidth Control for SIP to SIP Video Calls

To configure video bandwidth control for SIP to SIP video calls, perform the following steps:

Before you begin

Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. **bandwidth video tias-modifier** *bandwidth value* [negotiate end-to-end]

5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)#voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 bandwidth video tias-modifier bandwidth value [negotiate end-to-end]</td>
<td>Allows to set the maximum video bandwidth bits per second for SIP phones.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)#bandwidth video tias-modifier 512000 negotiate end-to-end</td>
<td>- bandwidth value—Bandwidth value in bits per second. Range: 1 to 99999999.</td>
</tr>
<tr>
<td></td>
<td>- negotiate end-to-end—Bandwidth negotiation policy. Negotiates the minimum SIP-line video bandwidth in SDP end-to-end.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows the **bandwidth video tias-modifier** command configured under voice register global configuration mode:

```
Router#show run
!
!
!
voice service voip
   allow-connections sip to sip
!
!
voice register global
   mode cme
   source-address 10.100.109.10 port 5060
   bandwidth video tias-modifier 512000 negotiate end-to-end
   max-dn 200
   max-pool 42
```
Enable Support for Video Streams Across H.323 Networks

To enable slow connect procedures in Cisco Unified CME for H.323 networks and H.323 video endpoints, perform the following steps:

Restriction

Tandberg versions E3.0 and E4.1 and Polycom Release version 7.5.2 are the only H.323 video endpoints supported by Cisco Unified CME.

Before you begin

For video supplementary services across an H.323 network, H.450 (H.450.2, H.450.3, or H.450.1) standard protocol is required.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. h323
5. call start slow
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 h323</td>
<td>Enters H.323 voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Enable System-Level Video Capabilities

To enable video capabilities and set video parameters for all video-capable phones associated with a Cisco Unified CME router, perform the following steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `service phone videoCapability {0 | 1}`
5. `video`
6. `maximum bit-rate value`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>telephony-service</code> Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td><code>Router(config)# telephony-service</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>`service phone videoCapability {0</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td><code>Router(config-telephony)# service phone videoCapability 1</code></td>
</tr>
<tr>
<td></td>
<td>• The parameter name is word and case-sensitive.</td>
</tr>
</tbody>
</table>
Enable Video Capabilities on a Phone

To enable video for video-capable phones associated with a Cisco Unified CME router, perform the following steps for each phone.

Before you begin

- Video capabilities are enabled at a system level. See Enable System-Level Video Capabilities, on page 969.
- Use the show ephone registered command to identify individual video-capable SCCP phones, by ephone-tag, that are registered in Cisco Unified CME. The following example shows that ephone 1 has video capabilities and ephone 2 is an audio-only phone:

```
Router# show ephone registered
ephone-1  Mac:0011.5C40.75E8 TCP socket:[1] activeLine:0 REGISTERED in SCCP ver 6 + Video and Server in ver 5
   mediaActive:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:7
   IP:10.1.1.6 51833 7970 keepalive 35 max_line 8
   button 1: dn 1 number 8003 CH1 IDLE CH2 IDLE
ephone-2  Mac:0006.D74B.113D TCP socket:[2] activeLine:0 REGISTERED in SCCP ver 6 and Server in ver 5
   mediaActive:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:7
   IP:10.1.1.4 51123 Telecaster 7960 keepalive 36 max_line 6
   button 1: dn 2 number 8004 CH1 IDLE CH2 IDLE
   button 2: dn 4 number 8008 CH1 IDLE CH2 IDLE
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>video</td>
<td>(Optional) Enters video configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Required only if you want to modify the maximum value of the video bandwidth for all video-capable phones.</td>
</tr>
<tr>
<td><code>Router(config-telephony)# video</code></td>
<td></td>
</tr>
<tr>
<td>maximum bit-rate value</td>
<td>(Optional) Sets the maximum IP phone video bandwidth, in kilobits per second.</td>
</tr>
<tr>
<td>Example:</td>
<td>value—Range: 0 to 10000000. Default: 1000000.</td>
</tr>
<tr>
<td><code>Router(conf-tele-video)# maximum bit-rate 256</code></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(conf-tele-video)# end</code></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. video
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 6</td>
<td>• phone-tag—Unique sequence number that identifies an ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>video</td>
<td>Enables video capabilities on the specified ephone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# video</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits ephone configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Video Support

Use the `show running-config` command to verify the video settings in the configuration.

See the telephony-service portion of the output for commands that configure video support on the Cisco Unified CME. See the ephone portion of the output for commands that configure video support for a specific ephone. The following example shows the telephony-service portion of the output:

Example:

```
telephony-service
  video eo
    maximum bit-rate 256
    load 7960-7940 P00306000404
    max-ephones 24
    max-dn 24
    ip source-address 10.0.180.130 port 2000
```
Video Support

Troubleshooting Video Support

For SCCP endpoint troubleshooting, use the following `debug` commands:

- **debug cch323 video**—Enables video debugging trace on the H.323 service-provider interface (SPI).
- **debug ephone detail**—Debugs all Cisco Unified IP phones that are registered to the router, and displays error and state levels.
- **debug h225 asn1**—Displays Abstract Syntax Notation One (ASN.1) contents of H.225 messages that have been sent or received.
- **debug h245 asn1**—Displays ASN.1 contents of H.245 messages that have been sent or received.
- **debug voip ccapi inout**—Displays the execution path through the call-control application programming interface (CCAPI).

For ephone troubleshooting, use the following `debug` commands:

- **debug ephone message**Enables message tracing between Cisco Unified IP phones.
- **debug ephone register**—Sets registration debugging for Cisco Unified IP phones.
- **debug ephone video**—Sets ephone video traces, which provide information about different video states for the call, including video capabilities selection, start, and stop.

For basic video-to-video call checking, use the following `show` commands:

- **show call active video**—Displays call information for SCCP video calls in progress.
- **show ephone offhook**—Displays information and packet counts for ephones that are off-hook.
- **show ephone registered SCCP**—Displays the status of registered ephones.
• **show ephone summary types**—Displays the number of SCCP phones configured along with the number of phones (registered and unregistered) pertaining to each type of phone.

• **show ephone summary brief**—Displays information about the SCCP phones.

• **show ephone registered SCCP summary**—Displays information about the unregistered SCCP phones.

• **show ephone unregistered SCCP summary**—Displays information about the unregistered SCCP phones.

• **show voice register pool type summary**—Displays information about all configured SIP phones which includes SIP phones registered or unregistered with CME.

• **show voip rtp connections**—Displays information about RTP named-event packets, such as caller ID number, IP address, and port for both the local and remote endpoints.

Where to Go Next

After enabling video for video-capable phones in Cisco Unified CME, you must generate a new configuration file. See [Generate Configuration Files for Phones](#), on page 390.

Feature Information for Video Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 89: Feature Information for Video Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>CiscoUnifiedCME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Phone Support</td>
<td>12.0</td>
<td>Support was added for Cisco IP Phones 8845 and Cisco IP Phone 8865 on Cisco Integrated Services Router Generation 2 (T-Train Release, 15.7(3)M).</td>
</tr>
<tr>
<td>New Phone Support</td>
<td>11.7</td>
<td>Support was added for Cisco IP Phones 8845 and Cisco IP Phone 8865 on Cisco 4000 Series Integration Services Router.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SIP Trunk Video Support</td>
<td>7.1</td>
<td>Support was added for video calls between SCCP endpoints across different Cisco Unified CME routers connected through a SIP trunk. H.264 codec support was added.</td>
</tr>
<tr>
<td>Video Support</td>
<td>4.0</td>
<td>Video support was introduced.</td>
</tr>
</tbody>
</table>
SSL VPN Client for SCCP IP Phones

- Information About SSL VPN Client, on page 975
- Configure SSL VPN Client, on page 977
- Configure SSL VPN Client with DTLS on Cisco Unified CME as VPN Headend, on page 995
- Configuration Examples for SSL VPN Client, on page 1001
- Feature Information for SSL VPN Client, on page 1004

Information About SSL VPN Client

SSL VPN Support on Cisco Unified CME with DTLS

In Communications Manager Express 8.6 and later versions, Cisco Unified SCCP IP phones such as 7945, 7965, and 7975 located outside of the corporate network are able to register to Cisco Unified CME through an SSL VPN connection. The SSL VPN connection is set up between a phone and a VPN headend. The VPN headend can either be an Adaptive Secure Appliance (ASA 5500) or the Datagram Transport Layer Security (DTLS) enabled IOS SSL VPN router, see Figure 37: VPN connection between Cisco Unified IP Phone and VPN head ends (ASA and DTLS), on page 975. Support for VPN feature on ASA headend was added in Cisco Unified CME 8.5. For more information, see SSL VPN Client for SCCP IP Phones, on page 975.

Figure 37: VPN connection between Cisco Unified IP Phone and VPN head ends (ASA and DTLS)
Cisco Unified CME 8.6 uses IOS SSL DTLS as a headend or gateway. To establish a VPN connection between a phone and a VPN head end, the phone must be configured with VPN configuration parameters. The VPN configuration parameters include VPN head end addresses, VPN head end credentials, user or phone ID, and credential policy. These parameters are considered as sensitive information and must be delivered in a secure environment using a signed configuration file or a signed and encrypted configuration file. The phone is required to be provisioned within the corporate network before the phone can be placed outside the corporate network.

After the phone is “staged” in a trusted environment, the phone can be deployed to a location where a VPN head end can be connected. The VPN configuration parameters for the phone dictate the user interface and behavior of the phone.

Phone or Client Authentication

Phone authentication is required to verify that the remote phone trying to register with Cisco Unified CME via, VPN DTLS is a legitimate phone. Phone or client authentication can be done with the following types of authentication:

1. **Username and Password Authentication.**

2. **Certificate-based authentication** (where the phone’s authentication is done using the LSC or MIC certificate on the phone). The certificate-based authentication consists of two levels:
 - Certificate only Authentication - Where only the LSC of the phone is used (the user is not required to enter a username or password on the phone.)
 - Certification with AAA or two-factor - Where the LSC of the phone and username and password combination is used to authenticate phone. Two-factor authentication can be performed with or without the username prefill. (With the username prefilled, the phone does not ask for a username and a username is picked up depending on the configuration under the relevant trustpoint.)

Note

We recommend using LSC for certificate authentication. Use of MIC for certificate authentication is not recommended. We also recommend configuring ephone in “authenticated” (not encrypted) security mode when doing certificate authentication. More information on certificate-only authentication and two-factor authentication is available at the following location: https://www.cisco.com/en/US/docs/ios/sec_secure_connectivity/configuration/guide/sec_ssl_vpn_ps6350_TSD_Products_Configuration_Guide_Chapter.html#wp1465191.

You can set up Cisco Unified CME with an encrypted mode, but encrypted SCCP phone has limited media call-flow support. Using a phone with authenticated mode does not have any media-related call-flow limitations.

SSL VPN Client Support on SCCP IP Phones

Cisco Unified CME 8.5 and later versions support Secure Sockets Layer (SSL) Virtual Private Network (VPN) on SCCP IP phones such as 7945, 7965, and 7975.

In Cisco Unified CME 8.5, SCCP IP phones outside of the corporate network can register with the Cisco Unified CME 8.5 through a VPN connection as shown in Figure 38: Connection between a phone and a VPN head end, on page 977.
An SSL VPN provides secure communication mechanism for data and other information transmitted between two endpoints. The VPN connection is set up between a SCCP IP phone and a VPN head end or VPN gateway. Cisco Unified CME 8.5 uses an Adaptive Security Appliances (ASA model 55x0) as a VPN head end or gateway.

To establish a VPN connection between a phone and a VPN gateway, the phone is required to be configured with VPN configuration parameters such as VPN gateway addresses, VPN head end credentials, user or phone ID, and credential policy. These parameters contain sensitive information and should be delivered in a secure environment using a signed configuration file or a signed and encrypted configuration file. The phone is required to be provisioned within the corporate network before the phone is placed outside the corporate network.

After the phone is provisioned in a trusted secure environment, the phone can be connected to Cisco Unified CME from any location, from where VPN head end can be reached. The VPN configuration parameters for the phone control the user interface and behavior of the phone. For more information on configuring the SSL VPN feature on SCCP IP phones, see Configure ASA (Gateway) as VPN Headend, on page 986.

You need to generate a trustpoint with exportable keys and use that as SAST1. For more information about CME System Administrator Security Token.

Restrictions for Configuring SSL VPN Client for SCCP IP Phones

SSL VPN Client is not supported with Cisco 4000 Series Integrated Services Routers on Unified CME. Only Site-to-Site VPN configuration is supported on Unified CME.

Configure SSL VPN Client

Configure SSL VPN Client with ASA as VPN Headend

To configure the SSL VPN feature on SCCP IP phones, follow these steps in the order in which they are presented here:

1. **Basic Configuration on Cisco Unified CME**, on page 978
2. Configure Cisco Unified CME as CA Server, on page 983
3. Verify Phone Registration and Phone Load, on page 986
4. Configure ASA (Gateway) as VPN Headend, on page 986
5. Configure VPN Group and Profile on Cisco Unified CME, on page 990
6. Associate VPN Group and Profile to SCCP IP Phone, on page 991
7. Configure Alternate TFTP Address on Phone, on page 994
8. Register Phone from a Remote Location, on page 995

Prerequisites

- Cisco Unified CME 8.5 or later versions.
- Securityk9 license for ISR-G2 platforms.
- Cisco Unified SCCP IP phones 7942, 7945, 7962, 7965, and 7975 with phone image 9.0 or later.
- ASA 5500 series router with image asa828-7-k8.bin or higher.
- The package anyconnect-win-2.4.1012-k9.pkg is required for configuring the SSLVPN feature but would not be downloaded to the phone.
- You must request the appropriate ASA licenses (AnyConnect for Cisco VPN Phone) to be installed on an ASA in order to allow the VPN client to connect. Go to: www.cisco.com/go/license and enter the PAK and the new activation key will be e-mailed back to you.

Note
A compatible Adaptive Security Device Manager (ASDM) Image is required if configuring through ASDM.

Basic Configuration on Cisco Unified CME

The following steps are basic Cisco Unified configuration allowing the SSL VPN feature to be built on:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. network ip-address [mask | prefix-length]
5. option 150 ip ip-address
6. default-router ip-address
7. exit
8. telephony-service
9. max-phones max-phones
10. max-dn max-directory-numbers [preference preference-order] [no-reg primary | both]
11. ip source-address ip-address port port [any-match | strict-match]
12. cnf-file (perphone)
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td><code>ip dhcp pool pool-name</code></td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool mypool</td>
</tr>
<tr>
<td>Note</td>
<td>If you have already configured DHCP IP Address Pool, then skip Step 2 to Step 7 and continue from Step 8.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the IP address of the DHCP address pool to be configured.</td>
</tr>
<tr>
<td>`network ip-address [mask</td>
<td>prefix-length]`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dhcp)# network 192.168.11.0 255.255.255.0</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the TFTP server address from which the Cisco Unified IP phone downloads the image configuration file.</td>
</tr>
<tr>
<td><code>option 150 ip ip-address</code></td>
<td>Specifies the TFTP server address from which the Cisco Unified IP phone downloads the image configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dhcp)# option 150 ip 192.168.11.1</td>
</tr>
<tr>
<td>Note</td>
<td>This is your Cisco Unified CME router's address.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 default-router ip-address</td>
<td>(Optional) Specifies the router that the IP phones will use to send or receive IP traffic that is external to their local subnet.</td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# default router 192.168.11.1</td>
<td>• If the Cisco Unified CME router is the only router on the network, this address should be the Cisco Unified CME IP source address. This command can be omitted if IP phones need to send or receive IP traffic only to or from devices on their local subnet.</td>
</tr>
<tr>
<td></td>
<td>• The IP address that you specify for default router will be used by the IP phones for fallback purposes. If the Cisco Unified CME IP source address becomes unreachable, IP phones will attempt to register to the address specified in this command.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# end</td>
<td></td>
</tr>
<tr>
<td>Step 8 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 9 max-ephones max-phones</td>
<td>Sets the maximum number of phones that can register to Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# max-ephones 24</td>
<td>• Maximum number is platform and version-specific. Type ? for range.</td>
</tr>
<tr>
<td></td>
<td>• In Cisco Unified CME 7.0/4.3 and later versions, the maximum number of phones that can register is different than the maximum number of phones that can be configured. The maximum number of phones that can be configured is 1000.</td>
</tr>
<tr>
<td></td>
<td>• In versions earlier than Cisco Unified CME 7.0/4.3, this command restricted the number of phones that could be configured on the router.</td>
</tr>
<tr>
<td>Step 10 max-dn max-directory-numbers [preference preference-order] [no-reg primary</td>
<td>both]</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# max-dn 24 no-reg primary</td>
<td>• Maximum number is platform and version-specific. Type ? for value.</td>
</tr>
<tr>
<td>Step 11 ip source-address ip-address port port [any-match</td>
<td>strict-match]</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Router(config-telephony)# ip source-address 192.168.11.1 port 2000 | **port** *(Optional)* TCP/IP port number to use for SCCP. Range is 2000 to 9999. Default is 2000.
any-match *(Optional)* Disables strict IP address checking for registration. This is the default.
strict-match *(Optional)*) Instructs the router to reject IP phone registration attempts if the IP server address used by the phone does not exactly match the source address. |

Step 12
cnf-file *(perphone)*
Example:
Router(config-telephony)# cnf-file perphone
-Specifies that system generate a separate configuration XML file for each IP phone.
-You must configure the cnf-file (perphone) command to generate a separate XML file for each phone.
Note You must configure the cnf-file (perphone) command to generate a separate XML file for each phone.|

Step 13
load *(phone-type firmware-file)*
Example:
Router(config-telephony)# load 7965 SCCP45.9-0-1TD1-36S.loads
-Associates a phone type with a phone firmware file. You must use the complete filename, including the file suffix, for phone firmware versions later than version 9.0 for all phone types load 7965 SCCP45.9-0-1TD1-36S |

Step 14
no shutdown
Example:
Router(config-telephony)# no shutdown
-Allows to enable SCCP service listening socket. |

Step 15
exit
Example:
Router(config-telephony)# exit
-Exits telephony-service configuration mode. |

Step 16
ephone-dn *(dn-tag)* *(dual-line)*
Example:
Router(config)# ephone-dn 1
-Enters ephone dn configuration mode to define a directory number for an IP phone, intercom line, voice port, or a message-waiting indicator (MWI).
-**dn-tag**—identifies a particular directory number during configuration tasks. Range is 1 to the maximum number of directory numbers allowed on the router platform. Type ? to display the range. |

Step 17
number *(number)* *(secondary number)* *(no-reg)* *(both)* *(primary)*
Example:
Router(config-ephone-dn)# number 1001
-Associates an extension number with this directory number.
-**number**—String of up to 16 digits that represents an extension or E.164 telephone number. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 18 | **ephone** *phone-tag*
Example: Router(config)# ephone 1 | Enters ephone configuration mode to set ephone specific parameters.
- *phone-tag*—Unique sequence number that identifies the phone. Range is version and platform-dependent; type `?` to display range. |
| 19 | **description** *string*
Example: Router(config-ephone)# description SSL VPN Remote Phone | Ephone descriptions for network management systems using an eXtensible Markup Language (XML) query.
- *string*—Allows for a maximum of 128 characters, including spaces. There are no character restrictions. |
| 20 | **device-security-mode** *(authenticated | none | encrypted)*
Example: Router(config-ephone)# device-security-mode none | Allows to set the security mode for SCCP signaling for devices communicating with the Cisco Unified CME router globally or per ephone.
- authenticated—SCCP signaling between a device and Cisco Unified CME through the secure TLS connection on TCP port 2443.
- none—SCCP signaling is not secure.
- encrypted—SCCP signaling between a device and Cisco Unified CME through the secure TLS connection on TCP port 2443, and the media uses Secure Real-Time Transport Protocol (SRTP). |
| 21 | **mac-address** *mac-address*
Example: Router(config-ephone)# mac-address 0022.555e.00f1 | Associates the MAC address of a Cisco IP phone with an ephone configuration in a Cisco Unified CME system
- *mac-address*—identifying MAC address of an IP phone, which is found on a sticker located on the bottom of the phone. |
| 22 | **type** *phone-type [addon 1 module-type [2 module-type]]*
Example: Router(config-ephone)# type 7965 | Specifies the type of phone.
- Cisco Unified CME 4.0 and later versions—The only types to which you can apply an add-on module are 7960, 7961, 7961GE, and 7970. |
| 23 | **button** *button-number {separator} dn-tag [.dn-tag...] [button-number(x) overlay-button-number] [button-number...]*
Example: Router(config-ephone)# button 1:1 | Associates a button number and line characteristics with an ephone-dn. Maximum number of buttons is determined by phone type. |
| 24 | **exit**
Example: Router(config-ephone)#exit | Exits ephone configuration mode. |
Configure Cisco Unified CME as CA Server

The basic configuration on the CA server ensures IP connectivity, Network Time Protocol (NTP), time synchronization which are necessary for enabling the SSL VPN feature.

Though this section describes configuring CA server on the CME to provide certificate signing for both CME and ASA, in real world deployments third party CA is often used. The basic requirement is that CME and ASA each has an identity certificate signed by the third party CA, and both CME and ASA share the same CA certificate. That is, each device has a trustpoint containing the same CA certificate as well as an identity certificate signed by the same CA.

To configure the CA server, follow these steps:

Step 1 Configure IP Address, NTP and HTTP Server on your Cisco Unified CME router:

Example:

```
Router(config) # Interface GigabitEthernet0/0
Router(config-if) # no ip address
Router(config-if) # interface GigabitEthernet0/0.10
Router(config-subif) # description DATA VLAN
Router(config-subif) # encapsulation dot1Q 10 native
Router(config-subif) # ip address 192.168.10.1 255.255.255.0

Router(config) # interface GigabitEthernet0/0.11
Router(config-subif) # description VOICE VLAN
Router(config-subif) # encapsulation dot1Q 11
Router(config-subif) # ip address 192.168.11.1 255.255.255.0

Router(config) # interface GigabitEthernet0/1
Router(config-if) # description INTERFACE CONNECTED TO ASA
Router(config-if) # ip address 192.168.20.1 255.255.255.0

Router(config)# ! Default router is ASA Inside Interface
Router(config)# ip route 0.0.0.0 0.0.0.0 192.168.20.254
Router(config)# clock timezone PST -8
Router(config)# clock summer-time PST recurring

Router# ! Set clock to current time
Router# clock set 10:10:00 15 oct 2010
```
Configure Cisco Unified CME as CA Server

Step 2
Configure Cisco Unified CME as CA Server. Both CME and ASA will enroll a certificate from the CA Server. The following sample configuration shows Cisco Unified CME being configured as the CA Server:

Example:

Router(config)# crypto pki server cme_root
Router(config)# database level complete
Router(cs-server)# database url nvram:
Router(cs-server)# lifetime certificate 7305
Router(cs-server)# lifetime ca-certificate 7305
Router(cs-server)# exit

Router(config)# crypto pki trustpoint cme_root
Router(ca-trustpoint)# enrollment url http://192.168.20.1:80
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# rsa-keypair cme_root
Router(cs-server)# exit

Router(config)# crypto pki server cme_root
Router(cs-server)# no shutdown
%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key
% or type Return to exit
Password: ******
Re-enter password: ******
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 1 seconds)
Mar 10 16:44:00.576: %SSH-5-ENABLED: SSH 1.99 has been enabled
% Exporting Certificate
Server signing certificate and keys...
% Certificate Server enabled.
Router(cs-server)#
Mar 10 16:44:41.812: %PKI-6-CS_ENABLED: Certificate server now enabled.

Step 3
Create a second trustpoint, then authenticate the trustpoint and enroll it with CA.

Example:

Router(config)# crypto pki trustpoint cme_cert
Router(ca-trustpoint)# enrollment url http://192.168.20.1:80
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# exit

Router(config)# crypto pki authenticate cme_cert
Certificate has the following attributes:
Fingerprint MD5: 995C157D AABB8EE2 494E7B35 00A75A88
Fingerprint SHA1: F934871E 7E2934B1 1C0B4C9A A32B7316 18A5858F
% Do you accept this certificate? [yes/no]: yes
Trustpoint CA certificate accepted.
Router(config)# crypto pki enroll cme_cert
% Start certificate enrollment ..
% Create a challenge password.
You will need to verbally provide this password to the CA Administrator in order to revoke your certificate. For security reasons your password will not be saved in the configuration. Please make a note of it.

Password:

Password:

Re-enter password:

% The subject name in the certificate will include: CME1.cisco.com

% Include the router serial number in the subject name? [yes/no]: no

% Include an IP address in the subject name? [no]: no

Request certificate from CA? [yes/no]: yes

% Certificate request sent to Certificate Authority

% The 'show crypto pki certificate verbose cme_cert' command will show the fingerprint.

! Verify Certificates

Verify Certificates (Optional)

Use the `show crypto pki certificates` command on your Cisco Unified CME router to verify the certificates.

```
Router# sh crypto pki certificates
Certificate
Status: Available
Certificate Serial Number (hex): 07
Certificate Usage: General Purpose
Issuer:
  cn=cme_root
Subject:
  Name: CME1.cisco.com
  hostname=CME1.cisco.com
Validity Date:
  start date: 15:32:23 PST Apr 1 2010
  end date: 09:44:00 PST Mar 10 2030
Associated Trustpoints: cisco2
Storage: nvram:cme_root#7.cer

Certificate
Status: Available
Certificate Serial Number (hex): 06
Certificate Usage: General Purpose
Issuer:
  cn=cme_root
Subject:
  Name: CME1.cisco.com
  hostname=CME1.cisco.com
Validity Date:
  start date: 15:30:11 PST Apr 1 2010
  end date: 09:44:00 PST Mar 10 2030
Associated Trustpoints: cisco1
Storage: nvram:cme_root#6.cer

Certificate
Status: Available
Certificate Serial Number (hex): 02
Certificate Usage: General Purpose
Issuer:
  cn=cme_root
Subject:
  Name: CME1.cisco.com
  hostname=CME1.cisco.com
Validity Date:
  start date: 08:47:42 PST Mar 10 2010
  end date: 09:44:00 PST Mar 10 2030
Associated Trustpoints: cme_cert
Storage: nvram:cme_root#2.cer

CA Certificate
```
Verify Phone Registration and Phone Load

Step 1 Use the `show ephone` command to verify the phone registration details.

Example:

```
Router# show ephone
ephone-1[0] Mac:0022.555E.00F1 TCP socket:[2] activeLine:0 whisperLine:0 REGISTERED in SCCP ver 19/17 max_streams=5 mediaActive:0 whisper_mediaActive:0 startMedia:0 offhook:0 ringing:0 reset:0 reset_sent:0 paging 0 debug:0 caps:9
IP:192.168.11.4 * 49269 7965 keepalive 0 max_line 6 available_line 6 button 1: cw:1 ccw:(0 0) dn 1 number 1001 CH1   IDLE CH2   IDLE
Preferred Codec: g711ulaw
Lpco Type: none
```

Note Make sure the phone has the right phone firmware and verify if the phone registers locally with Cisco Unified CME.

Step 2 Use the `show ephone phone load` command to verify phone load.

Example:

```
Router# show ephone phoneload
DeviceName        CurrentPhoneload       PreviousPhoneload LastReset
SEP0016C7EF9B13    9.0(1TD1.36S)          9.0(1TD1.36S) UCM-closed-TCP
```

Configure ASA (Gateway) as VPN Headend

In this section ASA will be configured to authenticate and enroll a certificate from CME CA server. The fingerprint of the CA certificate will be the same as the CME root certificate, so that the phone can authenticate the certificates sent from ASA during TLS negotiation against the hash it has in store.

Step 1 Configure Interfaces, IP Routing, and NTP.

Example:
ciscoasa(config)# Interface Ethernet0/1
ciscoasa(config-if)# nameif Inside
ciscoasa(config-if)# description INTERFACE CONNECTED TO CUCME
ciscoasa(config-if)# security-level 100
ciscoasa(config-if)# ip address 192.168.20.254 255.255.255.0

ciscoasa(config)# interface Ethernet 0/0
ciscoasa(config-if)# description INTERFACE CONNECTED TO WAN
ciscoasa(config-if)# nameif Outside
ciscoasa(config-if)# security-level 0
ciscoasa(config-if)# ip address 9.10.60.254 255.255.255.0
ciscoasa(config)# router ospf 100
ciscoasa(config-router)# network 9.10.60.0 255.255.255.0 area 1

ciscoasa(config-if)# ntp server 192.168.20.1

Step 2
Create Trustpoint on ASA and obtain CME (CA) Certificate.

Example:

ciscoasa(config)# crypto key generate rsa label cmeasa
ciscoasa(config)# crypto ca trustpoint asatrust
ciscoasa(config)# ! Enrollment URL = CA Server = CUCME
ciscoasa(config-ca-trustpoint)# enrollment url http://192.168.20.1:80
ciscoasa(config-ca-trustpoint)# subject-name cn=cmeasa.cisco.com
ciscoasa(config-ca-trustpoint)# crl nocheck
ciscoasa(config-ca-trustpoint)# keypair cmeasa

ciscoasa (config)# crypto ca authenticate asatrust
INFO: Certificate has the following attributes:
Fingerprint: 27d00cdf 1144c8b9 90621472 786da0cf
Do you accept this certificate? [yes/no]: yes
! Enroll the Trustpoint
ciscoasa(config)# crypto ca enroll asatrust
% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this
password to the CA Administrator in order to revoke your certificate.
For security reasons your password will not be saved in the configuration.
Please make a note of it.
Password: ********
Re-enter password: ********
% The subject name in the certificate will be: cn=cmeasa.cisco.com
% The fully-qualified domain name in the certificate will be: ciscoasa.cisco.com
% Include the device serial number in the subject name? [yes/no]: no
Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
ciscoasa(config)# The certificate has been granted by CA!
ciscoasa# show crypto ca certificates

Step 3
Verify Certificates (optional)

Use the `show crypto ca certificate` command on your ASA router to verify the certificates.

Example:

ciscoasa# show crypto ca certificate
Certificate
Status: Available
Certificate Serial Number: 03
Certificate Usage: General Purpose
Public Key Type: RSA (1024 bits)
Issuer Name:
Configure ASA (Gateway) as VPN Headend

Step 4 Configure SSL Parameters.

Example:

```
ciscoasa(config)# ssl encryption 3des-sha1 aes128-sha1 aes256-sha1 des-sha1 null-sha1
ciscoasa(config)# ssl trust-point asatrust
```

Step 5 Configure local IP address pool.

Example:

```
ciscoasa(config)# ip local pool SSLVPNphone_pool 192.168.20.50-192.168.20.70 mask 255.255.255.0
```

Step 6 Configure Access List to prevent NAT traffic via VPN.

Example:

```
ciscoasa(config)# access-list no_nat_to_vpn extended permit ip any 9.10.60.0 255.255.255.0
```


Example:

```
ciscoasa(config-webvpn)# enable inside
INFO: WebVPN and DTLS are enabled on 'Inside'.
ciscoasa(config-webvpn)# enable outside
INFO: WebVPN and DTLS are enabled on 'Outside'.
ciscoasa(config-webvpn)# svc image disk0:/anyconnect-win-2.4.1012-k9.pkg 1
ciscoasa(config-webvpn)# svc enable
ciscoasa(config-webvpn)# group-policy SSLVPNphone internal
```
ciscoasa(config)# group-policy SSLVPNphone attribute

ciscoasa(config-group-policy)# banner none

ciscoasa(config-group-policy)# vpn-simultaneous-logins 10

ciscoasa(config-group-policy)# vpn-idle-timeout none

ciscoasa(config-group-policy)# vpn-session-timeout none

ciscoasa(config-group-policy)# vpn-tunnel-protocol svc webvpn

ciscoasa(config-group-policy)# address-pools value SSLVPNphone_pool

ciscoasa(config-group-policy)# webvpn

ciscoasa(config-group-webvpn)# svc dtls enable

ciscoasa(config-group-webvpn)# svc keepalive 120

ciscoasa(config-group-webvpn)# svc ask none

ciscoasa(config-group-webvpn)#

Example:

ciscoasa(config)# tunnel-group SSLVPN_tunnel type remote-access

ciscoasa(config)# tunnel-group SSLVPN_tunnel general-attributes

ciscoasa(config-tunnel-general)#

ciscoasa(config-tunnel-general)# address-pool SSLVPNphone_pool

ciscoasa(config-tunnel-general)# default-group-policy SSLVPNphone

ciscoasa(config-tunnel-general)# tunnel-group SSLVPN_tunnel webvpn-attributes

ciscoasa(config-tunnel-webvpn)# group-url https://9.10.60.254/SSLVPNphone enable

Example:

ciscoasa(config)# route Inside 192.168.11.0 255.255.255.0 192.168.20.254 1

Step 10 Configure the ASA local database for users. For more information, see http://www.cisco.com/en/US/docs/security/asa/asa82/configuration/guide/access_aaa.html#wpmkr108.

Example:

ciscoasa(config)# username anyone password cisco

ciscoasa(config)# ! These credentials will be entered on the phone to log in.

ciscoasa(config)# username anyone attributes

ciscoasa(config-username)# vpn-group-policy SSLVPNphone

ciscoasa(config-username)# vpn-tunnel-protocol IPSec l2tp-ipsec svc webvpn

ciscoasa(config-username)# webvpn

ciscoasa(config-username-webvpn)# svc dtls enable

ciscoasa(config-username-webvpn)# svc ask none

Step 11 Enable Inter-ASA media traffic.

Example:

ciscoasa(config)# same-security-traffic permit inter-interface

ciscoasa(config)# same-security-traffic permit intra-interface
Configure VPN Group and Profile on Cisco Unified CME

In this section a VPN-group is configured which dictates the VPN gateway IP address, certificate hash algorithm and certificate trustpoint for phones. This information will be added to phone configuration later. To configure VPN group and profile on Cisco Unified CME, follow these steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. vpn-group tag
5. vpn-gateway [number | url]
6. vpn-trustpoint { [number [raw | trustpoint]]
7. vpn-hash-algorithm sha-1
8. exit
9. vpn-profile tag
10. host-id-check [enable | disable]
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice over IP configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)#voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 vpn-group tag</td>
<td>Enters vpn-group mode under voice over IP configuration mode.</td>
</tr>
<tr>
<td>Example: Router (conf-voi-serv)#vpn-group 1</td>
<td></td>
</tr>
<tr>
<td>• tag—vpn-group tag. Range: 1 or 2.</td>
<td></td>
</tr>
<tr>
<td>Step 5 vpn-gateway [number</td>
<td>url]</td>
</tr>
<tr>
<td>Example: Router(conf-vpn-group)#vpn-gateway 1 https://9.10.60.254/SSLVPNphone</td>
<td></td>
</tr>
<tr>
<td>• number—number—Number of gateways that can be defined as a vpn-gateway. Range is from 1 to 3.</td>
<td></td>
</tr>
<tr>
<td>• url—VPN-gateway url. SSLVPNphone is the VPN group policy configured on ASA.</td>
<td></td>
</tr>
<tr>
<td>Step 6 vpn-trustpoint { [number [raw</td>
<td>trustpoint]]</td>
</tr>
</tbody>
</table>
Command or Action

Example:

Router (conf-vpn-group)#vpn-trustpoint
?vpn-trustpoint 1 trustpoint cme_cert root

- **number**—Number of trustpoints allowed. Range: 1 to 10.
- **raw**—allows you to enter vpn-gateway trustpoint in raw format.
- **trustpoint**—allows you to enter VPN Gateway trustpoint as created in IOS format.
- **root**—Since the CME root certificate has the same hash as ASA’s CA certificate, therefore the “root” clause is configured to select the root certificate instead of leaf certificate.

Step 7

vpn-hash-algorithm sha-1

Example:

Router (conf-vpn-group)#vpn-hash-algorithm sha-1

Allows you to enter vpn hash encryption for the trustpoints.
- **sha-1**—Encryption algorithm.

Step 8

exit

Example:

Router (conf-vpn-group)#exit

Exits VPN-group configuration mode.

Step 9

vpn-profile tag

Example:

Router (conf-voi-serv)#vpn-profile 1

Step 10

host-id-check [enable | disable]

Example:

Router (conf-vpn-profile)#host-id-check disable

Allows you to configure host id check option in VPN-profile.
- **disable**—Disable host ID check option.
- **enable**—Enable host ID check option. Default is Enable.

Step 11

end

Example:

Router (conf-vpn-profile)#end

Exits to privileged EXEC mode.

Associate VPN Group and Profile to SCCP IP Phone

To associate VPN group and profile to SCCP IP phones, follow these steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. cnf-file perphone
5. ephone phone-tag
6. device-security-mode {authenticated | none | encrypted}
7. mac-address [mac-address]
8. type phone-type addon 1 [module-type [2 module-type]]
9. vpn-group tag
10. vpn-profile tag
11. button button-number[separator]dn-tag [,dn-tag...][button-number][x]overlay-button-number
12. exit
13. telephony-service
14. create cnf-file
15. exit
16. ephone phone-tag
17. reset
18. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router#(config)telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 cnf-file perphone</td>
<td>Builds the XML configuration files required for IP phones.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# create cnf-files</td>
<td></td>
</tr>
<tr>
<td>Step 5 ephone phone-tag</td>
<td>Enters ephone configuration mode to set phone-specific parameters for an SCCP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 1</td>
<td>* phone-tag—Unique sequence number that identifies the phone. Range is version and platform-dependent; type ? to display range</td>
</tr>
<tr>
<td>Step 6 device-security-mode</td>
<td>Enables security mode for endpoints.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Cisco Unified Communications Manager Express System Administrator Guide
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
</table>

- **authenticated**—Instructs device to establish a TLS connection with no encryption. There is no Secure Real-Time Transport Protocol (SRTP) in the media path.
- **none**—SCCP signaling is not secure. This is the default.
- **encrypted**—Instructs device to establish an encrypted TLS connection to secure media path using SRTP.
- The value set for this command in ephone configuration mode has priority over the value set in telephony-service configuration mode.

Step 7

<table>
<thead>
<tr>
<th>mac-address [mac-address]</th>
<th>Specifies the MAC address of the IP phone that is being configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)#mac-address 0022.555e.00f1</td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>type phone-type [module-type [2 module-type]]</th>
<th>Specifies the type of phone.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# type 7965</td>
<td></td>
</tr>
</tbody>
</table>

- Cisco Unified CME 4.0 and later versions—The only types to which you can apply an add-on module are 7960, 7961, 7961GE, and 7970.
- Cisco CME 3.4 and earlier versions—The only type to which you can apply an add-on module is 7960.

Step 9

<table>
<thead>
<tr>
<th>vpn-group tag</th>
<th>Enters vpn-group mode under voice over IP configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router (config-ephone)# vpn-group 1</td>
</tr>
</tbody>
</table>

- **tag**—vpn-group tag. Range: 1 or 2.

Step 10

<table>
<thead>
<tr>
<th>vpn-profile tag</th>
<th>Enters VPN-profile configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router (config-ephone)#vpn-profile 1</td>
</tr>
</tbody>
</table>

Step 11

<table>
<thead>
<tr>
<th>button button-number[separator]dn-tag [dn-tag...][button-number[x]overlay-button-number] [button-number...]</th>
<th>Associates a button number and line characteristics with an ephone-dn. Maximum number of buttons is determined by phone type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# button 1:5</td>
</tr>
</tbody>
</table>

Step 12

<table>
<thead>
<tr>
<th>exit</th>
<th>Exits ephone configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone)exit</td>
</tr>
</tbody>
</table>

Step 13

<table>
<thead>
<tr>
<th>telephony-service</th>
<th>Enters telephony-service configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# telephony-service</td>
<td>Builds the XML configuration files required for IP phones. It is recommended to first clear the existing config files using “no create cnf-files” and then create again.</td>
</tr>
</tbody>
</table>

Step 14

create cnf-file

Example:

Router(config-telephony)# create cnf-files

Step 15

exit

Example:

Router(Config-telephony)# exit

Step 16

phone-tag

Example:

Router(config)# ephone 1

Step 17

reset

Example:

Router(config-ephone)# reset

Step 18

drop

Example:

Router(config-ephone)# end

Configure Alternate TFTP Address on Phone

Step 1

From the phone, go to:

Example:

Settings > Network Configuration > IPv4 Configuration > Alternate TFTP

Press **#** to unlock

Select YES

If the phone is already registered, “TFTP Server 1” will already be populated. Otherwise, enter the CUCME address as the alternate TFTP Server 1.

Step 2

Save the phone configuration.

Step 3

Verify if the VPN is enabled from the phone.

Example:

Settings > Security Configuration > VPN

When you press “Enable” from this menu, it should prompt for username and password.

Step 4

From the phone, go to:

Example:

Settings > Network Configuration > IPv4 Configuration > Alternate TFTP

Press **#** to unlock and select YES.
Step 5
Save the configuration.

Step 6
Connect the phone to the network from home or a remote location.

Example:
Settings > Security Settings > VPN Configurations?
Enable VPN
Enter Username and Password. Phone will register with CUCME.

Register Phone from a Remote Location

To register a Cisco Unified IP phone from a remote location, follow these steps:

Step 1
Connect the phone to the network from a home or remote location. Phone receives DHCP.

Step 2
Select Settings from the phone menu and go to Security Settings.

Step 3
Select VPN Configurations, and then select Enable VPN.

Step 4
Enter your username and password. Your phone will now register with Cisco Unified CME.

Configure SSL VPN Client with DTLS on Cisco Unified CME as VPN Headend

Before you begin, make sure you have configured the basic SSL VPN configuration on Cisco Unified CME (see Basic Configuration on Cisco Unified CME, on page 978).

To configure the SSL VPN client with DTLS on SCCP IP phones, follow these steps in the order in which they are presented here:

- Set Up the Clock, Hostname, and Domain Name, on page 996
- Configure Trustpoint and Enroll with the Certificates, on page 997
- Configure VPN Gateway, on page 997
- Configure User Database, on page 997
- Configure Virtual Context, on page 998
- Configure Group Policy, on page 998
- Verify the IOS SSL VPN Connection, on page 999
- Configure Cisco Unified SCCP IP Phones for SSL VPN, on page 999
- Configuration on Cisco Unified SCCP IP Phone, on page 1000
Set Up the Clock, Hostname, and Domain Name

The clock, hostname, and domain name must be set up.

Step 1

The following example shows the hostname and domain name configured:

Example:

```
hostname Router2811
ip domain name cisco.com
```

Interfaces on the Router_2811:

```
interface FastEthernet0/0
ip address 1.5.37.13 255.255.0.0
duplex auto
speed auto
```

```
interface FastEthernet0/1
ip address 30.0.0.1 255.255.255.0
duplex auto
speed auto
```

Step 2

Show clock on IOS:

Example:

```
Router# show clock
*10:07:57.109 pacific Thu Oct 7 2010
```

a) Set clock directly:

Example:

```
Router# clock set 9:53:0 Oct 7 2010
```

Set time zone (Pacific Standard Time)

```
Router# configure terminal
Router(config)# clock timezone pst -8
```

(Optional)
Set summer-time

```
Router(config)# clock summer-time pst recurring
```

OR

```
Router(config)# clock summer-time pst date apr 11 2010 12:00 nov 11 2010 12:00
```
b) Set clock using NTP:

Example:

Router(config)# ntp server 192.18.2.1
Router(config)# ntp master 2

Configure Trustpoint and Enroll with the Certificates

To configure a trustpoint and enroll with the certificate server, see Configure Cisco Unified CME as CA Server, on page 983. You can also use the default self-signed certificate generated by the webvpn. This default trustpoint is generated when the webvpn gateway gateway name command is entered for the first time.

Note
The DTLS in IOS SSL VPN uses the child certificate during SSL authentication, therefore, you must select the “leaf” option when configuring the “vpn-trustpoint”.

Configure VPN Gateway

The WebVPN gateway uses a default trustpoint name of SSL VPN.

When entering “webvpn gateway <name>”, a self-signed certificate is generated. The IP address must be a public IP address configured on an interface or loopback interface on the WebVPN gateway. The following example shows a public IP address configured on the WebVPN gateway:

```
Router(config)# webvpn gateway sslvpn_gw
Router(config-webvpn-gateway)# ip address 1.5.37.13 port 443
Router(config-webvpn-gateway)# ssl encryption 3des-sha1 aes-shal
Router(config-webvpn-gateway)# ssl trustpoint cme_cert
Router(config-webvpn-gateway)# inservice
```

Note
We recommend using Cisco Unified CME generated trustpoint rather than webvpn self generated trustpoint.

Configure User Database

User database can be either locally configured on CME, or remotely from Radius server.

Step 1 Configure the local database:

Example:

```
Router(config)# aaa new-model
username anyone password 0 cisco
aaa authentication login default local
```
Configure Virtual Context

Users can get access to the virtual context by specifying the “domain name” in the URL when accessing the WebVPN gateway such as: **https://1.5.37.13/SSLVPNphone**. The following example shows a virtual VPN context configured:

```
Router(config)# webvpn context sslvpn_context
ssl encryption 3des-sha1 aes-sha1
ssl authenticate verify all
gateway sslvpn_gw domain SSLVPNphone
inservice
```

When **inservice** was entered, the system prompted: **000304: Jan 7 00:30:01.206: %LINEPROTO-5-UPDOWN: Line protocol on Interface Virtual-Access1, changed state to up**

Configure Group Policy

Because the SSL VPN client on phone operates in full-tunnel mode, WebVPN gateway supplies an IP address to each of the clients logged in to the gateway. Configure the following:

```
Router(config)# ip local pool SSLVPNphone_pool 30.0.0.50 30.0.0.70
Router(config)# webvpn context SSLVPNphone
Router(config-webvpn-context)# policy group SSLVPNphone
Router(config-webvpn-group)# functions svc-enabled
Router(config-webvpn-group)# hide-url-bar
Router(config-webvpn-group)# svc address-pool "SSLVPNphone_pool" netmask 255.255.255.0
Router(config-webvpn-group)# svc default-domain "cisco.com"
Router(config-webvpn-group)# exit
Router(config-webvpn-context)# default-group-policy SSLVPNphone
Router(config-webvpn-context)# no aaa authentication domain local
Router(config-webvpn-context)# gateway sslvpn_gw domain SSLVPNphone
```

If using only username and password authentication, configure:

```
Router(config-webvpn-context)# no authentication certificate
```

If using certificate-based authentication, configure:

```
Router(config-webvpn-context)# authentication certificate
Router(config-webvpn-context)# ca trustpoint cme_cert
Router(config-webvpn-context)# inservice
```
Verify the IOS SSL VPN Connection

On your PC's browser (MS Internet Explorer), connect to https://1.5.37.13/SSLVPN phone and accept the certificate. To login, enter username and password, anyone and cisco. You should be able to see the home page of the IOS SSL VPN.

Step 1
IOS WEBVPN DEBUG:

Example:

debug ssl openssl errors
debug ssl openssl msg
debug ssl openssl states

debug webvpn sdps
debug webvpn aaa (login authentication)
debug webvpn http verbose (for authentication)
debug webvpn webservice verbose
debug webvpn tunnel
debug crypto pki transactions
debug crypto pki validations
debug crypto pki messages

From PC browser, connect to IOS (on the 1.5.37.x network) through https://1.5.37.13/SSLVPN phone. The default banner pops up. Enter username and password.

Step 2
Provide the default IP route. For example:

Example:

Router (c3745): ip route 30.0.0.0 255.255.255.0 FastEthernet0/
Router (c3745): ip route 10.0.0.0 255.255.255.0 1.5.37.11

(Must force this limited route or else it will fail).

Configure Cisco Unified SCCP IP Phones for SSL VPN

Step 1
Phone loads are available for download at Cisco Unified Communications Manager Express Introduction.

Step 2
Choose Compatibility Information.

Step 3
Choose appropriate phone load version for your phone.

A generic software download is also available at Product/Technology Support.

Step 4
Choose Voice and Unified Communications > IP Telephony > IP Phones.

Note We recommend downloading phone load version 8.4 before upgrading phone load version 8.3 to phone load version 9.0. Upgrading phone load to 9.0 without upgrading the phone load version to 8.4 will not work.
Configuration on Cisco Unified SCCP IP Phone

Step 1 Go to Settings > Security configuration (4) > VPN Configuration (8).
Step 2 Check the IP address of the VPN concentrator. It should point to the VPN headend.
Step 3 Verify Alt-TFTP (under Settings > Network Configuration > IPv4 Configuration). Set the Alternate TFTP option to “Yes” to manually enter the TFTP server address. The associated IP address is the IP address of Cisco Unified CME.
Step 4 Set the VPN setting to enable. The user interface shows, “Attempting VPN Connection...”.
Step 5 Verify that the VPN connection is established. Go to Settings > Network Configuration. The “VPN” label shows “connected”.

Note If you are using phones in secure mode, remember to add the `capf-ip-in-cnf` command under ephone configuration mode.

Configure SSL VPN on Cisco Unified CME

To configure SSL VPN on Cisco Unified CME, see Configure VPN Group and Profile on Cisco Unified CME, on page 990.

Example:

```
voice service voip
vpn-group 1
   vpn-gateway 1 https://1.5.37.13/SSLVPNphone
   vpn-trustpoint 1 trustpoint R2811_cert leaf
   vpn-profile 1
   host-id-check disable

crypto pki server R2811_root
database level complete
grant auto
lifetime certificate 7305
lifetime ca-certificate 7305
crypto pki token default removal timeout 0
!
crypto pki trustpoint R2811_root
enrollment url http://30.0.0.1:80
revocation-check none
rsakeypair R2811_root
!
crypto pki trustpoint R2811_cert
enrollment url http://30.0.0.1:80
serial-number
revocation-check none

telephony-service
cnf-file perphone

ephone 2
```
VPN Phone Redundancy Support for Cisco Unified CME with DTLS

VPN phone supports redundancy with IOS and Cisco Unified CME in two ways:

1. Using two or more vpn-gateway configurations in the same vpn-group.

2. Using Cisco Unified CME redundancy configuration and one or more vpn-gateway configurations. This requires the DTLS and SSL VPN headend IP to stay up, if only one vpn-gateway is used.

You need to generate a trustpoint with exportable keys and use that as sast1.

Configuration Examples for SSL VPN Client

Example for Configuring SSL VPN with ASA as VPN Headend

The following example shows how to configure CME using ASA as VPN Headend:

Router# show running config
!
!
crypto pki server cme_root
database level complete
no database archive
grant auto
lifetime certificate 7305
lifetime ca-certificate 7305
!
crypto pki trustpoint cme_root
enrollment url http://10.201.160.201:80
revocation-check none
rsakeypair cme_root
!
crypto pki trustpoint cme_cert
enrollment url http://10.201.160.201:80
revocation-check none
!
!
Example for Configuring SSL VPN with DTLS on CME as VPN Headend

The following example shows how to configure CME using DTLS on CME as VPN Headend:

```
! voice service voip
vpn-group 1
  vpn-gateway 1 https://10.201.174.36/SSLVPNphone
  vpn-trustpoint 1 trustpoint cme_cert root
  vpn-hash-algorithm sha-1
vpn-profile 1
  host-id-check disable
sip
! ip http server
no ip http secure-server
! telephony-service
  max-ephones 20
  max-dn 10
  ip source-address 10.201.160.201 port 2000
  cnf-file location flash:
  cnf-file perphone
  max-conferences 8 gain -6
  transfer-system full-consult
  create cnf-files version-stamp Jan 01 2002 00:00:00
! ephone-dn 1
  number 2223
  label TestPhone
! ephone 1
  device-security-mode none
  mac-address 001F.6C81.110E
  type 7965
  vpn-group 1
  vpn-profile 1
  button 1:1
!
end
```

Example for Configuring SSL VPN with DTLS on CME as VPN Headend

The following example shows how to configure CME using DTLS on CME as VPN Headend:

```
! ip domain-name cisco.com
!
! aaa new-model
!
! aaa authentication login default local
!
!
crypto pki server cme_root
database level complete
no database archive
grant auto
lifetime certificate 7305
lifetime ca-certificate 7305
"
crypto pki trustpoint cme_root
  enrollment url http://10.201.160.201:80
  revocation-check none
  rsakeypair cme_root

! crypto pki trustpoint cme_cert
  enrollment url http://10.201.160.201:80
  revocation-check none

! crypto pki trustpoint TP-self-signed-4067918560
  enrollment selfsigned
  subject-name cn=IOS-Self-Signed-Certificate-4067918560
  revocation-check none
  rsakeypair TP-self-signed-4067918560

! voice service voip
  vpn-group 1
  vpn-gateway 1 https://10.201.160.201/SSLVPNphone
  vpn-trustpoint 1 trustpoint cme_cert leaf
  vpn-hash-algorithm sha-1
  vpn-profile 1
    host-id-check disable
    sip
    username kurt privilege 15 password 0 cisco

! interface GigabitEthernet0/0
  ip address 10.201.160.201 255.255.255.192
duplex auto
  speed auto

! ip local pool SSLVPNphone_pool 10.201.160.202 10.201.160.203
ip forward-protocol nd

! ip http server
  no ip http secure-server

! telephony-service
  max-ephones 20
  max-dn 10
  ip source-address 10.201.160.201 port 2000
  cnf-file location flash:
cnf-file perphone
  max-conferences 8 gain -6
  transfer-system full-consult
create cnf-files version-stamp Jan 01 2002 00:00:00

! ephone-dn 1
  number 2223
  label TestPhone

! ephone 1
  device-security-mode none
  mac-address 001F.6C81.110E
type 7965
  vpn-group 1
  vpn-profile 1
  button 1:1
The following example shows the vpn configuration:

Router #show voice vpn
The Voice Service VPN Group 1 setting:
VPN Gateway 1 URL https://9.10.60.254/SSLVPNphone
VPN Trustpoint hash in sha-1
VPN Trustpoint 1 trustpoint cme_cert root fbUqFIbtWtaYSGSlTF/Umshcgyk= The Voice Service
VPN Profile 1 setting:
The host_id_check setting: 0

Feature Information for SSL VPN Client

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Versions</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support on Cisco Unified CME with DTLS</td>
<td>8.6</td>
<td>Introduced support on Cisco Unified CME with DTLS.</td>
</tr>
<tr>
<td>SSL VPN Client Support on SCCP IP Phones</td>
<td>8.5</td>
<td>Introduced the SSL VPN Client Support feature.</td>
</tr>
</tbody>
</table>
Automatic Line Selection

This chapter describes automatic line selection feature in Cisco Unified Communications Manager Express (Cisco Unified CME).

Note

This feature is applicable for SCCP phones only. For newer SIP phones (Cisco Unified IP Phone 7800, 8800 series) with new user interface, this feature is not applicable. The user selects the line and the focus would be on that selected line. Both incoming and outgoing calls changes the focus based on the line selected or line answered.

- Information About Automatic Line Selection, on page 1005
- Configure Automatic Line Selection, on page 1006
- Configuration Examples for Automatic Line Selection, on page 1008
- Feature Information for Automatic Line Selection, on page 1009

Information About Automatic Line Selection

Automatic Line Selection for Incoming and Outgoing Calls

On multiline IP phones, lifting the handset automatically selects the first ringing line on the phone or, if no line is ringing, selects the first available idle line for outgoing calls. This is the default behavior for all multiline IP phones.

Under some circumstances, however, you might want to require that a line button be explicitly pressed to select an outgoing line or to answer an incoming call. In Cisco CME 3.0 and later, you have the flexibility to assign the type of line selection that each IP phone uses.

The Automatic Line Selection feature allows you to specify, on a per-phone basis, the line that is selected when you pick up a phone handset.

Any of the following behaviors can be assigned on a per-phone basis:

- Automatic line selection—Picking up the handset answers the first ringing line or, if no line is ringing, selects the first idle line. Use the `auto-line` command with no keyword or argument. This is the default.
Manual line selection (no automatic line selection)—Pressing the Answer soft key answers the first ringing line, and pressing a line button selects a line for an outgoing call. Picking up the handset does not answer calls or provide dial tone. Use the no auto-line command.

Automatic line selection for incoming calls only—Picking up the handset answers the first ringing line, but if no line is ringing, it does not select an idle line for an outgoing call. Pressing a line button selects a line for an outgoing call. Use the auto-line incoming command.

Automatic line selection for outgoing calls only—Picking up the handset for an outgoing call selects the line associated with the button-number argument. If a button number is specified and the line associated with that button is unavailable (because it is a shared line in use on another phone), no dial tone is heard when the handset is lifted. You must press an available line button to make an outgoing call. Incoming calls must be answered by pressing the Answer soft key or pressing a ringing line button. Use the auto-line command with the button-number argument.

Automatic line selection for incoming and outgoing calls—Pressing the Answer soft key or picking up the handset answers an incoming call on the line associated with the specified button. Picking up the handset for outgoing calls selects the line associated with the specified button. Use the auto-line command with the button-number argument and answer-incoming keyword.

**Configure Automatic Line Selection**

**Enable Automatic Line Selection**

To enable automatic line selection for answering incoming calls or making outgoing calls, perform the following steps:

**Restriction**

Automatic line selection is bypassed if it is configured for a trunk directory number and the line is seized by pressing the Park or Callfwd soft keys. The first available directory number is seized.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ephone phone-tag
4. auto-line [button-number [answer-incoming] | incoming]
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 2**

Command: `configure terminal`  
Example: `Router# configure terminal`  

Purpose: Enters global configuration mode.

**Step 3**

Command: `ephone phone-tag`  
Example: `Router(config)# ephone 24`  

Purpose: Enters ephone configuration mode.  
- `phone-tag`—Unique sequence number for the phone on which you want to configure automatic line selection.

**Step 4**

Command: `auto-line [button-number [answer-incoming] | incoming]`  
Example: `Router(config-ephone)# auto-line 5 answer-incoming`  

Purpose: Assigns a type of line selection behavior to this phone.  
- `auto-line`—Picking up the handset answers the first ringing line or, if no line is ringing, selects the first idle line. This is the default.  
- `auto-line button-number`—Picking up the handset for an outgoing call selects the line associated with the specified button. The default if this argument is not used is the topmost available line.  
- `auto-line button-number answer-incoming`—Picking up the handset answers the incoming call on the line associated with the specified button.  
- `auto-line incoming`—Picking up the handset answers the first ringing line but, if no line is ringing, does not select an idle line for an outgoing call. Pressing a line button selects a line for an outgoing call.  
- `no auto-line`—Disables automatic line selection. Pressing the Answer soft key answers the first ringing line, and pressing a line button selects a line for an outgoing call. Picking up the handset does not answer calls or provide dial tone.

**Step 5**

Command: `end`  
Example: `Router(config-ephone)# end`  

Purpose: Returns to privileged EXEC mode.

---

## Verify Automatic Line Selection

**Step 1**

Use the `show running-config` command to verify your configuration. Automatic line selection is listed in the ephone portion of the output.  

Example: `Router# show running-config`
Step 2 Use the `show telephony-service ephone` command to display only ephone configuration information.

Example:

```
Router# show telephony-service ephone

ephone 4
device-security-mode none
username "Accounting"
mac-address FF0E.4857.5E91
button 1c34,35
no auto-line
```

Configuration Examples for Automatic Line Selection

Example for Automatic Line Selection

The following example assigns no automatic line selection to phones 1 and 2 and assigns automatic line selection for incoming calls only to phone 3:

```
ephone 1
mac-address 00e0.8646.9242
button 1:1 2:4 3:16
no auto-line
ephone 2
mac-address 01c0.4612.7142
button 1:5 2:4 3:16
no auto-line
ephone 3
mac-address 10b8.8945.3251
button 1:6 2:4 3:16
auto-line incoming
```

The following example enables automatic selection of line button 1 when the handset is lifted to answer incoming calls or to make outgoing calls.

```
ephone 1
mac-address 0001.0002.0003
type 7960
auto-line 1 answer-incoming
button 1:1 2:2 3:3
```
Feature Information for Automatic Line Selection

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 91: Feature Information for Automatic Line Selection

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Line Selection</td>
<td>4.0</td>
<td>The <code>answer-incoming</code> keyword was added to the <code>auto-line</code> command.</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>The <code>button-number</code> argument was added to the <code>auto-line</code> command.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Automatic line selection was introduced.</td>
</tr>
</tbody>
</table>
Barge and Privacy

Information About Barge and Privacy

Barge and cBarge

The Barge feature enables phone users who share a directory number to join an active call on the shared line by pressing a softkey. When the initiator barges into a call, a conference is created between the barge initiator, the target party, and the other party connected in the call. Parties see the call information on their phones and, if the conference join tone is configured, hear a tone.

If a phone that is using the shared line has Privacy enabled, call information does not appear on the other phones that share the line and the call cannot be barged. Connected parties hear the barge tone (single beep) after the conference is set up. When a party leaves the conference, a barge leave tone is played to the remaining parties.

From Cisco Unified CME Release 11.7 onwards, cBarge feature is supported on Cisco 4000 Series Integrated Services Router.

From Cisco Unified CME Release 12.0 onwards, cBarge feature is supported with mixed shared line.

Note

- Cisco Unified IP Phone 69xx series do not support cBarge with Unified CME.
- Barge and Cbarge softkeys on SIP Phones are supported only on shared lines.

Barge (SIP)

Barge uses the built-in conference bridge on the target phone (the phone that is being barged) which limits the number of users allowed to barge. A barge conference supports up to three parties. If more users want to join a call on a SIP shared line, cBarge must be used. The SIP phone requires the built-in conference bridge to use Barge. Barge is supported for SIP shared-line directory numbers only.
cBarge (SCCP and SIP)

The cBarge feature uses a shared conference resource which allows more than one person to barge into the call. A cBarge conference supports the maximum number of parties provisioned on the centralized conference resource. The centralized conference resource must be provisioned to use cBarge. cBarge is supported on SCCP shared octo-line directory numbers and SIP shared-line directory numbers.

When any party releases from the call, the call remains a conference call if at least three participants remain on the line. If only two parties remain in the conference, they are reconnected as a point-to-point call, which releases the conference bridge resources. When the target party parks the call or joins the call with another call, the barge initiator and the other parties remain connected.

<table>
<thead>
<tr>
<th>Action</th>
<th>Barge—Built-In Conference Bridge at Target Device</th>
<th>cBarge—Shared Conference Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media break occurs during barge setup</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>User receives a Barge tone, if configured</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Displays name at barge initiator phone</td>
<td>To Barge</td>
<td>To Barge</td>
</tr>
<tr>
<td>Displays name at target phone</td>
<td>To/From Other</td>
<td>To Barge</td>
</tr>
<tr>
<td>Displays name at other phones</td>
<td>To/From Target</td>
<td>To Barge</td>
</tr>
<tr>
<td>Allows second barge setup to an already barged call</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum number of parties</td>
<td>3</td>
<td>Maximum allowed by the shared conference resource.</td>
</tr>
<tr>
<td>Initiator releases call</td>
<td>No media interruption occurs for the two original parties.</td>
<td>Media break occurs to release the shared conference bridge when only two parties remain and to reconnect the remaining parties as a point-to-point call.</td>
</tr>
<tr>
<td>Target releases call</td>
<td>Media break occurs to reconnect initiator with the other party as a point-to-point call.</td>
<td>Media break occurs to release the shared conference bridge when only two parties remain and to reconnect the remaining parties as a point-to-point call.</td>
</tr>
</tbody>
</table>
Barge and Privacy

<table>
<thead>
<tr>
<th>Action</th>
<th>Barge—Built-In Conference Bridge at Target Device</th>
<th>cBarge—Shared Conference Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other party releases call</td>
<td>All three parties are released.</td>
<td>Media break occurs to release the shared conference bridge when only two parties remain and to reconnect the remaining parties as a point-to-point call.</td>
</tr>
<tr>
<td>Target puts call on hold and performs Transfer, Conference, or Call Park.</td>
<td>Initiator is released.</td>
<td>Initiator and the other party remain connected.</td>
</tr>
</tbody>
</table>

If no conference bridge is available, either built-in at the target device for barge or shared for cBarge, or the maximum number of participants is reached, Cisco Unified CME rejects the barge request and an error message displays on the initiating phone.

The barge and cBarge soft keys display by default when a phone user presses the shared-line button for an active remote-in-use call. The user selects either barge or cBarge to join the shared-line call. When there are multiple active calls on the shared line, the barge initiator can select which call to join by highlighting the call.

You can customize the soft key display with a soft key template. For configuration information, see Configure the cBarge Soft Key on SCCP Phones, on page 1014 or Enable Barge and cBarge Soft Keys on SIP Phones, on page 1016.

Restriction

In the Cisco Unified Communications Manager Express System Administrator Guide, cBarge operation on an existing ad-hoc or meet-me conference is not supported.

Privacy and Privacy on Hold

The privacy feature enables phone users to block other users who share a directory number from seeing call information, resuming a call, or barging into a call on the shared line. When a phone receives an incoming call on a shared line, the user can make the call private by pressing the Privacy feature button, which toggles between on and off to allow the user to alter the privacy setting on their phone. The privacy state is applied to all new calls and current calls owned by the phone user.

Privacy is supported on SCCP octo-line directory numbers and SIP shared-line directory numbers.

Privacy is enabled for all phones in the system by default. You can disable privacy globally and enable it only for specific phones, either individually or through an phone template. You can also enable the privacy button on specific phones. After a phone with the privacy button enabled registers with Cisco Unified CME, the line feature button on the phone gets labeled “Privacy,” a status icon displays, and if the button has a monitor lamp, it lights when privacy is active. For Extension Mobility phones, you can enable the privacy button in the user profile and logout profile.

The Privacy on Hold feature prevents other phone users from viewing call information or retrieving a call put on hold by another phone sharing the directory number. Privacy on Hold is disabled for all phones in the system by default. You can enable Privacy on Hold globally for all phones. To disable Privacy on Hold on individual phones, you must disable Privacy on those phones.

The Privacy feature applies to all shared lines on a phone. If a phone has multiple shared lines and Privacy is enabled, other phones cannot view or barge into calls on any of the shared lines.
For SCCP configuration information, see Enable Privacy and Privacy on Hold on SCCP Phones, on page 1018. For SIP configuration information, see Enable Privacy and Privacy on Hold on SIP Phones, on page 1021.

Configure Barge and Privacy

Configure the cBarge Soft Key on SCCP Phones

To enable a phone user to join a call on an octo-line directory number by pressing the cBarge soft key, perform the following steps. The cBarge soft key is enabled by default. This task is required only if you want to change the order of the soft key display during the remote-in-use call state.

Restriction

- Supported only on octo-line directory numbers.
- Not supported for meet-me conferences.
- Not supported if phone user is already connected to the same ad hoc conference on the octo-line.

Before you begin

- Cisco Unified CME 7.0 or a later version.
- Octo-line directory number is configured. See Create Directory Numbers for SCCP Phones, on page 260.
- Privacy is disabled on the phone. See Privacy and Privacy on Hold, on page 1013.
- Ad hoc hardware conference resource is configured and ready to use. See Configure Hardware Conferencing, on page 1347.
- Join and leave tones for hardware conference can be configured as barge entrance and exit tones. See Configure Join and Leave Tones, on page 1348.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template-tag
4. softkeys remote-in-use { { CBarge } [ Newcall ] }
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Command or Action

**Example:**
Router# enable

> • Enter your password if prompted.

**Step 2**
**configure terminal**

**Example:**
Router# configure terminal

> Enters global configuration mode.

**Step 3**
**ephone-template template-tag**

**Example:**
Router(config)# ephone-template 5

> Enters ephone-template configuration mode to create an ephone template.

> • template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 20.

**Step 4**
**softkeys remote-in-use { [CBarge] [Newcall] }**

**Example:**
Router(config-ephone-template)# softkeys remote-in-use CBarge Newcall

> Modifies the order and type of soft keys that display on an IP phone during the remote-in-use call state.

**Step 5**
**exit**

**Example:**
Router(config-ephone-template)# exit

> Exits ephone-template configuration mode.

**Step 6**
**ephone phone-tag**

**Example:**
Router(config)# ephone 12

> Enters ephone configuration mode.

> • phone-tag—Unique number that identifies this ephone during configuration tasks.

**Step 7**
**ephone-template template-tag**

**Example:**
Router(config-ephone)# ephone-template 5

> Applies the ephone template to the phone.

> • template-tag—Unique identifier of the ephone template that you created in Step 3.

**Step 8**
**end**

**Example:**
Router(config-ephone)# end

> Exits to privileged EXEC mode.

### Examples

The following example shows that ephone template 5 modifies the soft keys displayed for the remote-in-use call state and it is applied to ephone 12:

```
ephone-template 5
softkeys remote-in-use CBarge Newcall
softkeys hold Resume Newcall Join
softkeys connected TrnsfVM Park Acct ConfrList Confrn Endcall Trnsfer Hold
max-calls-per-button 3
busy-trigger-per-button 2
```


Enable Barge and cBarge Soft Keys on SIP Phones

A phone user can join a call on a shared line by pressing the Barge or cBarge soft keys. The Barge and cBarge soft keys are enabled by default on supported SIP phones. Perform the following steps only if you want to change the order or appearance of soft keys displayed during the remote-in-use call state.

**Restriction**

- Supported only on shared lines.

For Unified CME to support Barge functionality on Cisco IP Phone 7800 Series, you need to configure the CLI command `service phone LineKeyBarge 2` under `telephony-service` configuration mode.

```
telephony-service
 service phone LineKeyBarge 2
```

The CLI command `service phone LineKeyBarge 2` activates the Line keys on the Cisco IP Phone 7800 Series so that it displays the "remote-in-use" state softkeys correctly. When the command is not configured, the phones will not display the remote-in-use state softkeys. To update the phone configuration with the LineKeyBarge option, you need to execute the CLI command `create profile` under `voice register global` configuration mode.

**Note**

If the remote-in-use state softkey configuration has both Barge and cBarge configured, then cBarge is taken as the preferential feature. The phones will ignore the Barge configuration.

**Before you begin**

- Cisco Unified CME 7.1 or a later version.
- Shared directory number is configured. See Create Directory Numbers for SIP Phones, on page 270.
- Ad hoc hardware conference resource is configured and ready to use. See Configure Hardware Conferencing, on page 1347.
- Join and leave tones for hardware conference can be configured as barge entrance and exit tones. See Configure Join and Leave Tones, on page 1348 in the Cisco Unified CME System Administrator Guide.
- For Barge and cBarge to work, privacy needs to be disabled under voice register global using the command `no privacy`. For configuring Privacy, See Enable Privacy and Privacy on Hold on SIP Phones, on page 1021.

**SUMMARY STEPS**

1. enable
2. `configure terminal`
3. `voice register template template-tag`
4. `softkeys remote-in-use { [Barge] [Newcall] [cBarge] }
5. `exit`
6. `voice register pool phone-tag`
7. `template template-tag`
8. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>voice register template template-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register template 5</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>softkeys remote-in-use { [Barge] [Newcall] [cBarge] }</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-temp)# softkeys remote-in-use cBarge Newcall</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-temp)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>voice register pool phone-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 12</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>template template-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# template 5</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# end</td>
</tr>
</tbody>
</table>
Examples
The following example shows that voice register template 5 modifies the soft keys displayed for the remote-in-use call state and it is applied to phone 120:

```
voice register template 5
 softkeys hold Resume Newcall
 softkeys connected Transfer Park Hold
 softkeys remote-in-use cBarge Barge

voice register pool 120
 id mac 0030.94C2.A22A
 type 7962
 number 1 dn 20
 template 5
```

Enable Privacy and Privacy on Hold on SCCP Phones

To enable Privacy and Privacy on Hold on SCCP phones, perform the following steps.

- If all phones require access to privacy, leave the system-level `privacy` (telephony-service) command set to enabled (default value) and leave the phone-level `privacy` (ephone) command set to the default (use system value).
- If only specific phones require access to privacy, disable privacy at the system-level by using the `no privacy` command in telephony-service configuration mode and enable privacy at the phone-level by using the `privacy on` command in ephone or ephone-template configuration mode.
- Enable Privacy on Hold at the system-level. To disable Privacy on Hold on individual phones, you must disable Privacy on those phones.

Restriction
- Privacy and Privacy on Hold are supported for calls on shared octo-line directory numbers only.
- Privacy and Privacy on Hold are not supported on the Cisco Unified IP Phone 7935, 7936, 7937, or 7985, Nokia E61, analog phones connected to the Cisco VG224 or Cisco ATA, or any phone without a display.

Before you begin
- Cisco Unified CME 7.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. privacy
5. privacy-on-hold
6. exit
7. ephone `phone-tag`
8. `privacy [off | on]`
9. `privacy-button`
10. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| | **Example:**
| | `Router# enable` | |
| | **Step 1** | |
| | `configure terminal` | Enters global configuration mode. |
| | **Example:**
| | `Router# configure terminal` | |
| | **Step 2** | |
| | `telephony-service` | Enters telephony-service configuration mode. |
| | **Example:**
| | `Router(config)# telephony-service` | |
| | **Step 3** | |
| | `privacy` | (Optional) Enables privacy at the system-level for all phones. |
| | **Example:**
| | `Router(config-telephony)# privacy` | |
| | **Step 4** | |
| | `privacy-on-hold` | (Optional) Enables privacy on hold at the system-level for all phones. |
| | **Example:**
| | `Router(config-telephony)# privacy-on-hold` | |
| | **Step 5** | |
| | `exit` | Exits telephony-service configuration mode. |
| | **Example:**
| | `Router(config-telephony)# exit` | |
| | **Step 6** | |
| | `ephone phone-tag` | Enters ephone configuration mode. |
| | **Example:**
| | `Router(config)# ephone 10` | | |
| | **Step 7** | |
| | `privacy [off | on]` | (Optional) Modifies privacy support on the specific phone. |
| | **Example:**
| | `Router(config-ephone)# privacy on` | |
| | **Step 8** | |
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• System-level privacy setting is the default. Use this command only if you want to modify the system-level setting in Step 4 for a specific phone.</td>
</tr>
<tr>
<td>• Using the no form of this command to reset to the system-level value.</td>
</tr>
<tr>
<td>• This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration.</td>
</tr>
</tbody>
</table>

### Step 9 privacy-button

**Example:**

```
Router(config-ephone)# privacy-button
```

Enables the privacy feature button on the IP phone.

- Enable this command only on phones that share an octo-line directory number.
- This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration.

### Step 10 end

**Example:**

```
Router(config-ephone)# end
```

Exits to privileged EXEC mode.

---

**Example**

The following example shows privacy disabled at the system-level and enabled on an individual phone. It also shows Privacy on Hold enabled at the system-level.

```
telephony-service
 no privacy
 privacy-on-hold
 max-ephones 100
 max-dn 240
 timeouts transfer-recall 60
 voicemail 8900
 max-conferences 8 gain -6
 transfer-system full-consult
 fac standard
 !
 ephone 10
 privacy on
 privacy-button
 max-calls-per-button 3
 busy-trigger-per-button 2
 mac-address 00E1.CB13.0395
 type 7960
 button 1:7 2:10
```
Enable Privacy and Privacy on Hold on SIP Phones

To enable Privacy and Privacy on Hold on SIP phones, perform the following steps.

- To enable Privacy on all phones, leave the system-level **privacy** (voice register global) command set to enabled (default value) and leave the phone-level **privacy** (voice register pool) command set to the default (use system value).

- To enable Privacy on specific phones only, disable privacy at the system-level by using the **no privacy** command in voice register global configuration mode and enable privacy at the phone-level by using the **privacy on** command in voice register pool or voice register template configuration mode.

- To enable Privacy on Hold on all phones, enable it at the system-level with the **privacy-on-hold** command. To disable Privacy on Hold on specific phones, disable Privacy on those phones using the **privacy off** command in voice register pool or voice register template configuration mode. Privacy must be enabled to support Privacy on Hold.

---

Restriction

- Privacy and Privacy on Hold are supported for calls on shared-line directory numbers only.

- Privacy and Privacy on Hold are not supported on the Cisco Unified IP Phone 7935, 7936, 7937, or 7985, Nokia E6, analog phones connected to the Cisco VG224 or Cisco ATA, or any phone without a display.

---

Before you begin

- Cisco Unified CME 7.1 or a later version.

### SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. privacy
5. privacy-on-hold
6. exit
7. voice register pool **phone-tag**
8. privacy (**off | on**)  
9. privacy-button
10. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>voice register global</td>
<td></td>
</tr>
<tr>
<td>privacy</td>
<td></td>
</tr>
<tr>
<td>privacy-on-hold</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>voice register pool <strong>phone-tag</strong></td>
<td></td>
</tr>
<tr>
<td>privacy (**off</td>
<td>on**)</td>
</tr>
<tr>
<td>privacy-button</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2** configure terminal  
Example:  
Router# configure terminal | Enters global configuration mode. |
| **Step 3** voice register global  
Example:  
Router(config)# voice register global | Enters telephony-service configuration mode. |
| **Step 4** privacy  
Example:  
Router(config-register-global)# privacy | (Optional) Enables privacy at the system-level for all phones.  
- This command is enabled by default.  
- To enable privacy for individual phones only, disable privacy at the system-level with the **no privacy** command and enable it for individual phones as shown in Step 8. |
| **Step 5** privacy-on-hold  
Example:  
Router(config-register-global)# privacy-on-hold | (Optional) Enables privacy on hold at the system-level for all phones.  
- Blocks phone users on shared lines from viewing call information or retrieving calls on hold. Default is disabled. |
| **Step 6** exit  
Example:  
Router(config-register-global)# exit | Exits voice register global configuration mode. |
| **Step 7** voice register pool phone-tag  
Example:  
Router(config)# voice register pool 10 | Enters voice register pool configuration mode.  
- **phone-tag**—Unique number that identifies this phone during configuration tasks. |
| **Step 8** privacy (off | on)  
Example:  
Router(config-register-pool)# privacy on | (Optional) Modifies phone-level privacy setting on this phone. The default value is the system setting.  
- **off**—Sets privacy state to off on the phone.  
- **on**—Sets privacy state to on for the phone  
- Use this command only if you want to modify the system-level setting in Step 4 for a specific phone.  
- Using the **no** form of this command to reset to the system-level value.  
- This command can also be configured in voice register template configuration mode and applied to one or more phones. The phone configuration has priority over the phone template configuration. |
<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>privacy-button</td>
<td>Enables the privacy feature button on the IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enable this command only on phones with a shared-line directory number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• This command can also be configured in voice register template configuration mode and applied to one or more phones. The phone configuration has priority over the phone template configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>end</th>
<th>Returns to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config-register-pool)# end</td>
</tr>
</tbody>
</table>

### Examples

The following example shows privacy disabled at the system-level and enabled on an individual phone. It also shows Privacy on Hold enabled at the system-level.

```plaintext
voice register global
 mode cme
 privacy-on-hold
 no privacy
 max-dn 300
 max-pool 150
 voicemail 8900
!

voice register pool 130
 id mac 001A.A11B.500E
 type 7941
 number 1 dn 30
 privacy ON
 privacy-button
```

---

### Feature Information for Barge and Privacy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
### Table 93: Feature Information for Barge and Privacy

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge</td>
<td>12.0</td>
<td>Added cBarge support for mixed shared line.</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>Added support for cBarge on Cisco 4000 Series Integrated Services Router for Unified CME.</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Added Barge and cBarge support for SIP shared-line directory numbers.</td>
</tr>
<tr>
<td></td>
<td>7.0/4.3</td>
<td>Added cBarge support for SCCP shared octo-line directory numbers.</td>
</tr>
<tr>
<td>Privacy</td>
<td>7.1</td>
<td>Added support for Privacy on SIP shared-line directory numbers.</td>
</tr>
<tr>
<td></td>
<td>7.0/4.3</td>
<td>Added support for Privacy on SCCP shared octo-line directory numbers.</td>
</tr>
</tbody>
</table>
Information About Call Blocking

Call Blocking Based on Date and Time (After-Hours Toll Bar)

Call blocking to prevent unauthorized use of phones is implemented by matching dialed numbers against a pattern of specified digits and matching the time against the time of day and day of week or date that has been specified for Call Blocking. You can specify up to 32 patterns of digits for blocking.

When a user attempts to place a call to digits that match a pattern that has been specified for Call Blocking during a time period that has been defined for Call Blocking, a fast busy signal is played for approximately 10 seconds. The call is then terminated and the line is placed back in on-hook status.

The Cisco Unified CME session application accesses the current after-hours configuration and applies it to calls originated by phones that are registered to the Cisco Unified CME router. Call blocking applies to all IP phones in Cisco Unified CME, although individual IP phones can be exempted from all call blocking.

In Cisco CME 3.4 and later versions, the same time-based call-blocking mechanism that is provided for SCCP phone and on analog phones connected to SCCP-controlled analog telephone adaptors (Cisco ATA) or SCCP-controlled foreign exchange station (FXS) ports is expanded to SIP endpoints.

In Cisco CME 3.4 and later, call-blocking configuration applies to all SCCP, H.323, SIP and POTS calls that go through the Cisco Unified CME router. All incoming calls to the router, except calls from an exempt phone, are also checked against the after-hours configuration.

Prior to Cisco Unified CME 4.2(1), all Call Blocking features are implemented globally and uniformly on each phone in the system. All phones are similarly restricted according to time, date, location, and other call blocking characteristics. Call Blocking is not supported on ephone-dns that are configured to use the trunk feature, and Call Blocking did not apply to second-stage trunk dialing.

In Cisco Unified CME 4.2(1) and later versions, you have the flexibility to set different call block calendars and call block patterns to phones in different departments, to block certain trunk dialing as required, and to configure Call Blocking on a particular SCCP IP phone by creating and applying a template to that phone.
For configuration information, see Configure Call Blocking, on page 1028.

**After-Hours Pattern-Blocking Support for Regular Expressions**

In Cisco Unified CME 9.5, support for afterhours pattern blocking is extended to regular expression patterns for dial plans on Cisco Unified SIP phones and Cisco Unified SCCP IP phones. With this support, users can add a combination of fixed dial plans and regular expression-based dial plans.

When a call is initiated after hours, the dialed number is matched against a combination of dial plans. If a match is found, the call is blocked.

To enable regular expression patterns to be included when configuring afterhours pattern blocking, the `after-hours block pattern` command is modified to include regular expressions as a value for the `pattern` argument in the following command syntax:

```
after-hours block pattern pattern-tag pattern
```

This command is available in the following configuration modes:

- `telephony-service`—For both SCCP and SIP Phones.
- `ephone-template`—For SCCP phones only.

---

**Note**

The maximum length of a regular expression pattern is 32 for both Cisco Unified SIP and Cisco Unified SCCP IP phones.

If calls to the following numbers are to be blocked after hours:

- numbers beginning with ‘0’ and ‘00’
- numbers beginning with 1800, followed by four digits
- numbers 9876512340 to 9876512345

then the following configurations can be used:

- after-hours block pattern 1 0*
- after-hours block pattern 2 00*
- after-hours block pattern 3 1800....
- after-hours block pattern 4 987651234[0-5]

---

**Note**

There is no change in the number of afterhours patterns that can be added. The maximum number is still 100.

After-hours block pattern 0* blocks all numbers, and 00* blocks any number starting from 0. 0* and 00* must not be denoted as regular expressions.

For more configuration examples, see *Example for Configuring After-Hours Block Patterns of Regular Expressions, on page 1041* section.
For a summary of the basic Cisco IOS regular expression characters and their functions, see Cisco Regular Expression Pattern Matching Characters section of Terminal Services Configuration Guide.

**Call Blocking Override**

The after-hours configuration applies globally to all dial peers in Cisco Unified CME. You can disable the feature on phones using one of three mechanisms:

- directory number—To configure an exception for an individual directory number.
- phone-level—To configure an exception for all directory numbers associated to a Cisco Unified IP phone regardless of any configuration for an individual directory number.
- dial peer—To configure an exception for a particular dial peer.

Individual phone users can be allowed to override call blocking associated with designated time periods by entering personal identification numbers (PINs) that have been assigned to their phones. For IP phones that support soft keys, such as the Cisco Unified IP Phone 7940G and the Cisco Unified IP Phone 7960G, the call-blocking override feature allows individual phone users to override the call blocking that has been defined for designated time periods. The system administrator must first assign a personal identification number (PIN) to any phone that will be allowed to override Call Blocking.

Logging in to a phone with a PIN only allows the user to override call blocking that is associated with particular time periods. Blocking patterns that are in effect 7 days a week, 24 hours a day, and they cannot be overridden by using a PIN.

When PINs are configured for call-blocking override, they are cleared at a specific time of day or after phones have been idle for a specific amount of time. The time of day and amount of time can be set by the system administrator, or the defaults can be accepted.

For configuration information, see Configure Call Blocking, on page 1028.

**Class of Restriction**

Class of restriction (COR) is the capability to deny certain call attempts based on the incoming and outgoing class of restrictions provisioned on the dial peers. COR specifies which incoming dial peer can use which outgoing dial peer to make a call. Each dial peer can be provisioned with an incoming and an outgoing COR list.

COR functionality provides flexibility in network design by allowing users to block calls (for example, calls to 900 numbers) and allowing different restrictions to call attempts from different originators.

For SIP phones, multiple COR lists can be applied under the voice register pool. A maximum of ten lists (five incoming and five outgoing) can be defined. The final COR list that is applied depends on the DN that the phone registers with the CME. This DN should match any one of the ranges defined in the COR list under the voice register pool.

For SIP Phones on Unified CME Release 12.1 and later versions, COR lists can be applied under voice register template configuration mode as well. If the COR list is configured under voice register pool and voice register template, the configuration under voice register pool takes precedence. If the COR list configuration under voice register pool is removed, the configuration under voice register template is applied.
Configure Call Blocking

Configure Call Blocking

To define blocking patterns and time periods during which calls to matching patterns are blocked for all SCCP and SIP endpoints in Cisco Unified CME, to define blocking patterns to be matched to block calls from PSTN lines, and to deactivate logins on SCCP phones at a specific time or for a specified time period, perform the following steps.

Restriction

• Prior to Cisco CME 3.3, Call Blocking is not supported on analog phones connected to Cisco ATAs or FXS ports in H.323 mode.

• Prior to Cisco CME 3.4, Call Blocking is not supported on SIP IP phones connected directly in Cisco Unified CME.

• Prior to Cisco Unified CME 4.2(1), selective Call Blocking on IP phones and PSTN trunk lines is not supported.

Before you begin

• Dial-peers are configured to provide PSTN access using router voice-ports or H.323/SIP trunk connections.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony service
4. after-hours block pattern pattern-tag pattern [7-24]
5. after-hours date month date start-time stop-time
6. after-hours day day start-time stop-time
7. after-hours pstn-prefix tag pattern
8. login [timeout [minutes]] [clear time]
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable
| Example:
| Router> enable |
| Enables privileged EXEC mode.
| • Enter your password if prompted. |
| **Step 2**
| configure terminal
| Example:
<p>| Router# configure terminal |
| Enters global configuration mode. |</p>
<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action: <code>telephony service</code></th>
<th>Purpose: Enters telephony service configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example: <code>Router(config)# telephony service</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action: <code>after-hours block pattern pattern-tag pattern [7-24]</code></th>
<th>Purpose: Defines pattern to be matched for blocking calls from IP phones.</th>
</tr>
</thead>
</table>
|        | Example: `Router(config-telephony)# after-hours block pattern 2 91` | - `pattern-tag`—Unique number pattern for call blocking. Define up to 32 call-blocking patterns in separate commands. Range is 1 to 32.  
- This command can also be configured in ephone-template configuration mode. The value set in ephone-template configuration mode has priority over the value set in telephony-service mode. |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action: <code>after-hours date month date start-time stop-time</code></th>
<th>Purpose: Defines a recurring period based on date of month during which outgoing calls that match defined block patterns are blocked on IP phones.</th>
</tr>
</thead>
</table>
|        | Example: `Router(config-telephony)# after-hours date jan 1 0:00 23:59` | - Enter beginning and ending times for call blocking in an HH:MM format using a 24-hour clock. The `stop-time` must be greater than the `start-time`. The value 24:00 is not valid. If you enter 00:00 as a stop time, it is changed to 23:59. If you enter 00:00 for both start time and stop time, calls are blocked for the entire 24-hour period on the specified date.  
- This command can also be configured in ephone-template configuration mode. The value set in ephone-template configuration mode has priority over the value set in telephony-service mode. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action: <code>after-hours day day start-time stop-time</code></th>
<th>Purpose: Defines a recurring period based on day of the week during which outgoing calls that match defined block patterns are blocked on IP phones.</th>
</tr>
</thead>
</table>
|        | Example: `Router(config-telephony)# after-hours day sun 0:00 23:59` | - Enter beginning and ending times for call blocking in an HH:MM format using a 24-hour clock. The `stop-time` must be greater than the `start-time`. The value 24:00 is not valid. If you enter 00:00 as a stop time, it is changed to 23:59. If you enter 00:00 for both start time and stop time, calls are blocked for the entire 24-hour period on the specified day.  
- This command can also be configured in ephone-template configuration mode. The value set in ephone-template configuration mode has priority over the value set in telephony-service mode. |
Configure Call Blocking Exemption for a Dial Peer

To allow H.323 and SIP trunk calls to utilize the voice gateway in spite of the the after-hours configuration in Cisco Unified CME, follow the steps in this section.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `dial-peer voice tag {pots | voatm | vofr | voip}`
4. `paramspace callsetup after-hours-exempt true`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>

**Step 3**  
**dial-peer voice tag \{ pots | voatm | vofr | voip \}**  
**Example:**  
Router(config)# dial peer voice 501 voip  
**Purpose:** Defines a particular dial peer, specifies the method of voice encapsulation, and enters dial-peer configuration mode.

**Step 4**  
**paramspace callsetup after-hours-exempt true**  
**Example:**  
Router(config-dialpeer)# paramspace callsetup after-hours-exempt true  
**Purpose:** Exempts a dial peer from Call Blocking configuration.

**Step 5**  
**end**  
**Example:**  
Router(config-dialpeer)# end  
**Purpose:** Exits configuration mode and enters privileged EXEC mode.

---

### Configure Call Blocking Override for All SCCP Phones

To define the Call Blocking override code to be entered by a phone user to override all call-blocking rules, perform the following steps.

**Restriction**

- Call Blocking override is supported only on phones that support softkey display.
- If the after-hours override code is the same as the night-service code, after hours Call Blocking is disabled.
- Both override codes defined in telephony-service and override codes defined in ephone-template are enabled on all phones.
- If a global telephony-service override code overlaps an ephone-template override code and contains more digits, an outgoing call is disabled wherever the telephony-service override code is used on phones with the ephone template applied. For example, if the telephony-service override code is 6241 and the ephone-template override code is 62, those phones with the ephone template applied will sound a fast busy tone if the 6241 override code is dialed.

**Before you begin**

- Cisco Unified CME 4.2(1) or a later version.

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. telephony-service
4. after-hours override-code pattern
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> telephony-service</td>
<td>Enters telephony service configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td>Enters telephony service configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> after-hours override-code pattern</td>
<td>Defines the pattern of digits (0-9) that overrides an after-hours call blocking configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# after-hours override-code 1234</td>
<td>Defines the pattern of digits (0-9) that overrides an after-hours call blocking configuration.</td>
</tr>
<tr>
<td></td>
<td>• pattern: identifies the unique set of digits that, when dialed after pressing the login soft key, can override the after-hours call blocking configuration.</td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in ephone-template configuration mode. The value set in ephone-template configuration mode has priority over the value set in telephony-service mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Configure Call Blocking Exemption for an Individual SCCP Phone**

To exempt all directory numbers associated with an individual SCCP phone from the Call Blocking configuration, follow the steps in this section.

**Restriction**

• Call Blocking override is supported only on phones that support softkey display.

**SUMMARY STEPS**

1. enable
2. configure terminal
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone 4</td>
<td>• phone-tag—The unique sequence number for the phone that is to be exempt from call blocking.</td>
</tr>
<tr>
<td>Step 4</td>
<td>after-hour exempt</td>
<td>Specifies that this phone is exempt from call blocking. Phones exempted in this manner are not restricted from any call-blocking patterns and no authentication of the phone user is required.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# after-hour exempt</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>pin pin-number</td>
<td>Declares a personal identification number (PIN) that is used to log into an ephone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# pin 5555</td>
<td>• pin-number—Number from four to eight digits in length.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configure Call Blocking Exemption for an Individual SIP Phone or Directory Number

To exempt all extensions associated with an individual SIP phone or an individual directory number from the Call Blocking configuration, follow the steps in this section.

**Restriction**

- The Login toll-bar override is not supported on SIP IP phones; there is no pin to bypass blocking on IP phones that are connected to Cisco Unified CME and running SIP.
### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **voice register pool** *pool-tag* or **voice register dn** *dn-tag*
4. **after-hour exempt**
5. **end**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: &lt;br&gt;Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: &lt;br&gt;Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> voice register pool <strong>pool-tag</strong> or voice register dn <strong>dn-tag</strong></td>
<td>Enters voice register pool configuration mode to set parameters for specified SIP phone.</td>
</tr>
<tr>
<td>Example: &lt;br&gt;Router(config)# voice register pool 1 &lt;br&gt;or &lt;br&gt;Router(config)# voice register dn 1</td>
<td>or &lt;br&gt;Enters voice register dn mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td><strong>Step 4</strong> after-hour exempt</td>
<td>Exempts all numbers on a SIP phone from call blocking.</td>
</tr>
<tr>
<td>Example: &lt;br&gt;Router(config-register-pool)# after-hour exempt &lt;br&gt;or &lt;br&gt;Router(config-register-dn)# after-hour exempt</td>
<td>or &lt;br&gt;Exempts an individual directory number from call blocking.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: &lt;br&gt;Router(config-register-pool)# end &lt;br&gt;or &lt;br&gt;Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Verify Call Blocking Configuration

**Step 1** Use the **show running-config** command to display an entire configuration, including call-blocking number patterns and time periods and the phones that are marked as exempt from call blocking.

**Example:**
telephony-service
    fxo hook-flash
    load 7960-7940 P00305000600
    load 7914 S00103020002
    max-ephones 100
    max-dn 500
    ip source-address 10.115.43.121 port 2000
    timeouts ringing 10
    voicemail 7189
    max-conferences 8 gain -6
    moh music-on-hold.au
    web admin system name sys3 password sys3
    dn-webedit
time-webedit
    transfer-system full-consult
    transfer-pattern .T
    secondary-dialtone 9
    after-hours block pattern 1 91900 7-24
    after-hours block pattern 2 9976 7-24
    after-hours block pattern 3 9011 7-24
    after-hours block pattern 4 91...976.... 7-24
    !
    create cnf-files version-stamp 7960 Jul 13 2004 03:39:28

Step 2  Use the **show ephone login** command to display the login status of all phones.

**Example:**

```
Router# show ephone login
ephone 1 Pin enabled:TRUE Logged-in:FALSE
ephone 2 Pin enabled:FALSE
ephone 3 Pin enabled:FALSE
```

Step 3  The **show voice register dial-peer** command displays all the dial peers created dynamically by SIP phones that have registered, along with configurations for after hours blocking.

---

### Apply Class of Restriction to a Directory Number on SCCP Phone

To apply a class of restriction to a directory number, perform the following steps.

**Restriction**

- In a Call Redirection scenario (either Call Forward or Call Forward Busy), when you select an outgoing dial peer, CUCME considers the Class of Restriction applied on the originating extension instead of the one applied on the redirecting extension. This is because the redirecting extension is an intermediate dial peer that is used temporarily.

**Before you begin**

- COR lists must be created in dial peers. For information, see [Class of Restrictions](https://www.example.com) section in the “Dial Peer Configuration on Voice Gateway Routers” document in the Cisco IOS Voice Configuration Library.

- Directory number to which COR is to be applied must be configured in Cisco Unified CME. For configuration information, see [Create Directory Numbers for SCCP Phones](https://www.example.com), on page 260.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. corlist {incoming | outgoing} cor-list-name
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>corlist {incoming</td>
<td>outgoing} cor-list-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# corlist outgoing localcor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

Apply Class of Restriction to Directory Number on SIP Phones

To apply a class of restriction to virtual dial peers for directory numbers associated with a SIP IP phone connected to Cisco Unified CME, perform the following steps.

In a Call Redirection scenario (either Call Forward or Call Forward Busy), when you select an outgoing dial peer, CUCME considers the Class of Restriction applied on the originating extension instead of the one applied on the redirecting extension. This is because the redirecting extension is an intermediate dial peer that is used temporarily.

Before you begin

• Cisco unified CME 3.4 or a later version.
• COR lists must be created in dial peers. For information, see Class of Restrictions section in the “Dial Peer Configuration on Voice Gateway Routers” document in the Cisco IOS Voice Configuration Library.

• Individual phones to which COR is to be applied must be configured in Cisco Unified CME. For configuration information, see Create Directory Numbers for SCCP Phones, on page 260.

• The COR list configuration under voice register template configuration mode is supported only for Unified CME 12.1 and later releases.

SUMMARY STEPS

1. enable
2. configure terminal
3. Enter one of the following commands:
   • voice register pool pool-tag
   • voice register template template-tag
4. cor {incoming | outgoing} cor-list-name {cor-list-number starting-number [ - ending-number ] | default}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enter one of the following commands:</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# voice register pool 3</td>
<td>• pool-tag—Unique number assigned to the pool. Range is 1 to 100.</td>
</tr>
<tr>
<td></td>
<td>• voice register pool pool-tag</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>• voice register template template-tag</td>
<td>Enters voice register template configuration mode and defines a template of common parameters for Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• template-tag—Declares a template tag. Range is 1 to 10.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>cor {incoming</td>
<td>outgoing} cor-list-name {cor-list-number starting-number [ - ending-number ]</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>----------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-pool)# cor incoming call91191011</td>
<td>and specifies which incoming dial peer can use which outgoing dial peer to make a call.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Each dial peer can be provisioned with an incoming and an outgoing COR list.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-pool)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Verify Class of Restriction**

**Step 1**  Use the `show running-config` command or the `show telephony-service ephone-dn` command to verify whether the COR lists have been applied to the appropriate ephone-dns.

**Example:**

Router# `show running-config`

ephone-dn 23
   number 2835
   corlist outgoing 5x

**Step 2** Use the `show dialplan dialpeer` command to determine which outbound dial peer is matched for an incoming call, based on the COR criteria and the dialed number specified in the command line. Use the `timeout` keyword to enable matching variable-length destination patterns associated with dial peers. This can increase your chances of finding a match for the dial peer number you specify.

**Example:**

Router# `show dialplan dialpeer 300 number 1900111`

VoiceOverIpPeer900
   information type = voice,
   description = '',
   tag = 900, destination-pattern = '1900',
   answer-address = '', preference=0,
   numbering Type = 'unknown'
   group = 900, Admin state is up, Operation state is up,
   incoming called-number = '', connections/maximum = 0/unlimited,
   DTMF Relay = disabled,
   modem passthrough = system,
   huntstop = disabled,
   in bound application associated: 'DEFAULT'
   out bound application associated: ''
   dnis-map =
   permission :both
   incoming COR list:maximum capability
   outgoing COR list:to900
   type = voip, session-target = 'ipv4:1.8.50.7',
   technology prefix:
   settle-call = disabled
   ...
Step 3  Use the `show dial-peer voice` command to display the attributes associated with a particular dial peer.

Example:

```
Router# show dial-peer voice 100

VoiceEncapPeer100
 information type = voice,
 description = '',
 tag = 100, destination-pattern = '',
 answer-address = '', preference=0,
 numbering Type = 'unknown'
 group = 100, Admin state is up, Operation state is up,
 Outbound state is up,
 incoming called-number = '555....', connections/maximum = 0/unlimited,
 DTMF Relay = disabled,
 huntstop = disabled,
 in bound application associated: 'vxml_inb_app'
 out bound application associated: ''
 dnis-map =
 permission :both
 incoming COR list:maximum capability
 outgoing COR list:minimum requirement
 type = pots, prefix = '',
 forward-digits default
 session-target = '', voice-port = '',
 direct-inward-dial = disabled,
 digit_strip = enabled,
 register E.164 number with GK = TRUE

 Connect Time = 0, Charged Units = 0,
 Successful Calls = 0, Failed Calls = 0, Incomplete Calls = 0
 Accepted Calls = 0, Refused Calls = 0,
 Last Disconnect Cause is '',
 Last Disconnect Text is '',
 Last Setup Time = 0.
```

Configuration Examples for Call Blocking

Example for Configuring Call Blocking

The following example defines several patterns of digits for which outgoing calls are blocked. Patterns 1 and 2, which block calls to external numbers that begin with “1” and “011,” are blocked on Monday through Friday before 7 a.m. and after 7 p.m., on Saturday before 7 a.m. and after 1 p.m., and all day Sunday. Pattern
3 blocks calls to 900 numbers 7 days a week, 24 hours a day. The IP phone with tag number 23 and MAC address 00e0.8646.9242 is not restricted from calling any of the blocked patterns.

telephony-service
  after-hours block pattern 1 91
  after-hours block pattern 2 9011
  after-hours block pattern 3 91900 7-24
  after-hours day mon 19:00 07:00
  after-hours day tue 19:00 07:00
  after-hours day wed 19:00 07:00
  after-hours day thu 19:00 07:00
  after-hours day fri 19:00 07:00
  after-hours day sat 13:00 12:00
  after-hours day sun 12:00 07:00

ephone 23
  mac 00e0.8646.9242
  button 1:33
  after-hour exempt

ephone 24
  mac 2234.1543.6352
  button 1:34

The following example deactivates a phone’s login after three hours of idle time and clears all logins at 10 p.m.:
ephone 1
  pin 1000

Example for Configuring Class of Restriction

The following example shows three dial peers for dialing local destinations, long distance, and 911. COR list user1 can access the dial peers used to call 911 and local destinations. COR list user2 can access all three dial peers. Ephone-dn 1 is assigned COR list user1 to call local destinations and 911, and ephone-dn 2 is assigned COR list user2 to call 911, local destinations, and long distance.

dial-peer cor custom
  name local
  name longdistance
  name 911

  dial-peer cor list call-local
    member local

  dial-peer cor list call-longdistance
    member longdistance

  dial-peer cor list call-911
    member 911

  dial-peer cor list user1
    member 911
    member local

  dial-peer cor list user2
    member 911
    member local
    member longdistance
Example for Configuring After-Hours Block Patterns of Regular Expressions

The following example shows how to configure several afterhours block patterns of regular expressions:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# telephony-service

Router(config-telephony)# after-hours block pattern 1 ?
  WORD Specific block pattern or a regular expression for after-hour block pattern

Router(config-telephony)# after-hours block pattern 1 1234
Router(config-telephony)# after-hours block pattern 2 .T
Router(config-telephony)# after-hours block pattern 3 987654([1-3])+
Router(config-telephony)# after-hours block pattern 4 98765432[1-9]
Router(config-telephony)# after-hours block pattern 5 98765(432|422|456)

Where to Go Next

After modifying a configuration for a Cisco Unified IP phone connected to Cisco Unified CME, you must reboot the phone to make the changes take effect. For more information, see Reset and Restart Cisco Unified IP Phones, on page 399.

Soft Key Control

To move or remove the Login soft key on one or more phones, create and apply an ephone template that contains the appropriate softkeys commands.
For more information, see Customize Softkeys, on page 897.

**Ephone-dn Templates**

The `corlist` command can be included in an ephone-dn template that is applied to one or more ephone-dns. For more information, see Templates, on page 1393.

## Feature Information for Call Blocking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

### Table 94: Feature Information for Call Blocking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Call Blocking              | 4.2(1)                     | Added support for selective call blocking on IP phones and PSTN trunk lines.  
|                            | 3.4                        | • Support for Call Blocking on SIP IP phones connected directly in Cisco Unified CME was introduced.  
|                            |                            | • All incoming calls to the router, except calls from an exempt phone, are also checked against the after-hours configuration.                     |
|                            | 3.3                        | Added support for Call Blocking on analog phones connected to Cisco ATAs or FXS ports in H.323 mode.                                                 |
|                            | 3.0                        | • Call blocking based on date and time was introduced.  
|                            |                            | • Override of Call Blocking was introduced.                                                                                                          |
| Class of Restriction       | 12.1                       | Added support for COR configuration in voice register template configuration mode for Unified CME.                                           |
|                            | 3.4                        | Added support for COR on SIP IP Phones connected directly in Cisco Unified CME.                                                                   |
|                            | 2.0                        | Class of restriction was introduced.                                                                                                               |
Call Park

Information About Call Park

Call Park Enhancements in Cisco Unified CME 7.1

Cisco Unified CME 7.1 adds Call Park support for SIP phones, introduces Park Reservation Groups, and enhances the Directed Call Park feature. Park slots can be shared among SCCP and SIP phones. For example, a call parked on an SCCP phone can be retrieved by a SIP phone on the same Cisco Unified CME router. Call Park features are available on SCCP and SIP phones that support the Park soft key. The Park soft key displays on supported phones by default.

Table describes how phone users park and retrieve calls in Cisco Unified CME 7.1 and later versions compared to previous versions. For SCCP phones, the only change is in how users perform Directed Call Park Retrieval. The Call Park method supported in previous versions of Cisco Unified CME is enabled by default. You can change the park and retrieval method only when there are no parked calls.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cisco Unified CME 7.1 and Later Versions (SCCP and SIP Phones)</th>
<th>Before Cisco Unified CME 7.1 (SCCP Phones Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Park (Basic)</td>
<td>Press Park soft key to park the call.</td>
<td>Press Park soft key to park the call.</td>
</tr>
<tr>
<td>Call Park Retrieval¹⁵</td>
<td>Do one of the following:</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Dial the park slot extension (SCCP and SIP).</td>
<td>• Dial the park slot extension.</td>
</tr>
<tr>
<td></td>
<td>• Press Pickup soft key and dial park-slot extension (SCCP only).</td>
<td>• Press Pickup soft key and dial park-slot extension.</td>
</tr>
<tr>
<td></td>
<td>• Press Pickup soft key and the asterisk (*) on phone that parked the call (SCCP only).</td>
<td>• Press Pickup soft key and the asterisk (*) on phone that parked the call.</td>
</tr>
</tbody>
</table>
Basic Call Park

The Call Park feature allows a phone user to place a call on hold at a special extension so it can be retrieved from any other phone in the system. A user parks the call at the extension, known as the call-park slot, by pressing the Park soft key. Cisco Unified CME chooses the next available call-park slot and displays that number on the phone. A user on another phone can then retrieve the call by dialing the extension number of the call-park slot.

You can define either a single extension number or a range of extension numbers to use as call-park slots. Each call-park slot can hold one call at a time so the number of calls that users can park is equal to the number of slots you create. If the secondary number is used to group calls together, calls are retrieved in the order in which they were parked; the call that has been parked the longest is the first call retrieved from the call-park slot.

A caller who is parked in a park slot hears the music-on-hold (MOH) audio stream if the call uses the G.711 codec or if the call uses G.729 with transcoding; otherwise, callers hear a tone on hold. Users who attempt to park a call at a busy slot hear a busy tone.

Call-park slots can also be monitored by assigning the call-park slot to a monitor button using the button m command. The line status shows “in use” when a call is parked in the monitored slot. A call that is parked on the monitored call-park slot can be picked up by pressing the assigned monitor button.

You can create a call-park slot that is reserved for use by one extension by assigning that slot a number whose last two digits are the same as the last two digits of the extension. When an extension starts to park a call, the system searches first for a call-park slot that has the same final two digits as the extension. If no such call-park slot exists, the system chooses an available call-park slot.

Multiple call-park slots can be created with the same extension number so that more than one call can be parked for a particular department or group of people at a known extension number. For example, at a hardware store, calls for the plumbing department can be parked at extension 101, calls for lighting can be parked at 102, and so forth. Everyone in the plumbing department knows that calls parked at 101 are for them and can pick up calls from extension 101. When multiple calls are parked at the same call-park slot number, they are picked up in the order in which they were parked; that is, the call that has been parked the longest is the first call picked up from that call-park slot number.

If multiple call-park slots use the same extension number, you must configure each ephone-dn that uses the extension number with the no huntstop command, except for the last ephone-dn to which calls are sent. In addition, each ephone-dn must be configured with the preference command. The preference numeric values must increase to match the order of the ephone-dns. That is, the lowest ephone-dn tag park-slot must have

---

### Call Park

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cisco Unified CME 7.1 and Later Versions (SCCP and SIP Phones)</th>
<th>Before Cisco Unified CME 7.1 (SCCP Phones Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed Call Park</td>
<td>Press Transfer soft key and dial park-slot extension.</td>
<td>Press Transfer soft key and dial park-slot extension.</td>
</tr>
<tr>
<td>Directed Call Park Retrieval</td>
<td>Dial the retrieval FAC and park-slot extension.</td>
<td>Same as Basic Call Park Retrieval.</td>
</tr>
</tbody>
</table>

---

14 You must enable the call-park system application command.

15 SCCP phones support the Pickup soft key for Park Retrieval only if the service directed-pickup command is configured (default). Otherwise, the Pickup soft key initiates Local Group Pickup.

To enable Call Park features, see Enable Call Park or Directed Call Park, on page 1050.
the lowest numeric preference number, and so forth. Without the configuration of the preference and huntstop commands, all calls that are parked after a second call has been parked will generate a busy signal. The caller who is being transferred to park will hear a busy signal, while the phone user who parked the call will receive no indication that the call was lost.

A reminder ring can be sent to the extension that parked the call by using the timeout keyword with the park-slot command. The timeout keyword and argument set the interval length during which the call-park reminder ring is timed out or inactive. If the timeout keyword is not used, no reminder ring is sent to the extension that parked the call. The number of timeout intervals and reminder rings are configured with the limit keyword and argument. For example, a limit of 3 timeout intervals sends 2 reminder rings (interval 1, ring 1, interval 2, ring 2, interval 3). The timeout and limit keywords and arguments also set the maximum time that calls stay parked. For example, a timeout interval of 10 seconds and a limit of 5 timeout intervals (park-slot timeout 10 limit 5) will park calls for approximately 50 seconds.

The reminder ring is sent only to the extension that parked the call unless the notify keyword is also used to specify an additional extension number to receive a reminder ring. When an additional extension number is specified using the notify keyword, the phone user at that extension can retrieve a call from this slot by pressing the PickUp soft key and the asterisk (*) key.

You can define both the length of the timeout interval for calls parked at a call-park slot and the number of timeout intervals that should occur before the call is either recalled or transferred. If you specify a transfer target in the park-slot command, the call is transferred to the specified target after the timeout intervals expire rather than to the primary number of the parking phone.

If a name has been specified for the call-park slot using the name command, that name will be displayed on a recall or transfer rather than an extension number.

You can also specify an alternate target extension at which to transfer a parked call if the recall or transfer target is in use (ringing or connected). For example, a call is parked at the private park slot for the phone with the primary extension of 2001, as shown in Figure 39: Dedicated Call Park Example, on page 1049. After the timeouts expire, the system attempts to recall the call to extension 2001, but that line is connected to another call. The system then transfers the call to the alternate target, extension 3784.

**View Active Parked Calls**

You can view the list of active parked calls on SIP and SCCP phones using the phone menu by pressing the Service button on the phone and navigating to My Phone Apps > Park List.

To recall a call from the list of parked calls, you can select the desired call and press the Pickup soft key.

To refresh the list of parked calls you can press the Update soft key in the menu.

Latest parked call will be displayed on top of the list.

---

**Note**

This feature can be configured as PLK button for SCCP and SIP Phone. For more information see Configure Feature Button on a Cisco Unified SCCP Line Key, on page 1428 and Configure Feature Button on a Cisco Unified SIP Phone Line Key, on page 1425.

**Configure User Interface to View Active List of Parked Calls**

This feature enables a user to view the list of active parked calls and is enabled by default.
Configure User Interface to View Active List of Parked Calls

You must perform this task only if the feature was previously disabled on a phone.

This feature is enabled by default for SCCP and SIP phones. For SCCP phones, this feature can be enabled and disabled. However, SIP phones do not have the enable or disable option.

Note

• If there are more than 20 active calls parked, then only the first 20 active parked calls will be displayed.

• Dedicated, private call-park slots configured using the reserved-for command are not supported on the phone’s display.

Restriction

Before you begin

• Cisco Unified CME 10.5 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. phone-ui park-list
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone phone-tag</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone 12</td>
</tr>
<tr>
<td></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• phone-tag—Unique number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 4</td>
<td>phone-ui park-list</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# phone-ui park-list</td>
</tr>
<tr>
<td></td>
<td>Enables a phone user to view the list of active parked calls.</td>
</tr>
<tr>
<td></td>
<td>• This command is enabled by default.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Directed Call Park

The Directed Call Park feature allows a phone user to transfer a call to a specific call-park slot using the Transfer soft key. For example, a customer calls a retail store and asks for the sporting goods department. The operator who answers the call transfers the call to one of the park-slots associated with the sporting goods department and pages the sporting goods department to retrieve the call. You can configure phones that support the directed call-park Busy Lamp Field (BLF) to monitor the busy and idle status of specific directed call-park slots.

In versions before Cisco Unified CME 4.0, callers can directly dial call-park slot numbers to be placed in park. If another call is already parked in the slot, the caller hears a busy tone.

In Cisco Unified CME 4.0 to Cisco Unified CME 7.0, users retrieve a call from a directed call-park slot by dialing the park-slot extension or using the PickUp soft key and dialing the park-slot extension. If no call is parked in the slot, the caller hears a busy tone.

In Cisco Unified CME 7.1 and later versions, users retrieve a call from a directed call-park slot by dialing a feature access code (FAC) and the number of the call-park slot.

Cisco Unified CME supports Directed Call Park from remote phones, however only phones that are local to the directed call-park slot can retrieve a call.

Park Reservation Groups

Cisco Unified CME 7.1 and later versions allow you to assign ownership to call-park slots by using Park Reservation Groups. A park slot configured with a park reservation group can only be used by phones configured with the same park reservation group. A park slot without a park reservation group can be used by any phone not assigned to a park reservation group.

In versions earlier than Cisco Unified CME 7.1, you could reserve a dedicated call-park slot for a specific phone based on its primary line. All lines on that phone could use the dedicated park slot. The new Park Reservation Group feature in Cisco Unified CME 7.1 provides an enhanced method of reserving park slots that replaces the use of dedicated park slots.

Park reservation groups are not supported for directed call-park slots.

Note

The reservation-group is used so that the phone with a reservation group is allowed to park to park-slot(s) within the same reservation group.

Any phone within the same CME can retrieve any parked calls. So the rule is applied when you park the call, not when you retrieve the call.

Dedicated Call-Park Slots

A dedicated, private call-park slot can be configured for an ephone using the reserved-for keyword in the park-slot command. The dedicated call-park slot is associated with the primary extension of the ephone. All extensions on this phone can park calls in the dedicated park slot. The extensions on this phone are the only
extensions that can park a call in the dedicated park slot. Only one call at a time can be parked in a park slot; a busy tone is returned to any attempt to park a call in a slot that is already in use.

Calls can be parked in dedicated call-park slots using any of the following methods (the extension doing the parking must be on a phone whose primary extension is associated with a dedicated park slot).

- With an active call, an IP phone user presses the Park soft key.
- With an active call, an IP phone user presses the Transfer soft key and a standard or custom FAC (feature access code) for the call-park feature. The standard FAC for call park is **6.
- With an active call, an analog phone user presses hookflash and the standard or custom FAC for the call park feature.

Calls can be retrieved from dedicated call-park slots using any of the following methods:

- An IP phone user presses the Pickup soft key and dials the park-slot number.
- An IP phone user presses the New Call soft key and dials the park-slot number.
- An analog phone user lifts the handset, presses the standard or custom FAC for directed call pickup, and dials the park-slot number. The standard FAC for directed pickup is **5.

If no dedicated park slot is found anywhere in the Cisco Unified CME system for an ephone-dn that is attempting to park a call, the system uses the standard call-park procedure; that is, the system searches for a preferred park slot (one with an ephone-dn number that matches the last two digits of the ephone-dn attempting to park the call) and if none is found, uses any available call-park slot.

Figure 39: Dedicated Call Park Example, on page 1049 shows an example of a dedicated call-park slot.

If the configuration specifies that a call should be recalled to the parking phone after the timeout intervals expire, the call is always returned to the phone’s primary extension number, regardless of which extension on the phone did the parking. Figure 39: Dedicated Call Park Example, on page 1049 shows an ephone that is configured with the extension numbers 2001, 2002, and 2003, and a private call-park slot at extension 3333. The private park slot has been set up to recall calls to the parking phone when the parked call’s timeouts expire. In the example, extension 2003 parks a call using the Park soft key. When the timeout intervals expire, the call rings back on extension 2001.

The configuration in Figure 39: Dedicated Call Park Example, on page 1049 specifies that the call will recall or transfer from the park slot after 3 times the 60-second timeout, or after 180 seconds. Also, before the exhaustion of the 3 timeouts the phone will receive reminder notifications that a parked call is waiting. The reminders are sent after each 60-second timeout interval expires (that is, at 60 seconds and at 120 seconds). You may want to set the timeout command with a limit of 1 instead, so that the call simply parks and recalls or transfers without sending a reminder ring.
Call-Park Blocking

In Cisco Unified CME 4.0 and later versions, individual ephones can be prevented from making transfers to call-park slots by using the transfer-park blocked command. This command prevents transfers to park that use the Transfer soft key and a call-park slot number, while allowing call-parks that use only the Park soft key. (To prevent use of the Park soft key, use an ephone template to remove it from the phone. See Customize Softkeys, on page 897.)

An exception is made for phones with reserved, or dedicated, park slots. If the transfer-park blocked command is used on an ephone that has a dedicated park slot, the phone is blocked from parking calls at park slots other than the phone’s dedicated park slot but can still park calls at its own dedicated park slot.

Call-Park Redirect

By default, H.323 and SIP calls that use the call-park feature use hairpin call forwarding or transfer to park calls and to pick up calls from park. The call-park system redirect command allows you to specify that these calls should use H.450 or the SIP Refer method of call forwarding or transfer. The no form of the command returns the system to the default behavior.

Call Park Recall Enhancement

In Cisco Unified CME 9.5 and lower versions, a parked call could not be recalled by or transferred to the phone that put the call in park or the original phone that transferred the call when the destination phone was offhook or ringing.

In Cisco Unified CME 9.5, the recall force keyword is added to the call-park system command in telephony-service configuration mode to allow a user to force the recall or transfer of a parked call to the phone that put the call in park or the phone with the reserved-for number as its primary DN when the destination phone is available to answer the call. For more configuration examples, see Example for Configuring Call Park Recall, on page 1059.
Prior to Unified CME 10.5, the ring tones for Call Park Recall and incoming calls were the same. In Unified CME 10.5, a new ring tone is introduced for park recall to assist the user to distinctly identify the type of call. No configurations are required to activate this feature. The ringtone for SCCP endpoints is a feature-ring and for SIP endpoints the ringtone is a Bellcore-dr2.

The Distinctive Call Park Recall feature is supported on all phone families for SCCP endpoints. For SIP phones, the feature is supported on Cisco IP Phone 7800 Series, 8900 Series and 9900 Series phones.

Note: Cisco IP Phone 8800 Series phones do not support Distinctive Call Park Recall feature.

Park Monitor

In Cisco Unified CME 8.5 and later versions, the park monitor feature allows you to park a call and monitor the status of the parked call until the parked call is retrieved or abandoned. When a Cisco Unified SIP IP Phone 8961, 9951, or 9971 parks a call using the park soft key, the park monitoring feature monitors the status of the parked call. The park monitoring call bubble is not cleared until the parked call gets retrieved or is abandoned by the parkee. This parked call can be retrieved using the same call bubble on the parker’s phone to monitor the status of the parked call.

Once a call is parked, Cisco Unified CME sends a SIP NOTIFY message to the parker phone indicating the “parked” event along with the park slot number so that the parker phone can display the park slot number as long as the call remains parked.

When a parked call is retrieved, Cisco Unified CME sends another SIP NOTIFY message to the parker phone indicating the “retrieved” event so that the phone can clear the call bubble. When a parked call is disconnected by the parkee, Cisco Unified CME sends a SIP NOTIFY message to the parker phone indicating the “abandoned” event and the parker phone clears the call bubble upon cancellation of the parked call.

When a parked call is recalled or transferred, Cisco Unified CME sends a SIP NOTIFY message to the parker phone indicating the “forwarded” event so that parker phone can clear the call bubble during park, recall, and transfer. You can also retrieve a parked call from the parker phone by directly selecting the call bubble or pressing the resume soft key on the phone.

Note: Park Monitor is supported in Cisco IP Phone 7800 Series and Cisco Unified IP Phone 9900 Series. However, Cisco IP Phone 8800 Series do not support Park Monitor feature.

Configure Call Park

Enable Call Park or Directed Call Park

To enable Call Park on SCCP or SIP phones, perform the following steps.
Restriction

- For SIP phones, the Park soft key is not supported for Cisco Unified IP Phone 7905, 7912, 7921, 7940, or 7960.

- Park Retrieval is supported only on local phones. Phones can park calls remotely to another Cisco Unified CME router but only phones that are registered to the local router hosting the call-park slots can retrieve a call.

- In versions earlier than Cisco Unified CME 7.1, Call Park and Directed Call Park shared the same call-park slots. In Cisco Unified CME 7.1 and later versions, if a user attempts to transfer a call to a basic park slot when using Directed Call Park, Cisco Unified CME considers that a Park Retrieval.

- A user can retrieve a parked call on an SCCP phone by pressing the PickUp soft key and dialing the extension number of the call-park slot or an asterisk (*) only if the service directed-pickup command is enabled (default). Otherwise this initiates a local group pickup.

- Park Reservation Groups are not supported with Directed Call Park.

- Different directory numbers with the same extension number must have the same Call Park configuration.

- Calls from H.323 trunks are not supported on SIP phones.

- Hold Pickup is not supported with the call-park system application command.

Before you begin

- SIP phones require Cisco Unified CME 7.1 or a later version.

- IP phone must support the Park soft key. The Park soft key displays by default on supported SCCP and SIP phones. If previously disabled, you must use the softkeys connected command to enable the Park soft key.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. call-park system { application | redirect }
5. fac { standard | custom dpark-retrieval custom-fac }
6. exit
7. ephone-dn dn-tag [ dual-line ]
8. number number [ secondary number ] [ no-reg [ both | primary ] ]
9. park-slot [ directed ] [ reservation-group group-number ] [ reserved-for extension-number ]
   [ [ timeout seconds ] limit count ] [ notify extension-number [ only ] ] [ recall ] [ transfer extension-number ] [ alternate extension-number ] [ retry seconds ] limit count ]
10. exit
11. ephone phone-tag or voice register pool phone-tag
12. park reservation-group group-number
13. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router&gt; enable</td>
<td>Enables privileged EXEC mode.&lt;br&gt;• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>telephony-service</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`call-park system {application</td>
<td>redirect }`&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-telephony)# call-park system application</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>`fac {standard</td>
<td>custom dpark-retrieval custom-fac }`&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-telephony)# fac custom dpark-retrieval #25</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>exit</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-telephony)# exit</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>ephone-dn dn-tag [dual-line]</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# ephone-dn 1</td>
<td>Enters ephone dn configuration mode to define a directory number for an IP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 8**
number number [secondary number] [no-reg {both | primary}]

**Example:**
Router(config-ephone-dn)# number 3001

- Associates an extension number with this directory number.
  - `number`—String of up to 16 digits that represents an extension or E.164 telephone number.

  **Note** The primary number must be unique for call-park slots.

| **Step 9**
park-slot [directed] [reservation-group group-number] [reserved-for extension-number]
[[timeout seconds] [notify extension-number [only]] [recall] [transfer extension-number ] [alternate extension-number] [retry seconds] [limit count]]

**Example:**
Router(config-ephone-dn)# park-slot directed

- Creates an extension (call-park slot) at which calls can be temporarily held (parked).
  - `directed`—(Optional) Enables Directed Call Park using this extension. This keyword is supported in Cisco Unified CME 7.1 and later versions.
  - `reservation-group group-number`—(Optional) Reserves this slot for phones configured with the specified reservation group. This is the group assigned to the phone in Step 12. This keyword is supported in Cisco Unified CME 7.1 and later versions.
  - `reserved-for extension-number`—(Optional) Reserves this slot as a private park-slot for the phone with the specified extension number as its primary line.

  **Note** The `reservation-group` and `reserved-for` keywords are mutually exclusive. If you use the `reservation-group` keyword, the `reserved-for` keyword is ignored. The reservation-group is used so that the phone with a reservation group is allowed to park to park-slot(s) within the same reservation group. Any phone within the same CME can retrieve any parked calls. So the rule is applied when you park the call, not when you retrieve the call.

| **Step 10**
exit

**Example:**
Router(config-ephone-dn)# exit

- Exits configuration mode.

| **Step 11**
ephone phone-tag or voice register pool phone-tag

**Example:**
Router(config)# ephone 1

- Enters ephone configuration mode to set phone-specific parameters for an SCCP phone.

  or
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.</td>
</tr>
<tr>
<td>Router(config)# voice register pool 1</td>
<td></td>
</tr>
<tr>
<td>* phone-tag — Unique sequence number that identifies the phone. Range is version and platform-dependent; type ? to display range.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 12**

**park reservation-group group-number**

Example:

Router(config-ephone)# park reservation-group 1

or

Router(config-register-pool)# park reservation-group 1

(Optional) Assigns a call-park reservation group to a phone.

- **group-number** — Unique number that identifies the reservation group. String can contain up to 32 digits.
- This command can also be configured in ephone-template or voice register template configuration mode and applied to one or more phones. The phone configuration has priority over the template configuration.
- This command is supported in Cisco Unified CME 7.1 and later versions.

**Step 13**

**end**

Example:

Router(config-ephone)# end

or

Router(config-register-pool)# end

Exits configuration mode.

---

**Examples for Basic Call Park, Directed Call Park and Park Reservation Groups**

**Basic Call Park**

The following example shows three basic call-park slots that can be used by either SCCP or SIP phones. Any phone can retrieve calls parked at these extensions.

```
ephone-dn 23
 number 8123
 park-slot timeout 10 limit 2 recall
 description park slot for Sales
!
ephone-dn 24
 number 8124
 park-slot timeout 10 limit 2 recall
 description park slot for Sales
!
ephone-dn 25
 number 8125
 park-slot timeout 15 limit 3 recall retry 10 limit 2
 description park slot for Service
```

**Directed Call Park**
The following example shows that the enhanced Call Park and Directed Call Park features in Cisco Unified CME 7.1 and later versions is enabled with the `call-park system application` command in telephony-service configuration mode. Two call-park slots, extension 3110 and 3111, can be used to park calls for the pharmacy using Directed Call Park.

```
telephony-service
load 7960-7940 p00308000500
max-ephones 100
max-dn 240
ip source-address 10.7.0.1 port 2000
cnf-file location flash:
cnf-file perphone
voicemail 8900
max-conferences 8 gain -6
call-park system application
transfer-system full-consult
fac standard
create cnf-files version-stamp 7960 Sep 25 2007 21:25:47
!
ephone-dn 10
 number 3110
 park-slot directed
 description park-slot for Pharmacy
!
ephone-dn 11
 number 3111
 park-slot directed
 description park-slot for Pharmacy
```

**Park Reservation Groups**

The following example shows park reservation groups set up for two call-park slots. Extension 8126 is configured for group 1 and assigned to phones 3 and 4. Extension 8127 is configured for group 2 and assigned to phones 10 and 11. When calls for the Pharmacy are parked at extension 8126, only phones 3 and 4 can retrieve them.

```
ephone-dn 26
 number 8126
 park-slot reservation-group 1 timeout 15 limit 2 transfer 8100
 description park slot for Pharmacy
!
ephone-dn 27
 number 8127
 park-slot reservation-group 2 timeout 15 limit 2 transfer 8100
 description park slot for Auto
!
ephone 3
 park reservation-group 1
 mac-address 002D.264E.54FA
 type 7962
 button 1:3
!
ephone 4
 park reservation-group 1
 mac-address 0030.94C3.053E
 type 7962
 button 1:4
```
Verify Call Park

Step 1

Use the `show running-config` command to verify your configuration. Call-park slots are listed in the ephone-dn portion of the output.

Example:

```
Router# show running-config

!
ephone 10
 park reservation-group 2
 mac-address 00E1.CB13.0395
 type 7960
 button 1:10

 ephone 11
 park reservation-group 2
 mac-address 0016.9DEF.1A70
 type 7960
 button 1:11
```
Step 2  Use the `show telephony-service ephone-dn` command to display call park configuration information.

Example:

```
Router# show telephony-service ephone-dn
ephone-dn 26
 number 8136 secondary 136
 park-slot reserved-for 136 timeout 10 limit 1 recall
```

### Configure Timeout Duration for Recalled Calls

To set a timeout duration for no response for a recalled call, perform the following steps. This command is also applicable to all IP phones where a call in ringing state if not answered, is automatically disconnected after the timeout duration.

This feature is enabled by default. You must perform this task only if the feature was previously disabled on a phone.

#### Before you begin

Cisco Unified CME 10.5 or a later version.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone ring timeouts seconds`
4. `exit`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone ring timeouts seconds</td>
<td>Enters a timeout period before disconnecting the call.</td>
</tr>
<tr>
<td>Example: Router(config)# ring timeout 25</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
**Example**

The following example shows that the ring timeouts command is enabled on phone:

```
ephone-dn 10 dual-line
number 1001
no huntstop
huntstop channel
ephone-dn 11 dual-line
```

---

**Troubleshooting Call Park**

**Step 1**  
**show ephone-dn park**  
Use this command to display configured call-park slots and their status.

```
Router# show ephone-dn park
DN 50 (1560) park-slot state IDLE
Notify to () timeout 30 limit 10
```

**Step 2**  
Use the `debug ephone` commands to observe messages and states associated with an ephone. For more information, see Cisco Unified CME Command Reference.

---

**Configuration Examples for Call Park**

**Example for Configuring Basic Call Park**

The following example creates a call-park slot with the number 1560. After a call is parked at this number, the system provides 10 reminder rings at intervals of 30 seconds to the extension that parked the call.

```
ephone-dn 50
number 1560
park-slot timeout 30 limit 10
```

**Example for Blocking Phone From Using Call Park**

The following example prevents ephone 25 and extensions 234, 235, and 236 from parking calls at any call-park slots.

```
ephone-dn 11
number 234
```
The following example sets up a dedicated park slot for the extensions on ephone 6 and blocks transfers to call park from extensions 2977, 2978, and 2979 on that phone. Those extensions can still park calls at the phone’s dedicated park slot by using the Park soft key or the Transfer soft key and the FAC for call park.

Example for Configuring Call-Park Redirect

The following example specifies that H.323 and SIP calls that are parked should use H.450 or the SIP Refer method to when they are parked or picked up.

Example for Configuring Call Park Recall

The following example shows how to force the recall of a call previously parked when the phone was busy:
Where to Go Next

Controlling Use of the Park Soft Key

To block the functioning of the call park (Park) soft key without removing the key display, create and apply an ephone template that contains the `features blocked` command. For more information, see Customize Softkeys, on page 897.

To remove the call park (Park) soft key from one or more phones, create and apply an ephone template that contains the appropriate `softkeys` command. For more information, see Customize Softkeys, on page 897.

Ephone Templates

The `transfer-park blocked` command, which blocks transfers to call-park slots, can be included in ephone templates that are applied to individual ephones.

The Park soft key can be removed from the display of one or more phones by including the appropriate `softkeys` command in an ephone template and applying the template to individual ephones.

For more information, see Templates, on page 1393.

Feature Access Codes

You can park calls using a feature access code (FAC) instead of a soft key on the phone if standard or custom FACs have been enabled for your system. The call-park FAC is considered a transfer to a call-park slot and therefore is valid only after the Transfer soft key (IP phones) or hookflash (analog phones) has been used to initiate a transfer. The following are the standard FACs for call park:

- Dedicated park slot—Standard FAC is **6.
- Any available park slot—Standard FAC is **6 plus optional park-slot number.

For more information about FACs, see Feature Access Codes, on page 733.

Feature Information for Call Park

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Table 95: Feature Information for Call Park**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Park Recall Enhancement</td>
<td>9.5</td>
<td>Added recall force keyword to the call-park system command.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Call Park</td>
<td>8.5</td>
<td>Support for Park Monitor was introduced.</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Adds Call Park support for SIP phones, introduces Park Reservation Groups, and enhances Directed Call Park.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>Dedicated call-park slots, alternative recall locations, and call-park blocking were introduced. Direct calls to park slots are now interpreted as attempts to pick up parked calls rather than attempts to be parked at the slot.</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
<td>Monitoring of call-park slots was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>Call park was introduced.</td>
</tr>
</tbody>
</table>
Call Restriction Regulations

- Prerequisites for LPCOR, on page 1063
- Information About LPCOR, on page 1063
- Configure LPCOR, on page 1070
- Configuration Examples for LPCOR, on page 1087
- Feature Information for LPCOR, on page 1105

Prerequisites for LPCOR

- Cisco IOS Release 15.0(1)XA or a later release.
- Cisco Unified CME 8.0 or a later version.

Information About LPCOR

LPCOR Overview

The Telecom Regulatory Authority of India (TRAI) has regulations that restrict the mixing of voice traffic between the PSTN and VoIP networks. Previously, this required a user to have two phones to handle both PSTN and VoIP calls: an IP phone connected to the Electronic Private Automatic Branch Exchange (EPABX) for intra-office and inter-office VoIP calls and a separate phone connected to a PABX for PSTN calls, as shown in Figure 40: Separate PBX and EPABX Systems, on page 1064.

New regulations allow for a single network infrastructure and single EPABX to connect to both the PSTN and VoIP networks by using a logical partitioning between the PSTN and IP leased lines.

The logical partitioning class of restriction (LPCOR) feature enables a single directory number on an IP phone or analog phone registered to Cisco Unified CME to connect to both PSTN and VoIP calls according to the connection restrictions specified by TRAI regulations. Cisco Unified CME can support both VoIP and PSTN calls while restricting the mixing of voice traffic between the PSTN and VoIP networks and preventing PSTN calls from connecting to remote locations over an IP trunk, as shown in Figure 41: Single EPABX System with PSTN and VoIP Calls Partitioning, on page 1064.
Cisco Unified CME supports a high-level class of restriction by allowing you to logically partition its resources (PSTN trunks, IP trunks, IP phones, and analog phones) into different groups. The resources of each group are scalable based on the voice interface, trunk group, or IP address subnet. In general, you should not have to modify your existing dial plan to support LPCOR functionality. The dial peer class of restriction (COR) feature remains unchanged when the LPCOR feature is added to Cisco Unified CME.
LPCOR control is based on the location of resources, where calls are originating and terminating. You must partition the resources of the Cisco Unified CME router into different resource groups and then create a LPCOR policy for each group to which you want to apply call restrictions.

You create a LPCOR policy matrix for individual resource groups by defining its LPCOR policy to either accept or reject calls that originate from any of the other resource groups. You can define one LPCOR policy for each resource group.

The same LPCOR policy is applied to multiple directory numbers from the same resource. For example, if multiple directory numbers are defined for a SCCP phone, the same LPCOR policy is enforced for all calls to the different directory numbers on the SCCP phone.

In the following example, PSTN trunks, IP trunks (H.323 and SIP), analog FXS phones, and IP phones for a Cisco Unified CME router are partitioned into five different resource groups (RG1 to RG5).

Table 96: LPCOR Policy Matrix Example

<table>
<thead>
<tr>
<th>Resource Groups</th>
<th>RG1</th>
<th>RG2</th>
<th>RG3</th>
<th>RG4</th>
<th>RG5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG1</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RG2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RG3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RG4</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RG5</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

LPCOR validation is done at the target destination based on the configured LPCOR policy matrix. For example:

- Call from RG1 to target RG1 is allowed
- Call from RG2 to target RG3 is not allowed
- Call from RG3 to target RG2 is allowed
- Call from RG5 to target RG5 is not allowed

Default LPCOR Policy

The default LPCOR policy means that there are no restrictions between the call source and its target destination. When a call is presented to a target destination, Cisco Unified CME bypasses LPCOR validation if either the incoming call is not associated with a LPCOR policy or the LPCOR policy is not defined for the target destination.

TRAI regulations allow the same directory number on a local IP phone or SCCP analog Foreign Exchange Station (FXS) phone in Cisco Unified CME to handle both PSTN and VoIP calls. Locally connected phones do not have to be associated with any resource group.
How LPCOR Policies are Associated with Resource Groups

Call restrictions are applied to LPCOR resource groups based on the location of the resources. You create LPCOR policies that define the call restrictions to apply to calls that originate or terminate at the following types of resources.

**Analog Phones**

TRAI regulations allow an analog FXS phone to accept both PSTN and VoIP calls if the phone is locally registered to Cisco Unified CME. Locally connected phones do not have to be associated with any resource group; the default LPCOR policy is applied to this phone type.

A specific LPCOR policy can be defined through the voice port or trunk group. For configuration information, see Associate a LPCOR Policy with Analog Phone or PSTN Trunk Calls, on page 1073.

**IP Phones**

LPCOR supports both SCCP and SIP IP phones. TRAI regulations allow an IP phone to accept both PSTN and VoIP calls if the IP phone is registered locally to Cisco Unified CME through the LAN. If the IP phone is registered to Cisco Unified CME through the WAN, PSTN calls must be blocked from the remote IP phones.

If an IP phone always registers to Cisco Unified CME from the same local or remote region, the phone is provisioned with a static LPCOR policy. For configuration information, see Associate a LPCOR Policy with IP Phone or SCCP FXS Phone Calls, on page 1078.

If the phone is a mobile-type IP phone and moves between the local and remote regions, such as an Extension Mobility phone, Cisco IP Communicator softphone, or a remote teleworker phone, the LPCOR policy is provisioned dynamically based on the IP phone’s currently registered IP address. For configuration information, see Associate LPCOR with Mobile Phone Calls, on page 1082.

**PSTN Trunks**

An incoming LPCOR resource group is associated with a PSTN trunk (digital or analog) through the voice port or trunk group.

When a call is routed to the PSTN network, the LPCOR policy of the target PSTN trunk can block calls from any resource group it is not explicitly configured to accept. Outgoing calls from a PSTN trunk are associated with a LPCOR policy based on either the voice port or trunk group, whichever is configured in the outbound POTS dial-peer.

For configuration information, see Associate a LPCOR Policy with Analog Phone or PSTN Trunk Calls, on page 1073.

**VoIP Trunks**

An incoming VoIP trunk call (H.323 or SIP) is associated with a LPCOR policy based on the remote IP address as follows:

**Incoming H.323 trunk call**

- IP address of the previous hub or originating gateway
Incoming SIP trunk call

- IP address of the originating gateway
- Hostname from the earliest Via header of an incoming INVITE message. If the hostname is in domain name format, a DNS query is performed to resolve the name into an IP address.

Cisco Unified CME uses the resolved hostname or resolved IP address to determine the LPCOR policy based on the entries in the IP-trunk subnet table. If the LPCOR policy cannot be found through the IP address or hostname, the incoming H.323 or SIP trunk call is associated with the incoming LPCOR policy configured in voice service configuration mode.

The LPCOR policy of the VoIP target is determined through the configuration of the outbound VoIP dial-peer. The default LPCOR policy is applied to the VoIP target if an outgoing LPCOR policy is not defined in the target VoIP dial-peer.

For configuration information, see Associate a LPCOR Policy with VoIP Trunk Calls, on page 1076.

LPCOR Support for Supplementary Services

Table 97: Supplementary Services Support with LPCOR, on page 1067 describes LPCOR support for calls using supplementary services.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>SCCP Phone</th>
<th>SIP Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Call</td>
<td>Cisco Unified CME invokes the LPCOR policy validation if both the incoming call and target destination are associated with a LPCOR policy. If the LPCOR policy validation fails, cause-code 63 (no service available) or the user-defined cause-code is returned to the remote switch. The call can hunt to the next destination.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Call Forward</td>
<td>When a call is forwarded to a new destination, Cisco Unified CME invokes the LPCOR policy validation between the source and the forwarding target. The call is not forwarded to the target if the LPCOR policy is restricted.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Call Transfer</td>
<td>Blind and Consultative Call Transfer is restricted if the LPCOR policy validation fails between the transferee and transfer-to parties. For consultative call transfers, the reorder tone plays and an error message displays on the transferor phone. The call is not disconnected between the transferee and transferor.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>SCCP Phone</td>
<td>SIP Phone</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ad Hoc Conference (software-based, 3-party)</td>
<td>Cisco Unified CME invokes the LPCOR policy validation for each call joined to a conference. A call is blocked from joining the conference if the LPCOR policy validation fails.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ad Hoc Conference (hardware-based)</td>
<td>The reorder tone plays and the conference cannot complete message displays on the IP phone that initiated the conference. The call is resumed by the transferor who initiated the conference.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Note</td>
<td>If the LPCOR policy validation fails during a blind transfer setup to a conference bridge, the call is released.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>LPCOR validation is not supported for additional call transfer or conference operations from a 3-party software conference call.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meet-Me Conference</td>
<td>LPCOR policy of each conference party is validated when a new call is joined to a conference. The call is blocked from joining the conference if the LPCOR policy validation fails.</td>
<td>Yes</td>
<td>Yes (join only)</td>
</tr>
<tr>
<td>Note</td>
<td>The reorder tone plays and the conference cannot complete message displays on the IP phone that initiated the Meet-Me conference.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Call Pickup/Group Pickup (Cisco Unified CME 7.1 and later versions)</td>
<td>Call Pickup and Pickup Groups enable phone users to answer a call that is ringing on a different extension. The pickup is blocked if the LPCOR policy validation between the call and the pickup phone fails. The reorder tone plays and the unknown number message displays on the IP phone that attempts the call pickup.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Call Park (Cisco Unified CME 7.1 and later versions)</td>
<td>Phone users can place a call on hold at a special extension so it can be retrieved by other phones. A phone is not allowed to retrieve a parked call if the LPCOR policy validation fails. The reorder tone plays and the unknown number message displays on the IP phone that attempts to retrieve the parked call.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Call Park Retrieval</td>
<td>Supported for sequential and longest idle hunt groups. The LPCOR policy validation is performed when a call is directed to a SCCP endpoint through the ephone hunt-group.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hunt Group Pilot (ephone hunt group)</td>
<td>Supported for parallel hunt groups only. A hunt target can be a SCCP phone, SIP phone, VoIP trunk, or PSTN trunk. The LPCOR policy validation is performed between the call and the pilot hunt target. A call is blocked from a target if the LPCOR policy is restricted.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>SCCP Phone</td>
<td>SIP Phone</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Shared Line</td>
<td>Phones with a shared directory number must have the same LPCOR policy.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CBarge</td>
<td>Phone users who share a directory number can join an active call on the shared line. Phones must have the same LPCOR policy.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Third-Party Call Control</td>
<td>Cisco Unified CME supports out-of-dialog refer (OOD-R) by a remote call-control system. The LPCOR validation is performed during the second outbound call setup after the first outbound call is established. The OOD-R request fails if the LPCOR policy between the first and second outbound call is restricted.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Phone Display and Warning Tone for LPCOR**

Cisco Unified CME plays the reorder tone to callers when it blocks calls due to LPCOR policy authentication. *Table 98: Message Display for Blocked LPCOR Calls, on page 1069* lists the message that displays on the phone when a call is blocked.

*Table 98: Message Display for Blocked LPCOR Calls*

<table>
<thead>
<tr>
<th>Call Block Type</th>
<th>Phone Display Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Transfer</td>
<td>Unable to Transfer</td>
</tr>
<tr>
<td>Conference</td>
<td>Cannot Complete Conference</td>
</tr>
<tr>
<td>Meet-Me Conference</td>
<td>No Screen Display Update</td>
</tr>
<tr>
<td>Pickup</td>
<td>Unknown Number</td>
</tr>
<tr>
<td>Park</td>
<td>Unknown Number</td>
</tr>
</tbody>
</table>

**LPCOR VSAs**

New vendor-specific attributes (VSAs) for the LPCOR policy associated with a call are included in the call detail records (CDRs) generated by Cisco Unified CME for Remote Authentication Dial-in User Services (RADIUS) accounting. A null value is used for call legs without an associated LPCOR policy, which is the default LPCOR value. The incoming or outgoing LPCOR policy of a call is added to RADIUS stop records. *Table 99: VSAs Supported by Cisco Voice Calls, on page 1070* lists the new VSAs.
Table 9: VSAs Supported by Cisco Voice Calls

<table>
<thead>
<tr>
<th>Attribute</th>
<th>VSA No. (Decimal)</th>
<th>Format for Value or Text</th>
<th>Sample Value or Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-lpcor-group</td>
<td>1</td>
<td>String</td>
<td>pstn_group</td>
<td>Logical partitioning class of restriction (LPCOR) resource-group policy associated with an incoming call.</td>
</tr>
<tr>
<td>out-lpcor-group</td>
<td>1</td>
<td>String</td>
<td>voip_group</td>
<td>LPCOR resource-group policy associated with an outgoing call.</td>
</tr>
</tbody>
</table>

Configure LPCOR

Define a LPCOR Policy

To enable LPCOR functionality and define a policy for each resource group that requires call restrictions, perform the following task. You can define one LPCOR policy for each resource group. Do not create a LPCOR policy for resource groups that do not require call restrictions. A target resource group without a LPCOR policy can accept incoming calls from any other resource group.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice lpcor enable
4. voice lpcor call-block cause cause-code
5. voice lpcor custom
6. group number lpcor-group
7. exit
8. voice lpcor policy lpcor-group
9. accept lpcor-group
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables LPCOR functionality on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>voice lpcor enable</td>
<td>Enables LPCOR functionality on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables LPCOR functionality on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Router(config)# voice lpcor enable</td>
<td>Enables LPCOR functionality on the Cisco Unified CME router.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Defines the cause code to use when a call is blocked because LPCOR validation fails.</td>
</tr>
<tr>
<td>voice lpcor call-block cause cause-code</td>
<td>(Optional) Defines the cause code to use when a call is blocked because LPCOR validation fails.</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Defines the cause code to use when a call is blocked because LPCOR validation fails.</td>
</tr>
<tr>
<td>Router(config)# voice lpcor call-block cause 79</td>
<td>(Optional) Defines the cause code to use when a call is blocked because LPCOR validation fails.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Defines the name and number of LPCOR resource groups on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>voice lpcor custom</td>
<td>Defines the name and number of LPCOR resource groups on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Defines the name and number of LPCOR resource groups on the Cisco Unified CME router.</td>
</tr>
<tr>
<td>Router(config)# voice lpcor custom</td>
<td>Defines the name and number of LPCOR resource groups on the Cisco Unified CME router.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Adds a LPCOR resource group to the custom resource list.</td>
</tr>
<tr>
<td>group number lpcor-group</td>
<td>Adds a LPCOR resource group to the custom resource list.</td>
</tr>
<tr>
<td>Example:</td>
<td>Adds a LPCOR resource group to the custom resource list.</td>
</tr>
<tr>
<td>Router(cfg-lpcor-custom)# group 1 pstn_trunk</td>
<td>Adds a LPCOR resource group to the custom resource list.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Exits LPCOR custom configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits LPCOR custom configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits LPCOR custom configuration mode.</td>
</tr>
<tr>
<td>Router(cfg-lpcor-custom)# exit</td>
<td>Exits LPCOR custom configuration mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Creates a LPCOR policy for a resource group.</td>
</tr>
<tr>
<td>voice lpcor policy lpcor-group</td>
<td>Creates a LPCOR policy for a resource group.</td>
</tr>
<tr>
<td>Example:</td>
<td>Creates a LPCOR policy for a resource group.</td>
</tr>
<tr>
<td>Router(config)# voice lpcor policy pstn_trunk</td>
<td>Creates a LPCOR policy for a resource group.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Allows a LPCOR policy to accept calls associated with the specified resource group.</td>
</tr>
<tr>
<td>accept lpcor-group</td>
<td>Allows a LPCOR policy to accept calls associated with the specified resource group.</td>
</tr>
<tr>
<td>Example:</td>
<td>Allows a LPCOR policy to accept calls associated with the specified resource group.</td>
</tr>
<tr>
<td>Router(cfg-lpcor-policy)# accept analog_phone</td>
<td>Allows a LPCOR policy to accept calls associated with the specified resource group.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Router(cfg-lpcor-policy)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Examples

The following example shows a LPCOR configuration where resources are partitioned into five groups. Three of the resource groups have LPCOR policies that limit the calls they can accept. The other two groups, ipphone_local and analog_phone, can accept calls from any of the other resource groups because they do not have a LPCOR policy defined.

```
voice lpcor enable
voice lpcor call-block cause invalid-number
voice lpcor custom
 group 1 pstn_trunk
 group 2 analog_phone
 group 3 iptrunk
 group 4 ipphone_local
 group 5 ipphone_remote
!
voice lpcor policy pstn_trunk
 accept analog_phone
 accept ipphone_local
!
voice lpcor policy iptrunk
 accept analog_phone
 accept ipphone_local
 accept ipphone_remote
!
voice lpcor policy ipphone_local
 accept iptrunk
 accept analog_phone
 accept ipphone_local

The following example shows a LPCOR configuration where resources are partitioned into the following four policy groups:

• siptrunk—Accepts all IP trunk calls.
• h323trunk—Accepts all IP trunk calls.
• pstn—Blocks all IP trunk and voice-mail calls.
• voicemail—Accepts both IP trunk and PSTN calls.

```

voice lpcor enable
voice lpcor custom
  group 1 siptrunk
  group 2 h323trunk
  group 3 pstn
  group 4 voicemail
!
voice lpcor policy siptrunk
  accept h323trunk
  accept voicemail
!
voice lpcor policy h323trunk
  accept siptrunk
  accept voicemail
!
voice lpcor policy pstn
!
voice lpcor policy voicemail
```
accept siptrunk
accept h323trunk
accept pstn

The following example shows a LPCOR policy that is configured to reject calls associated with itself. Devices that belong to the local_phone resource group cannot accept calls from each other.

voice lpcor policy local_phone
no accept local_phone
accept analog_phone

Associate a LPCOR Policy with Analog Phone or PSTN Trunk Calls

To associate a LPCOR policy with calls that originate or terminate at an analog phone or PSTN trunk, perform the following task. You can apply a specific LPCOR policy through the voice port or trunk group to remote analog phones or to local analog phones that you do not want to associate with the default LPCOR policy.

Note

For an analog FXS phone that is locally registered to Cisco Unified CME through the LAN, see Associate a LPCOR Policy with IP Phone or SCCP FXS Phone Calls, on page 1078.

Incoming calls from an analog phone or PSTN trunk are associated with a LPCOR resource group based on the following configurations, in the order listed:

1. Voice port
2. Trunk group

Outgoing calls from an analog phone or PSTN trunk are associated with a LPCOR policy based on the voice port or trunk group configuration in the outbound POTS dial-peer:

- If the outbound dial peer is configured with the **port** command, an outgoing call uses the LPCOR policy specified in the voice port.
- If the outbound dial-peer is configured with the **trunkgroup** command, the call uses the LPCOR policy specified in the trunk group.

Before you begin

The LPCOR policy must be defined. See Define a LPCOR Policy, on page 1070.

SUMMARY STEPS

1. enable
2. configure terminal
3. trunk group name
4. lpcor incoming lpcor-group
5. lpcor outgoing lpcor-group
6. exit
7. voice-port port
8. lpcor incoming lpcor-group
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 trunk group name</td>
<td>Enters trunk-group configuration mode to define a trunk group.</td>
</tr>
<tr>
<td>Example: Router(config)# trunk group isdn1</td>
<td></td>
</tr>
<tr>
<td>Step 4 lpcor incoming lpcor-group</td>
<td>Associates a LPCOR resource-group policy with an incoming call.</td>
</tr>
<tr>
<td>Example: Router(config-trunk-group)# lpcor incoming isdn_group1</td>
<td></td>
</tr>
<tr>
<td>Step 5 lpcor outgoing lpcor-group</td>
<td>Associates a LPCOR resource-group policy with an outgoing call.</td>
</tr>
<tr>
<td>Example: Router(config-trunk-group)# lpcor outgoing isdn_group1</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Enters voice-port configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-trunk-group)# exit</td>
<td>• Port argument is platform-dependent; type ? to display syntax.</td>
</tr>
<tr>
<td>Step 7 voice-port port</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice-port 0/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 8 lpcor incoming lpcor-group</td>
<td>Associates a LPCOR resource-group policy with an incoming call.</td>
</tr>
<tr>
<td>Example: Router(config-voiceport)# lpcor incoming vp_group3</td>
<td></td>
</tr>
<tr>
<td>Step 9 lpcor outgoing lpcor-group</td>
<td>Associates a LPCOR resource-group policy with an outgoing call.</td>
</tr>
<tr>
<td>Example: Router(config-voiceport)# lpcor outgoing vp_group3</td>
<td></td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Examples for Configuring LPCOR for a PSTN Trunk and Analog Phones

PSTN Trunks

Analog Phones

The following example shows a configuration for a PSTN trunk. Outbound calls from dial peer 201 use LPCOR policy isdn_group1 because dial peer 201 is configured with trunk group isdn1. Outbound calls from dial peer 202 use LPCOR policy vp_group3 because dial peer 202 is configured with voice port 3/1:15. A dial peer can be configured with either a voice port or trunk group; it cannot use both.

```plaintext
trunk group isdn1
  lpcor incoming isdn_group1
  lpcor outgoing isdn_group1

interface Serial2/0:15
  isdn incoming-voice voice
  trunk-group isdn1

  voice-port 3/1:15
  lpcor incoming vp_group3
  lpcor outgoing vp_group3

! dial-peer voice 201 pots
  description TG outbound dial-peer
  destination-pattern 201T
  trunkgroup isdn1

!

! dial-peer voice 202 pots
  description VP outbound dial-peer
  destination-pattern 202T
  port 3/1:15
```

The following example shows a LPCOR configuration for analog phones:

```plaintext
trunk group analog1
  lpcor incoming analog_group1
  lpcor outgoing analog_group1

! voice-port 1/0/0
  ! voice-port 1/0/1

  voice-port 1/1/0
  lpcor incoming vp_group1
  lpcor outgoing vp_group1

! dial-peer voice 100 pots
  description VP dial-peer
  destination-pattern 100
  port 1/0/0
```
Associate a LPCOR Policy with VoIP Trunk Calls

To associate a LPCOR policy with calls that originate or terminate at a VoIP trunk (H.323 or SIP), perform the following task.

Incoming VoIP trunk calls are associated with a LPCOR policy based on the following configurations, in the order listed:

1. IP-trunk subnet table
2. Voice service voip configuration

Outgoing VoIP trunk calls are associated with a LPCOR policy based on the following configurations, in the order listed:

1. Outbound VoIP dial peer
2. Default LPCOR policy (no LPCOR policy is applied)

Restriction

- The LPCOR IP-trunk subnet table is not supported for calls with an IPv6 address. The LPCOR policy specified with the \texttt{lpcor incoming} command in voice service configuration mode is supported for IPv6 trunk calls.

- Only a single LPCOR policy is applied to outgoing IP trunk calls if the outbound VoIP dial-peer is configured with the \texttt{session target} command using the \texttt{sip-server} or \texttt{ras} keyword.

- If a dial peer COR and LPCOR are both defined in a dial peer, the dial peer COR configuration has priority over LPCOR. For example, if the dial peer COR restricts the call and LPCOR allows the call, the call fails because of the dial peer COR before ever considering LPCOR.

Before you begin

The LPCOR policy must be defined. See \texttt{Define a LPCOR Policy, on page 1070}.

SUMMARY STEPS

1. \texttt{enable}
2. configure terminal
3. voice lpcor ip-trunk subnet incoming
4. index index-number lpcor-group (ipv4-address network-mask | hostname hostname)
5. exit
6. voice service voip
7. lpcor incoming lpcor-group
8. exit
9. dial-peer voice tag voip
10. lpcor outgoing lpcor-group
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable
Example:
Router> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Step 2** | configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3** | voice lpcor ip-trunk subnet incoming
Example:
Router(config)# voice lpcor ip-trunk subnet incoming | Creates a LPCOR IP-trunk subnet table for incoming calls from a VoIP trunk. |
| **Step 4** | index index-number lpcor-group (ipv4-address network-mask | hostname hostname)
Example:
Router(cfg-lpcor-iptrunk-subnet)# index 1 h323_group1 172.19.33.0 255.255.255.0 | Adds a LPCOR resource group to the IP trunk subnet table. |
| **Step 5** | exit
Example:
Router(cfg-lpcor-iptrunk-subnet)# exit | Exits LPCOR custom configuration mode. |
| **Step 6** | voice service voip
Example:
Router(config)# voice service voip | Enters voice-service configuration mode to specify the VoIP encapsulation type. |
| **Step 7** | lpcor incoming lpcor-group
Example:
Router(conf-voi-serv)# lpcor incoming voip_trunk_1 | Associates a LPCOR resource-group policy with an incoming call. |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>exit</td>
<td>Exits voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>dial-peer voice tag voip</td>
<td>Enters dial-peer configuration mode to define a dial peer for VoIP calls.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 233 voip</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>lpcor outgoing /lpcor-group</td>
<td>Associates a LPCOR resource-group policy with an outgoing call.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# lpcor outgoing h323_group1</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows a LPCOR configuration for VoIP trunks:

```plaintext
voice lpcor ip-trunk subnet incoming
index 1 h323_group1 172.19.33.0 255.255.255.0
index 2 sip_group1 172.19.22.0 255.255.255.0
index 3 sip_group2 hostname sipexample

voice service voip
lpcor incoming voip_trunk_1

dial-peer voice 233 voip
description H323 trunk outbound dial-peer
destination-pattern 233T
session target ipv4:172.19.33.233
lpcor outgoing h323_group1

dial-peer voice 2255 voip
description SIP trunk outbound dial-peer
destination-pattern 255T
session protocol sipv2
session target ipv4:172.19.33.255
lpcor outgoing sip_group1
```

Associate a LPCOR Policy with IP Phone or SCCP FXS Phone Calls

To associate a LPCOR policy with calls that originate or terminate at a local or remote IP phone or local SCCP analog (FXS) phone, perform the following task.

According to TRAI requirements, an IP phone or a SCCP FXS phone can accept both PSTN and VoIP calls if it is locally registered to Cisco Unified CME through the LAN. If a phone is registered to Cisco Unified CME through the WAN, then PSTN calls must be blocked from that remote phone.
Restriction

- Phones that share a directory number must be configured with the same LPCOR policy. A warning message displays if you try to configure a different LPCOR policy between IP phones that share the same directory number.

- Local and remote IP phones cannot use the same LPCOR policy.

- Software-based three-party ad hoc conferencing is not supported on SIP phones.

- Hardware-based ad hoc conferencing is not supported on SIP phones.

- LPCOR feature is not supported on voice gateways such as the Cisco VG224 or Cisco integrated service router if the voice gateway is registered to Cisco Unified Communications Manager. Cisco Unified Communications Manager does not support LPCOR.

- If a third-party call-control application makes two separate calls to Cisco Unified CME and performs a media bridging between the two calls, LPCOR validation is not supported because Cisco Unified CME is not aware of the bridging.

Before you begin

- The LPCOR policy must be defined. See Define a LPCOR Policy, on page 1070.

- SCCP FXS phones are configured with the `type anl` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag or voice register pool phone-tag`
4. `lpcor type {local | remote}`
5. `lpcor incoming lpcor-group`
6. `lpcor outgoing lpcor-group`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone <code>phone-tag or voice register pool phone-tag</code></td>
<td>Enters ephone configuration mode to set phone-specific parameters for an SCCP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# ephone 2
or
Router(config)# voice register pool 4 | or
Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.
- *phone-tag*—Unique sequence number that identifies the phone. Range is version and platform-dependent; type `?` to display range. |

Step 4

Step 4
lpcor type `{local | remote}`
Example:
Router(config-ephone)# lpcor type remote
or
Router(config-register-pool)# lpcor type local

Sets the LPCOR type for an IP phone.
- *local*—IP phone always registers to Cisco Unified CME through the LAN.
- *remote*—IP phone always registers to Cisco Unified CME through the WAN.
- This command can also be configured in ephone-template or voice register template configuration mode and applied to one or more phones. The phone configuration has precedence over the template configuration.

Step 5

Step 5
lpcor incoming `lpcor-group`
Example:
Router(config-ephone)# lpcor incoming ephone_group1
or
Router(config-register-pool)# lpcor incoming remote_group3

Associates a LPCOR resource-group policy with an incoming call.
- If this phone shares a directory number with another phone, you cannot configure a LPCOR policy that is different than the LPCOR policy on the other phone.
- This command can also be configured in ephone-template or voice register template configuration mode and applied to one or more phones. The phone configuration has precedence over the template configuration.

Step 6

Step 6
lpcor outgoing `lpcor-group`
Example:
Router(config-ephone)# lpcor outgoing ephone_group2
or
Router(config-register-pool)# lpcor outgoing remote_group3

Associates a LPCOR resource-group policy with an outgoing call.
- If this phone shares a directory number with another phone, you cannot configure a LPCOR policy that is different than the LPCOR policy on the other phone.
- This command can also be configured in ephone-template or voice register template configuration mode and applied to one or more phones. The phone configuration has precedence over the template configuration.

Step 7

Step 7
end
Example:
Router(config-ephone)# end

Returns to privileged EXEC mode.
Example for Configuring LPCOR on SCCP Phone, SIP Phones, and SCCP FXS Phones

SCCP

- **SCCP FXS Analog**

The following example shows a LPCOR configuration for two SCCP phones. One configuration is applied directly to the phone and the other is applied through a phone template:

```plaintext
ephone-template 1
lpcor type local
lpcor incoming ephone_group1
lpcor outgoing ephone_group1
!
ephone 1
mac-address 00E1.CB13.0395
ephone-template 1
type 7960
button 1:1
!
ephone 2
lpcor type remote
lpcor incoming ephone_group2
lpcor outgoing ephone_group2
mac-address 001C.821C.ED23
type 7960
button 1:2
```

The following example shows a LPCOR configuration for two SIP phones:

```plaintext
voice register template 1
lpcor type local
lpcor incoming test_group
lpcor outgoing test_group
!
voice register pool 3
id mac 001B.D584.E80A
type 7960
number 1 dn 2
template 1
codec g711ulaw
!
voice register pool 4
lpcor type remote
lpcor incoming remote_group3
lpcor outgoing remote_group3
id mac 0030.94C2.9A55
type 7960
number 1 dn 2
dtmf-relay rtp-nt
```

SIP
The following example shows a LPCOR configuration for two SCCP FXS phones connected to a Cisco VG224 and controlled by Cisco Unified CME:

dial-peer voice 102 pots
 service stcapp
 port 1/0/2

ephone 5
 lpcor type local
 lpcor incoming analog_vg224
 lpcor outgoing analog_vg224
 mac-address F9E5.8B28.2402
 ephone-template 1
 max-calls-per-button 2
 type anl
 button 1:5

ephone 6
 lpcor type local
 lpcor incoming analog_vg224
 lpcor outgoing analog_vg224
 mac-address F9E5.8B28.2403
 ephone-template 1
 max-calls-per-button 2
 type anl
 button 1:6

Figure 42: SCCP FXS Phones Managed by Cisco Unified CME, on page 1082 shows an example of a network with SCCP FXS phones managed by Cisco Unified CME.

Associate LPCOR with Mobile Phone Calls

To associate a LPCOR policy with calls that originate or terminate at a mobile-type phone, perform the following task.

A mobile-type phone can register to Cisco Unified CME through either the LAN or WAN. For example an Extension Mobility phone, Cisco IP Communicator softphone, or a remote teleworker phone.

Incoming and outgoing calls to and from a mobile-type phone are associated with a LPCOR policy based on the following configurations, in the order listed:
1. IP-phone subnet table
2. Default LPCOR policy for mobile-type phones

Restriction
The LPCOR IP-phone subnet table is not supported for calls with an IPv6 address.

Before you begin
The LPCOR policy must be defined. See Define a LPCOR Policy, on page 1070.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag` or `voice register pool phone-tag`
4. `lpcor type mobile`
5. `exit`
6. `voice lpcor ip-phone subnet { incoming | outgoing }`
7. `index index-number lpcor-group { ipv4-address network-mask | vrf vrf-name | dhcp-pool pool-name }`
8. `exit`
9. `voice lpcor ip-phone mobility { incoming | outgoing } lpcor-group`
10. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone <code>phone-tag</code> or <code>voice register pool phone-tag</code></td>
<td>Enters ephone configuration mode to set phone-specific parameters for an SCCP phone.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 1</td>
<td>or</td>
</tr>
<tr>
<td>or Router(config)# voice register pool 1</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.</td>
</tr>
<tr>
<td></td>
<td>• <code>phone-tag</code>—Unique sequence number that identifies the phone. Range is version and platform-dependent; type <code>?</code> to display range.</td>
</tr>
<tr>
<td>Step 4 <code>lpcor type mobile</code></td>
<td>Sets the LPCOR type for a mobile-type phone.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>• This command can also be configured in ephone-template or voice register template configuration mode and applied to one or more phones. The phone configuration has precedence over the template configuration.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits the phone configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6 voice lpcor ip-phone subnet {incoming</td>
<td>outgoing}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 7 index index-number lpcor-group {ipv4-address network-mask</td>
<td>vrf vrf-name } [dhcp-pool pool-name }</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits LPCOR IP-phone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 9 voice lpcor ip-phone mobility {incoming</td>
<td>outgoing} lpcor-group</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows the configuration for three mobile-type phones:

```plaintext
ephone 270
   lpcor type mobile
   mac-address 1234.4321.6000
   type 7960
   button 1:6
   mtp
   codec g729r8 dspfarm-assist
   description teleworker remote phone
   ephone 281
```

Cisco Unified Communications Manager Express System Administrator Guide

1084
The following example shows a LPCOR IP-phone subnet configuration with a single shared IP address pool. Any mobile-type IP phones with a shared IP address from DHCP pool1 are considered local IP phones and are associated with the local_group1 LPCOR policy. Other mobile-type IP phones without a shared IP address are considered remote IP phones and are associated with remote_group1, the default LPCOR policy for mobile-type phones.

```
ip dhcp pool pool1
  network 10.0.0.0 255.255.0.0
  option 150 ip 10.0.0.1
  default-router 10.0.0.1
!
voice lpcor ip-phone subnet incoming
  index 1 local_group1 dhcp-pool pool1
!
voice lpcor ip-phone subnet outgoing
  index 1 local_group1 dhcp-pool pool1
!
voice lpcor ip-phone mobility incoming remote_group1
voice lpcor ip-phone mobility outgoing remote_group1
```

The following example shows a LPCOR IP-phone subnet configuration with a separate IP address DHCP pools. Any mobile-type IP phones with separate DHCP pools are considered local IP phones and are assigned the local_group1 LPCOR policy. Other mobile-type IP phones without a DHCP address are considered remote IP phones and are assigned the remote_group1 LPCOR policy.

```
ip dhcp pool client1
  network 10.0.0.0 255.255.0.0
  mac-address 0003.4713.5554
  option 150 ip 10.0.0.1
  default-router 10.0.0.1
!
ip dhcp pool client2
  network 10.0.0.0 255.255.0.0
  mac-address 0030.94C2.9A66
  option 150 ip 10.0.0.1
  default-router 10.0.0.1
!
voice lpcor ip-phone subnet incoming
  index 1 local_group1 dhcp-pool client1
  index 2 local_group1 dhcp-pool client2
!
voice lpcor ip-phone subnet outgoing
  index 1 local_group1 dhcp-pool client1
  index 2 local_group1 dhcp-pool client2
```
The following example shows a LPCOR IP phone subnet configuration with both an IP address network mask and a single shared-address DHCP pool. A specific LPCOR policy can be associated with an IP phone by matching the IP address network mask in the IP-phone subnet table. LPCOR policy local_group2 is associated with the local IP phone with IP address 10.0.10.23. LPCOR local_group2 is associated with the other local IP phones through the DHCP-pool match.

```
ip dhcp pool pool1
    network 10.0.0.0 255.255.0.0
    option 150 ip 10.0.0.1
    default-router 10.0.0.1
!
voice lpcor ip-phone subnet incoming
    index 1 local_g2 10.0.10.23 255.255.255.0 vrf vrf-group2
    index 2 remote_g2 172.19.0.0 255.255.0.0
    index 3 local_g1 dhcp-pool pool1
!
voice lpcor ip-phone subnet outgoing
    index 1 local_g4 10.1.10.23 255.255.255.0 vrf vrf-group2
    index 2 remote_g4 172.19.0.0 255.255.0.0
    index 3 local_g5 dhcp-pool pool1
!
voice lpcor ip-phone mobility incoming remote_g1
voice lpcor ip-phone mobility outgoing remote_g1
```

Verify LPCOR Configuration

Use the following `show` commands to display LPCOR configuration information and to verify the LPCOR policy associated with calls.

- **show call active voice**—Displays the LPCOR information for incoming and outgoing call legs (VoIP, ephone, SIP, PSTN).
- **show call history voice**—Displays the LPCOR information for incoming and outgoing call legs (VoIP, ephone, SIP, PSTN). Also displays the LPCOR call-block cause code if the call is blocked due to LPCOR policy validation.
- **show dial-peer voice**—Displays configuration settings for voice dial peers including the LPCOR setting for incoming and outgoing calls.
- **show trunk group**—Displays configuration settings for trunk groups including the LPCOR setting for incoming and outgoing calls.
- **show voice lpcor**—Displays information about LPCOR calls including the LPCOR policy associated with each resource group and directory number, and statistics for failed calls.
- **show voice port**—Displays configuration settings for voice ports including the LPCOR setting for incoming and outgoing calls.
Configuration Examples for LPCOR

Example for Configuring LPCOR for Cisco Unified CME

Figure 43: LPCOR Resource Grouping in Cisco Unified CME Network, on page 1087 shows an example of a Cisco Unified CME network using LPCOR. This network is organized into the following four LPCOR resource groups:

- **local_group**—Analog and IP phones, including a mobile-type phone, connected locally to Cisco Unified CME.
- **pstn_group**—Trunks between the PSTN and Cisco Unified CME.
- **remote_group**—IP phones, including a mobile-type phone, and a SIP proxy server connected remotely to Cisco Unified CME through the WAN.
- **voice_mail_group**—Cisco Unity Express voice-mail system connected remotely to Cisco Unified CME through the WAN.

Figure 43: LPCOR Resource Grouping in Cisco Unified CME Network

![Diagram](image)

Figure 44: LPCOR Policy Logic, on page 1088 illustrates the access policy between resource groups that provides the following call requirements:

- Blocks calls between remote_group and pstn_group
- Blocks calls from voice_mail_group to pstn_group and remote_group
- Allows calls between local_group and remote_group
- Allows calls between local_group and pstn_group
- Allows all calls to voice_mail_group

Figure 44: LPCOR Policy Logic

The following output shows the LPCOR configuration for this example and describes the steps. Comments describing the configuration are included in the output.

1. **Enable LPCOR functionality in Cisco Unified CME and define custom LPCOR group.**

   ```
   voice lpcor enable
   
   voice lpcor custom
   group 1 pstn_group
   group 2 local_group
   group 3 remote_group
   group 4 voice_mail_group
   
   # Allow calls only from local group to PSTN group
   voice lpcor policy pstn_group
   accept local_group
   
   # Allow calls from PSTN, remote, and voice_mail groups to local group
   voice lpcor policy local_group
   accept pstn_group
   accept remote_group
   accept voice_mail_group
   
   # Allow calls only from local group to remote group
   voice lpcor policy remote_group
   accept local_group
   
   # Allow calls from PSTN, remote, and local groups to voice_mail group
   voice lpcor voice_mail_group
   accept pstn_group
   accept local_group
   accept remote_group
   
   # Assign LPCOR to the phone, trunk, and IP resources.
   ```

2. **Assign LPCOR to the phone, trunk, and IP resources.**
analog phone5
voice-port 1/0/0
 lpcor incoming local_group
 lpcor outgoing local_group
!
analog phone6
voice-port 1/0/1
 lpcor incoming local_group
 lpcor outgoing local_group
!
TDM trunks
voice-port 2/1:23
 lpcor incoming pstn_group
 lpcor outgoing pstn_group
!
!
Specific LPCOR setting for incoming calls from voice_mail_group
voice lpcor ip-trunk subnet incoming
 voice_mail_group 172.19.28.11 255.255.255.255
!
!
Default LPCOR setting for any incoming VoIP calls
voice service voip
 lpcor incoming remote_group
!
Cisco Unified CME is DHCP server
ip dhcp pool client1
 network 10.0.0.0 255.255.0.0
 mac-address 0003.4713.5554
 option 150 ip 10.0.0.1
 default-router 10.0.0.1
!
IP phone1 (local)
ephone 1
 lpcor type local
 lpcor incoming local_group
 lpcor outgoing local_group
!
IP phone2 (mobile)
ephone 2
 lpcor type mobile
!
IP phone3 (remote)
ephone 3
 lpcor type remote
 lpcor incoming remote_group
 lpcor outgoing remote_group
!
IP phone4 (mobile)
ephone 4
 lpcor type mobile
!
IP-phone subnet tables for mobile IP phones
voice lpcor ip-phone subnet incoming
 local_group dhcp-pool pool1
!
voice lpcor ip-phone subnet outgoing
 local_group dhcp-pool client1
!
Default LPCOR policy for mobile IP phones that
are not provisioned through IP-phone subnet tables
voice lpcor ip-phone mobility incoming remote_group
voice lpcor ip-phone mobility outgoing remote_group
3. Define outgoing LPCOR setting for outgoing VoIP calls.

```conf
# VoIP outbound dial-peer to Cisco Unity Express mail
dial-peer voice 1234 voip
destination-pattern 56800
destination-pattern 56800
session target ipv4:172.19.281.1
pcor outgoing voice_mail_group
!
# VoIP outbound dial-peer to SIP proxy
dial-peer voice 1255 voip
destination-pattern 1255T
session protocol sipv2
session target sip-server
lpcor outgoing remote
```

Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

Router# show running-config

Building configuration...

Current configuration : 10543 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Router
!
boot-start-marker
boot-end-marker
!
card type t1 2 1
logging message-counter syslog
logging buffered 2000000
no logging console
!
no aaa new-model
network-clock-participate slot 2
!
ip source-route
ip cef
!
ip dhcp excluded-address 192.168.20.1
ip dhcp excluded-address 192.168.20.1 192.168.20.5
!
ip dhcp pool voice
 network 192.168.20.0 255.255.255.0
 option 150 ip 192.168.20.1
 default-router 192.168.20.1
!
no ip domain lookup
no ipv6 cef
multilink bundle-name authenticated
!
! isdn switch-type primary-5ess
! voice-card 0
! voice-card 2
!
voice service voip
 notify redirect ip2pots
 allow-connections sip to sip
 sip
 bind control source-interface GigabitEthernet0/1
 bind media source-interface GigabitEthernet0/1
 registrar server expires max 120 min 60
!
!
voice class custom-cptone leavetone
dualtone conference
 frequency 400 800
 cadence 400 50 200 50 200 50
!
voice class custom-cptone jointone
dualtone conference
 frequency 600 900
 cadence 300 150 300 100 300 50
!
!
voice iec syslog
voice register global
 mode cme
 source-address 192.168.20.1 port 5060
 max-dn 20
 max-pool 20
 load 7970 SIP70.8-4-2S
 load 7960-7940 POS3-08-11-00
 authenticate realm cisco.com
 tftp-path flash:
 telnet level 2
 create profile sync 0000312474383825
!
voice register dn 1
 number 4000
 name cme-sip1
 label 4000
!
voice register dn 2
 number 4001
 name cme-sip-2
 label 4001
!
voice register dn 3
 number 4002
 name cme-remote
 label 4002
!
voice register template 1
 softkeys remote-in-use cBarge Barge Newcall
!
voice register pool 1
 lpcor type local
 lpcor incoming local_sip
 lpcor outgoing local_sip
id mac 001B.D4C6.AE44
 type 7960
 number 1 dn 1
dtmf-relay rtp-nte
codec g711ulaw

voice register pool 2
 lpcor type local
 lpcor incoming local_sip
 lpcor outgoing local_sip
id mac 001E.BE8F.96C1
 type 7940
 number 1 dn 2
dtmf-relay rtp-nte
codec g711ulaw

voice register pool 3
 lpcor type remote
 lpcor incoming remote_sip
 lpcor outgoing remote_sip
id mac 001E.BE8F.96C0
 type 7940
 number 1 dn 3
dtmf-relay rtp-nte
codec g711ulaw

voice lpcor enable
voice lpcor call-block cause invalid-number
voice lpcor custom
group 1 voip_siptrunk
group 2 voip_h323trunk
group 3 pstn_trunk
group 4 cue_vmail_local
group 5 cue_vmail_remote
group 6 vmail_unity
group 7 local_sccp
group 8 local_sip
group 9 remote_sccp
group 10 remote_sip
group 11 analog_vg224
group 12 analog_fxs
group 13 mobile_phone

voice lpcor policy voip_siptrunk
 accept cue_vmail_local
 accept local_sccp
 accept local_sip
 accept analog_vg224

voice lpcor policy cue_vmail_local
 accept voip_siptrunk
 accept voip_h323trunk
 accept local_sccp
 accept local_sip

voice lpcor policy local_sccp
 accept local_sip
 accept remote_sccp
 accept remote_sip
 accept analog_vg224
 accept analog_fxs

voice lpcor policy remote_sccp
accept local_sccp
accept local_sip
accept remote_sip
!
voice lpcor policy analog_vg224
accept local_sccp
accept local_sip
accept remote_sccp
accept remote_sip
!
voice lpcor policy analog_fxs
accept local_sccp
accept local_sip
!
voice lpcor ip-phone subnet incoming
index 1 local_sccp dhcp-pool voice
!
voice lpcor ip-phone subnet outgoing
index 1 local_sccp dhcp-pool voice
!
archive
log config
hidekeys
!
controller T1 2/0
cablelength short 133
pri-group timeslots 1-24
!
controller T1 2/1
!
interface Loopback1
ip address 192.168.21.1 255.255.255.0
ip ospf network point-to-point
!
interface GigabitEthernet0/0
ip address 192.168.160.1 255.255.255.0
duplex auto
speed auto
media-type rj45
!
interface GigabitEthernet0/1
ip address 192.168.20.1 255.255.255.0
duplex auto
speed auto
media-type rj45
!
interface FastEthernet0/2/0
ip address 192.168.98.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/2/1
no ip address
duplex auto
speed auto
!
interface Service-Engine1/0
ip unnumbered Loopback1
service-module ip address 192.168.21.100 255.255.255.0
service-module ip default-gateway 192.168.21.1
interface Serial2/0:23
no ip address
encapsulation hdlc
isdn switch-type primary-5ess
isdn incoming-voice voice
no cdp enable
!
router ospf 1
log-adjacency-changes
network 192.168.160.0 0.0.0.255 area 0
network 192.168.20.0 0.0.0.255 area 0
network 192.168.21.0 0.0.0.255 area 0
!
ip forward-protocol nd
ip route 192.168.21.100 255.255.255.255 Service-Engine1/0
!
no ip http server
!
!
tftp-server flash:term41.default.loads
tftp-server flash:term61.default.loads
tftp-server flash:SCCP41.8-3-1S.loads
tftp-server flash:apps41.8-3-0-50.sbn
tftp-server flash:cnu41.8-3-0-50.sbn
tftp-server flash:P003-08-11-00.bin
tftp-server flash:P003-08-11-00.sbn
tftp-server flash:P0S3-08-11-00.sb2
tftp-server flash:P0S3-08-11-00.loads
tftp-server flash:term71.default.loads
tftp-server flash:term70.default.loads
tftp-server flash:jar70scscp.8-2-2TR2.sbn
tftp-server flash:dp70.8-2-2TR2.sbn
tftp-server flash:cvm70scscp.8-2-2TR2.sbn
tftp-server flash:apps70.8-2-2TR2.sbn
tftp-server flash:SCCP70.8-2-2SR2S.loads
!
control-plane
!
!
voice-port 0/1/0
 lpcor incoming analog_fxs
 lpcor outgoing analog_fxs
 station-id name FXS-Phone
 station-id number 3000
 caller-id enable
!
voice-port 0/1/1
!
voice-port 2/0:23
!
ccm-manager fax protocol cisco
!
mgcp fax t38 ecm
!
!
dial-peer voice 2 voip
 destination-pattern 2...
 lpcor outgoing voip_siptrunk
 session protocol sipv2
 session target ipv4:192.168.97.1
 codec g711ulaw
ip qos dscp cs5 media
dip qos dscp cs4 signaling

dial-peer voice 5050 voip
description "VMAIL Dial-Peer"
destination-pattern 5...
lpcor outgoing cue_vmail_local
session protocol sipv2
session target ipv4:192.168.21.100
dtmf-relay sip-notify
codec g711ulaw
no vad

dial-peer voice 30 pots
destination-pattern 3000
direct-inward-dial
port 0/1/0

sip-ua
mwi-server ipv4:192.168.21.100 expires 3600 port 5060 transport udp
registrar ipv4:192.168.21.1 expires 3600

telephony-service
em logout 0:0:0:0 0:0
max-ephones 15
max-dn 15
ip source-address 192.168.20.1 port 2000
service phone videoCapability 1
load 7941 SCCP41.8-3-1S
date-format dd-mm-yy
voicemail 5050
max-conferences 12 gain -6
transfer-system full-consult
transfer-pattern .T
transfer-pattern
fac standard
create cnf-files version-stamp Jan 01 2002 00:00:00

ephone-template 1
softkeys hold Join Newcall Resume Select
softkeys idle Cfwall ConfList Dnd Join Newcall Pickup Redial RmLstC
softkeys seized Endcall Redial Cfwall Pickup

ephone-template 2
lpcor type remote
lpcor incoming remote_sccp
lpcor outgoing remote_sccp

ephone-dn 1 dual-line
number 5000
call-forward busy 5050
call-forward noan 5050 timeout 10
mwi sip

ephone-dn 2 dual-line
number 5001
call-forward busy 5050
call-forward noan 5050 timeout 10
Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

```cisco
mwi sip
!
ephone-dn 3 dual-line
number 5010
description vg224-1/1
name analog-1
!
ephone-dn 4 dual-line
number 5011
description vg224-1/2
name analog-2
!
ephone-dn 5 dual-line
number 5012
description vg224-1/3
name analog-3
!
ephone-dn 6 dual-line
number 5013
description vg224-1/4
name analog-4
!
ephone-dn 7 dual-line
number 5020
name SCCP-Remote
mwi sip
!
ephone 1
lpcor type local
lpcor incoming local_sccp
lpcor outgoing local_sccp
mac-address 001E.7A26.EB60
ephone-template 1
type 7941
button 1:1
!
ephone 2
lpcor type local
lpcor incoming local_sccp
lpcor outgoing local_sccp
mac-address 001E.7AC2.CCF9
ephone-template 1
type 7941
button 1:2
!
ephone 3
lpcor type local
lpcor incoming analog_vg224
lpcor outgoing analog_vg224
mac-address F9E5.8B28.2400
ephone-template 1
max-calls-per-button 2
type anl
button 1:3
```
Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

```bash
! ephone 4
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2401
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:4
!
!
ephone 5
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2402
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:5
!
!
ephone 6
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2403
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:6
!
!
ephone 7
  mac-address 001B.D52C.DF1F
  ephone-template 2
  type 7970
  button 1:7
!
alias exec cue ser ser 1/0 sess
!
line con 0
line aux 0
line 66
  no activation-character
  no exec
  transport preferred none
  transport input all
  transport output pad telnet rlogin lapb-ta mop udptn v120
line vty 0 4
  login
  !
exception data-corruption buffer truncate
scheduler allocate 20000 1000
endRouter# show running-config

Building configuration...
```
Current configuration : 10543 bytes
!
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Router
!
boot-start-marker
boot-end-marker
!
card type t1 2 1
logging message-counter syslog
logging buffered 2000000
no logging console
!
no aaa new-model
network-clock-participate slot 2
!
ip source-route
ip cef
!
ip dhcp excluded-address 192.168.20.1
ip dhcp excluded-address 192.168.20.1 192.168.20.5
!
ip dhcp pool voice
 network 192.168.20.0 255.255.255.0
 option 150 ip 192.168.20.1
 default-router 192.168.20.1
!
no ip domain lookup
no ipv6 cef
multilink bundle-name authenticated
!
!
isdn switch-type primary-5ess
!
voice-card 0
!
voice-card 2
!
voice service voip
 notify redirect ip2pots
 allow-connections sip to sip
 sip
 bind control source-interface GigabitEthernet0/1
 bind media source-interface GigabitEthernet0/1
 registrar server expires max 120 min 60
!
!
voice class custom-cptone leavetone
dualtone conference
 frequency 400 800
 cadence 400 50 200 50 200 50
!
voice class custom-cptone jointone
dualtone conference
frequency 600 900
cadence 300 150 300 100 300 50
!

voice iec syslog
voice register global
mode cme
source-address 192.168.20.1 port 5060
max-dn 20
max-pool 20
load 7970 SIP70.8-4-2S
load 7960-7940 POS3-08-11-00
authenticate realm cisco.com
tftp-path flash:
telnet level 2
create profile sync 0000312474383825
!
voice register dn 1
number 4000
name cme-sip1
label 4000
!
voice register dn 2
number 4001
name cme-sip-2
label 4001
!
voice register dn 3
number 4002
name cme-remote
label 4002
!
voice register template 1
 softkeys remote-in-use cBarge Barge Newcall
!
voice register pool 1
lpcor type local
lpcor incoming local_sip
lpcor outgoing local_sip
id mac 001B.D4C6.AE44
type 7960
number 1 dn 1
dtmf-relay rtp-n te
codec g711ulaw
!
voice register pool 2
lpcor type local
lpcor incoming local_sip
lpcor outgoing local_sip
id mac 001E.BE8F.96C1
type 7940
number 1 dn 2
dtmf-relay rtp-n te
codec g711ulaw
!
voice register pool 3
lpcor type remote
lpcor incoming remote_sip
lpcor outgoing remote_sip
id mac 001E.BE8F.96CO
type 7940
number 1 dn 3
dtmf-relay rtp-n te
codec g711ulaw

Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router
Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

!
voice lpcor enable
voice lpcor call-block cause invalid-number
voice lpcor custom
 group 1 voip_siptrunk
 group 2 voip_h323trunk
 group 3 pstn_trunk
 group 4 cue_vmail_local
 group 5 cue_vmail_remote
 group 6 vmmail_unity
 group 7 local_sccp
 group 8 local_sip
 group 9 remote_sccp
 group 10 remote_sip
 group 11 analog_vg224
 group 12 analog_fxs
 group 13 mobile_phone
!
voice lpcor policy voip_siptrunk
 accept cue_vmail_local
 accept local_sccp
 accept local_sip
 accept analog_vg224
!
voice lpcor policy cue_vmail_local
 accept voip_siptrunk
 accept voip_h323trunk
 accept local_sccp
 accept local_sip
!
voice lpcor policy local_sccp
 accept local_sip
 accept remote_sccp
 accept remote_sip
 accept analog_vg224
 accept analog_fxs
!
voice lpcor policy remote_sccp
 accept local_sccp
 accept local_sip
 accept remote_sip
!
voice lpcor policy analog_vg224
 accept local_sccp
 accept local_sip
 accept remote_sccp
 accept remote_sip
!
voice lpcor policy analog_fxs
 accept local_sccp
 accept local_sip
!
voice lpcor ip-phone subnet incoming
 index 1 local_sccp dhcp-pool voice
!
voice lpcor ip-phone subnet outgoing
 index 1 local_sccp dhcp-pool voice
!
archive
log config
hidekeys
controller T1 2/0
 cablelength short 133
 pri-group timeslots 1-24
controller T1 2/1
interface Loopback1
 ip address 192.168.21.1 255.255.255.0
 ip ospf network point-to-point
interface GigabitEthernet0/0
 ip address 192.168.160.1 255.255.255.0
duplex auto
 speed auto
 media-type rj45
interface GigabitEthernet0/1
 ip address 192.168.20.1 255.255.255.0
duplex auto
 speed auto
 media-type rj45
interface FastEthernet0/2/0
 ip address 192.168.98.1 255.255.255.0
duplex auto
 speed auto
interface FastEthernet0/2/1
 no ip address
duplex auto
speed auto
interface Service-Engine1/0
 ip unnumbered Loopback1
 service-module ip address 192.168.21.100 255.255.255.0
 service-module ip default-gateway 192.168.21.1
interface Serial2/0:23
 no ip address
 encapsulation hdlc
 isdn switch-type primary-5ess
 isdn incoming-voice voice
 no cdp enable
router ospf 1
 log-adjacency-changes
 network 192.168.160.0 0.0.0.255 area 0
 network 192.168.20.0 0.0.0.255 area 0
 network 192.168.21.0 0.0.0.255 area 0
ip forward-protocol nd
ip route 192.168.21.100 255.255.255.255 Service-Engine1/0
no ip http server
tftp-server flash:term41.default.loads
tftp-server flash:term61.default.loads
tftp-server flash:SCCP41.8-3-1S.loads
tftp-server flash:apps41.8-3-0-50.sbn
Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

```
tftp-server flash:cnu41.8-3-0-50.sbn

tftp-server flash:P003-08-11-00.bin

tftp-server flash:P003-08-11-00.sbn

tftp-server flash:P0S3-08-11-00.sb2

tftp-server flash:P0S3-08-11-00.loads

tftp-server flash:term71.default.loads

tftp-server flash:term70.default.loads

tftp-server flash:jar70sccp.8-2-2TR2.sbn

tftp-server flash:dsp70.8-2-2TR2.sbn

tftp-server flash:cvm70sccp.8-2-2TR2.sbn

tftp-server flash:apps70.8-2-2TR2.sbn

tftp-server flash:SCCP70.8-2-2SR2S.loads

control-plane

voice-port 0/1/0
  lpcor incoming analog_fxs
  lpcor outgoing analog_fxs
  station-id name FXS-Phone
  station-id number 3000
  caller-id enable

voice-port 0/1/1

voice-port 2/0:23

ccm-manager fax protocol cisco

mgcp fax t38 ecm

! 

dial-peer voice 2 voip
  destination-pattern 2...  
  lpcor outgoing voip_siptrunk  
  session protocol sipv2  
  session target ipv4:192.168.97.1
  codec g711ulaw
  ip qos dscp cs5 media
  ip qos dscp cs4 signaling

! 

dial-peer voice 5050 voip
  description *** VMAIL Dial-Peer ***
  destination-pattern 5...  
  lpcor outgoing cue_vmail_local
  session protocol sipv2
  session target ipv4:192.168.21.100
  dtmf-relay sip-notify
  codec g711ulaw
  no vad

! 

dial-peer voice 30 pots
  destination-pattern 3000
  direct-inward-dial
  port 0/1/0

! 

sip-ua

mwi-server ipv4:192.168.21.100 expires 3600 port 5060 transport udp

registrar ipv4:192.168.21.1 expires 3600

! 

telephony-service
```
em logout 0:0 0:0 0:0
max-ephones 15
max-dn 15
ip source-address 192.168.20.1 port 2000
service phone videoCapability 1
load 7941 SCCP41.8-3-1S
date-format dd-mm-yy
voicemail 5050
max-conferences 12 gain -6
transfer-system full-consult
transfer-pattern .T
transfer-pattern
fac standard
create cnf-files version-stamp Jan 01 2002 00:00:00
!
ephone-template 1
softkeys hold Join Newcall Resume Select
softkeys idle Cfwdall ConfList Dnd Join Newcall Pickup Redial RmLstC
softkeys seized Endcall Redial Cfwdall Pickup
!
ephone-template 2
lpcor type remote
lpcor incoming remote_sccp
lpcor outgoing remote_sccp
!
ephone-dn 1 dual-line
number 5000
call-forward busy 5050
call-forward noan 5050 timeout 10
mwi sip
!
ephone-dn 2 dual-line
number 5001
call-forward busy 5050
call-forward noan 5050 timeout 10
mwi sip
!
ephone-dn 3 dual-line
number 5010
description vg224-1/1
name analog-1
!
ephone-dn 4 dual-line
number 5011
description vg224-1/2
name analog-2
!
ephone-dn 5 dual-line
number 5012
description vg224-1/3
name analog-3
!
ephone-dn 6 dual-line
number 5013
description vg224-1/4
name analog-4
Example for Configuring LPCOR on Cisco 3800 Series Integrated Services Router

```plaintext
ephone-dn 7 dual-line
  number 5020
  name SCCP-Remote
  mwi sip

ephone 1
  lpcor type local
  lpcor incoming local_sccp
  lpcor outgoing local_sccp
  mac-address 001E.7A26.EB60
  ephone-template 1
  type 7941
  button 1:1

ephone 2
  lpcor type local
  lpcor incoming local_sccp
  lpcor outgoing local_sccp
  mac-address 001E.7AC2.CCF9
  ephone-template 1
  type 7941
  button 1:2

ephone 3
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2400
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:3

ephone 4
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2401
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:4

ephone 5
  lpcor type local
  lpcor incoming analog_vg224
  lpcor outgoing analog_vg224
  mac-address F9E5.8B28.2402
  ephone-template 1
  max-calls-per-button 2
  type anl
  button 1:5
```

Feature Information for LPCOR

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 100: Feature Information for LPCOR

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Restriction Regulations for Cisco Unified CME</td>
<td>8.0</td>
<td>Introduced support for LPCOR feature.</td>
</tr>
</tbody>
</table>
Call Transfer and Forward

Information About Call Transfer and Forward

Call Forward

Call forward feature diverts calls to a specified number under one or more of the following conditions:

- All calls—When all-call call forwarding is activated by a phone user, all incoming calls are diverted. The target destination for diverted calls can be specified in the router configuration or by the phone user with a soft key or feature access code. The most recently entered destination is recognized by Cisco Unified CME, regardless of how it was entered.
- No answer—Incoming calls are diverted when the extension does not answer before the timeout expires. The target destination for diverted calls is specified in the router configuration.
- Busy—Incoming calls are diverted when the extension is busy and call waiting is not active. The target destination for diverted calls is specified in the router configuration.
- Night service—All incoming calls are automatically diverted during night-service hours. The target destination for diverted calls is specified in the router configuration.

A directory number can have all four types of call forwarding defined at the same time with a different forwarding destination defined for each type of call forwarding. If more than one type of call forwarding is active at one time, the order for evaluating the different types is as follows:

1. Call forward night-service
2. Call forward all
3. Call forward busy and call forward no-answer

H.450.3 capabilities are enabled globally on the router by default, and can be disabled either globally or for individual dial peers. You can configure incoming patterns for using the H.450.3 standard. Calling-party numbers that do not match the patterns defined with this command are forwarded using Cisco-proprietary call forwarding for backward compatibility. For information about configuring H.450.3 on a Cisco Unified CME system, see Enable Call Forwarding for a Directory Number, on page 1141.
Selective Call Forward

You can apply call forward to a busy or no-answer directory number based on the number that is dialed to reach the directory number: the primary number, the secondary number, or either of those numbers expanded by a dial-plan pattern.

Cisco Unified CME automatically creates one POTS dial peer for each ephone-dn when it is assigned a primary number. If the ephone-dn is assigned a secondary number, it creates a second POTS dial peer. If the `dialplan-pattern` command is used to expand the primary and secondary numbers for ephone-dns, it creates two more dial peers, resulting in the creation of the following four dial peers for the ephone-dn:

- A POTS dial peer for the primary number
- A POTS dial peer for the secondary number
- A POTS dial peer for the primary number as expanded by the `dialplan-pattern` command
- A POTS dial peer for the secondary number as expanded by the `dialplan-pattern` command

Call forwarding is normally applied to all dial peers created for an ephone-dn. Selective call forwarding allows you to apply call forwarding for busy or no-answer calls only for the dial peers you have specified, based on the called number that was used to route the call to the ephone-dn.

For example, the following commands set up a single ephone-dn (ephone-dn 5) with four dial peers:

```
telephony-service
dialplan-pattern 1 40855501.. extension-length 4 extension-pattern 50..
ephone-dn 5
  number 5066 secondary 5067
```

In this example, selective call forwarding can be applied so that calls are forwarded when:

- callers dial the primary number 5066.
- when callers dial the secondary number 5067.
- when callers dial the expanded numbers 4085550166 or 4085550167.

For configuration information, see Enable Call Forwarding for a Directory Number, on page 1141.

Call Forward Unregistered

The Call Forward Unregistered (CFU) feature allows you to forward a call to a different number if the directory number (DN) is not associated with a phone or if the associated phone is not registered to Cisco Unified CME. The CFU feature is very useful for wireless phone users when the wireless phone is out of the access point or phone shuts down automatically because of an automatic shutdown feature. The service is not available and the call can be forwarded to the CFU destination. Any unregistered or floating DN can be forwarded using the CFU feature.

An unregistered DN indicates that none of its associated phones are registered to the Cisco Unified CME. A registered phone will become unregistered when the Cisco Unified CME sends an unregistration request or
responses to a phone's unregistration request. Cisco Unified CME sends an unregistration request under the following circumstances:

- When the keepalive timer expires.
- When a user issues a reset or restart command on the phone.
- When an extension mobility (EM) user logs into the phone. (All DNs configured under the logout-profile are unregistered except for the shared ones that are associated with other registered phones.)
- When an EM user logs out of the phone. (All DNs configured under the user-profile are unregistered except for the shared ones that are associated with other registered phones.)

There is always a gap between the time the phone loses its connection with Cisco Unified CME and the time when Cisco Unified CME claims the phone is unregistered. The length of the gap depends on the keepalive timer. Cisco Unified CME considers the phone as registered and tries to associate DNs until the keepalive timer expires. You can configure the expiration for the keepalive timer using the registrar server expires max <seconds> min <seconds> command under sip in voice service voip mode for SIP IP phones. For more information, see Example for Configuring Keepalive Timer Expiration in SIP Phones, on page 1188.

Cisco Unified CME 8.6 supports the CFU feature on SIP IP phones using the call-forward b2bua unregistered command under voice register dn tag. The CFU feature supports overlap dialing and en-bloc dialing. A call to a floating DN is forwarded to its CFU destination, if configured. Calls to a DN out of service point or phones losing connection are not forwarded to a CFU number until the phone becomes unregistered. For more information on configuring call-forward unregistered, see Example for Configuring Call Forward Unregistered for SIP IP Phones, on page 1187.

Note
In earlier versions of Cisco Unified CME, a busy tone was played for callers when the callers are unable to reach the SCCP phone number. In Cisco Unified CME 8.6 and later versions, a fast busy tone is played instead of a busy tone for callers who are unable to reach the phone.

B2BUA Call Forward for SIP Devices

Cisco Unified CME 3.4 and later versions acts as both UA server and UA client; that is, as a B2BUA. Calls into a SIP phone can be forwarded to other SIP or SCCP devices (including Cisco Unity or Cisco Unity Express, third-party voice mail systems, an auto attendant or an IVR system, such as Cisco Unified IPCC and Cisco Unified IPCC Express). In addition, SCCP phones can be forwarded to SIP phones.

Cisco Unity or other voice-messaging systems connected by a SIP trunk or SIP user agent are able to pass an MWI to a SIP phone when a call is forwarded. The SIP phone then displays the MWI when indicated by the voice-messaging system.

The call-forward busy response is triggered when a call is sent to a SIP phone using a VoIP dial peer and a busy response is received back from the phone. SIP-to-SIP call forwarding is invoked only if the phone is dialed directly. Call forwarding is not invoked when the phone number is called through a sequential, longest-idle, or peer hunt group.

You can configure call forwarding for an individual directory number, or for every number on a SIP phone. If the information is configured in both, the information under voice register dn takes precedence over the information configured under voice register pool.

For configuration information, see Configure SIP-to-SIP Phone Call Forwarding, on page 1168.
Call Forward All Synchronization for SIP Phones

The Call Forward All feature allows users to forward all incoming calls to a phone number that they specify. This feature is supported on all SIP phones and can be provisioned from either Cisco Unified CME or the individual SIP phone. Before Cisco Unified CME 4.1, there was no method for exchanging the Call Forward All configuration between Cisco Unified CME and the SIP phone. If Call Forward All was enabled on the phone, the configuration in Cisco Unified CME was not updated; conversely, the configuration in Cisco Unified CME was not sent to the phone.

In Cisco Unified CME 4.1 and later, the following enhancements are supported for the Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE to keep the configuration consistent between Cisco Unified CME and the SIP phone:

- When Call Forward All is configured on Cisco Unified CME with the `call-forward b2bua all` command, the configuration is sent to the phone which updates the CfwdAll soft key to indicate that Call Forward All is enabled. Because Call Forward All is configured on a per line basis, the CfwdAll soft key is updated only when Call Forward All is enabled for the primary line.
- When a user enables Call Forward All on a phone using the CfwdAll soft key, the uniform resource identifier (URI) for the service (defined with the `call-feature-uri` command) and the call forward number (unless Call Forward All is disabled) is sent to Cisco Unified CME. It updates its voice register pool and voice register dn configuration with the `call-forward b2bua all` command to be consistent with the phone configuration.
- Call Forward All supports KPML so that a user does not need to press the Dial or # key, or wait for the interdigit timeout, to configure the Call Forward All number. Cisco Unified CME collects the Call Forward All digits until it finds a match in the dial peers.

For configuration information, see Configure Call-Forwarding-All Softkey URI on SIP Phones, on page 1173.

Call Transfer

When you are connected to another party, call transfer allows you to shift the connection of the other party to a different number. Call transfer methods must inter-operate with systems in the other networks with which you interface. Cisco CME 3.2 and later versions provide full call-transfer and call-forwarding interoperability with call processing systems that support H.450.2, H.450.3, and H.450.12 standards. For call processing systems that do not support H.450 standards, Cisco CME 3.2 and later versions provide VoIP-to-VoIP hairpin call routing.

Call transfers can be blind or consultative. A blind transfer is one in which the transferring extension connects the caller to a destination extension before ringback begins. A consultative transfer is one in which the transferring party either connects the caller to a ringing phone (ringback heard) or speaks with the third party before connecting the caller to the third party.

You can configure blind or consultative transfer on a system-wide basis or for individual extensions. For example, in a system that is set up for consultative transfer, a specific extension with an auto-attendant that automatically transfers incoming calls to specific extension numbers can be set to use blind transfer, because auto-attendants do not use consultative transfer.

Call Transfer Blocking

Transfers to all numbers except those on local phones are automatically blocked by default. During configuration, you can allow transfers to nonlocal numbers. In Cisco Unified CME 4.0 and later versions, you can prevent individual phones from transferring calls to numbers that are globally enabled for transfer. This ensures that individual phones do not incur toll charges by transferring calls outside the Cisco Unified CME
system. Call transfer blocking can be configured for individual phones or configured as part of a template that is applied to a set of phones.

Another way to eliminate toll charges on call transfers is to limit the number of digits that phone users can dial when transferring calls. For example, if you specify a maximum of eight digits in the configuration, users who are transferring calls can dial one digit for external access and seven digits more, which is generally enough for a local number but not a long-distance number. In most locations, this plan will limit transfers to nontoll destinations. Long-distance calls, which typically require ten digits or more, will not be allowed. This configuration is only necessary when global transfer to numbers outside the Cisco Unified CME system has been enabled using the `transfer-pattern` (telephony-service) command. Transfers to numbers outside the Cisco Unified CME system are not permitted by default.

For configuration information, see Configure Call Transfer Options for SCCP Phones, on page 1145.

Trunk-to-Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones

In Cisco Unified CME 4.0 trunk-to-trunk transfer blocking for toll bypass fraud prevention is supported on Cisco Unified Skinny Client Control Protocol (SCCP) IP phones.

In Cisco Unified CME 9.5 trunk-to-trunk transfer blocking for toll bypass fraud prevention is also supported on Cisco Unified Session Initiation Protocol (SIP) IP phones.

In Cisco Unified CME 10.5 trunk-to-trunk conference blocking is also supported on Cisco Unified Skinny Client Control Protocol (SCCP) and Cisco Unified Session Initiation Protocol (SIP) IP phones.

Table 101: Configuration Modes for Transfer-Blocking Commands, on page 1111 lists the transfer-blocking commands and the appropriate configuration modes for Cisco Unified CME and Cisco Unified SRST.

Table 101: Configuration Modes for Transfer-Blocking Commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>Cisco Unified CME</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>transfer-pattern</code></td>
<td>telephony-service</td>
</tr>
<tr>
<td><code>transfer max-length</code></td>
<td>voice register pool or voice register template</td>
</tr>
<tr>
<td><code>transfer-pattern blocked</code></td>
<td>voice register pool or voice register template</td>
</tr>
<tr>
<td><code>conference transfer-pattern</code></td>
<td>telephony-service</td>
</tr>
<tr>
<td><code>conference max-length</code></td>
<td>ephone ephone-template voice register pool voice register template</td>
</tr>
</tbody>
</table>
Transfer Pattern

The call transfer and conference restrictions apply when transfers or conferences are initiated toward external parties, like a PSTN trunk, a SIP trunk, or an H.323 trunk. The restrictions do not apply to transfers to local extensions.

Transfer Pattern

The `transfer-pattern` command for Cisco Unified SCCP IP phones is extended to Cisco Unified SIP IP phones.

The `transfer-pattern` command specifies the directory numbers for call transfer. The command can be configured up to 32 times using the following command syntax:

```
transfer-pattern  transfer-pattern  [blind]
```

Note

The `blind` keyword in the `transfer-pattern` command applies to Cisco Unified SCCP IP phones only and does not apply to Cisco Unified SIP IP phones.

With the `transfer-pattern` command configured, only call transfers to numbers that match the configured transfer pattern are allowed to take place. With the transfer pattern configured, all or a subset of transfer numbers can be dialed and the transfer to a remote party can be initiated.

Note

In Cisco Unified CME 9.5 and later versions, Cisco Unified SIP IP phones and Cisco Unified SCCP IP phones registered to the same Cisco Unified CME are considered local and do not require transfer-pattern configuration.

The following are examples of configurable transfer patterns:

- .T—This configuration allows call transfers to any destinations with one or more digits, like 123, 877656, or 76548765.
- 919........—This configuration only allows call transfers to remote numbers beginning with “919” and followed by eight digits, like 91912345678. However, call transfers to 9191234 or 919123456789 are not allowed.

Backward Compatibility

To maintain backward compatibility, all call transfers from Cisco Unified SIP IP phones to any number (local or over trunk) are allowed when no transfer patterns are configured through the `transfer-pattern`, `transfer-pattern blocked`, or `transfer max-length` commands.
For Cisco Unified SCCP IP phones, call transfers over trunk continue to be blocked when no transfer patterns are configured.

Dial Plans

Whatever dial plan is used for external calls, the same numbers should be configured as specific numbers using the `transfer-pattern` command.

If a dial plan requires “9” to be dialed before an external call is made, then “9” should be a prefix of the transfer-pattern number. For example, 12345678 is an external number that requires “9” to be dialed before the external call can be made so the transfer-pattern number should be 912345678.

Note

In Cisco Unified CME 9.5 and later versions, once transfer patterns are configured in telephony-service configuration mode, the transfer patterns apply to both Cisco Unified SCCP IP phones and Cisco Unified SIP IP phones.

Transfer Max-Length

The `transfer max-length` command is used to indicate the maximum length of the number being dialed for a call transfer. When only a specific number of digits are to be allowed during a call transfer, a value between 3 and 16 is configured. When the number dialed exceeds the maximum length configured, then the call transfer is blocked.

For example, the maximum length is configured as 5, then only call transfers from Cisco Unified SIP IP phones up to a five-digit directory number are allowed. All call transfers to directory numbers with more than five digits are blocked.

Note

If only transfer max length is configured and conference max-length is not configured, then transfer max-length takes effect for transfers and conferences.

Conference Max-Length

Conference calls are allowed when:

- both `conference transfer-pattern` and `transfer-pattern` commands are configured
- dialed digits match the configured transfer pattern

When conference max-length command is configured, the Cisco Unified CME will allow the conferences only if the dialed digits are within the max-length limit.

If configured, the conference max-length command does not impact call transfers.

Note

If both `conference max-length` and `transfer max-length` commands are configured, the conference `max-length` command takes precedence for conferences.
Conference-Pattern Blocked

The conference-pattern blocked command is used to prevent extensions on an ephone or a voice register pool from initiating conferences.

The following table summarizes the behavior of the `conference-pattern blocked` command in relation to `no conference-pattern blocked`, `conference max-length`, `no conference max-length`, and `transfer max-length` commands.

<table>
<thead>
<tr>
<th>conference max-length</th>
<th>no conference max-length</th>
</tr>
</thead>
<tbody>
<tr>
<td>No conference-pattern blocked (default case)</td>
<td>Allowing/Blocking of conference call depends on configured conference max-length</td>
</tr>
<tr>
<td>conference-pattern blocked</td>
<td>No conference calls allowed for SIP and SCCP phones.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max-length <= allowed max-length</th>
<th>Max-length > allowed max-length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer</td>
<td>Conference</td>
</tr>
<tr>
<td>Transfer max-length + No Conference max-length (use transfer max-length for conference cases too, as conference max-length not configured)</td>
<td>Y</td>
</tr>
<tr>
<td>No transfer max-length + Conference max-length (conference max-length has precedence over transfer max-length for conference)</td>
<td>Y</td>
</tr>
<tr>
<td>No transfer max-length + Conference max-length (conference max-length has precedence over transfer max-length for conference)</td>
<td>Y</td>
</tr>
</tbody>
</table>
No transfer max-length + No conference max-length

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 Enter one of the following commands:</td>
<td>Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>• voice register pool pool-tag</td>
</tr>
<tr>
<td></td>
<td>• voice register template template-tag</td>
</tr>
<tr>
<td></td>
<td>• ephone phone-tag</td>
</tr>
<tr>
<td></td>
<td>• ephone template template-tag</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 25</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
</tbody>
</table>
Configure Conference Blocking Options for Phones

To prevent extensions from making conference calls to directory numbers that are otherwise allowed globally.

Before you begin

- Cisco Unified CME 10.5 or a later version.
- The conference transfer-pattern command must be configured.
- The transfer-pattern command must be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. Enter one of the following commands:
 - voice register pool pool-tag or
 - voice register template template-tag
 - ephone phone-tag
 - ephone template template-tag
4. conference-pattern blocked
5. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
 Example:
  ```
  Router> enable
  ```
 * Enter your password if prompted. |
| **Step 2** | configure terminal | Enters global configuration mode. |
 Example:
  ```
  Router# configure terminal
  ``` |
| **Step 3** | Enter one of the following commands:
 - `voice register pool pool-tag`
 - `voice register template template-tag`
 - `ephone phone-tag`
 - `ephone template template-tag` | Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME or for a set of Cisco Unified SIP IP phones in Cisco Unified SIP SRST. |
 Example:
  ```
  Router(config)# voice register pool 25
  ```
 * `pool-tag`—Unique number assigned to the pool. Range is 1 to 100.
 or
 Enters voice register template configuration mode and defines a template of common parameters for Cisco Unified SIP IP phones.
 * `template-tag`—Declares a template tag. Range is 1 to 10.
 or
 Enters ephone configuration mode.
 * `phone-tag`—Unique sequence number that identifies this ephone during configuration tasks. The maximum number of ephones is version and platform-specific. Type? to display range. |
| **Step 4** | `conference-pattern blocked` | Blocks conference calls to external numbers. |
 Example:
  ```
  Router(config-register-pool)#
  ```
 * `conference-pattern block`—Prevents extensions on an ephone or a voice register pool from initiating conferences. |
| **Step 5** | `exit` | Exits voice register pool configuration mode. |
 Example:
  ```
  Router(config-register-pool)# exit
  ``` |

Transfer-Pattern Blocked

When the `transfer-pattern blocked` command is configured for a specific phone, no call transfers are allowed from that phone over the trunk.
This feature forces unconditional blocking of all call transfers from the specific phone to any other non-local numbers (external calls from one trunk to another trunk). No call transfers from this specific phone are possible even when a transfer pattern matches the dialed digits for transfer.

Table 102: Behaviors of Cisco Unified IP Phones for Specific Configurations, on page 1118 compares the behaviors of Cisco Unified SCCP and SIP phones for specific configurations.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Cisco Unified SCCP IP Phones</th>
<th>Cisco Unified SIP IP Phones</th>
</tr>
</thead>
<tbody>
<tr>
<td>No transfer patterns are configured.</td>
<td>All non-local call transfers are blocked.</td>
<td>All non-local call transfers are allowed for backward compatibility.</td>
</tr>
<tr>
<td>Specific transfer patterns are configured.</td>
<td>Call transfers to specific external entities are allowed.</td>
<td>Call transfers to specific external entities are allowed.</td>
</tr>
<tr>
<td>The transfer-pattern blocked command is configured.</td>
<td>All non-local call transfers are blocked.</td>
<td>All non-local call transfers are blocked. Note:</td>
</tr>
</tbody>
</table>

Conference Transfer-Pattern

When both the transfer-pattern and conference transfer-pattern commands are configured and the dialed digits match the configured transfer pattern, conference calls are allowed. However, when the dialed digits do not match any of the configured transfer pattern, the conference call is blocked.

For configuration information, see Specify Transfer Patterns for Trunk-to-Trunk Calls and Conferences for SIP, on page 1148 and Conference-Pattern Blocked, on page 1114 and Conference Max-Length, on page 1113.

For configuration examples, see Example for Configuring Conference Transfer Patterns, on page 1178, Example for Configuring Maximum Length of Transfer Number, on page 1177, Example for Configuring Transfer Patterns, on page 1177, and Example for Blocking All Call Transfers, on page 1178.

Call Transfer Recall on SCCP Phones

The Call Transfer Recall feature in Cisco Unified CME 4.3 and later versions returns a transferred call to the phone that initiated the transfer if the destination is busy or does not answer. After a phone user completes a transfer to a directory number on a local phone, if the transfer-to party does not answer before the configured recall timer expires, the call is directed back to the transferor phone. The message “Transfer Recall From xxx” displays on the transferor phone.

The transfer-to directory number cannot have Call Forward Busy enabled, or it cannot be a hunt group pilot number. If the transfer-to directory number has Call Forward No Answer (CFNA) enabled, Cisco Unified CME recalls the call only if the transfer-recall timeout is set to less than the CFNA timeout. If the transfer-recall timeout is set to more than the CFNA timeout, the call is forwarded to the CFNA target number after the transfer-to party does not answer.
If the transferor phone is busy, Cisco Unified CME attempts the recall again after the transfer-recall timeout value expires. Cisco Unified CME attempts a recall up to three times. If the transferor phone remains busy, the call is disconnected after the third recall attempt.

The transferor phone and transfer-to phone must be registered to the same Cisco Unified CME, however the transferee phone can be remote.

For configuration information, see Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.

Call Transfer Recall on SIP Phones

From Unified CME 11.6 onwards, Call Transfer Recall feature is supported on SIP phones. This feature returns a transferred call to the phone that initiated the transfer if the destination is busy or does not answer. After a phone user completes a transfer to a directory number on a local SIP phone, and if the transfer-to party does not answer before the configured recall timer expires, the call is directed back to the transferor phone. The message "Transfer Recall From xxxx " displays on the transferor phone.

The Call Transfer Recall in SIP phones is achieved using the CLI `timeouts transfer-recall` command in voice register dn or voice register global configuration modes.

The transfer-to directory number cannot have Call Forward Busy enabled, or it cannot be a hunt group pilot number. The transferor phone and transfer-to phone must be registered to the same Cisco Unified CME, however the transferee phone can be remote. If the transfer-to directory number has Call Forward No Answer (CFNA) enabled, Cisco Unified CME recalls the call only if the transfer-recall timeout is set to less than the CFNA timeout. If the transfer-recall timeout is set to more than the CFNA timeout, the call is forwarded to the CFNA target number after the transfer-to party does not answer. If the transfer-recall timeout is equal to the CFNA timeout, the call is forwarded to the CFNA target number as the CFNA timeout expires before the transfer-recall timeout.

When Call Forward All is configured in Cisco Unified CME, the call is forwarded directly to call forward target number irrespective of whether the phone is busy or idle. In this scenario, transfer recall is not applicable after the call is forwarded.

If the transferor phone is busy, Cisco Unified CME attempts the recall again after the transfer-recall timeout value expires. Cisco Unified CME attempts a recall up to three times. If the transferor phone remains busy, the call is disconnected after the third recall attempt. Also, if the transferor phone is a shared line, and if one of the phones is idle, the transfer recall is directed to the transferor phone that is idle.

When Single Number Reach (SNR) is configured in Cisco Unified CME, the desk IP Phone rings first. If the desk IP Phone does not answer within the configured SNR timer expiry value, the configured remote number (mobile) starts ringing while continuing to ring the desk IP Phone. If both the extensions does not answer the call, transfer recall is directed back to the transferor phone. Transfer recall does not happen if the desk IP Phone or remote phone (mobile) is busy. Also, transfer recall does not happen if one of the SNR extensions answers the call.

For configuration information, see Enable Call-Transfer Recall on SIP Phones at System-Level, on page 1140.

From Cisco Unified CME release 11.6 onwards, call transfer recall feature supports mixed deployment of SCCP and SIP phones. In a mixed deployment scenario, you can have a SIP phone as transferor and with an SCCP phone being transfer-to or vice versa.

In mixed mode, if the transfer recall is performed with multiple SIP or SCCP transferors and a single transfer-to SCCP phone, transfer recall display messages are displayed on both the transferors. Here, transfer recall happens for all the calls when the destination is busy or does not answer the call. In the case of single transfer-to SIP phones, only the first phone call is recalled even if dual-line is configured.
Consultative-Transfer Enhancements in Cisco Unified CME 4.3 and Later Versions

Cisco Unified CME 4.3 modifies the digit-collection process for consultative call transfers. After a phone user presses the Transfer soft key to make a consultative transfer, a new consultative call leg is created and the Transfer soft key is not displayed again until the dialed digits of the transfer-to number are matched to a transfer pattern and the consultative call leg is in the alerting state.

Transfer-to digits dialed by the phone user are no longer buffered. The dialed digits, except the call park FAC code, are collected on the seized consultative call-leg until the digits match a pattern for consultative transfer, blind transfer, park-slot transfer, park-slot transfer blocking, or PSTN transfer blocking. The existing pattern matching process is unchanged, and you have the option of using this new transfer digit-collection method or reverting to the former method.

Before Cisco Unified CME 4.3, the consultative transfer feature collects dialed digits on the original call leg until the digits either match a transfer pattern or blocking pattern. When the transfer-to number is matched, and PSTN blocking is not enabled, the original call is put on hold and an idle line or channel is seized to send the dialed digits from the buffer.

The method of matching a pattern for consultative transfer, blind transfer, park-slot transfer, park-slot transfer blocking, PSTN transfer blocking, and after-hours blocking remain the same. When the transfer-to number matches the pattern for a blind transfer or park-slot transfer, Cisco Unified CME terminates the consultative call leg and transfers the call.

After the transfer-to digits are collected, if the transfer is not committed before the transfer-timeout expires in 30 seconds, the consultation call leg is disconnected.

These enhancements are supported only if:

- The `transfer-system full-consult` command (default) is set in telephony-service configuration mode.
- The `transfer-mode consult` command (default) is set for the transferor's directory number (ephone-dn).
- An idle line or channel is available for seizing, digit collection, and dialing.

Cisco Unified CME 4.3 and later versions enable these transfer enhancements by default.

To revert to the digit-collection method used in previous versions of Cisco Unified CME, see Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.

Consultative Transfer With Direct Station Select

Direct Station Select (DSS) is a feature that allows a multi-button phone user to transfer calls to an idle monitored line by pressing the Transfer key and the appropriate monitored line button. A monitored line is one that appears on two phones; one phone can use the line to make and receive calls and the other phone simply monitors whether the line is in use. For Cisco CME 3.2 and later versions, consultative transfers can occur during Direct Station Select (transferring calls to idle monitored lines).

If the person sharing the monitored line does not want to accept the call, the person announcing the call can reconnect to the incoming call by pressing the EndCall soft key to terminate the announcement call and pressing the Resume soft key to reconnect to the original caller.

Direct Station Select consultative transfer is enabled with the `transfer-system full-consult dss` command, which defines the call transfer method for all lines served by the router. The `transfer-system full-consult dss` command supports the `keep-conference` command. See Configure Hardware Conferencing, on page 1347.
H.450.2 and H.450.3 Support

H.450.2 is a standard protocol for exchanging call-transfer information across a network, and H.450.3 is a standard protocol for exchanging call-forwarding information across a network. Cisco CME 3.0 and later versions support the H.450.2 call-transfer standards and the H.450.3 call-forwarding standards that were introduced in Cisco ITS V2.1. Using the H.450.2 and H.450.3 standards to manage call transfer and forwarding in a VoIP network provides the following benefits:

- The final call path from the transferred party to the transfer destination is optimal, with no hairpinned routes or excessive use of resources.
- Call parameters (for example, codec) can be different for the different call legs.
- This solution is scalable.
- There is no limit to the number of times a call can be transferred.

Considerations for using the H.450.2 and H.450.3 standards include the following:

- Cisco IOS Release 12.2(15)T or a later release is required on all voice gateways in the network.
- Support of H.450.2 and H.450.3 is required on all voice gateways in the network. H.450.2 and H.450.3 are used regardless of whether the transfer-to or forward-to target is on the same Cisco Unified CME system as the transferring party or the forwarding party, so the transferred party must also support H.450.2 and the forwarded party must also support H.450.3. The exception is calls that can be reoriginated through hairpin call routing or through the use of an H.450 tandem gateway.
- Call forwarding over SIP networks uses the 302 Moved Temporarily SIP response, which works in a manner similar to the way in which the H.450.3 standard is used for H.323 networks. To enable call forwarding, you must specify a pattern that matches the calling-party numbers of the calls that you want to be able to forward.
- Cisco Unified CME supports all SIP Refer method call transfer scenarios, but you must ensure that call transfer is enabled using H.450.2 standards.
- H.450 standards are not supported by Cisco Unified Communications Manager, Cisco BTS, or Cisco PGW, although hairpin call routing or an H.450 tandem gateway can be set up to handle calls to and from those types of systems.

The following series of figures depicts a call being transferred using H.450.2 standards. Figure 45: Call Transfer Using H.450.2: A Calls B, on page 1122 shows A calling B. Figure 46: Call Transfer Using H.450.2: B Consults with C, on page 1122 shows B consulting with C and putting A on hold. Figure 47: Call Transfer Using H.450.2: B Transfers A to C, on page 1122 shows that B has connected A and C, and Figure 48: Call Transfer Using H.450.2: A and C Are Connected, on page 1122 shows A and C directly connected, with B no longer involved in the call.
Tips for Using H.450 Standards

Use H.450 standards when a network meets the following conditions:
The router that you are configuring uses Cisco CME 3.0 or a later version, or Cisco ITS V2.1.

For Cisco CME 3.0 or Cisco ITS V2.1 systems, all endpoints in the network must support H.450.2 and H.450.3 standards. For Cisco CME 3.1 or later systems, if some of the endpoints do not support H.450 standards (for example, Cisco Unified Communications Manager, Cisco BTS, or Cisco PGW), you can use hairpin call routing or an H.450 tandem gateway to handle transfers and forwards with those endpoints. Also, either you must explicitly disable H.450.2 and H.450.3 on the dial peers that handle those calls or you must enable H.450.12 capability to automatically detect the calls that support H.450.2 and H.450.3 and those calls that do not.

Support for the H.450.2 standard and the H.450.3 standard is enabled by default and can be disabled globally or for individual dial peers. For configuration information, see Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.

Transfer Method Recommendations by Cisco Unified CME Version

You must specify the method to use for call transfers: H.450.2 standard signaling or Cisco proprietary signaling, and whether transfers should be blind or allow consultation. Table 103: Transfer Method Recommendations, on page 1123 summarizes transfer method recommendations for all Cisco Unified CME versions.

<table>
<thead>
<tr>
<th>Cisco Unified CME Version</th>
<th>transfer-system Command Default</th>
<th>transfer-system Keyword to Use</th>
<th>Transfer Method Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 and later</td>
<td>full-consult</td>
<td>full-consult or full-blind</td>
<td>Use H.450.2 for call transfer, which is the default for this version. You do not need to use the <code>transfer-system</code> command unless you want to use the full-blind or dss keyword. Optionally, you can use the proprietary Cisco method by using the <code>transfer-system</code> command with the <code>blind</code> or <code>local-consult</code> keyword. Use H.450.7 for call transfer using QSIG supplementary services</td>
</tr>
<tr>
<td>3.0 to 3.3</td>
<td>blind</td>
<td>full-consult or full-blind</td>
<td>Use H.450.2 for call transfer. You must explicitly configure the <code>transfer-system</code> command with the full-consult or full-blind keyword because H.450.2 is not the default for this version. Optionally, you can use the proprietary Cisco method by using the <code>transfer-system</code> command with the <code>blind</code> or <code>local-consult</code> keyword.</td>
</tr>
<tr>
<td>Cisco Unified CME Version</td>
<td>transfer-system Default</td>
<td>transfer-system Keyword to Use</td>
<td>Transfer Method Recommendation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>2.1</td>
<td>blind</td>
<td>blind or local-consult</td>
<td>Use the Cisco proprietary method, which is the default for this version. You do not need to use the <code>transfer-system</code> command unless you want to use the <code>local-consult</code> keyword. Optionally, you can use the <code>transfer-system</code> command with the <code>full-consult</code> or <code>full-blind</code> keyword. You must also configure the router with a Tcl script that is contained in the app-h450-transfer.x.x.x.zip file. This file is available from the Cisco Unified CME software download website at: Download Software.</td>
</tr>
<tr>
<td>Earlier than 2.1</td>
<td>blind</td>
<td>blind</td>
<td>Use the Cisco proprietary method, which is the default for this version. You do not need to use the <code>transfer-system</code> command unless you want to use the <code>local-consult</code> keyword.</td>
</tr>
</tbody>
</table>

H.450.12 Support

Cisco CME 3.1 and later versions support the H.450.12 call capabilities standard, which provides a means to advertise and dynamically discover H.450.2 and H.450.3 capabilities in voice gateway endpoints on a call-by-call basis. When discovered, the calls associated with non-H.450 endpoints can be directed to use non-H.450 methods for transfer and forwarding, such as hairpin call routing or H.450 tandem gateway.

When H.450.12 is enabled, H.450.2 and H.450.3 services are disabled for call transfers and call forwards unless a positive H.450.12 indication is received from all other VoIP endpoints involved in the call. If a positive H.450.12 indication is received, the router uses the H.450.2 standard for call transfers and the H.450.3 standard for call forwarding. If a positive H.450.12 indication is not received, the router uses the alternative method that you have configured for call transfers and forwards, either hairpin call routing or an H.450 tandem gateway.

You can have either of the following situations in your network:

- All gateway endpoints support H.450.2 and H.450.3 standards. In this situation, no special configuration is required because support for H.450.2 and H.450.3 standards is enabled on the Cisco CME 3.1 or later router by default. H.450.12 capability is disabled by default, but it is not required because all calls can use H.450.2 and H.450.3 standards.
- Not all gateway endpoints support H.450.2 and H.450.3 standards. Therefore, specify how non-H.450 calls are to be handled by choosing one of the following options:
 - Enable the H.450.12 capability in Cisco CME 3.1 and later to dynamically determine, on a call-by-call basis, whether each call has H.450.2 and H.450.3 support. If H.450.12 is enabled and a call is determined to have H.450 support, the call is transferred using H.450.2 standards or forwarded using H.450.3 standards. See Enable H.450.12 Capabilities, on page 1152.

Support for the H.450.12 standard is disabled by default and can be enabled globally or for individual dial peers.
If the call does not have H.450 support, it can be handled by a VoIP-to-VoIP connection that you configure using dial peers and Enable H.323-to-H.323 Connection Capabilities, on page 1154. The connection can be used for hairpin call routing or routing to an H.450 tandem gateway.

- Explicitly disable H.450.2 and H.450.3 capability on a global basis or by individual dial peer, which forces all calls to be handled by a VoIP-to-VoIP connection that you configure using dial peers and the Enable H.323-to-H.323 Connection Capabilities, on page 1154. This connection can be used for hairpin call routing or routing to an H.450 tandem gateway.

Hairpin Call Routing

Cisco CME 3.1 and later supports hairpin call routing using a VoIP-to-VoIP connection to transfer and forward calls that cannot use H.450 standards. When a call that originally terminated on a voice gateway is transferred or forwarded by a phone or other application attached to the gateway, the gateway reorigimates the call and routes the call as appropriate, making a VoIP-to-VoIP, or hairpin, connection. This approach avoids any protocol dependency on the far-end transferred-party endpoint or transfer-destination endpoint. Hairpin routing of transferred and forwarded calls also causes the generation of separate billing records for each call leg, so that the transferred or forwarded call leg is typically billed to the user who initiates the transfer or forward.

In Cisco CME 3.2 and later versions, transcoding between G.711 and G.729 is supported when one leg of a VoIP-to-VoIP hairpin call uses G.711 and the other leg uses G.729.

Hairpin call routing provides the following benefits:

- Call transfer and forwarding is provided to non-H.450 endpoints, such as Cisco Unified Communications Manager, Cisco BTS, or Cisco PGW.
- The network can also contain Cisco CME 3.0 or Cisco ITS 2.1 systems.

Hairpin call routing has the following disadvantages:

- End-to-end signaling and media delay are increased significantly.
- A single hairpinned call uses as much WAN bandwidth as two directly connected calls.

VoIP-to-VoIP hairpin connections can be made using dial peers if the allow-connections h323 to h323 command is enabled and at least one of the following is true:

- H.450.12 is used to detect calls on which H.450.2 or H.450.3 is not supported by the remote system.
- H.450.2 or H.450.3 is explicitly disabled.
- Cisco Unified CME automatically detects that the remote system is a Cisco Unified Communications Manager.

Figure 49: Hairpin with H.323: A Calls B, on page 1126 shows a call that is made from A to B. Figure 50: Hairpin with H.323: Call is Forwarded to C, on page 1126 shows that B has forwarded all calls to C. Figure 51: Hairpin with H.323: A is Connected to C via B, on page 1126 shows that A and C are connected by an H.323 hairpin.
Figure 49: Hairpin with H.323: A Calls B

Figure 50: Hairpin with H.323: Call is Forwarded to C

Figure 51: Hairpin with H.323: A is Connected to C via B

Tips for Using Hairpin Call Routing

Use hairpin call routing when a network meets the following three conditions:

- The router that you are configuring uses Cisco CME 3.1 or a later version.
- Some or all calls require VoIP-to-VoIP routing because they cannot use H.450 standards, which can happen for any of the following reasons:
 - H.450 capabilities have been explicitly disabled on the router.
 - H.450 capabilities do not exist in the network.
 - H.450 capabilities are supported on some endpoints and not supported on other endpoints, including those handled by Cisco Unified Communications Manager, Cisco BTS, and Cisco PGW. When some endpoints support H.450 and others do not, you must enable H.450.12 capabilities on the router to detect which endpoints are H.450-capable or designate some dial peers as H.450-capable.
For more information about enabling H.450.12 capabilities, see Enable H.450.12 Capabilities, on page 1152.

- No voice gateway is available to act as an H.450 tandem gateway.

For information about configuring Cisco Unified CME to forward calls using local hairpin routing, see Forward Calls Using Local Hairpin Routing, on page 1155.

Support for VoIP-to-VoIP connections is disabled by default and can be enabled globally. For configuration information, see Enable H.323-to-H.323 Connection Capabilities, on page 1154.

Calling Number Local

In a scenario where calls are forwarded using local hairpin call routing, you can use the Calling Number Local feature. Calling Number Local replaces a calling-party number and name with the forwarding-party number and name (the local number and name). For ephone-dns, the CLI command `calling-number local` is configured under telephony-service configuration to enable the feature. For more information, see Cisco Unified Communications Manager Express Command Reference.

From Cisco Unified CME Release 12.0 onwards, calling number local feature is supported for voice register DNs as well. For voice register DNs, the CLI command `calling-number local` is configured in voice register global configuration mode. For more information, see Cisco Unified Communications Manager Express Command Reference.

When the CLI command `calling-number local` is enabled, the calling number is replaced with the forwarding party's number. If the forwarded number is over a trunk, toll charges may be applied on the forwarding number.

H.450 Tandem Gateways

H.450 tandem gateways address the limitations of hairpin call routing using a manner similar to hairpin call routing but without the double WAN link traversal created by hairpin connections. An H.450 tandem gateway is an additional voice gateway that serves as a “front-end” for a call processor that does not support the H.450 standards, such as Cisco Unified Communications Manager, Cisco BTS Softswitch (Cisco BTS), or Cisco PSTN Gateway (Cisco PGW). Transferred and forwarded calls that are intended for non-H.450 endpoints are terminated instead on the H.450 tandem gateway and reoriginated there for delivery to the non-H.450 endpoints. The H.450 tandem gateway can also serve as a PSTN gateway.

An H.450 tandem gateway is configured with a dial peer that points to the Cisco Unified Communications Manager or other system for which the H.450 tandem gateway is serving as a front end. The H.450 tandem voice gateway is also configured with dial peers that point to all the Cisco Unified CME systems in the private H.450 network. In this way, Cisco Unified CME and the Cisco Unified Communications Manager are not directly linked to each other, but are instead both linked to an H.450 tandem gateway that provides H.450 services to the non-H.450 platform.

An H.450 tandem gateway can also work as a PSTN gateway for remote Cisco Unified CME systems and for Cisco Unified Communications Manager (or other non-H.450 system). Use different inbound dial peers to separate Cisco Unified Communications Manager-to-PSTN G.711 calls from tandem gateway-to-Cisco Unified CME G.729 calls.
An H.450 tandem gateway that is used in a network to support non-H.450-capable call processing systems requires the Integrated Voice and Video Services feature license. This feature license, which was introduced in March 2004, includes functionality for H.323 gatekeeper, IP-to-IP Gateway, and H.450 tandem gateway. With Cisco IOS Release 12.3(7)T, an H.323 gatekeeper feature license is required with a JSX Cisco IOS image on the selected router. Consult your Cisco Unified CME SE regarding the required feature license. With Cisco IOS Release 12.3(7)T, you cannot use Cisco Unified CME and H.450 tandem gateway functionality on the same router.

VoIP-to-VoIP connections can be made for an H.450 tandem gateway if the allow-connections h323 to h323 command is enabled and one or more of the following is true:

- H.450.12 is used to dynamically detect calls on which H.450.2 or H.450.3 is not supported by the remote VoIP system.
- H.450.2 or H.450.3 is explicitly disabled.
- Cisco CME 3.1 or later automatically detects that the remote system is a Cisco Unified Communications Manager.

For Cisco CME 3.1 and earlier, the only type of VoIP-to-VoIP connection supported by Cisco Unified CME is H.323-to-H.323. For Cisco CME 3.2 and later versions, H.323-to-SIP connections are allowed only for Cisco Unified CME systems running Cisco Unity Express.

Figure 52: H.450 Tandem Gateway, on page 1129 shows a tandem voice gateway that is located between the central hub of the network of a CPE-based Cisco CME 3.1 or later network and a Cisco Unified Communications Manager network. This topology would work equally well with a Cisco BTS or Cisco PGW in place of the Cisco Unified Communications Manager.

In the network topology in Figure 52: H.450 Tandem Gateway, on page 1129, the following events occur (refer to the event numbers on the illustration):

1. A call is generated from extension 4002 on phone 2, which is connected to a Cisco Unified Communications Manager. The H.450 tandem gateway receives the H.323 call and, acting as the H.323 endpoint, the H.450 tandem gateway handles the call connection to a Cisco Unified IP phone in a CPE-based Cisco CME 3.1 or later network.
2. The call is received by extension 1001 on phone 3, which is connected to Cisco Unified CME 1. Extension 1001 performs a consultation transfer to extension 2001 on phone 5, which is connected to Cisco Unified CME 2.
3. When extension 1001 transfers the call, the H.450 tandem gateway receives an H.450.2 message from extension 1001.
4. The H.450 tandem gateway terminates the call leg from extension 1001 and reoriginates a call leg to extension 2001, which is connected to Cisco Unified CME 2.
5. Extension 4002 is connected with extension 2001.
Tips for Using H.450 Tandem Gateways

Use this procedure when a network meets the following conditions:

- The router that you are configuring uses Cisco CME 3.1 or a later version.

- Some endpoints in the network are not H.450-capable, including those handled by Cisco Unified Communications Manager, Cisco BTS, and Cisco PGW.

Support for VoIP-to-VoIP connections is disabled by default and can be enabled globally. For more information, see Enable H.323-to-H.323 Connection Capabilities, on page 1154.

Use dial peers to set up an H.450 tandem gateway. See Dial Peers, on page 1129.

Dial Peers

Dial peers describe the virtual interfaces to or from which a call is established. All voice technologies use dial peers to define the characteristics associated with a call leg. Attributes applied to a call leg include specific quality of service (QoS) features, compression/decompression (codec), voice activity detection (VAD), and fax rate. Dial peers are also used to establish the routing paths in your network, including special routing paths such as hairpins and H.450 tandem gateways. Dial peer settings override the global settings for call forward and call transfer.
Q Signaling Supplementary Services

Q Signaling (QSIG) is an intelligent inter-PBX signaling system widely adopted by PBX vendors. It supports a range of basic services, generic functional procedures, and supplementary services. Cisco Unified CME 4.0 introduces supplementary services features that allow Cisco Unified CME phones to seamlessly interwork using QSIG with phones connected to a PBX. One benefit is that IP phones can use a PBX message center with proper MWI notifications. Figure 53: Cisco Unified CME System with PBX, on page 1130 illustrates a topology for a Cisco Unified CME system with some phones under the control of a PBX.

Figure 53: Cisco Unified CME System with PBX

The following QSIG supplementary service features are supported in Cisco Unified CME systems. They follow the standards from the European Computer Manufacturers Association (ECMA) and the International Organization for Standardization (ISO) on PRI and BRI interfaces.

- Basic calls between IP phones and PBX phones.
- Calling Line/Name identification (CLIP/CNIP) presented on an IP phone when called by a PBX phone; in the reverse direction, such information is provided to the called endpoint.
- Connected Line/Name identification (COLP/CONP) information provided when a PBX phone calls an IP phone and is connected; in the reverse direction, such information presented on an IP phone.
- Call Forward using QSIG and H.450.3 to support any combination of IP phone and PBX phone, including an IP phone in the Cisco Unified CME system that is connected to a PBX or an IP phone in another Cisco Unified CME system across an H.323 network.
- Call forward to the PBX message center according to the configured policy. The other two endpoints can be a mixture of IP phone and PBX phones.
- Hairpin call transfer, which interworks with a PBX in transfer-by-join mode. Note that Cisco Unified CME does not support the actual signaling specified for this transfer mode (including the involved FACILITY message service APDUs) which are intended for an informative purpose only and not for the transfer functionality itself. As a transferrer (XOR) host, Cisco Unified CME simply hairpins two call legs to create a connection; as a transferee (XEE) or transfer-to (XTO) host, it will not be aware of a transfer that is taking place on an existing leg. As a result, the final endpoint may not be updated with the accurate identity of its peer. Both blind transfer and consult transfer are supported.
• Message-waiting indicator (MWI) activation or deactivation requests are processed from the PBX message center.
• The PBX message center can be interrogated for the MWI status of a particular ephone-dn.
• A user can retrieve voice messages from a PBX message center by making a normal call to the message center access number.

For information about enabling QSIG supplementary services, see Enable H.450.7 and QSIG Supplementary Services at System-Level, on page 1157 and Enable H.450.7 and QSIG Supplementary Services on a Dial Peer, on page 1159.

Disable SIP Supplementary Services for Call Forward and Call Transfer

If a destination gateway does not support supplementary services, you can disable REFER messages for call transfers and the redirect responses for call forwarding from being sent by Cisco Unified CME.

For configuration information, see Disable SIP Supplementary Services for Call Forward and Call Transfer, on page 1160.

Typical Network Scenarios for Call Transfer and Call Forwarding

In a mixed network that involves two or more types of call agents or call-control systems, there can be communication protocol discrepancies and dependencies, and therefore the opportunity for interoperability errors. These discrepancies show up most often when a call is being transferred or forwarded. This section provides descriptions of the specific mixed-network scenarios you might encounter when configuring a router running Cisco CME 3.1 or a later version. Each of the following sections point to the configuration instructions necessary to ensure call transfer and forwarding capabilities throughout the network.

Note

Cisco Communications Manager Express 3.2 (Cisco CME 3.2) and later versions provide full call-transfer and call-forwarding with call processing systems on the network that support H.450.2, H.450.3, and H.450.12 standards. For interoperability with call processing systems that do not support H.450 standards, Cisco CME 3.2 and later versions provide VoIP-to-VoIP hairpin call routing without requiring the special Tool Command Language (Tcl) script that was needed in earlier versions of Cisco Unified CME.

Cisco CME 3.1 or Later and Cisco IOS Gateways

In a network with Cisco CME 3.1 or a later version and Cisco IOS gateways, all systems that might participate in calls that involve call transfer and call forwarding are capable of supporting the H.450.2, H.450.3, and H.450.12 standards. This is the simplest environment for operating the Cisco CME 3.1 or later features.

Configuration for this type of network consists of:

1. Setting up call-transfer and call-forwarding parameters for transfers and forwards that are initiated on this router (H.450.2 and H.450.3 capabilities for transferred parties, transfer destinations, forwarded parties, and forwarding destinations are enabled by default). See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.
2. Enabling H.450.12 globally to detect any calls on which H.450.2 and H.450.3 standards are not supported. Although this step is optional, we recommend it. See Enable H.450.12 Capabilities, on page 1152.
3. Optionally setting up VoIP-to-VoIP connections (hairpin call routing or H.450 tandem gateway) to route calls that do not support H.450.2 or H.450.3 standards. See Enable H.323-to-H.323 Connection Capabilities, on page 1154.
4. Setting up dial peers to manage call legs within the network.
Cisco CME 3.0 or an Earlier Version and Cisco IOS Gateways

Before Cisco CME 3.1, H.450.2 and H.450.3 standards are used for all calls by default and routers do not support the H.450.12 standard.

Configuration for this type of network consists of:

- Setting up call-transfer and call-forwarding parameters for transfers and forwards that are initiated on this router (H.450.2 and H.450.3 capabilities for transferred parties, transfer destinations, forwarded parties, and forwarding destinations are enabled by default). See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134
- Enabling H.450.12 in advertise-only mode on Cisco CME 3.1 or later systems. As each Cisco CME 3.0 system is upgraded to Cisco CME 3.1 or later, enable H.450.12 in advertise-only mode. Note that no checking for H.450.2 or H.450.3 support is done in advertise-only mode. When all Cisco CME 3.0 systems in the network have been upgraded to Cisco CME 3.1 or later, remove the advertise-only restriction. See Enable H.450.12 Capabilities, on page 1152
- Optionally setting up VoIP-to-VoIP connections (hairpin call routing or H.450 tandem gateway) to route calls that cannot use H.450.2 or H.450.3 standards. See Enable H.323-to-H.323 Connection Capabilities, on page 1154
- Setting up dial peers to manage call legs within the network.

Cisco CME 3.1 or Later, Non-H.450 Gateways, and Cisco IOS Gateways

In a network with Cisco CME 3.1 or later, non-H.450 gateways, and Cisco IOS gateways, the H.450.2 and H.450.3 services are provided only to calling endpoints that use H.450.12 to explicitly indicate that they are capable of H.450.2 and H.450.3 operations. Because the Cisco BTS and Cisco PGW do not support the H.450.12 standard, calls to and from these systems that involve call transfer or forwarding are handled using H.323-to-H.323 hairpin call routing.

Configuration for this type of network consists of:

1. Setting up call-transfer and call-forwarding parameters for transfers and forwards that are initiated on this router (H.450.2 and H.450.3 capabilities for transferred parties, transfer destinations, forwarded parties, and forwarding destinations are enabled by default). Optionally disable H.450.2 and H.450.3 capabilities on dial peers that point to non-H.450-capable systems such as Cisco Unified Communications Manager, Cisco BTS, or Cisco PGW. See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.
2. Enabling H.450.12 to detect any calls on which H.450.2 and H.450.3 standards are not supported, either globally or for specific dial peers. See Enable H.450.12 Capabilities, on page 1152.
3. Setting up VoIP-to-VoIP connections (hairpin call routing or H.450 tandem gateway) to route calls that do not support H.450.2 or H.450.3 standards. See Enable H.323-to-H.323 Connection Capabilities, on page 1154.
4. Setting up dial peers to manage call legs within the network.

Note

If your network contains a Cisco Unified Communications Manager, also see the instructions in the Enable Interworking with Cisco Unified Communications Manager, on page 1162.
Cisco Unified CME, Non-H.450 Gateways, and Cisco IOS Gateways

Cisco CME 3.0 and Cisco ITS V2.1 systems do not have H.450.12 capabilities.

Note

In a network that contains a mix of Cisco Unified CME versions and at least one non-H.450 gateway, the simplest configuration approach is to globally disable all H.450.2 and H.450.3 services and force H.323-to-H.323 hairpin call routing for all transferred and forwarded calls. In this case, you would enable H.450.12 detection capabilities globally. Alternatively, you could select to enable H.450.12 capability for specific dial peers. In this case, you would not configure H.450.12 capability globally; you would leave it in its default disabled state.

Configuration for this type of network consists of:

1. Setting up call-transfer and call-forwarding parameters for transfers and forwards that are initiated on this router (H.450.2 and H.450.3 capabilities for transferred parties, transfer destinations, forwarded parties, and forwarding destinations are enabled by default). See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.
2. Enabling H.450.12 to detect any calls on which H.450.2 and H.450.3 standards are not supported, either globally or on specific dial peers. See Enable H.450.12 Capabilities, on page 1152.
3. Setting up VoIP-to-VoIP connections (hairpin call routing or H.450 tandem gateway) to route all transferred and forwarded calls. See Enable H.323-to-H.323 Connection Capabilities, on page 1154.
4. Setting up dial peers to manage call legs within the network.

Note

If your network contains a Cisco Unified Communications Manager, also see the instructions in the Enable Interworking with Cisco Unified Communications Manager, on page 1162.

Cisco CME 3.1 or Later, Cisco Unified Communications Manager, and Cisco IOS Gateways

In a network with Cisco CME 3.1 or later, Cisco Unified Communications Manager, and Cisco IOS gateways, Cisco CME 3.1 and later versions support automatic detection of calls to and from Cisco Unified Communications Manager using proprietary signaling elements that are included with the standard H.323 message exchanges. The Cisco CME 3.1 or later system uses these detection results to determine the H.450.2 and H.450.3 capabilities of calls rather than using H.450.12 supplementary services capabilities exchange, which Cisco Unified Communications Manager does not support. If a call is detected to be coming from or going to a Cisco Unified Communications Manager endpoint, the call is treated as a non-H.450 call. All other calls in this type of network are treated as though they support H.450 standards. Therefore, this type of network should contain only Cisco CME 3.1 or later and Cisco Unified Communications Manager call-processing systems.

Configuration for this type of network consists of:

1. Setting up call-transfer and call-forwarding parameters for transfers and forwards that are initiated on this router (H.450.2 and H.450.3 capabilities for transferred parties, transfer destinations, forwarded parties, and forwarding destinations are enabled by default). See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.
2. Enabling H.450.12 to detect any calls on which H.450.2 and H.450.3 standards are not supported, either globally or on specific dial peers. See Enable H.450.12 Capabilities, on page 1152.
3. Setting up VoIP-to-VoIP connections (hairpin call routing or H.450 tandem gateway) to route all transferred and forwarded calls that are detected as being to or from Cisco Unified Communications Manager. See Enable H.323-to-H.323 Connection Capabilities, on page 1154

4. Setting up specific parameters for Cisco Unified Communications Manager. See Enable Cisco Unified Communications Manager to Interwork with Cisco Unified CME, on page 1166

5. Setting up dial peers to manage call legs within the network.

Cisco CME 3.0 or an Earlier Version, Cisco Unified Communications Manager, and Cisco IOS Gateways

Calls between the Cisco Unified Communications Manager and the older Cisco CME 3.0 or Cisco ITS V2.1 networks need special consideration. Because Cisco CME 3.0 and Cisco ITS V2.1 systems do not support automatic Cisco Unified Communications Manager detection and also do not natively support H.323-to-H.323 call routing, alternative arrangements are required for these systems.

To configure call transfer and forwarding on the Cisco CME 3.0 router, you can select from the following three options:

- Use a Tcl script to handle call transfer and forwarding by invoking Tcl-script-based H.323-to-H.323 hairpin call routing (app-h450-transfer.2.0.0.9.tcl or a later version). Enable this script on all VoIP dial peers and also under telephony-service mode, and set the local-hairpin script parameter to 1.
- Use a loopback-dn mechanism.
- Configure a loopback call path using router physical voice ports.

All three options force use of H.323-to-H.323 hairpin call routing for all calls regardless of whether the call is from a Cisco Unified Communications Manager or other H.323 endpoint (including Cisco CME 3.1 or later).

Configure Call Transfer and Forwarding

Enable Call Transfer and Forwarding on SCCP Phones at System-Level

To enable H.450 call transfers and forwards for transferring or forwarding parties; that is, to allow transfers and forwards to be initiated from a Cisco Unified CME system, perform the following steps.

Note

H.450.2 and H.450.3 capabilities are enabled by default for transferred or forwarded parties and transfer-destination or forward-destination parties. Dial peer settings override the global setting.
Call transfers are handled differently depending on the Cisco Unified CME version. See Transfer Method Recommendations by Cisco Unified CME Version, on page 1123 for recommendations on selecting a transfer method for your Cisco Unified CME version.

- The `transfer-system local-consult` command is not supported if the transfer-to destination is on the Cisco ATA, Cisco VG224, or a SCCP-controlled FXS port.

- The H.450.2 and H.450.3 standards are not supported by Cisco Unified Communications Manager, Cisco BTS, or Cisco PGW.

- In versions earlier than Cisco Unified CME 4.2, the caller ID displays correctly only after connect; caller ID does not display correctly at Call Transfer or Call Forward.

Call-Transfer Recall

- Requires Cisco Unified CME 4.3 or a later version.

- Transferor and transfer-to party must be on the same Cisco Unified CME router; transferee party can be remote to the Cisco Unified CME router.

- Transfer recall is not supported if the transfer-to party has Call Forward Busy enabled, or if the transfer-to party is a hunt group pilot number.

- If the transfer-to party has Call Forward No Answer enabled, Cisco Unified CME recalls a transferred call only if the transfer-recall timeout is set to less than the timeout value set with the `call-forward noan` command.

- Recall timer for trunk-line directory number has precedence (set on transferor using `trunk` command with `transfer-timeout` keyword) over the transfer-recall timer. Transfer recall is not initiated for hairpin transfers.

Before you begin

Cisco CME 3.0 or a later version, or Cisco ITS V2.1.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `transfer-system {blind | full-blind | full-consult [dss] | local-consult}`
5. `transfer-pattern transfer-pattern [blind]`
6. `call-forward pattern pattern`
7. `timeouts transfer-recall seconds`
8. `transfer-digit-collect {new-call | orig-call}`
9. `exit`
10. `voice service voip`
11. `supplementary-service h450.2`
12. `supplementary-service h450.3`
13. `exit`
14. **dial-peer voice** tag voip
15. **supplementary-service h450.2**
16. **supplementary-service h450.3**
17. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
Example:
Router> enable |
| **Step 2** | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** | telephony-service | Enters telephony-service configuration mode.
Example:
Router(config)# telephony-service |
| **Step 4** | transfer-system (blind | full-blind | full-consult [
dss] | local-consult)
Example:
Router(config-telephony)# transfer-system full-consult | Specifies the call transfer method.
• **blind**—Calls are transferred without consultation using the Cisco proprietary method and a single phone line. This is the default in versions earlier than Cisco Unified CME 4.0.
• **full-blind**—Calls are transferred without consultation using H.450.2 standard methods.
• **full-consult**—Calls are transferred with consultation using H.450.2 standard methods and a second phone line if available. Calls fall back to full-blind if the second line is unavailable. This is the default in Cisco Unified CME 4.0 and later versions. Transfer-system needs to be set at full-consult for the “transfer by directory” to work. Transfer by directory is supported by full-consult or blind transfer. If you want to transfer using directory/placed/missed/received calls, the transfer-system needs to be set at full-consult for this to work appropriately. When changed to full-consult, you can do "blind transfer" by selecting the number from the directory and when the other phone rings, you can press the softkey "Transfer" and the call will be transferred to the number selected and then you can hang up.
• **dss**—(Optional) Calls are transferred with consultation to idle monitored lines. All other call-transfer behavior is identical to full-consult. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-consult—Calls are transferred with local consultation using a second phone line if available. The calls fall back to blind for nonlocal consultation or nonlocal transfer target. Not supported if transfer-to destination is on the Cisco ATA, Cisco VG224, or a SCCP-controlled FXS port.</td>
<td></td>
</tr>
<tr>
<td>Cisco CME 3.0 and later versions—Use only the full-blind or full-consult keyword.</td>
<td></td>
</tr>
<tr>
<td>Before Cisco CME 3.0—Use the local-consult or blind keyword. (Cisco ITS 2.1 can use the full-blind or full-consult keyword by also using the Tcl script in the file called app-h450-transfer.x.x.x.x.zip.)</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

transfer-pattern transfer-pattern [blind]

Example:

Router(config-telephony)# transfer-pattern .T

Allows transfer of telephone calls by Cisco Unified IP phones to specified phone number patterns. If no transfer pattern is set, the default is that transfers are permitted only to other local IP phones.

- **transfer-pattern**—String of digits for permitted call transfers. Wildcards are allowed. A pattern of .T transfers all calling parties using the H.450.2 standard.
- **blind**—(Optional) When H.450.2 consultative call transfer is configured, forces transfers that match the pattern specified in this command to be executed as blind transfers. Overrides settings made using the transfer-system and transfer-mode commands.

Note For transfers to nonlocal numbers, transfer-pattern digit matching is performed before translation-rule operations. Therefore, you should specify in this command the digits actually entered by phone users before they are translated.

Step 6

call-forward pattern pattern

Example:

Router(config-telephony)# call-forward pattern .T

Specifies the H.450.3 standard for call forwarding.

- **pattern**—Digits to match for call forwarding using the H.450.3 standard. If an incoming calling-party number matches the pattern, it can be forwarded using the H.450.3 standard. A pattern of .T forwards all calling parties using the H.450.3 standard.

Calling-party numbers that do not match the patterns defined with this command are forwarded using Cisco proprietary call forwarding for backward compatibility.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 timeouts transfer-recall seconds</td>
<td>(Optional) Enables Cisco Unified CME to recall a transferred call if the transfer-to party is busy or does not answer.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# timeouts transfer-recall 30</td>
<td></td>
</tr>
<tr>
<td>Note For forwarding to nonlocal numbers, pattern matching is performed before translation-rule operations. Therefore, you should specify in this command the digits actually entered by phone users before they are translated.</td>
<td></td>
</tr>
<tr>
<td>Step 8 transfer-digit-collect {new-call</td>
<td>orig-call}</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# transfer-digit-collect orig-call</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 voice service voip</td>
<td>(Optional) Enters voice-service configuration mode to establish global call transfer and forwarding parameters.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 11 supplementary-service h450.2</td>
<td>(Optional) Enables H.450.2 supplementary services capabilities globally.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)# supplementary-service h450.2</td>
<td>Default is enabled. Use the no form of this command to disable H.450.2 capabilities globally. You can also use this command in dial-peer configuration mode to enable H.450.2 services for a single dial peer.</td>
</tr>
<tr>
<td>Step 12 supplementary-service h450.3</td>
<td>(Optional) Enables H.450.3 supplementary services capabilities globally.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(conf-voi-serv)# supplementary-service h450.3</code></td>
<td>Default is enabled. Use the <code>no</code> form of this command to disable H.450.3 capabilities globally. You can also use this command in dial-peer configuration mode to enable H.450.3 services for a single dial peer.</td>
</tr>
<tr>
<td>Step 13</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(conf-voi-serv)# exit</code></td>
</tr>
<tr>
<td>Step 14</td>
<td>dial-peer voice tag voip</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# dial-peer voice 1 voip</code></td>
</tr>
<tr>
<td>Step 15</td>
<td>supplementary-service h450.2</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dial-peer)# no supplementary-service h450.2</code></td>
</tr>
<tr>
<td>Step 16</td>
<td>supplementary-service h450.3</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-dial-peer)# no supplementary-service h450.3</code></td>
</tr>
</tbody>
</table>
Enable Call-Transfer Recall on SIP Phones at System-Level

To enable call-transfer recalls to be initiated from a Cisco Unified CME system, perform the following steps.

Note

- Transferor and transfer-to party must be on the same Cisco Unified CME router; transforee party can be remote to the Cisco Unified CME router.
- Transfer recall is not supported if the transfer-to party has Call Forward Busy enabled, or if the transfer-to party is a hunt group pilot number.

Before you begin

Cisco Unified CME 11.6 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `timeouts transfer-recall seconds`
5. `exit`
6. `voice service voip`
7. `no supplementary-service sip refer`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# voice register global</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action

Step 4
timeouts transfer-recall *seconds*

Example:
Router(config-register-global)# timeouts transfer-recall 30
Router(config-register-dn)# timeouts transfer-recall 30

- Enables Cisco Unified CME to recall a transferred call if the transfer-to party is busy or does not answer in the voice register global configuration mode. You can also recall a transferred call in the voice register dn configuration mode.
 - *seconds*—Duration, in seconds, to wait before recalling a transferred call. Range: 1 to 1800. Default: 0 (disabled).
 - This command is supported in Cisco Unified CME 11.6 and later versions.
 - This command can also be configured in voice register dn or voice register global configuration modes.

Step 5
exit

Example:
Router(config-register-global)# exit

- Exits voice register global configuration mode.

Step 6
voice service voip

Example:
Router(config)# voice service voip

- (Optional) Enters voice-service configuration mode.

Step 7
no supplementary-service sip refer

Example:
Router(config-voi-serv)# no supplementary-service sip refer

- Prevents the router from forwarding a REFER message to the destination for call-transfer recalls.

Step 8
end

Example:
Router(config-voi-serv)# end

- Returns to privileged EXEC mode.

Enable Call Forwarding for a Directory Number

To define the conditions and target numbers for call forwarding for individual ephone-dns, and set other restrictions for call forwarding, perform the following steps.

Note

When defining call forwarding to nonlocal numbers, it is important to note that pattern digit matching is performed before translation-rule operations. Therefore, you should specify in this command the digits actually entered by phone users before they are translated.
Call forwarding is invoked only if that phone is dialed directly. Call forwarding is not invoked when the phone number is called through a sequential, longest-idle, or peer hunt group.

- If call forwarding is configured for hunt group member, call forward is ignored by the hunt group.
- Calls from an internal extension to an extension which is busy, is forwarded to the SNR destination even if no forward local-calls is configured under the Directory Number.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. call-forward pattern pattern
5. exit
6. ephone-dn dn-tag [dual-line]
7. number number [secondary number] [no-reg [both | primary]]
8. call-forward all target-number
9. call-forward busy target-number [primary | secondary] [dialplan-pattern]
10. call-forward noan target-number timeout seconds [primary | secondary] [dialplan-pattern]
11. call-forward night-service target-number
12. call-forward max-length length
13. no forward local-calls
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 call-forward pattern pattern</td>
<td>Specifies the H.450.3 standard for call forwarding. Calling-party numbers that do not match the patterns defined with this command are forwarded using Cisco-proprietary call forwarding for backward compatibility.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>pattern—Digits to match for call forwarding using the H.450.3 standard. If an incoming calling-party number matches the pattern, it is forwarded using the H.450.3 standard. A pattern of .T forwards all calling parties using the H.450.3 standard.</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 20</td>
</tr>
<tr>
<td>Step 7 number number [secondary number] [no-reg [both</td>
<td>Configures a valid extension number for this ephone-dn instance.</td>
</tr>
<tr>
<td>primary]]</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# number 2777 secondary 2778</td>
</tr>
<tr>
<td>Step 8 call-forward all target-number</td>
<td>Forwards all calls for this extension to the specified number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# call-forward all 2411</td>
</tr>
<tr>
<td>Step 9 call-forward busy target-number [primary</td>
<td>Forwards calls for a busy extension to the specified number.</td>
</tr>
<tr>
<td>secondary] [dialplan-pattern]</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# call-forward busy 2513</td>
</tr>
<tr>
<td>Step 10 call-forward noan target-number timeout seconds [primary</td>
<td>Forwards calls for an extension that does not answer.</td>
</tr>
<tr>
<td>secondary] [dialplan-pattern]</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# call-forward noan 2513 timeout 45</td>
</tr>
<tr>
<td>Step 11 call-forward night-service target-number</td>
<td>Automatically forwards incoming calls to the specified number when night service is active.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Router(config-ephone-dn)# call-forward night-service 2879 | • **target-number**—Phone number to which calls are forwarded.
Note Night service must also be configured. See Configure Call Coverage Features, on page 1234. |

Step 12
call-forward max-length *length*

Example:
Router(config-ephone-dn)# call-forward max-length 5

(Optional) Limits the number of digits that can be entered for a target number when using the CfwdAll soft key on an IP phone.

• *length*—Number of digits that can be entered using the CfwdAll soft key on an IP phone.

Step 13
no forward local-calls

Example:
Router(config-ephone-dn)# no forward local-calls

(Optional) Specifies that local calls (calls from ephone-dns on the same Cisco Unified CME system) will not be forwarded from this extension.

• If this extension is busy, an internal caller hears a busy signal.

• If this extension does not answer, the internal caller hears ringback.

Step 14
end

Example:
Router(config-ephone-dn)# end

Returns to privileged EXEC mode.

Call Transfer for a Directory Number

To enable call transfer for a specific directory number, perform the following steps. This procedure overrides the global setting for blind or consultative transfer for individual directory numbers.

Before you begin
Call transfer must be enabled globally. See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn *dn-tag* [dual-line]
4. transfer-mode (blind | consult)
5. timeouts transfer-recall *seconds*
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone-dn dn-tag [dual-line]</td>
<td>Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-dn 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 transfer-mode (blind</td>
<td>Specifies the type of call transfer for an individual directory number using the H.450.2 standard, allowing you to override the global setting.</td>
</tr>
<tr>
<td>**Consult)</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# transfer-mode blind</td>
<td></td>
</tr>
<tr>
<td>Step 5 timeouts transfer-recall seconds</td>
<td>(Optional) Enables call-transfer recall and sets the number of seconds that Cisco Unified CME waits before recalling a transferred call if the transfer-to party does not answer or is busy.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# timeouts transfer-recall 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure Call Transfer Options for SCCP Phones

To specify a maximum number of digits for transfer destinations or block transfers to external destinations by individual phones, perform the following steps.
Before you begin

- Transfers made to speed-dial numbers are not blocked when the `transfer-pattern blocked` command is used.
- Transfers made using speed-dial are not blocked by the `after-hours block pattern` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-template template-tag`
4. `transfer-pattern blocked`
5. `transfer max-length digit-length`
6. `exit`
7. `ephone phone-tag`
8. `ephone-template template-tag`
9. `restart`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ephone-template template-tag</code></td>
<td>Enters ephone-template configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-template 1</td>
<td>• <code>template-tag</code>—Unique number that identifies this template during configuration tasks. Range: 1 to 20.</td>
</tr>
<tr>
<td>Step 4 <code>transfer-pattern blocked</code></td>
<td>(Optional) Prevents directory numbers on the phone to which this template is applied from transferring calls to patterns specified in the <code>transfer-pattern</code> (telephony-service) command.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# transfer-pattern blocked</td>
<td>Note This command is also available in ephone configuration mode to block external transfers from individual phones without using a template.</td>
</tr>
<tr>
<td>Step 5 <code>transfer max-length digit-length</code></td>
<td>(Optional) Specifies the maximum number of digits the user can dial when transferring a call.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(config-ephone-template)# transfer max-length 8</code></td>
<td>• <code>digit-length</code>—Number of digits allowed in a number to which a call is being transferred. Range: 3 to 16. Default: 16.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone-template)# exit</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ephone phone-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# ephone 25</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ephone-template template-tag</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone)# ephone-template 1</code></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>restart</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone)# restart</code></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-ephone)# end</code></td>
</tr>
</tbody>
</table>

Verify Call Transfer for SCCP Phones

Step 1

Use the `show running-config` command to verify your configuration. Transfer method and patterns are listed in the telephony-service portion of the output. You can also use the `show telephony-service` command to display this information.

Example:

```
Router# show running-config
!
telephony-service
fxo hook-flash
load 7910 P00400320214
load 7960-7940 P00305000600
load 7914 S0010320002
load 7905 CP7905040000SCCP040701A
max-ephones 100
max-dn 500
ip source-address 10.115.33.177 port 2000
max-redirect 20
no service directed-pickup
timeouts ringing 10
voicemail 7189
max-conferences 8 gain -6
moh music-on-hold.au
```
web admin system name cisco password cisco
dn-webedit
time-webedit
transfer-system full-consult
transfer-pattern 92........
transfer-pattern 91.........
transfer-pattern 93.......
transfer-pattern 94.......
transfer-pattern 95.......
transfer-pattern 96.......
transfer-pattern 97.......
transfer-pattern 98.......
transfer-pattern 99.......
transfer-pattern .T
secondary-dialtone 9
!
create cnf-files version-stamp 7960 Jul 13 2004 03:39:28

Step 2 If you have used the transfer-mode command to override the global transfer mode for an individual ephone-dn, use the show running-config or show telephony-service ephone-dn command to verify that setting.

Example:
Router# show running-config
!
ephone-dn 40 dual-line
number 451
description Main Number
huntstop channel
no huntstop
transfer-mode blind

Step 3 Use the show telephony-service ephone-template command to view ephone-template configurations.

Specify Transfer Patterns for Trunk-to-Trunk Calls and Conferences for SIP

Restriction Call transfer and conference restrictions apply when transfers or conferences are initiated toward external parties, like a PSTN trunk, a SIP trunk, or an H.323 trunk. The restrictions do not apply to transfers to local extensions.

Before you begin Cisco Unified CME 9.5 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. transfer-pattern transfer-pattern
5. exit
6. Enter one of the following commands:
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode for configuring Cisco Unified CME.</td>
</tr>
<tr>
<td>4</td>
<td><code>transfer-pattern transfer-pattern</code></td>
<td>Allows the transfer of calls from Cisco IP phones to specified directory numbers of phones other than Cisco IP phones.
• <code>transfer-pattern</code>—String of digits for permitted call transfers. Wildcards are allowed. A maximum of 32 transfer patterns can be entered, using a separate command for each one.</td>
</tr>
<tr>
<td>5</td>
<td><code>exit</code></td>
<td>Exits telephony-service configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>Enter one of the following commands:</td>
<td>Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME or for a set of Cisco Unified SIP IP phones in Cisco Unified SIP SRST.
• <code>pool-tag</code>—Unique number assigned to the pool. Range is 1 to 100.
or</td>
</tr>
<tr>
<td></td>
<td>• <code>voice register pool pool-tag</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>voice register template template-tag</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ephone phone tag</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ephone-template template-tag</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Enters voice register template configuration mode and defines a template of common parameters for Cisco Unified SIP IP phones.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enters ephone configuration mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Optional) Specifies the maximum length of the transfer number.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 7

transfer max-length *max-length*

Example:

```
Router(config-register-pool)# transfer max-length 7
```

(Optional) Specifies the maximum length of the transfer number.

Example:

```
Router(config-register-pool)# transfer max-length 7
```

Step 8

exit

Example:

```
Router(config-register-pool)# exit
```

Enters global configuration mode.

Step 9

telephony-service

Example:

```
Router(config)# telephony-service
```

Enters telephony-service configuration mode for configuring Cisco Unified CME.

Step 10

conference transfer-pattern

Example:

```
Router(config-telephony)# conference transfer-pattern
```

Enables a Cisco Unified CME system to apply transfer patterns to a conference call using conference softkeys or feature buttons.

Step 11

end

Example:

```
Router(config-telephony)# end
```

Exits telephony-service configuration mode and enters privileged EXEC mode.

Conference Max-Length

Conference calls are allowed when:

- both **conference transfer-pattern** and **transfer-pattern** commands are configured
- dialed digits match the configured transfer pattern

When conference max-length command is configured, the Cisco Unified CME will allow the conferences only if the dialed digits are within the max-length limit.

If configured, the conference max-length command does not impact call transfers.
If both conference max-length and transfer max-length commands are configured, the conference max-length command takes precedence for conferences.

Block Trunk-to-Trunk Call Transfers for SIP

To block call transfers to external destinations, perform the following steps.

Restriction
Call transfer restrictions apply when transfers are initiated toward external parties, like a PSTN trunk, a SIP trunk, or an H.323 trunk. The restrictions do not apply to transfers to local extensions.

Before you begin
Cisco Unified CME 9.5 or a later version.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. Enter one of the following commands:
 - **voice register pool pool-tag**
 - **voice register template template-tag**
4. **transfer-pattern blocked**
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Enter one of the following commands:</td>
<td>Enters voice register pool configuration mode and creates a pool configuration for a Cisco Unified SIP IP phone in Cisco Unified CME or for a set of Cisco Unified SIP IP phones in Cisco Unified SIP SRST.</td>
</tr>
<tr>
<td>voice register pool pool-tag</td>
<td>• pool-tag—Unique number assigned to the pool. Range is 1 to 100.</td>
</tr>
<tr>
<td>voice register template template-tag</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice register template 5</td>
<td></td>
</tr>
</tbody>
</table>
Enable H.450.12 Capabilities

To enable H.450.12 capabilities globally or by individual dial peer when not all gateway endpoints in your network support H.450.2 and H.450.3 standards, perform the following steps. H.450.12 capabilities are disabled by default to minimize the risk of compatibility issues with other types of H.323 systems. Settings for individual dial peers override the global setting.

Restriction

Cisco CME 3.0 and earlier versions do not support H.450.12.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice service voip`
4. `supplementary-service h450.12 [advertise-only]`
5. `exit`
6. `dial-peer voice tag voip`
7. `supplementary-service h450.12`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>(Optional) Enters voice service configuration mode to establish global call transfer and forwarding parameters.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 supplementary-service h450.12 [advertise-only]</td>
<td>(Optional) Enables H.450.12 supplementary services capabilities globally for VoIP endpoints.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)# supplementary-service h450.12</td>
<td></td>
</tr>
<tr>
<td>• This command enables call-by-call detection of H.450 capabilities when some endpoints in your mixed network are H.450-capable and other endpoints are not. This command is disabled by default.</td>
<td></td>
</tr>
<tr>
<td>• advertise-only—(Optional) Advertises H.450 capabilities to the remote end but does not require H.450.12 responses. Use this keyword on Cisco CME 3.1 or later systems if you have a mixed network containing Cisco CME 3.0 systems.</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>(Optional) Exits voice-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 dial-peer voice tag voip</td>
<td>(Optional) Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# dial-peer voice 1 voip</td>
<td></td>
</tr>
<tr>
<td>Step 7 supplementary-service h450.12</td>
<td>(Optional) Enables H.450.12 supplementary services capabilities for an individual dial peer. This command is disabled by default.</td>
</tr>
<tr>
<td>Example: Router(config-dial-peer)# supplementary-service h450.12</td>
<td></td>
</tr>
<tr>
<td>This command is also used in voice-service configuration mode to enable H.450.12 services globally.</td>
<td></td>
</tr>
<tr>
<td>• If this command is enabled globally and enabled on a dial peer, the functionality is enabled for the dial peer.</td>
<td></td>
</tr>
<tr>
<td>• If this command is enabled globally and disabled on a dial peer, the functionality is enabled for the dial peer.</td>
<td></td>
</tr>
<tr>
<td>• If this command is disabled globally and enabled on a dial peer, the functionality is enabled for the dial peer.</td>
<td></td>
</tr>
</tbody>
</table>
Enable H.323-to-H.323 Connection Capabilities

VoIP-to-VoIP connections permit the termination and reorigination of transferred and forwarded calls over the VoIP network. VoIP-to-VoIP connections are used for hairpin call routing and for H.450 tandem gateways. The only type of VoIP-to-VoIP connection that is supported by Cisco CME 3.1 or a later version is H.323-to-H.323 connection.

VoIP-to-VoIP connections are disabled on the router by default, and they must be explicitly enabled to make use of hairpin call routing or an H.450 tandem gateway. In addition, you must configure a mechanism to direct transferred or forwarded calls to the hairpin or the H.450 tandem gateway, using one of the following methods:

- Enable H.450.12 capabilities globally or on the routes that your transfers and forwards take. See Enable H.450.12 Capabilities, on page 1152.
- Explicitly disable H.450.2 and H.450.3 capabilities globally or on the routes that your transfers and forwards take. See Enable Call Transfer and Forwarding on SCCP Phones at System-Level, on page 1134.

Restriction

- Codecs on all the VoIP dial peers of the H.450 tandem gateway must be the same.

- Only one codec type is supported in the VoIP network at a time, and there are only two codec choices: G.711 (A-law or mu-law) or G.729.

- Transcoding is not supported.

- Codec renegotiation is not supported. For example, if an H.323 call that uses a G.729 codec is received by a Cisco Unified CME system and is forwarded to a voice-mail system that requires a G.711 codec, the codec cannot be renegotiated from G.729 to G.711.

- H.323-to-SIP hairpin call routing is supported only with Cisco Unity Express. For more information, see Integrating Cisco CallManager Express with Cisco Unity Express.

- Cisco Unified Communications Manager must use a media termination point (MTP), intercluster trunk (ICT) mode, and slow start.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice service voip`
4. `allow-connections h323 to h323`
Forward Calls Using Local Hairpin Routing

When Cisco Unified CME is used to forward calls that originate on phones that do not support the H.450.3 standard such as Cisco Unified Communications Manager phones, local hairpin routing must be used to forward the calls. For calling parties whose numbers match the pattern specified, the system automatically detects whether H.450.3 is supported and uses the appropriate method to forward calls.

To enable hairpin routing, you must denote the originating and terminating legs of the hairpin. To forward calls to Cisco Unity Express, connections must be allowed to a SIP trunk.

Optionally, you can disable the use of H.450.3 but this is not required because the system automatically detects calls on which H.450.3 is not supported and local hairpin routing is required when the calling-party numbers match the pattern specified.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. call-forward pattern pattern
5. calling-number local
6. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 call-forward pattern pattern</td>
<td>Specifies the calling-party numbers for which to allow call forwarding with automatic detection of whether H.450.3 is supported. If H.450.3 is supported, H.450.3 is used for the forward and, if not, local hairpin is used.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# call-forward pattern 6000</td>
<td>• pattern—Digits to match for call forwarding. A pattern of .T forwards all calling parties.</td>
</tr>
<tr>
<td>Step 5 calling-number local</td>
<td>(Optional) Replaces a calling-party number and name with the forwarding-party (local) number and name for hairpin-forwarded calls only.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# calling-number local</td>
<td>• Before Cisco CME 3.3, this command must be used with Tool Command Language (Tcl) script app-h450-transfer.2.0.0.7 or a later version. The local-hairpin attribute-value (AV) pair must be set to 1.</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 voice service voip</td>
<td>Enters voice-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 8 allow connections from-type to to-type</td>
<td>Allows connections between specific types of endpoints in a network.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Enable H.450.7 and QSIG Supplementary Services at System-Level

To enable H.4350.7 capabilities and QSIG supplementary services on all dial peers, perform the following steps.

Restriction
- QSIG integration supports SCCP phones only.
- QSIG integration is exclusive; once QSIG integration is configured, QSIG transit node capability is disabled. There is no dial-peer control to enable either transit or originate/terminate capability on a call by call basis.
- If you enable QSIG supplementary services at a system-level, you cannot disable the capability on individual dial peers.

Before you begin
Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice service voip
4. supplementary-service h450.7
5. qsig decode
6. exit
Enable H.450.7 and QSIG Supplementary Services at System-Level

7. voice service pots
 8. supplementary-service qsig call-forward
 9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>voice service voip</td>
<td>Enters VoIP voice-service configuration mode to define global call transfer and forwarding parameters.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service voip</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>supplementary-service h450.7</td>
<td>Enables H.450.7 supplementary services capabilities exchange at a system-level.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# supplementary-service h450.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>qsig decode</td>
<td>Enables decoding for QSIG supplementary services.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# qsig decode</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Exits VoIP voice-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>voice service pots</td>
<td>Enters POTS voice-service configuration mode to define global call transfer and forwarding parameters.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice service pots</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>supplementary-service qsig call-forward</td>
<td>Enables QSIG call-forwarding supplementary services (ISO 13873) to forward calls to another number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# supplementary-service qsig call-forward</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# end</td>
<td></td>
</tr>
</tbody>
</table>
Enable H.450.7 and QSIG Supplementary Services on a Dial Peer

To enable H.4350.7 capabilities and QSIG supplementary services on an individual dial peer, perform the following steps.

Restriction

- QSIG integration supports SCCP phones only.
- QSIG integration is exclusive; once QSIG integration is configured, QSIG transit node capability is disabled. There is no dial-peer control to enable either transit or originate/terminate capability on a call by call basis.
- If you enable QSIG supplementary services at a system-level, you cannot enable or disable the capability on individual dial peers.

Before you begin

Cisco Unified CME 4.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. qsig decode
5. exit
6. dial-peer voice tag voip
7. supplementary-service h450.7
8. exit
9. dial-peer voice tag pots
10. supplementary-service qsig call-forward
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters VoIP voice-service configuration mode to define global call transfer and forwarding parameters.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 4</td>
<td>qsig decode</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# qsig decode</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables decoding for QSIG supplementary services.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voi-serv)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits VoIP voice-service configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>dial-peer voice \textit{tag} \textit{voip}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 1 voip</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters dial-peer configuration mode to define parameters for an individual dial peer.</td>
</tr>
<tr>
<td>Step 7</td>
<td>supplementary-service h450.7</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# supplementary-service h450.7</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables H.450.7 supplementary services capabilities exchange on a single dial peer.</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits dial-peer configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>dial-peer voice \textit{tag} \textit{pots}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 2 pots</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters dial-peer configuration mode to define parameters for an individual dial peer.</td>
</tr>
<tr>
<td>Step 10</td>
<td>supplementary-service qsig call-forward</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# supplementary-service qsig call-forward</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables QSIG call-forwarding supplementary services (ISO 13873) to forward calls to another number.</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Disable SIP Supplementary Services for Call Forward and Call Transfer

To disable REFER messages for call transfers or redirect responses for call forwarding from being sent to the destination by Cisco Unified CME, perform the following steps. You can disable these supplementary features if the destination gateway does not support them.
• In Cisco Unified CME 4.2 and 4.3, when the **supplementary-service sip refer** command is enabled (default) and both the caller being transferred (transferee) and the phone making the transfer (transferor) are SIP, but the transfer-to phone is SCCP, Cisco Unified CME hairpins the call to the transfer-to phone after receiving the REFER request from transferor instead of sending the REFER request to the transferee.

Restriction

Before you begin
Cisco Unified CME 4.1 or a later version.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. Enter one of the following commands:
 - **voice service voip**
 - **dial-peer voice tag voip**
4. **no supplementary-service sip moved-temporarily**
5. **no supplementary-service sip refer**
6. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Enter one of the following commands:</td>
<td>Enters voice-service configuration mode to set global parameters for VoIP features.</td>
</tr>
<tr>
<td>- voice service voip</td>
<td>or</td>
</tr>
<tr>
<td>- dial-peer voice tag voip</td>
<td>Enter dial peer configuration mode to set parameters for a specific dial peer.</td>
</tr>
<tr>
<td>Example: Router(config)# voice service voip or Router(config)# dial-peer voice 99 voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 no supplementary-service sip moved-temporarily</td>
<td>Disables SIP redirect response for call forwarding either globally or for a dial peer.</td>
</tr>
<tr>
<td>Example: Router(conf-voi-serv)# no supplementary-service sip moved-temporarily or</td>
<td>Sending redirect message to the destination is the default behavior.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-dial-peer)# no supplementary-service sip moved-temporarily</td>
<td>Disables SIP REFER message for call transfers either globally or for a dial peer.</td>
</tr>
<tr>
<td>Step 5 no supplementary-service sip refer</td>
<td>Sending REFER message to the destination is the default behavior.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(conf-voi-serv)# no supplementary-service sip refer or Router(config-dial-peer)# no supplementary-service sip refer</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voi-serv)# end or Router(config-dial-peer)# end</td>
<td></td>
</tr>
</tbody>
</table>

Enable Interworking with Cisco Unified Communications Manager

If Cisco CME 3.1 or later and Cisco Unified Communications Manager are used in the same network, some additional configuration is necessary, as described in the following sections:

- Configure Cisco CME 3.1 or Later to Interwork with Cisco Unified Communications Manager, on page 1163
- Enable Cisco Unified Communications Manager to Interwork with Cisco Unified CME, on page 1166
- Troubleshooting Call Transfer and Forward Configuration, on page 1167

Figure 54: Network with Cisco Unified CME and Cisco Unified Communications Manager, on page 1163 shows a network containing Cisco Unified CME and Cisco Unified Communications Manager systems.
Prerequisites

- Cisco Unified CME must be configured to forward calls using local hairpin routing. For configuration information, see Forward Calls Using Local Hairpin Routing, on page 1155.

Configure Cisco CME 3.1 or Later to Interwork with Cisco Unified Communications Manager

All of the commands in this section are optional because they are set by default to work with Cisco Unified Communications Manager. They are included here only to explain how to implement optional capabilities or return non default settings to their defaults.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice service voip
4. h323
5. telephony-service ccm-compatible
6. h225 h245-address on-connect
7. exit
8. supplementary-service h225-notify cid-update
9. exit
10. voice class h323 tag
11. telephony-service ccm-compatible
12. h225 h245-address on-connect
13. exit
14. dial-peer voice tag voip
15. supplementary-service h225-notify cid-update
16. voice-class h323 tag
17. end

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice-service configuration mode to establish global parameters.</td>
</tr>
<tr>
<td>voice service voip</td>
<td>Router(config)# voice service voip</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters H.323 voice-service configuration mode.</td>
</tr>
<tr>
<td>h323</td>
<td>Router(conf-voi-serv)# h323</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Globally enables a Cisco CME 3.1 or later system to detect Cisco Unified Communications Manager and exchange calls with it. This is the default configuration.</td>
</tr>
<tr>
<td>telephony-service ccm-compatible</td>
<td>• Use the no form of this command to disable Cisco Unified Communications Manager detection and exchange. We do not recommend using the no form of the command.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Using this command in an H.323 voice class definition allows you to specify this behavior for an individual dial peer.</td>
</tr>
<tr>
<td>Router(conf-serv-h323)# telephony-service ccm-compatible</td>
<td>Step 6</td>
</tr>
<tr>
<td>h225 h245-address on-connect</td>
<td>Router(conf-serv-h323)# h225 h245-address on-connect</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Purpose** | • The `no` form of this command disables the delay. We do not recommend using the `no` form of the command.
• Using this command in an H.323 voice class definition allows you to specify this behavior for an individual dial peer. |

Step 7 exit
Example:
```
Router(conf-serv-h323)# exit
```
Exits H.323 voice-service configuration mode.

Step 8 supplementary-service h225-notify cid-update
Example:
```
Router(conf-voi-serv)# supplementary-service h225-notify cid-update
```
(Optional) Globally enables H.225 messages with caller-ID updates to be sent to Cisco Unified Communications Manager. This is the default configuration.
• The `no` form of the command disables caller-ID update. We do not recommend using the `no` form of the command.

This command is also used in dial-peer configuration mode to affect a single dial peer.
• If this command is enabled globally and enabled on a dial peer, the functionality is enabled for that dial peer. This is the default.
• If this command is enabled globally and disabled on a dial peer, the functionality is disabled for that dial peer.
• If this command is disabled globally and either enabled or disabled on a dial peer, the functionality is disabled for that dial peer.

Step 9 exit
Example:
```
Router(config-voice-service)# exit
```
Exits voice-service configuration mode.

Step 10 voice class h323 tag
Example:
```
Router(config)# voice class h323 48
```
(Optional) Creates a voice class that contains commands to be applied to one or more dial peers.

Step 11 telephony-service ccm-compatible
Example:
```
Router(config-voice-class)# telephony-service ccm-compatible
```
(Optional) Enables the dial peer to exchange calls with a Cisco Unified Communications Manager system when this voice class is applied to a dial peer. This is the default configuration.
• The `no` form of the command disables call exchange with Cisco Unified Communications Manager. We do not recommend using the `no` form of the command.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
<td>h225 h245-address on-connect

Example:
Router(config-voice-class)# h225 h245-address on-connect</td>
</tr>
<tr>
<td>Step 13</td>
<td>exit

Example:
Router(config-voice-class)# exit</td>
</tr>
<tr>
<td>Step 14</td>
<td>dial-peer voice tag voip

Example:
Router(config)# dial-peer voice 28 voip</td>
</tr>
<tr>
<td>Step 15</td>
<td>supplementary-service h225-notify cid-update

Example:
Router(config-dial-peer)# no supplementary-service h225-notify cid-update</td>
</tr>
<tr>
<td>Step 16</td>
<td>voice-class h323 tag

Example:
Router(config-dial-peer)# voice-class h323 48</td>
</tr>
<tr>
<td>Step 17</td>
<td>end

Example:
Router(config-dial-peer)# end</td>
</tr>
</tbody>
</table>

What to do next

Set up Cisco Unified Communications Manager using the configuration procedure in the Enable Cisco Unified Communications Manager to Interwork with Cisco Unified CME, on page 1166.

Enable Cisco Unified Communications Manager to Interwork with Cisco Unified CME

To enable Cisco Unified Communications Manager to interwork with Cisco CME 3.1 or a later version, perform the following steps in addition to the normal Cisco Unified Communications Manager configuration.
Step 1 Set Cisco Unified Communications Manager service parameters. From Cisco Unified Communications Manager Administration, choose Service Parameters. Choose the Cisco Unified Communications Manager service, and make the following settings:

- Set the H323 FastStart Inbound service parameter to False.
- Set the Send H225 User Info Message service parameter to H225 Info for Ring Back.

Step 2 Configure Cisco Unified CME as an ICT in the Cisco Unified Communications Manager network. For information about different intercluster trunk types and configuration instructions, see Cisco Unified Communications Manager documentation.

Step 3 Ensure that the Cisco Unified Communications Manager network uses an MTP. The MTP is required to provide DSP resources for transcoding and for sending and receiving G.729 calls to Cisco Unified CME. All media streams between Cisco Unified Communications Manager and Cisco Unified CME must pass through the MTP because Cisco CME 3.1 does not support transcoding. For more information, see Cisco Unified Communications Manager documentation.

Step 4 Set up dial peers to establish routing using the instructions in the Dial Peer Configuration on Voice Gateway Routers guide.

Troubleshooting Call Transfer and Forward Configuration

Step 1 If you encounter lack of ringback on direct calls from a Cisco Unified Communications Manager phone to an IP phone on a Cisco Unified CME system, check the show running-config command output to ensure that the following two commands do not appear: no h225 h245-address on-connect and no telephony-service ccm-compatible. These commands should be enabled, which is their default state.

Step 2 Use the debug h225 asn1 command to display the H.323 messages that are sent from the Cisco Unified CME system to the Cisco Unified Communications Manager system to see if the H.245 address is being sent too early.

Step 3 For calls that are routed using VoIP-to-VoIP connections, use the show voip rtp connections detail command to display the call identification number, IP addresses, and port numbers involved for all VoIP call legs. This command includes VoIP-to-POTS and VoIP-to-VoIP call legs. The following is sample output for this command:

```
Router# show voip rtp connections detail
VoIP RTP active connections :
No. CallId  dstCallId  LocalRTP   RmtRTP   LocalIP         RemoteIP
 1   7       8          16586      22346   172.27.82.2     172.29.82.2
 2   8       7          17010      16590   172.27.82.2     209.165.202.129
Found 2 active RTP connections
```

Step 4 Use the show call prompt-mem-usage detail command to see information on ringback tone generation that uses the interactive voice response (IVR) prompt playback mechanism. This ringback is needed for hairpin transfers that are committed during the alerting-of-the-transfer-destination phase of the call and for calls to destinations that do not provide in-band ringback tone, such as IP phones (FXS analog ports do provide in-band ringback tone). Ringback tone is played to the transferred party by the Cisco Unified CME system that performs the transfer (the system attached to the transferring party). The system automatically generates tone prompts as needed based on the network-locale setting for the Cisco Unified CME system.

If you are not getting ringback tone when you should, use the show call prompt-mem-usage command to ensure that the correct prompt is loaded and playing. The following sample output indicates that a prompt is playing (“Number of prompts playing”) and indicates the country code used for the prompt (GB for Great Britain) and the codec.
Configure SIP-to-SIP Phone Call Forwarding

To configure SIP-to-SIP call forwarding using a back-to-back user agent (B2BUA) which allows call forwarding on any dial peer, perform the following steps.

Restriction

- SIP-to-SIP call forwarding is invoked only if that phone is dialed directly. Call forwarding is not invoked when the phone number is called through a sequential, longest-idle, or peer hunt group.
- If call forwarding is configured for a hunt group member, call forward is ignored by the hunt group.
- In Cisco Unified CME 4.1 and later versions, Call Forward All requires SIP phones to be configured with a directory number (using `dn` keyword in `number` command); direct line numbers are not supported.

Before you begin

- Cisco CME 3.4 or a later version.
- Connections between specific types of endpoints in a Cisco IP-to-IP gateway must be configured by using the `allow-connections` command. For configuration information, see Enable Calls in Your VoIP Network, on page 130.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register dn dn-tag`
4. `call-forward b2bua all directory-number`
5. `call-forward b2bua busy directory-number`
6. `call-forward b2bua mailbox directory-number`
7. `call-forward b2bua night-service directory-number`
8. `call-forward b2bua noan directory-number timeout seconds`
9. `call-forward b2bua unreachable directory-number`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted.
 Example:
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| **Step 3** voice register dn `dn-tag` | Enters voice register dn mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.
 Example:
 Router(config)# voice register dn 1 |
| **Step 4** `call-forward b2bua all directory-number` | Enables call forwarding for a SIP back-to-back user agent so that all incoming calls will be forwarded to the designated directory-number.
 • In Cisco CME 3.4 and Cisco Unified CME 4.0, this command is also available in voice register pool configuration mode. The configuration under voice register dn takes precedence over the configuration under voice register pool.
 • If the `call-forward b2bua all` command is configured in voice register pool configuration mode, it applies to all directory numbers on the phone.
 Example:
 Router(config-register-dn)# call-forward b2bua all 5005 |
| **Step 5** `call-forward b2bua busy directory-number` | Enables call forwarding for a SIP back-to-back user agent so that incoming calls to an extension that is busy will be forwarded to the designated directory number.
 • In Cisco CME 3.4 and Cisco Unified CME 4.0, this command is also available in voice register pool configuration mode. The configuration under voice register dn takes precedence over the configuration under voice register pool.
 Example:
 Router(config-register-dn)# call-forward b2bua busy 5006 |
| **Step 6** `call-forward b2bua mailbox directory-number` | Enables call forwarding for a SIP back-to-back user agent so that incoming calls that have been forwarded to a busy or no-answer extension will be forwarded to the recipient's voice mail.
 Example:
 Router(config-register-dn)# call-forward b2bua mailbox 5007 |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 call-forward b2bua night-service directory-number</td>
<td>Enables call forwarding for a SIP back-to-back user agent so that incoming calls that have been forwarded to a busy or no-answer extension will be forwarded to the recipient’s voice mail.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# call-forward b2bua night-service 5007</td>
<td></td>
</tr>
<tr>
<td>Step 8 call-forward b2bua noan directory-number timeout seconds</td>
<td>Enables call forwarding for a SIP back-to-back user agent so that incoming calls to an extension that does not answer will be forwarded to the designated directory number.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# call-forward b2bua noan 5010 timeout 10 or Router(config-register-pool)# call-forward b2bua noan 5010 timeout 10</td>
<td></td>
</tr>
<tr>
<td>Step 9 call-forward b2bua unreachable directory-number</td>
<td>(Optional) Enables call forwarding for a SIP back-to-back user agent so that calls can be forwarded to a phone that has not registered in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# call-forward b2bua unreachable 5009 or Router(config-register-pool)# call-forward b2bua unreachable 5009</td>
<td></td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Call Forward Unregistered for SIP IP Phones

Before you begin

• Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn tag
4. call-forward b2bua unregistered directory-number
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register dn tag</td>
<td>Enters voice register dn mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td>Example: Router(config)#voice register dn 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 call-forward b2bua unregistered directory-number</td>
<td>Enables call forwarding for a SIP back-to-back user agent so that all incoming calls are forwarded to the unregistered directory-number.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)#call-forward b2bua unregistered 2345</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips for Call Forward Unregistered

• Use the show dial-peer voice summary command to check whether a CFU dial peer is created or removed.

• Enable deb voice reg event, deb voice reg state, and deb voice reg error commands to trace the creation and deletion of the CFU dial peer.

• Enable deb voice reg event, deb voip ccapi inout, deb voip app callsetup, deb voip app core, deb voip app state, and deb voip app error commands to trace the call flow for CFU.
Configure Keepalive Timer Expiration in SIP Phones

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice service voip`
4. `sip`
5. `registrar server [expires [max seconds] [min seconds]]`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice service voip</td>
<td>Enters voice-service configuration mode and specifies voice-over-IP encapsulation.</td>
</tr>
<tr>
<td>Example: Router(conf)# voice service voip</td>
<td></td>
</tr>
<tr>
<td>Step 4 sip</td>
<td>Enters SIP configuration mode.</td>
</tr>
<tr>
<td>Example: Router(conf-serv)# sip</td>
<td></td>
</tr>
<tr>
<td>Step 5 registrar server [expires [max seconds] [min seconds]]</td>
<td>Enables SIP registrar functionality in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(conf-serv-sip)# registrar server expires max 250 min 75</td>
<td>• expires—(Optional) Sets the active time for an incoming registration.</td>
</tr>
<tr>
<td></td>
<td>• max sec—(Optional) Maximum time for a registration to expire, in seconds. Range: 120 to 86400.</td>
</tr>
<tr>
<td></td>
<td>• min sec—(Optional) Minimum time for a registration to expire, in seconds.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router (conf-serv-sip)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Call-Forwarding-All Softkey URI on SIP Phones

To specify the uniform resource identifier (URI) for the call forward all (CfwdAll) softkey on supported SIP phones, perform the following steps. This URI and the call forward number is sent to Cisco Unified CME when a user enables Call Forward All on a SIP phone.

Restriction

• This feature is supported only on Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE.
• If a user enables Call Forward All using the CfwdAll softkey, it is enabled on the primary line.

Before you begin

• Cisco Unified CME 4.1 or a later version.
• The mode cme command must be enabled in Cisco Unified CME.
• Call Forward All must be enabled on the directory number. For information, see Configure SIP-to-SIP Phone Call Forwarding, on page 1168.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register global
4. call-feature-uri cfwdall service-uri
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode to set global parameters for all supported SIP phones in a Cisco Unified CME environment.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 call-feature-uri cfwdall service-uri</td>
<td>Specifies the URI for soft keys on SIP phones connected to a Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example: Router(config-register-global)# call-feature-uri cfwdall http://1.4.212.11/cfwdall</td>
<td></td>
</tr>
</tbody>
</table>
Specify Number of 3XX Responses To be Handled on SIP Phones

To specify how many subsequent 3XX responses an originating SIP phone can handle for a single call when the terminating side is a forwarding party which does not use B2BUA, perform the following steps.

Before you begin

- Cisco CME 3.4 or a later version.
- The `mode cme` command must be enabled

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register global`
4. `phone-redirect-limit number`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>voice register global</code></td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# <code>voice register global</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>phone-redirect-limit number</code></td>
<td>Changes the default number of 3XX responses a SIP phone that originates a call can handle for a single call.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# <code>phone-redirect-limit number</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# <code>end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configure Call Transfer on SIP Phones

To create and apply a template to enable call transfer softkeys on an individual SIP phone in Cisco Unified CME, perform the following steps.

Restriction

- Blind transfer is not supported on certain phones such as Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, or 7971GE.

- In Cisco Unified CME 4.1, the soft key display can be customized only for certain IP phones, such as Cisco Unified IP Phone 7911G, 7941G, 7941GE, 7961G, 7961GE, 7970G, and 7971GE. For configuration information, see Modify Softkey Display on SIP Phone, on page 913.

Before you begin

Cisco CME 3.4 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register template *template-tag*
4. transfer-attended
5. transfer-blind
6. exit
7. voice register pool *pool-tag*
8. template *template-tag*
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register template template-tag</td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register template 1</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	**Purpose**
Step 4 | **transfer-attended**
Example:
Router(config-register-template)# transfer-attended

Enable a soft key for attended transfer on any supported SIP phone that uses a template in which this command is configured.

Step 5 | **transfer-blind**
Example:
Router(config-register-template)# transfer-blind

Enable a soft key for blind transfer on any supported SIP phone that uses a template in which this command is configured.

Step 6 | **exit**
Example:
Router(config-register-template)# exit

Exits configuration mode to the next highest mode in the configuration mode hierarchy.

Step 7 | **voice register pool pool-tag**
Example:
Router(config)# voice register pool 3

Enters voice register pool configuration mode to set phone-specific parameters for SIP phones.

Step 8 | **template template-tag**
Example:
Router(config-register-pool)# voice register pool 1

Applies a template created with the `voice register template` command.

- **template-tag**—Range: 1 to 5

Step 9 | **end**
Example:
Router(config-register-pool)# end

Exits to privileged EXEC mode.

Configuration Examples for Call Transfer and Forwarding

Example for Configuring H.450.2 and H.450.3 Support

The following example sets all transfers and forwards that are initiated by a Cisco CME 3.0 or later system to use the H.450 standards, globally enables H.450.2 and H.450.3 capabilities, and disables those capabilities for dial peer 37. The `supplementary-service` commands under voice-service configuration mode are not necessary because these values are the default, but they are shown here for illustration.

```text
telephony-service
transfer-system full-consult
transfer-pattern .T
call-forward pattern .T
!
voice service voip
supplementary-service h450.2
```
Example for Configuring Basic Call Forwarding

The following example sets up forwarding for extension 2777 to extension 2513 on all calls, busy, and no answer. During night service hours, calls are forwarded to a different number, extension 2879.

```
ephone-dn 20
    number 2777
    call-forward all 2513
    call-forward busy 2513
    call-forward noan 2513 timeout 45
    call-forward night-service 2879
```

Example for Configuring Call Forwarding Blocked for Local Calls

In the following example, extension 2555 is configured to not forward local calls that are internal to the Cisco Unified CME system. Extension 2222 dials extension 2555. If 2555 is busy, the caller hears a busy tone. If 2555 does not answer, the caller hears ringback. The internal call is not forwarded.

```
ephone-dn 25
    number 2555
    no forward local-calls
    call-forward busy 2244
    call-forward noan 2244 timeout 45
```

Example for Configuring Transfer Patterns

The following example shows how to configure transfer patterns beginning with 1234:

```
Router# configure terminal
Router(config)# telephony-service
Router(config-telephony)# transfer-pattern 1234
```

Example for Configuring Maximum Length of Transfer Number

The following example shows how to configure the maximum length of the transfer number under voice register pool 1. Because the maximum length is configured as 5, only call transfers to Cisco Unified SIP IP phones with a five-digit directory number are allowed. All call transfers to directory numbers with more than five digits are blocked.

```
supplementary-service h450.3
!
dial-peer voice 37 voip
destination-pattern 555....
session target ipv4:10.5.6.7
no supplementary-service h450.2
no supplementary-service h450.3
```
Router# configure terminal
Router(config)# voice register pool 1
Router(config-register-pool)# transfer max-length 5

The following example shows how to configure the maximum length of the transfer number for a set of phones under voice register template 2:

Router# configure terminal
Router(config)# voice register template 2
Router(config-register-temp)# transfer max-length 10

Example for Configuring Conference Transfer Patterns

The following example configures transfer patterns that allow conference calls:

Router# configure terminal
Router(config)# telephony-service
Router(config-telephony)# transfer-pattern 1357
Router(config-telephony)# transfer-pattern 222....
Router(config-telephony)# conference transfer-pattern

Example for Blocking All Call Transfers

The following example shows how to block all call transfers for voice register pool 5:

Router(config)# voice register pool 5
Router(config-register-pool)# transfer-pattern ?
blocked global transfer pattern not allowed
Router(config-register-pool)# transfer-pattern blocked

The following example shows how to block all call transfers for a set of Cisco Unified SIP IP phones defined by voice register template 9:

Router(config)# voice register template 9
Router(config-register-temp)# transfer-pattern ?
blocked global transfer pattern not allowed
Router(config-register-temp)# transfer-pattern blocked

Example for Configuring Selective Call Forwarding

The following example sets call forwarding on busy and no answer for ephone-dn 38 only for its primary number, 2777. Callers who dial 2778 will hear a busy signal if the ephone-dn is busy or ringback if there is no answer.

ephone-dn 38
number 2777 secondary 2778
call-forward busy 3000 primary
call-forward noan 3000 primary timeout 45
Example for Configuring Call Transfer

The following example limits transfers from ephone 6, extension 2977, to numbers containing a maximum of 8 digits.

telephony-service
load 7910 P00403020214
load 7960-7940 P00305000600
load 7914 S00103020002
load 7905 CP7905040000SCCP040701A
load 7912 CP7912040000SCCP040701A
max-ephones 100
max-dn 500
ip source-address 10.104.8.205 port 2000
max-redirect 20
system message XYZ Inc.
create cnf-files version-stamp 7960 Jul 13 2004 03:39:28
voicemail 7189
max-conferences 8 gain -6
moh music-on-hold.au
web admin system name admin1 password admin1
dn-webedit
time-webedit
transfer-system full-consult
transfer-pattern 91...........
transfer-pattern 92......
transfer-pattern 93......
transfer-pattern 94......
transfer-pattern 95......
transfer-pattern 96......
transfer-pattern 97......
transfer-pattern 98......
transfer-pattern 99......
secondary-dialtone 9
fac standard
ephone-template 2
transfer max-length 8
ephone-dn 4
number 2977
ephone 6
button 1:4
Example for Configuring Call Transfer Recall for SCCP Phones

The following example shows that transfer recall is enabled globally. After 60 seconds an unanswered call is forwarded back to the phone that initiated the transfer (transferor).

```plaintext
telephony-service
  max-ephones 100
  max-dn 240
  timeouts transfer-recall 60
  max-conferences 8 gain -6
  transfer-system full-consult
```

The following example shows that transfer recall is enabled for extension 1030 (ephone-dn 103), which is assigned to ephone 3. If extension 1030 forwards a call and the transfer-to party does not answer, after 60 seconds the unanswered call is sent back to extension 1030 (transferor). The `timeouts transfer-recall` command can also be set in an ephone-dn template and applied to one or more directory numbers.

```plaintext
ephone-dn 103
  number 1030
  name Smith, John
  timeouts transfer-recall 60

ephone 3
  mac-address 002D.264E.54FA
  type 7962
  button 1:103
```

Example for Configuring Call-Transfer Recall for SIP Phones

The following example shows that transfer recall is enabled globally. After 20 seconds, an unanswered call is forwarded back to the phone that initiated the transfer (transferor).

```plaintext
voice register global
  mode cme
  source-address 8.39.17.29 port 5060
  timeouts transfer-recall 20
  max-dn 100
  max-pool 100
  tftp-path flash:
  create profile sync 0342574150542703
  keepalive 140
  auto-register
```

The following example shows that transfer recall is enabled for extension 111 (voice register dn 1). If extension 111 forwards a call to voice register dn 2 and the transfer-to party does not answer, after 20 seconds the unanswered call is sent back to extension 111 (transferor).

```plaintext
voice register dn 1
  timeouts transfer-recall 20
```
Example for Enabling H.450.12 Capabilities

The following example globally disables H.450.12 capabilities and then enables them only on dial peer 24.

```plaintext
voice service voip
no supplementary-service h450.12
!
```

dial-peer voice 24 voip
destination-pattern 555....
session target ipv4:10.5.6.7
supplementary-service h450.12

Example for Enabling H.450.7 and QSIG Supplementary Services

The following example implements QSIG supplementary services on extension 74367 and globally enables H.450.7 supplementary services and QSIG call-forwarding supplementary services.

```plaintext
telephony-service
voicemail 74398
transfer-system full-consult
ephone-dn 25
number 74367
mwi qsig
call-forward all 74000
voice service voip
supplementary-service h450.7
voice service pots
supplementary-service qsig call-forward
```

Example for Configuring Cisco Unified CME and Cisco Unified Communications Manager in Same Network

The following example shows a running configuration for a Cisco CME 3.1 or later router that has a Cisco Unified Communications Manager in its network.

```plaintext
Router# show running-config

version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
```
hostname Router

enable password pswd

aaa new-model

aaa session-id common

no ip subnet-zero

ip dhcp pool phone1
 host 172.24.82.3 255.255.255.0
 client-identifier 0100.07eb.4629.9e
 default-router 172.24.82.2
 option 150 ip 172.24.82.2

ip dhcp pool phone2
 host 172.24.82.4 255.255.255.0
 client-identifier 0100.0b5f.f932.58
 default-router 172.24.82.2
 option 150 ip 172.24.82.2

no cef

no ip domain lookup

no mpls ldp logging neighbor-changes

no ftp-server write-enable

voice service voip
 allow-connections h323 to h323

voice class codec 1
 codec preference 1 g711ulaw

no voice hpi capture buffer

no voice hpi capture destination

interface FastEthernet0/0
 ip address 172.24.82.2 255.255.255.0
 duplex auto
speed auto
h323-gateway voip interface
h323-gateway voip bind srcaddr 172.24.82.2
!
ip classless
ip route 0.0.0.0 0.0.0.0 172.24.82.1
ip route 192.168.254.254 255.255.255.255 172.24.82.1
!
ip http server
!
tftp-server flash:P00303020700.bin
!
voice-port 1/0/0
!
voice-port 1/0/1
!
dial-peer cor custom
!
dial-peer voice 1001 voip
description points-to-CCM
destination-pattern 1.T
voice-class codec 1
session target ipv4:172.26.82.10
!
dial-peer voice 1002 voip
description points to router
destination-pattern 4...
voice-class codec 1
session target ipv4:172.25.82.2
!
dial-peer voice 1 pots
destination-pattern 3000
port 1/0/0
!
dial-peer voice 1003 voip
destination-pattern 26..
session target ipv4:10.22.22.38
!
!
telephony-service
Example for Configuring Cisco Unified CME and Cisco Unified Communications Manager in Same Network

load 7960-7940 P00303020700
max-ephones 48
max-dn 15
ip source-address 172.24.82.2 port 2000
create cnf-files version-stamp Jan 01 2002 00:00:00
keepalive 10
max-conferences 4
moh minuet.au
transfer-system full-consult
transfer-pattern
!
ephone-dn 1
 number 3001
 name abcde-1
 call-forward busy 4001
!
ephone-dn 2
 number 3002
 name abcde-2
!
ephone-dn 3
 number 3003
 name abcde-3
!
ephone-dn 4
 number 3004
 name abcde-4
!
ephone 1
 mac-address 0003.EB27.289E
 button 1:1 2:2
!
ephone 2
 mac-address 000D.39F9.3A58
 button 1:3 2:4
!
line con 0
 exec-timeout 0 0
 logging synchronous
line aux 0
Example for Configuring H.450 Tandem Gateway Working with Cisco Unified CME and Cisco Unified Communications Manager

The following example shows a sample configuration for a Cisco CME 3.1 or later system that is linked to an H.450 tandem gateway that serves as a proxy for Cisco Unified Communications Manager.

Router# show running-config

Building configuration...

Current configuration : 1938 bytes
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname Router
!
boot-start-marker
boot-end-marker
!
enable password pswd
!
aaa new-model
!
aaa session-id common
no ip subnet-zero
!
ip cef
no ip domain lookup
no ftp-server write-enable
no scripting tcl init
no scripting tcl encdir
!
voice call send-alert
voice service voip
 allow-connections h323 to h323
 supplementary-service h450.12
 h323

voice class codec 1
codec preference 1 g711ulaw
codec preference 2 g729r8
codec preference 3 g729br8

interface FastEthernet0/0
 ip address 172.27.82.2 255.255.255.0
duplex auto
 speed auto

h323-gateway voip interface
h323-gateway voip h323-id host24

ip classless
ip route 0.0.0.0 0.0.0.0 172.26.82.1
ip route 0.0.0.0 0.0.0.0 172.27.82.1
ip http server

dial-peer cor custom

dial-peer voice 1001 voip
description points-to-CCM
destination-pattern 4...
session target ipv4:172.24.89.150

!
dial-peer voice 1002 voip
description points to CCME1
destination-pattern 28..
session target ipv4:172.24.22.38

!
dial-peer voice 1003 voip
description points to CCME3
destination-pattern 9...
session target ipv4:192.168.1.29

Example for Configuring Call Forward to Cisco Unity Express

The following example enables the ability to forward calls that originate from Cisco Unified Communications Manager phones and are routed through a Cisco Unified CME system to a Cisco Unity Express extension. Call forwarding is enabled for all calling parties, H.450.3 is disabled, and connections are allowed to SIP endpoints.

```shell
telephony-service
  call-forward pattern .T

voice service voip
  no supplementary-service h450.3
  allow connections from h323 to sip
```

Example for Configuring Call Forward Unregistered for SIP IP Phones

The following example shows CFU configured for voice register dn 20:

```shell
voice service voip
  allow-connections sip to sip
  sip
    registrar server expires max 250 min 75

voice register global
  mode cme
```
source-address 10.100.109.10 port 5060
bandwidth video tias-modifier 256 negotiate end-to-end
max-dn 200
max-pool 42
url directory http://1.4.212.11/localdirectory
create profile sync 0004625832149157
!
voice register dn 20
 number 10
 call-forward b2bua unregistered 2345
!
voice register pool 1
 number 1 dn 20
 id mac 1111.1111.1111
 camera
 video
!
voice register pool 2
 id mac 0009.A3D4.1234

Example for Configuring Keepalive Timer Expiration in SIP Phones

The following example shows the minimum and maximum registrar server expiration time for SIP phones:

Router#show run
!
!
!
!
!
!
voice service voip
allow-connections sip to sip
sip
registrar server expires max 250 min 75
!
!
voice register global
mode cme
source-address 10.100.109.10 port 5060
bandwidth video tias-modifier 256 negotiate end-to-end
Where to Go Next

If you are finished modifying the configuration, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.

Softkeys

To block the function of the call-forward-all or transfer softkey without removing the key display or to remove the softkey from one or more phones, see Customize Softkeys, on page 897.

Feature Access Codes (FACs)

Phone users can activate and deactivate a phone’s call-forward-all setting by using a feature access code (FAC) instead of a soft key on the phone if standard or custom FACs have been enabled for your system. The following are the standard FACs for call forward all:

- **callfwd all**—Call forward all calls. Standard FAC is **1 plus an optional target extension.
- **callfwd cancel**—Cancel call forward all calls. Standard FAC is **2.

For more information about FACs, see Feature Access Codes, on page 733.

Night Service

Calls can be automatically forwarded during night service hours, but you must define the night-service periods, which are the dates or days and hours during which night service will be active. For instance, you may want to designate night service periods that include every weeknight between 5 p.m. and 8 a.m. and all day every Saturday and Sunday. For more information, see Configure Call Coverage Features, on page 1234.

Feature Information for Call Transfer and Forwarding

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calling Number Local</td>
<td>12.0</td>
<td>Introduced support to configure Calling Number Local feature for Voice Register DNs.</td>
</tr>
<tr>
<td>Call Transfer Recall on SIP Phones</td>
<td>11.6</td>
<td>Call Transfer Recall feature returns a transferred call to the phone that initiated the transfer if the destination is busy or does not answer.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Trunk-to-Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones</td>
<td>9.5</td>
<td>Introduced support Trunk-to-Trunk Transfer Blocking for Toll Fraud Prevention on Cisco Unified SIP IP Phones.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Call Forwarding</td>
<td>4.1</td>
<td>• Call Forward All synchronization between Cisco Unified CME and SIP phones was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disabling SIP supplementary services for call forward and call transfer was added.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>• Automatic call forwarding during night service was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selective call forwarding was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Forwarding of local (internal) calls can be blocked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• H.450.7 standards support and QSIG supplementary services capability was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Calls into a SIP device can be forwarded to other SIP or SCCP devices including Cisco Unity, third- party voice mail systems, or an auto-attendant (AA) or other interactive voice response (IVR) devices. SCCP devices may also be forwarded to SIP devices.</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>• Number of digits that can be entered using the CfwdALL (call-forward all) soft key can be limited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• H.450.12 standards support, which provide dynamic detection of H.450.2 and H.450.3 capabilities on a call-by-call basis, was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CFwdALL soft key was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Local hairpin call routing was supported as an option for networks that cannot support H.450 call transfer and forwarding. This feature requires installation of the Tcl script app_h450_transfer.2.0.0.8.tcl or a later version.</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>Call forwarding using the H.450.3 standard was introduced.</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>Call forwarding for all calls, busy conditions, and no-answer conditions was introduced, using a Cisco-proprietary method.</td>
</tr>
<tr>
<td>Call Forward Unregistered</td>
<td>8.6</td>
<td>The Call Forward Unregistered (CFU) feature was introduced for SIP phones.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Call Transfer | 4.3 | • Call-Transfer Recall was added.
• Consultative Call Transfer digit-collection process was modified. |
| | 4.1 | • Disabling SIP supplementary services for call transfer and call forward was added. |
| | 4.0 | • Default for the **transfer-system** command was changed from the **blind** keyword to the **full-consult** keyword.
• Transfers to phones outside the Cisco Unified CME system can be blocked for individual ephones.
• Number of digits in transfer destination numbers can be limited. |
| | 3.4 | Support for attended and blind transfers using SIP IP phone directly connected to Cisco CME. |
| | 3.2 | • Consultative transfer to monitored lines using direct station select was introduced.
• Transcoding between G.711 and G.729 is supported when one leg of a Voice over IP (VoIP)-to-VoIP hairpin call uses G.711 and the other leg uses G.729. |
<p>| | 3.1 | |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Support was introduced for the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enhancements for VoIP networks which contain a mix of platforms that support H.450.2 and H.450.3 standards, such as Cisco CME 3.1, Cisco CME 3.0, Cisco ITS V2.1, and platforms that do not support H.450.2 and H.450.3 standards, such as Cisco Unified Communications Manager, Cisco BTS Softswitch (BTS), and Cisco PSTN Gateway (PGW).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• H.450.12 standards, which provide dynamic detection of H.450.2 and H.450.3 capabilities on a call-by-call basis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic detection of Cisco Unified Communications Manager endpoints.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hairpin VoIP-to-VoIP call routing and routing to an H.450 tandem gateway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hairpin call routing does not require a Tcl script.</td>
</tr>
<tr>
<td>3.0</td>
<td>Local hairpin call routing was supported as an option for networks that cannot support H.450 call transfer and forwarding. This feature requires installation of the Tcl script app_h450_transfer.2.0.0.8.tcl or a later version.</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Consultative transfer using the ITU-T H.450.2 standard was introduced.</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Call transfer was introduced, using a Cisco proprietary method.</td>
<td></td>
</tr>
</tbody>
</table>
Call Coverage Features

- Information About Call Coverage Features, on page 1195
- Configure Call Coverage Features, on page 1234
- Configuration Examples for Call Coverage Features, on page 1290
- Where to Go Next, on page 1313
- Feature Information for Call Coverage Features, on page 1315

Information About Call Coverage Features

Call Coverage Summary

Call coverage features are used to ensure that all incoming calls to Cisco Unified CME are answered by someone, regardless of whether the called number is busy or does not answer.

Some single-dialed-number call coverage features, such as hunt groups, can send incoming calls to a single extension to a pool of phone agents, while other features, such as call hunt, call waiting, and call forwarding increase the chance of a call being answered by giving it another chance for a connection if the dialed number is not available.

Multiple-dialed-number call coverage features, such as call pickup, night service, and overlaid directory numbers, provide different ways for one person to answer incoming calls to multiple numbers.

Any of the call coverage features can be combined with other call coverage features and with shared lines and secondary numbers to design the call coverage plan that is best suited to your needs.

Table 105: Call Coverage Feature Summary, on page 1196 summarizes call coverage features.
Table 105: Call Coverage Feature Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Example</th>
<th>How Configured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Forwarding</td>
<td>Calls are automatically diverted to a designated number on busy, no answer, all calls, or only during night-service hours.</td>
<td>Extension 3444 is configured to send calls to extension 3555 when it is busy or does not answer.</td>
<td>Enable Call Forwarding for a Directory Number, on page 1141 or Configure SIP-to-SIP Phone Call Forwarding, on page 1168</td>
</tr>
<tr>
<td>Call Hunt</td>
<td>System automatically searches for an available directory number from a matching group of directory numbers until the call is answered or the hunt is stopped.</td>
<td>Three ephone-dns have the same extension number, 755. One is on the manager’s phone and the others are on the assistants’ phones. Preference and huntstop are used to make sure that calls always come to the manager’s phone first but if they can’t be answered, they will ring on the first assistant’s phone and if not answered, on the second assistant’s phone.</td>
<td>Configure Call Hunt on SCCP Phones, on page 1234 or Configure Call Hunt on SIP Phones, on page 1237</td>
</tr>
<tr>
<td>Call Pickup</td>
<td>Calls to unstaffed phones can be answered by other phone users using a soft key or by dialing a short code.</td>
<td>Extension 201 and 202 are both in pickup group 22. A call is received by 201, but no one is there to answer. The agent at 202 presses the GPickUp soft key to answer the call.</td>
<td>Enable Call Pickup, on page 1238</td>
</tr>
<tr>
<td>Call Waiting</td>
<td>Calls to busy numbers are presented to phone users, giving them the option to answer them or let them be forwarded.</td>
<td>Extension 564 is in conversation when a call-waiting beep is heard. The phone display shows the call is from extension 568 and the phone user decides to let the call go to voice mail.</td>
<td>Configure Call-Waiting Indicator Tone on SCCP Phone, on page 1241 or Enable Call Waiting on SIP Phones, on page 1246</td>
</tr>
<tr>
<td>CiscoCME B-ACD</td>
<td>Calls to a pilot number are automatically answered by an interactive application that presents callers with a menu of choices before sending them to a queue for a hunt group.</td>
<td>The DID number 555-0125 is the pilot number for the XYZ Company. Incoming calls to this pilot number hear a menu of choices; they can press 1 for sales, 2 for service, or 3 to leave a message. The call is forwarded appropriately when callers make a choice.</td>
<td>See Cisco Unified CME B-ACD and Tcl Call-Handling Applications.</td>
</tr>
</tbody>
</table>
Hunt Groups

Calls are forwarded through a pool of agents until answered or sent to a final number.

- **Example**: Extension 200 is a pilot number for the sales department. Extensions 213, 214, and 215 belong to sales agents in the hunt group. When a call to extension 200 is received, it proceeds through the list of agents until one answers. If all the agents are busy or do not answer, the call is sent to voice mail.

- **How Configured**: Configure Ephone-Hunt Groups on SCCP Phones, on page 1247 or Configure Voice-Hunt Groups, on page 1257.

Night Service

Calls to ephone-dns and voice register dns that are not staffed during certain hours can be answered by other phones using call pickup.

- **Example**: Extension 7544 is the cashier’s desk but the cashier only works until 3 p.m. A call is received at 4:30 p.m. and the service manager’s phone is notified. The service manager uses call pickup to answer the call.

- **How Configured**: Configure Night Service on SCCP Phones, on page 1271 or Configure Night Service on SIP Phones, on page 1274.

Overlaid Ephone-dns

Calls to several numbers can be answered by a single agent or multiple agents.

- **Example**: Extensions 451, 452, and 453 all appear on button 1 of a phone. A call to any of these numbers can be answered from button 1.

- **How Configured**: Configure Overlaid Ephone-dns on SCCP Phones, on page 1283.

Out-of-Dialog REFER

Out-of-dialog REFER (OOD-R) allows remote applications to establish calls by sending a REFER message to Cisco Unified CME without an initial INVITE. After the REFER is sent, the remainder of the call setup is independent of the application and the media stream does not flow through the application. The application using OOD-R triggers a call setup request that specifies the Referee address in the Request-URI and the Refer-Target in the Refer-To header. The SIP messaging used to communicate with Cisco Unified CME is independent of the end-user device protocol which can be SIP, SCCP, H.323, or POTS. Click-to-dial is an example of an application that can be created using OOD-R.

A click-to-dial application allows users to combine multiple steps into one click for a call setup. For example, a user can click a web-based directory application from their PC to look up a telephone number, off-hook their desktop phone, and dial the called number. The application initiates the call setup without the user having to out-dial from their own phone. The directory application sends a REFER message to Cisco Unified CME which sets up the call between both parties based on this REFER.

Figure 55: Click-to-Dial Application using Out-of-Dialog REFER, on page 1198 shows an example of OOD-R being used by a click-to-dial application. In this scenario, the following events occur (refer to the event numbers in the illustration):

1. Remote user clicks to dial.
3. Cisco Unified CME 1 connects to SIP phone 1 (Referee).
5. Cisco Unified CME 2 sends INVITE to SIP phone 2 (Refer-Target) and the call is accepted.
6. Voice path is created between the two SIP phones.

Figure 55: Click-to-Dial Application using Out-of-Dialog REFER

The initial OOD-R request can be authenticated and authorized using RFC 2617-based digest authentication.
To support authentication, Cisco Unified CME retrieves the credential information from a text file stored in flash.
This mechanism is used by Cisco Unified CME in addition to phone-based credentials. The same credential file can be shared by other services that require request-based authentication and authorization such as presence service.
Up to five credential files can be configured and loaded into the system. The contents of these five files are mutually exclusive, meaning the username and password pairs must be unique across all the files.
The username and password pairs must also be different than those configured for SCCP or SIP phones in a Cisco Unified CME system.

For configuration information, see Enable Out-Of-Dialog REFER, on page 1287.

Call Hunt

Call hunt allows you to use multiple directory numbers to provide coverage for a single called number. You do this by assigning the same number to several primary or secondary ephone-dns or by using wildcards in the number associated with the directory numbers.

Calls are routed based on a match between the number dialed and the destination patterns that are associated with dial peers. Through the use of wildcards in destination patterns, multiple dial peers can match a particular called number. Call hunt is the ability to search through the dial peers that match the called number until the call is answered. Call hunt uses a technique called preference to control the order in which dial peers are matched to an incoming call and a technique called huntstop to determine when the search for another matching peer ends.

In Cisco Unified CME, incoming calls search through the virtual dial peers that are automatically created when you define directory numbers. These virtual dial peers are not directly configurable; you must configure the directory number to control call hunt for virtual dial peers.

Channel huntstop is used to stop the search for the two channels of a dual-line directory number. Channel huntstop keeps incoming calls from hunting to the second channel if the first channel is busy or does not answer. This keeps the second channel free for call transfer, call waiting, or three-way conferencing.

Huntstop prevents hunt-on-busy from redirecting a call from a busy phone into a dial peer that has been setup with a catch-all default destination.

For configuration information, see Configure Call Hunt on SCCP Phones, on page 1234 or Configure Call Hunt on SIP Phones, on page 1237.
Call Pickup

Call Pickup allows a phone user to answer a call that is ringing on another phone. Cisco Unified CME 7.1 introduces Call Pickup features for SIP phones. SCCP phones support three types of Call Pickup:

- Directed Call Pickup—Call pickup, explicit ringing extension. Any local phone user can pick up a ringing call on another phone by pressing a soft key and then dialing the extension. A phone user does not need to belong to a pickup group to use this method. The soft key that the user presses, either GPickUp or PickUp, depends on your configuration.

- Group Pickup, Different Group—Call pickup, explicit group ringing extension. A phone user can answer a ringing phone in any pickup group by pressing the GPickUp soft key and then dialing the pickup group number. If there is only one pickup group defined in the Cisco Unified CME system, the phone user can pick up the call simply by pressing the GPickUp soft key. A phone user does not need to belong to a pickup group to use this method.

- Local Group Pickup—Call pickup, local group ringing extension. A phone user can pick up a ringing call on another phone by pressing a soft key and then the asterisk (*) if both phones are in the same pickup group. The soft key that the user presses, either GPickUp or PickUp, depends on your configuration.

Note

SIP phones only support local pickup and group pickup. Directed call pickup is not supported.

The specific soft keys used to access different Call Pickup features on SCCP and SIP phones depends on the configuration in Cisco Unified CME. See the service directed-pickup command in Cisco Unified CME Command Reference for a description.

You can assign each directory number to only one pickup group and a directory number must have a pickup group configured to use Local Group Pickup. There is no limit to the number of directory numbers that can be assigned to a single pickup group, or to the number of pickup groups that can be defined in a Cisco Unified CME system.

If more than one call is ringing on the same number, the calls are picked up in the order in which they were received; the call that has been ringing the longest is the first call picked up from that extension number. Remote call pickup is not supported.

Call Pickup features are enabled globally for all phones through Cisco Unified CME. The PickUp and GpickUp soft keys display on supported SCCP and SIP phones by default and can be modified by using a phone template. For configuration information, see Enable Call Pickup, on page 1238.

Figure 56: Call Pickup, on page 1200 shows four call-pickup scenarios.
Figure 56: Call Pickup

Call Pickup, No Group or Unknown Group

1. Extension 5555 rings.
2. User at phone 4 presses Pick-Up soft key and dials 5555.

Call Pickup in the Same Group

1. Extension 5555 rings.
2. User at phone 2 presses GPickUp soft key and * (asterisk).

Call Pickup from a Different Group

1. Extension 5555 rings.
2. User at phone 3 presses GPickUp soft key and dials 33.

Call Pickup, a Single Group for All Cisco CME Phones

1. Extension 5555 rings.
2. User at phone 2 presses GPickUp soft key.

This scenario assumes that every phone in the Cisco CME system is in pickup group 33, which differs slightly from the sample configuration shown to the right.
Call Waiting

Call waiting allows phone users to be alerted when they receive an incoming call while they are on another call. Phone users hear a call-waiting tone when another party is trying to reach them and, on IP phones, see the calling party information on the phone screen.

Call-waiting calls to IP phones with soft keys can be answered using the Answer soft key. Call-waiting calls to analog phones controlled by Cisco Unified CME systems are answered using hookflash. When phone users answer a call-waiting call, their original call is automatically put on hold. If a phone user does not respond to a call-waiting notification, the call is forwarded as specified in the call-forward noan command for that extension.

For an IP phone running SCCP, call waiting for single-line ephone-dns requires two ephone-dns to handle the two calls. Call waiting on a dual-line ephone-dn requires only one ephone-dn because the two channels of the ephone-dn handle the two calls. The audible call-waiting indicator can be either a call-waiting beep or a call-waiting ring. For configuration information, see Configure Call-Waiting Indicator Tone on SCCP Phone, on page 1241.

For a SIP phone, call waiting is automatically enabled when you configure a voice register pool. For SIP phones directly connected to Cisco Unified CME, call waiting can be disabled at the phone-level. For configuration information, see Enable Call Waiting on SIP Phones, on page 1246.

For information on call waiting using Overlaid ephone-dns, see Overlaid Ephone-dns, on page 1229.

Call-Waiting Beep for SCCP Phones

Call-waiting beeps are enabled by default. You can disable the call-waiting beeps that are generated from and accepted by directory numbers. If beep generation is disabled, incoming calls to the directory number do not generate call-waiting beeps. If beep acceptance is disabled, the phone user does not hear beeps when using the directory number for an active call.

Table 106: Call-Waiting Beep Behavior, on page 1201 shows the possible beep behaviors of one ephone-dn calling another ephone-dn that is connected to another caller.

<table>
<thead>
<tr>
<th>Ephone-dn 1 Configuration</th>
<th>Ephone-dn 2 Configuration</th>
<th>Active Call on DN</th>
<th>Incoming Call on DN</th>
<th>Expected Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>no call-waiting beep</td>
<td>DN 1</td>
<td>DN 2</td>
<td>No beep</td>
</tr>
<tr>
<td>no call-waiting beep</td>
<td>—</td>
<td>DN 1</td>
<td>DN 2</td>
<td>No beep</td>
</tr>
<tr>
<td>—</td>
<td>no call-waiting beep</td>
<td>DN 1</td>
<td>DN 2</td>
<td>No beep</td>
</tr>
<tr>
<td>—</td>
<td>no call-waiting beep</td>
<td>DN 1</td>
<td>DN 2</td>
<td>Beep</td>
</tr>
<tr>
<td>—</td>
<td>no call-waiting beep</td>
<td>DN 1</td>
<td>DN 2</td>
<td>No beep</td>
</tr>
<tr>
<td>no call-waiting beep</td>
<td>—</td>
<td>DN 1</td>
<td>DN 1</td>
<td>No beep</td>
</tr>
</tbody>
</table>
Call-Waiting Ring for SCCP Phones

Instead of the standard call-waiting beep sound through the handset, you can use a short ring for call-waiting notification. The default is for directory numbers to accept call interruptions, such as call waiting, and to issue a beeping sound for notification.

To use a ring sound, the directory number must accept call-waiting indicator tones. For configuration information, see [Configure Call-Waiting Indicator Tone on SCCP Phone](#) or [Enable Call Waiting on SIP Phones](#).

Cancel Call Waiting

Cancel Call Waiting (CCW) enables an SCCP phone user to disable Call Waiting for a call they originate. The user activates CCW, and thereby disables call waiting, by pressing the cancel call waiting (CW Off) soft key or by dialing the feature access code (FAC) before placing a call. Call Waiting is inactive during that call; anyone calling the user receives normal busy treatment and no call waiting tone interrupts the user’s active call. CCW automatically deactivates when the user disconnects from the call. CCW is supported on all lines that support the Call Waiting feature, including dual-lines and octo-lines.

This feature is supported in Cisco Unified CME 8.0 and later versions for SCCP IP phones and SCCP analog phones; it is not supported on SIP phones.

For configuration information, see [Configure Cancel Call Waiting on SCCP Phone](#).

Callback Busy Subscriber

This feature allows callers who dial a busy extension number to request a callback from the system when the called number is available. Callers can also request callbacks for extensions that do not answer, and the system will notify them after the called phone is next used.

There can be only one callback request pending against a particular extension number, although a caller can initiate more than one callback to different numbers. If a caller attempts to place a callback request on a number that already has a pending callback request, the caller hears a fast-busy tone. If the called number has call forwarding enabled, the callback request is placed against the final destination number.
No configuration is required for this feature. To display a list of phones that have pending callback requests, use the `show ephone-dn callback` command.

Hunt Groups

Hunt groups allow incoming calls to a specific number (pilot number) to be directed to a defined group of extension numbers.

Incoming calls are redirected from the pilot number to the first extension number as defined by the configuration. If the first number is busy or does not answer, the call is redirected to the next phone in the list. A call continues to be redirected on busy or no answer from number to number in the list until it is answered or until the call reaches the number that is defined as the final number.

The redirect from one directory number to the next in the list is also known as a *hop*. You can set the maximum number of redirects for specific peer or longest-idle hunt groups, and for the maximum number of redirects allowed in a Cisco Unified CME system, both inside and outside hunt groups. If a call makes the maximum number of hops or redirects without being answered, the call is dropped.

In Cisco Unified CME 9.0 and later versions, support for call statistics is added for voice hunt groups. To write all the ephone and voice hunt group statistics to a file, the `ephone-hunt statistics write-all` command is enhanced and renamed to `hunt-group statistics write-all` command. If applicable, the TFTP statistics report consists of both ephone and voice hunt group statistics.

In Cisco Unified CME 9.5 and later versions, the command `hunt-group statistics write-v2` is added to write all ephone hunt group statistics to a file along with total logged in and logged out time for agents. The command was enhanced in Unified CME Release 11.5 to add statistics for total logged in and logged out time for voice hunt group.

The `show telephony-service all` command is also enhanced to display the total number of ephone and voice hunt groups that have statistics collection turned on.

The `statistics collect` command under voice hunt-group configuration mode is introduced to enable the collection of call statistics for a voice hunt group.

The `show voice hunt-group statistics` command is introduced to display call statistics from voice hunt groups.

For Unified CME 11.5 and later versions, the `overwrite-dyn-stats (voice hunt-group)` command is introduced to overwrite statistics of previously joined dynamic agent with stats of newly joined dynamic agents for voice hunt group. The statistics for a dynamic agent are overwritten only when all the 32 available slots are used. For more information, see Cisco Unified Communications Manager Express Command Reference Guide.

For Unified CME 12.2 and later versions, Sequential, Parallel, Peer, and Longest Idle voice hunt groups support SIP shared line and mixed shared ine (SIP and SCCP Phones) directory numbers. All shared line features such as Hold and Remote resume, Barge, cBarge, Privacy, and calls through B-ACD is supported for calls that are placed through voice hunt groups.

The following are the known behavior patterns for the voice hunt group enhancement with shared line support, introduced in Unified CME Release 12.2:

- When you press the Decline softkey on one of the shared line DNs (configured across phones) in a voice hunt group for an incoming call, the shared line DNs on the other phones continue ringing. This behavior is typical to shared line DNs in a voice hunt group. For all shared lines that are not part of a voice hunt group, when you press the Decline softkey, all the corresponding shared line DNs stop ringing.

- Hlog feature is not supported on a shared DN. If a phone configured with Hlog has a shared DN as part of voice hunt group, then the Hlog functionality is supported only for the other lines that are part of voice hunt group on that phone.
For information on displaying statistics for hunt groups, see Cisco Unified CME B-ACD and Tcl Call-Handling Applications.

There are four different types of hunt groups. Each type uses a different strategy to determine the first number that rings for successive calls to the pilot number, as described below.

- **Sequential Hunt Groups**—Numbers always ring in the left-to-right order in which they are listed when the hunt group is defined. The first number in the list is always the first number to be tried when the pilot number is called. Maximum number of hops is not a configurable parameter for sequential hunt groups. Figure 57: Sequential hunt Group, on page 1206 shows an illustrated example.

- **Peer Hunt Groups**—The first number to ring is the number to the right of the directory number that was the last to ring when the pilot number was last called. Ringing proceeds in a circular manner, left to right, for the number of hops specified in the hunt group configuration. Figure 58: Peer hunt Group, on page 1207 shows an illustrated example.

- **Longest-Idle Hunt Groups**—Calls go first to the number that has been idle the longest for the number of hops specified when the hunt group was defined. The longest-idle time is determined from the last time that a phone registered, reregistered, or went on-hook. Figure 59: Longest-idle hunt Group, on page 1208 shows an illustrated example.

- **Parallel Hunt Groups (Call Blast)**—Calls ring all numbers in the hunt group simultaneously.

Ephone Hunt-group chains can be configured in any length, but the actual number of hops that can be reached in a chain is determined by the `max-redirect` command configuration. In the following example, a maximum redirect number 15 or greater must be configured for callers to reach the final 5000 number. If a lower number is configured, the call disconnects.

```plaintext
ephone-hunt 1 sequential
  pilot 8000
  list 8001, 8002, 8003, 8004
  final 9000

ephone-hunt 2 sequential
  pilot 9000
  list 9001, 9002, 9003, 9004
  final 7000

ephone-hunt 3 sequential
  pilot 7000
  list 7001, 7002, 7003, 7004
  final 5000
```

Cisco Unified CME 4.3 and later versions support the following Voice Hunt-Group features:

- **Call Forwarding to a Parallel Voice Hunt-Group (Call Blast)**
- **Call Transfer to a Voice Hunt-Group**
- **Member of Voice Hunt-Group can be a SIP phone, SCCP phone, FXS analog phone, DS0-group, PRI-group, or SIP trunk.**
Unified CME supports chaining (nesting) of a voice hunt group with another voice hunt group. The chaining of voice hunt groups is established by configuring the final number of the first voice hunt group as the pilot number of the second voice hunt group.

Note

For Unified CME B-ACD, the final destination for voice hunt groups is determined by the B-ACD service.

Unified CME supports the chaining (nesting) of a maximum of two voice hunt groups. The configuration ensures that there is no looping of calls placed to a voice hunt group.

Ephone-Hunt Groups and Voice Hunt-Groups Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ephone Hunt</th>
<th>Voice Hunt Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoints Supported</td>
<td>SCCP only</td>
<td>SIP, SCCP, PSTN, and FXS</td>
</tr>
<tr>
<td>Parallel Hunt Groups (Call Blast)</td>
<td>No (for alternative, see Shared-Line Overlays, on page 1231)</td>
<td>Yes</td>
</tr>
<tr>
<td>Hunt Statistics Support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>B-ACD Support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared Line</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Features such as present-call and login/logout</td>
<td>Yes</td>
<td>Yes (Only for SIP and SCCP phones)</td>
</tr>
</tbody>
</table>

Sequential Hunt Groups

In a sequential hunt group, extensions always ring in the order in which they are listed, left to right, when the hunt group is defined. The first number in the list is always the first number to be tried when the pilot number is called. Maximum number of hops is not a configurable parameter for sequential hunt groups.

From Unified CME 12.2 onwards, sequential voice hunt groups support shared lines and mixed shared lines. When calls are placed on a sequential voice hunt group and a shared DN is part of the hunt group, the call is placed sequentially. For the shared DN, the call would ring on all phones part of this shared DN. If none of the phones answer, then call would continue to the next DN in the hunt group.

Note

Consecutive numbers of the same phone cannot be members of a Sequential Voice Hunt Group when present call idle state (configured using the CLI command `present-call idle-phone`) is set to true. The limitation applies to both SIP and SCCP phones.
In a peer hunt group, extensions ring in a round-robin order. The first extension to ring is the number in the list to the right of the last extension to ring when the pilot number was last called. Ringing proceeds in a circular manner, left to right, for the number of hops specified when the hunt group was defined.

From Unified CME 12.2 onwards, peer voice hunt groups support shared and mixed shared lines. When calls are placed on a peer voice hunt group and a shared DN is part of the hunt group, the call is placed in a round-robin order. For the shared DN, the call would ring on all phones part of this shared DN. If none of the phones answer, then call would continue to the next DN in the hunt group.

Figure 58: Peer hunt Group, on page 1207 illustrates a peer hunt group.
Longest-Idle Hunt Groups

In a longest-idle hunt group, the algorithm for choosing the next extension to receive a call is based on a comparison of on-hook time stamps. The extension with the smallest on-hook time stamp value is chosen when the next call comes to the hunt group.

The default behavior is that an on-hook time stamp value for an extension is updated only when the agent answers a call. In Cisco Unified CME 4.0 and later versions, you can specify that an on-hook time stamp is updated when a call rings an extension and also when a call is answered by an agent.

From Unified CME 12.2 onwards, longest-idle voice hunt groups support shared lines and mixed shared lines. When calls are placed on a longest-idle voice hunt group and a shared DN is part of the hunt group, the call is placed based on a comparison of on-hook time stamps. For the shared DN, the call would ring on all phones part of this shared DN. If none of the phones answer, then call would continue to the next DN in the hunt group.

Figure 59: Longest-idle hunt Group, on page 1208 illustrates a longest-idle hunt group.
Parallel Hunt Groups (Call Blast)

In a parallel hunt group, calls simultaneously ring multiple phones. Using parallel hunt groups is also referred to as application-level forking because it enables the forking of a call to multiple destinations. In versions earlier than Cisco Unified CME 4.3, only SIP phones support parallel hunt groups. In Unified CME 4.3 and later versions, SCCP phones also support voice hunt groups.

You can enable functionality similar to parallel hunt groups on SCCP phones by using the ephone-dn overlay feature for shared lines. See Shared-Line Overlays, on page 1231.

From Unified CME 12.2 onwards, parallel voice hunt groups support shared lines and mixed shared lines. For parallel voice hunt groups, a maximum of 32 call blasts is supported, including shared-line and normal directory numbers. For example, consider a voice hunt group configured with 20 directory numbers, including 3 shared-lines assigned across three different phones. In this scenario, the count of shared line directory numbers is considered as 9 (3*3). Then, the total count of call blasts in this hunt group is 26 directory numbers (17 + 9). When the call blast limit of 32 is exceeded, then call is not placed for those voice hunt group directory numbers that exceed the limit.

In the following parallel hunt group example, when callers dial extension 1000, extension 1001, 1002, and so on ring simultaneously. The first extension to answer is connected. If none of the extensions answers, the call is forwarded to extension 2000, which is the number for the voice-mail service.

voice hunt-group 4 parallel
pilot 1000
list 1001, 1002, 1003, 1004
final 2000
The number of ringing calls that a parallel hunt group can support depends on whether call-waiting is enabled on the SIP phones.

If call-waiting is enabled (the default), parallel hunt groups support multiple calls up to the limit of call-waiting calls supported by a particular SIP phone model. You may not want to use unlimited call-waiting, however, with parallel hunt-groups if agents do not want a large number of waiting calls when they are already handling a call.

If call waiting is disabled, parallel hunt groups support only one call at a time in the ringing state. After a call is answered (by one of the phones in the hunt group), a second call is allowed. The second and subsequent calls ring only the idle phones in the hunt group, and bypass the busy phone that answered the first call (because this phone is connected to the first call). After the second call is answered, a third call is allowed, and so on until all the phones in the parallel hunt group are busy. The hunt group does not accept further calls until at least one phone returns to the idle/on-hook state.

When two or more phones within the same parallel hunt group attempt to answer the same call, only one phone can connect to the call. Phones that fail to connect must return to the on-hook state before they can receive subsequent calls. Calls that arrive before a phone is placed on-hook are not presented to the phone. For example, if a second call arrives after Phone 1 has answered the original call, but before Phone 2 goes back on-hook, the second call bypasses Phone 2 (because it is offhook).

When a phone returns to the idle/on-hook state, it does not automatically re-synchronize to the next call waiting to be answered. For example, in the previous scenario, if the second call is still ringing Phone 3 when Phone 2 goes on-hook, Phone 2 does not ring because it was offhook when the second call arrived.

For configuration information, see Configure Voice-Hunt Groups, on page 1257.

View and Join for Voice Hunt Groups

You can view voice hunt group related information on SIP and SCCP phones using the phone menu. The following information related to hunt groups can be viewed on the phone display:

- Name
- Pilot number
- Status

If voice hunt groups have been configured, the user can view the voice hunt group information using the service button on the phone, by navigating to My Phone Apps > Voice Hunt Groups. On selecting the voice hunt group option, a list of voice hunt groups will be displayed.

A voice hunt group includes the name of the hunt group, the pilot number and also the status of the DN indicating if the DN is a member of the hunt group. This information is displayed in the following method:

- If DN is a static member of the hunt group, then status is displayed with # (hash) symbol.
- If DN is dynamic member, the status is displayed with * (asterisk) symbol.

The following operations can be performed on the phone user interface:

- User can join or unjoin to or from voice hunt groups by selecting the Join or Unjoin softkey which is displayed on the voice hunt group page. The user can select the required voice hunt group using the up and down buttons.
• User can access the next or previous records of voice hunt groups by selecting the Next/Previous softkey options.

To display voice hunt-group information on the phone, user needs to configure `phone-display` command under voice hunt-groups.

Restrictions and Limitations

• A DN can join a maximum of six voice hunt groups.

• The displayed hunt group information is applicable only for the primary line of the phone.

• A primary DN can join or unjoin a voice hunt group using the Service button on the phone. If a phone is configured with multiple DNs, then DNs other than the primary DN can join the voice hunt groups by dialing the FAC standards.

• The voice hunt group information display feature is applicable only on the phones that support My Phone Apps menu. For example, 78xx, 88xx phone families are supported. However, 69xx, 39xx phone families are not supported.

Enable User Interface to View, Join, and Unjoin Voice Hunt Groups on SCCP Phone

This feature enables an SCCP phone user to view information related to the voice hunt groups and join or unjoin voice hunt groups from a menu on their phone. This feature is enabled by default. You must perform this task only if the feature was previously disabled on a phone.

Before you begin

Cisco Unified CME 10.5 or a later version.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone phone-tag`
4. `phone-ui voice-hunt-groups`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable`
Example: `Router> enable` | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Step 2 | `configure terminal`
Example: `Router# configure terminal` | Enters global configuration mode. |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>ephone phone-tag</td>
</tr>
<tr>
<td></td>
<td>phone-tag—Unique number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables a SCCP phone user to view information related to voice hunt groups and also join or unjoin from voice hunt groups.</td>
</tr>
<tr>
<td>Example:</td>
<td>phone-ui voice-hunt-groups</td>
</tr>
<tr>
<td></td>
<td>This command is enabled by default.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>end</td>
</tr>
</tbody>
</table>

Example

The following example shows that the **voice-hunt-groups** command is enabled on an SCCP phone.

```plaintext
ephone-dn 10 dual-line
number 1001
no huntstop
huntstop channel
ephone-dn 11 dual-line
```

Note

From Cisco Unified CME Release 10.5 onwards, SIP phones will display voice hunt group information, by default.

Configure Service URL Button On SCCP Phone Line Key

To implement service PLK feature line key buttons on Cisco Unified SCCP Phones, perform the following steps.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ephone template template-tag**
4. **url-button index type|url [name]**
5. **exit**
6. **ephone phone-tag**
7. **ephone-template template-tag**
8. **end**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable

Example:
Router> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal

Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 ephone template template-tag

Example:
Router(config)# ephone template 5</td>
<td>Enters ephone-template configuration mode to create an ephone template.
• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
</tr>
<tr>
<td>Step 4 url-button index type [url [name]]

Example:
Router(config-ephone-template)# url-button 1 myphoneapp
Router(config-ephone-template)# url-button 2 em
Router(config-ephone-template)# url-button 3 snr
Router(config-ephone-template)# url-button 4 voicehuntgroups
Router(config-ephone-template)# url-button 5 park-list
Router(config-ephone-template)# url-button 6 http://www.cisco.com</td>
<td>Configures a service URL feature button on a line key.
• Index—Unique index number. Range: 1 to 8.
• type—Type of service PLK button. The following types of URL service buttons are available:
 • myphoneapp: My phone application configured under phone user interface.
 • em: Extension Mobility
 • snr: Single Number Reach
 • voicehuntgroups: Voice Hunt Groups Information
 • park-list: Parked calls
• url name—Service URL with maximum length of 31 characters.</td>
</tr>
<tr>
<td>Step 5 exit

Example:
Router(config-ephone-template)# exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>Step 6 ephone phone-tag

Example:
Router(config)# ephone 36</td>
<td>Enters ephone configuration mode.
• phone-tag—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Step 7 ephone-template template-tag

Example:
Router(config-ephone)# ephone-template 5</td>
<td>Applies an ephone template to the ephone that is being configured.</td>
</tr>
</tbody>
</table>
Configure Service URL Button On SIP Phone Line Key

To implement service URL feature line key buttons on Cisco Unified IP Phones, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register template template-tag`
4. `url-button [index number] [url location] [label]`
5. `exit`
6. `voice register pool phone-tag`
7. `template template-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice register template 5</td>
<td>• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
<td></td>
</tr>
<tr>
<td>Step 4 url-button [index number] [url location] [label]</td>
<td>Configures a service url feature button on a line key.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# url-button 1 http://x.x.x.x:80/CMEserverForPhone/vhg_root_menu VHG_List Router(config-register-temp)# url-button 2 http://x.x.x.x:80/CMEserverForPhone/park_list Park_List</td>
<td>• x.x.x.x—CME IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Index number—Unique index number ranging from 1 to 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• URL location—Location of the URL.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• label—A label name which is displayed on phone.</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits ephone-template configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-register-temp)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 voice register pool phone-tag</td>
<td>Enters ephone configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 12</td>
<td>• phone-tag—Unique number that identifies this ephone during configuration tasks.</td>
<td></td>
</tr>
<tr>
<td>Step 7 template template-tag</td>
<td>Applies the ephone template to the phone.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# template 5</td>
<td>• template-tag—Unique identifier of the template that you created in Step 3.</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example
The following example shows URL buttons configured in the voice register template 1:

```
Router# show run
!
voice register template 1
url-button 1 http://x.x.x.x:80/CMEserverForPhone/vhg_root_menu VHG_List
url-button 2 http://x.x.x.x:80/CMEserverForPhone/park_list Park_List
url-button 5 http://www.cisco.com Cisco
!
voice register pool 50
```
What to do next

If you are done configuring the URL buttons for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Profiles for SIP Phones, on page 393.

Display Support for the Name of a Called Voice Hunt-Group

A voice hunt-group is associated with a pilot number. But because there is no association with the name of the voice hunt-group when calls are forwarded from the voice hunt-group to the final number, the forwarding number is sent without the name of the forwarding party. The final number may be in the form of a voice mail, a Basic Automatic Call Distribution (BACD) script, or another extension.

In Cisco Unified CME 9.5, the display of the name of the called voice hunt-group pilot is supported by configuring the following command in voice hunt-group or the ephone-hunt configuration mode:

```
[no] name "primary pilot name" [secondary "secondary pilot name"]
```

The secondary name is optional and when the secondary pilot name is not explicitly configured, the primary pilot name is applicable to both pilot numbers.

The following example configures the primary pilot name for both the primary and secondary pilot numbers:

```
name SALES
```

The following example configures different names for the primary and secondary pilot numbers:

```
name SALES secondary SALES-SECONDARY
```

Use quotes (""") when input strings have spaces in between as shown in the next three examples.

The following example associates a two-word name for the primary pilot number and a one-word name for the secondary pilot number:

```
name "CUSTOMER SERVICE" secondary CS
```

The following example associates a one-word name for the primary pilot number and a two-word name for the secondary pilot number:

```
name FINANCE secondary "INTERNAL ACCOUNTING"
```

The following example associates two-word names for the primary and secondary pilot numbers:

```
name "INTERNAL CALLER" secondary "EXTERNAL CALLER"
```

For configuration information, see Associate a Name with a Called Voice Hunt-Group, on page 1268.

For more configuration examples, see Example for Associating a Name with a Called Voice Hunt-Group, on page 1295.

For configuration information, see Configure Ephone-Hunt Groups on SCCP Phones, on page 1247.
The following `show` commands are modified to reflect the configured primary and secondary pilot names:

- `show ephone-hunt`
- `show voice hunt-group`

The information related to the name of the ephone-hunt group and voice hunt-group are sent to the phone and displayed on the phone’s user interface.

Restriction

- Display support applies to Cisco Unified SCCP IP phones in voice hunt-group and ephone-hunt configuration modes but are not supported in Cisco Unified SIP IP phones.
- Called name and called number information displayed on the caller’s phone follows existing behavior, where the called names and called numbers are updated so that a sequential hunt reflects the name and number of the ringing phone.

Support for Voice Hunt Group Descriptions

In Cisco Unified CME 9.5, a description can be specified for a voice hunt group using the `description` command in voice hunt-group configuration mode.

For a configuration example, see Example for Specifying a Description for a Voice Hunt-Group, on page 1296.

Prevent Local Call Forwarding to the Final Agent in a Voice Hunt-Groups

Local or internal calls are calls originating from a Cisco Unified SIP or Cisco Unified SCCP IP phone in the same Cisco Unified CME system.

Before Cisco Unified CME 9.5, the `no forward local-calls` command was configured in ephone-hunt group to prevent a local call from being forwarded to the next agent.

In Cisco Unified CME 9.5, local calls are prevented from being forwarded to the final destination using the `no forward local-calls to-final` command in parallel configuration mode or the sequential voice hunt-group configuration mode.

When the `no forward local-calls to-final` command is configured in sequential voice hunt-group configuration mode, local calls to the hunt-group pilot number are sent sequentially only to the list of members of the group using the rotary-hunt technique. In case all the group members of the voice hunt group are busy, the caller hears a busy tone. If any of the group members are available but do not answer, the caller hears a ringback tone and is eventually disconnected after the specified timeout. The call is not forwarded to the final number.

When the `no forward local-calls to-final` command is configured in parallel voice hunt-group configuration mode, local calls to the hunt-group pilot number are sent simultaneously to the list of members of the group using the blast technique. In case all the group members of the voice hunt group are busy, the caller hears a busy tone. If any of the group members are available but do not answer, the caller hears a ringback tone and is eventually disconnected after the specified timeout. The call is not forwarded to the final number.

For configuration information, see Prevent Local Call Forwarding to Final Agent in Voice Hunt-Groups, on page 1270.

For a configuration example, see Example for Preventing Local Call Forwarding in Parallel Voice Hunt-Groups, on page 1295.
Enhancement of Support for Voice Hunt Group Agent Statistics

Before Cisco Unified CME Release 11.5, total logged in and total logged out time statistics were supported only for ephone hunt group agents. In Cisco Unified CME 11.5, support for Total logged in and Total logged out time statistics is added for voice hunt group agents also.

- The output of the `show voice-hunt tag statistics` command is modified to display the additional information in the statistics.

For more configuration examples, see Example for Call Statistics From a Voice Hunt Group, on page 1302.

Enhancement of Support for Ephone-Hunt Group Agent Statistics

Before Cisco Unified CME 9.5, statistics were maintained for each ephone hunt group and each ephone-hunt group agent. Some of the statistics included the number of maximum and minimum agents, average time to answer, average time in a call, and average time on hold.

In Cisco Unified CME 9.5, support for hunt group agent statistics of Cisco Unified SCCP IP phones is enhanced to include the following information:

- Total logged in time—On an hourly basis, displays the duration (in seconds) since a specific agent logged into a hunt group.
- Total logged out time—On an hourly basis, displays the duration (in seconds) since a specific agent logged out of a hunt group.

The output of the `show ephone-hunt tag statistics` command is modified to display the additional information in the statistics.

For more configuration examples, see Example for Displaying Total Logged-In Time and Total Logged-Out Time for Each Hunt-Group Agent, on page 1297.

Restriction

- Statistics collection for Cisco Unified SCCP and SIP IP phones in Cisco Unified SRST are not supported.

Hunt Group Agent Availability Options

Three options increase the flexibility of hunt group agents by allowing them to dynamically join and leave hunt groups or to temporarily enter a not-ready state in which they do not receive calls.

Table 108: Comparison of Hunt Group Agent Availability Features, on page 1218 compares the following agent availability features:

- Dynamic Ephone Hunt Group Membership, on page 1219
- Dynamically Join or Unjoin Multiple Voice Hunt Groups, on page 1220
- Agent Status Control for Ephone Hunt Group, on page 1221
- Agent Status Control for Voice Hunt Group, on page 1222
- Automatic Agent Status Not-Ready for Ephone Hunt Group, on page 1224
Table 108: Comparison of Hunt Group Agent Availability Features

<table>
<thead>
<tr>
<th>Comparison Factor</th>
<th>Dynamic Membership</th>
<th>Agent Status Control</th>
<th>Automatic Agent Status Not-Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Allows an authorized agent to join and leave hunt groups.</td>
<td>Allows an agent to manually activate a toggle to temporarily enter a not-ready state, in which hunt-group calls bypass the agent’s phone.</td>
<td>Automatically puts an agent’s phone in a not-ready state after a specified number of hunt-group calls are unanswered by the agent’s phone.</td>
</tr>
<tr>
<td>Example</td>
<td>Agent A joins a hunt group at 8 a.m. and takes calls until 1 p.m., when he leaves the hunt group. While Agent A is a member of the hunt group, he occupies one of the wildcard slots in the list of numbers configured for the hunt group. At 1 p.m., Agent B joins the hunt group using the same wildcard slot that Agent A relinquished when he left.</td>
<td>Agent A takes a coffee break at 10 a.m. and puts his phone into a not-ready status while he is on break. When he returns he puts his phone back into the ready status and immediately starts receiving hunt-group calls again. He retained his wildcard slot while he was in the not-ready status.</td>
<td>Agent B is suddenly called away from her desk before she can manually put her phone into the not-ready status. After a hunt-group call is unanswered at Agent B’s phone, the phone is automatically placed in the not-ready status and it is not presented with further hunt-group calls. When Agent B returns, she manually puts her phone back into the ready status.</td>
</tr>
<tr>
<td>Hunt-group slot availability</td>
<td>An agent joining a hunt group occupies a wildcard slot in the hunt group list. An agent leaving the group relinquishes the slot, which becomes available for another agent.</td>
<td>An agent who enters the not-ready state does not give up a slot in the hunt group. The agent continues to occupy the slot regardless of whether the agent is in the not-ready status.</td>
<td>An agent who enters the not-ready does not give up a slot in the hunt group. The agent continues to occupy the slot regardless of whether the agent is in the not-ready status.</td>
</tr>
<tr>
<td>Agent activation method</td>
<td>An authorized agent uses a feature access code (FAC) to join a hunt group and a different FAC to leave the hunt group.</td>
<td>An agent uses the HLog soft key to toggle agent status between ready and not ready. Agents can also use the HLog FAC to toggle between ready and not-ready if FACs are enabled. If the HLog soft key is not enabled, the DND soft key can be used to put an agent in the not-ready status and the agent will not receive any calls.</td>
<td>An agent who is a member of a hunt group configured with the auto logout command does not answer the specified number of calls, and the agent’s phone is automatically changed to the not-ready status. The agent uses the HLog soft key or a FAC to return to the ready status. If the HLog soft key or FAC has not been enabled in the configuration, the agent uses the DND soft key to return to the ready status.</td>
</tr>
</tbody>
</table>
Comparison Factor

<table>
<thead>
<tr>
<th>Dynamic Membership</th>
<th>Agent Status Control</th>
<th>Automatic Agent Status Not-Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The system administrator uses the list command to configure up to 20 wildcard slots in a hunt group and uses the ephone-hunt login command to authorize certain directory numbers to use these wildcard slots. See Configure Ephone-Hunt Groups on SCCP Phones, on page 1247.</td>
<td>The system administrator uses the HLog keyword with the hunt-group logout command to provide an HLog soft key on display phones and uses the fac command to enable standard FACs or create a custom FAC. See Configure Ephone-Hunt Groups on SCCP Phones, on page 1247.</td>
<td>The system administrator uses the auto logout command to enable automatic agent status not-ready for a hunt group. This functionality is disabled by default. See Configure Ephone-Hunt Groups on SCCP Phones, on page 1247. See Configure Voice-Hunt Groups, on page 1257.</td>
</tr>
<tr>
<td>Optional customizations</td>
<td>The system administrator can establish custom FACs for agents to use to enter or leave a hunt group.</td>
<td>The system administrator can use the softkeys commands to change the position or prevent the display of the HLog soft key on individual phones.</td>
</tr>
</tbody>
</table>

Dynamic Ephone Hunt Group Membership

Hunt groups allow you to set up pools of extension numbers to answer incoming calls. Up to 20 wildcard slots can be entered in the list of hunt group extension numbers to allow dynamic group membership, in which authorized phone users can join a hunt group whenever a vacant wildcard slot is available and they can leave when they like. Each phone user who joins a group occupies one slot. If no slots are available, a user who tries to join a group hears a busy signal.

Allowing dynamic membership in a hunt group is a three-step process:

1. Use the list command in ephone-hunt configuration mode to specify up to 20 wildcard slots in the hunt group.
2. Use the ephone-hunt login command under each directory number that should be allowed to dynamically join and leave hunt groups. Directory numbers are disallowed from joining ephone hunt groups by default, so you have to explicitly allow this behavior for each directory number that you want to be able to log in to ephone hunt groups.
3. Use the **fac standard** command to enable standard FACs or the **fac custom** command to define custom FACs. FACs must be enabled so that agents can use them to join and leave ephone hunt groups.

To dynamically join an ephone hunt group, a phone user dials a standard or custom FAC for joining an ephone hunt group. The standard FAC to join an ephone hunt group is *3.

If multiple ephone hunt groups have been created that allow dynamic membership, the phone user must also dial the ephone hunt group pilot number. For example, if the following ephone hunt groups are defined, a phone user dials *38000 to join the Sales hunt group:

voice hunt-group 24 sequential
pilot 8000
list 8001, 8002, *, *
description Sales Group
final 9000

voice hunt-group 25 sequential
pilot 7000
list 7001, 7002, *, *
description Service Group
final 9000

To leave an ephone hunt group, a phone user dials the standard or custom FAC. The standard FAC to leave an ephone hunt group is #3. See Customize Softkeys, on page 897.

Note
The Dynamic Membership feature is different from the Agent Status Control feature and the Automatic Agent Status Not-Ready feature. **Table 108: Comparison of Hunt Group Agent Availability Features**, on page 1218 compares the features.

Dynamically Join or Unjoin Multiple Voice Hunt Groups

In Cisco Unified CME 10.5 and later versions, support for phones to dynamically join the voice hunt groups is added. This feature is supported on both the SIP and SCCP phones. A single DN can dynamically join and unjoin multiple voice hunt groups. You can perform this action on a maximum of six different voice hunt groups.

A single SCCP or SIP DN can join multiple voice hunt groups dynamically by using the existing FAC standards with pilot number of voice hunt groups. A primary DN of a phone can also join and unjoin the voice hunt group using the Join or Unjoin soft key that are available on the Voice Hunt Group information display page in the My Phone App menu by using the service button.

From Cisco Unified CME Release 10.5 onwards, a status message is displayed on the SCCP phone when a dynamic agent joins a hunt group. The support for status message display for a dynamic agent joining a hunt group on the SIP phone is supported from Cisco Unified CME Release 11.6 onwards.

If a SIP or mixed shared line DN (multi-line) joins multiple voice hunt groups, the phone displays the called number information on the phone's interface for 5 seconds. For SCCP phones, the voice hunt group-related information is displayed for the primary line of the phone.

Hunt groups allow you to set up pools of extension numbers to answer incoming calls. You can enter up to 32 wildcard slots in the list of voice hunt group extension numbers to allow dynamic group membership, in which phone users can join or unjoin a voice hunt group whenever a vacant wildcard slot is available. Each
phone user who joins a group occupies one slot. If no slots are available, a user who tries to join a group will fail to join.

Allowing dynamic membership in a voice hunt group is a three-step process:

1. Use the list command in voice-hunt configuration mode to specify up to 32 wildcard slots in the hunt group.

2. Use the voice-hunt-groups login command under each directory number that should be allowed to dynamically join and unjoin hunt groups. Directory numbers are not allowed from joining voice hunt groups by default, so you have to explicitly allow this behavior for each directory number that you want to be able to join or unjoin a voice hunt groups.

3. Use the fac standard command to enable standard FACs or the fac custom command to define custom FACs. FACs must be enabled so that agents can use them to join and unjoin hunt groups.

To dynamically join a voice hunt group, a phone user dials a standard or custom FAC for joining a voice hunt group. The standard FAC to join a voice hunt group is *3.

If multiple voice hunt groups have been configured with dynamic agents, the phone user must also dial the voice hunt group pilot number. If only one voice hunt group is configured with dynamic agent, on SIP phone only FAC is sufficient. Whereas, on SCCP phone, pilot number is mandatory. For example, if the following voice hunt groups are defined, a phone user dials *38000 to join the Sales hunt group:

```
voice hunt-group 24 sequential
  pilot 8000
  list 8001, 8002, *, *
  description Sales Group
  final 9000

voice hunt-group 25 sequential
  pilot 7000
  list 7001, 7002, *, *
  description Service Group
  final 9000
```

To unjoin a voice hunt group, a phone user dials the standard or custom FAC. The standard FAC to unjoin from all the hunt groups is #3. See Customize Softkeys, on page 897. If a DN joins multiple voice hunt groups, then to unjoin from a specific voice hunt group the user can dial the standard FAC #4 followed by the pilot number.

From Unified CME 12.2 onwards, SIP, SCCP, and mixed (both SIP and SCCP) shared DNs can Join or Unjoin a voice hunt group dynamically.

Agent Status Control for Ephone Hunt Group

The Agent Status Control feature allows ephone hunt group agents to control whether their phones are in the ready or not-ready status. A phone in the ready status is available to receive calls from the hunt group. A phone in the not-ready status blocks calls from the hunt group. Agents should use the not-ready status for short breaks or other temporary interruptions during which they do not want to receive hunt-group calls.

Agents who put their phones into the not-ready status do not relinquish their slots in the hunt group list.

Agents use the HLog soft key or the DND soft key to put a phone into the not-ready status. When the HLog soft key is used to put a phone in the not-ready status, it does not receive hunt group calls but can receive other calls. If the DND soft key is used, the phone does not receive any calls until it is returned to the ready status. The HLog and DND soft keys toggle the feature: if the phone is in the ready status, pressing the key puts the phone in the not-ready status and vice-versa.
The DND soft key is visible on phones by default, but the HLog soft key must be enabled in the configuration using the `hunt-group logout` command, which has the following options:

- **HLog**—Enables both an HLog soft key and a DND soft key on phones in the idle, seized, and connected call states. When you press the HLog soft key, the phone is changed from the ready to not-ready status or from the not-ready to ready status. When the phone is in the not-ready status, it does not receive calls from the hunt group, but it is still able to receive calls that do not come through the hunt group (calls that directly dial its extension). The DND soft key is also available to block all calls to the phone if that is the preferred behavior.

- **DND**—Enables only a DND soft key on phones. The DND soft key also changes a phone from the ready to not-ready status or from the not-ready to ready status, but the phone does not receive any incoming calls, including those from outside hunt groups.

Phones without soft-key displays can use a FAC to toggle their status from ready to not-ready and back to ready. The `fac` command is configured under telephony-service configuration mode to enable the standard set of FACS or to create custom FACS. The standard FAC to toggle the not-ready status at the directory number (extension) level is *4 and the standard FAC to toggle the not-ready status at the ephone level (all directory numbers on the phone) is *5. See Where to Go Next, on page 1313.

Note

The Agent Status Control feature is different from the Dynamic Membership feature and the Automatic Agent Status Not-Ready feature. Table 108: Comparison of Hunt Group Agent Availability Features, on page 1218 compares the features.

Agent Status Control for Voice Hunt Group

The Agent Status Control feature allows voice hunt group agents to control whether their phones are in the ready or not-ready status. A phone in the ready status is available to receive calls from the hunt group. A phone in the not-ready status blocks calls from the hunt group. Agents should use the not-ready status for short breaks or other temporary interruptions during which they do not want to receive hunt-group calls.

Agents who put their phones into the not-ready status do not relinquish their slots in the hunt group list.

Agents use the HLog softkey or the DND softkey to put a phone into the not-ready status. When the HLog softkey is used to put a phone in the not-ready status, it does not receive hunt group calls but can receive other calls. When Agent use DND button, phone will be put into Not-Ready state and Hunt group calls will not be routed. However normal or direct calls are still routed, but without audio notifications.

The DND softkey is visible on phones by default, but the HLog softkey must be enabled in the configuration using the `hunt-group logout` command, which has the following options:

- **HLog**—Enables both an HLog softkey and a DND softkey on phones in the idle, ringing, and connected call states. When you press the HLog softkey, the phone is changed from the ready to not-ready status or from the not-ready to ready status. When the phone is in the not-ready status, it does not receive calls from the hunt group, but it is still able to receive calls that do not come through the hunt group (calls that directly dial its extension). DND softkey suppresses audio notifications for direct calls.

- **DND**—Enables only a DND softkey on phones. The DND softkey also changes a phone from the ready to not-ready status or from the not-ready to ready status for voice hunt group calls. Phones receive those calls that directly dial the extension.
Phones without soft-key displays can use a FAC to toggle their status from ready to not-ready and back to ready. The `fac` command configured under telephony-service configuration mode must be used to enable the standard set of FACs or to create custom FACs. The standard FAC to toggle the not-ready status is *4 and the standard FAC to toggle the not-ready status at the phone level (all directory numbers on the phone) is *5. See Where to Go Next, on page 1313.

From Cisco Unified CME 10.5 onwards, SCCP and SIP phones are supported with Agent Status Control for voice hunt group. SCCP phone can log in or log out to or from voice hunt groups using HLog or DND softkeys, or standard or custom FACs, at line-Level as well as phone level. Whereas, SIP phones can log in or log out to or from voice hunt groups using only standard or custom FACs, only at Line-Level.

From Cisco Unified CME Release 11.6 onwards, SIP phones are also supported with agent status control, for voice hunt groups with HLog softkeys or FAC. Hence, SIP phones can logout or login to voice hunt group using HLog softkey, feature button, or FAC at phone level. If the phone is configured with a single line or multiple lines, and if these lines are members of a voice hunt group, then phone level logout or login results in logout or login of all lines on the phone.

To make HLog functionality work with the SIP or SCCP phones, you need to configure the command `hunt-group logout HLog` under telephony-service. Once user is logged out from the hunt group, phone displays a message stating that the user is logged out of hunt group. When the user is logged in to hunt group, the agent phone displays a message stating that the user is logged in to hunt group. For Unified CME 12.1 and earlier releases, if any directory number that is part of voice hunt group is shared across phones, then logout is not allowed at the phone level.

For Unified CME 12.2 and later releases, if any directory number that is part of voice hunt group is a shared-line, then logout is allowed for all lines at the phone level, except the shared-line. Shared-line status (always in logged-in state) in a voice hunt group cannot be toggled using agent status control functionality. While SCCP phones with a mixed shared-line only support line level logout of the phone lines (except the shared-line), SIP phones with a mixed shared-line support phone level logout of the phone lines (except the shared-line).

To enable FAC, you need to configure standard or custom FAC under telephony service configuration mode using the command `fac standard` or `fac custom`.

SIP and SCCP phone behavior is different for the following scenarios:

- If phone dn's are not members of a hunt group and phone is configured with an HLog feature button, then phone LED is off for SIP phones and on for SCCP phones.

- If a SIP phone is already in logged in state, any newly joining dn of that phone (in any voice hunt group) is automatically in logged in state.

- If a SIP phone is already in logged out state, any newly joining dn of that phone (in any voice hunt group) is automatically in logged out state.

- Irrespective of whether the SCCP phone is in logged out or logged in state, any dn of that phone joining any voice hunt group retains its previous state (logged out or logged in). For example, if dn 8002 is member of voice hunt group 1 in logged out state, then 8002 remains in logged out state on joining voice hunt group 2. If dn 8001 on the same phone (which was not part of any hunt group) joins any voice hunt group, it is in logged in state.

Note

From Cisco Unified CME Release 11.6 onwards, line level logout or login using FAC *4 is not supported for SIP phones (only supported on SCCP phones). SIP phones only support phone level logout or login using FAC *5.
Use *hlog-block* command under `voice hunt-group` for Agent Status Control. If you enable this command under `voice hunt-group`, the logout or login functionality for voice hunt-group is disabled. For example, you can use `hlog-block` command in voice hunt-groups where logout or login functionality using HLog softkey (or by using FAC) needs to be restricted. By default, `hlog-block` command is disabled.

Note
The Agent Status Control feature is different from the Dynamic Membership feature and the Automatic Agent Status Not-Ready feature. Table 108: Comparison of Hunt Group Agent Availability Features, on page 1218 compares the features.

Members Logout for Ephone Hunt Group

All members configured under an ephone-hunt are initialized with HLogin by default. The non-shared static members or agents in an ephone hunt group can be configured with the Hlogout initial state using the Members Logout feature. You can use the CLI command `members logout` configured under ephone-hunt configuration mode to enable the feature. From Cisco Unified CME Release 9.1, members logout is supported for ephone hunt groups.

Members logout cannot be used for shared DNs. Also, this feature is not supported if the CLI commands `list` and `hunt-group logout DND` are configured.

Members Logout for Voice Hunt Group

All members configured in a voice hunt group are initialized with HLogin by default. The non-shared static members or agents in a voice hunt group can be configured with the Hlogout initial state using members logout functionality. You can use the CLI command `members logout` configured under voice hunt group configuration mode to enable the feature. From Cisco Unified CME Release 11.6, members logout is supported in voice hunt groups.

If any member of a hunt group in a SIP phone logs out using the CLI command `members logout`, all other DN's of that phone in any hunt group are also logged out. This is because SIP phones only support phone level logout. For SCCP phones, only the DN that is configured with the CLI command `members logout` is logged out from the hunt group. Other member DN's do not logout as SCCP phones support line level logout.

Members logout cannot be used for shared DNs. The feature is not supported if the CLI command `hunt-group logout DND` is configured. Also, you cannot configure the CLI command `members logout` if the command `list` is configured.

Automatic Agent Status Not-Ready for Ephone Hunt Group

Before Cisco Unified CME 4.0, this feature was known as Automatic Hunt Group Logout. If the `auto logout` command was enabled for a hunt group, a phone was placed in DND mode when a line on the phone did not answer a call for that hunt group within the time limit specified in the `timeout` command.

In Cisco Unified CME 4.0 and later versions, the name and behavior of this feature has changed, although the Cisco IOS command remains the same. The `auto logout` command now specifies the number of unanswered hunt group calls after which the agent status of an directory number is automatically changed to not-ready. You can limit Automatic Agent Status Not-Ready to dynamic hunt group members (those who log in using a wildcard slot in the `list` command) or to static hunt group members (those who are explicitly named in the `list` command), or you can apply this behavior to all hunt group members.

A related command, `hunt-group logout`, specifies whether the phones that are automatically changed to the not-ready status should also be placed into DND mode. Phones in the not-ready status do not accept calls.
from hunt groups, but they do accept calls that directly dial their extensions. Phones in DND mode do not accept any calls. The default if the `hunt-group logout` command is not used is that the phones that are automatically placed in the not-ready status are also placed in DND mode.

Agents whose phones are automatically placed into the not-ready status do not relinquish their slots in the hunt group list.

Note
The Automatic Agent Status Not-Ready feature is different from the Dynamic Membership feature and the Agent Status Control feature. Table 108: Comparison of Hunt Group Agent Availability Features, on page 1218 compares the features.

Automatic Agent Status Not-Ready for Voice Hunt Group

From Cisco Unified CME Release 11.6, Automatic Hunt Group Logout is supported on voice hunt groups. If the **auto logout** CLI command is enabled for a hunt group, it specifies the number of successive unanswered hunt group calls after which the agent status of an directory number is automatically changed to not-ready. The range for the number of unanswered rings configured under **auto logout** command is 1 to 20. If auto logout is not configured with any value, the default value of 1 is applied.

When the **auto logout** command is enabled under voice hunt group, the auto logout behavior applies to all hunt group members (including static and dynamic members).

A related command, **hunt-group logout**, specifies whether the phones are automatically changed to the not-ready status. Phones in the not-ready state do not accept calls from hunt groups, but they do accept calls that directly dial their extensions.

If **hunt group logout HLog** is configured, then the DNs of that hunt group will go to logout state when the number of unanswered rings specified under **auto logout** command is exceeded. If **hunt group logout DND** is configured, then phone goes to DND mode and logs out the DND member when the number of unanswered rings specified under **auto logout** command is exceeded. If any hunt group members are logged out, they can use HLog Softkey, FAC, Feature Button, or DND softkey to login again.

Agents whose phones are automatically placed into the not-ready status do not relinquish their slots in the hunt group list. When an agent returns to ready status, the voice hunt group resumes sending calls to the agent’s DN.

Consider a voice hunt group in sequential, peer, or longest idle configuration mode with call hunt in progress. Then, auto logout count is incremented for agents who do not answer the call. The auto logout count is not incremented for agents who answer the call. In this scenario, the agent can be either an SCCP DN or a SIP DN.

Consider a voice hunt group in parallel configuration mode with call blast in progress to all logged in DN’s in the hunt group. If call is answered by any of the agents, then the remaining agents in that hunt group will not have auto logout count incremented. However, if call is not answered by any of the agents, then the auto logout count will be incremented for all the logged in agents. Here, agent can be either a SCCP DN or SIP DN.

Note
The Automatic Agent Status Not-Ready feature is different from the Dynamic Membership feature and the Agent Status Control feature. Table 108: Comparison of Hunt Group Agent Availability Features, on page 1218 compares the features.
All Agents Logged Out Display on SIP Phones

From Unified CME 12.2 release, All agents logged out status message is displayed on SIP phones. The feature is supported on Cisco 8800 Series IP Phones for Unified CME on Cisco 4000 Series Integrated Services Routers. For example, consider a voice hunt group with three directory numbers (DN) 4002, 4003, and 4004, configured in three different IP phones. When the last member of the voice hunt group is logged out, the message, All agents logged out displays at the line level for all the members in the hunt group. If one of the DNs in the voice hunt group with all members logged out has call forward all enabled as well, then the line level display on the phone toggles between the All agents logged out and the Forwarded to directory number messages. The duration of message display before toggling is 1.5 seconds. Localization is supported for the All Agents Logged Out Display on SIP Phones. For more information, see the figure.

Figure 60: All Agents Logged Out Message on SIP Phones

Presentation of Calls for Ephone Hunt Group

For phones configured under ephone hunt group configuration mode, presentation of calls is supported using the CLI command, present-call. When the CLI command is configured, calls from the ephone hunt group are presented only if all lines are on hook or in idle state.

If you configure idle-phone as the sub-mode option of the CLI command present-call, calls from the ephone-hunt group are presented only if all lines are idle on the phone on which the hunt-group line appears. This option does not consider monitored lines that have been configured on the phone using the button command.

If you configure onhook-phone as the sub-mode option of the CLI command present-call, calls from the ephone-hunt group are presented only if the phone on which the number appears is in onhook state. When this keyword is configured, calls in the ringing or hold state that are unrelated to the hunt group do not prevent the presentation of calls from the ephone-hunt group.

Presentation of Calls for Voice Hunt Group

For phones configured under voice hunt group configuration mode, presentation of calls is supported using the CLI command present-call. The feature is supported from Cisco Unified CME Release 11.6 onwards.
When the **present-call** CLI command is configured, calls from the voice hunt group are presented only if all lines are idle on the phone on which the hunt group line appears.

If the **present-call** CLI command is not configured, voice hunt group calls are presented without considering the status of other phone lines on the phone. Hence, voice hunt group presents calls to an ephone or voice register pool whenever the phone line (ephone-dn or voice register dn) that corresponds to a number in a voice hunt group list is available. Hence, when you configure the **present-call** CLI command, you get the additional control to ensure that hunt group calls do not possibly go unanswered.

Night Service

The night-service feature allows you to provide coverage for unstaffed extensions during hours that you designate as “night-service” hours. During the night-service hours, calls to the designated extensions, known as night-service directory numbers or night-service lines, send a special “burst” ring (for SCCP phones and SIP phones) to night-service phones that have been specified to receive this special ring. Phone users at the night-service phones can then use the call-pickup feature to answer the incoming calls from the night-service directory numbers.

For example, the night-service feature can allow an employee working after hours to intercept and answer calls that are presented to an unattended receptionist’s phone. This feature is useful for sites at which all incoming public switched telephone network (PSTN) calls have to be transferred by a receptionist. This is because all the Direct Inward Dialing (DID) calls are not published to PSTN for Cisco Unified CME system. When a call arrives at the unattended receptionist’s phone during hours that are specified as night service, a ring burst notifies a specified set of phones of the incoming call. A phone user at any of the night-service phones can intercept the call using the call-pickup feature. Night-service call notification is sent every 12 seconds until the call is either answered or aborted.

A user can enter a night-service code to manually toggle night-service treatment off and on from any phone that has a line assigned to night service. Before Cisco CME 3.3, using the night-service code turns night service on or off only for directory numbers on the phone at which the code is entered. In Cisco CME 3.3 and later versions, using the night-service code at any phone with a night-service directory number turns night service on or off for all phones with night-service directory numbers. From Unified CME 11.5 onwards, night service feature is supported on SIP phones along with SCCP phones.

Mixed deployment of SIP and SCCP phones is supported from Cisco Unified CME Release 11.6. Any combination of SIP and SCCP phones are supported across incoming call, unstaffed DNs, and agent phones. For DNs in which night service is enabled, notifications are sent to both SIP and SCCP phones that are designated as night service agents in a mixed deployment.

Figure 61: Night Service for SCCP Phones, on page 1228 illustrates night service for SCCP phones.
Figure 61: Night Service for SCCP Phones

1. Extension 1000 has been designated as a night-service extension (phone-dn). When extension 1000 receives an incoming call during a night-service period, phone 5 rings and notification is made to the night-service phone.

2. Phones 14 and 15 have been designated as night-service phones. When phone 5 starts ringing, phones 14 and 15 ring once and display “Night Service 1000.” The incoming call on extension 1000 can be answered from phone 14 or phone 15 using call pickup.

```bash
telephony-service
night-service-day Wed 17:00 27:00
night-service-day Sat 17:00 27:00
night-service-day Sun 17:00 07:59
night-service-days Mon 06:00 06:00
night-service-code 1111

phone-dn 1
number 1000
night-service-call

phone-dn 10
number 1010

phone-dn 11
number 1030

phone 5
mac-address 1111.2222.3333
button 1:1

phone 14
mac-address 1111.2222.3333
button 1:10
night-service-call

phone 15
mac-address 1111.2222.3333
button 1:21
night-service-call
```

Figure 62: Night Service for SIP Phones, on page 1229 illustrates night service for SIP phones.
Overlaid Ephone-dns

Overlaid ephone-dns are directory numbers that share the same button on a phone. Overlaid ephone-dns can be used to receive incoming calls and place outgoing calls. Up to 25 ephone-dns can be assigned to a single phone button. They can have the same extension number or different numbers. The same ephone-dns can appear on more than one phone and more than one phone can have the same set of overlaid ephone-dns.

The order in which overlaid ephone-dns are used by incoming calls can be determined by the call hunt commands, preference and huntstop. For example, ephone-dn 1 to ephone-dn 4 have the same extension number, 1001. Three phones are configured with the button 101,2,3,4 command. A call to 1001 will ring on the ephone-dn with the highest preference and display the caller ID on all phones that are on hook. If another incoming call to 1001 is placed while the first call is active (and the first ephone-dn with the highest preference is configured with the no huntstop command), the second call will roll over to the ephone-dn with the next-highest preference, and so forth. For more information, see Call Hunt, on page 1198.
If the ephone-dns in an ephone-dn overlay use different numbers, incoming calls go to the ephone-dn with the highest preference. If no preferences are configured, the dial-peer hunt command setting is used to determine which ephone-dns are used for incoming calls. The default setting for the dial-peer hunt command is to randomly select an ephone-dn that matches the called number.

To continue or to stop the search for ephone-dns, you must use, respectively, the no huntstop and huntstop commands under the individual ephone-dns. The huntstop setting is applied only to the dial peers affected by the ephone-dn command in telephony-service mode. Dial peers configured in global configuration mode comply with the global configuration huntstop setting.

Figure 63: Overlaid Ephone-dn (Simple Case), on page 1230 shows an overlay set with two directory numbers and one number that is shared on two phones. Ephone-dn 17 has a default preference value of 0, so it will receive the first call to extension 1001. The phone user at phone 9 answers the call, and a second incoming call to extension 1001 can be answered on phone 10 using directory number 18.

When a call is answered on an ephone-dn, that ephone-dn is no longer available to other phones that share the ephone-dn in overlay mode. For example, if extension 1001 is answered by phone 1, caller ID for extension 1001 displays on phone 1 and is removed from the screens of phone 2 and phone 3. All actions pertaining to the call to extension 1001 (ephone-dn 17) are displayed on phone 1 only. If phone 1 puts extension 1001 on hold, the other phones will not be able to pick up the on-hold call using a simple shared-line pickup. In addition, none of the other four phones will be able to make outgoing calls from the ephone-dn while it is in use. When phone users press button 1, they will be connected to the next available ephone-dn listed in the button command. For example, if phone 1 and phone 2 are using ephone-dn 1 and ephone-dn 2, respectively, phone 3 must pick up ephone-dn 3 for an outgoing call.

If there are more phones than ephone-dns associated with an ephone-dn overlay set, it is possible for some phones to find that all the ephone-dns within their overlay set are in use by other phones. For example, if five phones have a line button configured with the button 1o1, 2, 3 command, there may be times when all three of the ephone-dns in the overlay set are in use. When that occurs, the other two phones will not be able to use an ephone-dn in the overlay set. When all ephone-dns in an overlay set are in use, phones with this overlay set will display the remote-line-in-use icon (a picture of a phone with a flashing X through it) for the corresponding line button. When at least one ephone-dn becomes available within the overlay set (that is, an ephone-dn is either idle or ringing), the phone display reverts to showing the status of the available ephone-dn (idle or ringing).
Shared-Line Overlays

Dual-line ephone-dns can also use overlays. The configuration parameters are the same as for single-line ephone-dns, except that the **hunstop channel** command must be used to keep calls from hunting to the ephone-dn’s second channel.

The primary ephone-dn in a shared-line overlay set should be unique to the phone to guarantee that the phone has a line available for outgoing calls, and to ensure that the phone user can obtain dial-tone even when there are no idle lines available in the rest of the shared-line overlay set. Use a unique ephone-dn to provide for a unique calling party identity on outbound calls made by the phone so that the called user can see which specific phone is calling.

The following example shows the configuration for a simple shared-line overlay set. The primary ephone-dn that is configured for each phone is unique while the remaining ephone-dns 10, 11, and 12 are shared in the overlay set on both phones.

```plaintext
ephone 1
  mac-address 1111.1111.1111
  button 101,10,11,12
!
ephone 2
  mac-address 2222.2222.2222
  button 102,10,11,12
```

A more complex directory number configuration mixes overlaid directory numbers with shared directory numbers and plain dual-line directory numbers on the same phones. **Figure 64: Overlaid Ephone-dn (Complex Case), on page 1232** illustrates the following example of a manager with two assistants. On the manager’s phone the same number, 2001, appears on button 1 and button 2. The two line appearances of extension 2001 use two single-line directory numbers, so the manager can have two active calls on this number simultaneously, one on each button. The directory numbers are set up so that button 1 will ring first, and if a second call comes in, button 2 will ring. Each assistant has a personal directory number and also shares the manager’s directory numbers. Assistant 1 has all three directory numbers in an overlay set on one button, whereas assistant 2 has one button for the private line and a second button with both of the manager’s lines in an overlay set. A sequence of calls might be as follows.

1. An incoming call is answered by the manager on extension 2001 on button 1 (directory number 20).
2. A second call rings on 2001 and rolls over to the second button on the manager’s phone (directory number 21). It also rings on both assistants’ phones, where it is also directory number 21, a shared directory number.
3. Assistant 2 answers the call. This is a shared overlay line (one directory number, 21, is shared among three phones, and on two of them this directory number is part of an overlay set). Because it is shared with button 2 on the manager’s phone, the manager can see when assistant 2 answers the call.
4. Assistant 1 makes an outgoing call on directory number 22. The button is available because of the additional directory numbers in the overlay set on the assistant 1 phone.

At this point, the manager is in conversation on directory number 20, assistant 1 is in conversation on directory number 22, and assistant 2 is in conversation on directory number 21.
Call Waiting for Overlaid Ephone-dns

Call waiting allows phone users to know that another person is calling them while they are talking on the phone. Phone users hear a call-waiting tone indicating that another party is trying to reach them. Calls to IP phones with soft keys can be answered with the Answer soft key. Calls to analog phones are answered using hookflash. When phone users answer a call-waiting call, their original call is automatically put on hold. If phone users ignore a call-waiting call, the caller is forwarded if call-forward no-answer has been configured.

In Cisco CME 3.2.1 and later versions, call waiting is available for overlaid ephone-dns. The difference in configuration between overlaid ephone-dns with call waiting and overlaid ephone-dns without call waiting is that overlaid ephone-dns with call waiting use the c keyword in the button command and overlaid ephone-dns without call waiting use the o keyword. For configuration information, see Configure Overlaid Ephone-dns on SCCP Phones, on page 1283.

The behavior of overlaid ephone-dns with call waiting and overlaid ephone-dns without call waiting is the same, except for the following:

- Calls to numbers included in overlaid ephone-dns with call waiting will cause inactive phones to ring and active phones connected to other parties to generate auditory call-waiting notification. The default sound is beeping, but you can configure an ephone-dn to use a ringing sound. (See Configure Call-Waiting Indicator Tone on SCCP Phone, on page 1241.) Visual call-waiting notification includes the blinking of handset indicator lights and the display of caller IDs.
For example, if three of four phones are engaged in calls to numbers from the same overlaid ephone-dn with call-waiting and another call comes in, the one inactive phone will ring, and the three active phones will issue auditory and visual call-waiting notification.

- In Cisco Unified CME 4.0 and later versions, up to six waiting calls can be displayed on Cisco Unified IP Phone 7940G, 7941G, 7941G-GE, 7960G, 7961G, 7961G-GE, 7970G, and 7971G-GE. For all other phones and earlier Cisco Unified CME versions, two calls to numbers in an overlaid ephone-dn set can be announced. Subsequent calls must wait in line until one of the two original calls has ended. The callers who are waiting in the line will hear a ringback tone.

For example, a Cisco Unified IP Phone 7910 (maximum two call-waiting calls) has a button configured with a set of overlaid ephone-dns with call waiting (button 1c1,2,3,4). A call to ephone-dn 1 is answered. A call to ephone-dn 2 generates call-waiting notification. Calls to ephone-dn 3 and ephone-dn 4 will wait in line and remain invisible to the phone user until one of the two original calls ends. When the call to ephone-dn 1 ends, the phone user can then talk to the person who called ephone-dn 2. The call to ephone-dn 3 issues call-waiting notification while the call to ephone-dn 4 waits in line. (The Cisco Unified IP Phone 7960 supports six calls waiting.) Phones configured for call waiting do not generate call-waiting notification when they are transferring calls or hosting conference calls.

Note that if an overlaid ephone-dn has call-forward-no-answer configured, calls to the ephone-dn that are unanswered before the no-answer timeout expires are forwarded to the configured destination. If call-forward-no-answer is not configured, incoming calls receive ringback tones until the calls are answered.

More than one phone can use the same set of overlaid ephone-dns. In this case, the call-waiting behavior is slightly different. The following example demonstrates call waiting for overlaid ephone-dns that are shared on two phones:

```plaintext
ephone 1
button 1c1,2,3,4
!
ephone 2
button 1c1,2,3,4
```

1. A call to ephone-dn 1 rings on ephone 1 and on ephone 2. Ephone 1 answers, and the call is no longer visible to ephone 2.

2. A call to ephone-dn 2 issues a call-waiting notification to ephone 1 and rings on ephone 2, which answers. The second call is no longer visible to ephone 1.

3. A call to ephone-dn 3 issues a call-waiting notification to ephone 1 and ephone 2. Ephone 1 puts the call to ephone-dn 1 on hold and answers the call to ephone-dn 3. The call to ephone-dn 3 is no longer visible to ephone 2.

4. A call to ephone-dn 4 is issues a call-waiting notification on ephone 2. The call is not visible on ephone 1 because it has met the two-call maximum by handling the calls to ephone-dn 1 and ephone-dn 3. (Note that the call maximum is six for those phones that are able to handle six call-waiting calls, as previously described.)

Note

Ephone-dns accept call interruptions, such as call waiting, by default. For call waiting to work, the default must be active. For more information, see Configure Call-Waiting Indicator Tone on SCCP Phone, on page 1241.
Extend Calls for Overlaid Ephone-dns to Other Buttons on the Same Phone

Phones with overlaid ephone-dns can use the button command with the x keyword to dedicate one or more additional buttons to receive overflow calls. If an overlay button is busy, an incoming call to any of the other ephone-dns in the overlay set rings on the first available overflow button on each phone that is configured to receive the overflow. This feature works only for overlaid ephone-dns that are configured with the button command and the o keyword; it is not supported with overlaid ephone-dns that are configured using the button command and the c keyword or other types of ephone-dns that are not overlaid.

Using the button command with the c keyword results in multiple calls on one button (the button is overlaid with multiple ephone-dns that have call waiting), whereas using the button command with the o keyword and the x keyword results in one call per button and calls on multiple buttons.

For example, an ephone has an overlay button with ten numbers assigned to it using the button command and the o keyword. The next two buttons on the phone are configured using the button command and the x keyword. These buttons are reserved to receive additional calls to the overlaid extensions on the first button when the first button is in use.

ephone 276
button 1o24,25,26,27,28,29,30,31,32,33 2x1 3x1

For configuration information, see Configure Overlaid Ephone-dns on SCCP Phones, on page 1283.

Configure Call Coverage Features

Configure Call Hunt on SCCP Phones

To configure a group of directory numbers to provide call coverage for a single called number, perform the following steps for each directory number in the group.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag [dual-line]
4. number number [secondary number] [no-reg [both | primary]]
5. preference preference-order [secondary secondary-order]
6. no huntstop or huntstop
7. huntstop channel
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

* Enter your password if prompted.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ephone-dn dn-tag [dual-line]</code></td>
<td>Enters ephone-dn configuration mode for the purpose of configuring a directory number.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# ephone-dn 20 dual-line</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>`number number [secondary number] [no-reg [both</td>
<td>primary]]`</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-dn)# number 101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assign the same number to several primary or secondary ephone-dns to create a group of virtual dial peers through which the incoming called number must search.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>preference preference-order [secondary secondary-order]</code></td>
<td>Sets the preference value for the ephone-dn.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-dn)# preference 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Default: 0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Increment the preference order for subsequent ephone-dns with the same number. That is, the first directory number is preference 0 by default and you must specify 1 for the second ephone-dn with the same number, 2 for the next, and so on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>secondary secondary-order</code>—(Optional) Preference value for the secondary number of an ephone-dn. Default is 9.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>no huntstop</code> or <code>huntstop</code></td>
<td>Explicitly enables call hunting behavior for a directory number.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-dn)# no huntstop or Router(config-ephone-dn)# huntstop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configure <code>no huntstop</code> for all ephone-dns, except the final ephone-dn, within a set of ephone-dns with the same number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Configure the <code>huntstop</code> command for the final ephone-dn within a set of ephone-dns with the same number.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>huntstop channel</code></td>
<td>(Optional) Enables channel huntstop, which keeps a call from hunting to the next channel of a directory number if the first channel is busy or does not answer.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-dn)# huntstop channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required for dual-line ephone-dns that are used for call hunting.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>end</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Verify Call Hunt Configuration on SCCP Phones

To verify the configuration for call hunt, perform the following steps.

SUMMARY STEPS

1. show running-config
2. show telephony-service ephone-dn
3. show telephony-service all or show telephony-service dial-peer

DETAILED STEPS

Step 1 show running-config
This command displays your configuration. Preference and huntstop information is listed in the ephone-dn portion of the output.

Router# show running-config

ephone-dn 2 dual-line
number 126
description FrontDesk
name Receptionist
preference 1
call-forward busy 500
huntstop channel
no huntstop

Step 2 show telephony-service ephone-dn
This command displays ephone-dn preference and huntstop configuration information.

Step 3 show telephony-service all or show telephony-service dial-peer
These commands display preference and huntstop configurations for ephone-dn dial peers.

Router# show telephony-service dial-peer

!
Configure Call Hunt on SIP Phones

To configure the call hunting feature and prevent hunt-on-busy from redirecting a call from a busy phone into a dial peer that has been setup with a catch-all default destination, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register dn dn-tag
4. number number
5. preference preference-order
6. huntstop
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register dn dn-tag</td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or an MWI.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register dn 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 number number</td>
<td>Associates a phone number with the directory number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Assign the same number to several directory numbers to create a group of virtual dial peers through which the incoming called number must search.</td>
</tr>
<tr>
<td>Router(config-register-dn)# number 5001</td>
<td></td>
</tr>
</tbody>
</table>
Enable Call Pickup

To enable Call Pickup features on SCCP or SIP phones, perform the following steps.

Restriction

- SIP phones that do not support the PickUp and GpickUp soft keys must use feature access codes (FACs) to access these features.
- Different directory numbers with the same extension number must have the same Pickup configuration.
- A directory number can be assigned to only one pickup group.
- Pickup group numbers can vary in length, but must have unique leading digits. For example, if you configure group number 17, you cannot also configure group number 177. Otherwise a pickup in group 17 is always triggered before the user can enter the final 7 for 177.
- Calls from H.323 trunks are not supported on SIP phones.

Before you begin

- SIP phones require Cisco Unified CME 7.1 or a later version.
- The PickUp and GPickUp soft keys display by default on supported SCCP and SIP phones. If previously disabled, you must enable these soft keys with the `softkeys idle` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`

Purpose

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>preference preference-order</code></td>
<td>Creates the preference order for matching the VoIP dial peers created for the number associated with this directory number to establish the hunt strategy for incoming calls.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# preference 4</td>
<td></td>
</tr>
</tbody>
</table>

Default is 0, which is the highest preference.

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>huntstop</code></td>
<td>Disables call-hunting behavior for an extension on a SIP phone.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# huntstop</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you want to collect statistics for hunt groups, see [Cisco Unified CME B-ACD and Tcl Call-Handling Applications](#).
3. `telephony-service`
4. `service directed-pickup [gpickup]`
5. `fac {standard | custom pickup (direct | group | local) custom-fac}`
6. `exit`
7. `ephone-dn dn-tag [dual-line | octo-line]` or `voice register dn dn-tag`
8. `pickup-group group-number`
9. `pickup-call any-group`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 service directed-pickup [gpickup]</td>
<td>Enables Directed Call Pickup and modifies the function of the GPickUp and PickUp soft keys.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# service directed-pickup gpickup</td>
<td>• <code>gpickup</code>—(Optional) Enables using the GPickUp soft key to perform Directed Call Pickup on SCCP phones. This keyword is supported in Cisco Unified CME 7.1 and later versions.</td>
</tr>
<tr>
<td></td>
<td>• This command determines the specific soft keys used to access different Call Pickup features on SCCP and SIP phones. For a description, see the service directed-pickup command in the Cisco Unified CME Command Reference.</td>
</tr>
<tr>
<td>Step 5 fac {standard</td>
<td>custom pickup (direct</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# fac custom pickup group #35</td>
<td>• <code>standard</code>—Enables standard FACs for all phones. Standard FAC for Park Retrieval is **10.</td>
</tr>
<tr>
<td></td>
<td>• <code>custom</code>—Creates a custom FAC for a feature.</td>
</tr>
<tr>
<td></td>
<td>• <code>custom-fac</code>—User-defined code to dial using the keypad on an IP or analog phone. Custom FAC can be up to 256 characters and contain numbers 0 to 9 and *, #.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# exit</td>
</tr>
<tr>
<td>7</td>
<td>ephone-dn dn-tag [dual-line</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 20 dual-line</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register dn 20</td>
</tr>
<tr>
<td>8</td>
<td>pickup-group group-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# pickup-group 30</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# pickup-group 30</td>
</tr>
<tr>
<td>9</td>
<td>pickup-call any-group</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# pickup-call any-group</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# pickup-call any-group</td>
</tr>
<tr>
<td>10</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# end</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-dn)# end</td>
</tr>
</tbody>
</table>
Example

The following example shows the Group Pickup and Local Group Pickup features enabled with the `service directed-pickup gpickup` command. Extension 1005 on phone 5 and extension 1006 on phone 6 are assigned to pickup group 1.

```
telephony-service
load 7960-7940 P0030B000500
load E61 SCCP61.8-2-2SR2S
max-ephones 100
max-dn 240
ip source-address 15.7.0.1 port 2000
service directed-pickup gpickup
cnf-file location flash:
    cnf-file perphone
voicemail 8900
max-conferences 8 gain -6
call-park system application
transfer-system full-consult
fac standard
create cnf-files version-stamp 7960 Sep 25 2007 21:25:47
!
!
ephone-dn 5
number 1005
pickup-group 1
!
!
ephone-dn 6
number 1006
pickup-group 1
!
!
ephone 5
mac-address 0001.2345.6789
type 7962
button 1:5
!
!
ephone 6
mac-address 000F.F758.E70E
type 7962
button 1:6
```

Configure Call-Waiting Indicator Tone on SCCP Phone

To specify the type of audible call-waiting indicator on a SCCP phone, perform the following steps. The default is for directory numbers to accept call interruptions, such as call waiting, and to issue a beep tone. Instead of the standard call waiting beep, you can enable a ring tone for call-waiting.
The call-waiting ring option is not supported if the ephone-dn is configured with the `no call-waiting beep accept` command.

If you configure a button to have a silent ring, you will not hear a call-waiting beep or call-waiting ring regardless of whether the ephone-dn associated with the button is configured to generate a call-waiting beep or call-waiting ring. To configure a button for silent ring, see Assign Directory Numbers to SCCP Phones, on page 266.

The call-waiting ring option is not supported on the Cisco Unified IP Phone 7902G, Cisco Unified IP Phone 7905G, or Cisco Unified IP Phone 7912G.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn dn-tag [dual-line]`
4. `call-waiting beep [accept | generate]`
5. `call-waiting ring`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | 1. `enable`

Example:

```
Router> enable
```

Enables privileged EXEC mode.

- Enter your password if prompted.

| **Step 2** | 2. `configure terminal`

Example:

```
Router# configure terminal
```

Enters global configuration mode.

| **Step 3** | 3. `ephone-dn dn-tag [dual-line]`

Example:

```
Router(config)# ephone-dn 20 dual-line
```

Enters ephone-dn configuration mode, creates an ephone-dn, and optionally assigns it dual-line status.

| **Step 4** | 4. `call-waiting beep [accept | generate]`

Example:

```
Router(config-ephone-dn)# no call-waiting beep accept
```

Enables an ephone-dn to generate or accept call-waiting beeps.

- Default is directory number both accepts and generates call-waiting beep.

- The beep is heard only if the other ephone-dn is configured to accept call-waiting beeps (default).
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>(Optional) Enables an ephone-dn to use a ring indicator for call-waiting notification.</td>
</tr>
<tr>
<td>call-waiting ring</td>
<td>- To use this command, do not disable call-waiting beep by using the no call-waiting beep accept command.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

Verify Call-Waiting Indicator Tone on SCCP Phone

Step 1

Use the `show running-config` command to verify your configuration. Call-waiting settings are listed in the ephone-dn portion of the output. If the **no call-waiting beep generate** and the **no call-waiting beep accept** commands are configured, the `show running-config` command output will display the **no call-waiting beep** command.

Example:

```plaintext
Router# show running-config
!
ephone-dn 3 dual-line
  number 126
  name Accounting
  preference 2 secondary 9
  huntstop
  huntstop channel
  call-waiting beep
!
```

Step 2

Use the `show telephony-service ephone-dn` command to display call-waiting configuration information.

Example:

```plaintext
Router# show telephony-service ephone-dn

ephone-dn 1 dual-line
  number 126 secondary 1261
  preference 0 secondary 9
  no huntstop
  huntstop channel
  call-forward busy 500 secondary
  call-forward noan 500 timeout 10
```
Configure Cancel Call Waiting on SCCP Phone

To enable a phone user to cancel call waiting by using the CWOff soft key or a FAC, perform the following steps.

Restriction

• Call Waiting must be disabled by pressing the CWOff soft key or using the FAC before placing a call; it cannot be activated or deactivated during a call.
• The CWOff soft key is not available when initiating Call Transfer.

Before you begin

For information about standard and custom FACs, see Feature Access Codes, on page 733.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template-tag
4. softkeys seized \{[CallBack] [Cfwdall] [CWOff] [Endcall] [Gpickup] [HLog] [MeetMe] [Pickup] [Redial] \}
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. exit
9. telephony-service
10. fac \{standard | custom ccw custom-fac\}
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ephone-template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# ephone-template 5</td>
<td>• template-tag—Unique identifier for the ephone template. Range: 1 to 20.</td>
</tr>
</tbody>
</table>

Step 4

softkeys seized { [CallBack] [Cfwdall] [CWOff] [Endcall] [Gpickup] [HLog] [MeetMe] [Pickup] [Redial] }

Example:

Router(config-ephone-template)# softkeys seized CWOff Cfwdall Endcall Redial

(Optional) Modifies the order and type of soft keys that display on an IP phone during the seized call state.

- You can enter any of the keywords in any order.
- Default is all soft keys are displayed in alphabetical order.
- Any soft key that is not explicitly defined is disabled.

Step 5

exit

Example:

Router(config-ephone-template)# exit

Exits ephone-template configuration mode.

Step 6

ephone phone-tag

Example:

Router(config)# ephone 12

Enters ephone configuration mode.

- phone-tag—Unique number that identifies this ephone during configuration tasks.

Step 7

ephone-template template-tag

Example:

Router(config-ephone)# ephone-template 5

Applies the ephone template to the phone.

- template-tag—Unique identifier of the ephone template that you created in Step 3, on page 1244.

Step 8

exit

Example:

Router(config-ephone)# exit

Exits ephone configuration mode.

Step 9

telephony-service

Example:

Router(config)# telephony-service

Enters telephony-service configuration mode.

Step 10

fac { standard | custom ccw custom-fac }

Example:

Router(config-telephony)# fac custom ccw **8

Enables standard FACs or creates a custom FAC or alias.

- standard—Enables standard FACs for all phones. Standard FAC for cancel call waiting is *1.
- custom—Creates a custom FAC for a FAC type.
- custom-fac—User-defined code to be dialed using the keypad on an IP or analog phone. Custom FAC can be up to 256 characters long and contain numbers 0 to 9 and * and #.

Step 11

end

Example:

Router(config-telephony)# end

Returns to privileged EXEC mode.
Example
The following example shows a configuration where the order of the CWOff soft key is modified for the seized call state in ephone template 5 and assigned to ephone 12. A custom FAC for cancel call waiting is set to **8.

telephony-service
 max-ephones 100
 max-dn 240
 voicemail 8900
 max-conferences 8 gain -6
 transfer-system full-consult
 fac custom cancel call waiting **8
!
!
ephone-template 5
 softkeys seized CWOff Cfwdall Endcall Redial
!
!
ephone 12
 ephone-template 5
 mac-address 000F.9054.31BD
 type 7960
 button 1:10 2:7

Enable Call Waiting on SIP Phones
To enable call waiting on an individual SIP phone, perform the following steps.

Before you begin
- Cisco Unified CME 3.4 or a later version.
- mode cme command must be configured in Cisco Unified CME.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register pool pool-tag
4. call-waiting
5. exit
6. voice register global
7. hold-alert
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register pool pool-tag
Example:
Router(config)# voice register pool 3</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 4</td>
<td>call-waiting
Example:
Router(config-register-pool)# call-waiting</td>
<td>Configures call waiting on the SIP phone being configured. Note This step is included to illustrate how to enable the command if it was previously disabled. • Default: Enabled.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
Router(config-register-pool)# exit</td>
<td>Exits voice register pool configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>voice register global
Example:
Router(config)# voice register global</td>
<td>Enters voice register global configuration mode to set parameters for all supported SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Step 7</td>
<td>hold-alert
Example:
Router(config-register-global)# hold-alert</td>
<td>Sets an audible alert notification when a call is on hold on a SIP phone. Default is disabled.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end
Example:
Router(config-register-global)# end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configure Ephone-Hunt Groups on SCCP Phones

To define a hunt group and optional agent availability parameters, perform the following steps.
Restriction

- The HLog soft key is available only on display phones. It is not available on Cisco Unified IP Phones 7902, 7905, and 7912; Cisco IP Communicator; and Cisco VG224.
- Shared ephone-dns cannot use the Agent Status Control or Automatic Agent Not-Ready feature.
- If directory numbers that are members of a hunt group are configured for called-name display, the following restrictions apply:
 - The primary or secondary pilot number must be defined using at least one wildcard character.
 - The phone numbers in the list command cannot contain wildcard characters.
- If Call Forward All or Call Forward Busy is configured for a hunt group member (directory number), the hunt group ignores it.

Before you begin
Directory numbers included in a hunt group must be configured in Cisco Unified CME. For configuration information, see Create Directory Numbers for SCCP Phones, on page 260.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-hunt hunt-tag {longest-idle | peer | sequential}
4. pilot number [secondary number]
5. list number [, number...]
6. final final-number
7. hops number
8. timeout seconds [, seconds...]
9. max-timeout seconds
10. preference preference-order [secondary secondary-order]
11. no-reg [both | pilot]
12. fwd-final {orig-phone | final}
13. forward local-calls
14. secondary start [current | next | list-position]
15. present-call {idle-phone | onhook-phone}
16. from-ring
17. description text-string
18. display-logout text-string
19. exit
20. telephony-service
21. max-redirect number
22. hunt-group logout {DND | HLog}
23. exit
24. ephone-dn dn-tag
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone-hunt hunt-tag (longest-idle</td>
<td>peer</td>
</tr>
</tbody>
</table>
| Example: | • hunt-tag—Unique sequence number that identifies this hunt group during configuration tasks. Range: 1 to 100.
Cisco CME 3.3 and earlier—Range: 1 to 10
• longest-idle—Calls go to the ephone-dn that has been idle the longest for the number of hops specified when the ephone hunt group was defined. The longest-idle is determined from the last time that a phone registered, reregistered, or went on-hook.
• peer—First ephone-dn to ring is the number to the right of the ephone-dn that was the last to ring when the pilot number was last called. Ringing proceeds in a circular manner, left to right, for the number of hops specified when the ephone hunt group was defined.
• sequential—Ephone-dns ring in the left-to-right order in which they are listed when the hunt group is defined. |
| Router(config)# ephone-hunt 23 peer | |
| **Step 4** pilot number [secondary number] | Defines the pilot number, which is the number that callers dial to reach the hunt group. |
| Example: | • number—E.164 number up to 27 characters. The dialplan pattern can be applied to the pilot number.
• secondary—(Optional) Defines an additional pilot number for the ephone hunt group. |
<p>| Router(config-ephone-hunt)# pilot 5601 | |
| Step 5 list number [, number...] | Defines the list of numbers (from 2 and 20) to which the ephone hunt group redirects the incoming calls. |
| Example: | • number—E.164 number up to 27 characters. Primary or secondary number assigned to an ephone-dn. |
| Router(config-ephone-hunt)# list 5001, 5002, 5017, 5028 | |</p>
<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>final /final-number</td>
<td>Defines the last number in the ephone hunt group, after which the call is no longer redirected. Can be an ephone-dn primary or secondary number, a voice-mail pilot number, a pilot number of another hunt group, or an FXS number.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-hunt)# final 6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note When a final number is defined as a pilot number of another hunt group, the pilot number of the first hunt group cannot be configured as a final number in any other hunt group.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note This command is not used for ephone hunt groups that are part of a Cisco Unified CME B-ACD service. The final destination for those groups is determined by the B-ACD service.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hops number</td>
<td>(Optional; peer and longest-idle hunt groups only) Sets the number of hops before a call proceeds to the final number.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-hunt)# hops 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number—Number of hops before the call proceeds to the final ephone-dn. Range is 2 to 20, but the value must be less than or equal to the number of extensions that are specified in the list command. Default automatically adjusts to the number of hunt group members.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>timeout seconds [, seconds...]</td>
<td>(Optional) Sets the number of seconds after which an unanswered call is redirected to the next number in the hunt-group list.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-hunt)# timeout 7, 10, 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seconds—Number of seconds. Range: 3 to 60000. Multiple entries can be made, separated by commas, that must correspond to the number of ephone-dns in the list command. Each number in a multiple entry specifies the time that the corresponding ephone-dn will ring before a call is forwarded to the next number in the list. If a single number is entered, it is used for the no-answer period for each ephone-dn.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If this command is not used, the default is the number of seconds set by the timeouts ringing command, which defaults to 180 seconds. Note that the default of 180 seconds may be greater than you desire.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max-timeout seconds</td>
<td>(Optional) Sets the maximum combined timeout for the no-answer periods for all ephone-dns in the ephone-hunt list. The call proceeds to the final destination when this timeout expires, regardless of whether it has completed the hunt cycle.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-ephone-hunt)# max-timeout 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seconds—Number of seconds. Range is 3 to 60000.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 10</th>
<th>preference preference-order [secondary secondary-order]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone-hunt)# preference 1</td>
</tr>
</tbody>
</table>

(Optional) Sets a preference order for the ephone-dn associated with the hunt-group pilot number.

- **preference-order**—See the CLI help for a range of numeric values, where 0 is the highest preference. Default is 0.
- **secondary secondary-order**—(Optional) Preference order for the secondary pilot number. See the CLI help for a range of numeric values, where 0 is the highest preference. Default is 7.

Step 11

| no-reg [both | pilot] |
|-----------|
| Example: | Router(config-ephone-hunt)# no-reg |

(Optional) Prevents the hunt-group pilot number from registering with an H.323 gatekeeper. If this command is not used, the default is that the pilot number registers with the H.323 gatekeeper.

- **both**—(Optional) Both the primary and secondary pilot numbers are not registered.
- **pilot**—(Optional) Only the primary pilot number is not registered.
- In Cisco CME 3.1 and later versions, if this command is used without the either the both or pilot keywords, only the secondary number is not registered.

Step 12

| fwd-final (orig-phone | final) |
|-----------------------|
| Example: | Router(config-ephone-hunt)# fwd-final orig-phone |

(Optional) For calls that have been transferred into an ephone hunt group by a local extension, determines the final destination of a call that is not answered in the hunt group.

- **final**—Forwards the call to the ephone-dn number that is specified in the final command.
- **orig-phone**—Forwards the call to the primary directory number of the phone that transferred the call into the hunt group.

Step 13

<table>
<thead>
<tr>
<th>forward local-calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
</tbody>
</table>

(Optional; sequential hunt groups only) Specifies that local calls (calls from ephone-dns on the same Cisco Unified CME system) will not be forwarded past the first list member in a hunt group. If the first member is busy, the internal caller hears busy. If the first number does not answer, the internal caller hears ringback.

Step 14

| secondary start [current | next | list-position] |
|-------------------------|
| Example: | |

(Optional) For calls that are parked by hunt group member phones, returns them to a different entry point in the hunt group (as specified in this command) if the calls are...
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ephone-hunt)# secondary start next recalled from park to the secondary pilot number or transferred from park to an ephone-dn that forwards the call to the secondary pilot number.</td>
<td></td>
</tr>
<tr>
<td>• current—The ephone-dn that parked the call.</td>
<td></td>
</tr>
<tr>
<td>• next—The ephone-dn in the hunt group list that follows the ephone-dn that parked the call.</td>
<td></td>
</tr>
<tr>
<td>• list-position—The ephone-dn at the specified position in the list specified by the list command. Range is 1 to 10.</td>
<td></td>
</tr>
</tbody>
</table>

Step 15
present-call {idle-phone | onhook-phone}

Example:
Router(config-ephone-hunt)# present-call idle-phone

(Optional) Presents ephone-hunt-group calls only to member phones that are idle or onhook, as specified.

- **idle-phone**—A call from the ephone-hunt group is presented to an ephone only if all lines on the phone are idle. This option ignores monitored lines that have been configured on the phone using the button m command.

- **onhook-phone**—A call from the ephone-hunt group is presented to an ephone only if the phone is in the on-hook state. When this keyword is configured, calls in the ringing or hold state that are unrelated to the hunt group do not prevent the presentation of calls from the ephone-hunt group.

Step 16
from-ring

Example:
Router(config-ephone-hunt)# from-ring

(Optional) Specifies that on-hook time stamps should be recorded when calls ring extensions and when calls are answered. The default is that on-hook time stamps are recorded only when calls are answered.

Step 17
description *text-string*

Example:
Router(config-ephone-hunt)# description Marketing Hunt Group

(Optional) Defines text that will appear in configuration output.

Step 18
display-logout *text-string*

Example:
Router(config-ephone-hunt)# display-logout Night Service

(Optional) Defines text that will appear on IP phones that are members of a hunt group when all the hunt-group members are in the not-ready status. This string can be used to inform hunt-group members where the calls are being sent when all members are unavailable to take calls.

Step 19
exit

Example:
Router(config-ephone-hunt)# exit

Exits ephone-hunt configuration mode.

Step 20
telephony-service

Example:

Enters telephony-service configuration mode.
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 21</td>
<td>max-redirect number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# max-redirect 8</td>
<td></td>
</tr>
</tbody>
</table>

(Optional) Sets the number of times that a call can be redirected within a Cisco Unified CME system.

- **number**—Range is 5 to 20. Default is 10.

Note

This command is required if the number of hops is greater than 10.

| Step 22 | hunt-group logout (DND | HLog) |
|---------|------------------------|
| Example: | Router(config-telephony)# hunt-group logout HLog |

(Optional) Specifies whether agent not-ready status applies only to ephone hunt group extensions on a phone (HLog mode) or to all extensions on a phone (DND mode). Agent not-ready status can be activated by an agent using the HLog softkey or a FAC, or it can be activated automatically after the number of calls specified in the **auto logout** command are not answered.

The default of this command is **not used** is **DND**.

- **DND**—When phones are placed in agent not-ready status, all ephone-dns on the phone will not accept calls.

- **HLog**—Enables the display of the HLog soft key. When phones are placed in the agent not-ready status, only the ephone-dns assigned to ephone hunt groups will not accept calls.

<table>
<thead>
<tr>
<th>Step 23</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# exit</td>
</tr>
</tbody>
</table>

Exits telephony-service configuration mode.

<table>
<thead>
<tr>
<th>Step 24</th>
<th>ephone-dn dn-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 29</td>
</tr>
</tbody>
</table>

(Optional) Enters ephone-dn configuration mode.

- **dn-tag**—Tag number for the ephone-dn to be authorized to join and leave ephone hunt groups.

<table>
<thead>
<tr>
<th>Step 25</th>
<th>ephone-hunt login</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# ephone-hunt login</td>
</tr>
</tbody>
</table>

(Optional) Enables this ephone-dn to join and leave ephone hunt groups (dynamic membership).

<table>
<thead>
<tr>
<th>Step 26</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# end</td>
</tr>
</tbody>
</table>

Returns to privileged EXEC mode.
Verify Ephone Hunt Groups Configuration

Step 1 Use the `show running-config` command to verify your configuration. Ephone hunt group parameters are listed in the ephone-hunt portion of the output.

Example:

```
Router# show running-config
ephone-hunt 1 longest-idle
pilot 500
list 502, 503, *
max-timeout 30
timeout 10, 10, 10
hops 2
from-ring
fwd-final orig-phone
!
ephone-hunt 2 sequential
pilot 600
list 621, *, 623
final 5255348
max-timeout 10
timeout 20, 20, 20
fwd-final orig-phone
!
ephone-hunt 77 longest-idle
from-ring
pilot 100
list 101, *, 102
!
```

Step 2 To verify the configuration of ephone hunt group dynamic membership, use the `show running-config` command. Look at the ephone-hunt portion of the output to ensure at least one wildcard slot is configured. Look at the ephone-dn section to see whether particular ephone-dns are authorized to join ephone hunt groups. Look at the telephony-service section to see whether FACs are enabled.
Example:

Router# show running-config
ephone-hunt 1 longest-idle
pilot 500
list 502, 503, *
max-timeout 30
timeout 10, 10, 10
hops 2
from-ring
fwd-final orig-phone
!
!
ephone-dn 2 dual-line
number 126
preference 1
call-forward busy 500
ephone-hunt login
!
telephony-service
fac custom alias 5 *5 to *35000
fac custom ephone-hunt cancel #5

Step 3 Use the show ephone-hunt command for detailed information about hunt groups, including dial-peer tag numbers, hunt-group agent status, and on-hook time stamps. This command also displays the dial-peer tag numbers of all ephone-dns that have joined dynamically and are members of the group at the time that the command is run.

Example:

Router# show ephone-hunt

Group 1
type: peer
pilot number: 450, peer-tag 20123
list of numbers:
451, aux-number A450A0900, # peers 5, logout 0, down 1
peer-tag dn-tag rna login/logout up/down
[20122 42 0 login up]
[20122 41 0 login up]
[20120 40 0 login up]
[20119 30 0 login up]
[20118 29 0 login down]
452, aux-number A450A0901, # peers 4, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20127 45 0 login up]
Verify Ephone Hunt Groups Configuration

[20126 44 0 login up]
[20125 43 0 login up]
[20124 31 0 login up]
453, aux-number A450A0902, # peers 4, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20131 48 0 login up]
[20130 47 0 login up]
[20129 46 0 login up]
[20128 32 0 login up]
477, aux-number A450A0903, # peers 1, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20132 499 0 login up]
preference: 0
preference (sec): 7
timeout: 3, 3, 3, 3
max timeout : 10
hops: 4
next-to-pick: 1
E.164 register: yes
auto logout: no
stat collect: no
Group 2
type: sequential
pilot number: 601, peer-tag 20098
list of numbers:
123, aux-number A601A0200, # peers 1, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20097 56 0 login up]
622, aux-number A601A0201, # peers 3, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20101 112 0 login up]
[20100 111 0 login up]
[20099 110 0 login up]
623, aux-number A601A0202, # peers 3, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
[20104 122 0 login up]
[20103 121 0 login up]
[20102 120 0 login up]
*, aux-number A601A0203, # peers 1, logout 0, down 1
peer-tag dn-tag rna login/logout up/down
[20105 0 0 - down]
*, aux-number A601A0204, # peers 1, logout 0, down 1
peer-tag dn-tag rna login/logout up/down
[20106 0 0 - down]
final number: 5255348
preference: 0
preference (sec): 9
timeout: 5, 5, 5, 5, 5
max timeout : 40
fwd-final: orig-phone
E.164 register: yes
auto logout: no
stat collect: no
Group 3
type: longest-idle
pilot number: 100, peer-tag 20142
list of numbers:
101, aux-number A100A9700, # peers 3, logout 0, down 3
on-hook time stamp 7616, off-hook agents=0
peer-tag dn-tag rna login/logout up/down
[20141 132 0 login down]
[20140 131 0 login down]
[20139 130 0 login down]
*, aux-number A100A9701, # peers 1, logout 0, down 1
Configure Voice-Hunt Groups

To redirect calls for a specific number (pilot number) to a defined group of directory numbers on Cisco Unified SCCP and SIP IP phones, perform the following steps.
Before Cisco Unified CME 4.3, forwarding or transferring to a voice hunt group is not supported.

- In Cisco Unified CME 4.3 and later versions, Call Forwarding is supported to a parallel hunt-group (blast hunt group) only.

- SIP-to-H.323 calls are not supported.

- If Call Forward All or Call Forward Busy is configured for a hunt group member (directory number), the hunt group ignores it.

- Caller ID update is not supported for supplementary services.

- Voice hunt groups are subject to the max-redirect restriction.

- A pilot dial peer cannot be used for a voice hunt group and an ephone hunt group at the same time.

- Voice hunt groups do not support the expansion of pilot numbers using the `dialplan-pattern` command. To enable external phones to dial the pilot number, you must configure a secondary pilot number using a fully qualified E.164 number.

- If call-waiting is enabled (the default), parallel hunt groups support multiple calls up to the limit of call-waiting calls supported by the particular SIP phone model. If call waiting is disabled, parallel hunt groups support only one call at a time in the ringing state. Phones that fail to connect must return to the on-hook state before they can receive other calls.

- A phone number associated with an FXO port is not supported in parallel hunt groups.

- If the directory number (member of a voice hunt group) is a shared line, agent status control or HLog is not supported.

- From Unified CME release 11.6 onwards, line level logout or login is not supported for SIP phones.

- DND FAC is not supported with SIP phones on Unified CME.

- Consider an SCCP DN that is part of both voice hunt group and ephone hunt group. If voice hunt group is configured with members logout or auto logout, then the SCCP DN will logout only from voice hunt group. If ephone hunt group is configured with members logout or auto logout, then the SCCP DN will logout from both voice hunt group and ephone hunt group.

- For Unified CME 12.1 and prior releases, mixed shared lines and SIP shared lines are not supported with voice hunt groups.

- For parallel voice hunt group, the maximum number of call blasts that can be supported is limited to 32. This includes the shared-line as well as normal directory numbers.

- Unified CME supports chaining (nesting) of a voice hunt group with another voice hunt group. The chaining of voice hunt groups is established by configuring the final number of the first voice hunt group as the pilot number of the second voice hunt group.

- Unified CME supports the chaining (nesting) of a maximum of two voice hunt groups. The configuration ensures that there is no looping of calls placed to a voice hunt group.

Before you begin

- Cisco Unified CME 3.4 or a later version for SIP phones.
- Cisco Unified CME 4.3 or a later version is required to include a SCCP phone, FXS analog phone, DS0-group, PRI-group, or SIP trunk in a voice hunt-group.

- Cisco Unified CME 4.3 or a later version is required for call transfer to a voice hunt-group.

- Directory numbers included in a hunt group must be configured in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.

- Cisco Unified CME 11.6 or later is required to support HLog softkey, feature button, and agent status control.

- Cisco Unified CME 11.6 or later is required to configure present-call, auto logout, and members logout under voice hunt group configuration mode.

- Unified CME 12.2 or later is required to configure mixed shared lines and SIP shared lines with voice hunt groups.

SUMMARY STEPS

1. enable
2. configure terminal
3. voicehunt-group hunt-tag [longest-idle | parallel | peer | sequential]
4. pilot number [secondary number]
5. list number
6. final number
7. preference preference-order [secondary secondary-order]
8. hops number
9. timeout seconds
10. present-call idle-phone
11. members logout
12. auto logout number-of-calls
13. exit
14. telephony-service
15. hunt-group logout {DND HLog }
16. exit
17. voice register dn tag
18. voice-hunt-groups login
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable | Enables privileged EXEC mode. |
| **Example:**
| Router> enable | *Enter your password if prompted.* |
| **Step 2**
| configure terminal| Enters global configuration mode. |
| **Example:**
| Router# configure terminal | |
Configure Voice-Hunt Groups

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| voicehunt-group *hunt-tag* [longest-idle | parallel | peer | sequential] | Enters voice hunt-group configuration mode to define a hunt group.
 • *hunt-tag*—Unique sequence number of the hunt group to be configured. Range is 1 to 100.
 • longest idle—Hunt group in which calls go to the directory number that has been idle for the longest time.
 • sequential—Hunt group in which directory numbers ring in the order in which they are listed, left to right.
 • parallel—Hunt group in which all directory numbers ring simultaneously.
 • peer—Hunt group in which the call placed to a directory number rings for the next directory number in line.
 • To change the hunt-group type, remove the existing hunt group first by using the *no* form of the command; then, recreate the group. |

Example:

Router(config)# voice hunt-group 1 longest-idle

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| pilot *number* [secondary number] | Defines the telephone number that callers dial to reach a voice hunt group.
 • *number*—String of up to 16 characters that represents an E.164 telephone number.
 • Number string may contain alphabetic characters when the number is to be dialed only by the Cisco Unified CME router, as with an intercom number, and not from telephone keypads.
 • secondary number—(Optional) Keyword and argument combination defines the number that follows as an additional pilot number for the voice hunt group.
 • Secondary numbers can contain wild cards. A wildcard is a period (.), which matches any entered digit. |

Example:

Router(config-voice-hunt-group)# pilot number 8100

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| list *number* | Creates a list of extensions that are members of a voice hunt group. To remove a list from a router configuration, use the *no* form of this command.
 • *number*—List of extensions to be added as members to the voice hunt group. Separate the extensions with commas. |

Example:

Router(config-voice-hunt-group)# list 8000, 8010, 8020, 8030
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Add or delete all extensions in a hunt-group list at one time. You cannot add or delete a single number in an existing list.</td>
<td></td>
</tr>
<tr>
<td>• There must be from 2 to 10 extensions in the hunt-group list, and each number must be a primary or secondary number.</td>
<td></td>
</tr>
<tr>
<td>• Any number in the list cannot be a pilot number of a parallel hunt group.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6 - final number

Example:

```
Router(config-voice-hunt-group)# final 8888
```

Defines the last extension in a voice hunt group.

- If a final number in one hunt group is configured as a pilot number of another hunt group, the pilot number of the first hunt group cannot be configured as a final number in any other hunt group.
- This command is not used for voice hunt groups that are part of a Cisco Unified CME B-ACD service. The final destination for those groups is determined by the B-ACD service.

Step 7 - preference preference-order [secondary secondary-order]

Example:

```
Router(config-voice-hunt-group)# preference 6
```

Sets the preference order for the directory number associated with a voice hunt-group pilot number.

Note

We recommend that the parallel hunt-group pilot number be unique in the system. Parallel hunt groups may not work if there are more than one partial or exact dial-peer match. For example, if the pilot number is “8000” and there is another dial peer that matches “8…” . If multiple matches cannot be avoided, give parallel hunt groups the highest priority to run by assigning a lower preference to the other dial peers. Note that 8 is the lowest preference value. By default, dial peers created by parallel hunt groups have a preference of 0.

- `preference-order`—Range is 0 to 8, where 0 is the highest preference and 8 is the lowest preference. Default is 0.
- `secondary secondary-order`—(Optional) Keyword and argument combination is used to set the preference order for the secondary pilot number. Range is 1 to 8, where 0 is the highest preference and 8 is the lowest preference. Default is 7.

Step 8 - hops number

Example:

For configuring a peer or longest-idle voice hunt group only. Defines the number of times that a call can hop to
Configure Voice-Hunt Groups

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-voice-hunt-group)# hops 2</code></td>
<td>the next number in a peer or longest-idle voice hunt group before the call proceeds to the final number.</td>
</tr>
<tr>
<td>- <code>number</code>—Number of hops. Range is 2 to 10, and the value must be less than or equal to the number of extensions specified by the <code>list</code> command.</td>
<td></td>
</tr>
<tr>
<td>- Default is the same number as there are destinations defined under the <code>list</code> command.</td>
<td></td>
</tr>
<tr>
<td>Step 9 timeout <code>seconds</code></td>
<td>Defines the number of seconds after which a call that is not answered is redirected to the next directory number in a voice hunt-group list.</td>
</tr>
<tr>
<td>Example: <code>Router(config-voice-hunt-group)# timeout 100</code></td>
<td></td>
</tr>
<tr>
<td>- Default: 180 seconds.</td>
<td></td>
</tr>
<tr>
<td>Step 10 present-call <code>idle-phone</code></td>
<td>Specifies that voice hunt-group calls are presented only if all lines are idle on the phone on which the hunt-group line appears.</td>
</tr>
<tr>
<td>Example: <code>Router(config-voice-hunt-group)# present-call idle-phone</code></td>
<td></td>
</tr>
<tr>
<td>Step 11 members logout</td>
<td>Configures a Cisco Unified CME system for all non-shared static members or agents in a voice hunt group with the Hlogout initial state.</td>
</tr>
<tr>
<td>Example: <code>Router(config-voice-hunt-group)# members logout</code></td>
<td></td>
</tr>
<tr>
<td>Step 12 auto logout <code>number-of-calls</code></td>
<td>Enables the automatic change of a voice hunt group agent’s voice register dn or ephone-dn to not-ready status after a specified number of successive hunt-group calls are not answered.</td>
</tr>
<tr>
<td>Example: <code>Router(config-voice-hunt-group)# auto logout 2</code></td>
<td></td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Exits voice-hunt-group configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-voice-hunt-group)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 14 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
<tr>
<td>Step 15 hunt-group logout (DND HLog)</td>
<td>(Optional) Specifies HLog softkey functions. Agent not-ready status can be activated by an agent using the HLog softkey or a FAC.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# hunt-group logout Hlog</code></td>
<td></td>
</tr>
<tr>
<td>Step 16 exit</td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 17 voice register dn <code>tag</code></td>
<td>(Optional) Enters voice register dn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# voice register dn 29</td>
<td>• tag—Tag number for voice register dn to be authorized to join and leave voice hunt groups.</td>
</tr>
</tbody>
</table>

Step 18

voice-hunt-groups login

Example:

Router(config-register-dn)# voice-hunt-groups login

(Optional) Enables this voice register dn to join and leave voice hunt groups (dynamic membership).

Step 19

end

Example:

Router(config-register-dn)# end

Exits to privileged EXEC mode.

Verify Voice Hunt Groups Configuration

Step 1

Use the `show running-config` command to verify your configuration. Voice hunt group parameters are listed in the voice-hunt portion of the output.

Example:

```
Router# show running-config

voice-hunt 1 longest-idle
pilot 500
list 502, 503, *
max-timeout 30
timeout 10, 10, 10
hops 2
from-ring
fwd-final orig-phone
!
!
voice-hunt 2 sequential
pilot 600
list 621, *, 623
final 5255348
max-timeout 10
timeout 20, 20, 20
fwd-final orig-phone
!
!
voice-hunt 77 longest-idle
from-ring
pilot 100
list 101, *, 102
!
```

Step 2

To verify the configuration of voice hunt group dynamic membership, use the `show running-config` command. Look at the voice-hunt portion of the output to ensure at least one wildcard slot is configured. Look at the voice-dn section to see whether particular ephone-dns are authorized to join voice hunt groups. Look at the telephony-service section to see whether FACs are enabled.

Example:
Step 3 Use the show ephone-hunt command for detailed information about hunt groups, including dial-peer tag numbers, hunt-group agent status, and on-hook time stamps. This command also displays the dial-peer tag numbers of all ephone-dns that have joined dynamically and are members of the group at the time that the command is run.

Example:

Router# show ephone-hunt

Group 1
 type: peer
 pilot number: 450, peer-tag 20123
 list of numbers:
 451, aux-number A450A0900, # peers 5, logout 0, down 1
 peer-tag dn-tag rna login/logout up/down
 [20122 42 0 login up]
 [20121 41 0 login up]
 [20120 40 0 login up]
 [20119 39 0 login up]
 [20118 38 0 login down]
 452, aux-number A450A0901, # peers 4, logout 0, down 0
 peer-tag dn-tag rna login/logout up/down
 [20126 44 0 login up]
 [20125 43 0 login up]
 [20124 42 0 login up]
 453, aux-number A450A0902, # peers 4, logout 0, down 0
 peer-tag dn-tag rna login/logout up/down
 [20131 48 0 login up]
 [20130 47 0 login up]
 [20129 46 0 login up]
 [20128 45 0 login up]
 477, aux-number A450A0903, # peers 1, logout 0, down 0
 peer-tag dn-tag rna login/logout up/down
 [20132 499 0 login up]
 preference: 0
 preference (sec): 7
 timeout: 3, 3, 3, 3
 max timeout : 10
 hops: 4
 next-to-pick: 1
 E.164 register: yes
auto logout: no
stat collect: no
Group 2
type: sequential
pilot number: 601, peer-tag 20098
list of numbers:
 123, aux-number A601A0200, # peers 1, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
 [20097 56 0 login up]
 622, aux-number A601A0201, # peers 3, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
 [20101 112 0 login up]
 [20100 111 0 login up]
 [20099 110 0 login up]
 623, aux-number A601A0202, # peers 3, logout 0, down 0
peer-tag dn-tag rna login/logout up/down
 [20104 122 0 login up]
 [20103 121 0 login up]
 [20102 120 0 login up]
 *, aux-number A601A0203, # peers 1, logout 0, down 1
peer-tag dn-tag rna login/logout up/down
 [20105 0 0 - down]
 *, aux-number A601A0204, # peers 1, logout 0, down 1
peer-tag dn-tag rna login/logout up/down
 [20106 0 0 - down]
final number: 5255348
preference: 0
preference (sec): 9
timeout: 5, 5, 5, 5, 5
max timeout : 40
fwd-final: orig-phone
E.164 register: yes
auto logout: no
stat collect: no
Group 3
type: longest-idle
pilot number: 100, peer-tag 20142
list of numbers:
 101, aux-number A100A9700, # peers 3, logout 0, down 3
on-hook time stamp 7616, off-hook agents=0
peer-tag dn-tag rna login/logout up/down
 [20141 132 0 login down]
 [20140 131 0 login down]
 [20139 130 0 login down]
 *, aux-number A100A9701, # peers 1, logout 0, down 1
on-hook time stamp 7616, off-hook agents=0
peer-tag dn-tag rna login/logout up/down
 [20143 0 0 - down]
 102, aux-number A100A9702, # peers 2, logout 0, down 2
on-hook time stamp 7616, off-hook agents=0
peer-tag dn-tag rna login/logout up/down
 [20145 142 0 login down]
 [20144 141 0 login down]
all agents down!
preference: 0
preference (sec): 7
timeout: 100, 100, 100
hops: 0
E.164 register: yes
auto logout: no
stat collect: no
Enable Audible Tone for Successful Login and Logout of a Hunt Group on SCCP Phone

The user can enable playing of audible tone on an SCCP phone to confirm a successful join or unjoin and login or logout from a hunt group (applies to both ephone and voice hunt group). From Cisco Unified CME 10.5 onwards, distinct audible tone will be played for the following scenarios:

1. To join and unjoin a hunt group via FAC
2. To log in and log out from hunt group via Hlog/DND, or FAC

The audible tone will be played for ephone hunt group and voice hunt group for SCCP Phones.

Restriction

- Supports all 79xx phones except for 7926 wireless phones.

Before you begin

- Cisco Unified CME 10.5 or a later version
- Ephone or voice hunt group should be configured
- Ephone should be static or dynamic member of hunt group.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag or ephone-template template-tag
4. audible tone
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag or ephone-template template-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 25</td>
<td>• phone-tag—The unique sequence number of the phone that will be notified when an incoming call is received by a night-service ephone-dn during a night-service period.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
</tbody>
</table>
Enable the Collection of Call Statistics for Voice Hunt-Groups

To enable the collection of call statistics for voice hunt groups, perform the following steps.

Restriction

Hold and resume statistics are not updated for remote SCCP voice hunt group agents.

Before you begin

Cisco Unified CME 9.0 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice hunt-group hunt-tag {longest-idle | parallel | peer | sequential}
4. statistics collect
5. end

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| ```

Enters ephone-template configuration mode to create an ephone template.

- `template-tag`—Unique identifier for the ephone template that is being created. Range: 1 to 20.

Step 4

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>audible tone</code></td>
</tr>
<tr>
<td><code>Router(config-ephone)# audible tone</code></td>
</tr>
</tbody>
</table>

Enables playing of audible tone on an SCCP phone to confirm a successful login or logout.

Step 5

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
</tr>
<tr>
<td><code>Router(config-ephone)# end</code></td>
</tr>
</tbody>
</table>

Example

The following example shows that audible tone is configured in voice register pool configuration mode:

```
!
Router(config)# ephone 1
Router(config-ephone)# device-security-mode none
Router(config-ephone)# mac-address 64D8.14A5.C87A
Router(config-ephone)# type 7965
Router(config-ephone)# button 1:3
Router(config-ephone)# audible-tone!
```
Associate a Name with a Called Voice Hunt-Group

Restriction
Cisco Unified SIP IP phones are not supported. The display support applies to Cisco Unified SCCP IP phones on voice hunt-group and ephone-hunt configuration modes only.

Before you begin
Cisco Unified CME 9.5 or a later version.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters voice hunt-group configuration mode.</td>
</tr>
<tr>
<td>voice hunt-group hunt-tag (longest-idle</td>
<td>parallel</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice hunt-group 60 longest-idle</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables the collection of call statistics for a voice hunt group.</td>
</tr>
<tr>
<td>statistics collect</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-hunt-group)# statistics collect</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-voice-hunt-group)# end</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. voice hunt-group hunt-tag {parallel}
4. final number
5. list number [, number...]
6. timeout seconds
7. pilot number [secondary number]
8. name “primary pilot name” [secondary “secondary pilot name”]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 voice hunt-group hunt-tag {parallel}</td>
<td>Creates a hunt group for phones in a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Example:</td>
<td>* hunt-tag—Unique sequence number that identifies the hunt group. Range is 1 to 100.</td>
</tr>
<tr>
<td></td>
<td>* parallel—Hunt group in which calls simultaneously ring multiple phones.</td>
</tr>
<tr>
<td>Step 4 final number</td>
<td>Defines the last extension in a voice hunt group.</td>
</tr>
<tr>
<td>Example:</td>
<td>* number—Telephone or extension number. Can be an E.164 number, voice-mail number, pilot number of another hunt group, or FXS caller-ID number.</td>
</tr>
<tr>
<td>Step 5 list number [, number...]</td>
<td>Defines a list of extensions that are members of a voice hunt group.</td>
</tr>
<tr>
<td>Example:</td>
<td>* number—Extension or E.164 number assigned to a phone in Cisco Unified CME. List must contain 2 to 32 numbers.</td>
</tr>
<tr>
<td>Step 6 timeout seconds</td>
<td>Defines the number of seconds after which a call that is not answered is redirected to the next number in a voice hunt-group list.</td>
</tr>
<tr>
<td>Example:</td>
<td>* seconds—Number of seconds. Range is 3 to 60000. Default is 180.</td>
</tr>
</tbody>
</table>
Prevent Local Call Forwarding to Final Agent in Voice Hunt-Groups

Before you begin
Cisco Unified CME 9.5 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice hunt-group hunt-tag {parallel | sequential}
4. [no] forward local-calls to-final

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice hunt-group hunt-tag {parallel</td>
<td>sequential}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Router(config)# voice hunt-group 1 sequential</td>
<td>• hunt-tag—Unique sequence number that identifies the hunt group. Range is 1 to 100.</td>
</tr>
<tr>
<td></td>
<td>• parallel—Hunt group in which calls simultaneously ring multiple phones.</td>
</tr>
<tr>
<td></td>
<td>• sequential—Hunt group in which extensions ring in the order in which they are listed, left to right, when the hunt group was defined.</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>[no] forward local-calls to-final</th>
<th>Prevents local calls from being forwarded to the final destination number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-hunt-group)# no forward</td>
<td></td>
</tr>
<tr>
<td>local-calls to-final</td>
<td></td>
</tr>
</tbody>
</table>

Configure Night Service on SCCP Phones

This procedure defines night-service hours, an optional night-service code, the ephone-dns that trigger the notification process, and the ephones that will receive notification.

Restriction

- Night service notification is not supported on analog endpoints connected to FXS ports on a Cisco Integrated Services Router (ISR) or Cisco VG224 Analog Phone Gateway.
- In Cisco Unified CME 4.0 and later versions, silent ringing, configured on the phone by using the **s** keyword with the **button** command, is suppressed when used with the night service feature. Silent ringing is overridden and the phone audibly rings during designated night-service periods.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. night-service day day start-time stop-time
5. night-service date month date start-time stop-time
6. night-service everyday start-time stop-time
7. night-service weekday start-time stop-time
8. night-service weekend start-time stop-time
9. night-service code digit-string
10. timeouts night-service-bell seconds
11. exit
12. ephone-dn dn-tag
13. night-service bell
14. exit
15. ephone phone-tag
16. night-service bell
17. end
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
| | Example: | • Enter your password if prompted. |
| | Router> enable | |
| 2 | configure terminal | Enters global configuration mode. |
| | Example: | |
| | Router# configure terminal | |
| 3 | telephony-service | Enters telephony-service configuration mode. |
| | Example: | |
| | Router(config)# telephony-service | |
| 4 | night-service day day start-time stop-time | Defines a recurring time period associated with a day of
| | Example: | the week during which night service is active.
| | Router(config-telephony)# night-service day mon
| | | 19:00 07:00 |
| | | • day—Day of the week abbreviation. The following are
| | | are valid day abbreviations: sun, mon, tue, wed, thu,
| | | fri, sat. |
| | | • start-time stop-time—Beginning and ending times
| | | for night service, in an HH:MM format using a
| | | 24-hour clock. If the stop time is a smaller value
| | | than the start time, the stop time occurs the day
| | | following the start time. For example, “mon 19:00 07:00”
| | | means “from Monday at 7 p.m. until Tuesday at 7 a.m.” |
| 5 | night-service date month date start-time stop-time | Defines a recurring time period associated with a month
| | Example: | and date during which night service is active.
| | Router(config-telephony)# night-service date jan
| | | 1 00:00 00:00 |
| | | • month—Month abbreviation. The following are valid
| | | month abbreviations: jan, feb, mar, apr, may, jun,
| | | jul, aug, sep, oct, nov, dec. |
| | | • date—Date of the month. Range is 1 to 31. |
| | | • start-time stop-time—Beginning and ending times
| | | for night service, in an HH:MM format using a
| | | 24-hour clock. The stop time must be greater than
| | | the start time. The value 24:00 is not valid. If 00:00
| | | is entered as a stop time, it is changed to 23:59. If 00:00
| | | is entered for both start time and stop time, calls are
| | | blocked for the entire 24-hour period on the specified
| | | date. |
| 6 | night-service everyday start-time stop-time | Defines a recurring night-service time period to be effective
| | Example: | everyday.
| | | • start-time stop-time—Beginning and ending times
| | | for night service, in an HH:MM format using a
<p>| | | |
| | | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-telephony)# night-service everyday 1200 1300</td>
<td>24-hour clock. If the stop time is a smaller value than the start time, the stop time occurs the day following the start time. For example, “19:00 07:00” means “from 7 p.m. to 7 a.m. the next morning.” The value 24:00 is not valid. If 00:00 is entered as a stop time, it is changed to 23:59. If 00:00 is entered for both start time and stop time, the night service feature will be activated for the entire 24-hour period.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>night-service weekday start-time stop-time</td>
<td>Defines a recurring night-service time period to be effective on all weekdays.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# night-service weekday 1700 0700</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>night-service weekend start-time stop-time</td>
<td>Defines a recurring night-service time period to be effective on all weekend days (Saturday and Sunday).</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# night-service weekend 00:00 00:00</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>night-service code digit-string</td>
<td>Designates a code that can be dialed from any night-service line (ephone-dn) to toggle night service on and off for all lines assigned to night service in the system.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# night-service code *6483</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>timeouts night-service-bell seconds</td>
<td>Defines the frequency of the night-service notification.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# timeouts night-service-bell 15</td>
<td></td>
</tr>
</tbody>
</table>

Cisco Unified Communications Manager Express System Administrator Guide
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 11** | **exit**
 Example:
 Router(config-telephony)# exit
 | Exits telephony-service configuration mode. |
| **Step 12** | **ephone-dn dn-tag**
 Example:
 Router(config)# ephone-dn 55
 | Enters ephone-dn configuration mode to define an ephone-dn to receive night-service treatment. |
| **Step 13** | **night-service bell**
 Example:
 Router(config-ephone-dn)# night-service bell
 | Marks this ephone-dn for night-service treatment. |
| **Step 14** | **exit**
 Example:
 Router(config-ephone-dn)# exit
 | Exits ephone-dn configuration mode. |
| **Step 15** | **ephone phone-tag**
 Example:
 Router(config)# ephone 12
 | Enters ephone configuration mode.
 phone-tag—The unique sequence number of the phone that will be notified when an incoming call is received by a night-service ephone-dn during a night-service period. |
| **Step 16** | **night-service bell**
 Example:
 Router(config-ephone)# night-service bell
 | Marks this phone to receive night-service bell notification when incoming calls are received on ephone-dns marked for night service during the night-service time period.
 Night service notification is not supported on analog endpoints connected to SCCP FXS ports on a Cisco ISR or Cisco VG224. |
| **Step 17** | **end**
 Example:
 Router(config-ephone)# end
 | Returns to privileged EXEC mode. |

Configure Night Service on SIP Phones

This procedure defines night-service hours, an optional night-service code, the voice register DNs that trigger the notification process, and the SIP phones (voice register pools) that receive notification. The CLI commands related to night-service in telephony-service are used to make night service feature work on SIP phones.

Restriction

- When **service directed-pickup gpickup** is configured under telephony service, gpickup softkey has to be used on SCCP phones to pick up the ringing call on night-service extensions.
Before you begin

- It is mandatory to configure the CLI command `service directed-pickup gpickup` under telephony-service to pick up calls from SIP phones for night service.

- It is mandatory to configure the CLI command `call-park system application` under telephony-service to enable or disable Night Service functionality using night service code on SIP phones.

- It is mandatory to configure source IP address, port, and max dn under telephony-service configuration to make night service feature work for SIP phones.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. night-service day day start-time stop-time
5. night-service date month date start-time stop-time
6. night-service everyday start-time stop-time
7. night-service weekday start-time stop-time
8. night-service weekend start-time stop-time
9. fac standard
10. night-service code digit-string
11. call-park system application
12. service directed-pickup gpickup
13. timeouts night-service-bell seconds
14. exit
15. voice register dn dn-tag
16. night-service bell
17. exit
18. voice register pool pool-tag | voice register template template-tag
19. night-service bell
20. voice register pool pool-tag
21. template template-tag
22. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Step 3</td>
<td>telephony-service</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
</tr>
<tr>
<td>Step 4</td>
<td>night-service day day start-time</td>
</tr>
<tr>
<td></td>
<td>stop-time</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)#</td>
</tr>
<tr>
<td></td>
<td>night-service day mon 19:00 07:00</td>
</tr>
<tr>
<td>Step 5</td>
<td>night-service date month date</td>
</tr>
<tr>
<td></td>
<td>start-time stop-time</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)#</td>
</tr>
<tr>
<td></td>
<td>night-service date jan 1 00:00 00:00</td>
</tr>
<tr>
<td>Step 6</td>
<td>night-service everyday start-time</td>
</tr>
<tr>
<td></td>
<td>stop-time</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)#</td>
</tr>
<tr>
<td></td>
<td>night-service everyday 1200 1300</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 7</td>
<td>Defines a recurring night-service time period to be effective on all weekdays.</td>
</tr>
<tr>
<td>night-service weekday start-time stop-time</td>
<td>- start-time stop-time—Beginning and ending times for night service, in an HH:MM format using a 24-hour clock. If the stop time is a smaller value than the start time, the stop time occurs the day following the start time. For example, “19:00 07:00” means “from 7 p.m. to 7 a.m. the next morning.” The value 24:00 is not valid. If 00:00 is entered as a stop time, it is changed to 23:59. If 00:00 is entered for both start time and stop time, the night service feature will be activated for the entire 24-hour period.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# night-service weekday 1700 0700</td>
</tr>
<tr>
<td>Step 8</td>
<td>Defines a recurring night-service time period to be effective on all weekend days (Saturday and Sunday).</td>
</tr>
<tr>
<td>night-service weekend start-time stop-time</td>
<td>- start-time stop-time—Beginning and ending times for night service, in an HH:MM format using a 24-hour clock. If the stop time is a smaller value than the start time, the stop time occurs the day following the start time. For example, “19:00 07:00” means “from 7 p.m. to 7 a.m. the next morning.” The value 24:00 is not valid. If 00:00 is entered as a stop time, it is changed to 23:59. If 00:00 is entered for both start time and stop time, the night service feature will be activated for the entire 24-hour period.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# night-service weekend 00:00 00:00</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Enables predefined standard feature access codes (FACs) to be enabled. For the CLI command <code>night-service code</code> to work, it is mandatory to configure <code>fac standard</code> under telephony-service configuration mode.</td>
</tr>
<tr>
<td>fac standard</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# fac standard</td>
</tr>
<tr>
<td>Step 10</td>
<td>Designates a code that can be dialed from any night-service line (voice register dn) to toggle night service on and off for all lines assigned to night service in the system.</td>
</tr>
<tr>
<td>night-service code digit-string</td>
<td>- digit-string—String of up to 16 keypad digits. The code must begin with an asterisk (*).</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# night-service code 6483</td>
</tr>
<tr>
<td>Step 11</td>
<td>Enables or disables Night Service functionality using night service code on SIP phones.</td>
</tr>
<tr>
<td>call-park system application</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# call-park system application</td>
</tr>
<tr>
<td>Step 12</td>
<td>Enables Directed Call Pickup and modifies the function of the GPickUp and PickUp soft keys.</td>
</tr>
<tr>
<td>service directed-pickup gpickup</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# service directed-pickup gpickup</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 13** timeouts night-service-bell *seconds*
Example:
Router(config-telephony)# timeouts night-service-bell 15 | Defines the frequency of the night-service notification.
seconds—Range: 4 to 30. Default: 12. |
| **Step 14** exit
Example:
Router(config-telephony)# exit | Exits telephony-service configuration mode. |
| **Step 15** voice register dn *dn-tag*
Example:
Router(config)# voice register dn 10 | Enters voice register dn configuration mode to define a voice register dn to receive night-service treatment. |
| **Step 16** night-service bell
Example:
Router(config-register-dn)# night-service bell | Marks this voice register dn for night-service treatment. |
| **Step 17** exit
Example:
Router(config-register-dn)# exit | Exits voice register dn configuration mode. |
| **Step 18** voice register pool *pool-tag* | Enters pool configuration mode (or template configuration mode).
pool-tag—The unique sequence number of the phone that will be notified when an incoming call is received by a night-service voice-dn during a night-service period. |
| voice register template *template-tag*
Example:
Router(config)# voice register pool 10
Router(config)# voice register template 1 |
| **Step 19** night-service bell
Example:
Router(config-register-pool)# night-service bell | Marks this phone to receive night-service bell notification when incoming calls are received on voice register dns marked for night service during the night-service time period. |
| **Step 20** voice register pool *pool-tag*
Example:
Router(config)# voice register pool 10 | Enters pool configuration mode. This step is valid only when the night service configuration is under voice register template. |
| **Step 21** template *template-tag*
Example:
Router(config-register-pool)# template 1 | Includes the template with night-service bell configured to provide night service treatment for this pool. This step is valid only when the night service configuration is under voice register template. |
| **Step 22** end
Example: | Returns to privileged EXEC mode. |
Verify Night Service Configuration on SCCP Phones

Step 1 Use the `show running-config` command to verify the night-service parameters, which are listed in the telephony-service portion of the output, or use the `show telephony-service` command to display the same parameters.

Example:

```
Router# show running-config

telephony-service
  fxo hook-flash
  load 7910 P00403020214
  load 7960-7940 P00303020214
  max-ephones 48
  max-dn 288
  ip source-address 10.50.50.1 port 2000
  application segway0
  caller-id block code *321
  create cnf-files version-stamp 7960 Mar 07 2003 11:19:18
  voicemail 79000
  max-conferences 8
  call-forward pattern ..... 
  moh minuet.wav
  date-format yy-mm-dd
  transfer-system full-consult
  transfer-pattern ..... 
  secondary-dialtone 9
  night-service code *1234
  night-service day Tue 00:00 23:00
  night-service day Wed 01:00 23:59

! 
! 
Router# show telephony-service

CONFIG (Version=4.0(0))

-----------------------------

Version 4.0(0)
```
ip source-address 10.103.3.201 port 2000
load 7910 P00403020214
load 7961 TERM41.7-0-1-1
load 7961GE TERM41.7-0-1-1
load 7960-7940 P00307020300
max-ephones 100
max-dn 500
max-conferences 8 gain -6
dspfarm units 2
dspfarm transcode sessions 4
dspfarm 1 MTP00059a3d7441
dspfarm 2
hunt-group report delay 1 hours
Number of hunt-group configured: 14
hunt-group logout DND
max-redirect 20
voicemail 7189
cnf-file location: system:
cnf-file option: PER-PHONE-TYPE
network-locale[0] US (This is the default network locale for this box)
user-locale[0] US (This is the default user locale for this box)
moh flash:music-on-hold.au
time-format 12
date-format mm-dd-yy
timezone 0 Greenwich Standard Time
secondary-dialtone 9
call-forward pattern .T
transfer-pattern 92.......
transfer-pattern 91.........
transfer-pattern .T
after-hours block pattern 1 91900 7-24
after-hours block pattern 2 9976 7-24
after-hours block pattern 4 91...976.... 7-24
night-service time is activated
night-service date Jan 1 00:00 23:59
night-service day Mon 17:00 07:00
night-service day Wed 17:00 07:00
keepalive 30
timeout interdigit 10
timeout busy 10
timeout ringing 100
caller-id name-only: enable
system-message XYZ Company
web admin system name xyz password xxxx
web admin customer name Customer
edit DN through Web: enabled.
edit TIME through web: enabled.
Log (table parameters):
 max-size: 150
 retain-timer: 15
create cnf-files version-stamp Jan 01 2002 00:00:00
transfer-system full-consult
multicast moh 239.10.10.1 port 2000
fxo hook-flash
local directory service: enabled.

Step 2

Use the show running-config command to verify that the correct ephone-dns and ephones are configured with the night-service bell command. You can also use the show telephony-service ephone-dn and show telephony-service ephone commands to display these parameters.

Example:

Router# show running-config

ephone-dn 24 dual-line
 number 2548
 description FrontDesk
 night-service bell

ephone 1
 mac-address 110F.80C0.FE0B
 type 7960 addon 1 7914
 no dnd feature-ring
 keep-conference
 button 1f40 2f41 3f42 4:30
 button 7m20 8m21 9m22 10m23
 button 11m24 12m25 13m26
Verify Night Service Configuration on SIP Phones

Step 1
Use the `show running-config | section telephony-service` command to verify the night-service parameters that are listed in the telephony-service portion of the output. Use the `show telephony-service` command to display the same parameters.

Example:

```
Router# show running-config | section telephony-service

telephony-service
max-ephones 50
max-dn 50
ip source-address 10.50.50.1 port 2000
service phone sshAccess 0
service phone webAccess 0
service directed-pickup gpickup
time-zone 39
max-conferences 8 gain -6
call-park system application
hunt-group report url suffix 0 to 100
hunt-group report every 1 hours
hunt-group logout HLog
transfer-system full-consult
night-service weekday 13:17 14:17
night-service day Sun 00:05 23:59
night-service day Sat 00:05 23:59
night-service code *6483
Router# show telephony-service

max-ephones 50
max-dn 50
ip source-address 10.50.50.1 port 2000
service phone sshAccess 0
service phone webAccess 0
time-zone 39
max-conferences 8 gain -6
call-park system application
hunt-group report url suffix 0 to 100
hunt-group report every 1 hours
hunt-group logout HLog
transfer-system full-consult
night-service time is activated
night-service weekday 13:17 14:17
night-service day Sun 00:05 23:59
night-service day Sat 00:05 23:59
```

Step 2
Use the `show voice register dn` and `show voice register pool` command to verify that the correct voice register dns and phones are configured with the `night-service bell` command.

Example:

```
Router# show voice register dn 1
```
Configure Overlaid Ephone-dns on SCCP Phones

To create ephone-dns, then assign multiple ephone-dns to a single phone button by using the o or c keyword with the button command, perform the following steps.

Restriction

- Call waiting is disabled when you configure ephone-dn overlays using the o keyword with the button command. To enable call waiting, you must configure ephone-dn overlays using the c keyword with the button command.

- Rollover of overlay calls to another phone button by using the x keyword with the button command only works to expand coverage if the overlay button is configured with the o keyword in the button command. Overlay buttons with call waiting that use the c keyword in the button command are not eligible for overlay rollover.

- In Cisco Unified CME 4.0(3), the Cisco Unified IP Phone 7931G cannot support overlays that contain ephone-dn configured for dual-line mode.

- The primary ephone-dn on each phone in a shared-line overlay set should be an ephone-dn that is unique to the phone to guarantee that the phone will have a line available for outgoing calls, and to ensure that the phone user can obtain dial-tone even when there are no idle lines available in the rest of the shared-line overlay set. Use a unique ephone-dn in this manner to provide for a unique calling party identity on outbound calls made by the phone so that the called user can see which specific phone is calling.

- Octo-line directory numbers are not supported in button overlay sets.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn phone-tag [dual-line]
4. number number
5. preference preference-order
6. no huntstop or huntstop
7. huntstop channel
8. call-forward noan
9. call-forward busy
10. exit
11. ephone phone-tag
12. mac-address mac-address
13. button button-number { o | c } dn-tag, dn-tag [, dn-tag...] button-number { x } overlay-button-number
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters ephone-dn configuration mode to create an extension (ephone-dn) for a Cisco Unified IP phone line.</td>
</tr>
<tr>
<td><code>ephone-dn phone-tag [dual-line]</code></td>
<td>• For shared-line overlay set: Primary ephone-dn on a phone should be an ephone-dn that is unique to the phone.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 10 dual-line</td>
</tr>
<tr>
<td>Step 4</td>
<td>Associates a telephone or extension number with the ephone-dn.</td>
</tr>
<tr>
<td><code>number number</code></td>
<td>Router(config-ephone-dn)# number 1001</td>
</tr>
<tr>
<td>Step 5</td>
<td>Sets dial-peer preference order for an ephone-dn.</td>
</tr>
<tr>
<td><code>preference preference-order</code></td>
<td>• <code>preference-order</code>—Preference order for the primary number associated with an extension (ephone-dn). Type ? for a range of numeric options, where 0 is the highest preference. Default: 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# preference 1</td>
</tr>
<tr>
<td>Step 6</td>
<td>Explicitly enables call hunting behavior for a directory number.</td>
</tr>
<tr>
<td><code>no huntstop or huntstop</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# no huntstop</td>
<td>• Set this command on all ephone-dns in the overlay set except the final instance.</td>
</tr>
<tr>
<td>or</td>
<td>• Required to allow call hunting allow call hunting across multiple numbers on the same line button on an IP phone.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# huntstop</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Disables call hunting behavior for a directory number.</td>
</tr>
<tr>
<td></td>
<td>• Set this command on the last ephone-dn within a overlay set.</td>
</tr>
<tr>
<td></td>
<td>• Required to limit the call hunting to an overlay set.</td>
</tr>
<tr>
<td></td>
<td>Step 7</td>
</tr>
<tr>
<td>Example:</td>
<td>Only for dual-line ephone-dns in overlay set; keeps incoming calls from hunting to the second channel if the first channel is busy or does not answer.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# huntstop channel</td>
<td>• Reserves the second channel for outgoing calls, such as a consultation call to be placed during a call transfer attempt, or for conferencing</td>
</tr>
<tr>
<td></td>
<td>Step 8</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Forwards incoming unanswered call to next line in the overlay set.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# call-forward noan</td>
<td>• Set this command on all ephone-dns in the overlay set.</td>
</tr>
<tr>
<td></td>
<td>Step 9</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Forwards incoming call if line is busy.</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# call-forward busy</td>
<td>• Set this command on the last ephone-dn in the overlay set only.</td>
</tr>
<tr>
<td></td>
<td>Step 10</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits ephone-dn configuration mode</td>
</tr>
<tr>
<td>Router(config-ephone-dn)# exit</td>
<td>Step 11</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Router(config)# ephone 4</td>
<td>• phone-tag—Unique sequence number that identifies the phone to which you are adding an overlay set.</td>
</tr>
<tr>
<td></td>
<td>Step 12</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the MAC address of the registering phone.</td>
</tr>
<tr>
<td>Router(config-epone)# mac-address 1234.5678.abcd</td>
<td>Step 13</td>
</tr>
<tr>
<td></td>
<td>Creates a set of ephone-dns overlaid on a single button.</td>
</tr>
<tr>
<td></td>
<td>button-number {x} overlay-button-number</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ep hone)# button 1o15,16,17,18,19 2c20,21,22 3x1 4x1</td>
<td></td>
</tr>
<tr>
<td>• o—Overlay button. Multiple ephone-dns share this button. A maximum of 25 ephone-dns can be specified for a single button, separated by commas.</td>
<td></td>
</tr>
<tr>
<td>• c—Overlay button with call-waiting. Multiple ephone-dns share this button. A maximum of 25 ephone-dns can be specified for a single button, separated by commas.</td>
<td></td>
</tr>
<tr>
<td>• x—Separator that creates a rollover button for an overlay button that was defined using the o keyword. When the overlay button specified in this command is occupied by an active call, a second call to one of its ephone-dns will be presented on this button.</td>
<td></td>
</tr>
<tr>
<td>• dn-tag—Unique identifier previously defined with the ephone-dn command for the ephone-dn to be added to this overlay set.</td>
<td></td>
</tr>
<tr>
<td>• overlay-button-number—Number of the overlay button that should overflow to this button. Note that the button must have been defined using the o keyword and not the c keyword.</td>
<td></td>
</tr>
</tbody>
</table>

Note For other keywords, see the button command in the Cisco Unified Communications Manager Express Command Reference.

<table>
<thead>
<tr>
<th>Step 14</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ep hone)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Verify Overlaid Ephone-dns Configuration on SCCP Phone

Step 1 Use the **show running-config** command or the **show telephony-service ephone** command to view button assignments.

```
Router# show running-config
```

ephone 5
description Cashier1
mac-address 0117.FBC6.1985
type 7960
button 1o4,5,6,200,201,202,203,204,205,206 2x1 3x1

Step 2 Use the **show ephone overlay** command to display the configuration and current status of registered overlay ephone-dns.
Step 3 Use the **show dialplan number** command to display all the number resolutions of a particular phone number, which allows you to detect whether calls are going to unexpected destinations. This command is useful for troubleshooting cases in which you dial a number but the expected phone does not ring.

Enable Out-Of-Dialog REFER

Restriction
- The call waiting, conferencing, hold, and transfer call features are not supported while the Refer-Target is ringing.
- In a SIP to SIP scenario, no ringback is heard by the Referee when Refer-Target is ringing.

Before you begin
- Cisco Unified CME 4.1 or a later version.
- The application that initiates OOD-R, such as a click-to-dial application, and its directory server must be installed and configured.
- For information on the SIP REFER and NOTIFY methods used between the directory server and Cisco Unified CME, see RFC 3515, The Session Initiation Protocol (SIP) Refer Method.
- For information on the message flow Cisco Unified CME uses when initiating a session between the Referee and Refer-Target, see RFC 3725, Best Current Practices for Third Party Call Control (3pcc).

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **sip-ua**
4. **refer-ood enable [request-limit]**
5. **exit**
6. **voice register global**
7. **authenticate ood-refer**
8. **authenticate credential tag location**
9. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters SIP user-agent configuration mode to configure the user agent.</td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip-ua
Example: Router(config)# sip-ua</td>
<td>Enables OOD-R processing.</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>refer-ood enable [request-limit]
Example: Router(config-sip-ua)# refer-ood enable 300</td>
<td>Enables OOD-R processing.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit
Example: Router(config-sip-ua)# exit</td>
<td>Exits SIP user-agent configuration mode.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>voice register global
Example: Router(config)# voice register global</td>
<td>Enters voice register global configuration mode to set global parameters for all supported SIP phones in a Cisco Unified CME or Cisco Unified SRST environment.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate ood-refer
Example: Router(config-register-global)# authenticate ood-refer</td>
<td>(Optional) Enables authentication of incoming OOD-R requests using RFC 2617-based digest authentication.</td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate credential tag location
Example: Router(config-register-global)# authenticate credential 1 flash:cred1.csv</td>
<td>(Optional) Specifies the credential file to use for authenticating incoming OOD-R requests.</td>
</tr>
</tbody>
</table>

- *tag*—Number that identifies the credential file to use for OOD-R authentication. Range: 1 to 5.

- *location*—Name and location of the credential file in URL format. Valid storage locations are TFTP, HTTP, and flash memory.

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end
Example: Router(config-register-global)# end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

What to do next

- If you are configuring Cisco Unified CME for the first time on this router, you are ready to configure system-level parameters. See **Configure System-Level Parameters**, on page 170.

- If you modified network parameters for an already configured Cisco Unified CME router, you are ready to generate the configuration file to save the modifications. See **Generate Configuration Files for Phones**, on page 390.
Verify OOD-R Configuration

SUMMARY STEPS

1. show running-config
2. show sip-ua status refer-ood

DETAILED STEPS

Step 1 show running-config

This command verifies your configuration.

Example:

Router# show running-config

voice register global
mode cme
source-address 10.1.1.2 port 5060
load 7971 SIP70.8-0-1-11S
load 7970 SIP70.8-0-1-11S
load 7961GE SIP41.8-0-1-0DEV
load 7961 SIP41.8-0-1-0DEV
authenticate ood-refer
authenticate credential 1 tftp://172.18.207.15/labtest/cred1.csv
create profile sync 0004550081249644
.
.
.
sip-ua
refer-ood enable

Step 2 show sip-ua status refer-ood

This command displays OOD-R configuration settings.

Example:

Router# show sip-ua status refer-ood

Maximum allow incoming out-of-dialog refer 500
Current existing incoming out-of-dialog refer dialogs: 1
outgoing out-of-dialog refer dialogs: 0

Troubleshooting OOD-R

Step 1 Use the debug ccsip messages command to display the SIP messages exchanged between the SIP UA client and the router.
Step 2 Use the `debug voip application oodrefer` command to display debugging messages for the OOD-R feature.

Configuration Examples for Call Coverage Features

Call Hunt: Examples

Example for Setting Ephone-dn Dial-Peer Preference

The following example sets a preference number of 2 for the primary number of ephone-dn 3:

```
ephone-dn 3
    number 3001
    preference 2
```

Example for Disabling Huntstop

The following example shows an instance in which huntstop is not desired and is explicitly disabled. In this example, ephone 4 is configured with two lines, each with the same extension number 5001. This is done to allow the second line to provide call waiting notification for extension number 5001 when the first line is in use. Setting `no huntstop` on the first line (ephone-dn 1) allows incoming calls to hunt to the second line (ephone-dn 2) on the same phone when the ephone-dn 1 line is busy.

Ephone-dn 2 has call forwarding set to extension 6000, which corresponds to a locally attached answering machine connected to a foreign exchange station (FXS) voice port. The plain old telephone service (POTS) dial peer for extension 6000 also has the dial-peer huntstop attribute explicitly set to prevent further hunting.

```
ephone-dn 1
    number 5001
    no huntstop
    preference 1
    call-forward noan 6000

ephone-dn 2
    number 5001
    preference 2
    call-forward busy 6000
    call-forward noan 6000

ephone 4
    button 1:1 2:2
    mac-address 0030.94c3.8724
    dial-peer voice 6000 pots
    destination-pattern 6000
    huntstop port 1/0/0
    description answering-machine
```
Example for Channel Huntstop

The following is an example that uses the `huntstop channel` command. It shows a dual-line ephone-dn configuration in which calls do not hunt to the second channel of any ephone-dn, but they do hunt through each ephone-dn’s channel 1 in this order: ephone-dn 10, ephone-dn 11, ephone-dn 12.

ephone-dn 10 dual-line
 number 1001
 no huntstop
 huntstop channel

ephone-dn 11 dual-line
 number 1001
 no huntstop
 huntstop channel
 preference 1

ephone-dn 12 dual-line
 number 1001
 no huntstop
 huntstop channel
 preference 2

Example for SIP Call Hunt

The following example shows a typical configuration in which huntstop is required. The `huntstop` command is enabled and prevents calls to extension 5001 from being rerouted to the on-net H.323 dial peer for 5... when extension 5001 is busy (three periods are used as wild cards).

voice register dn 1
 number 5001
 huntstop

voice register pool 4
 number 1 dn 1
 id-mac 0030.94c3.8724

dial-peer voice 5000 voip
 destination-pattern 5...
 session target ipv4:192.168.17.225
 session protocol sipv2

Example for Call Pickup

The following example assigns the line that has an ephone-dn tag of 55 to pickup group 2345:
Example for Call-Waiting Beep

In the following example, ephone-dn 10 neither accepts nor generates a beep, ephone-dn 11 does not accept a beep, and ephone-dn 12 does not generate a beep:

```plaintext
ephone-dn 10
  no call-waiting beep
  number 4410

ephone-dn 11
  no call-waiting beep accept
  number 4411

ephone-dn 12
  no call-waiting beep generate
  number 4412
```

Example for Call-Waiting Ring

The following example specifies that a short ring will indicate a call is waiting for extension 5533:

```plaintext
ephone-dn 20
  number 5533
  call-waiting ring
```

Examples for Hunt Group

Example for Sequential Ephone-Hunt Group

The following example defines a sequential ephone hunt group with the pilot number 5600 and the final number 6000, with three numbers in the list of phones that answer for the pilot number:

```plaintext
ephone-hunt 2 sequential
  pilot 5600
  list 5621, *, 5623
  final 6000
  max-timeout 10
  timeout 20, 20, 20
```
Example for Peer Ephone-Hunt Group

The following example defines peer ephone hunt group 10 with a pilot number 450, a final number 500, and four numbers in the list. After a call is redirected four times (makes four hops), it is redirected to the final number.

```bash
ephone-hunt 10 peer
  pilot 450
  list 451, 452, 453, 477
  final 500
  max-timeout 10
  timeout 3, 3, 3, 3
```

Example for Longest-idle Ephone-Hunt Group

The following example defines longest-idle ephone hunt group 1 with a pilot number 7501 and 11 numbers in the list. After a call is redirected five times, it is redirected to the final number.

```bash
ephone-hunt 1 longest-idle
  pilot 7501
  list 7001, 7002, 7023, 7028, 7045, 7062, 7067, 7072, 7079, 7085, 7099
  final 8000
  preference 1
  hops 5
  timeout 20
  no-reg
```

Example for Longest-idle Ephone-Hunt Group Using From-Ring Option

The following example defines longest-idle ephone hunt group 1 with a pilot number 7501, a final number 8000, and 11 numbers in the list. Because the `from-ring` command is used, on-hook time stamps will be recorded when calls ring extensions and when calls are answered. After a call is redirected six times (makes six hops), it is redirected to the final number, 8000. The `max-redirect` command is used to increase the number of redirects that are allowed because the number of hops (six) is larger than the default number of redirects that are allowed in the system (five).

```bash
ephone-hunt 1 longest-idle
  pilot 7501
  list 7001, 7002, 7023, 7028, 7045, 7062, 7067, 7072, 7079, 7085, 7099
  final 8000
  from-ring
  preference 1
  hops 6
  timeout 20
```

telephony-service
Example for Sequential Hunt Group

In the following parallel hunt-group example, when callers dial extension 1000, extension 1001, 1002, 1003, and 1004 ring simultaneously. The first extension to answer is connected. If none of the extensions answers within 60 seconds, the call is forwarded to extension 2000, which is the number for voice mail.

```
voice hunt-group 4 parallel
  final 2000
  list 1001,1002,1003,1004
  timeout 60
  pilot 1000
  preference 1 secondary 9

ephone-dn 1 octo-line
  number 1001

ephone-dn 2
  number 1002

ephone-dn 3 dual-line
  number 1003

ephone-dn 4
  number 1004

ephone 1
  max-calls-per-button 4
  mac-address 02EA.EAEA.0001
  button 1:1

ephone 2
  mac-address 001C.821C.ED23
  button 1:2

ephone 3
  mac-address 002D.264E.54FA
```
Example for Preventing Local Call Forwarding in Parallel Voice Hunt-Groups

The following example shows how to prevent the forwarding of local calls to the final destination in parallel voice hunt-group 1:

Router# configure terminal
Router(config)# voice hunt-group 1 parallel
Router(config-voice-hunt-group)# no forward local-calls to-final

Example for Associating a Name with a Called Voice Hunt-Group

When incoming call A reaches voice hunt group B and lands on final C, extension C does not show the name of the forwarder because the voice hunt group is not configured to display the name. To display the name of the forwarder and the final number, two separate names are required for the primary and secondary pilot numbers.

ephone-hunt

The following is a sample output of the show run command when the primary and secondary pilot names are configured in ephone-hunt configuration mode:

ephone-hunt 10 sequential
 pilot 1010 secondary 1020
 list 2004, 2005
 final 2006
 timeout 8, 8
 name "EHUNT PRIMARY" secondary "EHUNT SECONDARY"

ephone-hunt 11 peer
 pilot 1012 secondary 1022
 list 2004, 2005
 final 2006
 timeout 8, 8
 name EHUNT1 secondary EHUNT1-SEC

The following is a sample output of the show ephone-hunt command when the primary and secondary pilot names are configured in ephone-hunt configuration mode:

show ephone-hunt 10
Group 10
 type: sequential
 pilot number: 1010, peer-tag 20010
 pilot name: EHUNT PRIMARY
 secondary number: 1020, peer-tag 20011
 secondary name: EHUNT SECONDARY

voice hunt-group

The following example shows how the primary and secondary pilot names are configured in voice hunt-group configuration mode:
voice hunt-group 24 parallel
final 097
list 885,886,124,154
timeout 20
pilot 021 secondary 621
name SALES secondary SALES-SECONDARY

The following is a sample output of the show voice hunt-group command when the primary and secondary pilot names are configured in voice hunt-group configuration mode:

show voice hunt-group 1
Group 1
type: parallel
pilot number: 1000, peer-tag 2147483647
secondary number: 2000, peer-tag 2147483646
pilot name: SALES
secondary name: SALES-SECONDARY
list of numbers:
Member Used-by State Login/Loginout
---------- ------- ---- --------------------
2004 2004 up login
2005 2005 down -
preference: 0
preference (sec): 0
timeout: 180
final_number:
stat collect: no
phone-display: no

Example for Specifying a Description for a Voice Hunt-Group

The following example shows how to specify a description for voice hunt-group 12 using the description command and presents the description in the output of the do show run command:

Router(config)# voice hunt-group 12 parallel
Router (config-voice-hunt-group)# description ?
LINE description for this hunt group
Router (config-voice-hunt-group)# description specific huntgroup description

Router (config-voice-hunt-group)# do show run | sec voice hunt-group
voice hunt-group 12 parallel
timeout 0
description specific huntgroup description

Example for Logout Display

In the following example, the description is set to “Marketing Hunt Group.” This information will be shown in the configuration output and also on the display of IP phones that are receiving calls from this hunt group. The display-logout message is set to “Night Service,” which will be displayed on IP phones that are members of the hunt group when all the members are logged out.

ephone-hunt 17 sequential
pilot 3000
list 3011, 3021, 3031
timeout 10
final 7600
Example for Displaying Total Logged-In Time and Total Logged-Out Time for Each Hunt-Group Agent

The following example displays the duration (in sec) since a specific agent logged into and logged out of ephone hunt group 1 from 4:00 a.m. to 5:00 a.m. (0400 to 0500):

```
show ephone-hunt 1 statistics
Wed 04:00 - 05:00
Max Agents: 3
Min Agents: 3
Total Calls: 9
Answered Calls: 7
Abandoned Calls: 2
Average Time to Answer (secs): 6
Longest Time to Answer (secs): 13
Average Time in Call (secs): 75
Longest Time in Call (secs): 161
Average Time before Abandon (secs): 8
Calls on Hold: 2
Average Time in Hold (secs): 16
Longest Time in Hold (secs): 21
Per agent statistics:
  Agent: 5012
    From Direct Call:
      Total Calls Answered: 3
      Average Time in Call (secs): 70
      Longest Time in Call (secs): 150
      Totals Calls on Hold: 1
      Average Hold Time (secs): 21
      Longest Hold Time (secs): 21
    From Queue:
      Total Calls Answered: 3
      Average Time in Call (secs): 55
      Longest Time in Call (secs): 78
      Total Calls on Hold: 2
      Average Hold Time (secs): 19
      Hold Time (secs): 26
    Total logged in Time (secs) : 3000
    Total logged out Time (secs) : 600

  Agent: 5013
    From Direct Call:
      Calls Answered: 3
      Average Time in Call (secs): 51
      Longest Time in Call (secs): 118
      Totals Calls on Hold: 1
      Average Hold Time (secs): 11
      Longest Hold Time (secs): 11
    From Queue:
      Total Calls Answered: 1
      Average Time in Call (secs): 4
      Longest Time in Call (secs): 4
    Total logged in Time (secs) : 3000
    Total logged out Time (secs) : 600

  Agent: 5014
    From Direct Call:
```
Example for Dynamic Membership To Ephone-Hunt

The following example creates four ephone-dns and a hunt group that includes the first ephone-dn and two wildcard slots. The last three ephone-dns are enabled for group hunt dynamic membership. Each of them can join and leave the hunt group whenever one of the wildcard slots is available. Standard FACs have been enabled, and the agents use standard FACs to join (*3) and leave (#3) the hunt group. You can also use the fac command to create custom FACs for these actions if you prefer.

ephone-dn 22
number 4566

ephone-dn 24
number 4568
ephone-hunt login

ephone-dn 25
number 4569
ephone-hunt login

ephone-dn 26
number 4570
ephone-hunt login

ephone-hunt 1 peer
list 4566,*,*
Example for Dynamic Membership To Voice Hunt-Group

The following example creates one voice register dn and one voice hunt group which includes two wildcard slots. The voice register dn is enabled for group hunt dynamic membership. The DN can join and unjoin the hunt group whenever one of the wildcard slots is available. Standard FACs have been enabled, and the agents use standard FACs to join (*3) and unjoin (#3) the hunt group. You can also use the fac command to create custom FACs for these actions if you prefer.

Voice register dn 1
Number 1001
Voice-hunt-groups login

Voice hunt-group 1 parallel
Pilot number 100
List 1001, 1002, 1003, *, *

The following example creates three lines (3 voice register dns and 1 ephone dn) in phones with mixed shared line DNs. Using the three wildcard entries configured, the DNs can join and unjoin the hunt groups. Here, standard FACs have been enabled, and the agents use standard FACs to join (*3) and unjoin (#4) the hunt group.

ephone-dn 1 dual-line
number 1001
shared-line sip
ephone 1
device-security-mode none
mac-address 1111.4444.3301
type 7970
button 1:1

voice register dn 1
voice-hunt-groups login
number 1001
name phone-1
shared-line max-calls 4

voice register dn 2
voice-hunt-groups login
number 2001
name phone-2
shared-line max-calls 4

voice register dn 3
voice-hunt-groups login
number 2002
name phone-3
shared-line max-calls 4

voice register pool 1
busy-trigger-per-button 2
id mac 00DA.5527.1BB7
type 8841
number 1 dn 1
Example for Agent Status Control using SCCP Phones

The following example sets up a peer ephone hunt group. It also establishes the appearance and order of soft keys for phones that are configured with ephone-template 7. These phones will have the HLog key available when they are idle, when they have seized a line, or when they are connected to a call. Phones without softkeys can use the standard HLog codes to toggle ready and not-ready status.

ephone-hunt 10 peer
pilot 450
list 451, 452, 453, 477
final 500
timeout 45
telephony-service
hunt-group logout HLog
fac standard
ephone-template 7
softkeys connected Endcall Hold Transfer HLog
softkeys idle Newcall Redial Pickup Cfwdall HLog
softkeys seized Endcall Redial Pickup Cfwdall HLog

Example for Agent Status Control using SIP Phones

The following example sets up a peer voice hunt group. It also establishes the appearance and order of soft keys for phones that are configured with voice register template 7. These phones will have the HLog key available when idle, when there is a ringIn, or when connected to a call. Phones without softkeys can use the standard HLog codes to toggle ready and not-ready status.

voice hunt-group 10 peer
pilot 450
list 451, 452, 453, 477
final 500
timeout 45
telephony-service
hunt-group logout HLog
Example for Automatic Agent Not-Ready for Ephone Hunt Group

The following example enables automatic status change to not-ready after one unanswered hunt group call (the default) for both dynamic and static hunt group members (the default). It also specifies that the phones which are automatically put into the not-ready status should only be blocked from further hunt-group calls and that they should be able to receive calls that directly dial their extensions.

```
ephone-hunt 3 peer
pilot 4200
list 1001, 1002, 1003
timeout 10
auto logout
final 4500
telephony-service
  hunt-group logout HLog
```

The following example enables automatic status change to not-ready after two unanswered hunt group calls for any ephone-dn that dynamically logs in to the hunt group using the wildcard slot in the hunt group list. Phones that are automatically placed in the not-ready status when they do not answer two hunt-group calls are also placed into DND status (they will also not accept directly dialed calls).

```
ephone-hunt 3 peer
pilot 4200
list 1001, 1002, *
timeout 10
auto logout 2 dynamic
final 4500
telephony-service
  hunt-group logout DND
```

Example for Automatic Agent Not-Ready for Voice Hunt Group

In the following example, voice hunt-group 1 is configured to permit automatic logout. If hunt group calls that are presented to 1001, 1002, 1003, and 1004 are unanswered (that is, if they ring longer than 40 seconds each), voice register pool 1, voice register pool 2, ephone 1, and ephone 2 are automatically logged out. All unanswered calls are sent to DN 5000.

```
Router(config)# voice register dn 1
Router(config-register-dn)# number 1001
Router(config)# voice register dn 2
Router(config-register-dn)# number 1002

Router(config)# ephone-dn 1
Router(config-ephone-dn)# number 1003
Router(config)# ephone-dn 2
```
Example for Call Statistics From a Voice Hunt Group

The following is a sample output from the `show voice hunt-group statistics` command. The output includes direct calls to a voice hunt group number and calls from queue/B-ACD.

```
Router# show voice hunt-group 1 statistics last 1 h
Wed 04:00 - 05:00
Max Agents: 3
Min Agents: 3
Total Calls: 9
Answered Calls: 7
Abandoned Calls: 2
Average Time to Answer (secs): 6
Longest Time to Answer (secs): 13
Average Time in Call (secs): 75
Longest Time in Call (secs): 161
Average Time before Abandon (secs): 8
Calls on Hold: 2
Average Time in Hold (secs): 16
Longest Time in Hold (secs): 21
Per agent statistics:
  Agent: 5012
    From Direct Call:
      Total Calls Answered: 3
      Average Time in Call (secs): 70
      Longest Time in Call (secs): 150
      Total Calls on Hold: 1
    Average Hold Time (secs): 21
      Longest Hold Time (secs): 21
    From Queue:
      Total Calls Answered: 3
      Average Time in Call (secs): 55
      Longest Time in Call (secs): 78
      Total Calls on Hold: 2
    Average Hold Time (secs): 19
      Longest Hold Time (secs): 26
    Total Loged in Time (secs): 3000
    Total Loged out Time (secs): 600
    Agent: 5013
    From Direct Call:
```
Total Calls Answered: 3
Average Time in Call (secs): 51
Longest Time in Call (secs): 118
Total Calls on Hold: 1
Average Hold Time (secs): 11
Longest Hold Time (secs): 11

From Queue:
Total Calls Answered: 1
Average Time in Call (secs): 4
Longest Time in Call (secs): 4
Total Loged in Time (secs): 3000
Total Loged out Time (secs): 600

Agent: 5014
From Direct Call:
Total Calls Answered: 1
Average Time in Call (secs): 161
Longest Time in Call (secs): 161
From Queue:
Total Calls Answered: 1
Average Time in Call (secs): 658
Longest Time in Call (secs): 658
Total Loged in Time (secs): 3000
Total Loged out Time (secs): 600

Queue related statistics:
Total calls presented to the queue: 5
Calls handoff to IOS: 5
Number of calls in the queue: 0
Average time to handoff (secs): 2
Longest time to handoff (secs): 3
Number of abandoned calls: 0
Average time before abandon (secs): 0
Calls forwarded to voice mail: 0
Calls answered by voice mail: 0
Number of error calls: 0

Note
The per agent statistics are displayed for both static and dynamic agents.

Example for Night Service on SCCP Phones

The following example provides night service before 8 a.m. and after 5 p.m. Monday through Friday, before 8 a.m. and after 1 p.m. on Saturday, and all day Sunday. Extension 1000 is designated as a night-service extension. Incoming calls to extension 1000 during the night-service period ring on extension 1000 and provide night-service notification to phones that are designated as night-service phones. In this example, the night-service phones are ephone 14 and ephone 15. The night-service notification consists of a single ring on the phone and a display of “Night Service 1000.” A night-service toggle code has been configured, *6483 (*NITE), by which a phone user can activate or deactivate night-service conditions during the hours of night service.

telephony-service

night-service day mon 17:00 08:00
night-service day tue 17:00 08:00
night-service day wed 17:00 08:00
night-service day thu 17:00 08:00
night-service day fri 17:00 08:00
Example for Night Service on SIP Phones

The following example provides night service everyday before 10:00 am and after 7:00 pm. Incoming calls to extension 3000 during the night-service period ring on extension 3000 and provide night-service notification to phones that are designated as night-service phones. In this example, the night-service phones are pool 2 and pool 3. The night-service notification consists of a single ring on the phone and a display of “Night Service 3000.” A night-service toggle code has been configured, *8765 (*NITE), by which a phone user can activate or deactivate night-service conditions during the hours of night service.

telephony-service
night-service everyday 19:00 10:00
The following example creates three lines (ephone-dns) that are shared across three IP phones to handle three simultaneous calls to the same telephone number. Three instances of a shared line with the extension number 1001 are overlaid onto a single button on each of three phones. A typical call flow is as follows. The first call goes to ephone 1 (highest preference) and rings button 1 on all three phones (huntstop is off). The call is answered on ephone 1. A second call to extension 1001 hunts onto ephone-dn 2 and rings on the two remaining ephones, 11 and 12. The second call is answered by ephone 12. A third simultaneous call to extension 1001 hunts onto ephone-dn 3 and rings on ephone 11, where it is answered. Note that the no huntstop command is used to allow hunting for the first two ephone-dns, and the huntstop command is used on the final ephone-dn to stop call-hunting behavior. The preference command is used to create different selection preferences for each ephone-dn.

`ephone-dn 1
 number 1001
 no huntstop
 preference 0`

`ephone-dn 2
 number 1001
 no huntstop`
Example for Overlaid Dual-Line Ephone-dn

The following example shows how to overlay dual-line ephone-dns. In addition to using the `huntstop` and `preference` commands, you must use the `huntstop channel` command to prevent calls from hunting to the second channel of an ephone-dn. This example overlays five ephone-dns on button 1 on five different ephones. This allows five separate calls to the same number to be connected simultaneously, while occupying only one button on each phone.

```plaintext
 preference 1
ephone-dn 3
   number 1001
   huntstop
   preference 2
ephone 10
   button 1,2,3
ephone 11
   button 1,2,3
ephone 12
   button 1,2,3
```

Example for Overlaid Dual-Line Ephone-dn

```plaintext
ephone-dn 10 dual-line
   number 1001
   no huntstop
   huntstop channel
   preference 0

ephone-dn 11 dual-line
   number 1001
   no huntstop
   huntstop channel
   preference 1

ephone-dn 12 dual-line
   number 1001
   no huntstop
   huntstop channel
   preference 2

ephone-dn 13 dual-line
   number 1001
   preference 3
   no huntstop
   huntstop channel

ephone-dn 14 dual-line
```
Example for Shared-line Overlaid Ephone-dns

The following is an example of a unique ephone-dn as the primary dn in a simple shared-line overlay configuration. The `no huntstop` command is configured for all the ephone-dns except ephone-dn 12, the last one in the overlay set. Because the ephone-dns are dual-line dns, the `huntstop-channel` command is also configured to ensure that the second channel remains free for outgoing calls and for conferencing.

ephone-dn 1 dual-line
 number 101
 huntstop-channel
 !
ephone-dn 2 dual-line
 number 102
 huntstop-channel
 !
ephone-dn 10 dual-line
 number 201
 no huntstop
Example for Overlaid Ephone-dn with Call Waiting

In following example, button 1 on ephone 1 though ephone 3 uses the same set of overlaid ephone-dns with call waiting that share the number 1111. The button also accept calls to each ephone’s unique (nonshared) ephone-dn number. Note that if ephone-dn 10 and ephone-dn 11 are busy, the call will go to ephone-dn 12. If ephone-dn 12 is busy, the call will go to voice mail.

Example for Overlaid Ephone-dn with Call Waiting
Example for Overlaid Ephone-dns with Rollover Buttons

The following example configures a “3x3” shared-line setup for three phones and nine shared lines (ephone-dns 20 to 28). Each ephone has a unique ephone-dn for each of its three buttons (ephone-dns 11 to 13 on ephone 1, ephone-dns 14 to 16 on ephone 2, and ephone-dns 17 to 19 on ephone 3). The rest of the ephone-dns are shared among the three phones. Three phones with three buttons each can take nine calls. The overflow buttons provide the ability for an incoming call to ring on the first available button on each phone.

call-forward noan 7000 timeout 30

ephone-dn 11 dual-line
number 1111
preference 1
no huntstop
huntstop channel
call-forward noan 7000 timeout 30
call-forward busy 7000

ephone-dn 12 dual-line
number 1111
preference 2
huntstop channel
call-forward noan 7000 timeout 30
call-forward busy 7000

ephone 1
button 1c1,10,11,12

ephone 2
button 1c2,10,11,12

ephone 3
button 1c3,10,11,12
Example for Called-Name Display for Voice Hunt Group

The Called-Name Display feature supports the display of the name associated with a called number for incoming calls to IP phones configured on Unified CME. For an example of Called-Name Display for Voice Hunt Group calls, see Example for Called-Name Display for Voice Hunt Group, on page 654.

Example for Called Directory Name Display for Overlaid Ephone-dns

The following example demonstrates the display of a directory name for a called ephone-dn that is part of an overlaid ephone-dn set. For configuration information, see Directory Services, on page 641.

This configuration of overlaid ephone-dns uses wildcards in the secondary numbers for the ephone-dns. Wildcards allow you to control the display according to the number that was dialed. The example is for a medical answering service with three IP phones that accept calls for nine doctors on one button. When a call to 5550101 rings on button 1 on phone 1 to phone 3, “doctor1” is displayed on all three phones.

telephony-service
 service dnis dir-lookup
 directory entry 1 5550101 name doctor1
 directory entry 2 5550102 name doctor2
 directory entry 3 5550103 name doctor3
 directory entry 4 5550110 name doctor4
 directory entry 5 5550111 name doctor5
 directory entry 6 5550112 name doctor6
 directory entry 7 5550120 name doctor7
 directory entry 8 5550121 name doctor8
 directory entry 9 5550122 name doctor9
ephone-dn 1
 number 5500 secondary 555000.
ephone-dn 2
The following example shows a hunt-group configuration for a medical answering service with two phones and four doctors. Each phone has two buttons, and each button is assigned two doctors’ numbers. When a patient calls 5550341, Cisco Unified CME matches the hunt-group pilot secondary number (555...), rings button 1 on one of the two phones, and displays “doctor1.” For more information about hunt-group behavior, see Hunt Groups, on page 1203. Note that wildcards are used only in secondary numbers and cannot be used with primary numbers.

```cisco
telephony-service
  service dnis dir-lookup
  max-redirect 20
  directory entry 1 5550341 name doctor1
  directory entry 2 5550372 name doctor1
  directory entry 3 5550263 name doctor3
  directory entry 4 5550150 name doctor4
ephone-dn 1
  number 1001
ephone-dn 2
  number 1002
ephone-dn 3
  number 1003
ephone-dn 4
  number 104
ephone 1
  button 101,2
  button 203,4
  mac-address 1111.1111.1111
ephone 2
  button 101,2
  button 203,4
  mac-address 2222.2222.2222
```

Note: This example uses secondary numbers with wildcards, which cannot be used with primary numbers.
Example for Called Ephone-dn Name Display for Overlaid Ephone-dns

The following example demonstrates the display of the name assigned to the called ephone-dn using the `name` command. For information about configuring this feature, see Directory Services, on page 641.

In this example, three phones have button 1 assigned to pick up three shared 800 numbers for three different catalogs.

The default display for the phones is the number of the first ephone-dn listed in the overlay set (18005550100). A call is made to the first ephone-dn (18005550100), and the caller ID (for example, 4085550123) is visible on all phones. The user for phone 1 answers the call. The caller ID (4085550123) remains visible on phone 1, and the displays on phone 2 and phone 3 return to the default display (18005550100). A call to the second ephone-dn (18005550101) is made. The default display on phone 2 and phone 3 is replaced with the called ephone-dn's name (catalog1) and number (18005550101).

telephony-service
 service dnis overlay
ephone-dn 1
 number 18005550100
ephone-dn 2
 name catalog1
 number 18005550101
ephone-dn 3
 name catalog2
 number 18005550102
ephone-dn 4
 name catalog3
 number 18005550103
ephone 1
 button 1o1,2,3,4
ephone 2
 button 1o1,2,3,4
ephone 3
 button 1o1,2,3,4
Example for OOD-R

voice register global
mode cme
source-address 11.1.1.2 port 5060
load 7971 SIP70.8-0-1-11S
load 7970 SIP70.8-0-1-11S
load 7961GE SIP41.8-0-1-ODEV
load 7961 SIP41.8-0-1-ODEV
authenticate ood-refer
authenticate credential 1 tftp://172.18.207.15/labtest/cred1.csv
create profile sync 0004550081249644
...
sip-ua
authentication username

Where to Go Next

Dial-Peer Call Hunt and Hunt Groups

Dial peers other than ephone-dn dial peers can be directly configured as hunt groups or rotary groups, in which multiple dial peers can match incoming calls. (These are not the same as Cisco Unified CME ephone hunt groups.) For more information, see the “Hunt Groups” section of the Dial Peers Features and Configuration chapter of Dial Peer Configuration on Voice Gateway Routers.

Called-Name Display

This feature allows you to specify that the name of the called party, rather than the number, should be displayed for incoming calls. This feature is very helpful for agents answering calls for multiple ephone-dns that appear on a single line button in an ephone-dn overlay set. For more information, see Directory Services, on page 641.

Soft Key Control

If the hunt-group logout command is used with the HLog keyword, the HLog soft key appears on phones during the idle, connected, and seized call states. The HLog soft key is used to toggle an agent from the ready to not-ready status or from the not-ready to ready status. To move or remove the HLog soft key on one or more phones, create and apply an ephone template that contains the appropriate softkeys commands.

From Unified CME Release 11.6 onwards, HLog keyword is supported with the hunt-group logout command configured under telephony service. On SIP phone, HLog softkey appears on phone for idle, ringIn, and connected state.

For more information, see Customize Softkeys, on page 897.

Feature Access Codes (FACs)

Dynamic membership allows agents at authorized phones to join or leave a hunt group using a feature access code (FAC) after standard or custom FACs are enabled.

In Cisco Unified CME 4.0 and later versions, you can activate call pickup using a feature access code (FAC) instead of a soft key when standard or custom FACs have been enabled for your system. The following are the standard FACs for call pickup:

- Pickup group—Dial the FAC and a pickup group number to pick up a ringing call in a different pickup group than yours. Standard FAC is **4.
• Pickup local—Dial the FAC to pick up a ringing call in your pickup group. Standard FAC is **3.
• Pickup direct—Dial the FAC and the extension number to pick up a ringing call at any extension. Standard FAC is **5.

For more information about FACs, see Feature Access Codes, on page 733.

Controlling Use of the Pickup Soft Keys

To block the functioning of the group pickup (GPickUp) or local pickup (Pickup) soft key without removing the key display, create and apply an ephone template that contains the features blocked command. For more information, see Configure Call Blocking, on page 1028.

To remove the group pickup (GPickUp) or local pickup (Pickup) soft key from one or more phones, create and apply an ephone template that contains the appropriate softkeys command. For more information, see Customize Softkeys, on page 897.

Ephone-dn Templates

The ephone-hunt login command authorizes an ephone-dn to dynamically join and leave an ephone hunt group. It can be included in an ephone-dn template that is applied to one or more individual ephone-dns. For more information, see Templates, on page 1393.

Ephone Hunt Group Statistics Reports

Several different types of statistics can help you track whether your current ephone hunt groups are meeting your call coverage needs. These statistics can be displayed on-screen or written to files.

For more information, see the Cisco Unified CME Basic Automatic Call Distribution and Auto-Attendant Service chapter in Cisco Unified CME B-ACD and Tcl Call-Handling Applications.

Voice Hunt Group Statistics Reports

The hunt-group statistics write-all command writes all the ephone and voice hunt group statistics to a file.

The hunt-group statistics write-v2 command writes all the ephone and voice hunt group statistics to a file, along with total logged in and logged out time for agents.

The statistics collect command enables the collection of call statistics for a voice hunt group.

The show telephony-service all command displays the total number of ephone and voice hunt groups that have statistics collection turned on.

The show voice hunt-group statistics command displays call statistics from voice hunt groups.

For more information, see Cisco Unified Communications Manager Express Command Reference.

Do Not Disturb

The Do Not Disturb (DND) feature can be used as an alternative to the HLog function for preventing incoming calls from ringing on a phone. The difference is that HLog prevents only hunt group calls from ringing, while DND prevents all calls from ringing. For more information, see Do Not Disturb, on page 661.

Automatic Call Forwarding During Night-Service

To have an ephone-dn forward all its calls automatically during night-service hours, use the call-forward night-service command. For more information, see Enable Call Forwarding for a Directory Number, on page 1141.

Ephone Templates
The **night-service bell** command specifies that a phone will receive night-service notification when calls are received at ephone-dns configured as night-service ephone-dns. This command can be included in an ephone template that is applied to one or more individual ephones.

For more information, see Templates, on page 1393.

Feature Information for Call Coverage Features

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 109: Feature Information for Call Coverage

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Hunt</td>
<td>3.4</td>
<td>Added support for configuring call hunt features on SIP IP phones connected directly to Cisco Unified CME.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>• Preference for secondary numbers was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Huntstop was introduced.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>• Ephone-dn dial-peer preference was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Huntstop was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Call Pickup</td>
<td>7.1</td>
<td>Added Call Pickup support for SIP phones.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>• The ability to globally disable directed call pickup was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Feature access codes for call pickup were introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The ability to block call pickup on individual phones was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>The ability to remove or rearrange soft keys on individual phones was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Call pickup groups were introduced.</td>
</tr>
<tr>
<td>Call Waiting</td>
<td>8.0</td>
<td>Added Cancel Call Waiting feature.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for configuring call waiting for SIP phones directly connected to Cisco Unified CME.</td>
</tr>
<tr>
<td>Callback Busy Subscriber</td>
<td>3.0</td>
<td>Callback busy subscriber was introduced.</td>
</tr>
<tr>
<td>Hunt Groups</td>
<td>12.2</td>
<td>Introduced support for Shared Lines and Mixed Shared Lines (SIP and SCCP phones) on Parallel, Sequential, Peer, and Longest Idle Voice Hunt Groups.</td>
</tr>
<tr>
<td></td>
<td>7.0/4.3</td>
<td>Added support for the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SCCP phones in Voice Hunt-Groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Call Forwarding to a Parallel Voice Hunt-Group (Blast Hunt Group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Call Transfer to a Voice Hunt-Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Member of Voice Hunt-Group can be a SCCP phone, FXS analog phone, DS0-group, PRI-group, SIP phone, or SIP trunk</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Hunt Groups</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added support for the following on IP phones running SCCP:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maximum number of hunt groups in a system was increased from 20 to 100 and maximum number of agents in a hunt group was increased from 10 to 20.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maximum number of hops automatically adjusts to the number of agents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A description can be added to phone displays and configuration output to provide hunt group information associated with ringing and answered calls.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A configurable message can be displayed on agent phones when all agents are in the not-ready status to advise the destination to which calls are being forwarded or other useful information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No-answer timeouts can be set individually for each ephone-dn in the list and a cumulative no-answer timeout can be set for all ephone-dns.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic logout trigger criterion was changed from exceeding the specified timeout to exceeding the specified number of calls. The name of this feature was changed from automatic logout to automatic agent status not-ready.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dynamic hunt group membership is introduced. Agents can join and leave hunt groups whenever a wildcard slot is available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Agent status control using an HLog soft key or feature</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>access code (FAC) is introduced. Agents can put their lines into not-ready state to temporarily block hunt group calls without relinquishing their slots in group. • Calls can be blocked from agent phones that are not idle or on hook. • Calls that are not answered by the hunt group can be returned to the party who transferred them into the huntgroup. • Calls parked by hunt group agents can be returned to a different entry point. • (Sequential hunt groups only) Local calls to a hunt group can be restricted so that they will not be forwarded past the initial agent that is rung. • (Longest-idle hunt groups only) A new command, the from-ring command, specifies that on-hook time stamps should be updated when a call rings an agent and when a call is answered by an agent.</td>
<td>3.4</td>
<td>Added support for configuring hunt groups for SIP phones directly connected to Cisco Unified CME.</td>
</tr>
<tr>
<td>Maximum number of hunt groups in a system was increased to 20. • Automatic logout capability was introduced.</td>
<td>3.2.1</td>
<td></td>
</tr>
<tr>
<td>Longest-idle hunt groups were introduced.</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Secondary pilot numbers were introduced.</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Peer and sequential ephone hunt groups were introduced.</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Night Service</td>
<td>11.6</td>
<td>Night service support for mixed deployment of SIP and SCCP phone was introduced.</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>Night service support for SIP phone was introduced.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>The night-service everyday, night-service weekday, and night-service weekend commands were introduced.</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>The behavior of the night-service code was changed. Previously, using the night-service code at a phone either enabled or disabled night service for the ephone-dns on that phone. Now, using the night-service code at a phone enables or disables night service for all night-service ephone-dns.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Night service was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Cisco Unified CME version</td>
<td>Modification</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Overlaid Ephone-dns | 4.0 | • The number of ephone-dns that can be overlaid on a single button using the `button` command and the o or c keyword was increased from 10 to 25.
 | | • The ability to extend calls for overlaid ephone-dns to other buttons (rollover buttons) on the same phone was introduced. Rollover buttons are created by using the x keyword with the `button` command.
<pre><code> | | • The number of waiting calls that can be displayed for overlaid ephone-dns that have call waiting configured has been increased to six for the following phone types: Cisco Unified IP Phone 7940G, 7941G, 7941G-GE, 7960G, 7961G, 7961G-GE, 7970G, and 7971G-GE. |
</code></pre>
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice Hunt Group Enhancements</td>
<td>11.6</td>
<td>Hlog Softkey support for SIP Phones was introduced.</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>Allows all ephone and voice hunt group call statistics to be written to a file using the <code>hunt-group statistics write-all</code> command.</td>
</tr>
<tr>
<td>Preventing Local-Call Forwarding to Final Agent in Voice Hunt Groups</td>
<td>9.5</td>
<td>The <code>no forward local-calls</code> command was introduced in ephone-hunt group to prevent a local call from being forwarded to the next agent.</td>
</tr>
<tr>
<td>Enhancement of Support for Hunt Group</td>
<td>9.5</td>
<td>Hunt group agent statistics of Cisco Unified SCCP IP phones is enhanced to include Total logged in time and Total logged out.</td>
</tr>
<tr>
<td>Total Logged in and Logged out Time Statistics for agent</td>
<td>9.5</td>
<td>Allows all ephone hunt call statistics to be written to a file along with total logged in and logged out time for agents using the <code>hunt-group statistics write-v2</code> command.</td>
</tr>
<tr>
<td>Enhancement of Support for Total Logged in and Logged out Time Statistics for Agent</td>
<td>11.5</td>
<td>Allows all voice hunt call statistics to be written to a file along with total logged in and logged out time for agents using the <code>hunt-group statistics write-v2</code> command.</td>
</tr>
<tr>
<td>Out-of-DIALOG Refer</td>
<td>4.1</td>
<td>Out-of-DIALOG REFER support was added.</td>
</tr>
</tbody>
</table>
CHAPTER 45

Caller ID Blocking

• Restrictions for Caller ID Blocking, on page 1323
• Information About Caller ID Blocking, on page 1323
• Configure Caller ID Blocking, on page 1324
• Configuration Examples for Caller ID Blocking, on page 1327
• Feature Information for Caller ID Blocking, on page 1328

Restrictions for Caller ID Blocking

Caller ID blocking on outbound calls does not apply to PSTN calls through foreign exchange office (FXO) ports. Caller ID features on FXO-connected subscriber lines are under the control of the PSTN service provider, who may require you to subscribe to their caller ID blocking service.

Information About Caller ID Blocking

Caller ID Blocking on Outbound Calls

Phone users can block caller-ID displays on calls from a particular ephone-dn, or you can selectively choose to block the name or number on outbound calls from a particular dial peer.

The display of caller ID information for outgoing calls from a particular ephone-dn can be blocked on a per-call basis, allowing users to maintain their privacy when necessary. The system administrator defines a code for caller ID blocking in Cisco Unified CME. Users then dial the code before making any call on which they do not want their number displayed on the called-party phone. The caller ID is sent, but its presentation parameter is set to “restricted” so that the caller ID is not displayed.

Blocking CLID displays for local calls from a particular extension tells the far-end gateway device to block display of calling-party information for the calls received from this ephone-dn.

Alternatively, you can allow the local display of CLID information and independently block the CLID name or number on outbound VoIP calls. This configuration has the benefit of allowing caller-ID display for local calls while preventing caller-ID display for external calls going over VoIP. This feature can be used for PSTN calls that go out over ISDN.
Configure Caller ID Blocking

Block Caller ID For All Outbound Calls on SCCP Phones

To block the CLID name or number on outbound VoIP calls from a particular dial peer, perform the following steps.

- Caller ID continues to be displayed for local calls. To block caller ID display on all outbound calls from a particular directory number, use the `caller-id block` command. See Block Caller ID From a Directory Number on SCCP Phones, on page 1325 or Verify Caller ID Blocking, on page 1326.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `dial-peer voice tag [pots | voip]`
4. `clid strip`
5. `clid strip name`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters dial-peer configuration mode.</td>
</tr>
<tr>
<td>`dial-peer voice tag [pots</td>
<td>voip]`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dial-peer voice 3 voip</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Removes the calling-party number from the CLID information being sent with VoIP calls.</td>
</tr>
<tr>
<td><code>clid strip</code></td>
<td>Example: Router(config-dial-peer)# clid strip</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Removes the calling-party name from the CLID information being sent with VoIP calls.</td>
</tr>
<tr>
<td><code>clid strip name</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-dial-peer)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Block Caller ID From a Directory Number on SCCP Phones

To define a code that phone users can dial to block caller ID display on selected outbound calls from a particular directory number or to block caller ID display on all calls from a directory number, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `caller-id block code code-string`
5. `exit`
6. `phone-dn dn-tag`
7. `caller-id block`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>router# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>caller-id block code code-string</code></td>
<td>(Optional) Defines a code that users can enter before making calls on which the caller ID should not be displayed.</td>
</tr>
<tr>
<td>Example:</td>
<td>*router(config-telephony)# caller-id block code 1234</td>
<td></td>
</tr>
</tbody>
</table>

- `code-string`—Digit string of up to 16 characters. The first character must be an asterisk (*).
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-telephony)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits telephony-service configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>ephone-dn dn-tag</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 3</td>
</tr>
<tr>
<td></td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>caller-id block</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# caller-id block</td>
</tr>
<tr>
<td></td>
<td>(Optional) Blocks display of caller-ID information for all outbound calls that originate from this directory number. This command can also be configured in ephone-dn-template configuration mode and applied to one or more directory number. The ephone-dn configuration has priority over the ephone-dn-template configuration.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dial-peer)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Verify Caller ID Blocking

Use the `show running-config` command to display caller ID blocking parameters, which may appear in the telephony-service, ephone-dn, or dial-peer portions of the output.

Example:

```
Router# show running-config

dial-peer voice 450002 voip
  translation-profile outgoing 457-456
  destination-pattern 457
  session target ipv4:10.43.31.81
  dtmf-relay h245-alphanumeric
  codec g711ulaw
  no vad
  clid strip
!
  telephony-service
  fxo hook-flash
  load 7960-7940 P00305000600
  load 7914 S00103020002
  max-ephones 100
  max-dn 500
  ip source-address 10.115.34.131 port 2000
  max-redirect 20
  no service directed-pickup
  timeouts ringing 10
  system message XYZ Company
  voicemail 7189
  max-conferences 8 gain -6
```
Configuration Examples for Caller ID Blocking

Example for Configuring Caller ID Blocking Code

The following example defines a code of *1234 for phone users to enter to block caller ID on their outgoing calls:

```
telephony-service
caller-id block code *1234
```

Example for Configuring Caller ID Blocking for Outbound Calls from a Directory Number on SCCP Phones

The following example sets CLID blocking for the ephone-dn with tag 3.

```
ephone-dn 3
number 2345
caller-id block
```

The following example blocks the display of CLID name and number on VoIP calls but allows CLID display for local calls:

```
ephone-dn 3
number 2345
```
dial-peer voice 2 voip
clid strip
clid strip name

Feature Information for Caller ID Blocking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 110: Feature Information for Caller ID Blocking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller ID Blocking</td>
<td>3.0</td>
<td>Caller ID blocking per local call was introduced.</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>Caller ID blocking for outbound calls was introduced.</td>
</tr>
</tbody>
</table>
Conferencing

• Information About Conferencing, on page 1329
• Types of Conference, on page 1329
• Design Considerations for Conferencing, on page 1339
• Softkeys for Conference Functions, on page 1340
• Restrictions for Conferencing, on page 1341
• Configure Software Conferencing, on page 1342
• Configure Hardware Conferencing, on page 1347
• Verify Conferencing, on page 1361
• Configuration Examples for Conferencing, on page 1364
• Where to Go Next, on page 1390
• Feature Information for Conferencing, on page 1390

Information About Conferencing

Conferencing allows three or more parties to join a telephone conversation. Unified CME offers conferencing functionality for the Unified phones and endpoints that it supports. Unified CME supports conferencing across the SIP and SCCP protocols. Also, the platforms Cisco Integrated Services Router Generation 2 and Cisco 4000 Series Integrated Services Routers support conferencing in Unified CME.

Note

Cisco Cloud Services Routers (CSR) do not support DSP resources. As DSP resources are mandatory to support hardware conferencing in Unified CME, you cannot host hardware conferences in a CSR router.

Types of Conference

Based on the conferencing method, conferencing in Unified CME is of two types:

• Hardware Conference—Conferencing based on the Unified CME hardware and DSP resources. The types of hardware conferencing in Unified CME include:
 • Ad Hoc Hardware Conference
 • Meet Me Conference.
• **Connected Conference**

• **Software Conference**—Software Conferencing is a three party conference that is hosted on the phone or on Unified CME. The types of software conferencing in Unified CME include:

 • Ad Hoc Software or Built-in Bridge (BIB) Conference (Supported on Unified IP Phones such as Cisco IP Phone 7800 Series and 8800 Series).

 • Three-Party Software Conference (For Unified CME, the support is only on Cisco Integrated Services Router Generation 2. For Cisco 4000 Series Integrated Service Routers, support is only for Unified SRST.)

The following table provides details on the support for various conferencing types in Unified CME:

<table>
<thead>
<tr>
<th>Conferencing Feature</th>
<th>Hardware-based</th>
<th>Software-based (Built-in Bridge)</th>
<th>Max Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIP</td>
<td>SCCP</td>
<td></td>
</tr>
<tr>
<td>Ad Hoc</td>
<td>Yes</td>
<td>Yes</td>
<td>Ad Hoc (Hardware)—8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ad Hoc (Software)—3</td>
</tr>
<tr>
<td>Meet Me</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Connected</td>
<td>Yes (Only for 7800 and 8800 Series Unified IP Phones)</td>
<td>Yes (Supported as Select and Join functionality for SCCP)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Three-party Software Conference</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Note

Three-party software conference is supported only on Cisco Integrated Services Router Generation 2 for Unified CME. Cisco 4000 Series Integrated Services Routers supports three-party software conference only for Unified SRST.

Hardware Conference

In a hardware-based conference, the conference is established using the hardware resources of a Unified CME system. This includes the routers and the Digital Signal Processors (DSPs.) From Unified CME Release 11.7, Cisco 4000 Series Integrated Services Routers support hardware conferencing.
Hardware-based conferencing uses the DSP resources in a router to perform audio mixing. The DSP resources used for conferencing take care of transcoding, and not just audio mixing. The participants of the conference can be IP phones that are connected to Unified CME or external callers. The external callers are the participants who join the conference call over TDM or SIP trunks. You must configure the DSP resources in a DSP farm for conferencing. Also, the DSP resources that are required for conferencing varies based on the codec complexity. For more information, see Configure the DSP Farm Profile, on page 1351.

The following are the hardware-based conferencing models that are supported in Unified CME:

- Ad Hoc Hardware Conference
- Meet Me Conference
- Connected Conference

For information on the basic configurations that are required to enable a hardware conference, see Configure Hardware Conferencing, on page 1347.

Ad Hoc Hardware Conference

Ad hoc conferences can be of two types:

- Hardware-based
- Software-based

Note
For more information on Ad Hoc software conference, see Ad Hoc Software Conferencing, on page 1337.

Ad Hoc conferences allow the conference host or participant to add new participants to the conference. Ad hoc conferences are created when one party calls another, then either party decides to add another party and turn the call into a conference. Hence, Ad Hoc conferencing is not predetermined, but a conference call that is created instantaneously. From Cisco Unified CME Release 11.7, Cisco 4000 Series Integrated Services Routers support Ad Hoc conferencing.

Hardware Ad Hoc Conference is a conference with minimum of three participants and a maximum of eight participants. Hardware-based Ad Hoc conference uses digital signal processors (DSPs) to allow more parties than software-based ad hoc conferences and provides extra features such as Join and Conference Participant List (ConfList). Unified CME manages the conference bridge by using the DSP resources available.

For an Ad Hoc hardware conference hosted on Unified CME:

- You need to configure **ephone-dn** as a placeholder directory number configuration for conference hosting.
- From Unified CME 11.7 onwards, conference participants (line or trunk) with different codecs can be added to the conference bridge without the need for configuring extra DSP resources for LTI-based transcoding. For more information, see Local Transcoding Interface (LTI) Based Transcoding, on page 473.
- The conference bridge is established when minimum of three participants join the conference and becomes a point-to-point call when there are only two participants.
- Ad Hoc conference supports a mixed deployment of SIP and SCCP phones.
- An Ad Hoc conference supports ITSP or SIP trunk external party.
• Ad Hoc conference supports the ability to play join tone when a participant joins the conference, and leave tone when a participant drops from the conference.

• During a two-party transcoded call on Unified CME (Cisco 4000 Series Integrated Services Router), LTI-based transcoding is invoked. When the two-party call becomes an ad hoc conference, LTI-based transcoding is released, and SCCP-based DSP conference is invoked.

• The DSP inserted for conferencing takes care of both transcoding and mixing of the audio stream.

• For Unified CME 4.1 and earlier, support for ad hoc conferencing was limited to three participants—all participants on G.711 codec.

• You need to configure max-participant under dspfarm configuration mode to define the number of participants supported by an ad hoc conference.

• Hardware-based multi-party ad hoc conference bridges do not support video phones. In a scenario where the participants joins the conference with video enabled phones, the caller on that phone can connect to the conference as an audio only participant.

• When the participant puts the call on hold in a conference, the other parties in the conference remain connected. The Resume softkey is not displayed to the other active remote-in-use calls on the shared lines. Only, the participant who puts the call on hold can resume the call.

• The maximum number of conference parties you can support on a hardware conference call is limited to eight.

• You can setup an Ad Hoc hardware conference even if different codecs are configured on the conference parties.

• The transcoder is invoked when it is a point-to-point call and its released once the conference is setup. The conference bridge performs codec mixing.

• You need to configure dspfarm to support transcoding:

```
enable
configure terminal
dspfarm profile tag transcode universal
codec codec_type
maximum sessions <1-40>
associate application CUBE
no shutdown
end
```

Ad Hoc hardware conferences can be created in several ways. For example, you can configure the Ad Hoc conference in Unified CME, such that:

• Only the conference creator can add parties to the conference.

• Any participant can add new participants to the conference (default behavior for ad hoc conference).

• Conference drops when the creator hangs up.

• Conference drops when the last local party hangs up.

• The default behavior for termination of ad hoc conference is that the conference is not dropped provided three parties remain in the conference. It is regardless of whether the creator hangs up or not.
The maximum number of simultaneous conferences is specific to the type of Cisco Unified CME router, and each individual Cisco Unified IP phone can host a maximum of one conference at a time. You cannot create a new conference on a phone if you already have an existing conference on hold.

For information on configuration of Ad Hoc or Meet Me conferencing for SIP and SCCP phones, see Configure Ad Hoc or Meet Me Hardware Conference, on page 1355

Meet Me Conference

Meet Me conferences consist of at least three parties dialing a Meet Me conference number. The number is predetermined by the system administrator. Hence, it is not necessary for participants to dial another party to add them into the conference. The conference host uses the **MeetMe** softkey on the phone and dials the designated conference number to initiate the conference. The other participants can join the conference only when the conference host has initiated the conference.

For example, the conference shown in Figure 65: Simple Meet Me Conference Scenario, on page 1333 is created when the conference creator at extension 1215 presses the **MeetMe** softkey and hears a confirmation tone, then dials the Meet Me conference number 1500. Extension 1225 and extension 1235 join the Meet Me conference by dialing 1500. Extensions 1215, 1225, and 1235 are now parties in a Meet Me conference on extension 1500.

Figure 65: Simple Meet Me Conference Scenario

For a Meet Me Conference in Unified CME:

- Meet Me conference is supported only as a hardware-based conference.

- If you configure software-based conferencing, you cannot host Meet Me conferences.

- For a Meet Me conference configured for multiple ephone-dns with octo line configurations that use the same directory number, a maximum of 32 participants can join. The support for participants is based upon the configuration of DSP resources.

- You can configure the maximum number of conference parties to be lower than the actual maximum of 32 for Meet Me conferences. For more information, see Configure the DSP Farm Profile, on page 1351.

- With octo-line ephone directory numbers, only one directory number is required for an eight-party Meet Me conference. Hence, you need four ephone octo-line directory numbers for 32 parties.

- The conference initiator presses **MeetMe** softkey before dialing the conference number. Other Meet Me conference parties (line or trunk) dials the conference number to join the conference.
• If only one party remains in the Meet Me conference, (For example, if one party has forgotten to hang up and other participants have left), the conference call is disconnected after five minutes to free system resources.

• If the creator is waiting for parties to join the conference (that is, only one party has joined the conference), the conference is not disconnected because significant resources are not being used.

• If only one party remains in the Meet Me conference, the conference call is disconnected after five minutes to free system resources.

• Maximum number of participants in a single conference with G.711 codec conference bridge is 32. For a single conference with G.729 codec conference bridge, the maximum number of participants is 16.

• If Music on Hold (MOH) is configured for a conference party that puts the call on hold, the MOH is not played to the other conference. This is because other parties are in an active call.

For information on configuration of Ad Hoc or Meet Me conferencing for SIP and SCCP phones, see Configure Ad Hoc or Meet Me Hardware Conference, on page 1355.

Meet-Me Conferencing in Cisco Unified CME 11.7 and Later Versions

From Cisco Unified CME Release 11.7, Meet-Me conferencing is supported on Cisco 4000 Series Integrated Services Router.

Configuration of multi party conference on Cisco 4000 Series Integrated Services Routers for Unified CME Release 11.7 and later is same as that of previous releases. Also, the configuration remains same across both SIP and SCCP phones. For more information, see Configure Hardware Conferencing, on page 1347.

Connected Conference

Connected Conference supports Unified CME to host a conference for phones in connected call state. In a connected call scenario for SIP phones, a line on the phone is in an active call. The other lines are in held state. Using the Connected conference feature, you can allow one of the calls on hold to join the active call.

Note

For Connected Conference to work on phones, you must enable Ad Hoc hardware conferencing in Unified CME.

Only Cisco IP Phone 7800 Series and Cisco IP Phone 8800 Series support Connected Conference.

Only one held call can join the active call at a time for SIP phones. If the other lines on the SIP phone have to join the conference, they can join one at a time.

Note

Connected Conference supports a maximum of eight participants.

From Cisco Unified CME Release 11.7 onwards, Connected Conference feature is supported on SIP phones as well. As part of this enhancement, Unified CME introduced a new softkey Active calls for SIP phones.

For the Connected Conference feature, the behavior is different across Cisco IP Phone 7800 Series and Cisco IP Phone 8800 Series. Cisco IP Phone 7800 Series uses the line key for Connected Conference feature. However, Cisco IP Phone 8800 Series uses Active calls softkey.

Following are the steps to invoke connected conferencing on Cisco IP Phone 8800 Series:
1. A call from Phone A (Cisco IP Phone 8800 Series) is answered by Phone B.
2. Phone A puts the call with Phone B on hold.
3. Phone A makes another call to Phone C, and the call is answered by Phone C.
4. Press the **Conference** hard button or softkey on Phone A.
5. Then, press the **Active calls** softkey on Phone A to select the option Phone B.
6. Repeat the above steps to add more parties into conference.

A connected conference between Cisco IP Phone 8800 Series Phone A, Phone B, and Phone C is established.

Following are the steps to invoke connected conferencing on Cisco IP Phone 7800 Series:

1. A call from Phone A (Cisco IP Phone 7800 Series) is answered by Phone B.
2. Phone A puts the call with Phone B on hold.
3. Phone A makes another call to Phone C, and the call is answered by Phone C.
4. Use the line key on Phone A to select the option Phone B.
5. Repeat the preceding steps to add more parties into conference.

A connected conference between Cisco IP Phone 7800 Series IP Phone A, Phone B, and Phone C is established.

Note

The phone firmware files that support Connected Conference on Cisco IP Phone 8800 Series is unavailable until the next Unified CME release. Hence, Connected Conference support for SIP phones is limited to Cisco IP Phone 7800 Series for Unified CME Release 11.7.

cBarge Conference

cBarge enables multiple phone users who share a directory number to join an active call on the shared line by pressing a softkey. cBarge facilitates a conference by invoking hardware conference on Unified CME. When the conference initiator barges into a call, hardware conference is created on Unified CME. The conference is established between the barge initiator, the target party, and the other parties connected in the call.

To support cBarge:

- Enable hardware conference
- Disable Privacy

If hardware conference is disabled, cBarge softkey invokes barge. Barge uses the built-in conference bridge on the target phone (the phone that is barged). Hence, a barge conference supports only up to three parties. Configure cBarge if you must support more participants.

Note

Even if you have configured cBarge softkey, the softkey display on the phone is **Barge**.
The configurations for cBarge on the conference bridge of Unified CME are same as an Ad Hoc hardware conference, except:

- The configuration to enable cBarge softkey on phone in remote-in-use state.
- Configure no privacy under voice register global.

To configure softkey template to enable cBarge softkey on phone in remote-in-use:

```
   enable
   configure terminal
   voice register template <template-tag>
       softkeys remote-in-use {{ Barge } [ Newcall | cBarge ]}
   exit
```

To associate softkey template with the pool:

```
   voice register pool <phone-tag>
       template <template-tag>
   end
```

To disable privacy and enable conference hardware under voice register global configuration mode:

```
   voice register global
       no privacy
       conference hardware
       create profile
       reset
   end
```

For more information on Barge and cBarge, see Barge and cBarge, on page 1011.

Drop Mode Conference

A person who initiates a conference call and hangs up can either keep the remaining parties connected or disconnect them. Based on this configuration option, Unified CME supports Drop Mode Conference as an End of Conference option for Hardware Conferencing.

To configure the mode for terminating hardware conferences when parties drop out, use the conference drop-mode and conference add-mode command in ephone or ephone-template configuration mode for SCCP phones. Configure conference drop-mode and conference add-mode command in voice register configuration mode for SIP phones.

The behavior for the end of three-way conferences can be configured at a phone level. The options specify whether the last party that joined a conference can be dropped from the conference and whether the remaining two parties should be allowed to continue their connection after the conference initiator has left the conference.

- For information on configuration of Drop Mode and Add Mode for hardware conferencing, see Configure Softkeys and End of Conference Options for Hardware Conferencing, on page 1357
 - For more information on configuration of Add Mode and Drop Mode Conference for SCCP phones, see conference add-mode and conference drop-mode.
 - For more information on configuration of Add Mode and Drop Mode Conference for SIP phones, see conference add-mode (voice register) conference drop-mode (voice register).
Software Conference

Software conference can host a maximum of three participants. There are two types of software-based conferencing available in Unified CME:

- **Ad Hoc Software Conference**—Ad Hoc Software Conference or Built-in Bridge Conference is established using the phone or endpoint hardware that provides audio mixing. There is no dependency upon the Unified CME router hardware for Ad Hoc software conferencing.

- **Three-Party Software Conference**—In a three-party software conference, Unified CME router supports conferencing for phones that do not support BIB-based conferencing (SCCP phones). When BIB conference is enabled, three-party software conference is disabled. It is supported only on Cisco Integrated Services Router Generation 2 and only for SCCP phones. For information on how to configure a three-party software conference, see Configure Three-Party Software Conference, on page 1342.

Ad Hoc Software Conferencing

Ad Hoc software conference is also known as Built-in bridge (BIB) conferencing. Ad hoc software conferences do not depend on the Unified CME hardware to support conferencing. Press the conferencing softkey on the phone that hosts the conference bridge to enable the Ad Hoc software conference. In an Ad Hoc software conference, the phone that hosts the conference also performs audio mixing.

The conference that is shown in Figure 66: AdHoc Software Conference Using the Conference Softkey, on page 1337 is created when extension 1215 dials extension 1225. The two parties decide to add a third party, extension 1235. Extensions 1215, 1225, and 1235 are now parties in an ad hoc conference. Extension 1215 is the conference initiator. Hence, audio mixing happens in 1215.

Figure 66: AdHoc Software Conference Using the Conference Softkey

For a software-based Ad Hoc conference:

- The number of participants is limited to three parties.

- You do not need Unified CME hardware or DSP resources for audio mixing.

- The phone that hosts the conference performs audio mixing.

- Transcoding is not supported in a software-based conference call. Hence, you cannot host a software conference for calls with different audio codecs.

Software conference is enabled using softkeys on the Unified IP phones. The softkey varies depending on the phone model used. **confrrn** and **conference** are some of the common softkeys for Software Conferencing in Unified IP Phones.

To configure a software conference, you have to disable hardware conferencing in Unified CME:
Keep Conference

A person who initiates a conference call and hangs up can either keep the remaining parties connected or disconnect them. Based on this configuration option, Unified CME supports Keep Conference as an End of Conference option for Software Conferencing.

Keep Conference is an end of conference option in Software Conferencing. With Keep Conference option, Unified IP phones can be configured to keep the remaining conference parties connected when the conference initiator hangs up (places the handset back in the on-hook position). Conference originators can disconnect from their conference calls by pressing the Confrn (conference) soft key. When an initiator uses the Confrn key to disconnect from the conference call, the oldest call leg will be put on hold, leaving the initiator connected to the most recent call leg. The conference initiator can then navigate between the two parties by pressing either the Hold soft key or the line buttons to select the desired call.

The behavior for the end of three-way conferences can be configured at a phone level. The options specify whether the last party that joined a conference can be dropped from the conference and whether the remaining two parties should be allowed to continue their connection after the conference initiator has left the conference.

- For information on configuration of Keep Conference for SCCP phones, see Configure Keep Conference for SCCP Phones, on page 1343.

 For an example of Keep Conference for SCCP phones, see Example for Keep Conference Configuration on SCCP Phones, on page 1364.

- For information on configuration of Keep Conference for SIP phones, see Configure Keep Conference Option for SIP Phones, on page 1345.

 For an example of Keep Conference for SIP phones, see Example for Keep Conference Configuration on SIP Phones, on page 1365.

Max Conference

You can set the maximum number of three-party software conferences that are supported simultaneously by the Unified CME router using Max Conference option. Configure the max-conferences command in telephony-service configuration mode to define maximum number of software conferences.

For Max Conference in Unified CME, the configuration is same for both SIP and SCCP phones.

For information on configuration of max-conferences, see Configure Three-Party Software Conference, on page 1342.

For an example of Max conference, see Example for Configuration of Max Conference and Gain Levels, on page 1364.

Conference Gain Levels

You can adjust the gain level of an external call to provide more adequate volume. This functionality is applied to inbound audio packets so that conference participants can more clearly hear a remote PSTN or VoIP caller.
joining their call. Note that this functionality cannot discriminate between a remote VoIP/foreign exchange office (FXO) source, which requires a volume gain, and a remote VoIP/IP phone, which does not require a volume gain and may therefore incur some sound distortions.

Conference gain levels are set using the variable `gain` configured under the CLI command `max-conference` under `telephony-service` configuration mode. The Conference Gain Level configuration is consistent across all the hardware conferencing options supported in Unified CME. For more information, see Configure Three-Party Software Conference, on page 1342.

For an example of Max conference, see Example for Configuration of Max Conference and Gain Levels, on page 1364.

Design Considerations for Conferencing

The following are some of the characteristics of conferencing in Unified CME:

- The maximum number of conference participants that you can host in a conference is specific to the mode of conference. For more information, see Types of Conference, on page 1329.

- Consider a scenario where the ad hoc hardware conference creator transfers the call or parks the call with another call. For Unified CME 11.7 and later releases, the conference bridge remains active, irrespective of whether you have enabled `drop-mode creator` CLI command or not.

- When you are configuring dial peers or ephone-dns (including park slots and conferencing extensions) on Cisco Integrated Services Router Voice Bundles, the following message may appear to warn you that memory is not available:

 `%DIALPEER_DB-3-ADDPEER_MEM_THRESHOLD: Addition of dial-peers limited by available memory`

 To configure more dial peers or ephone-dns, increase the DRAM in the system. Moderately complex configuration may exceed the default 256 MB of DRAM and require 512 MB of DRAM. Many factors contribute to memory usage, in addition to the number of dial peers and ephone-dns configured.

- **Secure Conferencing in Unified CME**—If Unified CME uses a conference DSP farm resource for Ad Hoc or Meet Me hardware conference, it can use a secure or nonsecure DSP farm resource. However, it is recommended that you pick a nonsecure DSP farm resource for Unified CME. This is because the conference itself cannot be secure in Unified CME. Also, you can avoid wastage of the session capacity of the more expensive secure DSP farm resource.

 To avoid using valuable secure DSP farm resources, we recommend that you do not register a secure conference DSP farm profile to a Unified CME. Unified CME cannot use the DSP farm’s secure capabilities.

- **LTI-based Transcoding**—From Unified CME 11.7 onwards, LTI-based transcoding is supported for hardware conferencing in Unified CME. With LTI-based transcoding, conference participants (line or trunk) with different codecs can be added to the conference bridge without configuring extra DSP resources. During a two-party transcoded call on Unified CME (Cisco 4000 Series Integrated Services Router), LTI-based transcoding is invoked. When the two-party call becomes an Ad Hoc conference, LTI-based transcoding is released and SCCP-based DSP conference is invoked. The DSP inserted for conferencing takes care of both transcoding and mixing the audio stream. For information about LTI-based conferencing and configuration, see Local Transcoding Interface (LTI) Based Transcoding, on page 473 and Configure LTI-based Transcoding, on page 500.
• **Conference Blocking (Conference Pattern Blocked)**—To prevent extensions in an ephone or a voice register pool from initiating conferences, configure the `conference-pattern blocked` command. For more information, see Conference-Pattern Blocked, on page 1114 and Configure Conference Blocking Options for Phones, on page 1116.

• **Conference Max Length**—When `conference max-length` command is configured, Unified CME allows the conferences only if the dialed digits are within the max-length limit. For more information on Conference Max-length and configuration, see Conference Max-Length, on page 1113 and Configure the Maximum Number of Digits for a Conference Call, on page 1115.

• **Octo-line Directory Numbers**—With octo-line directory numbers, only one directory number is required for an eight-party Meet Me or Ad Hoc conference. An octo-line directory number supports up to eight active calls, both incoming and outgoing, in a single phone button. It supports up to eight Select and Join instances. When a conference initiator is an octo-line directory number, Unified CME selects an idle channel from that directory number. Establish a new call to complete the conference. If an idle channel is not available in the same octo-line directory number, the conference terminates and a No Line Available message displays.

 Note If an idle channel is not available in the same octo-line directory number, Unified CME does not pick an idle channel from another directory number. Also, you cannot select hold calls in the other channels of the directory number or for other directory numbers. It is supported only for single-line and dual-line directory numbers.

Deploy the DSP Farm Resource with Unified CME

It is mandatory to have DSP farm resources to support hardware conferencing in Unified CME. For more information on configuration of DSP resources with Unified CME, see Configure Transcoding Resources, on page 475.

You can deploy a DSP farm with Unified CME in two ways:

• Configure DSP Farm and Unified CME in the same router.

 For a sample configuration, see Example of DSP Farm and Cisco Unified CME on the Same Router, on page 1365.

• Configure DSP Farm and Unified CME in different routers.

 For a sample configuration, see Example of DSP Farm and Cisco Unified CME on Different Routers, on page 1375.

Softkeys for Conference Functions

For the conferencing functions that you configure on Unified CME, you have corresponding softkeys on the phone. The following soft keys provide conferencing functions for conferencing enhancements on your phone:

• ConfList—Conference list. Lists all parties in a conference. For multi-party ad hoc conferences, this soft key is available for all parties in a conference. For meet-me conferences, this soft key is available for
the creator only. Press **Update** to update the list of parties in the conference. For instance, press **Update** to verify that a party has been removed from the conference. Press **Remove** softkey to remove the appropriate parties. The suboption **Remove** is available for the conference creator and phones that have **conference admin** configured.

- **Join**—Joins an established call to an adhoc conference. You must first press **Select** to choose each connected call that you want to join in a conference, then press **Join** to join the selected calls.

- **RmLstC**—Remove last caller. Removes the last party added to the conference. This soft key works for the creator only.

- **Select**—Selects a call or conference to join to a conference and selects a call to remove from a conference. The creator can remove other parties by pressing the **ConfList** soft key, then use the **Select** and **Remove** soft keys to remove the appropriate parties.

- **MeetMe**—Initiates a Meet Me conference. The creator presses this soft key before dialing the conference number. Other meet-me conference parties only dial the conference number to join the conference. This soft key must be configured before you can start a Meet Me conference.

In Cisco Unified CME 11.7 and later versions, the following softkeys are also supported.

- **Details** (Supported only on Cisco IP Phone 7800 Series)—Lists all the participants in a conference. For multi-party ad hoc conferences, this soft key is available for all parties in a conference. For meet-me conferences, this soft key is available for the creator only. Press **Update** to update the list of parties in the conference. Press **Remove** softkey to remove the appropriate parties. The suboption **Remove** is available to the conference creator and phones that have **conference admin** configured.

- **Show detail** (Supported only on Cisco IP Phone 8800 Series)—Lists all the participants in a conference. For multi-party ad hoc conferences, this soft key is available for all parties in a conference. For meet-me conferences, this soft key is available for the creator only. Press **Update** to update the list of parties in the conference. Press **Remove** softkey to remove the appropriate parties. The suboption **Remove** is available to the conference creator and phones that have **conference admin** configured.

- **Active calls** (Supported on Cisco IP Phone 8800 Series)—As part of the Connected Conference support on Unified CME 11.7 and later releases, a new softkey **Active calls** is introduced. The **Active calls** softkey is added to the SIP phones configured on Unified CME. **Active calls** softkey is used in Cisco IP Phone 8800 Series for Unified CME.

For more information on the configuration, see Configure Hardware Conferencing, on page 1347.

Restrictions for Conferencing

- Unified CME does not support secure conferencing. All conference calls are nonsecure. This is because Unified CME cannot use the secure conference DSP farm capability.

- For a phone registered to Unified CME, you can support only one conference. If an existing conference is put on hold, you cannot create another conference.

- For calls having different audio codecs, you cannot host a hardware conference call without transcoding (DSPs).

- For calls having different audio codecs, you cannot host a software conference in Unified CME. The calls do not merge into a conference.
Configure Software Conferencing

Configure Three-Party Software Conference

You can configure software conferencing on Unified CME as follows. To globally modify the default configuration and change any of the following parameters for three-party software conferencing, perform the following steps.

- The configuration `no conference hardware` is required to enable software conferencing on Unified CME and BIB conferencing on phones.
- Maximum number of simultaneous three-party software conferences that are supported by a router is platform-dependent. The default value is half of the maximum number.
- Increase the sound volume of VoIP and public switched telephony network (PSTN) parties joining a conference call.
- For Max Conference and Gain level in Unified CME, the configuration is consistent across SIP and SCCP phones.

Restriction

- When a three-way software conference is established, a participant cannot use call transfer to join the remaining conference participants to a different number.
- Three-party software conferencing does not support meet-me conferences.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `max-conferences max-conference-number [gain -6 | 0 | 3 | 6]`
5. `end`
Conferencing

Configure Keep Conference for SCCP Phones

- Keep Conference is supported only for BIB Conferencing.
- Keep Conference on SCCP is supported only for Cisco Integrated Services Router Generation 2.
- To configure optional end-of-conference options for three-party ad hoc conferencing on a Cisco Unified IP phone running Skinny Client Control Protocol (SCCP), perform the following steps for each phone to be configured.

Before you begin

- Conferencing uses call transfer to connect the two remaining parties of a conference when a conference initiator leaves the conference. To use this feature, you must configure the `transfer-system` command. For configuration information, see Configure Call Transfer and Forwarding, on page 1134.
- Drop-last feature of Keep Conference on analog phones connected to the Cisco Unified CME system through a Cisco VG 224 requires Cisco IOS Release 12.4(9)T or later release.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 max-conferences <code>max-conference-number</code> [gain <code>-6</code></td>
<td>Sets the maximum number of simultaneous three-party conferences that are supported by the router.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>• <code>max-conference-number</code>—Maximum value is platform-dependent. Type <code>?</code> for maximum value. Default is half of the maximum value.</td>
</tr>
<tr>
<td><code>3</code></td>
<td>• <code>gain</code>—(Optional) Amount to increase the sound volume of VoIP and PSTN calls joining a conference call, in decibels. Valid values are <code>-6</code>, <code>0</code>, <code>3</code>, and <code>6</code>. The default is <code>-6</code>.</td>
</tr>
<tr>
<td><code>6</code></td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-telephony)# max-conferences 6</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configure Keep Conference for SCCP Phones

- Keep Conference is supported only for BIB Conferencing.
- Keep Conference on SCCP is supported only for Cisco Integrated Services Router Generation 2.
- To configure optional end-of-conference options for three-party ad hoc conferencing on a Cisco Unified IP phone running Skinny Client Control Protocol (SCCP), perform the following steps for each phone to be configured.

Before you begin

- Conferencing uses call transfer to connect the two remaining parties of a conference when a conference initiator leaves the conference. To use this feature, you must configure the `transfer-system` command. For configuration information, see Configure Call Transfer and Forwarding, on page 1134.
- Drop-last feature of Keep Conference on analog phones connected to the Cisco Unified CME system through a Cisco VG 224 requires Cisco IOS Release 12.4(9)T or later release.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. keep-conference [drop-last] [endcall] [local-only]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. • Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ephone phone-tag</td>
<td>Enters ephone configuration mode. • phone-tag—Unique sequence number that identifies this ephone during configuration tasks.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 keep-conference [drop-last] [endcall] [local-only]</td>
<td>Allows conference initiators to exit from conference calls and to either end or maintain the conference for the remaining parties. • no keep-conference—(Default; the no form of the command) The conference initiator can hang up or press the EndCall soft key to end the conference and disconnect all parties or press the Confrn soft key to drop only the last party that was connected to the conference. • keep-conference—(No keywords used) The conference initiator can press the EndCall soft key to end the conference and disconnect all parties or hang up to leave the conference and keep the other two parties connected. The conference initiator can also use the Confrn soft key (IP phone) or hookflash (analog phone) to break up the conference but stay connected to both parties. • drop-last—The action of the Confrn soft key is changed; the conference initiator can press the Confrn soft key (IP phone) or hookflash (analog phone) to drop the last party. • endcall—The action of the EndCall soft key is changed; the conference initiator can hang up or press</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# keep-conference endcall</td>
<td></td>
</tr>
</tbody>
</table>
To configure optional end-of-conference options for three-party ad hoc conferencing on a Cisco Unified IP phone running SIP, perform the following steps for each phone to be configured.

Before you begin

- To facilitate call transfer by using the Confrn soft key, conference, and transfer attended or transfer blind must be enabled. For configuration information, see Configure Call Transfer and Forwarding, on page 1134.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register pool pool-tag | OR voice register template template-tag
4. keep-conference
5. voice register pool pool-tag
6. template template-tag
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| Example:
 Router> enable | • Enter your password if prompted. |

Exits to privileged EXEC mode.

Example:

```
Step 5

Example:

Router(config)# end
```
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>voice register pool pool-tag</td>
<td>OR voice register template template-tag</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register pool 3</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Router(config)# voice register template 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>keep-conference</td>
<td>Allows a Cisco Unified IP phone conference initiator to exit from conference calls and keeps the remaining parties connected.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# keep-conference</td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-temp)# keep-conference</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>voice register pool pool-tag</td>
<td>(Optional) Enters voice register pool configuration mode to set phone-specific parameters for SIP phones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-temp)# voice register pool 1</td>
<td>This step is included to illustrate how to enable the command if it was previously disabled.</td>
</tr>
<tr>
<td>6</td>
<td>template template-tag</td>
<td>(Optional) Attaches the template tag configured to the voice register pool.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# template 1</td>
<td>This step is required only if you configure voice register template.</td>
</tr>
<tr>
<td>7</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configure Hardware Conferencing

Prerequisites

- The following configuration is applicable to all hardware conferencing types supported in Unified CME, including Meet Me and Ad Hoc conferencing.
- DSP resources are mandatory to support a hardware conference in Unified CME.

Restriction

- The maximum number of meet-me conference parties is 32 for one DSP using the G.711 codec and 16 for the G.729 codec.
- A participant cannot join more than one conference at the same time.
- Hardware-based multi-party ad hoc conferencing for more than three parties is not supported on phones that do not support soft keys.
- Hardware based Ad Hoc conferencing does not support the local-consult transfer method (transfer-system local-consult command).

Enable DSP Farm Services for a Voice Card

To enable DSP farm services for a voice card to support hardware conferences, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice-card slot
4. dsp services dspfarm
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configure Join and Leave Tones

The Join and Leave configuration is applicable for:

- both SIP and SCCP phones in Unified CME.
- all hardware conferencing types supported in Unified CME, including Ad Hoc and Meet Me.

To configure tones to be played when parties join and leave multi-party ad hoc conferences and meet-me conferences, perform the following steps for each tone to be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice class custom-cptone cptone-name
4. dualtone conference
5. frequency frequency-1 [frequency-2]
6. cadence {cycle-1-on-time cycle-1-off-time [cycle-2-on-time cycle-2-off-time] [cycle-3-on-time cycle-3-off-time] [cycle-4-on-time cycle-4-off-time] | continuous}
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
Configure SCCP Infrastructure for Conferencing in Unified CME

The SCCP Infrastructure configuration is applicable to:

- Both SIP and SCCP phones in Unified CME.
- All hardware conferencing types supported in Unified CME, including Ad Hoc and Meet Me.

To enable SCCP Infrastructure in Unified CME to support multi-party ad hoc and meet-me conferences, perform the following steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `sccp local interface-type interface-number [port port-number]`
4. `sccp ccm {ip-address | dns} identifier identifier-number [port port-number] [version version-number]`
5. `sccp ccm group group-number`
6. `bind interface interface-type interface-number`
7. `exit`
8. `sccp`
9. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
 - Example: `Router> enable`
 - Enter your password if prompted. |
| 2 | `configure terminal` | Enters global configuration mode.
 - Example: `Router# configure terminal` |
| 3 | `sccp local interface-type interface-number [port port-number]` | Selects the local interface that SCCP applications (transcoding and conferencing) use to register with Cisco Unified CME.
 - Example: `Router(config)# sccp local FastEthernet0/0` |
| 4 | `sccp ccm (ip-address | dns) identifier identifier-number [port port-number] [version version-number]` | Enables the Cisco Unified CME router to register SCCP applications.
 - Example: `Router(config)# sccp ccm 10.4.158.3 identifier 100 version 4.0`
 - `version-number`—Must be set to 4.0 or later. |
| 5 | `sccp ccm group group-number` | Creates a Cisco Unified CME group.
 - Example: `Router(config)# sccp ccm group 123` |
| 6 | `bind interface interface-type interface-number` | Binds an interface to a Cisco Unified CME group.
 - Example: `Router(config-sccp-cm)# bind interface fastethernet 0/0` |
| 7 | `exit` | Exits SCCP Cisco Unified CME configuration mode.
 - Example: `Router(config-sccp-cm)# exit` |
| 8 | `sccp` | Enables SCCP and its related applications (transcoding and conferencing).
 - Example: `Router(config)# sccp` |
| 9 | `exit` | Exits global configuration mode.
 - Example: `Router(config)# exit` |
Configure the DSP Farm Profile

The DSP Farm Profile is applicable to:

- Both SIP and SCCP phones in Unified CME.
- All hardware conferencing types supported in Unified CME, including Ad Hoc and Meet Me.

To configure the DSP farm profile for multi-party ad hoc and meet-me conferencing, perform the following steps.

Note

The DSP farm can be on the same router as the Cisco Unified CME or on a different router.

SUMMARY STEPS

1. enable
2. configure terminal
3. dspfarm profile profile-identifier conference
4. codec {codec-type | pass-through}
5. conference-join custom-cptone cptone-name
6. conference-leave custom-cptone cptone-name
7. maximum conference-participants max-participants
8. maximum sessions number
9. associate application sccp
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 dspfarm profile profile-identifier conference</td>
<td>Enters DSP farm profile configuration mode and defines a profile for DSP farm services.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dspfarm profile 1 conference</td>
</tr>
<tr>
<td>Step 4 codec {codec-type</td>
<td>pass-through}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-dspfarm-profile)# codec g711ulaw</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 5 | **conference-join custom-cptone** *cptone-name*
Example:
Router(config-dspfarm-profile)# conference-join custom-cptone jointone
--- | Associates a custom call-progress tone to indicate joining a conference with a DSP farm profile.
Note | The *cptone-name* argument in this step must be the same as the *cptone-argument* in the **voice class custom-cptone** command configured in **Enable DSP Farm Services for a Voice Card**, on page 1347.

Step 6 | **conference-leave custom-cptone** *cptone-name*
Example:
Router(config-dspfarm-profile)# conference-leave custom-cptone leavetone
--- | Associates a custom call-progress tone to indicate leaving a conference with a DSP farm profile.
Note | The *cptone-name* argument in this step must be the same as the *cptone-argument* in the **voice class custom-cptone** command configured in **Enable DSP Farm Services for a Voice Card**, on page 1347.

Step 7 | **maximum conference-participants** *max-participants*
Example:
Router(config-dspfarm-profile)# maximum conference-participants 32
--- | (Optional) Configures the maximum number of conference parties allowed in each meet-me conference. The maximum is codec-dependent.

Step 8 | **maximum sessions** *number*
Example:
Router(config-dspfarm-profile)# maximum sessions 8
--- | Specifies the maximum number of sessions that are supported by the profile.

Step 9 | **associate application** sccp
Example:
Router(config-dspfarm-profile)# associate application sccp
--- | Associates SCCP with the DSP farm profile.

Step 10 | **end**
Example:
Router(config-dspfarm-profile)# end
--- | Exits to privileged EXEC mode.

Associate Unified CME with a DSP Farm Profile

The steps to associate Unified CME with a DSP farm profile is applicable to:
- Both SIP and SCCP phones in Unified CME.
- All hardware conferencing types supported in Unified CME, including Ad Hoc and Meet Me.

To associate a DSP farm profile with a group of Cisco Unified CME routers that control DSP services, perform the following steps.
SUMMARY STEPS

1. enable
2. configure terminal
3. sccp ccm group group-number
4. associate ccm identifier-number priority priority-number
5. associate profile profile-identifier register device-name
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
Example:
Router> enable
- Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** sccp ccm group group-number | Creates a Cisco Unified CME group.
Example:
Router(config)# sccp ccm group 1 |
| **Step 4** associate ccm identifier-number priority priority-number | Associates a Cisco Unified CME router with the group and establishes its priority within the group.
Example:
Router(config-sccp-ccm)# associate ccm 100 priority 1 |
| **Step 5** associate profile profile-identifier register device-name | Associates a DSP farm profile with the Cisco Unified CME group.
Example:
Router(config-sccp-ccm)# associate profile 2 register confdsp1
- *device-name* is a maximum of 16 characters.
Note Repeat this step for every conferencing DSP farm and transcoding DSP farm. |
| **Step 6** end | Exits to privileged EXEC mode.
Example:
Router(config-sccp-ccm)# end |

Enable Hardware Conferencing

To allow hardware-based multi-party conferences with more than three parties, perform the following steps.
You cannot configure Hardware and Software conference simultaneously in Unified CME. Configuring multi-party hardware conference in Unified CME disables three-party Ad Hoc software conferencing.

This configuration is applicable to both SIP and SCCP phones in Unified CME.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `conference hardware`
5. `transfer-system full-consult`
6. `sdspfarm units number`
7. `sdspfarm tag number device-name`
8. `sdspfarm conference mute-on mute-on-digits mute-off mute-off-digits`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>conference hardware</code></td>
<td>Configures a Cisco Unified CME system for multi-party conferencing only.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# conference hardware</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>transfer-system full-consult</code></td>
<td>Transfers calls using H.450.2 with consultation using a second phone line, if available.</td>
</tr>
<tr>
<td>Example: <code>Router(config-telephony)# transfer-system full-consult</code></td>
<td>• The calls fall back to full-blind if a second line is not available.</td>
</tr>
<tr>
<td></td>
<td>• This is the default transfer method in Cisco Unified CME 4.0 and later versions.</td>
</tr>
</tbody>
</table>
Command or Action

Step 6

<table>
<thead>
<tr>
<th>sdspfarm units number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-telephony)# sdspfarm units 3</td>
</tr>
</tbody>
</table>

Purpose

Specifies the maximum number of DSP farms that are allowed to be registered to the SCCP server.

Example:

```
Router(config-telephony)# sdspfarm units 3
```

Step 7

<table>
<thead>
<tr>
<th>sdspfarm tag number device-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-telephony)# sdspfarm tag 2 confdsp1</td>
</tr>
</tbody>
</table>

Purpose

Permits a DSP farm to register to Cisco Unified CME and associates it with a SCCP client interface's MAC address.

Note

The `device-name` in this step must be the same as the `device-name` in the `associate profile` command in Step 5 of the section Associate Unified CME with a DSP Farm Profile, on page 1352.

Example:

```
Router(config-telephony)# sdspfarm tag 2 confdsp1
```

Step 8

<table>
<thead>
<tr>
<th>sdspfarm conference mute-on mute-on-digits mute-off mute-off-digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-telephony)# sdspfarm conference mute-on 111 mute-off 222</td>
</tr>
</tbody>
</table>

Purpose

 Defines mute-on and mute-off digits for conferencing.

- Maximum: 3 digits. Valid values are the numbers and symbols that appear on your telephone keypad: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, and #.
- Mute-on and mute-off digits can be the same.

Example:

```
Router(config-telephony)# sdspfarm conference mute-on 111 mute-off 222
```

Step 9

<table>
<thead>
<tr>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-telephony)# end</td>
</tr>
</tbody>
</table>

Purpose

Exits to privileged EXEC mode.

Configure Ad Hoc or Meet Me Hardware Conference

The configuration steps are applicable to:

- Both SIP and SCCP phones in Unified CME.
- All hardware conferencing types supported in Unified CME.

To configure extension numbers for hardware conferencing based on the maximum number of conference participants you configure, perform the following steps. Ad Hoc conferences require four extensions per conference, regardless of how many extensions are actually used by the conference parties.

Note

Ensure that you configure enough directory numbers to accommodate the anticipated number of conferences. The maximum number of parties in a multi-party ad hoc conference on an IP phone is eight; the maximum on an analog phone is three.

Note

For Meet Me conference to be enabled, you need to press the `MeetMe` softkey on the phone as well.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn dn-tag octo-line`
4. `number number [secondary number] [no-reg [both | primary]]`
5. Enter one of the following commands:
 - conference ad-hoc
 - conference meetme
6. `preference preference-order [secondary secondary-order]`
7. `no huntstop [channel]`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ephone-dn dn-tag octo-line</code></td>
<td>Enters ephone-dn configuration mode to configure an extension (ephone-dn) for a phone line.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-dn 18 octo-line</td>
<td>• Each ephone-dn can carry eight parties if it is configured as an octo line.</td>
</tr>
<tr>
<td></td>
<td>• Configure enough ephone-dns to accommodate the maximum number of conference participants to be supported.</td>
</tr>
<tr>
<td></td>
<td>• For multi-party ad hoc conferencing, maximum number of directory numbers is 8, but you can configure a lower maximum.</td>
</tr>
<tr>
<td></td>
<td>• For meet-me conferencing, maximum number of directory numbers is 32, but you can configure a lower maximum.</td>
</tr>
<tr>
<td></td>
<td>• Minimum number of directory numbers required: 2.</td>
</tr>
<tr>
<td>Step 4 `number number [secondary number] [no-reg [both</td>
<td>primary]]`</td>
</tr>
<tr>
<td>Example: Router(config-ephone-dn)# number 6789</td>
<td>• Each DN for a conference must have the same primary and secondary number.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| Step 5 | Enter one of the following commands:
 - conference ad-hoc
 - conference meetme | Configures a number as a placeholder for ad hoc conferencing to associate the call with the DSP farm. or
(Optional) Associates meet-me conferencing with a directory number. |
| Step 5 | Example:
 Router(config-ephone-dn)# conference ad-hoc
 or
 Router(config-ephone-dn)# conference meetme | |
- Remember to configure “preference x” with low value to last DN.
- The lower the value of the preference-order argument, the higher the preference of the extension. |
| Step 6 | Example:
 Router(config-ephone-dn)# preference 1 | |
| Step 7 | no huntstop [channel] | Continues call hunting behavior for an extension (ephone-dn) or an extension channel.
- Remember to configure no huntstop for all DNs except the last one. |
| Step 7 | Example:
 Router(config-ephone-dn)# no huntstop | |
| Step 8 | end | Exits to privileged EXEC mode. |
| Step 8 | Example:
 Router(config-ephone-dn)# end | |

Configure Softkeys and End of Conference Options for Hardware Conferencing

To configure a template of conferencing features such as the add party mode, drop party mode, and soft keys for hardware-based multi-party ad hoc and meet-me conferences and apply the template to a phone, perform the following steps.

- **Note**
 The following commands can also be configured in ephone configuration mode. Commands configured in ephone configuration mode have priority over commands in ephone-template configuration mode.
• The ConfList (including the Remove, Update, and Exit soft keys within the ConfList function) and RmLstC soft keys do not work on a Cisco Unified IP Phone 7902, 7935, and 7936.

• The RmLstC, ConfList, Join, and Select functions and soft keys are not supported for software-based conferencing.

The steps to configure end of conference and softkeys for hardware conferencing is applicable:

• Only for SCCP phones in Unified CME.

Restriction

Before you begin

• The RmLstC, ConfList, Join, and Select functions and soft keys are supported for hardware-based conferencing only and require the appropriate DSP farm configuration. For configuration information, see these tasks in this module:

 • Enable DSP Farm Services for a Voice Card, on page 1347

 • Configure the DSP Farm Profile, on page 1351

 • Associate Unified CME with a DSP Farm Profile, on page 1352

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template-tag
4. conference add-mode [creator]
5. conference drop-mode [creator local]
6. conference admin
7. softkeys connected { [Acct] [ConfList] [Confrn] [Endcall] [Flash] [HLog] [Hold] [Join] [LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] } [Transfer]
8. softkeys hold { [Join] [Newcall] [Resume] [Select] }
9. softkeys idle { [Cfwdall] [ConfList] [Dnd] [Gpickup] [HLog] [Join] [Login] [Newcall] [Pickup] [Redial] [RmLstC] }

Note

• For End of Conference option on SIP phones, you need to configure conference add-mode and conference drop-mode under voice register configuration mode. For more information, see Cisco Unified Communications Manager Express Command Reference.

• For softkey configuration on SIP phones, you need to configure softkeys under voice register template configuration mode. For more information, see Cisco Unified Communications Manager Express Command Reference.

• For Ad Hoc and Meet Me hardware conferencing.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-template template-tag</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-template 1</td>
</tr>
<tr>
<td>Step 4</td>
<td>conference add-mode [creator]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-template)# conference add-mode creator</td>
</tr>
<tr>
<td>Step 5</td>
<td>conference drop-mode [creator local]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-template)# conference drop-mode creator</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>conference admin</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-template)# conference admin</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>softkeys connected { [Acct] [ConfList] [Confrn] [Endcall] [Flash] [HLog] [Hold] [Join] }</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>[LiveRcd] [Park] [RmLstC] [Select] [TrnsfVM] [Transfer]</td>
<td>• The soft keys used for multi-party conferencing are RmLstC, ConfList, Join, and Select. These soft keys are supported for hard-ware based conferencing only and require the appropriate DSP farm configuration.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys connected Hold Transfer Park Endcall Confrn ConfList Join RmLstC</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Configures an ephone template to modify softkey display during the call-hold call stage.</td>
</tr>
<tr>
<td>softkeys hold {!! [Join] [Newcall] [Resume] [Select] !!}</td>
<td>• The soft keys used for multi-party conferencing are Join and Select. These soft keys are supported for hard-ware based conferencing only and require the appropriate DSP farm configuration.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys hold Join Newcall Resume Select</td>
<td>• The number and order of soft key keywords you enter in this command correspond to the number and order of soft keys on your phone.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Configures an ephone template for softkey display during the idle call stage.</td>
</tr>
<tr>
<td>softkeys idle {!! [Cfwdall] [ConfList] [Dnd] [Gpickup] [HLog] [Join] [Login] [Newcall] [Pickup] [Redial] [RmLstC] !!}</td>
<td>• The soft keys used for multi-party conferencing are RmLstC, ConfList, and Join. These soft keys are supported for hard-ware based conferencing only and require the appropriate DSP farm configuration.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys idle ConfList Gpickup Join Login Newcall Pickup Redial RmLstC</td>
<td>• The number and order of soft key keywords you enter in this command correspond to the number and order of soft keys on your phone.</td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) Configures an ephone template for softkey display during the seized call stage.</td>
</tr>
<tr>
<td>softkeys seized {!! [CallBack] [Cfwdall] [Endcall] [Gpickup] [HLog] [MeetMe] [Pickup] [Redial] !!}</td>
<td>• You must configure the MeetMe soft key in the seized state for the ephone to initiate a meet-me conference.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# softkeys seized Redial Endcall Cfwdall Pickup Gpickup Callback Meetme</td>
<td>• The number and order of soft key keywords you enter in this command correspond to the number and order of soft keys on your phone.</td>
</tr>
<tr>
<td>Step 11</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Enters ephone configuration mode to create and configure an ephone.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# ephone 1</td>
<td>Applies an ephone-dn template to an ephone-dn.</td>
</tr>
<tr>
<td>Step 13 ephone-template template-tag</td>
<td>The template-tag must be the same as the template-tag in Step 3.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# ephone-dn-template 1</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 14 end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# exit</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

If you are finished modifying the configuration, you are ready to generate configuration files for the phones to be connected. See Generate Configuration Files for SCCP Phones, on page 390.

Verify Conferencing

Use the `show running-config` command to verify your configuration. Any non-default conferencing parameters are listed in the telephony-service portion of the output, and end-of-conference options are listed in the ephone portion.

Example:

```
Router# show running-config
!
ephone-dn  1  dual-line
    ring feature secondary
    number 126 secondary 1261
description Sales
    name Smith
    call-forward busy 500 secondary
call-forward noan 500 timeout 10
    huntstop channel
    no huntstop
    no forward local-calls
!
ephone  1
    mac-address 011F.92A0.C10B
type 7960 addon 1 7914
    no dnd feature-ring
    keep-conference
```

Verify Hardware Conferencing

The CLI commands to troubleshoot hardware conferencing is applicable to:

- Both SIP and SCCP conference configurations in Unified CME.
Ad Hoc Hardware Conference

You can configure the following show commands to verify Ad Hoc hardware conferencing:

- `show telephony-service conference hardware`
- `show dspfarm profile <profile number>`
- `show sccp`
- `show call active voice compact`
- `show call active voice brief`

The following is a sample output for `show telephony-service conference hardware` command.

```
Router#show telephony-service conference hardware
Conference  Type       Active  Max  Peak    Host  HostPhone  Last cur(initial)
---------------------------------------------------------------------------------------------
A002         Ad-hoc     4      8    5       1111 sip1  1     (  1)   5555 sccp2
```

The following is a sample output for `show dspfarm dsp active` command.

```
Router#show dspfarm dsp active
SLOT   DSP VERSION  STATUS  CHNL USE  TYPE  RSC_ID  BRIDGE_ID  PKTS_TXED  PKTS_RXED
0/1    1   44.1.0   UP     1    USED  conf    1      498       3384      3329
0/1    1   44.1.0   UP     1    USED  conf    1      499       3383      1739
0/1    1   44.1.0   UP     1    USED  conf    1      500       3382      3384
0/1    1   44.1.0   UP     1    USED  conf    1      503       2899      671
0/1    1   44.1.0   UP     1    USED  conf    1      506       2525      1269
```

Meet Me Conference

You can configure the following show commands to verify Ad Hoc hardware conferencing:

- `show sccp connection`
- `show ephone-dn conference`
- `show telephony-service conference hardware`
- `show dspfarm dsp active`
- `show call active voice compact`
- `Show voip rtp connections`

The following is a sample output for `show ephone-dn conference` command.

```
Router#show ephone-dn conference
type   active inactive  numbers
=================================
Meetme          4       28     5555
DN tags: 9, 10, 11, 12
```

The following is a sample output for `show telephony-service conference hardware` command.

```
Router#sh telephony-service conference hardware
Conference  Type       Active  Max  Peak    Host  HostPhone  Last cur(initial)
---------------------------------------------------------------------------------------------
The following is a sample output for `show dspfarm dsp active` command.

```
Router#show dspfarm dsp active
SLOT DSP VERSION STATUS CHNL USE TYPE RSC_ID BRIDGE_ID PKTS_TXED PKTS_RXED
0/1 4 44.2.0 UP 1 USED conf 1 8 8574 8599
0/1 4 44.2.0 UP 1 USED conf 1 10 8223 8250
0/1 4 44.2.0 UP 1 USED conf 1 12 7724 7639
0/1 4 44.2.0 UP 1 USED conf 1 14 7274 7299
```

Total number of DSPFARM DSP channel(s) 1

The following is a sample output for `show call active voice compact` command.

```
Router#show call active voice compact
<callID> A/O FAX T<sec> Codec type Peer Address IP R<ip>:<udp> VRF
68771 ANS T301 g711ulaw VOIP P1002 10.0.0.1:22018
68772 ORG T302 g711ulaw TELE P5555
68775 ANS T295 g711ulaw VOIP P1004 10.0.0.2:22462
68776 ORG T296 g711ulaw TELE P5555
68778 ANS T286 g711ulaw VOIP P1001 10.0.0.3:31890
68779 ORG T287 g711ulaw TELE P5555
68781 ANS T278 g711ulaw VOIP P1003 10.0.0.4:31202
68782 ORG T279 g711ulaw TELE P5555
```

**Verify Keep Conference**

The following is a sample output for `show voice register tftp-bind` command.

```
Router#sh voice register tftp-bind
tftp-server url flash:/its/SEPE0D173E54508.cnf.xml alias SEPE0D173E54508.cnf.xml
```

With `keep-conference` enabled in `voice register pool` or `voice register template`

```
Router#more flash:/its/SEPE0D173E54508.cnf.xml | sec cnf
<cnfJoinEnabled>true</cnfJoinEnabled>
```

With `keep-conference` disabled in both `voice register pool` and `voice register template`

```
Router#more flash:/its/SEPE0D173E54508.cnf.xml | sec cnf
<cnfJoinEnabled>false</cnfJoinEnabled>
```

**Troubleshoot Conferencing**

**Step 1** Use the `debug ephone` commands to observe messages and states associated with an ephone. For more information, see Cisco Unified CME Command Reference.

**Step 2** Use the `debug ephone detail` command for SCCP calls in a software conference.

**Step 3** Use the `debug ccsip all` command for SIP calls in a software conference.
Step 4  Use the `debug ephone hw-conference` command for SIP and SCCP calls in a hardware conference.

---

**Configuration Examples for Conferencing**

**Example for Configuration of Max Conference and Gain Levels**

The following example sets the maximum number of conferences for a Cisco Unified IP phone to 4 and configures a gain of 6 db for inbound audio packets from remote PSTN or VoIP calls joining a conference:

```
telephony-service
max-conferences 4 gain 6
```

**Example for Keep Conference Configuration on SCCP Phones**

In the following example, extension 3555 initiates a three-way conference. After the conference is established, extension 3555 can press the Confrn soft key to disconnect the last party that was connected and remain connected to the first party that was connected. If extension 3555 hangs up from the conference, the other two parties remain connected if one of them is local to the Cisco Unified CME system.

```
ephone-dn 35
 number 3555

ephone 24
 button 1:35
 keep-conference drop-last local-only
```

In the following example, extension 3666 initiates a three-way conference. After the conference is established, extension 3666 can press the Confrn soft key to disconnect the last party that was connected and remain connected to the first party that was connected. Also, extension 3666 can hang up or press the EndCall soft key to leave the conference and keep the other two parties connected.

```
ephone-dn 36
 number 3666

ephone 25
 button 1:36
 keep-conference drop-last endcall
```

In the following example, extension 3777 initiates a three-way conference. After the conference is established, extension 3777 can press the Confrn soft key to disconnect the last party that was connected and remain connected to the first party that was connected. Also, extension 3777 can hang up or press the EndCall soft key to leave the conference and keep the other two parties connected only if one of the two parties is local to the Cisco Unified CME system.

```
ephone-dn 38
 number 3777

ephone 27
 button 1:38
```
In the following example, extension 3999 initiates a three-way conference. After the conference is established, extension 3999 can hang up or press the EndCall soft key to leave the conference and keep the other two parties connected only if one of the two parties is local to the Cisco Unified CME system. Extension 3999 can also use the Confrn soft key to break up the conference but stay connected to both parties.

```bash
ephone-dn 39
 number 3999

ephone 29
 button 1:39
 keep-conference endcall local-only
```

**Example for Keep Conference Configuration on SIP Phones**

In the following example, extension 3555 initiates a three-way conference on SIP phones using keep-conference configured under voice register pool.

```bash
voice register dn 35
 number 3555

voice register pool 24
 number 1 dn 35
 keep-conference
```

Following is a sample configuration for keep-conference under voice register template.

```bash
voice register template 24
 keep-conference

voice register pool 35
 template 24
```

**Example of DSP Farm and Cisco Unified CME on the Same Router**

In this example, the DSP farm and Cisco Unified CME are on the same router as shown in Figure 67: CME and the DSP Farm on the Same Router, on page 1366.
Figure 67: CME and the DSP Farm on the Same Router

Current configuration : 16345 bytes

! version 12.4
service timestamps debug datetime msec
service timestamps log uptime
no service password-encryption
service internal
!
hostname cmesprtr
!
boot-start-marker
boot-end-marker
!
logging buffered 90000 debugging
!
oaa new-model
!
resource policy
!
no network-clock-participate slot 1
no network-clock-participate wic 0
ip cef
!
!
ip dhcp pool phone1
host 10.4.188.66 255.255.0.0
client-identifier 0100.0ab7.b144.4a
default-router 10.4.188.65
option 150 ip 10.4.188.65
!
ip dhcp pool phone2
host 1.4.188.67 255.255.0.0
client-identifier 0100.3094.c269.35
default-router 10.4.188.65
option 150 ip 10.4.188.65
!
!
voice-card 1
dsp services dspfarm
!
!
voice call send-alert
voice call carrier capacity active
!
voice service voip
allow-connections h323 to h323
supplementary-service h450.12
h323
!
!
!
controller E1 1/0
   framing NO-CRC4
!
controller E1 1/1
!
!
interface FastEthernet0/0
   ip address 10.4.188.65 255.255.0.0
duplex auto
   speed auto
   no keepalive
   no cdp enable
   no clns route-cache
!
interface FastEthernet0/1
   no ip address
   shutdown
duplex auto
   speed auto
   no clns route-cache
!
ip route 10.4.0.0 255.255.0.0 FastEthernet0/0
ip route 192.168.254.254 255.255.255.255 10.4.0.1
!
ip http server
!
!
control-plane
!
!
scpp local FastEthernet0/0
scpp ccm 10.4.188.65 identifier 1 version 4.0
scpp
!
scpp ccm group 123
   associate ccm 1 priority 1
   associate profile 1 register mtp00097c5e9ce0
   keepalive retries 5
!
!
dspfarm profile 1 conference
   codec g711ulaw
   codec g711alaw
   codec g729ar8
   codec g729abr8
   codec g729r8
   codec g729br8
   maximum sessions 6
   associate application SCCP
!
dial-peer cor custom
!
!
dial-peer voice 6 voip
   destination-pattern 6...
   session target ipv4:10.4.188.90
Example of DSP Farm and Cisco Unified CME on the Same Router

! telephony-service
  conference hardware
  load 7960-7940 P00307020400
  load 7905 CP7905060100SCCP050309A.sbin
  max-ephones 48
  max-dn 180
  ip source-address 10.4.188.65 port 2000
  timeouts ringing 500
  system message MY MELODY (2611)
  sdspfarm units 4
  sdspfarm tag 1 mtp00097c5e9ce0
  max-conferences 4 gain -6
  call-forward pattern ....
  transfer-system full-consult
  transfer-pattern 7...
  transfer-pattern ....
  create cnf-files version-stamp Jan 01 2002 00:00:00

! ephone-template 1
  softkeys hold Newcall Resume Select Join
  softkeys idle Cfwdall ConfList Dnd Gpickup HLog Join Login Newcall Pickup Redial RmLstC
  softkeys seized Redial Pickup Gpickup HLog Meetme Endcall
  softkeys connected Acct ConfList Confrn Endcall Flash HLog Hold Join Park RmLstC Select
  Transfer

! ephone-dn 1 dual-line
  number 8001
  name melody-8001

! ephone-dn 2 dual-line
  number 8002

! ephone-dn 3 dual-line
  number 8003

! ephone-dn 4 dual-line
  number 8004

! ephone-dn 5 dual-line
  number 8005

! ephone-dn 6 dual-line
  number 8006

! ephone-dn 7 dual-line
  number 8007

! ephone-dn 8 dual-line
  number 8008

! ephone-dn 60 dual-line
  number 8887
  conference meetme

Conferencing
no huntstop
!
ephone-dn 61 dual-line
  number 8887
  conference meetme
  preference 1
  no huntstop
!
ephone-dn 62 dual-line
  number 8887
  conference meetme
  preference 2
  no huntstop
!
ephone-dn 63 dual-line
  number 8887
  conference meetme
  preference 3
!
ephone-dn 64 dual-line
  number 8889
  name Conference
  conference ad-hoc
  no huntstop
!
ephone-dn 65 dual-line
  number 8889
  name Conference
  conference ad-hoc
  preference 1
  no huntstop
!
ephone-dn 66 dual-line
  number 8889
  name Conference
  conference ad-hoc
  preference 2
  no huntstop
!
ephone-dn 67 dual-line
  number 8889
  name Conference
  conference ad-hoc
  preference 3
!
ephone 1
  ephone-template 1
  mac-address 0030.94C2.6935
  type 7960
  button 1:1 2:2
!
ephone 2
  ephone-template 1
  mac-address 000A.B7B1.444A
  type 7940
The following is an example of DSP Farm and Unified CME on the same router for SIP Phones.

Current configuration : 10821 bytes

version 16.5
service timestamps debug datetime msec
service timestamps log datetime msec
service sequence-numbers
!
boot-start-marker
boot-end-marker
!

vrf definition Mgmt-intf
!
address-family ipv4
exit-address-family
!
address-family ipv6
exit-address-family
!
! card type command needed for slot/bay 0/1
no logging queue-limit
logging buffered 100000000
no logging rate-limit
no logging console
!
no aaa new-model
!
!
ipv6 unicast-routing
!
!
subscriber templating
!
!
multilink bundle-name authenticated
!
!
voice service voip
no ip address trusted authenticate
media disable-detailed-stats
allow-connections sip to sip
no supplementary-service sip refer
fax protocol t38 version 0 ls-redundancy 0 hs-redundancy 0 fallback none
sip
    registrar server expires max 240 min 60

voice register global
mode cme
source-address 8.39.23.16 port 5060
no privacy
timeouts interdigit 30
max-dn 40
max-pool 40
voicemail 9000
tftp-path flash:
create profile sync 0095202153430137
conference hardware
!
voice register dn 1
number 1001
name SIP Ph 1
!
voice register dn 2
number 1002
name SIP Ph 2
!
voice register dn 3
number 1003
name SIP Ph 3
!
voice register template 1
softkeys idle  HLog Mobility Newcall Pickup Redial
softkeys ringIn  Answer DND
softkeys connected  ConfrList Confr Endcall Hold Mobility Park Trnsfr
softkeys remote-in-use  Barge Newcall cBarge
!
voice register pool 1
busy-trigger-per-button 10
id mac B000.B4BA.F3DA
type 8851
number 1 dn 1
template 1
dtmf-relay rtp-nre
username xxxx password xxxx
codec g711ulaw
no vad
!
voice register pool 2
busy-trigger-per-button 10
id mac 1CE8.5DC9.C054
type 8851
number 1 dn 2
template 1
dtmf-relay rtp-nre
username xxxx password xxxx
codec g711ulaw
no vad
!
voice register pool 3
busy-trigger-per-button 10
id mac 00AF.1F9D.FB9F
type 8841
number 1 dn 3
template 1
dtmf-relay rtp-nre
username xxxx password xxxx
codec g711ulaw
no vad
!
voice translation-rule 1
rule 1 /^1234/ /301/ 
! 
voice translation-rule 4 
rule 4 /\1(\...)$/ /5123\7812\1/ 
! 
voice translation-profile PSTN_Callforwarding 
translate redirect-target 4 
! 
voice translation-profile cmein 
translate called 1 
! 
voice-card 0/1 
dsp services dspfarm 
! 
restconf 
! 
username xxxx password xxxx 
! 
redundancy 
mode none 
! 
threat-visibility 
! 
interface GigabitEthernet0/0/0 
ip address 8.39.23.16 255.255.0.0 
negotiation auto 
! 
interface GigabitEthernet0/0/0/1 
ip address 10.64.86.106 255.255.0.0 
shutdown 
media-type rj45 
negotiation auto 
ipv6 address 2001:420:54FF:13::312:55/119 
ipv6 enable 
! 
interface GigabitEthernet0/0/2 
no ip address 
shutdown 
negotiation auto 
! 
interface GigabitEthernet0/0/3 
no ip address 
shutdown 
negotiation auto 
! 
interface Service-Engine0/1/0 
! 
interface GigabitEthernet0 
vrf forwarding Mgmt-intf 
no ip address 
shutdown 
negotiation auto 
! 
ip forward-protocol nd 
ip http server 
ip http authentication local 
ip http secure-server 
ip http secure-port 8443 
ip tftp source-interface GigabitEthernet0/0/1 
ip tftp blocksize 8192

Example of DSP Farm and Cisco Unified CME on the Same Router
ip dns server
ip rtcp report interval 65535
ip route 0.0.0.0 0.0.0.0 8.39.0.1
ip route 8.0.0.0 255.0.0.0 8.39.0.1
ip route 202.153.144.0 255.255.255.0 8.39.0.1
ip ssh server algorithm encryption aes128-ctr aes192-ctr aes256-ctr
ip ssh client algorithm encryption aes128-ctr aes192-ctr aes256-ctr

! 
! 
tftp-server bootflash
tftp-server flash:vc488xx.12-0-1MN-113.sbn
tftp-server flash:sip88xx.12-0-1MN-113.loads
tftp-server flash:sb288xx.BE-01-020.sbn
tftp-server flash:kern88xx.12-0-1MN-113.sbn
tftp-server flash:fb188xx.BE-01-010.sbn
tftp-server flash:rootfs88xx.12-0-1MN-113.sbn
!
!
ipv6 access-list preauth_v6
permit udp any any eq domain
permit tcp any any eq domain
permit icmp any any nd-ns
permit icmp any any nd-na
permit icmp any any router-solicitation
permit icmp any any router-advertisement
permit icmp any any redirect
permit udp any eq 547 any eq 546
permit udp any eq 546 any eq 547
deny ipv6 any any
!
control-plane
!
!
mgcp behavior rsip-range tgcp-only
mgcp behavior comedia-role none
mgcp behavior comedia-check-media-src disable
mgcp behavior comedia-sdp-force disable
!
mgcp profile default
!
sccp local GigabitEthernet0/0/0
sccp ccm 8.39.23.16 identifier 1 version 7.0
sccp
!
sccp ccm group 1
associate ccm 1 priority 1
associate profile 1 register conf-moto
!
!
! 
telephony-service
sdspfarm units 2
sdspfarm tag 1 conf-moto
no privacy
conference hardware
no auto-reg-ephone
max-ephones 40
max-dn 40
ip source-address 8.39.23.16 port 2000
service phone sshAccess 0
service phone webAccess 0
service directed-pickup gpickup
max-conferences 8 gain -6
call-park system application
hunt-group logout HLog
moh enable-g711 "flash:/scripts/en_bacd_music_on_hold.au"
transfer-system full-consult
fax standard
create cnf-files version-stamp Jan 01 2002 00:00:00
!
dspfarm profile 2 transcode universal
codec g729abr8
codec g729ar8
codec g711alaw
codec g711ulaw
codec g729br8
maximum sessions 2
associate application CUBE
!
dspfarm profile 1 conference
codec g729br8
codec g729r8
codec g729abr8
codec g729ar8
codec g711alaw
codec g711ulaw
maximum sessions 2
associate application SCCP
!
dial-peer voice 1 voip
destination-pattern 20..
session protocol sipv2
session target ipv4:8.39.24.41
dtmf-relay rtp-n te
!

gateway
media-inactivity-criteria all
timer receive-rtcp 1000
timer receive-rtp 1200
!
sip-ua
mwi-server ipv4:8.41.24.7 expires 3600 port 5060 transport udp unsolicited
presence enable
!
ephone-dn 1 octo-line
number 1006
!
ephone-dn 2 octo-line
number 1007
!
ephone-dn 3 octo-line
number 1008
!
ephone-dn 4 octo-line
number 1009
!
ephone-dn 5 octo-line
number A001
conference ad-hoc
Example of DSP Farm and Cisco Unified CME on Different Routers

In this example, the DSP farm and Cisco Unified CME are on different routers as shown in Figure 68: Cisco Unified CME and the DSP Farm on Different Routers, on page 1376.
Example of Cisco Unified CME Router Configuration

Current configuration : 5659 bytes
!
version 12.4
no service timestamps debug uptime
no service timestamps log uptime
no service password-encryption
!
boot-start-marker
boot-end-marker
!
!
card type command needed for slot 1
logging buffered 3000000 debugging
!
no aaa new-model
!
resource policy
!
no network-clock-participate slot 1
no network-clock-participate aim 0
!
voice-card 1
no dspfarm
!
voice-card 3
dspfarm
! ip cef
!
! no ip dhcp use vrf connected
! ip dhcp pool IPPhones
  network 10.15.15.0 255.255.255.0
  option 150 ip 10.15.15.1
  default-router 10.15.15.1
!
! interface FastEthernet0/0
  ip address 10.3.111.102 255.255.0.0
duplex auto
  speed auto
! interface FastEthernet0/1
  no ip address
duplex auto
  speed auto
!
! interface FastEthernet0/1.1
  encapsulation dot1Q 10
  ip address 10.15.14.1 255.255.255.0
!
! interface FastEthernet0/1.2
  encapsulation dot1Q 20
  ip address 10.15.15.1 255.255.255.0
!
! ip route 0.0.0.0 0.0.0.0 10.5.51.1
! ip route 0.0.0.0 0.0.0.0 10.3.0.1
!
! ip http server
!
!
!
! control-plane!
!
!
! dial-peer voice 1 voip
  destination-pattern 3...
  session target ipv4:10.3.111.101
!
!
! telephony-service
  conference hardware
  load 7910 P00403020214
  load 7960-7940 P003-07-5-00
  max-ephones 50
  max-dn 200
    ip source-address 10.15.15.1 port 2000
  sdpfarm units 4
  sdpfarm transcode sessions 12
  sdpfarm tag 1 confer1
  sdpfarm tag 4 xcode1
  max-conferences 8 gain -6
  moh flash:music-on-hold.au
  multicast moh 239.0.0.0 port 2000
  transfer-system full-consult
  create cnf-files version-stamp Jan 01 2002 00:00:00
!
Example of Cisco Unified CME Router Configuration

! ephone-template 1
  softkeys hold Resume Newcall Select Join
  softkeys idle Redial Newcall ConfList RmLstC Cfwdall Join Pickup Login HLog Dnd Gpickup
  softkeys seized Endcall Redial Cfwdall Meetme Pickup Callback
  softkeys alerting Endcall Callback
  softkeys connected Hold Endcall Confrn Trnsfer Select Join ConfList RmLstC Park Flash !
ephone-dn 1 dual-line
  number 6000
  !
ephone-dn 2 dual-line
  number 6001
  !
ephone-dn 3 dual-line
  number 6002
  !
ephone-dn 4 dual-line
  number 6003
  !
ephone-dn 5 dual-line
  number 6004
  !
ephone-dn 6 dual-line
  number 6005
  !
ephone-dn 7 dual-line
  number 6006
  !
ephone-dn 8 dual-line
  number 6007
  !
ephone-dn 9 dual-line
  number 6008
  !
ephone-dn 10 dual-line
  number 6009
  !
ephone-dn 11
  number 6011
  !
ephone-dn 12
  number 6012
  !
ephone-dn 13
  number 6013
  !
ephone-dn 14
  number 6014
  !
ephone-dn 15
number 6015
!
!
ephone-dn 16
  number 6016
!
ephone-dn 17
  number 6017
!
ephone-dn 18
  number 6018
!
ephone-dn 19
  number 6019
!
ephone-dn 20
  number 6020
!
ephone-dn 21
  number 6021
!
ephone-dn 22
  number 6022
!
ephone-dn 23
  number 6023
!
ephone-dn 24
  number 6024
!
ephone-dn 25 dual-line
  number 6666
  conference meetme
  preference 1
  no huntstop
!
ephone-dn 26 dual-line
  number 6666
  conference meetme
  preference 2
  no huntstop
!
ephone-dn 27 dual-line
  number 6666
  conference meetme
  preference 3
  no huntstop
!
ephone-dn 28 dual-line
  number 6666
  conference meetme
  preference 4
no huntstop
!
!
ephone-dn 29 dual-line
number 8888
conference meetme
preference 1
no huntstop
!
!
ephone-dn 30 dual-line
number 8888
conference meetme
preference 2
no huntstop
!
!
ephone-dn 31 dual-line
number 8888
conference meetme
preference 3
no huntstop
!
!
ephone-dn 32 dual-line
number 8888
conference meetme
preference 4
!
!
ephone-dn 33
number 6033
!
!
ephone-dn 34
number 6034
!
!
ephone-dn 35
number 6035
!
!
ephone-dn 36
number 6036
!
!
ephone-dn 37
number 6037
!
!
ephone-dn 38
number 6038
!
!
ephone-dn 39
number 6039
!
!
ephone-dn 40
number 6040
!
!
ephone-dn 41 dual-line
number 6666
conference meetme
preference 5
no huntstop
!
ephone-dn 42 dual-line
number 6666
conference meetme
preference 6
no huntstop
!
ephone-dn 43 dual-line
number 6666
conference meetme
preference 7
no huntstop
!
ephone-dn 44 dual-line
number 6666
conference meetme
preference 8
no huntstop
!
ephone-dn 45 dual-line
number 6666
conference meetme
preference 9
no huntstop
!
ephone-dn 46 dual-line
number 6666
conference meetme
preference 10
no huntstop
!
ephone-dn 47 dual-line
number 6666
conference meetme
preference 10
no huntstop
!
ephone-dn 48 dual-line
number 6666
conference meetme
preference 10
!
ephone-dn 51 dual-line
number A0001
name conference
command conference ad-hoc
preference 1
no huntstop
!
ephone-dn 52 dual-line
number A0001
name conference
Example of Cisco Unified CME Router Configuration

```plaintext
conference ad-hoc
preference 2
no huntstop
!
!
ephone-dn 53 dual-line
 number A0001
 name conference
 conference ad-hoc
 preference 3
 no huntstop
!
!
ephone-dn 54 dual-line
 number A0001
 name conference
 conference ad-hoc
 preference 4
!
!
ephone 1
 ephone-template 1
 mac-address C863.B965.2401
 type anl
 button 1:1
!
!
ephone 2
 ephone-template 1
 mac-address 0016.C8BE.A04A
 type 7920
!
!
ephone 3
 ephone-template 1
 mac-address C863.B965.2400
 type anl
 button 1:2
!
!
ephone 4
 no multicast-moh
 ephone-template 1
 mac-address 0017.952B.7F5C
 type 7912
 button 1:4
!
!
ephone 5
 ephone-template 1
 ephone 6
 no multicast-moh
 ephone-template 1
 mac-address 0017.594F.1468
 type 7961GE
 button 1:6
!
!
ephone 11
```

Cisco Unified Communications Manager Express System Administrator Guide
Example of DSP Farm Router Configuration

Current configuration: 2179 bytes

! Last configuration change at 05:47:23 UTC Wed Jul 12 2006
! version 12.4
service timestamps debug datetime msec localtime
no service timestamps log uptime
no service password-encryption
hostname dspfarmrouter
!
! boot-start-marker
boot-end-marker
!
!
card type command needed for slot 1
logging buffered 4096 debugging enable password lab
!
no aaa new-model
!
resource policy
!
no network-clock-participate slot 1
!
!
ip cef
!
!
no ip domain lookup
!
!
voice-card 0
no dspfarm
!
voice-card 1
no dspfarm
dsp services dspfarm
!
interface GigabitEthernet0/0
ip address 10.3.111.100 255.255.0.0
duplex auto
speed auto
!
interface GigabitEthernet0/1.1
encapsulation dot1Q 100
ip address 192.168.1.10 255.255.255.0
!
interface GigabitEthernet0/1.2
  encapsulation dot1Q 200
  ip address 192.168.2.10 255.255.255.0
!
interface GigabitEthernet0/1.3
  encapsulation dot1Q 10
  ip address 10.15.14.10 255.255.255.0
!
interface GigabitEthernet0/1.4
  encapsulation dot1Q 20
  ip address 10.15.15.10 255.255.255.0
  ip route 10.0.0.0 255.0.0.0 10.3.0.1
  ip route 192.168.0.0 255.0.0.0 10.3.0.1
!
ip http server
!
!
control-plane
!
scap local GigabitEthernet0/0
scap ccm 10.15.15.1 identifier 1 version 4.1
!
scap ccm group 1
  associate ccm 1 priority 1
  associate profile 101 register confer1
  associate profile 103 register xcode1
!

dsdpfarm profile 103 transcode
  codec g711ulaw
  codec g711alaw
  codec g729r8
  maximum sessions 6
  associate application SCCP
!
dsdpfarm profile 101 conference
  codec g711ulaw
  codec g711alaw
  codec g729r8
  maximum sessions 5
  associate application SCCP
!
!
line con 0
  exec-timeout 0 0
line aux 0
line vty 0 4
  session-timeout 300
  exec-timeout 0 0
  password
  no login
!
scheduler allocate 20000 1000
!
end
Example for Verification of Meet Me Conference

The following partial output from the `show running-config` command shows the configuration on a Cisco 2821 router with Unified CME and Cisco Unity Express, with comments describing the configuration for setting up Meet-Me Conferencing.

```
Router# show running-config
building configuration...
.
.
.
.
.
.
.
.

!---Two T1 ports connected back-to-back to bridge VOIP to Multicast
controller T1 0/3/0
 framing esf
 linecode b8zs
da0-group 1 timeslots 1 type e4-immediate-start
da0-group 2 timeslots 2 type e4-immediate-start
da0-group 3 timeslots 3 type e4-immediate-start
da0-group 4 timeslots 4 type e4-immediate-start
da0-group 5 timeslots 5 type e4-immediate-start
da0-group 6 timeslots 6 type e4-immediate-start
da0-group 7 timeslots 7 type e4-immediate-start
da0-group 8 timeslots 8 type e4-immediate-start
da0-group 9 timeslots 9 type e4-immediate-start
da0-group 10 timeslots 10 type e4-immediate-start
da0-group 11 timeslots 11 type e4-immediate-start
da0-group 12 timeslots 12 type e4-immediate-start
da0-group 13 timeslots 13 type e4-immediate-start
da0-group 14 timeslots 14 type e4-immediate-start
da0-group 15 timeslots 15 type e4-immediate-start
da0-group 16 timeslots 16 type e4-immediate-start
da0-group 17 timeslots 17 type e4-immediate-start
da0-group 18 timeslots 18 type e4-immediate-start
da0-group 19 timeslots 19 type e4-immediate-start
da0-group 20 timeslots 20 type e4-immediate-start
da0-group 21 timeslots 21 type e4-immediate-start
da0-group 22 timeslots 22 type e4-immediate-start
da0-group 23 timeslots 23 type e4-immediate-start
da0-group 24 timeslots 24 type e4-immediate-start
controller T1 0/3/1
 framing esf
 clock source internal
 linecode b8zs
da0-group 1 timeslots 1 type e4-immediate-start
da0-group 2 timeslots 2 type e4-immediate-start
da0-group 3 timeslots 3 type e4-immediate-start
da0-group 4 timeslots 4 type e4-immediate-start
da0-group 5 timeslots 5 type e4-immediate-start
da0-group 6 timeslots 6 type e4-immediate-start
da0-group 7 timeslots 7 type e4-immediate-start
da0-group 8 timeslots 8 type e4-immediate-start
da0-group 9 timeslots 9 type e4-immediate-start
da0-group 10 timeslots 10 type e4-immediate-start
da0-group 11 timeslots 11 type e4-immediate-start
da0-group 12 timeslots 12 type e4-immediate-start
da0-group 13 timeslots 13 type e4-immediate-start
da0-group 14 timeslots 14 type e4-immediate-start
da0-group 15 timeslots 15 type e4-immediate-start
```
ds0-group 16 timeslots 16 type e6-immediate-start
ds0-group 17 timeslots 17 type e6-immediate-start
ds0-group 18 timeslots 18 type e6-immediate-start
ds0-group 19 timeslots 19 type e6-immediate-start
ds0-group 20 timeslots 20 type e6-immediate-start
ds0-group 21 timeslots 21 type e6-immediate-start
ds0-group 22 timeslots 22 type e6-immediate-start
ds0-group 23 timeslots 23 type e6-immediate-start
ds0-group 24 timeslots 24 type e6-immediate-start

!--- Disable keepalive packet to multicast network on voice class and apply to LMR port
voice class permanent 1
  signal timing oos restart 50000
  signal timing oos timeout disabled
  signal keepalive disabled
  signal sequence oos no-action

!--- Loopback0 used as source for all H323 and SCCP packets generated by CME
interface Loopback0
  ip address 11.1.1.1 255.255.255.255
  h323-gateway voip interface
  h323-gateway voip bind srcaddr 11.1.1.1

!--- Vif1 (virtual host interface) used as source for all multicast packets generated by CME
interface Vif1
  ip address 192.168.11.1 255.255.255.252
  ip pim dense-mode

interface FastEthernet0/0
  no ip address
  shutdown

!--- Service-engine interface used to access Cisco Unity Express
interface Service-Engine0/0
  ip unnumbered Vlan10
  service-module ip address 192.168.1.2 255.255.255.0
  service-module ip default-gateway 192.168.1.1

interface FastEthernet0/1
  no ip address
  shutdown

interface FastEthernet0/0/0
  switchport access vlan 10
  no ip address

interface FastEthernet0/0/1
  switchport access vlan 10
  no ip address

interface FastEthernet0/0/2
  switchport access vlan 10
  no ip address

interface FastEthernet0/0/3
switchport access vlan 10
no ip address
!
interface Vlan1
no ip address
!
!----All IP phones reside on VLAN 10
interface Vlan10
ip address 192.168.1.1 255.255.255.0
ip pim dense-mode
!
ip classless
!
!---- Static route to reach other devices on network
ip route 0.0.0.0 0.0.0.0 192.168.1.2
!
!---- Static route to reach Cisco Unity Express
ip route 192.168.1.2 255.255.255.255 Service-Engine0/0
!
ip http server
ip http path flash:
!
!
tftp-server flash:P00305000301.sbn
!
control-plane
!
!
!----VOIP side of the Back-to-Back T1 used for bridging VOIP to
!----Multicast (Hoot n' Holler)
!----Port 0/3/0:x connects to Port 0/3/1:x
voice-port 0/3/0:1
  auto-cut-through
!
voice-port 0/3/0:2
  auto-cut-through
!
!
voice-port 0/3/0:24
  auto-cut-through
!
!----Multicast side of the Back-to-Back T1 used for bridging VOIP to
!----Multicast (Hoot n' Holler)
!---- Port 0/3/1:1 - 8 is permanently trunked to multicast bridge A212
!---- Port 0/3/1:9 - 16 is permanently trunked to multicast bridge A213
!---- Port 0/3/1:17 - 24 is permanently trunked to multicast bridge A214
voice-port 0/3/1:1
  auto-cut-through
timeouts call-disconnect 3
  connection trunk A212
!
!
!
voice-port 0/3/1:9
  auto-cut-through
timeouts call-disconnect 3
  connection trunk A213
!
--- Analog FXO lines on port 0/2/x route incoming calls to CUE AA external extension 203
voice-port 0/2/0
  connection plar opx 203
!
voice-port 0/2/1
  connection plar opx 203
!
voice-port 0/2/2
  connection plar opx 203
!
voice-port 0/2/3
  connection plar opx 203
!
--- LMR devices are connected to E& ports 0/1/x. The E& ports are permanently trunked to multicast conference bridges. Port 0/1/0 will send and receive audio from conference A212 and port 0/1/1 will send and receive audio from conference A213.
voice-port 0/1/0
  voice-class permanent 1
  lmr m-lead audio-gate-in
  lmr e-lead voice
  auto-cut-through
  operation 4-wire
  type 3
  signal lmr
  timeouts call-disconnect 3
  connection trunk A212
!
voice-port 0/1/1
  voice-class permanent 1
  lmr m-lead audio-gate-in
  lmr e-lead voice
  auto-cut-through
  operation 4-wire
  type 3
  signal lmr
  timeouts call-disconnect 3
  connection trunk A213
!
--- Dial-peers to route extension 212 to T1 loopback, which is trunked to bridge A212
dial-peer voice 1 pots
  preference 1
  destination-pattern 212
  port 0/3/0:1
!
! dial-peer voice 8 pots
    preference 8
    destination-pattern 212
    port 0/3/0:8
!
!--- Dial-peers to route extension 213 to T1 loopback, which is trunked
to bridge A213
dial-peer voice 9 pots
    preference 1
    destination-pattern 213
    port 0/3/0:9
!
!
! dial-peer voice 16 pots
    preference 8
    destination-pattern 213
    port 0/3/0:16
!
!--- Dial-peers to route extension 214 to T1 loopback, which is trunked
to bridge A214
dial-peer voice 17 pots
    preference 1
    destination-pattern 214
    port 0/3/0:17
!
!
! dial-peer voice 24 pots
    preference 8
    destination-pattern 214
    port 0/3/0:24

!!--- Dial-peer to route calls to CUE AA for internal ext. 202 and external
ext. 203
dial-peer voice 200 voip
    destination-pattern 20.
    session protocol sipv2
    session target ipv4:192.168.1.2
    dtmf-relay sip-notify
codec g711ulaw
    no vad
!
!!--- Dial-peers for multicast bridges
dial-peer voice 212 voip.
    destination-pattern A212
    voice-class permanent 1
    session protocol multicast

    session target ipv4:237.111.0.0:22222
    dtmf-relay cisco-rtp
codec g711ulaw
    vad aggressive
!
! dial-peer voice 213 voip.
    destination-pattern A213
    voice-class permanent 1
    session protocol multicast
    session target ipv4:237.111.0.1:22222
Where to Go Next

Controlling Use of the Conference Soft Key

To block the functioning of the conference (Confrn) soft key without removing the key display, create and apply an ephone template that contains the features blocked command. For more information, see Templates, on page 1393.

To remove the conference (Confrn) soft key from one or more phones, create and apply an ephone template that contains the appropriate softkeys command. For more information, see Customize Softkeys, on page 897.

Feature Information for Conferencing

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 112: Feature Information for Conferencing

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meet-me Conference</td>
<td>11.7</td>
<td>Added support for hardware-based Meet-me Conference on Cisco 4000 Series Integrated Services Router.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Added support for hardware-based meet-me conferences created by parties calling a designated conference number.</td>
</tr>
<tr>
<td>Multi-party Ad Hoc Conference</td>
<td>11.7</td>
<td>Added support for hardware-based Multi-party Conference on Cisco 4000 Series Integrated Services Router.</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>Added support for hardware-based Multi-party Conferencing Enhancements which uses DSPs to enhance ad hoc conferencing by allowing more parties than software-based ad hoc conferencing. Configuring multi-party ad hoc conferencing disables three-party ad hoc conferencing.</td>
</tr>
<tr>
<td>Three-Party Ad Hoc Conference</td>
<td>11.7</td>
<td>Added support for three-party Ad Hoc conference on Cisco 4000 Series Integrated Services Router.</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>• End-of-conference options were introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phones connected in a three-way conference display “Conference.”</td>
</tr>
<tr>
<td></td>
<td>3.2.2</td>
<td>Conference gain control for external calls was introduced.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Conference initiator drop-off control was introduced.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>Support for software-based conferencing was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 47

Templates

- Information About Templates, on page 1393
- Configure Templates, on page 1394
- Configuration Examples for Creating Templates, on page 1400
- Where to Go Next, on page 1401
- Feature Information for Creating Templates, on page 1401

Information About Templates

Phone Templates

An ephone or voice-register template is a set of features that can be applied to one or more individual phones using a single command.

Ephone templates were introduced in Cisco CME 3.2 to manipulate softkey display and order on IP phones.

In Cisco Unified CME 4.0, ephone templates were significantly enhanced to include a number of additional phone features. Templates allow you to uniformly and easily implement the features you select for a set of phones. A maximum of 20 ephone templates can be created in a Cisco Unified CME system, although an ephone can have only one template applied to it at a time.

In Cisco Unified CME 4.3 and later versions, an ephone template cannot be applied to a particular phone unless its configuration file includes its Mac address. If you attempt to apply a template to a phone for which the MAC address in not configured, a message appears.

If you use an ephone template to apply a command to a phone and you also use the same command in ephone configuration mode for the same phone, the value set in ephone configuration mode has priority.

Voice-register templates were introduced in Cisco CME 3.4 to enable sets of features to be applied to individual SIP Phones that are connected directly in Cisco Unified CME. Typically, features to be enabled by using a voice-register template are not configurable in other configuration modes. A maximum 10 voice-register templates can be defined in Cisco Unified CME, although a phone can have only one template applied to it at a time.

Type ? in ephone-template or voice-register-template configuration mode to display a list of features that can be implemented by using templates.

For configuration information, see Create an Ephone Template, on page 1394.
Ephone-dn Templates

Ephone-dn templates allow you to apply a standard set of features to ephone-dns. A maximum of 15 ephone-dn templates can be created in a Cisco Unified CME system, although an ephone-dn can have only one template applied to it at a time.

If you use an ephone-dn template to apply a command to an ephone-dn and you also use the same command in ephone-dn configuration mode for the same ephone-dn, the value that you set in ephone-dn configuration mode has priority.

Type ? in ephone-dn-template configuration mode to display a list of features that can be implemented by using templates.

For configuration information, see Create an Ephone-dn Template, on page 1395.

Configure Templates

Create an Ephone Template

To create an ephone template and apply it to a phone, perform the following steps.

Before you begin

- In Cisco Unified CME 4.3 and later versions, the configuration file for a particular phone must contain its MAC address before an ephone template can be applied to that phone. To explicitly configure a MAC address, use the `mac-address` command in ephone configuration mode. For configuration information, see Configuring Phones to Make Basic Calls, on page 225.
- It is recommended to configure cnf-file per phone before adding ephone-template under ephone.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-template template-tag`
4. `command`
5. `exit`
6. `ephone phone-tag`
7. `ephone-template template-tag`
8. `restart`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

For configuration information, see Create an Ephone-dn Template, on page 1395.
Create an Ephone-dn Template

To create an ephone-dn template and apply it to an ephone-dn, perform the following steps:

**Step 2**

`configure terminal`  
Example:  
`Router# configure terminal`  
Enters global configuration mode.

**Step 3**

`ephone-template template-tag`  
Example:  
`Router(config)# ephone-template 15`  
Enters ephone-template configuration mode to create an ephone template.  
- `template-tag`—Unique identifier for the ephone template that is being created. Range is 1 to 20.

**Step 4**

`command`  
Example:  
`Router(config-ephone-template)# features blocked Park Transfer`  
Applies the specified command to the ephone template that is being created.  
- Type `?` for a list of commands that can be used in this step.

Repeat this step for each command that you want to add to the ephone template.

**Step 5**

`exit`  
Example:  
`Router(config-ephone-template)# exit`  
Exits ephone-template configuration mode.

**Step 6**

`ephone phone-tag`  
Example:  
`Router(config)# ephone 36`  
Enters ephone configuration mode.  
- `phone-tag`—Unique sequence number that identifies this ephone during configuration tasks.

**Step 7**

`ephone-template template-tag`  
Example:  
`Router(config-ephone)# ephone-template 15`  
Applies an ephone template to the ephone that is being configured.

**Step 8**

`restart`  
Example:  
`Router(config-ephone)# restart`  
Performs a fast reboot of this ephone. Does not contact the DHCP or TFTP server for updated information.  
**Note** Restart all ephones using the `restart all` command in telephony-service configuration mode.

**Step 9**

`end`  
Example:  
`Router(config-ephone)# end`  
Returns to privileged EXEC mode.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone-dn-template template-tag`
4. `command`
5. `exit`
6. `ephone-dn dn-tag`
7. `ephone-dn-template template-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.  
Example:  
`Router# enable`  
- Enter your password if prompted. |
| Step 2 | `configure terminal` | Enters global configuration mode. |
Example:  
`Router# configure terminal` |
| Step 3 | `ephone-dn-template template-tag` | Enters ephone-dn-template configuration mode to create an ephone-dn template.  
Example:  
`Router(config)# ephone-dn-template 3`  
- `template-tag`—Unique identifier for the ephone-dn template that is being created. Range is 1 to 20. |
| Step 4 | `command` | Applies the specified command to the ephone-dn template that is being created.  
Example:  
`Router(config-ephone-dn-template)# call-forwarding busy 4000`  
- Type `?` for a list of commands that can be used in this step.  
Repeat this step to add more commands to the template. |
| Step 5 | `exit` | Exits ephone-dn-template configuration mode. |
Example:  
`Router(config-ephone-dn-template)# exit` |
| Step 6 | `ephone-dn dn-tag` | Enters ephone-dn configuration mode.  
Example:  
`Router(config)# ephone-dn 23`  
- `dn-tag`—Unique sequence number that identifies this ephone-dn during configuration tasks. |
| Step 7 | `ephone-dn-template template-tag` | Applies an ephone-dn template to the ephone-dn that is being configured. |
Example:  
`Router(config-ephone-dn)# ephone-dn-template 3` |
### Verify Templates on SCCP Phones

To view the configuration of a template, and verify to which phone or directory number a template is applied, perform the following steps.

**Step 1**  
**show telephony-service ephone**

Use `is` command to display information about SCCP phones in Cisco Unified CME, including which template-tags are enabled in the configuration for a phone.

```
Router# show telephony-service ephone 1
ephone-dn-template 1
description Call Center Line 1
call-forward busy 500
call-forward noan 500 timeout 10
pickup-group 33!
!
```

**Step 2**  
**show telephony-service ephone-template**

Use `is` command to display information about an ephone template in Cisco Unified CME, including a list of features enabled in the configuration.

**Step 3**  
**show telephony-service ephone-dn**

Use `is` command to display information about directory numbers, including which template-tags are enabled in the configuration for a directory number.

```
Router# show telephony-service ephone-dn 4
ephone-dn 4 dual-line
number 136
description Desk4
ephone-dn template 1
ephone-hunt login
!
```

**Step 4**  
**show telephony-service ephone-dn-template**

Use `is` command to display information about an ephone-dn template in Cisco Unified CME, including a list of features enabled in the configuration.
Create and Apply Templates for SIP Phones

To create templates of common features and softkeys that can be applied to individual Cisco SIP Phones, follow the steps in this section.

Before you begin

- Cisco CME 3.4 or a later version.
- The `mode` cme command must be enabled in Cisco Unified CME.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register template` `template-tag`
4. `command`
5. `exit`
6. `voice register pool` `pool-tag`
7. `template` `template-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router# enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>voice register template</code> <code>template-tag</code></td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router(config)# voice register template 1</code></td>
<td>• Range is 1 to 5.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>command</code></td>
<td>Applies the specified command to this template and enables the corresponding feature on any supported SIP phone that uses a template in which this command is configure.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router(config-register-template)# anonymous block</code></td>
<td>• Type <code>?</code> to display list of commands that can be used in a voice register template.</td>
</tr>
<tr>
<td></td>
<td>Repeat this step for each feature to be added to this voice register template.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-template)# exit</code></td>
</tr>
<tr>
<td>6</td>
<td><code>voice register pool pool-tag</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# voice register pool 3</code></td>
</tr>
<tr>
<td>7</td>
<td><code>template template-tag</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# voice register pool 1</code></td>
</tr>
<tr>
<td>8</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# end</code></td>
</tr>
</tbody>
</table>

**Examples**

The following example shows templates 1 and 2 and how to do the following:

- Apply template 1 to SIP phones 1 to 3.
- Apply template 2 to SIP phone 4.
- Remove a previously created template 5 from SIP phone 5.

```bash
Router(config)# voice register template 1
Router(config-register-temp)# anonymous block
Router(config-register-temp)# caller-id block
Router(config-register-temp)# voicemail 5001 timeout 15

Router(config)# voice register template 2
Router(config-register-temp)# anonymous block
Router(config-register-temp)# caller-id block
Router(config-register-temp)# no conference
Router(config-register-temp)# no transfer-attended
Router(config-register-temp)# voicemail 5005 timeout 15

Router(config)# voice register pool 1
Router(config-register-pool)# template 1

Router(config)# voice register pool 2
Router(config-register-pool)# template 1

Router(config)# voice register pool 3
Router(config-register-pool)# template 1
```
Configuration Examples for Creating Templates

Example to Block The Use of Park and Transfer Soft Keys Using Ephone Template

The following example creates an ephone template to block the use of Park and Transfer soft keys. It is applied to ephone 36 and extension 2333.

```
ephone-template 15
 features blocked Park Trnsfer

ephone-dn 2
 number 2333

ephone 36
 button 1:2
 ephone-template 15
```

Example to Set Call Forwarding Using Ephone-dn Template

The following example creates ephone-dn template 3, which sets call forwarding on busy and no answer to forward calls to extension 4000 and sets the pickup group to 4. Ephone-dn template 3 is then applied to ephone-dn 23 and ephone-dn 33, which appear on ephones 13 and 14, respectively.

```
ephone-dn-template 3
 call-forwarding busy 4000
 call-forwarding noan 4000 timeout 30
 pickup group 4

ephone-dn 23
 number 2323
 ephone-dn-template 3

ephone-dn 33
 number 3333
 ephone-dn-template 3

ephone 13
 button 1:23

ephone 14
 button 1:33
```
Where to Go Next

**Softkey Display**

The display of soft keys during different call states is managed using ephone templates. For more information, see Customize Softkeys, on page 897.

**Feature Information for Creating Templates**

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ephone Templates</td>
<td>4.0</td>
<td>• The number of ephone templates that can be created was increased from 5 to 20.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More commands can be included in ephone templates.</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Ephone templates were introduced to manage soft keys. The only commands that can be used in ephone templates are the <strong>softkeys</strong> commands.</td>
</tr>
<tr>
<td>Ephone-dn Templates</td>
<td>4.0</td>
<td>Ephone-dn templates were introduced.</td>
</tr>
<tr>
<td>Phone Templates for SIP Phones</td>
<td>4.1</td>
<td>The maximum number of templates that can be configured was increased from 5 to 10.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Voice-register templates were introduced for SIP Phones directly connected to a Cisco Unified CME router.</td>
</tr>
</tbody>
</table>
CHAPTER 48

Modify Cisco Unified IP Phone Options

This chapter describes the screen and button features available for Cisco Unified IP phones connected to Cisco Unified Communications Manager Express (Cisco Unified CME).

- Information About Cisco Unified IP Phone Options, on page 1403
- Configure Cisco Unified IP Phone Options, on page 1412
- Configuration Examples for Cisco Unified IP Phone Options, on page 1449
- Feature Information for Cisco Unified IP Phone Options, on page 1454

Information About Cisco Unified IP Phone Options

Clear Directory Entries

Cisco Unified CME 8.6 allows you to clear the display of call-history details such as missed, placed, and received call entries on your Cisco Unified SCCP phone’s display screen. You can press the directory services button on most of the Cisco Unified IP phones or program a line button on 7931 phone to delete the display of phone number entries in the missed, placed, and received calls. The clear call directory feature is supported on Cisco Unified IP phones, 7960, 7961, 7970, 7971 and 8961.

To enable the clear directory entries feature, a call-history option is added to the `exclude` command. For more information on configuring phones to clear call-history details, see Clear Call-History Details from a SCCP Phone, on page 1413.

Enable Customized Background Images for Cisco Unified IP Phone 7970


Sample background images are available in the 7970-backgrounds.tar file at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-iostsp.
Customized Button Layout

Cisco Unified CME 8.5 and later versions allow you to customize the display order of various button types on a phone using the button layout feature. The button layout feature allows you to customize the display of the following button types:

- Line buttons
- Speed Dial buttons
- BLF Speed Dial buttons
- Feature Buttons
- ServiceURL buttons

Cisco Unified CME 8.5 uses the `button layout` command to populate buttons in any desired order. All buttons displayed on the phone follow the button-layout configuration. In the `button layout` command, the physical button number on the phone is specified under the `button-string` parameter of the `button layout` command. Buttons that are not defined under the button layout configuration are displayed as blank lines. Before configuring button layout on phones, line buttons, feature buttons (including privacy button), and url buttons must be configured through `line button`, `feature button` and `url button` commands, respectively.

**Line Buttons**

The button layout control feature allows you to populate buttons with corresponding physical line numbers or line number ranges. Line buttons that are not associated with a physical line are not displayed on the phone. You can customize any Cisco Unified SCCP IP phone button to function as a line button using the `button` command and specifying the position, button type, and directory number of the phone. For more information, see Configure Button Layout on SCCP Phones, on page 1418.

For Cisco Unified SIP phones, the first physical button must be a line button with a valid directory number. You can customize the other buttons using the `button` command and specifying the relative position (position index), button type, and directory number of the button. For more information, see Configure Button Layout on SIP Phones, on page 1420.

**Speed Dial Buttons**

You can customize the display of Speed Dial buttons to appear before, after, or between line buttons using the `speed-dial` command and specifying the position of the button. The button layout feature allows you to populate the buttons with corresponding physical line numbers or line number ranges. Buttons that do not have a physical line associated with them are not displayed on the phone.

**BLF Speed Dial Buttons**

The button layout feature allows you to display the BLF Speed-Dial buttons before, after or between the line buttons using the `blf-speed-dial` command with a specific position. Once the BLF speed-dial button is configured, the system populates the button with corresponding physical line number or range of line numbers. Buttons without a physical line association are not displayed on the phone.

**Feature Buttons**

Currently, privacy button is the only button available and is presented at the end of all the above mentioned buttons. With PLK feature you can enable most phone features on phone’s physical buttons (line keys). This button layout feature requests all presented buttons to be configured via `button`, `speed-dial`, `blf-speed-dial`, `feature-button`, or `url-button` commands. The privacy-button is overridden by feature-button if there is one. For more information on configuring feature buttons on a line key, see Configure Feature Button on a Cisco
Unified SCCP Line Key, on page 1428 and Configure Feature Button on a Cisco Unified SIP Phone Line Key, on page 1425.

**Note**
If the button-layout feature is configured in both ephone-template and logout profile (extension mobility) mode, configuration in the latter takes precedence. Button-layout configuration under ephone mode takes precedence in phones that do not have extension mobility (EM).

**Note**
Privacy button is counted as a feature button on phones that support privacy button and do not have any feature button configured through the `feature-button` command.

**URL Buttons**
The button layout feature allows you to display the url button before, after, or even between the line buttons, speed dial buttons, BLF speed dial buttons, or feature buttons. For more information on configuring the URL button on a line key, see Configure Service URL Button on a SCCP Phone Line Key, on page 1424 and Configure Service URL Button on a SIP IP Phone Line Key, on page 1422.

**Customized Phone User Interface Services**

In Cisco Unified CME 8.5 and later, you can customize the availability of individual service items such as Extension Mobility, My Phone Apps, and Single Number Reach (SNR) on a phone’s user interface by assigning individual service item to a button using the Programmable Line Key (PLK) url-button configuration. For more information, see Configure Service URL Button on a SCCP Phone Line Key, on page 1424.

You can limit the availability of an individual service item on a phone’s user interface by disabling the configuration for services such as EM, My Phone Apps, and Local Directory and exclude the display of these services from the phone’s user interface. You can use the exclude command under ephone-template mode to exclude the display of Extension Mobility (EM), My Phone Apps, and Local Directory. For more information, see Block Local Services on Phone User Interface, on page 1430.

If a directory service is enabled through PLK configuration, the PLK configuration takes precedence over the exclusion of directory services under ephone or ephone template configuration modes. The service is available through the button directly regardless of the exclusion of services configured under ephone and ephone-template modes.

In Cisco Unified CME 8.5 and later versions, you use the `exclude` command in ephone or ephone-template configuration mode to exclude the availability of local services such as EM, My Phone Apps, and Local Directory from a Cisco Unified SCCP IP phone’s user interface.

In Cisco Unified CME 9.0 and later versions, you use the `exclude` command in voice register pool or voice register template configuration mode to exclude any of these local services from a Cisco Unified SIP IP phone's user interface.

**Note**
Before Cisco Unified CME 9.0, you must configure the Local Directory service with the internal URL address.

In Cisco Unified CME 9.0 and later versions, the internal URL address is the default when no external URL address is configured.
Fixed Line-Feature Buttons for Cisco Unified IP Phone 7931G

In Cisco Unified CME 4.0(2) and later versions, you can select from two fixed button-layout formats to assign functionality to certain line buttons on a Cisco Unified IP Phone 7931G to support key system phone behavior. If you do not select a button set, no fixed set of feature/line buttons are defined.

The line button layout for the Cisco Unified IP Phone 7931G is a bottom-up array. Button 1 is at the bottom right of the array and button 24 is at the top left of the array.

Button set 1 includes two predefined feature buttons: button 24 is Menu and button 23 is Headset.

Button set 2 includes four predefined feature buttons: button 24 is Menu; button 23 is Headset; button 22 is Directories; and button 21 is Messages.

For configuration, see Select Button Layout for a Cisco Unified SCCP IP Phone 7931G, on page 1417.

Header Bar Display

You can customize the content of an IP phone header bar, which is the top line of the IP phone display.

The IP phone header bar, or top line, of a Cisco Unified IP Phone normally replicates the text that appears next to the first line button. The header bar is shown in Figure 69: Cisco Unified IP Phone Display, on page 1406. The header bar can, however, contain a user-definable message instead of the extension number. For example, the header bar can be used to display a name or the full E.164 number of the phone. If no description is specified, the header bar replicates the extension number that appears next to the first button on the phone.

Phone Labels

Phone labels are configurable text strings that can be displayed instead of extension numbers next to line buttons on a Cisco Unified IP phone. By default, the number that is associated to a directory number, and assigned to a phone, is displayed next to the applicable button. The label feature allows you to enter a meaningful text string for each directory number so that a phone user with multiple lines can select a line by label instead of by phone number, thus eliminating the need to consult in-house phone directories. For configuration information, see Create Labels for Directory Numbers on SCCP Phones, on page 1434 or Create Labels for Directory Numbers on a SIP Phone, on page 1435.
Programmable Vendor Parameters for Phones

The vendorConfig section of the configuration file contains phone and display parameters that are read and implemented by a phone’s firmware when that phone is booted. Only the parameters supported by the currently loaded firmware are available. The number and type of parameters may vary from one firmware version to the next.

The IP phone that downloads the configuration file will implement only those parameters that it can support and ignore configured parameters that it cannot implement. For example, a Cisco Unified IP Phone 7970G does not have a backlit display and cannot implement Backlight parameters regardless of whether they are configured. The following text shows the format of an entry in the configuration file:

```
<vendorConfig>
<parameter-name>parameter-value</parameter-name>
</vendorConfig>
```

For configuration information at the system level, see Modify Vendor Parameters for All SCCP Phones, on page 1442.

For configuration information for individual phones, see Modify Vendor Parameters for a Specific SCCP Phone, on page 1443.

Push-to-Talk

This feature allows one-way Push-to-Talk (PTT) in Cisco Unified CME 7.0 and later versions without requiring an external server to support the functionality. PTT is supported in firmware version 1.0.4 and later versions on Cisco Unified Wireless IP Phone 7921 and 7925 with a thumb button.

In the following figure, button1/DN 1 is configured as the primary line for this phone. Button 6/ DN 10 is configured for PTT and is the line that is triggered by pushing the thumb button on this phone.

- Holding down on the thumb button causes the configured DN on the phone to go off-hook.
- The thumb button utilizes an intercom DN that targets a paging number (1050).
- The targeted paging group (DN 50) can be unicast or multicast or both.
- Users will hear a “zipzip” tone when call path is set up.
- All other keys on the phone are locked during this operation.
- Releasing the thumb button ends the call.
Support for Cisco Jabber

Unified CME Releases 12.5 and later support Cisco Jabber (The Jabber version supported on Unified CME Releases 8.6 to 10.5 is now End-of-Life). The SIP softphone client is capable of supporting VoIP over WLAN. Unified CME supports supplementary services such as Hold, Resume, Transfer, Call Park, and Call Pickup for the softphone SIP client.

**Note**

The Jabber version supported on Unified CME 8.6 to 10.5 is End-of-Life (EOL). Hence, Unified CME 11.0 to Unified CME 12.3 do not support Cisco Jabber. For information on the Cisco Jabber version supported on Unified CME, see Cisco Unified CME Supported Firmware, Platforms, Memory, and Voice Products.

From Unified CME 12.5 onwards, Cisco Jabber CSF 12.1.0 client for MAC and Windows (phone-only mode) is supported. Jabber versions 9.0.x is End of Life and Unified CME 12.5 is the minimum version required for Cisco Jabber client support on Unified CME.

**Feature Support for Cisco Jabber**

The following features are support for Cisco Jabber on Unified CME 12.5 and later releases:

- Hold or Resume
- Transfer
- Shared Line
- Mixed Shared Line
- Call forward—All, Busy, No Answer, Unregistered
- Directed Call Park Pickup
- Single Number Reach (SNR)
• Voice Hunt Group (Sequential, Parallel)
• Hardware Conference
• Music On Hold
• Video

**Restrictions**

The following Unified CME features are not supported with Cisco Jabber:

• Barge
• cBarge
• Built-in Bridge (BIB) Conference
• Do Not Disturb
• KPML Dialing

---

**Cisco Jabber Client Support on CME**

Cisco Jabber Client is a SIP-based soft client with integrated Instant Messaging and presence functionality, and uses the new Client Services Framework 2nd Generation (CSF2G) architecture.

CSF is a unified communications engine that is reused by multiple Cisco PC-based clients and mobile clients. The client is identified by a device ID name that can be configured under the voice register pool in Cisco Unified CME. You should configure the username and password under voice register pool to identify the user logging into Cisco Unified CME through Cisco Jabber client. The device discovery process uses HTTPS connection. Therefore, you should configure the secure HTTP on Cisco Unified CME.

A new phone type, 'Jabber-CSF-Client' has been added to configure the Cisco Jabber client under voice register pool. This can be used to configure any CSF based Cisco Jabber client. In CME-10.0 we used the type 'Jabber-Win' to configure Cisco Jabber client. In CME-10.5 this type is deprecated and the new 'Jabber-CSF-Client' should be used to configure Cisco Jabber client as well.

Cisco Jabber CSF client can be provisioned in 2 modes: Full UC mode (with integrated IM and Presence services) and Phone only mode. The phone-only mode of Cisco Jabber CSF devices is also supported. This can be configured with the option 'phone-mode phone-only' under 'voice register global' or 'voice register pool' or 'voice register template' config.

If the Jabber client is installed in phone only mode then no extra configuration is required on CME. The normal Jabber configuration should be sufficient.


If the Jabber client is installed in Full UC mode and you want to enable the phone only mode from CME, then the 'phone-mode' configuration is required as mentioned in the configuration section.

*Table 114: Cisco Jabber Client Support Versions, on page 1410* lists the Cisco Jabber Client Support versions along with the corresponding CME and Jabber client versions:
From Unified CME Release 12.5 onwards (On Cisco 4000 Series Integrated Services Router), Cisco Jabber CSF client (softphone mode) Version 12.1.0 for MAC (phone-only) and Windows (phone-only) is supported.

<table>
<thead>
<tr>
<th>Cisco CSF Device Type</th>
<th>Unified CME Supported Version</th>
<th>Jabber Client Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Jabber for MAC (phone-only) and Windows (phone-only)</td>
<td>10.0</td>
<td>9.1.0</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>9.2.1</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>12.1.0</td>
</tr>
</tbody>
</table>

Restrictions

- The Cisco Jabber CSF client supports only the softphone mode with Cisco Unified CME.
- Desk phone mode is not supported.
- The following Cisco Jabber CSF type of devices are not supported:
  - Cisco Jabber for iPhone (both full UC mode and phone-only mode)
  - Cisco Jabber for Android (both full UC mode and phone-only mode)
  - Cisco Jabber for iPad (both full UC mode and phone-only mode)

For configuration information, see Configure Cisco Jabber for CSF Client in Cisco Unified CME, on page 1447.

For configuration examples, see Example for Configuring Cisco Jabber CSF Client, on page 1450.

System Message Display

The System Message Display feature allows you to specify a custom text or display message to appear in the lower part of the display window on display-capable IP phones. If you do not set a custom text or display message, the default message “Cisco Unified CME” is displayed.

When you specify a text message, the number of characters that can be displayed is not fixed because IP phones typically use a proportional (as opposed to fixed-width) font. There is room for approximately 30 alphanumeric characters.

The display message is refreshed with a new message after one of the following events occurs:

- Busy phone goes back on-hook.
- idle phone receives a keepalive message.
- Phone is restarted.

The file-display feature allows you to specify a file to display on display-capable IP phones when they are not in use. You can use this feature to provide the phone display with a system message that is refreshed at configurable intervals, similar to the way that the text message feature provides a message. The difference
between the two is that the system text message feature displays a single line of text at the bottom of the phone display, whereas the system display message feature can use the entire display area and contain graphic images.

**Note**

- The **System Message** command is supported only for SCCP IP phones registered to CME. It is not supported for SIP IP phones in CME mode.

---

### URL Provisioning for Feature Buttons

URL provisioning for programmable feature buttons allows you to specify alternative XML files to access using the feature buttons on IP phones.

Certain phones, such as the Cisco Unified IP Phone 7940, 7940G, 7960, and 7960G, have programmable feature buttons that invoke noncall-related services. The four buttons—Services, Directories, Messages, and Information (the i button)—are linked to appropriate feature operations through URLs. The fifth button—Settings—is managed entirely by the phone.

The feature buttons are provisioned with specific URLs. The URLs link to XML web pages formatted with XML tags that the Cisco Unified IP phone understands and uses. When you press a feature button, the Cisco Unified IP phone uses the configured URL to access the appropriate XML web page for instructions. The web page sends instructions to the Cisco Unified IP phone to display information on the screen for users to navigate. Phone users can select options and enter information by using soft keys and the scroll button.

Operation of these feature buttons is determined by the capabilities of the Cisco Unified IP phone and the content of the specified URL.

In Cisco Unified CME 4.2 and later versions, up to eight URLs can be configured for the Services feature button by using an ephone template to apply the configuration to one or more supported SCCP phones. If you use an ephone template to configure services URLs for one or SCCP phones and you also configure a system-level services URL in telephony-service configuration mode, the value set in telephony-service configuration mode appears first in the list of services displayed when the phone user presses the Services feature button. Cisco Unified CME self-hosted services, such as Extension Mobility, always appears last in the list of options displayed for the Services feature button.

For configuration information, see Provision URLs for Feature Buttons for SCCP Phones, on page 1439.

---

### My Phone Apps for Cisco Unified SIP IP Phones

Before Cisco Unified CME 9.0, the My Phone Apps features were only supported on Cisco Unified SCCP IP phones.

In Cisco Unified CME 9.0 and later versions, support is added for My Phone Apps feature on Cisco Unified SIP IP phones.

My Phone Apps is a user application that enables the following settings to be configured using the menu available with the phone’s Services feature buttons:

- add, modify, or delete Speed Dial
- add, modify, or delete Fast Dial
- add, modify, or delete BLF Speed Dial
• change SNR DN
• perform after-hour login
• reset the phone

The My Phone Apps features are available on both Extension Mobility (EM) and non-EM phones. For EM phones, the user login service allows the user to temporarily access a physical phone other than their own and utilize their personal settings as if the phone is their own desk phone. Any change in settings follows the user to the next phone they access. For non-EM phones, any change in settings remains with the physical phone.

Configure Cisco Unified IP Phone Options

Enable Edit User Settings

Before you begin
Cisco Unified CME 8.6 or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. service phone parameter-name parameter-value
5. voice register global
6. create profile
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td>• Enter your password if prompted</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: telephony-service</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 service phone parameter-name parameter-value</td>
<td>Enables the edit user settings.</td>
</tr>
<tr>
<td>Example: service phone parameter-name parameter-value</td>
<td></td>
</tr>
</tbody>
</table>
Clear Call-History Details from a SCCP Phone

To clear the display of Call History details such as Missed Calls, Placed Calls, and Received Calls, from a SCCP IP phone user interface, follow these steps:

**Before you begin**

To enable phones to send an HTTP GET request, url directories must be the default (not configured) or configured as http://<CME's ip address>/localdirectory.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. Enter one of the following commands:
   - ephone phone-tag
   - ephone template template tag
4. exclude [ em | myphoneapp | directory | call-history ]
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Enter one of the following commands:</td>
<td></td>
</tr>
<tr>
<td>• ephone phone-tag</td>
<td>• phone-tag—Unique number of the phone for which you want to exclude local services such as Extension Mobility, My Phone Apps, and Local Directory.</td>
</tr>
<tr>
<td>• ephone template template tag</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ephone 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Excludes local services (EM, My Phone Apps, Local Directory, and Call History) from displaying on phone’s user interface.</td>
</tr>
<tr>
<td>exclude [ em</td>
<td>myphoneapp</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)#exclude call-history</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

The following example shows call-history as excluded from ephone 10 and ephone-template 5:

```
!
telephony-service
 max-ephones 40
 max-dn 100
 max-conferences 8 gain -6
 transfer-system full-consult
!
!
ephone-template 5
 exclude call-history
!
!
ephone 10
 exclude call-history
device-security-mode none
!
```

**Troubleshooting Tips for Clearing Call-History Details from a SCCP Phone**

The following is a list of troubleshooting tips for successful implementation of this feature:
• Make sure that the local directory XML tag is configured and provisioned correctly.

• Check the attribute for <directoryURL> tag in the xml file (it must be set up with http://<CME's ip address>/localdirectory) and the phone must be restarted with this XML cnf file.

• Make sure that the phone sends out an HTTP GET request.

• Make sure that the HTTP GET request in the Cisco Unified CME log with “deb ip http url” is enabled.

• Make sure that the Clear Directory Entries request is sent to the phone.

• Check the Missed Calls, Placed Calls, and Received Calls on your phone’s local directory.

Configure Dial Rules for Cisco Softphone SIP Client

Before you begin
Cisco Unified CME 8.6 or a later version.
Support for idle url is available only on Unified CME 12.0 and later versions.

SUMMARY STEPS

1. enable
2. configure terminal
3. voice register template template tag
4. url {AppDialRule string | DirLookupRule string | ldapServer string | idle url | service url}
5. voice register pool pool tag
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register template template tag</td>
<td>Enters voice register template configuration mode to define a template of common parameters for SIP phones in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)#voice register template 8</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>url {AppDialRule string</td>
<td>DirLookupRule string</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configure Dial Rules for Cisco Softphone SIP Client

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-register-temp)# url ldapServer ldap.abcd.com</code></td>
<td>• <code>ldapserver string</code> — LDAP server URL.</td>
</tr>
<tr>
<td><code>Router(config-register-temp)# url AppDialRule tftp://10.1.1.1/AppDialRules.xml</code></td>
<td>• <code>AppDialRule string</code> — Application dial rule URL.</td>
</tr>
<tr>
<td><code>Router(config-register-temp)# url DirLookupRule tftp://10.1.1.1/DirLookupRules.xml</code></td>
<td>• <code>DirLookupRule string</code> — Directory lookup rule URL.</td>
</tr>
<tr>
<td><code>Router(config-register-temp)# url idle http://www.mycompany.com/files/logo.xml idle-timeout 12</code></td>
<td>• <code>idle url</code> — Defines the location of a file to display on phones that are not in use and specifies the interval between refreshes of the display, in seconds.</td>
</tr>
<tr>
<td><code>Router(config-register-temp)# url service http://10.0.0.4/CCMUser/123456/urltest.html</code></td>
<td>• <code>service url</code> — Uses the information at the specified URL for invoking phone services.</td>
</tr>
</tbody>
</table>

Step 5

**voice register pool pool tag**

**Example:**

```
Router(config)#voice register pool 8
```

Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone.

Step 6

**end**

**Example:**

```
Router(config-register-pool)# end
```

Returns to privileged EXEC mode.

**Examples**

The following example shows dial rules configured under voice register template 2:

```
!
voice register template 2
url ldapServer ldap.abcd.com
url AppDialRule tftp://10.1.1.1/AppDialRules.xml
url DirLookupRule tftp://10.1.1.1/DirLookupRules.xml
!
```

The following is a sample of Application Dial Rule content:

```
Router#more flash:AppDialRules.xml
<?xml version="1.0" encoding="UTF-8"?>
<DialRules>
 <DialRule BeginsWith="+1" NumDigits="12" DigitsToRemove="1" PrefixWith="9"/>
 <DialRule BeginsWith="+1" NumDigits="12" DigitsToRemove="1" PrefixWith="9"/>
 <DialRule BeginsWith="919" NumDigits="10" DigitsToRemove="3" PrefixWith="9"/>
 <DialRule BeginsWith="1" NumDigits="11" DigitsToRemove="0" PrefixWith="9"/>
 <DialRule BeginsWith="" NumDigits="10" DigitsToRemove="0" PrefixWith="91"/>
 <DialRule BeginsWith="" NumDigits="7" DigitsToRemove="0" PrefixWith="9"/>
 <DialRule BeginsWith="+" NumDigits="13" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="14" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="15" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="12" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="11" DigitsToRemove="1" PrefixWith="9011"/>
</DialRules>
```
Select Button Layout for a Cisco Unified SCCP IP Phone 7931G

Before you begin
Cisco Unified CME 4.0(2) or a later version.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template-tag
4. button-layout phone-type { 1 | 2 }
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone-template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone-template 15</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> button-layout phone-type { 1</td>
<td>2 }</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# button-layout 7931 2</td>
<td>* 1—Includes two predefined feature buttons: button 24 is Menu and button 23 is Headset.</td>
</tr>
<tr>
<td></td>
<td>* 2—Includes four predefined feature buttons: button 24 is Menu; button 23 is Headset; button 22 is Directories; and button 21 is Messages.</td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits from this command mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configure Button Layout on SCCP Phones

Before you begin

- Cisco Unified CME 8.5 or later versions.
- Button types such as, line, feature, url, speed-dial, and blf-speed-dial are configured using commands such as, `button`, `feature-button` or `privacy-button`, `url-button`, `speed-dial`, and `blf-speed-dial` respectively.
- First button must be configured as line button.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template tag
4. button-layout [button-string | button-type]
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**

configure terminal  
Example:  
Router# configure terminal

Enters global configuration mode.

**Step 3**

ephone-template template tag  
Example:  
Router(config)# ephone 10

Enters ephone template configuration mode to create an ephone template.

**Step 4**

button-layout [button-string | button-type]  
Example:  
Router(config-ephone-template)#button-layout 1 line  
Router(config-ephone-template)#button-layout 2,5 speed-dial  
Router(config-ephone-template)#button-layout 3,6 blfspeed-dial  
Router(config-ephone-template)#button-layout 4,7,9 feature  
Router(config-ephone-template)#button-layout 8,11 url

Assigns physical button numbers or ranges of numbers with button types.  
- button-string—Specifies a comma separated list of physical button number or ranges of button numbers.  
- button-type—Specifies one of the following button types: Line, Speed-Dial, BLF-Speed-Dial, Feature, speed-dial, blf-speed-dial, feature-button or url-button.  

**Note**  
To facilitate phone provisioning, the first line button should always be a line button.  

**Note**  
When no feature-buttons are configured, privacy button is counted as a feature button.

**Step 5**

exit  
Example:  
Router(config-ephone-template)# exit

Exits from this command mode to the next highest mode in the configuration mode hierarchy.

**Step 6**

ephone phone-tag  
Example:  
Router(config)# ephone 1

Enters ephone configuration mode.

**Step 7**

ephone-template template-tag  
Example:  
Router(config-ephone)# ephone-template 10

Applies an ephone template to the ephone that is being configured.

**Step 8**

end  
Example:  
Router(config-ephone)# end

Exits configuration mode and enters privileged EXEC mode.
Examples

```
Router# show telephony-service ephone-template
ephone-template 10
 button-layout 1 line
 button-layout 2,5 speed-dial
 button-layout 3,6 blf-speed-dial
 button-layout 4,7,9 feature
 button-layout 8,11 url
```

What to do next
If you are done modifying parameters for SCCP phones in Cisco Unified CME, restart the phones.

Configure Button Layout on SIP Phones

Note
You can not change the button number in the line button or index command through button layout configuration because the button number specifies the relative display order of the button within the button type (line button, speed-dial, blf-speed-dial, feature button, or url button).

Before you begin
- Cisco Unified CME 8.5 or later versions.
- Button types (line button, feature button, url-button, speed dial button, and blf speed dial button) must be configured before configuring button layout.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register template template-tag`
4. `button-layout [button-string] [button-type]`
5. `exit`
6. `voice register pool pool-tag`
7. `template template-tag`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2    | configure terminal<br>Example:  
Router# configure terminal | Enters global configuration mode. |
| 3    | voice register template *template-tag*<br>Example:  
Router(config)# voice register template 5 | Enters voice register template configuration mode to create a SIP phone template.<br>• *template-tag*—Range: 1 to 10. |
| 4    | **button-layout** *button-string* [ *button-type* ]<br>Example:  
Router(config-register-template)# button-layout 1 line  
Router(config-register-template)# button-layout 2, 5 speed-dial  
Router(config-register-template)# button-layout 3, 6 blfspeed-dial  
Router(config-register-template)# button-layout 4,7,9 feature-button  
Router(config-register-template)# button-layout 8,11 url-button | Assigns physical button numbers or ranges of numbers with button types.<br>• *button-string*—Specifies a comma separated list of physical button number or ranges of button numbers.<br>• *button-type*—Specifies one of the following button types: Line, Speed-Dial, BLF-Speed-Dial, Feature, URL.<br>Note To facilitate phone provisioning, the first line button should always be a line button.<br>Note Privacy-button is counted as a feature-button in this configuration if no feature-button is configured. |
| 5    | exit<br>Example:  
Router(config-register-template)# exit | Exits voice register template configuration mode. |
| 6    | voice register pool *pool-tag*<br>Example:  
Router(config)# voice register pool 10 | Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone. |
| 7    | **template** *template-tag*<br>Example:  
Router(config-register-pool)# template 5 | Applies a SIP phone template to the phone you are configuring.<br>• *template-tag*—Template tag that was created with the voice register template command in Step 3, on page 1421. |
| 8    | end<br>Example:  
Router(config-register-pool)# end | Exits to privileged EXEC mode. |
Examples

Router# show voice register template all

voice register dn  65
   number 3065
   name SIP-7965
   label SIP3065

voice register template  5
   button-layout 1 line
   button-layout 2,5 speed-dial
   button-layout 3,6 blf-speed-dial
   button-layout 4,7,9 feature-button
   button-layout 8,11 url-button

voice register template  2
   button-layout 1,5 line<
   button-layout 4 speed-dial
   button-layout 3,6 blf-speed-dial
   button-layout 7,9 feature-button
   button-layout 8,10-11 url-button

What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Profiles for SIP Phones, on page 393.

Configure Service URL Button on a SIP IP Phone Line Key

SUMMARY STEPS

1.   enable
2.   configure terminal
3.   voice register template template-tag
4.   url-button [index number] [url location] [url name]
5.   exit
6.   voice register pool phone-tag
7.   template template-tag
8.   end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> voice register template <em>template-tag</em></td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# voice register template 5</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> url-button [index <em>number</em>] [url <em>location</em>] [url <em>name</em>]</td>
<td>Configures a service url feature button on a line key.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-temp)# url-button 1 <a href="http://www.cisco.com">http://www.cisco.com</a></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-temp)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> voice register pool <em>phone-tag</em></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# voice register pool 12</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> template <em>template-tag</em></td>
<td>Applies the ephone template to the phone.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-pool)# template 5</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-register-pool)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following example shows url buttons configured in voice register template 1:

```
Router# show run
!
voice register template 1

url-button 1 http://9.10.10.254:80/localdirectory/query My_Dir
url-button 5 http://www.yahoo.com Yahoo
!
```
Configure Service URL Button on a SCCP Phone Line Key

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone template template-tag
4. url-button index type | url [name]
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
configure terminal	
**Example:**	
Router# configure terminal	

**Step 3**	Enters ephone-template configuration mode to create an ephone template.
ephone template template-tag	• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10.
**Example:**	
Router(config)# ephone template 5	

<p>| <strong>Step 4</strong>        | Configures a service url feature button on a line key. |
| url-button index type | url [name] |                     |
| <strong>Example:</strong>      | • Index—Unique index number. Range: 1 to 8. |
|                   | • type—Type of service url button. Following types of url service buttons are available: |
|                   | • myphoneapp: My phone application configured under phone user interface. |
|                   | • em: Extension Mobility |
|                   |         |                     |
|                   | Router#(config-ephone-template)#url-button 1 |                     |
|                   | Router#(config-ephone-template)#url-button 2 em |                     |
|                   | Router#(config-ephone-template)#url-button 3 snr |                     |
|                   | Router (config-ephone-template)#url-button 4 <a href="http://www.cisco.com">http://www.cisco.com</a> |                     |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• snr: Single Number Reach</td>
<td></td>
</tr>
<tr>
<td>• url name——Service url with maximum length of 31 characters.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**
- **Exit**
  - Example:
    - `Router(config-ephone-template)# exit`
  - Exits ephone-template configuration mode.

**Step 6**
- **ephone** phone-tag
  - Example:
    - `Router(config)# ephone 36`
  - Enters ephone configuration mode.
  - • `phone-tag`—Unique sequence number that identifies this ephone during configuration tasks.

**Step 7**
- **ephone-template** template-tag
  - Example:
    - `Router(config-ephone)# ephone-template 5`
  - Applies an ephone template to the ephone that is being configured.

**Step 8**
- **end**
  - Example:
    - `Router(config-ephone)# end`
  - Returns to privileged EXEC mode.

**Examples**

The following example shows three url buttons configured for line keys:

```
!
!
!
ephone-template 5
 url-button 1 em
 url-button 2 mphoneapp mphoneapp
 url-button 3 snr
!
ephone 36
 ephone-template 5
```

**What to do next**

If you are done configuring the url buttons for phones in Cisco Unified CME, restart the phones.

**Configure Feature Button on a Cisco Unified SIP Phone Line Key**

**SUMMARY STEPS**

1. enable
2. configure terminal
3. voice register template template-tag
4. feature-button [index] [feature identifier]
5. exit
6. voice register pool phone-tag
7. template template-tag
8. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> voice register template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• template-tag—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
</tr>
<tr>
<td>Router(config)# voice register template 5</td>
<td><strong>Note</strong> Feature button can be configured under voice register pool or voice register template configuration mode. If both configurations are applied to the voice register pool, the feature button configuration under voice register pool takes precedence.</td>
</tr>
<tr>
<td><strong>Step 4</strong> feature-button [index] [feature identifier]</td>
<td>Configures a feature button on line key.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• index—One of the 12 index numbers for a specific feature type.</td>
</tr>
<tr>
<td>Router(config-voice-register-template)feature-button 1 DnD</td>
<td>• feature identifier—Unique identifier for a feature. One of the following feature or stimulus IDs: Redial, Hold, Trnsfer, Cfwdall, Privacy, MeetMe, Confm, Park, Pickup, Gpickup, Mobility, NewCall, EndCall, Dnd, ConfList, NewCall, HLog, Trnsfer.</td>
</tr>
<tr>
<td>Router(config-voice-register-template)feature-button 2 EndCall</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-register-template)feature-button 3 Cfwdall</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits ephone-template configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-register-temp)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong> voice register pool phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# voice register pool 12</code></td>
<td>• <code>phone-tag</code>—Unique number that identifies this ephone during configuration tasks.</td>
</tr>
</tbody>
</table>

### Step 7
**template template-tag**

**Example:**

```
Router(config-register-pool)# template 5
```

Applies the ephone template to the phone.

• `template-tag`—Unique identifier of the template that you created in Step 3, on page 1426

### Step 8
**end**

**Example:**

```
Router(config-register-pool)# end
```

Returns to privileged EXEC mode.

---

### Examples

The following example shows three feature buttons configured for line keys:

```
voice register template 5
feature-button 1 DnD
feature-button 2 EndCall
feature-button 3 Cfwdall
!
!
voice register pool 12
template 5
```

### What to do next

If you are done configuring the url buttons for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See [Generate Configuration Profiles for SIP Phones, on page 393](#).
### Configure Feature Button on a Cisco Unified SCCP Line Key

#### Note
- Answer, Select, cBarge, Join, and Resume features are not supported as PLKs.
- Feature buttons are only supported on Cisco Unified IP Phones 6911, 7941, 7942, 7945, 7961, 7962, 7965, 7970, 7971, and 7975 with SCCP v12 or later versions.
- Any features available through hard button are not be provisioned. Use the show ephone register detail command to verify why the features buttons are not provisioned.
- Not all feature buttons are supported on Cisco Unified IP Phone 6911 phone. Call Forward, Pickup, Group Pickup, and MeetMe are the only feature buttons supported on the Cisco Unified IP Phone 6911.
- The privacy-button is available on Cisco Unified IP phones running a SCCP v8 or later. Privacy-button is overridden by any other feature-button available.
- Locales are not supported on Cisco Unified IP Phone 7914.
- Locales are not supported for Cancel Call Waiting or Live Recording feature-buttons.
- The feature state for DnD, Hlog, Privacy, Login, and Night Service feature-buttons are indicated by an LED.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ephone template template-tag`
4. `feature-button index feature identifier`
5. `exit`
6. `ephone phone-tag`
7. `ephone-template template-tag`
8. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone template <code>template-tag</code></td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ephone template 10</td>
<td>• <strong>template-tag</strong>—Unique identifier for the ephone template that is being created. Range: 1 to 10.</td>
</tr>
</tbody>
</table>

#### Step 4

**feature-button** index feature identifier  
**Example:**  
Router(config-ephone-template)# feature-button 1 hold  
**Purpose:** Configures a feature button on line key  
• **index**—index number, one from 25 for a specific feature type.  
• **feature identifier**—feature ID or stimulus ID.

#### Step 5

**exit**  
**Example:**  
Router(config-ephone-template)# exit  
**Purpose:** Exits ephone-template configuration mode.

#### Step 6

**ephone** phone-tag  
**Example:**  
Router(config)# ephone 5  
**Purpose:** Enters ephone configuration mode.  
• **phone-tag**—Unique sequence number that identifies this ephone during configuration tasks.

#### Step 7

**ephone-template** template-tag  
**Example:**  
Router(config-ephone)# ephone-template 10  
**Purpose:** Applies an ephone template to the ephone that is being configured.

#### Step 8

**end**  
**Example:**  
Router(config-ephone)# end  
**Purpose:** Returns to privileged EXEC mode.

### Examples

The following example shows feature buttons configured for line keys:

```plaintext
! ! !
ephone-template 10
feature-button 1 Park
feature-button 2 MeetMe
feature-button 3 CallBack
! !
ephone-template 10
```

### What to do next

If you are done configuring the feature buttons for phones in Cisco Unified CME, restart the phones.
Block Local Services on Phone User Interface

To block the display and availability of local services such as Local Directory, Extension Mobility (EM), and My Phone Apps on a SCCP IP phone’s user interface, perform the following steps.

Before you begin
Cisco Unified CME 8.5 or later versions.

SUMMARY STEPS
1. enable
2. configure terminal
3. ephone phone-tag or ephone template template tag
4. exclude [em | myphoneapp | directory]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone phone-tag or ephone template template tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone 10</td>
</tr>
<tr>
<td><strong>Step 4</strong> exclude [em</td>
<td>myphoneapp</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)#exclude directory em</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone)# end</td>
</tr>
</tbody>
</table>
Examples

The following example shows the Local Directory and Extension Mobility services excluded from the phone user interface:

```plaintext
ephone 10
 exclude directory em
device-security-mode none
description sccp7961
mac-address 0007.0E57.7561
```

Modify Header Bar Display on SCCP Phones

Before you begin

Directory number to be modified is already configured. For configuration information, see Create Directory Numbers for SCCP Phones, on page 260.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. description display-text
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone-dn 55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>description display-text</td>
<td>Defines a description for the header bar of a display-capable IP phone on which this ephone-dn appears as the first line.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>display-text—Alphanumeric character string, up to 40 characters. String is truncated to 14 characters in the display.</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone-dn)# description 408-555-0134</td>
<td></td>
</tr>
</tbody>
</table>
Modify Header Bar Display Supported SIP Phones

Restriction
This feature is supported only on Cisco Unified IP Phone 7940, 7940G, 7960, and 7960G.

Before you begin
Cisco CME 3.4 or a later version.

SUMMARY STEPS
1. enable
2. configure terminal
3. voice register pool pool-tag
4. description string
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set phone-specific parameters for a SIP phone in Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register pool 3</td>
</tr>
<tr>
<td>Step 4 description string</td>
<td>Defines a customized description that appears in the header bar of supported Cisco Unified IP phones</td>
</tr>
<tr>
<td>Example:</td>
<td>• Truncated to 14 characters in the display.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-register-pool)# description 408-555-0100</code></td>
<td>• If string contains spaces, enclose the string in quotation marks.</td>
</tr>
</tbody>
</table>

### Step 5

**end**

**Example:**

```plaintext
Router(config-register-pool)# end
```

#### What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Profiles for SIP Phones, on page 393.

---

### Verify Header Bar Display

Use the `show running-config` command to verify your configuration. Descriptions for directory numbers are listed in the ephone-dn and voice-register dn portions of the output.

**Example:**

```plaintext
Router# show running-config
ephone-dn 1 dual-line	number 150 secondary 151	description 555-0150
call-forward busy 160
call-forward noan 160 timeout 10
huntstop channel	no huntstop

voice-register dn 1	number 1101	description 555-0101
```

---

### Troubleshooting Header Bar Display

**show telephony-service ephone**

Use this command to ensure that the ephone-dn to which you applied the description appears on the first button on the ephone. In the example below, ephone-dn 22 has the description in the phone display header bar.

```plaintext
Router# show telephony-service ephone
ephone-dn 22	number 2149	description 408-555-0149
ephone 34
```
Create Labels for Directory Numbers on SCCP Phones

To create a label to display in place of the number next to a line button, perform the following steps.

**Before you begin**
Directory number for which the label is to be created is already configured. For configuration information, see Create Directory Numbers for SCCP Phones, on page 260.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **ephone-dn dn-tag**
4. **label label-string**
5. **end**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# ephone-dn 1</td>
<td>* dn-tag—Unique sequence number that identifies the ephone-dn to which the label is to be associated.</td>
</tr>
<tr>
<td><strong>Step 4</strong> label label-string</td>
<td>Creates a custom label that is displayed on the phone next to the line button that is associated with this ephone-dn. The custom label replaces the default label, which is the number that was assigned to this ephone-dn.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-ephone-dn)# label user1</td>
<td>* label-string—String of up to 30 alphanumeric characters that provides the label text.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.

Create Labels for Directory Numbers on a SIP Phone

To create label to be displayed in place of a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI), perform the following steps for each label to be created.

Restriction

Only one label is permitted per directory number.

Before you begin

- Cisco CME 3.4 or a later version.
- Directory number for which the label is to be created is already configured and must already have a number assigned by using the `number (voice register dn)` command. For configuration information, see Create Directory Numbers for SIP Phones, on page 270.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register dn dn-tag`
4. `number number`
5. `label string`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong> voice register dn <em>dn-tag</em></td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# voice register dn 17</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> number number</td>
<td>Defines a valid number for a directory number.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# number 7001</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> label <em>string</em></td>
<td>Creates a text identifier, instead of a phone-number display, for a directory number that appears on a SIP phone console.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# label user01</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-dn)# end</td>
<td></td>
</tr>
</tbody>
</table>

**What to do next**

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See *Generate Configuration Profiles for SIP Phones*, on page 393.

**Verify Labels**

Use the `show running-config` command to verify your configuration. Descriptions for directory numbers are listed in the ephone-dn and voice-register dn portions of the output.

```
Router# show running-config
ephone-dn 1 dual-line
number 150 secondary 151
label MyLine
call-forward busy 160
call-forward noan 160 timeout 10
huntstop channel
 !
 !
voice-register dn 1
number 1101
label MyLine
```
# Modify System Message Display on SCCP Phone Screen

**SUMMARY STEPS**

1. enable
2. configure terminal
3. telephony-service
4. system message text-message
5. url idle url idle-timeout seconds
6. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable     | Enables privileged EXEC mode.  
| Example: Router> enable | • Enter your password if prompted. |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| Step 3 telephony-service | Enters telephony-service configuration mode. |
| Example: Router(config)# telephony-service | |
| Step 4 system message text-message | Defines a text message to display when a phone is idle.  
| Example: Router(config-telephony)# system message ABC Company | • text-message—Alphanumeric string to display. Display uses proportional-width font, so the number of characters that are displayed varies based on the width of the characters that are used. The maximum number of displayed characters is approximately 30. |
| Step 5 url idle url idle-timeout seconds | Defines the location of a file to display on phones that are not in use and specifies the interval between refreshes of the display, in seconds.  
| | • seconds—Time interval between display refreshes, in seconds. Range is 0 to 300. |
| Step 6 end | Returns to privileged EXEC mode. |
| Example: Router(config-telephony)# end | |
What to do next

After configuring the url idle command, you must reset phones. See Use the reset Command on SCCP Phones, on page 400.

Verify System Message Display

Use the show running-config command to verify your configuration. System message display is listed in the telephony-service portion of the output.

Router# show running-config

telephony-service
fxo hook-flash
load 7960-7940 P00307020300
load 7914 S00104000100
max-ephones 100
max-dn 500
ip source-address 10.153.13.121 port 2000
max-redirect 20
timeouts ringing 100
system message XYZ Company
voicemail 7189
max-conferences 8 gain -6
call-forward pattern .T
moh flash:music-on-hold.au
multicast moh 239.10.10.1 port 2000
web admin system name server1 password server1
dn-webedit
time-webedit
transfer-system full-consult
transfer-pattern 92........
transfer-pattern 91...........
transfer-pattern 93........
transfer-pattern 94........
transfer-pattern 95........
transfer-pattern 96........
transfer-pattern 97........
transfer-pattern 98........
transfer-pattern 99........
transfer-pattern .T
secondary-dialtone 9
create cnf-files version-stamp Jan 01 2002 00:00:00

Troubleshooting System Message Display

Ensure that the HTTP server is enabled.
Provision URLs for Feature Buttons for SCCP Phones

To customize URLs for feature buttons in the Sep*.conf.xml configuration file for SCCP phones, perform the following steps.

Restriction

- Operation of these services is determined by the Cisco Unified IP phone capabilities and the content of the specified URL.
- Provisioning a URL to access help screens using the i or ? buttons on a phone is not supported.
- Provisioning the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **telephony-service**
4. **url {directories | information | messages | services} url**
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>configure terminal</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td><strong>telephony-service</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Provisions URLs for the four programmable feature buttons (Directories, Information, Messages, and Services) on a supported Cisco Unified IP phone.</td>
</tr>
<tr>
<td>**url {directories</td>
<td>information</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# url directories <a href="http://10.4.212.4/localdirectory">http://10.4.212.4/localdirectory</a></td>
<td></td>
</tr>
</tbody>
</table>
Provision URLs for Feature Buttons on SIP Phones

To customize URLs for feature buttons in the SEPDEFAULT.cnf configuration profile for SIP IP phones, perform the following steps.

**Restriction**
- Operation of these services is determined by the Cisco Unified IP phone capabilities and the content of the specified URL.
- Provisioning the directory URL to select an external directory resource disables the Cisco Unified CME local directory service.

**Before you begin**
Cisco CME 3.4 or a later version.
Support for `idle url` is available only on Unified CME 12.0 and later versions.

**SUMMARY STEPS**
1. `enable`
2. `configure terminal`
3. `voice register global`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> voice register global</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> url (authentication</td>
<td>directory</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# url directory <a href="http://10.0.0.11/localdirectory">http://10.0.0.11/localdirectory</a></td>
<td>• <strong>url authentication url</strong> — Uses the information at the specified URL to validate requests made to the phone web server.</td>
</tr>
<tr>
<td>Router(config-register-global)# url service <a href="http://10.0.0.4/CCMUser/123456/urltest.html">http://10.0.0.4/CCMUser/123456/urltest.html</a></td>
<td>• <strong>url directory url</strong> — Uses the information at the specified URL for the Directories button display.</td>
</tr>
<tr>
<td>Router(config-register-global)# url idle <a href="http://www.mycompany.com/files/logo.xml">http://www.mycompany.com/files/logo.xml</a> idle-timeout 12</td>
<td>• <strong>url service url [root]</strong> — Uses the information at the specified URL for the Services button display.</td>
</tr>
<tr>
<td>• <strong>url idle url</strong> — Defines the location of a file to display on phones that are not in use and specifies the interval between refreshes of the display, in seconds.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# end</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting URL Provisioning for Feature Buttons

Ensure the HTTP server is enabled and that there is communication between the Cisco Unified CME router and the server.

Modify Vendor Parameters for All SCCP Phones

To configure programmable phone and display parameters in the vendorConfig section of the SepDefault.conf.xml configuration file for all phones, perform the following steps.

- Only the parameters supported by the currently loaded firmware are available.
- The number and type of parameters may vary from one firmware version to the next.
- Only those parameters that are supported by a Cisco Unified IP phone and firmware version are implemented. Parameters that are not supported are ignored.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. service phone parameter-name parameter-value
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service phone parameter-name parameter-value</td>
<td>Sets display and phone functionality for all IP phones that support the configured parameters and to which this template is applied.</td>
</tr>
<tr>
<td>Example: Router(config-telephony)# service phone</td>
<td></td>
</tr>
</tbody>
</table>
Modify Cisco Unified IP Phone Options

Modify Vendor Parameters for a Specific SCCP Phone

To configure parameters in the vendorConfig section of the Sep*.conf.xml configuration file for an individual SCCP phone, perform the following steps.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>daysDisplayNotActive 1,2,3,4,5,6,7</td>
<td>• The parameter name is word and case-sensitive. See Cisco Unified CME Command Reference for a list of parameters.</td>
</tr>
<tr>
<td>Router(config-telephony)# service phone displayOnTime 07:30</td>
<td>• This command can also be configured in ephone-template configuration mode and applied to one or more phones.</td>
</tr>
<tr>
<td>Router(config-telephony)# service phone displayOnDuration 10:00</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# service phone displayIdleTimeout 00.01</td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**

**Example:**

Router(config-telephony)# end

What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.

**Modify Vendor Parameters for a Specific SCCP Phone**

To configure parameters in the vendorConfig section of the Sep*.conf.xml configuration file for an individual SCCP phone, perform the following steps.

**Restriction**

- Cisco Unified CME 4.0 or a later version.
- System must be configured to for per-phone configuration files. For configuration information, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- Only the parameters supported by the currently loaded firmware are available.
- The number and type of parameters may vary from one firmware version to the next.
- Only those parameters that are supported by a Cisco Unified IP phone and firmware version are implemented. Parameters that are not supported are ignored.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ephone-template template-tag
4. service phone parameter-name parameter-value
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>ephone-template</td>
<td>Example: Router (config)# ephone-template 15</td>
</tr>
<tr>
<td>template-tag</td>
<td><strong>Step 4</strong> Sets parameters for all IP phones that support the configured functionality and to which this template is applied.</td>
</tr>
<tr>
<td>service phone</td>
<td>• The parameter name is word and case-sensitive. See the Cisco Unified CME Command Reference for a list of parameters.</td>
</tr>
<tr>
<td>parameter-name</td>
<td>• This command can also be configured in telephony-service configuration mode. For individual phones, the template configuration for this command overrides the system-level configuration for this command.</td>
</tr>
<tr>
<td>parameter-value</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-telephony)# service phone daysDisplayNotActive 1,2,3,4,5,6,7</td>
<td></td>
</tr>
<tr>
<td>displayOnTime 07:30</td>
<td>Router(config-telephony)# service phone displayOnDuration 10:00</td>
</tr>
<tr>
<td>displayIdleTimeout 00.01</td>
<td>Router(config-telephony)# service phone displayIdleTimeout 00.01</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Exits from this command mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>exit</td>
<td>Example: Router(config-ephone-template)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>ephone phone-tag</td>
<td>Example: Router(config)# ephone 1</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Applies an ephone template to the ephone that is being configured.</td>
</tr>
<tr>
<td>ephone-template</td>
<td>Example: Router(config-ephone)# ephone-template 15</td>
</tr>
<tr>
<td>template-tag</td>
<td><strong>Step 8</strong> Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>What to do next</strong> If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.</td>
</tr>
</tbody>
</table>
Troubleshooting Vendor Parameter Configuration

Step 1  Ensure that the templates have been properly applied to the phones.
Step 2  Ensure that you use the **create cnf-files** command to regenerate configuration files and reset the phones after you apply the templates.
Step 3  Use the **show telephony-service tftp-bindings** command to display the configuration files that are associated with individual phones

**Example:**

```
Router# show telephony-service tftp-binding

 tftp-server system:/its/SEPDEFAULT.cnf
 tftp-server system:/its/SEPDEFAULT.cnf alias SEPDefault.cnf
 tftp-server system:/its/XMLDefault.cnf.xml alias XMLDefault.cnf.xml
 tftp-server system:/its/ATADefault.cnf.xml
 tftp-server system:/its/XMLDefault?960.cnf.xml alias SEP00036B54BB15.cnf.xml
 tftp-server system:/its/germany/7960-font.xml alias German_Germany/7960-font.xml
 tftp-server system:/its/germany/7960-dictionary.xml alias German_Germany/7960-dictionary.xml
 tftp-server system:/its/germany/7960-kate.xml alias German_Germany/7960-kate.xml
 tftp-server system:/its/germany/SCCP-dictionary.xml alias German_Germany/SCCP-dictionary.xml
 tftp-server system:/its/germany/7960-tones.xml alias Germany/7960-tones.xml
```

Step 4  Use the **debug tftp events** command to verify that the phone is accessing the file when you reboot the phone.

---

Configure One-Way Push-to-Talk on Cisco Unified SCCP Wireless IP Phones

To associate a phone button with the thumb button on a wireless phone for one-way Push-to-Talk (PTT) functionality in Cisco Unified CME, perform the following steps.

**Restriction**

Supported on Cisco Unified Wireless IP Phone 7921 and 7925 only.

**Before you begin**

- Cisco Unified CME 7.0 or a later version.
- Cisco phone firmware version 1.0.4 or a later version.
- System must be configured to for per-phone configuration files. For configuration information, see Define Per-Phone Configuration Files and Alternate Location for SCCP Phones, on page 184.
- Phone button to be associated with the thumb button must be configured with an intercom DN that targets a paging number. For configuration information, see Intercom Lines, on page 757.
- Paging group to be dialed by the intercom line must be configured. Targeted paging group can be unicast or multicast or both. For configuration information, see Paging, on page 831.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-template template-tag
4. service phone thumbButton1 PTTH button_number
5. exit
6. ephone phone-tag
7. ephone-template template-tag
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ephone-template template-tag</td>
<td>Enters ephone-template configuration mode to create an ephone template.</td>
</tr>
<tr>
<td>Example: Router (config)# ephone-template 12</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service phone thumbButton1 PTTH button_number</td>
<td>Specifies which button is to go off hook when user presses the thumb button.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# service phone thumbButton1 PTTH6</td>
<td>• button_number—Button on phone that is configured with an intercom dn that targets a paging number. Range is 1 to 6.</td>
</tr>
<tr>
<td></td>
<td>• There are no spaces in the PTTH and button_number keyword/argument combination.</td>
</tr>
<tr>
<td></td>
<td>• This command can also be configured in telephony-service configuration mode. For individual phones, the template configuration for this command overrides the system-level configuration for this command.</td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits from this command mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Example: Router(config-ephone-template)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ephone phone-tag</td>
<td>Enters ephone configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ephone 1</td>
<td></td>
</tr>
</tbody>
</table>
Configure Cisco Jabber for CSF Client in Cisco Unified CME

Before you begin
You require Unified CME Release 12.5 or a later release.
Cisco Jabber 12.1(0) or later version of Cisco Jabber client.

SUMMARY STEPS
1. enable
2. configure terminal
3. ip http secure-server
4. ip http secure-port port number
5. voice register dn dn-tag
6. number number
7. voice register pool phone-tag
8. id device-id-name name
9. type type
10. number number
11. username username password password
12. description string
13. exit
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables a secure HTTP (HTTPS) server. The HTTPS server uses the Secure Sockets Layer (SSL) Version 3 protocol.</td>
</tr>
<tr>
<td>ip http secure-server</td>
<td>Enables a secure HTTP (HTTPS) server. The HTTPS server uses the Secure Sockets Layer (SSL) Version 3 protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip http secure-server</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Sets the HTTPS server port number for listening.</td>
</tr>
<tr>
<td>ip http secure-port <strong>port number</strong></td>
<td>Sets the HTTPS server port number for listening.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip http secure-port 8443</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Creates directory numbers for the SIP IP phones that are directly connected to Cisco Unified CME</td>
</tr>
<tr>
<td>voice register <strong>dn</strong> <strong>dn-tag</strong></td>
<td>Creates directory numbers for the SIP IP phones that are directly connected to Cisco Unified CME</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# voice register dn 1</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Defines the numbers for the SIP IP phones.</td>
</tr>
<tr>
<td>number <strong>number</strong></td>
<td>Defines the numbers for the SIP IP phones.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-dn)# number 991001</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Sets the phone type for the SIP IP phones on a Cisco Unified CME system.</td>
</tr>
<tr>
<td>voice register pool <strong>phone-tag</strong></td>
<td>Sets the phone type for the SIP IP phones on a Cisco Unified CME system.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# voice register pool 1</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies the device ID of a phone type.</td>
</tr>
<tr>
<td>id <strong>device-id-name</strong> <strong>name</strong></td>
<td>Specifies the device ID of a phone type.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# id device-id-name JabberWIN</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Defines the phone type.</td>
</tr>
<tr>
<td>type <strong>type</strong></td>
<td>Defines the phone type.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# type Jabber-CSF-Client</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Defines the numbers for the SIP IP phones.</td>
</tr>
<tr>
<td>number <strong>number</strong></td>
<td>Defines the numbers for the SIP IP phones.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# number 1</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Sets the username and password.</td>
</tr>
<tr>
<td><strong>username</strong> <strong>username</strong> <strong>password</strong> <strong>password</strong></td>
<td>Sets the username and password.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-register-pool)# username jabber1 password jabber1</td>
</tr>
</tbody>
</table>

For a list of supported device IDs, see Cisco Unified Communications Manager Express Command Reference.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 12** | description *string*  
**Example:**  
Router(config-register-pool)# description Jabber-CSF-Client | Associates a description with the Cisco Jabber client. Enter a string of up to 64 characters. A maximum of 128 characters, including spaces. |
| **Step 13** | exit  
**Example:**  
Router(config-register-pool)# exit | Exits the voice register-pool configuration mode. |
| **Step 14** | end  
**Example:**  
Router(config)# end | Exits the privileged EXEC configuration mode. |

What to do next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.

### Configuration Examples for Cisco Unified IP Phone Options

#### Example for Configuring Cisco Jabber

The following example shows phone type Cisco Jabber configured under voice register pool 10:

```plaintext
!
voice register dn 10
 number 1089
 call-forward b2bua busy 1500
 call-forward b2bua mailbox 1500
 call-forward b2bua noan 1500 timeout 20
 pickup-call any-group
 pickup-group 1
 name CME SIP iPhone
 label CME SIP iPhone
!
voice register pool 8
registration-timer max 720 min 660
park reservation-group 1
session-transport tcp
type CiscoMobile-iOS
number 1 dn 10
dtmf-relay rtp-nte
!
ephone-dn 61
 number 1061
 park-slot reservation-group 1 timeout 10 limit 2 recall retry 2 limit 2
!
```

---

**Cisco Unified Communications Manager Express System Administrator Guide**

- [1449](#)
Example for Configuring Cisco Jabber CSF Client

The following example shows how to configure the Cisco Jabber CSF client installed in full UC mode:

```
voice register dn 1
number 991001
name Jabber-CSF-Client-1
label Jabber-CSF-Client-1

voice register pool 1
id device-id-name jabber_csf_1
type Jabber-CSF-Client
number 1 dn 1
username john password john123
codec g711ulaw
camera
video

ip http secure-server
ip http secure-port 8443
```

The following example shows how to configure the Cisco Jabber CSF client in phone-only mode from CME under voice register global:

```
voice register global
 phone-mode phone-only

voice register pool 1
id device-id-name winJabber
number 1 dn 1
type Jabber-CSF-Client
username 1111022 password 1111022
```

The following example shows how to configure the Cisco Jabber CSF client in phone-only mode from CME under voice register pool:

```
voice register pool 1
id device-id-name winJabber
number 1 dn 1
type Jabber-CSF-Client
username 1111022 password 1111022
 phone-mode phone-only
```

The following example shows how to configure the Cisco Jabber CSF client in phone-only mode from CME under voice register template:

```
voice register template 1
 phone-mode phone-only

voice register pool 2
id device-id-name winJabber
number 1 dn 2
type Jabber-CSF-Client
username 1111023 password 1111023
```
For Cisco Jabber CSF client (version 12.1.0 and onwards) support, Unified CME 12.5 is configured as the DNS Server. The host machine of the Jabber client is configured to point to Unified CME that is configured as the DNS server. The following example shows how to configure Unified CME 12.5 and later versions as DNS Server to support the Cisco Jabber CSF client, Version 12.1.0 for Mac and Windows (Phone-only Mode):

```
enable
configure terminal
ip dns server
ip host _sip_tcp.cisco.com srv 0 1 5060 cme.cisco.com
ip host _sip_udp.cisco.com srv 0 1 5060 cme.cisco.com
ip host _sips_tcp.cisco.com srv 0 1 5060 cme.cisco.com
ip host _cisco-uds._tcp.cisco.com srv 0 1 8443 cme.cisco.com
ip host _collab-edge._tls.cisco.com srv 0 1 8443 cme.cisco.com
ip host cme.cisco.com 10.64.86.106 (Note: IP Address of Unified CME 12.5)
ip host _cisco-phone-http.tcp.cisco.com srv 0 1 8443 cme.cisco.com
```

**Example for Configuring Dial Rules for Cisco Softphone SIP Client**

The following example shows dial rules configured under voice register template 2:

```
!
voice register template 2
url ldapServer ldap.abcd.com
url AppDialRule tftp://10.1.1.1/AppDialRules.xml
url DirLookupRule tftp://10.1.1.1/DirLookupRules.xml
!
```

The following is a sample of Application Dial Rule content:

```
Router#more flash:AppDialRules.xml
<?xml version="1.0" encoding="UTF-8"?><DialRules>
 <DialRule BeginsWith="+1" NumDigits="12" DigitsToRemove="1" PrefixWith="9"/>
 <DialRule BeginsWith="+1" NumDigits="12" DigitsToRemove="1" PrefixWith="9"/>
 <DialRule BeginsWith="919" NumDigits="10" DigitsToRemove="3" PrefixWith="9"/>
 <DialRule BeginsWith="1" NumDigits="11" DigitsToRemove="0" PrefixWith="9"/>
 <DialRule BeginsWith="" NumDigits="7" DigitsToRemove="0" PrefixWith="91"/>
 <DialRule BeginsWith="+" NumDigits="13" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="14" DigitsToRemove="1" PrefixWith="9011"/>
 <DialRule BeginsWith="+" NumDigits="15" DigitsToRemove="1" PrefixWith="9011"/>
</DialRules>
```

**Example for Excluding Local Services from Cisco Unified SIP IP Phones**

The following example shows how the exclude command is used to exclude from the Cisco Unified SIP IP phone’s user interface the availability of two local services. These services are Local Directory and My Phone Apps.
Example to Create Text Labels for Ephone-dns

The following example creates text labels for two ephone-dns:

```plaintext
ephone-dn 1
 number 2001
 label Sales

ephone-dn 2
 number 2002
 label Engineering
```

Example for Phone Header Bar Display

The following example provides the full E.164 number for a phone line in the phone header bar:

```plaintext
ephone-dn 55
 number 2149
 description 408-555-0149

ephone-dn 56
 number 2150

ephone 12
 button 1:55 2:56
```

Example for System Text Message Display

The following example specifies text that should display on IP phones when they are not in use:

```plaintext
telephony-service
 system message ABC Company
```

Example for System File Display

The following example specifies that a file called logo.htm should be displayed on IP phones when they are not in use:

```plaintext
telephony-service
```

Example for URL Provisioning for Directories, Services, and Messages Buttons

The following example provisions the Directories, Services, and Messages buttons:

```plaintext
telephony-service
 url directories http://10.4.212.4/localdirectory
 url services http://10.4.212.4/CCMUser/123456/urltest.html
```
Example for Programmable VendorConfig Parameters

The following partial output shows a template in which programmable parameters for phone and display functionality have been configured by using the `service phone` command:

```
ephone-template 1
 button-layout 7931 1
 service phone daysDisplayNotActive 1,2,3,4,5,6,7
 service phone backlightOnTime 07:30
 service phone backlightOnDuration 10:00
 service phone backlightIdleTimeout 00.01
```

In the following example, the PC port is disabled on phones 26 and 27. All other phones have the PC port enabled.

```
ephone-template 8
 service phone pcPort 1

ephone 26
 mac-address 1111.1111.1001
 ephone-template 8
 type 7960
 button 1:26

ephone 27
 mac-address 1111.2222.2002
 ephone-template 8
 type 7960
 button 1:27
```

Example for Push-to-Talk (PTT) on Cisco Unified Wireless IP Phones in Cisco Unified CME

The following partial output shows a template in which one-way PTT is configured by using the `service phone thumbButton1` command:

```
ephone-template 12
 service phone thumbButton1 PTTH6

 ephone-dn 10
 intercom 1050
 ephone-dn 50
 number 1050
 paging

 ephone 1
 type 7921
 button 1:1 6:10
```
Feature Information for Cisco Unified IP Phone Options

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 115: Feature Information for Cisco Unified IP Phone Options

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Cisco Jabber</td>
<td>12.5</td>
<td>Added Support for Cisco Jabber CSF Client MAC and Windows (Phone-only), Version 12.1(0).</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>Added support for Cisco Jabber.</td>
</tr>
<tr>
<td>My Phone Apps for Cisco Unified SIP IP Phones</td>
<td>9.0</td>
<td>Adds support for My Phone Apps feature on Cisco Unified SIP IP phones.</td>
</tr>
<tr>
<td>Clear Directory Entries</td>
<td>8.6</td>
<td>Provides ability to clear the display of call-history details such as missed, placed, and received call entries on a Cisco Unified SCCP IP phone’s display screen.</td>
</tr>
<tr>
<td>Fixed Line/Feature Buttons</td>
<td>4.0(2)</td>
<td>Provides two preconfigured fixed sets of feature buttons for provisioning a Cisco Unified IP Phone 7931G.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Header Bar Display</td>
<td>3.4</td>
<td>Added support for modifying header bar display on SIP phones.</td>
</tr>
<tr>
<td></td>
<td>2.01</td>
<td>Phone header bar display is introduced.</td>
</tr>
<tr>
<td>Labels for Directory Numbers</td>
<td>3.4</td>
<td>Added support for label display on SIP phones.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>Ephone-dn labels were introduced.</td>
</tr>
<tr>
<td>Programmable Vendor Parameters</td>
<td>4.0</td>
<td>Added support for configuring programmable phone and display functionality at a phone level for SCCP phones.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for configuring programmable phone and display functionality for SIP phones.</td>
</tr>
<tr>
<td></td>
<td>3.2.1</td>
<td>Added support for programmable phone and display functionality in vendorConfig portion of configuration file. Implementation of configuration is firmware version dependent.</td>
</tr>
<tr>
<td>System Message Display</td>
<td>3.0</td>
<td>System message display on idle phones using text messages was introduced.</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>System message display on idle phones using HTML files was introduced.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Unified CME Version</td>
<td>Feature Information</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>URL Provisioning for Feature Buttons</td>
<td>12.0</td>
<td>Added support for Idle URL functionality on SIP phones.</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Added support for configuring an ephone template to provision multiple URLs for the Services feature button phones.</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Added support for provisioning customized URLs for programmable feature buttons on supported SIP phones.</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>Provisioning customized URLs for programmable feature buttons was introduced.</td>
</tr>
</tbody>
</table>
Interoperability with Cisco Unified CCX

This chapter describes features in Cisco Unified Communications Manager Express (Cisco Unified CME) that provide support for interoperability between Cisco Unified CME and external feature services, such as Cisco Customer Response Solutions (CRS) with Cisco Unified Contact Center Express (Cisco Unified CCX).

- Information About Interoperability with Cisco Unified CCX, on page 1457
- Configure Interoperability with Cisco Unified CCX, on page 1459
- Configuration Examples for Interoperability with Cisco Unified CCX, on page 1469
- Feature Information for Interoperability with Cisco Unified CCX, on page 1478

Information About Interoperability with Cisco Unified CCX

Unified CME 4.2 to Unified CME 8.5 Release versions support interoperability between Cisco Unified CME and Cisco Customer Response Solutions (CRS) with Cisco Unified Call Center Express (Cisco Unified CCX), including enhanced call processing, device and call monitoring, unattended call transfers to multiple call center agents and basic extension mobility, and IP IVR applications.

Note

For Unified CME 8.6 and later releases, CRS with Unified CCX is not supported.

The Cisco Unified CCX application uses the CRS platform to provide a multimedia (voice, data, and web) Cisco IP IVR functionality is available with Cisco Unified CCX and includes prompt-and-collect and call treatment.

The following functions are provided in Unified CME Release 4.2 to 8.5 for interoperability with Unified CCX:

- Support of Cisco Unified CCX Cisco Agent Desktop for use with Cisco Unified CME
- Configuration query and update between Cisco Unified CCX and Cisco Unified CME
- SIP-based simple and supplementary call control services including:
  - Call routing between Cisco Unified CME and Cisco Unified CCX using SIP-based route point
  - First-party call control for SIP-based simple and supplementary calls
  - Call monitoring and device monitoring based on SIP presence and dialog event package
**Cisco Unified CCX session management of Cisco Unified CME**

**Cisco Unified CCX device and call monitoring of agent lines and call activities in Cisco Unified CME**

Provisioning and configuration information in Cisco Unified CCX is automatically provided to Cisco Unified CME. If the configuration from Cisco Unified CCX is deleted or must be modified, you can configure the same information in Cisco Unified CME by using Cisco IOS commands.

For first party call control, a route point for Cisco CRS is a peer device to Cisco Unified CME through a SIP trunk. An incoming call to Cisco Unified CME that is targeted to a call center phone is routed to Cisco Unified CCX through the route point. The call is placed in a queue and redirected to the most suitable agent by Cisco Unified CCX.

Supplementary services such as call hold, blind transfer, and semi-attended transfer are initiated by Cisco Unified CCX. Existing SIP-based simple and supplementary service call flow applies except for blind transfers. For blind transfers with Cisco Unified CCX as the transferrer, Cisco Unified CCX will stay in the active state until the transfer target answers. It drops out only after the transferred call is successfully answered. If the transfer target does not answer when ringing times out, the call is pulled back by Cisco Unified CCX and rerouted to another agent. This mechanism also applies when the transfer target is configured with call-forward all or forward no-answer. The forward configuration is ignored during blind transfer.

When a call moves between Cisco Unified CCX and Cisco Unified CME because of redirect, transfer, and conference, the SIP Call-ID continues to change. For call control purposes, Cisco Unified CME issues a unique Global Call ID (Gcid) for every outbound call leg. A Gcid remains the same for all legs of the same call in the system, and is valid for redirect, transfer, and conference events, including 3-party conferencing when a call center phone acts as a conference host.

Before Cisco IOS Release 12.4(11)XW6, if the call monitoring module in Cisco Unified CME 4.2 detected a call associated with a non default session application, such as B-ACD or a TCL script, the module was globally disabled. After the module was disabled, Cisco Unified CCX administration had to manually re-enable the call monitoring module after the session completes.

In Cisco IOS Release 12.4(11)XW6 and later releases, the call monitoring module in Cisco Unified CME does not monitor a call associated with a non default session application, such as B-ACD or a TCL script, including all calls merged into this call by way of consult transfer and conference. The module is not disabled and continues to monitor other calls.

Table 116: Tasks to Configure Interoperability between Cisco CRS and Cisco Unified CME, on page 1458 contains a list of tasks required to enable operability between Cisco Unified CME and Cisco Unified CCX, presented in the order in which the tasks are to be completed. This section contains information about performing tasks in the first 2 steps in this table and procedures for completing step 3.

For configuration information, see Configure Interoperability with Cisco Unified CCX, on page 1459.

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Name of Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify that the appropriate Cisco Unified Communications Manager Express (Cisco Unified CME) version is installed on the router. For compatibility information, see Cisco Unified Contact Center Express (Cisco Unified CCX) Software and Hardware Compatibility Guide.</td>
<td>—</td>
</tr>
</tbody>
</table>
### Configure Interoperability with Cisco Unified CCX

**Enable Interoperability with Cisco Unified CCX**

To configure Cisco Unified CME to enable interoperability between Cisco Unified CME and Cisco Unified CCX, perform the following steps.

---

**Note**

A single Cisco Unified CME can support multiple session managers.

---

**Restriction**

- Maximum number of *active* Cisco Unified CCX agents supported: 50.
- Multi-Party Ad Hoc and Meet-Me Conferencing are not supported.
- The following incoming calls are supported for deployment of the interoperability feature: SIP trunk calls from another Cisco Unified CME and all calls from a PSTN trunk. Other trunks, such as H.323, are supported as usual in Cisco Unified CME, however, not for customer calls to Cisco Unified CCX.
Before you begin

- Cisco Unified CME version and Cisco IOS release that is compatible with your Cisco Unified CCX version. For compatibility information, see Cisco Unified Contact Center Express (Cisco Unified CCX) Software and Hardware Compatibility Guide.

- XML API must be configured to create an AXL username for Cisco Unified CCX access. For configuration information, see Configure the XML API, on page 1513.

Note

During the initial setup of Cisco CRS for Cisco Unified CME, you need the AXL username and password that was configured using the `xml user` command in telephony-service configuration mode. You also need the router IP address that was configured using the `ip source-address` command in telephony-service configuration mode.

- Agent phones to be connected in Cisco Unified CME must be configured in Cisco Unified CME. When configuring a Cisco Unified CCX agent phone, use the `keep-conference endcall` command to enable conference initiators to exit from conference calls and end the conference for the remaining parties. For configuration information, see Configure Hardware Conferencing, on page 1347.

- The Cisco Unified CME router must be configured to accept incoming presence requests. For configuration information, see Configure Presence Service, on page 853.

- To support Desktop Monitoring and Recording, the `service phone SpanToPCPort 1` command must be configured in telephony-service configuration mode. For configuration information, see Modify Vendor Parameters for All SCCP Phones, on page 1442.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. voice call send-alert
4. voice service voip
5. callmonitor
6. gcid
7. allow-connections sip to sip
8. no supplementary-service sip moved-temporary
9. no supplementary-service sip refer
10. sip
11. registrar server [expires [max sec] [min sec]]
12. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 2    | configure terminal
**Example:**
Router# configure terminal | Enters global configuration mode. |
| 3    | voice call send-alert
**Example:**
Router(config)# voice call send-alert | Enables the terminating gateway to send an alert message instead of a progress message after it receives a call setup message. |
| 4    | voice service voip
**Example:**
Router(config)# voice service voip | Enters voice-service configuration mode and specifies voice-over-IP encapsulation. |
| 5    | callmonitor
**Example:**
Router(config-voi-serv)# callmonitor | Enables call monitoring messaging functionality.
- Used by Cisco Unified CCX for processing and reporting. |
| 6    | gcid
**Example:**
Router(config-voi-serv)# gcid | Enables Global Call-ID (Gcid) for call control purposes.
- Used by Cisco Unified CCX for tracking call. |
| 7    | allow-connections sip to sip
**Example:**
Router(config-voi-serv)# allow-connections sip to sip | Allows connections between specific types of endpoints in a VoIP network. |
| 8    | no supplementary-service sip moved-temporary
**Example:**
Router(config-voi-serv)# no supplementary-service sip moved-temporary | Prevents the router from sending a redirect response to the destination for call forwarding. |
| 9    | no supplementary-service sip refer
**Example:**
Router(config-voi-serv)# no supplementary-service sip refer | Prevents the router from forwarding a REFER message to the destination for call transfers. |
| 10   | sip
**Example:**
Router(config-voi-serv)# sip | Enters SIP configuration mode. |
| 11   | registrar server [expires [max sec] [min sec]]
**Example:**
Router(config-voi-sip)# registrar server expires max 600 min 60 | Enables SIP registrar functionality in Cisco Unified CME.
- **expires**—(Optional) Sets the active time for an incoming registration.
Purpose

Command or Action	Purpose
Ensure that the registration expiration timeout is set to a value smaller than the TCP connection aging timeout to avoid disconnection from the TCP.

- **min sec**—(Optional) Minimum time for a registration to expire, in seconds. Range: 60 to 3600. Default: 60.

**Step 12**

**end**

Example:

```
Router(config-voi-serv)# end
```

Exits configuration mode and enters privileged EXEC mode.

### Identify Agent Directory Numbers in Cisco Unified CME for Session Manager on SCCP Phones

To specify which directory numbers, associated with phone lines on Cisco Unified CCX agent phones, can be managed by a session manager, perform the following steps.

**Restriction**

- Only SCCP phones can be configured as agent phones in Cisco Unified CME. The Cisco VG224 Analog Phone Gateway and analog and SIP phones are supported as usual in Cisco Unified CME, however, not as Cisco Unified CCX agent phones.

- Cisco Unified IP Phone 7931 cannot be configured as an agent phone in Cisco Unified CME. Cisco Unified IP Phone 7931s are supported as usual in Cisco Unified CME, however, not as Cisco Unified CCX agent phones.

- Shared-line appearance is not supported on agent phones. A directory number cannot be associated with more than one physical agent phone at one time.

- Overlaid lines are not supported on agent phones. More than one directory number cannot be associated with a single line button on an agent phone.

- Monitored mode for a line button is not supported on agent phones. An agent phone cannot be monitored by another phone.

- Cisco Unified CCX does not support a call event that includes a different directory number; all call events must include the primary directory number. Call transfers between phones with single-line directory numbers will cause call monitoring to fail.

**Before you begin**

- Up to eight session managers must be configured in Cisco Unified CME.

- Directory numbers associated with Cisco Unified CCX agent phones must be configured in Cisco Unified CME.
• Cisco Unified CME 4.2: Directory numbers for agent phones must be configured as dual lines to allow an agent to make two call connections at the same time using one phone line button. Note that if the second line of the dual-line directory number is busy, a transfer event between phones in the solution will fail to complete.

• Cisco Unified CME 4.3/7.0 and later versions: We recommend that directory numbers for agent phones be configured as octal lines to help to ensure that a free line with the same directory number is available for a transfer event.

• For configuration information, see Configure Phones to Make Basic Call, on page 321.

SUMMARY STEPS

1. enable
2. configure terminal
3. ephone-dn dn-tag
4. allow watch
5. session-server session-server-tag [,...session-server-tag]
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ephone-dn dn-tag</td>
<td>Enters ephone-dn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ephone-dn 24</td>
<td>• dn-tag—Unique ID of an already configured directory number. The tag number corresponds to a tag number created when this directory number was initially configured.</td>
</tr>
<tr>
<td>Step 4</td>
<td>allow watch</td>
<td>Allows the phone line associated with this directory number to be monitored by a watcher in a presence service.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-ephone-dn)# allow watch</td>
<td>• This command can also be configured in ephone-dn template configuration mode and applied to one or more phones. The ephone-dn configuration has priority over the ephone-dn template configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>session-server session-server-tag [,...session-server-tag]</td>
<td>Specifies which session managers are to monitor the directory number being configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Verify Registrations and Subscriptions in Cisco Unified CME

Before using the system, verify registrations and subscriptions for Cisco Unified CCX endpoints.

Step 1

Use the **show sip status registrar** command to verify whether session manager and Cisco CRS route points are registered.

Step 2

Use the **show presence subscription summary** command to verify whether Cisco CRS route points and Cisco Unified CCX agent directory numbers are subscribed.

The following is sample output from the **show presence subscription summary** command. The first two rows show the status for two route points. The next two are for logged in agent phones.

```
Router# show presence subscription summary

Presence Active Subscription Records Summary: 15 subscription
Watcher Presentity SubID Expires SibID Status
------------------ ------------------ ------------- ------- ------------
CRScontrol@10.4.171.81 8101@10.4.171.34 4 3600 0 idle
CRScontrol@10.4.171.81 8201@10.4.171.34 8 3600 0 idle
CRScontrol@10.4.171.81 4016@10.4.171.34 10 3600 0 idle
CRScontrol@10.4.171.81 4020@10.4.171.34 12 3599 0 idle
```
# Re-create a Session Manager in Cisco Unified CME

Provisioning and configuration information in Cisco Unified CCX is automatically provided to Cisco Unified CME. The following task is required only if the configuration from Cisco Unified CCX is deleted or must be modified.

To re-create a session manager in Cisco Unified CME for Cisco Unified CCX, perform the following steps.

## SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `voice register session-server` *session-server-tag*
4. `register id` *name*
5. `keepalive` *seconds*
6. `end`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  * Enter your password if prompted.  
  **Example:**  
  Router# enable |
| **Step 2** configure terminal | Enters global configuration mode.  
  **Example:**  
  Router# configure terminal |
| **Step 3** voice register session-server `session-server-tag` | Enters voice register session-server configuration mode to enable and configure a session manager for an external feature server, such as the Cisco Unified CCX application on a Cisco CRS system.  
  * Range: 1 to 8.  
  * A single Cisco Unified CME can support multiple session managers.  
  **Example:**  
  Router(config)# voice register session-server 1 |
| **Step 4** register id `name` | *(Optional) Required only if the configuration from Cisco Unified CCX is deleted or must be modified.  
  * name*—String for identifying Cisco Unified CCX. Can contain 1 to 30 alphanumeric characters.  
  **Example:**  
  Router(config-register-fs)# CRS1 |
| **Step 5** keepalive `seconds` | *(Optional) Required only if the configuration from Cisco Unified CCX is deleted or must be modified.  
  **Example:**  
  |
Reconfigure a Cisco CRS Route Point as a SIP Endpoint

### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-register-fs)# keepalive 300 |  • Keepalive duration for registration, in seconds, after which the registration expires unless Cisco Unified CCX reregisters before the registration expiry.  
  • Range: 60 to 3600. Default: 300.  
  **Note** Default in Cisco Unified CCX is 120. |

### Step 6

**Note** Exits configuration mode and enters privileged EXEC mode.

**Example:**

Router(config-register-fs)# end

---

**Reconfigure a Cisco CRS Route Point as a SIP Endpoint**

*Note*

Provisioning and configuration information in Cisco Unified CCX is automatically provided to Cisco Unified CME. The following task is required only if the configuration from Cisco Unified CCX is deleted or must be modified.

To reconfigure a Cisco CRS route point as a SIP endpoint in Cisco Unified CME, perform the following steps.

*Restriction*

- Each Cisco CRS route point can be managed by only one session manager.
- Each session manager can manage more than one Cisco CRS route point.

**Before you begin**

- Directory numbers associated with Cisco CRS route points must be configured in Cisco Unified CME. For configuration information for directory numbers associated with SIP endpoints, see Configure Phones to Make Basic Call, on page 321.
- Directory numbers associated with Cisco CRS route points must be enabled to be watched. For configuration information, see Configure Presence Service, on page 853.
- The **mode cme** command must be enabled in Cisco Unified CME.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. voice register dn *dn-tag*
4. number *number*
5. session-server *session-server-tag* [,...*session-server-tag*]
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters voice register dn configuration mode to define a directory number for a SIP phone, intercom line, voice port, or a message-waiting indicator (MWI).</td>
</tr>
<tr>
<td>voice register dn <em>dn-tag</em></td>
<td>Router(config-register-global)# voice register dn 1</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Defines a valid number for a directory number.</td>
</tr>
<tr>
<td>number <em>number</em></td>
<td>Router(config-register-dn)# number 2777</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies which session managers are to monitor the directory number being configured.</td>
</tr>
<tr>
<td>session-server session-server-tag [,...,session-server-tag]</td>
<td>Router(config-register-dn)# session-server 1</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

*Tip*  
If you do not know the value for `session-server-tag`, we recommend using 1.

- Can configure up to eight session-server-tags; individual tags must be separated by commas (,).
- Each directory number can be managed by up to eight session managers. Each session manager can monitor more than one directory number.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6   allow watch</td>
<td>Allows the phone line associated with this directory number to be monitored by a watcher in a presence service.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# allow watch</td>
<td></td>
</tr>
<tr>
<td>Step 7  refer target dial-peer</td>
<td>Enables watcher to handle SIP REFER message from this directory number.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# refer target dial-peer</td>
<td>• <strong>target dial-peer</strong>—Refer To portion of message is based on address from dial peer for this directory number.</td>
</tr>
<tr>
<td>Step 8   exit</td>
<td>Exits configuration mode to the next highest mode in the configuration mode hierarchy.</td>
</tr>
<tr>
<td>Example: Router(config-register-dn)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9  voice register pool pool-tag</td>
<td>Enters voice register pool configuration mode to set device-specific parameters for a Cisco CRS route point.</td>
</tr>
<tr>
<td>Example: Router(config)# voice register pool 3</td>
<td>• A voice register pool in Cisco Unified CCX can contain up to 10 individual SIP endpoints. Subsequent pools are created for additional SIP endpoints.</td>
</tr>
<tr>
<td>Step 10  number tag dn dn-tag</td>
<td>Associates a directory number with the route point being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# number 1 dn 1</td>
<td></td>
</tr>
<tr>
<td>Step 11  session-server session-server-tag</td>
<td>identifies session manager to be used to control the route point being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# session-server 1</td>
<td>• <strong>session-server-tag</strong>—Unique number assigned to a session manager. Range: 1 to 8. The tag number corresponds to a tag number created by using the <strong>voice register session-server</strong> command.</td>
</tr>
<tr>
<td>Step 12  codec codec-type</td>
<td>Specifies the codec for the dial peer dynamically created for the route point being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# codec g711ulaw</td>
<td>• <strong>codec-type</strong>—g711ulaw is required for Cisco Unified CCX.</td>
</tr>
<tr>
<td>Step 13  dtmf-relay sip-notify</td>
<td>Specifies DTMF Relay method to be used by the route point being configured.</td>
</tr>
<tr>
<td>Example: Router(config-register-pool)# dtmf-relay sip-notify</td>
<td></td>
</tr>
<tr>
<td>Step 14  end</td>
<td>Exits configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Interoperability with Cisco Unified CCX

The following output from the `show running-configuration` command shows the configuration on a Cisco Unified CME router that will interoperate with Cisco Unified CCX.

```
! version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname sb-sj3-3845-uut1
!
boot-start-marker
boot-end-marker
!
card type t1 0 2
card type t1 0 3
logging buffered 1000000
no logging console
enable password password
!
no aaa new-model
network-clock-participate wic 2
network-clock-participate wic 3
ip cef
!
no ip dhcp use vrf connected
!
ip dhcp excluded-address 192.0.2.250 192.0.2.254
!
ip dhcp pool ephones
 network 192.0.2.0 255.255.255.0
 option 150 ip 192.0.2.254
 default-router 192.0.2.254
!
!
no ip domain lookup
!
isdn switch-type primary-5ess
voice-card 0
no dspfarm
!
!
voice service voip
gcid
callmonitor
allow-connections h323 to h323
```
allow-connections h323 to sip
allow-connections sip to h323
allow-connections sip to sip
no supplementary-service sip moved-temporarily
no supplementary-service sip refer
sip
  registrar server expires max 120 min 60
!
!
voice class codec 1
  codec preference 1 g711ulaw
  codec preference 2 g729r8
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
voice register global
  mode cme
  source-address 192.0.2.254 port 5060
  max-dn 720
  max-pool 240
  authenticate presence
  authenticate register
  dialplan-pattern 1 511.... extension-length 4
  voicemail 9001
  create profile sync 0000347600391314
!
voice register session-server 1
  keepalive 300
  register-id SB-SJ3-UCCX1_1164774025000
!
voice register dn 1
  session-server 1
  number 8999
  allow watch
  refer target dial-peer
!
voice register dn 2
  session-server 1
  number 8001
  allow watch
  refer target dial-peer
!
voice register dn 3
  session-server 1
  number 8101
  allow watch
  refer target dial-peer
!
voice register dn 11
  number 2011
  name ep-sip-1-11
  mwi
!
voice register dn 12
  number 2012
  name ep-sip-1-12
  mwi
voice register dn 16
  number 5016
  name rp-sip-1-16
  label SIP 511-5016
  mwi

voice register dn 17
  number 5017
  name rp-sip-1-17
  label SIP 511-5017
  mwi

voice register dn 18
  number 5018
  name rp-sip-1-18
  label SIP 511-5018
  mwi

voice register pool 1
  session-server 1
  number 1 dn 1
  number 2 dn 2
  number 3 dn 3
  dtmf-relay sip-notify
  codec g711ulaw

voice register pool 11
  id mac 1111.0711.2011
  type 7970
  number 1 dn 11
  dtmf-relay rtp-nte
  voice-class codec 1
  username 5112011 password 5112011

voice register pool 12
  id mac 1111.0711.2012
  type 7960
  number 1 dn 12
  dtmf-relay rtp-nte
  voice-class codec 1
  username 5112012 password 5112012

voice register pool 16
  id mac 0017.0EBC.1500
  type 7961GE
  number 1 dn 16
  dtmf-relay rtp-nte
  voice-class codec 1
  username rp-sip-1-16 password pool16

voice register pool 17
  id mac 0016.C7C5.0660
  type 7971
  number 1 dn 17
  dtmf-relay rtp-nte
  voice-class codec 1
  username rp-sip-1-17 password pool17

voice register pool 18
  id mac 0015.629E.825D
  type 7971
  number 1 dn 18
  dtmf-relay rtp-nte
voice-class codec 1
username rp-sip-1-18 password pool18
!

controller T1 0/2/0
  framing esf
  clock source internal
  linecode b8zs
  pri-group timeslots 1-4,24
  !
controller T1 0/2/1
  framing esf
  clock source internal
  linecode b8zs
  pri-group timeslots 1-4,24
  !
controller T1 0/3/0
  framing esf
  clock source internal
  linecode b8zs
  ds0-group 0 timeslots 1-4 type e4-immediate-start
  !
controller T1 0/3/1
  framing esf
  clock source internal
  linecode b8zs
  ds0-group 0 timeslots 1-4 type e4-immediate-start
  vlan internal allocation policy ascending
  !

interface GigabitEthernet0/0
  ip address 209.165.201.1 255.255.255.224
duplex auto
  speed auto
  media-type rj45

interface GigabitEthernet0/1
  ip address 192.0.2.254 255.255.255.0
duplex auto
  speed auto
  media-type rj45

interface Serial0/2/0:23
  no ip address
  encapsulation hdlc
  isdn switch-type primary-5ess
  isdn protocol-emulate network
  isdn incoming-voice voice
  no cdp enable

interface Serial0/2/1:23
  no ip address
  encapsulation hdlc
  isdn switch-type primary-5ess
  isdn protocol-emulate network
  isdn incoming-voice voice
  no cdp enable
interface Service-Engine1/0
  ip unnumbered GigabitEthernet0/0
  service-module ip address 209.165.202.129 255.255.255.224
  service-module ip default-gateway 209.165.201.1
!
ip route 192.0.0.30 255.0.0.0 192.0.0.55
ip route 209.165.202.129 255.255.255.224 Service-Engine1/0
ip route 192.0.0.2.56 255.255.255.0 209.165.202.2
ip route 192.0.3.74 255.255.255.0 209.165.202.3
ip route 209.165.202.158 255.255.255.224 192.0.0.55
!
!
ip http server
ip http authentication local
ip http path flash:
!
ixi transport http
  response size 64
  no shutdown
  request outstanding 1
!
ixi application cme
  no shutdown
!
!
control-plane
!
!
voice-port 0/0/0
!
voice-port 0/0/1
!
voice-port 0/2/0:23
!
voice-port 0/3/0:0
!
voice-port 0/1/0
!
voice-port 0/1/1
!
voice-port 0/2/1:23
!
voice-port 0/3/1:0
!
!
!
dial-peer voice 9000 voip
  description ==> This is for internal calls to CUE
  destination-pattern 9...
  voice-class codec 1
  session protocol sipv2
  session target ipv4:209.165.202.129
dtmf-relay rtp-nte sip-notify
!
dial-peer voice 9001 voip
  description ==> This is for external calls to CUE
  destination-pattern 5119...
  voice-class codec 1
session protocol sipv2
session target ipv4:209.165.202.129
dtmf-relay rtp-nte sip-notify

! dial-peer voice 521 voip
destination-pattern 521....
voice-class codec 1
max-redirects 5
session protocol sipv2
session target ipv4:209.165.201.2
dtmf-relay rtp-nte sip-notify

! dial-peer voice 531 voip
destination-pattern 531....
voice-class codec 1
max-redirects 5
session protocol sipv2
session target ipv4:209.165.201.3
dtmf-relay rtp-nte sip-notify

!

presence
presence call-list
watcher all
allow subscribe

sip-ua
mwi-server ipv4:209.165.202.128 expires 3600 port 5060 transport udp
presence enable

!

telephony-service
no auto-reg-ephone
xml user axluser password axlpass 15 <= AXL username and password for Cisco CRS
max-ephones 240
max-dn 720
ip source-address 192.0.2.254 port 2000 <= IP address of router
system message sb-sj3-3845-uut1
url services http://192.0.2.252:6293/ipphone/jsp/sciphonexml/IPAgentInitial.jsp
url authentication http://192.0.2.252:6293/ipphone/jsp/sciphonexml/IPAgentAuthenticate.jsp
cnf-file perphone
dialplan-pattern 1 511.... extension-length 4
voicemail 9001
max-conferences 8 gain -6
call-forward pattern .T
moh flash:music-on-hold.wav
multicast moh 239.10.10.1 port 2000
transfer-system full-consult
transfer-pattern .T
create cnf-files version-stamp 7960 Jun 18 2007 07:44:25

!

ephone-dn 1 dual-line
session-server 1
number 1001
name ag-1-1
allow watch
mwi sip

!

ephone-dn 2 dual-line
session-server 1
number 1002
name ag-1-2
allow watch
mwi sip
!
ephone-dn 3 dual-line
  session-server 1
  number 1003
  name ag-1-3
  allow watch
  mwi sip
!
ephone-dn 4 dual-line
  session-server 1
  number 1004
  name ag-1-4
  allow watch
  mwi sip
!
ephone-dn 5
  session-server 1
  number 1005
  name ag-1-5
  allow watch
  mwi sip
!
ephone-dn 11 dual-line
  number 3011
  name ep-sccp-1-11
  mwi sip
!
ephone-dn 12
  number 3012
  name ep-sccp-1-12
  mwi sip
!
ephone-dn 16 dual-line
  number 4016
  label SCCP 511-4016
  name rp-sccp-1-16
  mwi sip
!
ephone-dn 17 dual-line
  number 4017
  label SCCP 511-4017
  name rp-sccp-1-17
  mwi sip
!
ephone-dn 18 dual-line
  number 4018
  label SCCP 511-4018
  name rp-sccp-1-18
  mwi sip
!
ephone-dn 19 dual-line
  number 4019
  label SCCP 511-4019
name rp-sccp-1-19
  mwi sip

ephone-dn 20 dual-line
  number 4020
  label SCCP 511-4020
  name rp-sccp-1-20
  mwi sip

ephone-dn 21 dual-line
  number 4021
  label SCCP 511-4021
  name rp-sccp-1-21
  mwi sip

ephone-dn 22 dual-line
  number 4022
  label SCCP 511-4022
  name rp-sccp-1-22
  mwi sip

ephone 1
  mac-address 1111.0711.1001
  type 7970
  keep-conference endcall
  button 1:1

ephone 2
  mac-address 1111.0711.1002
  type 7970
  keep-conference endcall
  button 1:2

ephone 3
  mac-address 1111.0711.1003
  type 7970
  keep-conference endcall
  button 1:3

ephone 4
  mac-address 1111.0711.1004
  type 7970
  keep-conference endcall
  button 1:4

ephone 5
  mac-address 1111.0711.1005
  type 7970
  keep-conference endcall
  button 1:5
ephone 11
  mac-address 1111.0711.3011
  type 7970
  keep-conference endcall
  button 1:11
!
!
ephone 12
  mac-address 1111.0711.3012
  type 7960
  keep-conference endcall
  button 1:12
!
!
ephone 16
  mac-address 0012.D916.5AD6
  type 7960
  keep-conference endcall
  button 1:16
!
!
ephone 17
  mac-address 0013.1AA6.7A9E
  type 7960
  keep-conference endcall
  button 1:17
!
!
ephone 18
  mac-address 0012.80F3.B013
  type 7960
  keep-conference endcall
  button 1:18
!
!
ephone 19
  mac-address 0013.1A1F.6282
  type 7970
  keep-conference endcall
  button 1:19
!
!
ephone 20
  mac-address 0013.195A.00D0
  type 7970
  keep-conference endcall
  button 1:20
!
!
ephone 21
  mac-address 0017.0EBC.147C
  type 7961GE
  keep-conference endcall
  button 1:21
!
Where to Go Next

If you are done modifying parameters for phones in Cisco Unified CME, generate a new configuration file and restart the phones. See Generate Configuration Files for Phones, on page 390.

Feature Information for Interoperability with Cisco Unified CCX

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 117: Feature Information for Interoperability Feature

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interoperability with Cisco Unified CCX</td>
<td>4.2</td>
<td>Enables interoperability between Cisco Unified CME and Cisco Customer Response Solutions (CRS) 5.0 and later versions with Cisco Unified Contact Center Express (Cisco Unified CCX), including Cisco Unified IP IVR, enhanced call processing, device and call monitoring, unattended call transfers to multiple call center agents, and basic extension mobility.</td>
</tr>
</tbody>
</table>
CHAPTER 50

SRST Fallback Mode

- Prerequisites for SRST Fallback Mode, on page 1479
- Restrictions for SRST Fallback Mode, on page 1479
- Information About SRST Fallback Mode, on page 1480
- Configure SRST Fallback Mode, on page 1484
- Configuration Examples for SRST Fallback Mode, on page 1489
- Feature Information for SRST Fallback Mode, on page 1492

Prerequisites for SRST Fallback Mode

- The IP address of the Cisco Unified CME router must be registered as the SRST reference on the Cisco Unified Communications Manager device pool.
- Cisco Unified CME 4.0 or a later version must be installed on the Cisco Unified CME router that is configured in SRST mode.
- Following tasks must be completed:
  - Generate Configuration Files for Phones, on page 390
  - Configure System-Level Parameters, on page 170. Note that the max-dn command must be explicitly configured with the preference keyword to support calls between PSTN and IP phones during SRST fallback mode.
  - Configure Call Transfer and Forwarding, on page 1134

Restrictions for SRST Fallback Mode

- SRST Fallback Mode is applicable only for SCCP phones. SIP phones are not supported.
- The call-manager-fallback command, which is used to configure Cisco Unified SRST, cannot be used on a router that is configured for Cisco Unified CME.
- The telephony-service setup command and auto assign command must not be enabled on a Cisco Unified CME router configured for SRST fallback mode. If you used the telephony-service setup command before configuring the router for SRST fallback support, you must remove any unwanted ephone directory numbers created by the setup process.
• The number of phones that fall back to a Cisco Unified CME router in SRST mode cannot exceed the maximum number of phones that is supported by the router. To find the maximum number of phones for a particular router and Cisco Unified CME version, see the appropriate *Cisco CME Supported Firmware, Platforms, Memory, and Voice Products* document at [http://www.cisco.com/en/us/products/sw/voicesw/ps4625/products_device_support_tables_list.html](http://www.cisco.com/en/us/products/sw/voicesw/ps4625/products_device_support_tables_list.html).

• The ephone-dns and ephones that are created from fallback may have less information associated with them than appears in their original configuration on a Cisco Unified Communications Manager or on an active Cisco Unified CME system. This situation occurs because the Cisco Unified CME router in SRST mode is designed to learn only a limited amount of information from the fallback IP phones. For example, if an ephone-dn has in its configuration the command `number 4888 no-reg` (to keep that extension from registering under its E.164 address), after fallback the `no-reg` part of this command will be lost because this information cannot be learned from the IP phones.

• The order of the SRST fallback ephone-dns and ephones will be different from the order of the active Cisco Unified Communications Manager or Cisco Unified CME ephone-dns and ephones. For example, ephone 1 on an active Cisco Unified Communications Manager might be numbered ephone 5 on the Cisco Unified CME router in SRST mode, because the order of learned ephone-dns and ephones is determined by the sequence of the ephone fallback occurrence, which is random.

### Information About SRST Fallback Mode

#### SRST Fallback Mode Using Cisco Unified CME

This feature enables routers to provide call-handling support for Cisco Unified IP phones if they lose connection to remote primary, secondary, or tertiary Cisco Unified Communications Manager installations or if the WAN connection is down. When Cisco Unified SRST functionality is provided by Cisco Unified CME, provisioning of phones is automatic and most Cisco Unified CME features are available to the phones during periods of fallback, including hunt-groups, call park and access to Cisco Unity voice messaging services using SCCP protocol. The benefit is that Cisco Unified Communications Manager users will gain access to more features during fallback without any additional licensing costs.

This feature offers a limited telephony feature set during fallback mode. Customers who require the following features should continue to use Cisco Unified SRST, because these features are not supported with SRST fallback support using Cisco Unified CME.

- More than 240 phones during fallback service
- Cisco VG 248 Analog Phone Gateway support
- Secure voice fallback during SRST fallback service
- Simple, one-time configuration for SRST fallback service

Cisco Unified Communications Manager supports Cisco Unified IP phones at remote sites attached to Cisco Integrated Services Routers across the WAN. This new feature combines the many features available in Cisco Unified CME with the ability to automatically detect IP phone configurations that is available in Cisco Unified SRST to provide seamless call handling when communication with the Cisco Unified Communications Manager is interrupted.

When the system automatically detects a failure, Cisco Unified SRST uses Simple Network Auto Provisioning (SNAP) technology to auto-configure a branch office router to provide call processing for the Cisco Unified IP
phones that are registered with the router. When the WAN link or connection to the primary Cisco Unified Communications Manager is restored, call handling returns to the primary Cisco Unified Communications Manager.

A limited number of phone features are automatically detected at the time that call processing falls back to Cisco Unified CME in SRST Fallback Mode, and an advantage of SRST fallback support using Cisco Unified CME is that you can choose to prebuild a Cisco Unified CME configuration that contains a number of extensions (ephone-dns) with additional features that you want them to have for some or all of your extensions. The configurations will contain ephone-dn configurations but will not identify which phones (which MAC addresses) will be associated with which ephone-dns (extension numbers).

By copying and pasting a prebuilt configuration onto Cisco Unified CME routers at several locations, you can use the same overall configuration for sites that are identically laid out. For example, if you have a number of retail stores, each with five to ten checkout registers, you can use the same overall configuration in each store. You might use a range of extensions from 1101 to 1110. Stores with fewer than ten registers will simply not use some of the ephone-dn entries you provide in the configuration. Stores with more extensions than you have prebuilt will use the auto-provisioning feature to populate their extra phones. The only configuration variations from store to store will be the specific MAC addresses of the individual phones, which are added to the configurations at the time of fallback.

When a phone registers for SRST service with a Cisco Unified CME router and the router discovers that the phone was configured with a specific extension number, the router searches for an existing prebuilt ephone-dn with that extension number and then assigns that ephone-dn number to the phone. If there is no prebuilt ephone-dn with that extension number, the Cisco Unified CME system automatically creates one. In this way, extensions without prebuilt configurations are automatically populated with extension numbers and features as the numbers and features are “learned” by the Cisco Unified CME router in SRST mode when the phone registers to the router after a WAN link fails.

The SRST fallback support using Cisco Unified CME feature is able to interrogate phones to learn their MAC addresses and the extension-to-ephone relationships associated with each phone. This information is used to dynamically create and execute the Cisco Unified CME button command for each phone and automatically provision each phone with the extensions and features you want it to have.

The following sequence describes how Cisco Unified CME provides SRST services for Cisco Unified Communications Manager phones when they lose connectivity with the Cisco Unified Communications Manager and fall back to the Cisco Unified CME router in SRST mode:

**Before Fallback**

1. Phones are configured as usual in Cisco Unified Communications Manager.
2. The IP address of the Cisco Unified CME router is registered as the SRST reference on the Cisco Unified Communications Manager device pool.
3. SRST mode is enabled on the Cisco Unified CME router.
4. (Optional) Ephone-dns and features are prebuilt on the Cisco Unified CME router.

**During Fallback**

1. Phones that are enabled for fallback register to the default Cisco Unified CME router that has SRST mode enabled. Each display-enabled IP phone displays the message that has been defined using the system message command under telephony-service configuration mode. By default, this message is “Cisco Unified CME.”
2. While the fallback phones are registering, the router in SRST mode initiates an interrogation of the phones in order to learn their phone and extension configurations. The following information is acquired or “learned” by the router:
   • MAC address
   • Number of lines or buttons
   • Ephone-dn-to-button relationship
   • Speed-dial numbers

3. The option defined with the srst mode auto-provision command determines whether Cisco Unified CME adds the learned phone and extension information to its running configuration. If the information is added, it appears in the output when you use the show running-config command and is saved to NVRAM when you use the write command.
   • Use the srst mode auto-provision none command to enable the Cisco Unified CME router to provide SRST fallback services for Cisco Unified Communications Manager.
   • If you use the srst mode auto-provision dn or srst mode auto-provision all commands, the Cisco Unified CME router includes the phone configuration it learns from Cisco Unified Communications Manager in its running configuration. If you then save the configuration, the fallback phones are treated as locally configured phones on the Cisco Unified CME-SRST router which could adversely impact the fallback behavior of those phones.

4. While in fallback mode, Cisco Unified IP phones periodically attempt to reestablish a connection with Cisco Unified Communications Manager every 120 seconds (default). To manually reestablish a connection to Cisco Unified Communications Manager you can reboot the Cisco Unified IP phone.

5. When a connection is reestablished with Cisco Unified Communications Manager, Cisco Unified IP phones automatically cancel their registration with the Cisco Unified CME router in SRST mode. However, if a WAN link is unstable, Cisco Unified IP phones can bounce between Cisco Unified Communications Manager and the Cisco Unified CME router in SRST mode.

An IP phone connected to the Cisco Unified CME-SRST router over a WAN reconnects itself to Cisco Unified Communications Manager as soon as it can establish a connection to Cisco Unified Communications Manager over the WAN link. However, if the WAN link is unstable, the IP phone switches back and forth between Cisco Unified CME-SRST and Cisco Unified Communications Manager, causing temporary loss of phone service (no dial tone). These reconnect attempts, known as WAN link flapping issues, continue until the IP phone successfully reconnects itself back to Cisco Unified Communications Manager.

WAN link disruptions can be classified into two types: infrequent random outages that occur on an otherwise stable WAN, and sporadic, frequent disruptions that last a few minutes.

To resolve WAN-link flapping issues between Cisco Unified Communications Manager and SRST, Cisco Unified Communications Manager provides an enterprise parameter and a setting in the Device Pool Configuration window called Connection Monitor Duration. (Depending on system requirements, the administrator decides which parameter to use.) The value of the parameter is delivered to the IP phone in the XML configuration file.
   • Use the enterprise parameter to change the connection duration monitor value for all IP phones in the Cisco Unified Communications Manager cluster. The default for the enterprise parameter is 120 seconds.
• Use the Device Pool Configuration window to change the connection duration monitor value for all IP phones in a specific device pool.

A Cisco Unified IP phone will not reestablish a connection with the primary Cisco Unified Communications Manager at the central office if it is engaged in an active call.

After the First Fallback

Additional features can be set up, such as ephone hunt groups, which can contain learned extensions and prebuilt extensions. The complete core set of Cisco Unified CME phone features is available to the IP phones and extensions, whether they are learned or configured.

Figure 71: SRST Fallback Support using Cisco Unified CME shows a branch office with several Cisco Unified IP phones connected to a Cisco Unified CME router in SRST fallback mode. The router provides connections to both a WAN link and the PSTN. The Cisco Unified IP phones connect to their primary Cisco Unified Communications Manager at the central office via this WAN link. Cisco Unified CME provides SRST services for the phones when connectivity over the WAN link is interrupted.

Figure 71: SRST Fallback Support using Cisco Unified CME

Prebuilding Cisco Unified CME Phone Configurations

Prebuilding Cisco Unified CME ephone-dns allows you to create a set of directory numbers with extension numbers and some features, which will provide service during fallback that is similar to the service that is provided during normal operation. You can prebuild all of your normal extensions, a limited set of your extensions, or none of your extensions. Directory numbers that are not prebuilt will be populated with extension numbers and features as they are “learned” by the Cisco Unified CME router in SRST mode at the time of fallback.

An ephone-dn is the IP equivalent of a normal phone line in most cases. It represents a potential call connection and is associated with a virtual voice port and virtual dial peer. An ephone-dn has one or more extension or telephone numbers associated with it, which allow call connections to be made. An ephone-dn can be single-line,
which allows one call connection to be made at a time, or dual-line, which allows two simultaneous call connections. Dual-line ephone-dns are useful for features such as call transfer or call waiting, in which one call is put on hold to connect to another. Single-line ephone-dns are required for certain features such as intercom, paging, and message-waiting indication (MWI). For more information, see Cisco Unified CME Overview, on page 65.

If an ephone-dn is manually configured in Cisco Unified CME, incoming calls will always route to the manually configured ephone-dn in Cisco Unified CME rather than to Cisco Unified Communications Manager using the voip dial peer. To avoid incorrect routing, configure a higher preference for the voip dial peer than the preference for the prebuilt directory number. For configuration example, see Example for Prebuilding DNs, on page 1492.

### Auto provision Directory Numbers in SRST Fallback Mode

Cisco Unified CME 4.3 and later versions support octo-line directory numbers in SRST fallback mode. You can specify whether Cisco Unified CME in SRST fallback mode creates octo-line or dual-line directory numbers based on the phone type. For the Cisco Unified IP Phone 7902 or 7920, or an analog phone connected to the Cisco VG224 or Cisco ATA, the system creates a dual-line directory number; it creates an octo-line directory number for all other phone types. This applies only to the ephone-dns that are “learned” automatically from ephone configuration information, and not to ephone-dns that are manually configured in Cisco Unified CME.

### Configure SRST Fallback Mode

#### Enable SRST Fallback Mode

Restriction

Do not enable the `telephony-service setup` command or `auto assign` command on a Cisco Unified CME router that you are configuring for SRST fallback mode. If you used the `telephony-service setup` command previously on the router, you must remove any unwanted ephone directory numbers created by the setup process.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `srst mode auto-provision { all | dn | none }`
5. `srst dn line-mode { dual | dual-octo | octo | single }`
6. `srst dn template template-tag`
7. `srst ephone template template-tag`
8. `srst ephone description string`
9. `end`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
| ```
Router> enable
``` | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | ```
Router# configure terminal
``` | |
| **Step 3** telephony-service | Enters telephony-service configuration mode. |
| **Example:** | ```
Router(config)# telephony-service
``` | |
| **Step 4** srst mode auto-provision `{all | dn | none}` | Enables SRST mode for a Cisco Unified CME router. |
| **Example:** | • **all**—Includes information for learned ephones and ephone-dns in the running configuration. |
| ```
Router(config-telephony)# srst mode auto-provision none
``` | • **dn**—Includes information for learned ephone-dns in the running configuration. |
| | • **none**—Does not include information for learned ephones or learned ephone-dns in the running configuration. Use this keyword when you want Cisco Unified CME to provide SRST fallback services for Cisco Unified Communications Manager. | | | |
| **Step 5** srst dn line-mode `{dual | dual-octo | octo | single}` | (Optional) Specifies the line mode for ephone-dns in SRST mode on a Cisco Unified CME router. |
| **Example:** | • **dual**—SRST fallback ephone-dns are dual-line ephone-dns. |
| ```
Router(config-telephony)# srst dn line-mode dual-octo
``` | • **dual-octo**—SRST fallback ephone-dns are dual-line or octo-line, depending on the phone type. This keyword is supported in Cisco Unified CME 4.3 and later versions. |
| | • **octo**—SRST fallback ephone-dns are octo-line. This keyword is supported in Cisco Unified CME 4.3 and later versions. |
| | • **single**—SRST fallback ephone-dns are single-line ephone-dns. Default value. |

Note This command is used only when ephone-dns are learned at the time of fallback. It is ignored when you prebuild ephone-dn configurations.
Verify SRST Fallback Mode

Step 1
Use the `show telephony-service all` or the `show running-config` command to verify that SRST fallback mode has been set on this router.

Example:

```
telephony-service
 srst mode auto-provision all
 srst ephone template 5
 srst ephone description srst fallback auto-provision phone : Jul 07 2005 17:45:08
 srst dn template 8
 srst dn line-mode dual
 load 7960-7940 P00305000600
 max-ephones 30
 max-dn 60 preference 0
 ip source-address 10.1.68.78 port 2000
 max-redirect 20
 system message "SRST Mode: Cisco Unified CME"
 keepalive 10
 max-conferences 8 gain -6
 moh welcome.au
 create cnf-files version-stamp Jan 01 2002 00:00:00
```
Step 2
Use the `show telephony-service ephone-dn` command during fallback to review ephone-dn configurations. Learned ephone-dns are noted by a line stating that they were learned during SRST fallback.

Note
Learned ephone-dns do not appear in the output for the `show running-config` command if the `none` keyword is used in the `srst mode auto-provision` command.

Example:

```
ephone-dn 1 dual-line
  number 4008
  name 4008
  description 4008
  preference 0 secondary 9
  huntstop
  no huntstop channel
  call-waiting beep
  ephone-dn-template 8 
This DN is learned from srst fallback ephones
```

Step 3
Use the `show telephony-service ephone` command during fallback to review ephone configurations. Learned ephones are noted by a line stating that they were learned during SRST fallback.

Note
Learned ephones do not appear in the output for the `show running-config` command if the `none` keyword is used in the `srst mode auto-provision` command.

Example:

```
ephone 1
  mac-address 0112.80B3.9C16
  button 1:1
  multicast-moh
  ephone-template 5
  Always send media packets to this router: No
  Preferred codec: g711ulaw
  user-locale JP
  network-locale US
  Description: "YOUR Description" : Oct 11 2005 09:58:27
  This is a srst fallback phone
```

Prebuilding Cisco Unified CME Phone Configurations

You can optionally create a set of ephone-dns that are preconfigured with extension numbers and some features to provide service during fallback that is similar to the service that is provided during normal operation. Extensions that are not prebuilt are populated with extension numbers and features as they are “learned” by the Cisco Unified CME router in SRST mode at the time of fallback.

Note
To avoid incorrect routing when you prebuild ephone-dns for Cisco Unified Communications Manager phones in Cisco Unified CME, use the `preference` command in ephone-dn and voip-dial-peer configuration mode to create a higher preference (0 being the highest) for the voip dial peer than the preference for the prebuilt directory number. For configuration example, see Example for Prebuilding DNs, on page 1492.
See the following procedures to set up a few of the most common features to associate with phones in fallback mode:

- Create Directory Numbers for SCCP Phones, on page 260
- Enable Call Park or Directed Call Park, on page 1050
- Create an Ephone Template, on page 1394
- Create an Ephone-dn Template, on page 1395
- Configure Ephone-Hunt Groups on SCCP Phones, on page 1247

Note

Note that the `dial-peer hunt` command must be configured for hunt-selection order of explicit preference to support hunt groups during SRST fallback mode.

Modify Call Pickup for Fallback Support

An especially useful feature for fallback phones is modifying the behavior of the Pickup soft key in Cisco Unified CME to match that of the Pickup soft key in Cisco Unified Communications Manager. To modify the call pickup feature for fallback support, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `telephony-service`
4. `no service directed-pickup`
5. `create cnf-files`
6. `reset all`
7. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>telephony-service</code></td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>telephony-service</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# telephony-service</code></td>
<td></td>
</tr>
</tbody>
</table>
Step 4
Command or Action:
- `no service directed-pickup`

Example:

```
Router(telephony)# no service directed-pickup
```

Purpose:
(Optional) Disables directed call pickup and changes the behavior of the PickUp soft key so that a user pressing it invokes local group pickup rather than directed call pickup. This behavior is consistent with that of the PickUp soft key in Cisco Unified Communications Manager.

Note
For changes to the service-phone settings to be effective, the Sep*.conf.xml file must be updated with the `create cnf-files` command and the phone units must rebooted with the `reset` command.

Step 5
Command or Action:
- `create cnf-files`

Example:

```
Router(telephony)# create cnf-files
```

Purpose:
Builds XML configuration files for Cisco Unified IP phones.

Step 6
Command or Action:
- `reset all`

Example:

```
Router(telephony)# reset all
```

Purpose:
Resets all phones.

Step 7
Command or Action:
- `exit`

Example:

```
Router(telephony)# exit
```

Purpose:
Exits dial-peer configuration mode.

Configuration Examples for SRST Fallback Mode

Example for Enabling SRST Mode

The following example enables SRST mode on the Cisco Unified CME router. It specifies that learned fallback ephone-dns should be created in dual-line mode and use ephone-dn template 3 for their configuration parameters. Learned ephones will use the parameters in ephone template 5 and a description will be associated with the phones.

```
telephony-service
max-ephones 30
max-dn 60 preference 0
srst mode auto-provision all
srst dn line-mode dual
srst dn template 3
srst ephone description srst fallback auto-provision phone
srst ephone template 5

.
.
.
```

The following excerpt from the `show running-config` command displays the configuration of ephone 1, which was learned during fallback; the description is stamped with the date and time that the `show running-config`
command was used. The configuration of ephone 2, which was prebuilt rather than learned, is shown for comparison.

ephone 1
 description srst fallback auto-provision phone : Jul 07 2005 17:45:08
 ephone-template 5
 mac-address 100A.7052.2AAE
 button 1:1 2:2

ephone 2
 mac-address 1002.CD64.A24A
 type 7960
 button 1:3

The following excerpt from the `show running-config` command displays the configuration of ephone-dn 1 through ephone-dn 3. All three ephones are learned ephone-dns that are configured in dual-line mode and use ephone-dn template 5, as specified in the telephony-service configuration mode commands.

```
ephone-dn 1 dual-line
  number 7001
  description 7001
  name 7001
  ephone-dn-template 5
  This DN is learned from srst fallback ephones
  !
  !
ephone-dn 2 dual-line
  number 4005
  name 4005
  ephone-dn-template 5
  This DN is learned from srst fallback ephones
  !
  !
ephone-dn 3 dual-line
  number 4002
  label 4002
  name 4002
  ephone-dn-template 5
  This DN is learned from srst fallback ephones
```

Example for Provisioning Directory Numbers for Fallback Support

The following example sets up five ephone-dns and two call-park slots that are used for fallback phones.

```
ephone-dn 1
  number 1101
  name Register 1

ephone-dn 2
  number 1102
  name Register 2

ephone-dn 3
  number 1103
  name Register 3

ephone-dn 4
  number 1104
  name Register 4
```
Example for Configuring Templates for Fallback Support: Example

The following example creates ephone-dn template 3 and ephone template 5 that will be used with the SRST fallback support using Cisco Unified CME feature. Ephone-dn template 3 adds the fallback phones to pickup group 24 and specifies call forwarding for busy and no-answer conditions to extension 1100. Ephone template 5 defines two fastdial numbers that will appear as menu entries displayed from the Directories > Local Services > Personal Speed Dials option on the fallback phones, and also specifies the softkey layouts for the fallback phones.

ephone-dn-template 3
 pickup-group 24
 call-forward busy 1100
call-forward noan 1100 timeout 45
ephone-template 5
 fastdial 1 1101 name Front Register
 fastdial 2 918005550111 Headquarters
 softkeys idle Newcall Cfwdall Pickup
 softkeys seized Endcall Cfwdall Pickup
 softkeys alerting Endcall
 softkeys connected Endcall Hold Park Transfer

Example for Configuring Templates for Fallback Support: Example

Example for Enabling Hunt Groups for Fallback Support

The following example configures the dial peers to hunt in the following order: (1) explicit preference, (2) longest match in phone number, and (3) random selection. The dial-peer hunt command must be configured for hunt-selection order of explicit preference to support hunt groups during SRST fallback mode.

dial-peer hunt 2

The following example creates a peer hunt group with the pilot number 1111.

ephone-hunt 3 peer
 pilot 1111
 list 1101, 1102, 1103
 hops 3
timeout 25
final 1100
Example for Modifying Call Pickup for Fallback Support

The following example changes the behavior of the Pickup soft key to be like the one in Cisco Unified Communications Manager.

```cisco
telephony-service
  no service directed-pickup
  create cnf-files
```

Example for Prebuilding DNs

In the following partial example, the `preference` command in ephone-dn and voip-dial-peer configuration mode is configured to create a voip dial peer with a higher preference (0) than the preference (1) of the manually-configured directory number (ephone-dn 1).

```cisco
dial-peer voice 1002
  voip destination-pattern 1019
  .
  .
  preference 0 <<=====This dial peer has precedence and will match first.
ephone-dn 1
  number 1019
  preference 1 <<=====Configure lower preference for prebuilt DN.
```

Feature Information for SRST Fallback Mode

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octo-Line Directory Numbers</td>
<td>4.3</td>
<td>Support for octo-line directory numbers was added.</td>
</tr>
<tr>
<td>SRST Fallback Support Using Cisco Unified CME</td>
<td>4.0</td>
<td>SRST fallback support using Cisco Unified CME was introduced.</td>
</tr>
</tbody>
</table>
VRF Support

Virtual Route Forwarding (VRF) divides a physical router into multiple logical routers, each having its own set of interfaces and routing and forwarding tables. VRF support in voice networks can be used to split Cisco Unified Communications Manager Express (Cisco Unified CME) into multiple virtual systems for SIP and SCCP endpoints and TAPI-based client applications and softphones on your PC.

- Prerequisites for Configuring VRF Support, on page 1493
- Restrictions for Configuring VRF Support, on page 1495
- Information About VRF Support, on page 1496
- Configure VRF Support, on page 1497
- Configuration Examples for Configuring VRF Support, on page 1504
- Feature Information for VRF Support, on page 1511

Prerequisites for Configuring VRF Support

- For Multi-VRF support on SIP phones, Cisco Unified CME version has to be 10.5 and later.
- For Multi-VRF support on SCCP phones, Cisco Unified CME 7.0(1) or a later version must be configured on the Cisco router.
- VRF-Aware H.323 and SIP must be configured on the Cisco Unified CME router, including the following:
 - Up to five VRFs must be configured on the Cisco Unified CME router by using the `ip vrf` command. For configuration information, see VRF-Aware H.323 and SIP for Voice Gateways.
 - One of the groups must be designated as a global voice VRF (SIP Trunk) by using the `voice vrf` command. For configuration information, see VRF-Aware H.323 and SIP for Voice Gateways.

Example:

```
voice vrf voice-vrf
ip vrf data-vrf1
    rd 801:1
    route-target export 801:1
    route-target import 1000:1
!
ip vrf data-vrf2
    rd 802:1
    route-target export 802:1
    route-target import 1000:1
!
```
Prerequisites for Configuring VRF Support

```
ip vrf voice-vrf
  rd 1000:1
  route-target export 1000:1
  route-target import 801:1
  route-target import 802:1
!
```

- Interfaces on the router must be configured for the VRFs by using the `ip vrf forwarding` command.

Note

Only global voice VRF is supported for SIP trunk.

Example:

```
interface GigabitEthernet0/0.301
  encapsulation dot1Q 301
  ip vrf forwarding data-vrf1
  ip address 10.1.10.1 255.255.255.0
!
interface GigabitEthernet0/0.302
  encapsulation dot1Q 302
  ip vrf forwarding data-vrf1
  ip address 10.2.10.1 255.255.255.0
!
interface GigabitEthernet0/0.303
  encapsulation dot1Q 303
  ip vrf forwarding voice-vrf
  ip address 10.3.10.1 255.255.255.0
```

- VRFs must be mapped to IP addresses using DHCP. For configuration information, see DHCP Service, on page 128.

Example:

```
! no ip dhcp command required only if "ip vrf forward" is specified under ip dhcp
no ip dhcp use vrf connected pool===>
! Associate subnets with VRFs. Overlapping IP addresses are NOT supported.===>
ip dhcp pool vcme1
  network 10.1.10.0 255.255.255.0
  default-router 10.1.10.1
  option 150 ip 10.1.10.1
  class vcme1
    address range 10.1.10.10 10.1.10.250
!
ip dhcp pool vcme2
  network 10.2.10.0 255.255.255.0
  default-router 10.2.10.1
  option 150 ip 10.2.10.1
  class vcme2
    address range 10.2.10.10 10.2.10.250
```

For more configuration examples, see Example for Mapping IP Address Ranges to VRF Using DHCP, on page 1504.

- Dial peers for H323 and SIP trucks must be routed through the global voice VRF.
Dial peers are global resources belonging to the voice VRF and shared with and accessible from any VRF. There is no need to configure a dial peer for each individual VRF.

Restrictions for Configuring VRF Support

- Multi-VRF is not supported on Cisco 4000 Series Integrated Services Routers for Unified CME.
- For SIP phones in Cisco Unified CME: SIP proxy and registrar must be in the same VRF.
- IP-address overlap between VRFs is not supported.
- Cross-VRF video is not supported.
- The following call types are not supported for a voice VRF:
 - IP-to-IP gateway and gatekeeper configured on the same router.
 - IP-to-IP gateway with a VRF configured on one call leg and not on another call leg.
 - IP-to-IP gateway with one VRF configured for the H.323 call leg and a different VRF configured for the SIP call leg.
 - For H.323 calls, only TCP is supported. H.323 UDP signaling is not supported. SIP calls support both TCP and UDP signaling.
- The following features are not supported by on a VRF:
 - Call-fallback and RSVP features.
 - AAA and DNS components in voice-capable access routers. These routers communicate with AAA and DNS using the default routing table.
- If a global voice VRF is not configured, signaling and media packets are sent using the default routing table.
- Only the global voice VRF is supported for SIP trunk.
- Cisco Unity Express on the Cisco Unified CME router must belong to the global voice VRF.
- For Unified SIP CME, secondary source-address can’t be configured under a VRF group. Hence, redundancy isn’t supported under a VRF group.
Telnet is used to access Cisco Unity Express on the global voice VRF because the Service-Engine Service-Engine 1/0 session command is for non-VRF aware Cisco Unified CME only. To access the Cisco Unity Express module for defining voice-mail users on global voice VRF, telnet through the global voice VRF. For example: telnet 10.10.10.5 2066 /vrf vrf. For more information, see the “Installing Cisco Unity Express Software” chapter in the appropriate Cisco Unity Express Administrator Guide for Cisco Unified CME.

Information About VRF Support

VRF-Aware Cisco Unified CME

VRF implementations enable you to consolidate voice communication into one logically-partitioned network to separate voice and data communication on a converged multimedia network.

VRF-Aware Cisco Unified CME for SCCP Phones

In Cisco Unified CME 7.0(1) and later versions, VRF in voice networks can be used to share a Cisco Unified CME among multiple closed-users groups with different requirements. The actual call processing rules can be applied by voice on a per VRF basis. A virtual Cisco Unified CME on each VRF is a collection of phones in VRF groups that register in Cisco Unified CME through the VRF. All SCCP and SIP phones connected to Cisco Unified CME register through the global voice VRF. TAPI-based client applications and softphones on a PC must register through a data VRF and can communicate with phones on the voice VRF.

VRF Support on Cisco Unified CME provides the following enhancements to the VRF-Aware H.323 and SIP for Voice Gateways feature:

- Line side support for up to 5 VRFs.
- Interworks with the global voice VRF on an H323 or SIP Trunk.
- Line side VRF can be a global voice VRF.
- VRFs are assigned on a per-phone level.
- Support for cross-VRF shared-lines.

For configuration information, see Configure VRF Support, on page 1497.

Multi-VRF Support on Cisco Unified CME for SIP Phones

The Multi-VRF support on Cisco Unified CME for SIP Phones, provides the following enhancements:

- Up to five VRF groups can be configured on SIP line side under voice register global.
- Under voice register pool, we can configure a VRF group to which the phone is associated with.
- All SIP signaling and media traffic between CME and the phones would be routed on the specified VRF.
Configure VRF Support

Create VRF Groups for SCCP Phones

To configure up to five VRF groups for users and phones in Cisco Unified CME, perform the following steps for each group to be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. group group-tag [vrf vrfname]
5. ip source-address ip-address [port port]
6. url {authentication | directories | idle | information | messages | proxy-server | services} url
7. service phone webAccess 0
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>group group-tag [vrf vrfname]</td>
<td>Creates a VRF group for Cisco Unified CME users and phones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-telephony)# group 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• group-tag—Unique identifier for VRF group being configured. Range: 1 to 5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) vrf vrfname—Name of previously configured VRF to which this group is associated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• By default, VRF groups are associated with a global voice VRF unless otherwise specified by using the vrf vrfname keyword and argument combination.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ip source-address ip-address [port port]</td>
<td>Associates VRF group with Cisco Unified CME.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Example:

Router(config-tele-group)# ip source-address 10.1.10.1 port 2000

- *ip address* and *port* through which Cisco Unified IP phones communicate with Cisco Unified CME.

Step 6

```plaintext
url { authentication | directories | idle | information | messages | proxy-server | services } url
```

Example:

Router(config-tele-group)# url directories http://10.1.10.1/localdirectory

- Provisions uniform resource locators (URLs) for Cisco Unified IP phones connected to Cisco Unified CME.

Step 7

```plaintext
service phone webAccess 0
```

Example:

Router(config-tele-group)# service phone webAccess 0

- Enables webAccess for IP phones. This is required for 9.x firmware, since the web server is disabled by default. 8.x firmware and lower had the web server enabled by default.

Step 8

```plaintext
end
```

Example:

Router(config-tele-group)# end

- Returns to privileged EXEC mode.

Examples

The following partial output from the `show running-config` commands shows how to define three VRF groups for Cisco Unified CME. Group 1 is on the global voice VRF and the other two groups are on data VRFs.

```
telephony-service
  sds pfarm conference mute-on # mute-off #
  sds pfarm units 4
  sds pfarm transcode sessions 10
  sds pfarm tag 1 xcode101
  sds pfarm tag 2 conf103
  group 1
    ip source-address 10.1.10.1 port 2000
    url directories http://10.1.10.1/localdirectory
    !
  group 2 vrf data-vrf1
    ip source-address 10.2.10.1 port 2000
    !
  group 3 vrf data-vrf2
    ip source-address 10.3.10.1 port 2000
```

Create VRF Groups for SIP Phones

In Cisco Unified CME 10.5 release the VRF support for SIP phones is added. Up to five VRF groups can be configured on SIP line side under voice register global. Under voice register pool, we can configure VRF group to which the phone is associated with. To configure VRF support, perform the following steps:

SUMMARY STEPS

1. `enable`
2. configure terminal
3. voice register global
4. **group** group-tag **[vrf vrfname]**
5. **source-address** ip-address
6. **url** {authentication | directory | service} url
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 voice register global</td>
<td>Enters voice register global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# voice register global</td>
<td></td>
</tr>
<tr>
<td>Step 4 group group-tag [vrf vrfname]</td>
<td>Creates a VRF group for Cisco Unified CME users and phones.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-register-global)# group 1</td>
<td>• group-tag—Unique identifier for VRF group being configured. Range: 1 to 5.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) vrf vrfname—Name of previously configured VRF to which this group is associated.</td>
</tr>
<tr>
<td></td>
<td>• By default, this group is not associated with any VRF unless otherwise specified by using the vrf vrfname keyword and argument combination.</td>
</tr>
<tr>
<td></td>
<td>• Defines unique identifiers group between 1 to 5, which can then be applied on individual pools.</td>
</tr>
<tr>
<td></td>
<td>Note Use the shutdown command to temporarily shutdown the group without effecting the other groups. Use the no form of the command to enable the group.</td>
</tr>
<tr>
<td></td>
<td>• The default behavior is no shut.</td>
</tr>
<tr>
<td>Step 5 source-address ip-address</td>
<td>Associates VRF group with Cisco Unified CME.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-register-group)# source-address 10.1.10.1</td>
<td>• ip address through which Cisco Unified IP phones communicate with Cisco Unified CME.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>`url (authentication</td>
<td>directory</td>
</tr>
<tr>
<td>Example:</td>
<td><code>url directory</code></td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-register-group)# <code>url directory http://10.1.10.1/localdirectory</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Router(config-voice-register-group)# <code>exit</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following sample output displays how to configure SIP CME support for VRF by provisioning its source address under a group:

```
voice register global or
voice register dn
or
voice register pool
  mode  cme
  max-dn  100
  max-pool 100

  group 1 vrf voice-vrf1
    source-address 8.0.0.1
```

Add Cisco Unified CME SCCP Phones to a VRF Group

To add an SCCP Cisco Unified IP phone, TAPI-based client, or softphone in Cisco Unified CME to a VRF group, perform the following steps for each phone to be added.

Restriction

- All SCCP phones in Cisco Unified CME must register through the global voice VRF and must be added to the VRF group on the global voice VRF only.
- Analog phones connected to FXS ports on a IOS gateway must register through the global voice VRF and must be added to the VRF group on the global voice VRF only.
- TAPI-based client applications and softphones on a PC must register through the data VRF and must be added to a VRF group on a data VRF only.
- VRF groups do not support identical IP addresses or shared lines.

Before you begin

- All ephone configurations to be included in a VRF group must be already configured in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.
SUMMARY STEPS

1. enable
2. configure terminal
3. ephone phone-tag
4. description string
5. mac-address [mac-address]
6. group phone group-tag [tapi group-tag]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ephone phone-tag</td>
<td>Enters ephone configuration mode for a Cisco Unified IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ephone 11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>description string</td>
<td>(Optional) Includes descriptive text about the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# description cme-2801 srst</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>mac-address [mac-address]</td>
<td>Associates the MAC address of a Cisco Unified IP phone with an ephone configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# mac-address 0012.8055.d2EE</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>group phone group-tag [tapi group-tag]</td>
<td>Adds a phone, TAPI-based client, or softphone to a VRF group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• group-tag—Unique identifier for VRF group that was previously configured by using the group command in telephony-service configuration mode. Range: 1 to 5.</td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# group phone 1</td>
<td>• This command can also be configured in ephone-template configuration mode and applied to one or more phones. The ephone configuration has priority over the ephone-template configuration.</td>
</tr>
<tr>
<td>7</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-ephone)# end</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The following example shows how to add phones to VRF groups. Phones 1 and 3 are in VRF group 1 on the global voice VRF. Phone 1 TAPI client and softphone 3 are in group 1 on the data-vrf2. Phone 3 TAPI client and softphone 4 are in group 3 on data-vrf2.

```plaintext
telephony-service
  sdspsfarm conference mute-on # mute-off #
  sdspsfarm units 4
  sdspsfarm transcode sessions 10
  sdspsfarm tag 1 xcode101
  sdspsfarm tag 2 conf103
  group 1 vrf voice-vrf
    ip source-address 10.1.10.1 port 2000
    url directories http://10.1.10.1/localdirectory
  !
  group 2 vrf data-vrf1
    ip source-address 10.2.10.1 port 2000
  !
  group 3 vrf data-vrf2
    ip source-address 10.3.10.1 port 2000
  !
  ephone-template 1
    group phone 1 tapi 2
    ephone-template 2
    group phone 2
    ...
    ephone 1
    ephone-template 1
    ephone 2
    ephone-template 2
    ephone 3
    group phone 1 tapi 3
    ephone 4
    group phone 3
    ephone 201
    group phone 1
    type anl
```

Add Cisco Unified CME SIP Phones to a VRF Group

To add an SIP Cisco Unified IP phone, or softphone in Cisco Unified CME to a VRF group, perform the following steps for each phone to be added.

Before you begin

- All voice register pool configurations to be included in a VRF group must be already configured in Cisco Unified CME. For configuration information, see Configure Phones to Make Basic Call, on page 321.

SUMMARY STEPS

1. enable
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>voice register pool <code>pool-tag</code></td>
<td>Enters voice register pool configuration mode for a Cisco Unified IP phone.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# group</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>id <code>mac</code> <code>[mac-address]</code></td>
<td>Associates the MAC address of a Cisco Unified IP phone with an voice register pool configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# id mac 0012.8055.d2EE</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>group <code>group-tag</code></td>
<td>Adds a phone, or softphone to a VRF group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• <code>group-tag</code>—Unique identifier for VRF group that was previously configured by using the <code>group</code> command in voice register global configuration mode. Range: 1 to 5.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# group 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-register-pool)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows how to add SIP phones to VRF groups.

```
voice register global
  mode cme
  max-dn 100
  max-pool 100
  authenticate realm ccmsipline
  voicemail 24001
  phone-mode phone-only
  tftp-path flash:
  create profile sync 0000443960010126
```

Cisco Unified Communications Manager Express System Administrator Guide

1503
configuration hardware
group 1 vrf voice-vrf1
 source-address 8.0.0.1
!
group 2 vrf data-vrf1
 url authentication http://7.0.0.1/CCMCIP/authenticate.asp
 source-address 7.0.0.1
!
group 3 vrf data-vrf1
 source-address 10.104.45.142
!
group 4 vrf voice-vrf1
 source-address 9.42.29.101
!
!
voice register pool 1
 id mac A40C.C395.7B5C
 session-transport tcp
type 9971
 number 1 dn 1
 group 1
template 1
dtmf-relay rtp-nte
 username 14001 password 14001
 codec g711ulaw
 paging-dn 99
!

Configuration Examples for Configuring VRF Support

Example for Mapping IP Address Ranges to VRF Using DHCP

Duplicate IP addresses, with or without specifying a VRF, are not supported in Cisco Unified CME 7.0(1).

There are three ways to assign DHCP addresses: global address allocation; VRF pool; or individual host.

With a global address allocation scheme, you must use the no ip dhcp use vrf connected command.

no ip dhcp use vrf connected
!
ip dhcp pool vcme1
 network 209.165.201.10 255.255.255.224
 option 150 ip 209.165.201.9
default-router 209.165.201.9
class vcme1
 address range 209.165.201.1 209.165.201.30
!

The following example shows how to assign addresses from VRF pool vcme1.

ip dhcp use vrf connected
!
ip dhcp pool vcme1
 vrf data-vrf1
network 209.165.201.10 255.255.255.224
option 150 ip 209.165.201.9
default-router 209.165.201.9
class vcme1
 address range 209.165.201.1 209.165.201.30
!

The following example shows how to assign an address by an individual host. You must replace the first two hexadecimal digits of a host MAC address with 01.

ip dhcp pool phone3
 host 209.165.201.15 255.255.255.224
 client-identifier 0100.0ed7.4ce6.3d
 default-router 209.165.201.11
 option 150 ip 209.165.201.11
!

Example for Configuring VRF-Aware Hardware Conferencing

Hardware Conferencing with Internal DSP Farm

- The internal DSPFarm must be registered through a local loopback interface.
- The loopback allows Cisco Unified CME to access the media path in global routing table.

The boldface commands in the following configuration example show that the signaling and media paths are accessed through the global routing table and the loopback interface is in default routing table.

\begin{verbatim}
interface Loopback5
 ip address 12.5.10.1 255.255.255.255
!
 sccp local Loopback5
 sccp ccm 12.5.10.1 identifier 2 version 4.1
 sccp
 !
 sccp ccm group 2

bind interface Loopback5
 associate ccm 2 priority 1
 associate profile 103 register conf103
 associate profile 101 register xcode101
!

telephony-service
 sdspfarm conference mute-on # mute-off #
 sdspfarm units 4
 sdspfarm transcode sessions 10
 sdspfarm tag 1 xcode101
 sdspfarm tag 2 conf103
 group 1 vrf vrf1
 ip source-address 10.1.10.1 port 2000
 !
 group 2 vrf vrf2
 ip source-address 10.2.10.1 port 2000
 !
 group 3 vrf vrf3
 ip source-address 10.3.10.1 port 2000
 !
 group 4 vrf vrf4
 ip source-address 10.4.10.1 port 2000
\end{verbatim}
group 5
 ip source-address 12.5.10.1 port 2000
 !
 conference hardware
 max-ephones 240
 max-dn 480
 voicemail 7710
 max-conferences 8 gain -6

Hardware Conferencing with External DSP Farm

- Configure DSP farm as usual on a Cisco router.
- The external DSP farm must be registered to Cisco Unified CME through the interface or subinterface assigned to the global voice VRF. Make sure the connection path is coming in through the voice VRF.
- The router on which the external DSP farm is configured does not have to be VRF-aware.

For information about configuring DSP Farms, see Configure Transcoding Resources, on page 475.

Example for Configuring Cisco Unity Express on Global Voice VRF

```
voice vrf vrf2
    ip vrf data-vrf2
    rd 100:2
    route-target export 100:2
    route-target import 100:2
    !
    Interface loop back 0
    ip vrf forwarding data-vrf2
    Ip address 21.10.10.2
    !<==The following config puts CUE in the voice vrf. Service-engine interface and service-module must have an IP address.==>
    !
    interface Service-Engine1/0
    ip vrf forwarding voice-vrf3 ip address 21.10.10.5 255.255.255.0
    service-module ip address 21.10.10.6 255.255.255.0
    service-module ip default-gateway 21.10.10.2!
    ip route 21.10.10.6 255.255.255.255 Service-Engine1/0
    ...
    line 66
    no activation-character
```

Hardware Conferencing with Internal DSP Farm

- The internal DSP Farm must be registered through a local loopback interface.
- The loopback allows Cisco Unified CME to access the media path in global routing table.

The boldface commands in the following configuration example show that the signaling and media paths are accessed through the global routing table and the loopback interface is in default routing table.

```
interface Loopback5
    ip address 12.5.10.1 255.255.255.255
    !
    sccp local Loopback5
    sccp ccm 12.5.10.1 identifier 2 version 4.1
    sccp
```
Example for Configuring Multi-VRF Support for Cisco Unified CME SIP Phones

Hardware Conferencing with External DSP Farm

- Configure DSP farm as usual on a Cisco router.
- The external DSP farm must be registered to Cisco Unified CME through the interface or subinterface assigned to the global voice VRF. Make sure the connection path is coming in through the voice VRF.
- The router on which the external DSP farm is configured does not have to be VRF-aware.

For information about configuring DSP Farms, see Configure Transcoding Resources, on page 475.

Example for Configuring Multi-VRF Support for Cisco Unified CME SIP Phones

The following sample output displays CME configuration which enables the user to accept registrations from multiple VRFs.

```plaintext
voice register global
  mode cme
  max-dn 100
  max-pool 100
  authenticate realm ccmsipline
  voicemail 24001
  phone-mode phone-only
tftp-path flash:
create profile sync 0000443960010126
```
conference hardware
group 1 vrf voice-vrf1
 source-address 8.0.0.1
!
group 2 vrf data-vrf1
 url authentication http://7.0.0.1/CCMCIP/authenticate.asp
 source-address 7.0.0.1
!
group 3 vrf data-vrf1
 source-address 10.104.45.142
!
group 4 vrf voice-vrf1
 source-address 9.42.29.101
!
!
voice register dn 1
 number 14001
 name voicevrf-ph1
!
voice register dn 2
 number 14002
 allow watch
 name datavrf-ph1
!
voice register dn 3
 number 14003
 allow watch
 name voicevrf-ph2
!
voice register dn 4
 voice-hunt-groups login
 number 14004
 name Jabber-Win
!
voice register dn 5
 number 14005
 name Jabber-Android
!
voice register dn 6
 number 14006
 allow watch
 mobility
 snr 24001 delay 5 timeout 50
!
voice register dn 7
 number 14007
 name voicevrf-7841
!
voice register dn 8
 number 14008
 name jabbed-android-2
!
voice register dn 10
 number 14010
 allow watch
 name intervrf-shared-line
 shared-line max-calls 8
!
voice register dn 11
 number 14011
 shared-line
!
voice register dn 12
 number 15002
name em-logged-in
!
voice register dn 21
 number 1101
 name CME1-Phone1
!
voice register dn 22
 number 1102
 name CME1-Phone2
!
voice register template 1
 softkeys idle Newcall Pickup Redial Cfwdall DND
 softkeys ringIn Answer DND iDivert
 softkeys connected Endcall Hold Mobility iDivert Park
!
voice register pool 1
 id mac A40C.C395.7B5C
 session-transport tcp
type 9971
 number 1 dn 1
 group 1
template 1
dtmf-relay rtp-nnte
 username 14001 password 14001
codec g711ulaw
 paging-dn 99
!
voice register pool 2
 fastdial 1 14003 name voice-vrf1-ph1
 id mac ACA0.16FC.9742
type 9971
 number 1 dn 2
 number 2 dn 10
 group 2
template 1
 presence call-list
dtmf-relay rtp-nnte
 codec g711ulaw
 paging-dn 99
 blf-speed-dial 1 13001 label "13001"
 blf-speed-dial 2 14006 label "14006"
!
voice register pool 3
 fastdial 1 14002 name datavrf,ph1
 id mac 2893.FEA3.2557
type 9951
 number 1 dn 3
 number 2 dn 10
 group 1
template 1
dtmf-relay rtp-nnte
 username 14003 password 14003
codec g711ulaw
 blf-speed-dial 1 14002 label "14002"
 blf-speed-dial 2 14006 label "14006"
 blf-speed-dial 3 13001 label "13001"
!
voice register pool 4
 id device-id-name arunsrin
type Jabber-CSF-Client
 number 1 dn 4
 group 3
dtmf-relay rtp-nnte
 username arunsrin password cisco
codec g711ulaw
!
voice register pool 5
 registration-timer max 720 min 660
 id mac 980C.821B.26CD
 session-transport tcp
 type Jabber-Android
 number 1 dn 5
 group 3
dtmf-relay rtp-npe
 username frodo password cisco
 codec g711ulaw
!
voice register pool 6
 busy-trigger-per-button 40
 id mac 6C41.6A36.900D
 type 7821
 number 1 dn 6
 group 1
template 1
 presence call-list
dtmf-relay rtp-npe
 codec g711ulaw
 paging-dn 99
!
voice register pool 7
 busy-trigger-per-button 40
 id mac 6C41.6A36.9110
 session-transport tcp
 type 7841
 number 1 dn 7
 group 2
dtmf-relay rtp-npe
 codec g711ulaw
 paging-dn 99
!
voice register pool 8
 registration-timer max 720 min 660
 id mac 980C.821A.5D28
 session-transport tcp
 type Jabber-Android
 number 1 dn 8
 group 3
dtmf-relay rtp-npe
 username pippin password cisco
 codec g711ulaw
!
voice register pool 21
 id mac 1000.1000.1101
 type 7970
 number 1 dn 21
 group 4
 username 1101 password 1101
 codec g711ulaw
!
voice register pool 22
 id mac 1000.1000.1102
 type 7970
 number 1 dn 21
 group 4
 username 1102 password 1102
 codec g711ulaw
!
voice hunt-group 1 parallel
phone-display
final 13002
list 14001,14002,14003
timeout 3
pilot 14999
!
!
voice hunt-group 2 parallel
final 14001
list 14004,*,14002
timeout 5
pilot 14998
name test-vhg
!
!
voice logout-profile 1
pin 1234
user 14002 password 14002
number 14002 type normal
speed-dial 1 13002 label "ephone2"
!
voice user-profile 1
user me password me
number 15002 type normal
!
!
voice translation-rule 217351
rule 1 /^24/ /9924\1/
!
!
voice translation-profile 217351

Feature Information for VRF Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 119: Feature Information for Virtual Route Forwarding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF Support in Cisco Unified CME</td>
<td>7.0(1)</td>
<td>VRF supports Cisco Unified CME, conferencing, transcoding, and RSVP components. VRF also allows soft phones in data VRF resources to communicate with phones in a VRF voice gateway.</td>
</tr>
</tbody>
</table>
CHAPTER 52

Configure the XML API

This chapter describes the eXtensible Markup Language (XML) Application Programming Interface (API) support available in Cisco Unified Communications Manager Express (Cisco Unified CME).

- Information About XML API, on page 1513
- Configure XML API, on page 1552
- Configuration Examples for XML API, on page 1557
- Where to Go Next, on page 1557
- Feature Information for XML API, on page 1558

Information About XML API

XML API Definition

An XML API provides an interface to Cisco Unified CME that allows an external network management system (NMS) to configure and monitor Cisco Unified CME operations.

XML API Provision Using IXI

In previous versions of Cisco Unified CME, the XML interface provided configuration and monitoring functions using the HTTP port. The XML interface ran under the HTTP server process, simultaneously parsing incoming XML requests on demand and processing them.

In Cisco Unified CME 4.0 and later versions, the XML interface is provided through the Cisco IOS XML Infrastructure (IXI), in which the parser and transport layers are separated from the application. This modularity provides scalability and enables future XML support to be developed. In Cisco Unified CME 4.0 and later versions, all Cisco Unified CME features have XML support.

XML API for Cisco Unified CME

The eXtensible Markup Language (XML) Application Programming Interface (API) is supported in Cisco Unified Communications Manager Express (Cisco Unified CME) 8.5 and later versions.
Target Audience

This chapter assumes that you have knowledge of a high-level programming language, such as C++, Java, or an equivalent language. You must also have knowledge or experience in the following areas:

- TCP/IP Protocol
- Hypertext Transport Protocol
- Socket programming
- XML

In addition, users of this programming guide must have a firm grasp of XML Schema, which is used to define the AXL requests, responses, and errors. For more information on XML Schema, see XML Schema Part 0: Primer Second Edition.

Prerequisites

- For Cisco Unified CME: XML API must be configured in Cisco Unified CME. For configuration information, see Configure the XML API, on page 1513 of the Cisco Unified CME Administrator Guide.

Information on XML API for Cisco Unified CME

The XML API support in Cisco Unified CME provides a mechanism for inserting, retrieving, updating, and removing data from the Cisco router using XML.

Request methods are XML structures that are passed to the XML server in Cisco Unified CME and Cisco Unified SRST applications using HTTP POST. The XML server receives the XML structures and executes the request. If the request completes successfully, then the appropriate XML response is returned.

Note

Querying for multiple entities in a single request can fail because of the XML buffer size limitation. Because of this limitation, the application must adjust its granularity to query one entity per request.

Table 120: XML API Methods: Request and Response, on page 1514 lists the request and response methods for the XML API along with the purpose and parameters for each method.

<table>
<thead>
<tr>
<th>Description</th>
<th>Request</th>
<th>Parameter</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execute configuration</td>
<td>ISexecCLI</td>
<td>command</td>
<td>ISexecCLIResult</td>
</tr>
<tr>
<td>commands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save router configuration to nvram</td>
<td>ISSaveConfig</td>
<td>—</td>
<td>ISSaveConfigResult</td>
</tr>
<tr>
<td>SCCP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Request</td>
<td>Parameter</td>
<td>Response</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Get system status for Cisco Unified CME or Cisco Unified SRST.</td>
<td>ISgetGlobal</td>
<td>—</td>
<td>ISGlobal</td>
</tr>
<tr>
<td>Get status of an IP phone</td>
<td>ISgetDevice</td>
<td>Any combination of the following: ISDevID ISDevName ISKeyword: • all • allTag • available</td>
<td>ISDevices</td>
</tr>
<tr>
<td>Get configuration of a phone template</td>
<td>ISDeviceTemplate</td>
<td>Any combination of the following: ISDevTemplateID ISKeyword: • all • allTag • available</td>
<td>ISDeviceTemplates</td>
</tr>
<tr>
<td>Get configuration of an extension</td>
<td>ISgetExtension</td>
<td>Any combination of the following: ISExtID ISExtNumber ISKeyword: • all • allTag • available</td>
<td>ISExtensions</td>
</tr>
<tr>
<td>Get configuration of an extension template</td>
<td>ISExtensionTemplate</td>
<td>Any combination of the following: ISExtTemplateID ISKeyword: • all • allTag • available</td>
<td>ISExtensionTemplates</td>
</tr>
<tr>
<td>Description</td>
<td>Request</td>
<td>Parameter</td>
<td>Response</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Get user information</td>
<td>ISgetUser</td>
<td>ISuserID</td>
<td>ISUser</td>
</tr>
<tr>
<td>Get user profile information</td>
<td>ISgetUserProfile</td>
<td>Any combination of the following:</td>
<td>ISUserProfiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISUserProfileID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISuserID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISKeyword:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• allTag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• available</td>
<td></td>
</tr>
<tr>
<td>Get configuration for utility directory</td>
<td>ISgetUtilityDirectory</td>
<td>—</td>
<td>ISUtilityDirectory</td>
</tr>
<tr>
<td>SIP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get system status for a Cisco Unified CME running SIP</td>
<td>ISgetSipGlobal</td>
<td>—</td>
<td>ISSipGlobal</td>
</tr>
<tr>
<td>Get status of an IP phone</td>
<td>ISgetSipDevice</td>
<td>Any combination of the following:</td>
<td>ISSipDevices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPoolID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISPoolName</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISKeyword:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• allTag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• available</td>
<td></td>
</tr>
<tr>
<td>Get configuration of an extension</td>
<td>ISgetSipExtension</td>
<td>Any combination of the following:</td>
<td>ISSipExtensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISVoiceRegDNID</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISVoiceRegNumber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISKeyword:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• allTag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• available</td>
<td></td>
</tr>
</tbody>
</table>
Examples for XML API Methods

This section contains examples for the following XML API methods:

System
- ISexecCLI
- ISSaveConfig

SCCP IP Phones
- ISgetGlobal
- ISgetDevice
- ISgetDeviceTemplate
- ISgetExtension
- ISgetExtensionTemplate
- ISgetUser
- ISgetUserProfile
- ISgetUtilityDirectory

SIP IP Phones
• ISgetVoiceRegGlobal
• ISgetSipDevice
• ISgetSipExtension
• ISgetSessionServer
• ISgetVoiceHuntGroup
• ISgetPresenceGlobal

ISexecCLI

Use **ISexecCLI** to execute a list of Cisco IOS commands on the Cisco router. The request must include the CLI parameter with the Cisco IOS command string for each command to be executed.

Request

```xml
<SOAP-ENV:Envelope>
  <SOAP-ENV:Body>
    <axl>
      <request xsi:type="ISexecCLI">
        <ISexecCLI>
          <CLI>ephone 4</CLI>
          <CLI>mac-address 000D.BC80.EB51</CLI>
          <CLI>type 7960</CLI>
          <CLI>button 1:1</CLI>
        </ISexecCLI>
      </request>
    </axl>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

Response

The value of “0” for ISexecCLIResponse in the following example is the response when the request is completed successfully.

```xml
<SOAP-ENV:Envelope>
  <SOAP-ENV:Body>
    <axl>
      <response xsi:type="ISexecCLIResponse" >
        <ISexecCLIResponse>0</ISexecCLIResponse>
        <ISexecCLIError></ISexecCLIError>
      </response>
    </axl>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

The following example shows the response when the request fails. The value of ISexecCLIResponse identifies which line number in the request failed. Any subsequent commands in the list of commands are not executed. All preceding commands in the list were executed.

```xml
<SOAP-ENV:Envelope>
  <SOAP-ENV:Body>
    <axl>
      <response xsi:type="ISexecCLIResponse" >
        <ISexecCLIResponse>0</ISexecCLIResponse>
        <ISexecCLIError></ISexecCLIError>
      </response>
    </axl>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
ISSaveConfig

Use **ISSaveConfig** to save the running configuration on a router to the startup configuration on the same router.

Request

```
<request>
  <ISSaveConfig />
</request>
```

Response

The following example shows that the **ISSaveConfig** request was successfully completed.

```
<response xsi:type="ISSaveConfig">
  <ISSaveConfigResult>success</ISSaveConfigResult>
</request>
```

The following example shows the response when the request fails.

```
<response xsi:type="ISSaveConfig">
  <ISSaveConfigResult>fail</ISSaveConfigResult>
</request>
```

The following example shows that response when the request is delayed, typically because there is another terminal session connected to Cisco Unified CME. The running configuration will be saved later by a background process after all other terminal sessions are disconnected.

```
<response xsi:type="ISSaveConfig">
  <ISSaveConfigResult>delay</ISSaveConfigResult>
</request>
```

ISgetGlobal

Use **ISgetGlobal** to retrieve system configuration and status information for the Cisco Unified CME system.

Request

```
<request xsi:type="ISgetGlobal">
  <ISgetGlobal></ISgetGlobal>
</request>
```

Response

```
<response>
  <ISGlobal>
    <ISAddress>10.4.188.90</ISAddress>
    <ISMode>ITS</ISMode>
    <ISVersion>7.2</ISVersion>
    <ISDeviceRegistered>0</ISDeviceRegistered>
    <ISPeakDeviceRegistered>1</ISPeakDeviceRegistered>
  </ISGlobal>
</response>
```
<ISPeakDeviceRegisteredTime>9470</ISPeakDeviceRegisteredTime>
<ISKeepAliveInterval>30</ISKeepAliveInterval>
<ISConfiguredDevice>32</ISConfiguredDevice>
<ISConfiguredExtension>74</ISConfiguredExtension>
<ISServiceEngine>0.0.0.0</ISServiceEngine>
<ISName>ngm-2800</ISName>
<ISPortNumber>2000</ISPortNumber>
<ISMaxConference>8</ISMaxConference>
<ISMaxRedirect>10</ISMaxRedirect>
<ISMaxEphone>48</ISMaxEphone>
<ISMaxDN>180</ISMaxDN>
<ISVoiceMail>6050</ISVoiceMail>
<ISUrlServices>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_INFO</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_DIRECTORIES</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_MESSAGES</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_SERVICES</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_PROXYSERV</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_IDLE</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
 <ISUrlService>
 <ISUrlType>EPHONE_URL_AUTH</ISUrlType>
 <ISUrlLink>http://1.4.188.101/localdir</ISUrlLink>
 </ISUrlService>
</ISUrlServices>
<global-after-hours>
 <block_list>
 <block_item>
 <pattern_id>1</pattern_id>
 <blocking_pattern>1234</blocking_pattern>
 <blocking_option />
 </block_item>
 <block_item>
 <pattern_id>2</pattern_id>
 <blocking_pattern>2345</blocking_pattern>
 <blocking_option>7-24</blocking_option>
 </block_item>
 </block_list>
 <date_list>
 <date_item>
 <month>Nov</month>
 <day_of_month>12</day_of_month>
 <start_time>12:00</start_time>
 <stop_time>13:00</stop_time>
 </date_item>
 </date_list>
</global-after-hours>
<select>
<no-auto-match>true</no-auto-match>
</select>
<application_system>true</application_system>
<redirect_system>true</redirect_system>
<call-park>
<caller-id>
<block_code>*1</block_code>
<name-only>true</name-only>
</caller-id>
<calling-number>
<initiator>true</initiator>
<local>false</local>
<secondary>false</secondary>
</calling-number>
<cnf-file>
<location>
<TFTP>flash:/its/</TFTP>
<flash>true</flash>
</location>
<option>perphonetype</option>
</cnf-file>
<default_codec>Unknown</default_codec>
<conference>
<hardware>true</hardware>
</conference>
<date-format>mm-dd-yy</date-format>
<device-security-mode>none</device-security-mode>
<dialplan-pattern_list>
<dialplan-pattern_item>
<index>1</index>
<pattern>1234</pattern>
<extension-length>4</extension-length>
<extension-pattern />
<demote>false</demote>
<no-reg>false</no-reg>
</dialplan-pattern_item>
<dialplan-pattern_item>
<index>2</index>
<pattern>1233</pattern>
<extension-length>4</extension-length>
<extension-pattern />
<demote>true</demote>
<no-reg>false</no-reg>
</dialplan-pattern_item>
<dialplan-pattern_item>
<index>3</index>
<pattern>1232</pattern>
<extension-length>4</extension-length>
<extension-pattern>1111</extension-pattern>
<demote>false</demote>
<no-reg>false</no-reg>
</dialplan-pattern_item>
<dialplan-pattern_item>
<index>4</index>
<pattern>1231</pattern>
<extension-length>4</extension-length>
<extension-pattern />
<demote>false</demote>
<no-reg>true</no-reg>
</dialplan-pattern_item>
</dialplan-pattern_list>
<directory>
<entry_list>
Cisco Unified Communications Manager Express System Administrator Guide
1522
Configure the XML API
ISgetGlobal
<entry_item>
 <tag>1</tag>
 <number>1234</number>
 <name>directory</name>
</entry_item>
<entry_list>
 <option>last-name-first</option>
</entry_list>
<directory>
 <dn-webedit>false</dn-webedit>
</directory>

 <external>true</external>
 <keep-history>true</keep-history>
 <logout>12:00 00:00 -1:1</logout>

<ephone-reg>true</ephone-reg>
<extension-assigner>
 <tag-type>provision-tag</tag-type>
</extension-assigner>
<fac>
 <standard>true</standard>
 <custom_list>
 <custom_item>
 <fac_string>callfwd all</fac_string>
 <fac_list>**1</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>callfwd cancel</fac_string>
 <fac_list>**2</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>pickup local</fac_string>
 <fac_list>**3</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>pickup group</fac_string>
 <fac_list>**4</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>pickup direct</fac_string>
 <fac_list>**5</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>park</fac_string>
 <fac_list>**6</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 <custom_item>
 <fac_string>dnd</fac_string>
 <fac_list>**7</fac_list>
 <alias>0</alias>
 <alias_map />
 </custom_item>
 </custom_list>
</fac>
<fxo>
 <hook-flash>true</hook-flash>
</fxo>
<hunt-group>
 <logout>HLog</logout>
</hunt-group>
<report>
 <url_info>
 <prefix>tftp://223.255.254.253/ngm/huntgp/2800/data</prefix>
 </url_info>
</report>
<low>-1</low>
<high>0</high>
</hg_suffix>
</url_info>
<delay>0</delay>
<duration>24</duration>
</internal>
<duration>5</duration>
</hg_suffix>
<low>1</low>
<high>5</high>
</hg_suffix>
</internal>
</report>
</hunt-group>
<internal-call>
<moh-group>-1</moh-group>
</internal-call>
</ip>
</qos>
<dscp_list>
<dscp_item>
<index>0</index>
<af11>media</af11>
</dscp_item>
<dscp_item>
<index>1</index>
<af12>signal</af12>
</dscp_item>
<dscp_item>
<index>2</index>
<af13>video</af13>
</dscp_item>
<dscp_item>
<index>3</index>
<af21>service</af21>
</dscp_item>
<dscp_item>
<index>4</index>
<af22>media</af22>
</dscp_item>
<dscp_item>
<index>5</index>
<af23>media</af23>
</dscp_item>
<dscp_item>
<index>6</index>
<af31>media</af31>
</dscp_item>
<dscp_item>
<index>7</index>
<af32>media</af32>
</dscp_item>
<dscp_item>
<index>8</index>
<af33>media</af33>
</dscp_item>
<dscp_item>
<index>9</index>
<af41>media</af41>
</dscp_item>
<dscp_item>
<index>10</index>
<af42>media</af42>
</dscp_item>
</dscp_item>
</dscp_item>

</qos>
<source-address>
<primary>10.4.188.90</primary>
<port>2000</port>
<secondary>1.4.188.90</secondary>
<rehome>0</rehome>
<strict-match>true</strict-match>
</source-address>
</ip>

<keepalive>
<timeout>30</timeout>
<aux_timeout>30</aux_timeout>
</keepalive>

<live-record>999</live-record>
<load_list>
<phone_7914>hehe</phone_7914>
<phone_7915-12>hehe</phone_7915-12>
<phone_7915-24>hehe</phone_7915-24>
<phone_7916-12>hehe</phone_7916-12>
<phone_7916-24>hehe</phone_7916-24>
<phone_125P>hehe</phone_125P>
<phone_7962>hehe</phone_7962>
</load_list>
Configure the XML API

ISgetGlobal
<stop_time>16:00</stop_time>
</day_item>
<day_item>
<index>3</index>
<day_of_week>Tue</day_of_week>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</day_item>
<day_item>
<index>4</index>
<day_of_week>Wed</day_of_week>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</day_item>
<day_item>
<index>5</index>
<day_of_week>Thu</day_of_week>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</day_item>
<day_item>
<index>6</index>
<day_of_week>Fri</day_of_week>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</day_item>
<day_item>
<index>7</index>
<day_of_week>Sat</day_of_week>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</day_item>
</day_list>
<everyday>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</everyday>
<weekday>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</weekday>
<weekend>
<start_time>12:00</start_time>
<stop_time>16:00</stop_time>
</weekend>
</night-service>
<pin>1234</pin>
<pin_override>true</pin_override>
<privacy>true</privacy>
<privacy-on-hold>false</privacy-on-hold>
<protocol>
</protocol>
<sdspfarm>
<conference_options>
</conference_options>
<mute-on>124</mute-on>
<mute-off>234</mute-off>
<hardware>false</hardware>
</conference_options>
<units>4</units>
<tag_list>
<tag_item>
<tag>1</tag>
</tag_item>
<device>mtp-conf</device>
</tag_item>
</tag_list>
<transcode>
<sessions>4</sessions>
</transcode>
<unregister>
<force>1</force>
</unregister>
</sdspfarm>
<secondary-dialtone>4567</secondary-dialtone>
<secure-signaling>
<trustpoint />
</secure-signaling>
<server-security-mode />
<service>
<local-directory>true</local-directory>
<local-directory_authenticate>false</local-directory_authenticate>
<dss>false</dss>
<dnis>
<overlay>false</overlay>
<dir-lookup>false</dir-lookup>
</dnis>
<directed-pickup>true</directed-pickup>
<directed-pickup_gpickup>false</directed-pickup_gpickup>
</service>
<phone_list>
<phone_item>
<index>1</index>
<phone_params>displayOnTime</phone_params>
<phone_text>time.xml</phone_text>
</phone_item>
</phone_list>
<ssh>
<userid>ngm</userid>
<password>ngm</password>
</ssh>
<standby>
<user>ngm</user>
<password>ngm</password>
</standby>
<system_message>LITTLE TWIN STARS (2800)</system_message>
<tftp-server-credentials>
<trustpoint />
</tftp-server-credentials>
<time-format>12</time-format>
<time-webedit>false</time-webedit>
<time-zone>0</time-zone>
<timeouts>
<busy_timeout>10</busy_timeout>
<interdigit_timeout>10</interdigit_timeout>
<ringing_timeout>180</ringing_timeout>
<transfer-recall_timeout>0</transfer-recall_timeout>
<night-service-bell_timeout>12</night-service-bell_timeout>
</timeouts>
<transfer-digit-collect>new-call</transfer-digit-collect>
<transfer-pattern_list>
<transfer-pattern_item>
<index>1</index>
<pattern>....</pattern>
<blind>false</blind>
</transfer-pattern_item>
<transfer-pattern_item>
<index>2</index>

Use **ISgetDevice** to retrieve configuration and status information for IP phones.

Use any combination of the following parameters in the request message to specific one or more SCCP phones:

- **ISDevID** with the ephone tag number of SCCP phone to be queried.
- **ISDevName** with the MAC address of SCCP phone to be queried.
- **ISKeyword** with one of the following options:
 - **all**—All configured SCCP phones
 - **allTag**—Ephone tag numbers for all SCCP phones configured
 - **available**—Next available ephone tag number to be configured

Request:

```xml
<request xsi:type="ISgetDevice">
  <ISgetDevice>
    <ISDevID>1</ISDevID>
    <ISDevName>SEP0012DA8AC43D</ISDevName>
  </ISgetDevice>
</request>
```
Response

<response>
<ISDevices>
<ISDevice>
<ISDevID>1</ISDevID>
<ISDevName>SEP0016C7C7AF9D</ISDevName>
<ISDevType>Others</ISDevType>
<ISconfigDevType>7911</ISconfigDevType>
<ISDevUsername>test</ISDevUsername>
<ISDevLineButtons>
<ISDevLineButton>
<ISDevLineButtonID>1</ISDevLineButtonID>
<ISDevLineButtonMode>MONITOR_RING</ISDevLineButtonMode>
</ISDevLineButton>
</ISDevLineButtons>
<after-hours_exempt>false</after-hours_exempt>
<after-hours_login>false</after-hours_login>
<block-blind-xf-fallback>false</block-blind-xf-fallback>
<capf-ip-in-cnf>false</capf-ip-in-cnf>
<codec>
<codec_name>g711ulaw</codec_name>
<dspfarm-assist>false</dspfarm-assist>
</codec>
<adhoc_conference>
<add-mode>
<creator>true</creator>
</add-mode>
<admin>true</admin>
<drop-mode>
<creator>false</creator>
<local>false</local>
</drop-mode>
</adhoc_conference>
<fastdial_list>
<fastdial_item>
<fastdial>1</fastdial>
<fastdial_number>1234</fastdial_number>
<fastdial_name>home LINE</fastdial_name>
</fastdial_item>
</fastdial_list>
<feature-button_list>
<feature-button_item>
<feature-button>1</feature-button>
<feature_type>Dnd</feature_type>
</feature-button_item>
<feature-button_item>
<feature-button>2</feature-button>
<feature_type>Flash</feature_type>
</feature-button_item>
</feature-button_list>
<keep-conference>
<hangup>true</hangup>
<drop-last>false</drop-last>
<endcall>true</endcall>
<local-only>true</local-only>
</keep-conference>
<keypad-normalize>false</keypad-normalize>
<keyphone>false</keyphone>
<mtp>true</mtp>
<multicast-moh>true</multicast-moh>
</ISDevice>
</ISDevices>
</response>
Configure the XML API

ISgetDevice

<night-service_bell>true</night-service_bell>
<privacy />
<privacy-button>false</privacy-button>
<transfer-park>
<blocked>false</blocked>
</transfer-park>
<transfer-pattern>
<blocked>false</blocked>
</transfer-pattern>
<busy-trigger-per-button>0</busy-trigger-per-button>
<emergency-resp-location>0</emergency-resp-location>
<max-calls-per-button>0</max-calls-per-button>
<nte-end-digit-delay>0</nte-end-digit-delay>
<keepalive>
<timeout>30</timeout>
<aux_timeout>30</aux_timeout>
</keepalive>
<lpkor>
<type>none</type>
</lpkor>
<exclude-services>
<em_service>true</em_service>
<directory_service>false</directory_service>
<myphoneapp_service>false</myphoneapp_service>
</exclude-services>
<park>
<reservation-group>park</reservation-group>
</park>
<paging-dn>
<dn>0</dn>
</paging-dn>
<speed-dial_list>
<speed-dial_item>
<index>1</index>
<phone_number>1234</phone_number>
<label>home</label>
</speed-dial_item>
</speed-dial_list>
<ssh>
<userid>ngm</userid>
<password>ngm</password>
</ssh>
<phone_type>
<name>7911</name>
</phone_type>
<addon_list>
<addon_item>
<addon>1</addon>
<addon_type>7914</addon_type>
</addon_item>
</addon_list>
<auto-line>
<mode>normal</mode>
<auto_select_line>0</auto_select_line>
</auto-line>
<blf-speed-dial_list>
<blf-speed-dial_item>
<index>1</index>
<phone_number>1234</phone_number>
<label>blfsd</label>
</blf-speed-dial_item>
<device>true</device>
</blf-speed-dial_list>
<bulk-speed-dial_list>
 <bulk-speed-dial_item>
 <list>1</list>
 <url /></bulk-speed-dial_item>
 <bulk-speed-dial_list>
 <capf-auth-str>7777</capf-auth-str>
 <description>ephoneOne</description>
 <device-security-mode>none</device-security-mode>
 <dnd>
 <feature-ring>true</feature-ring>
 </dnd>
 <ephone-template>1</ephone-template>
 <headset>
 <auto-answer>
 <line_list>
 <line>1</line>
 </line_list>
 </auto-answer>
 <logout-profile>0</logout-profile>
 <display_all_missed_calls>true</display_all_missed_calls>
 <mwi-line>1</mwi-line>
 <offhook-guard-timer>0</offhook-guard-timer>
 <phone-ui>
 <snr>true</snr>
 <speeddial-fastdial>true</speeddial-fastdial>
 </phone-ui>
 <pin>1234</pin>
 <presence>
 <call-list>true</call-list>
 </presence>
 <provision-tag>1</provision-tag>
 <username>test</username>
 <password>test</password>
 <video_enable>true</video_enable>
 <vm-device-id>SEP0016C7C7AF9D</vm-device-id>
 <Xipv4Address>0.0.0.0</Xipv4Address>
 <ExtMapStatus>
 <LineId>1</LineId>
 <ExtId>176</ExtId>
 <ExtNumber>6176</ExtNumber>
 <ExtStatus>false</ExtStatus>
 <LineState>idle</LineState>
 </ExtMapStatus>
 <ISDevAddr>
 <Xipv4Address>0.0.0.0</Xipv4Address>
 </ISDevAddr>
 <ISPhoneLineList>
 <ExtMapStatus>
 <LineId>1</LineId>
 <ExtId>176</ExtId>
 </ExtMapStatus>
 <ISKeyPhone>false</ISKeyPhone>
 <SNRui>true</SNRui>
 <ISLogoutProfileID>0</ISLogoutProfileID>
 <ISUserProfileID>0</ISUserProfileID>
 <TapiClientAddr />
 <Xipv4Address />
 </ISPhoneLineList>
 <ISDevStatus>unregistered</ISDevStatus>
 <ISDevLastStatus>deceased</ISDevLastStatus>
 <ISDevChangeTime>4040</ISDevChangeTime>
 <ISDevKeepAlives>0</ISDevKeepAlives>
 <ISDevTapiCStatus />
 <TapiCLastStatus />
 <TapiCChangeTime />
 <TapiCKeepAlive />
 </phone-ui>
 <presence>
 <call-list>true</call-list>
 </presence>
 </headset>
 <logout-profile>0</logout-profile>
 <display_all_missed_calls>true</display_all_missed_calls>
 <mwi-line>1</mwi-line>
 <offhook-guard-timer>0</offhook-guard-timer>
 <phone-ui>
 <snr>true</snr>
 <speeddial-fastdial>true</speeddial-fastdial>
 </phone-ui>
 <pin>1234</pin>
 <presence>
 <call-list>true</call-list>
 </presence>
 <provision-tag>1</provision-tag>
 <username>test</username>
 <password>test</password>
 <video_enable>true</video_enable>
 <vm-device-id>SEP0016C7C7AF9D</vm-device-id>
 <Xipv4Address>0.0.0.0</Xipv4Address>
 <ExtMapStatus>
 <LineId>1</LineId>
 <ExtId>176</ExtId>
 </ExtMapStatus>
 <ISDevAddr>
 <Xipv4Address>0.0.0.0</Xipv4Address>
 </ISDevAddr>
 <ISPhoneLineList>
 <ExtMapStatus>
 <LineId>1</LineId>
 <ExtId>176</ExtId>
 </ExtMapStatus>
 <ISKeyPhone>false</ISKeyPhone>
 <SNRui>true</SNRui>
 <ISLogoutProfileID>0</ISLogoutProfileID>
 <ISUserProfileID>0</ISUserProfileID>
 <TapiClientAddr />
 <Xipv4Address />
 </ISPhoneLineList>
 <ISDevStatus>unregistered</ISDevStatus>
 <ISDevLastStatus>deceased</ISDevLastStatus>
 <ISDevChangeTime>4040</ISDevChangeTime>
 <ISDevKeepAlives>0</ISDevKeepAlives>
 <ISDevTapiCStatus />
 <TapiCLastStatus />
 <TapiCChangeTime />
 <TapiCKeepAlive />
</bulk-speed-dial_list>
ISgetDeviceTemplate

Use ISgetDeviceTemplate to retrieve configuration and status information for IP phone templates.

Use any combination of the following parameters in the request message to specify one or more phone templates:

- ISDevTemplateID with phone template tag number to be queried.
- ISKeyword with one of the following options:
 - all—All configured phone templates
 - allTag—Phone template tag numbers for all configured phone templates
 - available—Next available phone template tag number to be configured

Request

```xml
<request>
  <ISgetDeviceTemplate>
    <ISgetDeviceTemplateID>1</ISgetDeviceTemplateID>
  </ISgetDeviceTemplate>
</request>
```

Response

```xml
<response>
  <ISDeviceTemplates>
    <ISDeviceTemplate>
      <ISDevTemplateID>1</ISDevTemplateID>
      <after-hours>
        <block_list>
          <block_item>
            <pattern_id>1</pattern_id>
            <blocking_pattern>1234</blocking_pattern>
            <blocking_option>7-24</blocking_option>
          </block_item>
        </block_list>
        <date_list>
          <date_item>
            <month>Jan</month>
            <day_of_month>1</day_of_month>
            <start_time>12:00</start_time>
            <stop_time>14:00</stop_time>
          </date_item>
          <date_item>
            <month>Mon</month>
            <day_of_week>Mon</day_of_week>
            <start_time>12:00</start_time>
            <stop_time>14:00</stop_time>
          </date_item>
        </date_list>
      </after-hours>
    </ISDeviceTemplate>
  </ISDeviceTemplates>
</response>
```
Configure the XML API

ISgetDeviceTemplate

`<exempt>true</exempt>`
`<after-hours_login>`
`<http>true</http>`
`<after-hours_login>`
`<override-code>1234</override-code>`
`<after-hours>`
`<block-blind-xf-fallback>false</block-blind-xf-fallback>`
`<button-layout_phone_7931>0</button-layout_phone_7931>`
`<button-layout_list>`
`<button-layout_item>`
`<button-layout>1,9</button-layout>`
`<button-layout_item>`
`<button-layout>4-5,7</button-layout>`
`<button-layout_item>`
`<button-layout>2-3</button-layout>`
`<button-layout_item>`
`<button-layout>11</button-layout>`
`<button-type>url</button-type>`
`<button-layout_item>`
`<button-layout_item>`
`<button-layout_item>`
`<button-layout_item>`
`<button-layout_item>`
`<capf-ip-in-cnfalse</capf-ip-in-cnfalse>`
`<codec>`
`<codec_name>g711ulaw</codec_name>`
`<dspfarm-assist>false</dspfarm-assist>`
`<codecs>`
`<adhoc_conference>`
`<add-mode>`
`<creator>false</creator>`
`<add-mode>`
`<admin>false</admin>`
`<drop-mode>`
`<creator>false</creator>`
`<drop-mode>`
`<adhoc_conference>`
`<fastdial_list>`
`<fastdial_item>`
`<fastdial>1</fastdial>`
`<fastdial_number>1234</fastdial_number>`
`<fastdial_name>office</fastdial_name>`
`<feature-button_list>`
`<feature-button_item>`
`<feature-button>1</feature-button>`
`<feature_type>HLog</feature_type>`
`<feature-button_item>`
`<feature-button>2</feature-button>`
`<feature_type>Park</feature_type>`
`<feature-button_item>`
`<feature-button>3</feature-button>`
`<feature_type>Privacy</feature_type>`
`<url-button_list>`
`<url-button_item>`
<url-button>1</url-button>
<url-button_type>em</url-button_type>
<url-button_item>
<url-button>3</url-button>
<url-button_type>myphoneapp</url-button_type>
<url-button_item>
<url-button>6</url-button>
<url-button_type>service</url-button_type>
<url-button_url>hello</url-button_url>
<url-button_name>helloworld</url-button_name>
<url-button_item>
features_blocked>Pickup Park GPickup</features_blocked>
<keep-conference>
<hangup>false</hangup>
<drop-last>false</drop-last>
<endcall>false</endcall>
<local-only>false</local-only>
<keep-conference>
<keypad-normalize>false</keypad-normalize>
<keyphone>false</keyphone>
<mlpp>
<indication>true</indication>
<preemption>true</preemption>
<max_priority>-1</max_priority>
<mlpp>
<mtp>false</mtp>
<multicast-moh>true</multicast-moh>
<night-service_bell>false</night-service_bell>
<privacy>
<privacy-button>false</privacy-button>
<phone_service>
<param_list>
<param>displayOnTime</param>
<text>170</text>
<param_item>
<param_list>
<phone_service>
<softkeys>
>alerting_keys>
<connected_keys>
<hold_keys>
<idle_keys>
<remote-in-use_keys>CBarge Newcall</remote-in-use_keys>
<ringing_keys>
<seized_keys>
<softkeys>
<transfer-park>
<blocked>false</blocked>
<transfer-park>
<transfer-pattern>
<blocked>false</blocked>
<transfer-pattern>
<busy-trigger-per-button>0</busy-trigger-per-button>
<emergency-resp_location>0</emergency-resp_location>
<max-calls-per-button>0</max-calls-per-button>
<network Locale>0</network Locale>
<nte-end-digit-delay>0</nte-end-digit-delay>
<transfer_max-length>0</transfer_max-length>
[user Locale>0</user Locale>
<keepalive>
Use ISgetExtension to retrieve configuration and status information for extension numbers.

Use any combination of the following parameters in the request message to specify one or more extensions:

- ISExtID with the extension ID number to be queried.
- ISExtNumber with the extension number to be queried.
- ISKeyword with one of the following options:
 - all—Displays details of all extension numbers configured
 - allTag—Displays a list of all extension ID numbers configured
Request

```xml
<request>
  <ISExtension>
    <ISVExtID>1</ISVExtID>
    <ISExtNumber>1</ISExtNumber>
  </ISExtension>
</request>
```

Response

```xml
<response>
  <ISExtensions>
    <ISExtension>
      <ISExtID>1</ISExtID>
      <ISExtNumber>6001</ISExtNumber>
      <ISExtSecNumber>6111</ISExtSecNumber>
      <ISExtType>normal</ISExtType>
      <ISExtStatus>up</ISExtStatus>
      <ISExtChangeTime>3122733</ISExtChangeTime>
      <ISExtUsage>0</ISExtUsage>
      <ISExtHomeAddress>0.0.0.0</ISExtHomeAddress>
      <ISExtMultiLines>0</ISExtMultiLines>
      <ISExtPortName>EFXS 50/0/1</ISExtPortName>
      <ISExtLineMode>DUAL_LINE</ISExtLineMode>
      <ISExtCallStatus>IDLE</ISExtCallStatus>
      <Mobility>false</Mobility>
      <SNRnumber>1111</SNRnumber>
      <SNRdelay>10</SNRdelay>
      <SNRtimeout>5</SNRtimeout>
      <SNRnoanNumber />
      <ISAllowWatch>true</ISAllowWatch>
      <ISSessionServerIDs>
        <ISSessionServerID>1</ISSessionServerID>
      </ISSessionServerIDs>
      </ISExtension>
    </ISExtensions>
</response>
```

• available—Next available extension ID number to be configured
</night-service-activated>
<noan>
<number>1234</number>
<timeout>80</timeout>
<dialplan-pattern>true</dialplan-pattern>
<option />
</noan>
</call-forward>
<call-waiting>
<cw_beep>
<accept>true</accept>
<generate>true</generate>
</cw_beep>
</call-waiting>
</corlist>
</cti>
<notifying>true</notifying>
</cti>
</description>
<hold-alert>
<timeout>15</timeout>
<mode>idle</mode>
</hold-alert>
</huntstop>
</cti>
<moh-group>0</moh-group>
<mwi>
<type>qsig</type>
<mode />
</mwi>
<mwi-type>both</mwi-type>
<pickup-group />
</transfer-recall_timeout>0</transfer-recall_timeout>
<translate>
<called>1</called>
<calling>2</calling>
</translate>
</translation-profile>
</application>
</name>calling</name>
</out-bound>calling</out-bound>
</application>
</port-caller-id>
<local>false</local>
</transfer_passthrough>false</transfer_passthrough>
</port-caller-id>
</conference_dn>
<mode />
</unlocked>false</unlocked>
</conference_dn>
</ephone-dn-template>0</ephone-dn-template>
</ephone-hunt_login>true</ephone-hunt_login>
<feed>

Cisco Unified Communications Manager Express System Administrator Guide
<ip_addr>0.0.0.0</ip_addr>
<port>0</port>
<route>0.0.0.0</route>
<out-call />
</feed>
</fwd-local-calls>true</fwd-local-calls>
</intercom>
<dn-plar />
<barge-in>false</barge-in>
<label />
<no-mute>true</no-mute>
<ptt>false</ptt>
<no-auto-answer>true</no-auto-answer>
</intercom>
<label />
<loopback-dn>
<dn>0</dn>
<auto-con>false</auto-con>
<loopback-codec />
<forward>0</forward>
<prefix />
<retry>0</retry>
<strip>0</strip>
<suffix />
</loopback-dn>
<mailbox-selection>
<last-redirect-num>false</last-redirect-num>
</mailbox-selection>
<moh>
<ip_addr>0.0.0.0</ip_addr>
<port>0</port>
<route>0.0.0.0</route>
<out-call />
</moh>
</name>ephoneDnOne</name>
<night-service_bell>false</night-service_bell>
</telephony_number>
<primary>6001</primary>
<secondary>6111</secondary>
<no-reg>true</no-reg>
<no-reg_option />
</telephony_number>
<paging>
<group />
<ip_addr>0.0.0.0</ip_addr>
<port>0</port>
</paging>
<park-slot>
<directed>false</directed>
<reserved-for />
<reservation-group />
<timeout>0</timeout>
<limit>0</limit>
<notify />
<only>false</only>
</park-slot>
<transfer_destination />
<recall>true</recall>
<alternate />
<retry>0</retry>
<retry_limit>0</retry_limit>
</park-slot>
<pickup-call>
<any-group>false</any-group>
</pickup-call>
<dn_preference>
<order>0</order>
<secondary>9</secondary>
</dn_preference>

<queueing-dn>
<mode />
<timeout>180</timeout>
</queueing-dn>

<ring>
<type>external</type>
</ring>

<session-server>
<server>1</server>
</session-server>

<snr_info>
<value>1111</value>
<delay>10</delay>
<timeout>5</timeout>
<cfwd-noan />
</snr_info>

<transfer-mode />

<trunk>
<number />
<timeout>3</timeout>
<transfer-timeout>0</transfer-timeout>
</trunk>

<whisper-intercom>
<speed-dial />
<label />
</whisper-intercom>
</ISExtension>
</ISExtensions>
</response>

ISgetExtensionTemplate

Use the ISgetExtensionTemplates to retrieve configuration and status information for extension templates.

Use any combination of the following parameters in the request message to specify one or more extensions:

- **ISExtTemplateID** with the extension template ID number to be queried.
- **ISKeyword** with one of the following options:
 - *all*—Displays details of all configured extension templates
 - *allTag*—Displays a list of all configured extension template ID numbers
 - *available*—Next available extension template ID number to be configured

Request

```xml
<request>
<ISExtensionTemplates>
<ISExtensionTemplateID>1</ISExtensionTemplateID>
</ISgetExtensionTemplate>
</request>
```
Response

<Response>
<ISExtensionTemplates>
<ISExtensionTemplate>
<ISExtTemplateID>1</ISExtTemplateID>
<allow>
<watch>false</watch>
</allow>
<call-forward>
<all>
<number>1234</number>
</all>
<busy>
<number>3456</number>
<option>primary</option>
<dialplan-pattern>false</dialplan-pattern>
</busy>
<max-length>
<number>4</number>
</max-length>
<night-service-activated>
<number>7777</number>
</night-service-activated>
<noan>
<number>9999</number>
<timeout>80</timeout>
<dialplan-pattern>false</dialplan-pattern>
<option>secondary</option>
</noan>
</call-forward>
<call-waiting>
<cw_beep>
<accept>true</accept>
<generate>true</generate>
</cw_beep>
<cw_ring>true</cw_ring>
</call-waiting>
<caller-id_blocked>true</caller-id_blocked>
<corlist/>
</corlist>
<cti>
<notify>false</notify>
<watch>false</watch>
</cti>
<description>ephoneDnTemplate</description>
</hold-alert>
<timeout>15</timeout>
<mode>idle</mode>
<ring-silent-dn>true</ring-silent-dn>
</hold-alert>
<huntstop>
<channel>8</channel>
</huntstop>
<moh-group>0</moh-group>
<mwi>
<type>sip</type>
<mode>on-off</mode>
</mwi>
<mwi-type>both</mwi-type>
<pickup-group>1</pickup-group>
</Response>
ISgetUser

Use ISgetUser to retrieve information for a particular user in Cisco Unified CME. The request must include the ISuserID parameter with a user name that is configured in Cisco Unified CME. If the request contains a valid ISuserID, the response includes the user-name tag number (ISuserTag) and type for this user.

The value for ISuserType corresponds to how a username is configured in Cisco Unified CME, as follows:

- 0—INVALID_CME_USER
- 1—EPHONE_USER
- 2—LOGOUT_PROFILE_USER
- 3—USER_PROFILE_USER

If the request contains an invalid ISuserID, the value for ISuserTag and ISuserType will both be "0."

Request

```xml
<request>
  <ISgetUser>
    <ISuserID>a</ISuserID>
  </ISgetUser>
</request>
```

Response

```xml
<response>
  <ISuser>
    <ISuserID>a</ISuserID>
    <ISuserType>3</ISuserType>
    <ISuserTag>1</ISuserTag>
  </ISuser>
</response>
```

ISgetUserProfile

Use the ISgetUserProfile to retrieve the status and configuration information for a specific user profile.

Use any combination of the following:

- ISUserProfileID with the user profile ID of a specific user.
- ISuserID with user ID of a specific user.
• ISKeyword with one of the following options:
 • all—Displays details of all configured user profiles.
 • allTag—Displays a list of all configured user profile IDs.
 • available—Next available user profile.

Request

```xml
<request>
<ISgetUserProfile>
<ISUserProfileID>1</ISUserProfileID>
</ISgetUserProfile>
</request>
```

Response

```xml
$response
<ISUserProfiles>
<ISUserProfile>
<ISUserProfileID>1</ISUserProfileID>
<ISuserID>a</ISuserID>
<ISpassword>a</ISpassword>
<ISuserPin>12</ISuserPin>
<ISPrivacyButton>no</ISPrivacyButton>
<ISuserMaxIdleTime>0</ISuserMaxIdleTime>
<SpeedDials>
<SpeedDial>
<SpeedDialIndex>1</SpeedDialIndex>
<SpeedDialNumber>901</SpeedDialNumber>
<SpeedDialLabel />  
<SpeedDialBLF>no</SpeedDialBLF>
</SpeedDial>
<SpeedDial>
<SpeedDialIndex>2</SpeedDialIndex>
<SpeedDialNumber>902</SpeedDialNumber>
<SpeedDialLabel />  
<SpeedDialBLF>no</SpeedDialBLF>
</SpeedDial>
<SpeedDial>
<SpeedDialIndex>3</SpeedDialIndex>
<SpeedDialNumber>2002</SpeedDialNumber>
<SpeedDialLabel>2002Label</SpeedDialLabel>
<SpeedDialBLF>no</SpeedDialBLF>
</SpeedDial>
<SpeedDial>
<SpeedDialIndex>5</SpeedDialIndex>
<SpeedDialNumber>2004</SpeedDialNumber>
<SpeedDialLabel>2004</SpeedDialLabel>
<SpeedDialBLF>yes</SpeedDialBLF>
</SpeedDial>
</SpeedDials>
<UserNumbers>
<UserNumber>
<ISExtNumber>2003</ISExtNumber>
<ISExtMode>NORMAL</ISExtMode>
<ISExtOverlayGroup>0</ISExtOverlayGroup>
<ISExtCombo>no</ISExtCombo>
</UserNumber>
</UserNumbers>
</ISUserProfile>
</ISUserProfiles>
</response>
```
ISgetUtilityDirectory

Use the ISgetUtilityDirectory to retrieve status and configuration information for directory information.

Request

```xml
<request>
  <ISgetUtilityDirectory/>
</request>
```

Response

```xml
<response>
  <ISUtilityDirectory>
    <ISDirectoryEntry>
      <ISDirectoryTag>1</ISDirectoryTag>
      <ISDirectoryNumber>12345</ISDirectoryNumber>
      <firstName>first</firstName>
      <lastName>last</lastName>
    </ISDirectoryEntry>
    <ISDirectoryEntry>
      <ISDirectoryTag>2</ISDirectoryTag>
      <ISDirectoryNumber>67890</ISDirectoryNumber>
      <firstName>first2</firstName>
      <lastName>last 2</lastName>
    </ISDirectoryEntry>
  </ISUtilityDirectory>
</response>
```

ISgetVoiceRegGlobal

Use the ISgetVoiceRegGlobal to retrieve status and configuration information of global parameters for SIP.

Request

```xml
<request>
```

Configure the XML API

Cisco Unified Communications Manager Express System Administrator Guide
<ISgetVoiceRegGlobal>
</ISgetVoiceRegGlobal>
</request>

Response

<response>
<ISSipGlobal>
<ISAddress>10.10.10.1</ISAddress>
<ISMode>cme</ISMode>
<ISVersion>7.1</ISVersion>
<ISAuthModes>
<ISAuthMode>ood_refer</ISAuthMode>
<ISAuthMode>presence</ISAuthMode>
</ISAuthModes>
<ISPortNumber>5060</ISPortNumber>
<ISMaxPool>10</ISMaxPool>
<ISMaxDN>100</ISMaxDN>
<ISMaxRedirect>5</ISMaxRedirect>
</ISSipGlobal>
</response>

ISgetSipDevice

For SIP phones, use any combination of the following parameters in the request message to specify one or more SIP phones:

- ISPoolID with the voice register pool tag number of SIP phone to be queried.
- ISPoolName with the voice register pool name of the SIP phone to be queried.
- ISKeyword with one of the following options:
 - all—All configured SIP phones
 - allTag—Voice register pool tag numbers for all configured SIP phones
 - available—Next available phone tag number to be configured

Request

$request>
<ISgetSipDevice>
<ISPoolID>1</ISPoolID>
</ISgetSipDevice>
</request>

Response

$response>
<ISSipDevices>
<ISSipDevice>
<ISPoolID>1</ISPoolID>
<ISDevMac>0013.1978.3CA5</ISDevMac>
<ISSessionServerID>0</ISSessionServerID>
<ISDevAddr>
<Xipv4Address>0</Xipv4Address>
</ISDevAddr>
</ISSipDevice>
</ISSipDevices>
</response>
ISgetSipExtension

Use ISgetSipExtension to retrieve configuration and status information for extension numbers.

Use any combination of the following parameters in the request message to specify one or more extensions:

- ISVoiceRegDNID with the extension ID number to be queried.
- ISVoiceRegNumber with the extension number to be queried.
- ISKeyword with one of the following options:
 - all—Displays details of all configured extension numbers
 - allTag—Displays a list of all configured extension ID numbers
 - available—Next available extension ID number to be configured

Request

```
<request>
  <ISgetSipExtension>
    <ISVoiceRegDNID>1</ISVoiceRegDNID>
  </ISgetSipExtension>
</request>
```

Response

```
<response>
  <ISSipExtensions>
    <ISSipExtension>
      <ISVoiceRegDNID>1</ISVoiceRegDNID>
      <ISExtNumber>901</ISExtNumber>
    </ISSipExtension>
  </ISSipExtensions>
</response>
```
ISgetSessionServer

Use ISgetSessionServer to retrieve configuration information for session servers in Cisco Unified CME. Use any combination of the following parameters in the request message to specify one or more session servers:

- ISSessionServerID with the session server tag number.
- ISSessionserverName with session server name.
- ISKeyword with one of the following keywords:
 - all—All configured session servers
 - allTag—Session server tag numbers for all configured session servers
 - available—Next available session server tag number to be configured

Request

```xml
<request>
  <ISgetSessionServer>
    <ISSessionServerID>1</ISSessionServerID>
  </ISgetSessionServer>
</request>
```

Response

```xml
<response>
  <ISSessionServers>
    <ISSessionServer>
      <ISSessionServerID>1</ISSessionServerID>
      <ISSessionRegisterID>SS1</ISSessionRegisterID>
      <ISSessionKeepAlives>60</ISSessionKeepAlives>
    </ISSessionServer>
  </ISSessionServers>
</response>
```

ISgetVoiceHuntGroup

Use the ISgetVoiceHuntGroupID to retrieve status and configuration information for voice hunt groups. Use any combination of the following parameters in the request message to specify one or more voice hunt groups:

- ISVoiceHuntGroupID with the voice hunt group ID number.
- ISKeyword with one of the following keywords:
all—All configured voice hunt groups
allTag—Voice hunt group ID numbers for all configured voice hunt groups
available—Next available voice hunt group ID number to be configured

Request

```xml
<request>
<ISgetVoiceHuntGroup>
<ISVoiceHuntGroupID>1</ISVoiceHuntGroupID>
</ISgetVoiceHuntGroup>
</request>
```

Response

```xml
$response
<ISVoiceHuntGroups>
<ISVoiceHuntGroup>
<ISVoiceHuntGroupID>1</ISVoiceHuntGroupID>
<ISVoiceHuntGroupType>longest-idle</ISVoiceHuntGroupType>
<ISVoiceHuntGroupPilotNumber>200</ISVoiceHuntGroupPilotNumber>
<ISVoiceHuntGroupPilotPeerTag>200</ISVoiceHuntGroupPilotPeerTag>
<ISVoiceHuntGroupPilotPreference>0</ISVoiceHuntGroupPilotPreference>
<ISVoiceHuntGroupSecPilotNumber />
<ISVoiceHuntGroupSecPilotPeerTag>-1</ISVoiceHuntGroupSecPilotPeerTag>
<ISVoiceHuntGroupSecPilotPreference>0</ISVoiceHuntGroupSecPilotPreference>
<ISVoiceHuntGroupListSize>2</ISVoiceHuntGroupListSize>
<ISVoiceHuntGroupListNums>
<ISVoiceHuntGroupListNum>201</ISVoiceHuntGroupListNum>
<ISVoiceHuntGroupListNum>202</ISVoiceHuntGroupListNum>
</ISVoiceHuntGroupListNums>
<ISVoiceHuntGroupFinalNum />
<ISVoiceHuntGroupTimeout>180</ISVoiceHuntGroupTimeout>
<ISVoiceHuntGroupHops>2</ISVoiceHuntGroupHops>
</ISVoiceHuntGroup>
</ISVoiceHuntGroups>
</response>
```

ISgetPresenceGlobal

Use ISgetPresenceGlobal to retrieve configuration information and status for the presence engine in Cisco Unified CME.

Request

```xml
<request>
<ISgetPresenceGlobal />
</request>
```

Response

```xml
$response
<ISPresenceGlobal>
<ISPresenceEnable>true</ISPresenceEnable>
<ISMode>cme</ISMode>
</ISPresenceGlobal>
```
The following Cisco IOS commands that were previously used with the XML interface are no longer valid: log password, xmltest, xmlschema, and xmlthread.

Define XML Transport Parameters

To define the XML transport method and associated parameters, perform the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip http server`
4. `ixi transport http`
5. `response size fragment-size`
6. `request outstanding number`
7. `request timeout seconds`
8. `no shutdown`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip http server</td>
<td>Enables the Cisco web browser user interface on the local Cisco Unified CME router.</td>
</tr>
<tr>
<td>Example: <code>ip http server</code></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip http server</td>
<td></td>
</tr>
</tbody>
</table>
Define XML Application Parameters

To set a response timeout for communication with the XML application that overrides the setting in transport configuration mode, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. ixi application cme
4. response timeout \{-1 \mid seconds\}
5. no shutdown
6. end

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>ixi transport http</td>
<td>Specifies the XML transport method and enters XML-transport configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# ixi transport http</td>
<td>- http—HTTP transport.</td>
</tr>
<tr>
<td>Step 5</td>
<td>response size fragment-size</td>
<td>Sets the response buffer size.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(conf-xml-trans)# response size 8</td>
<td>- fragment-size—Size of fragment in the response buffer, in kilobytes. Range is constrained by the transport type and platform. See the CLI help for the valid range of values.</td>
</tr>
<tr>
<td>Step 6</td>
<td>request outstanding number</td>
<td>Sets the maximum number of outstanding requests allowed for the transport type.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(conf-xml-trans)# request outstanding 2</td>
<td>- number—Number of requests. Range is constrained by the transport type and platform. See the CLI help for the valid range of values.</td>
</tr>
<tr>
<td>Step 7</td>
<td>request timeout seconds</td>
<td>Sets the number of seconds to wait, while processing a request, before timing out.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(conf-xml-trans)# request timeout 30</td>
<td>- seconds—Number of seconds. Range is 0 to 60.</td>
</tr>
<tr>
<td>Step 8</td>
<td>no shutdown</td>
<td>Enables HTTP transport.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(conf-xml-trans)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-xml-app)# end</td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **enable** | Enables privileged EXEC mode.
 * Enter your password if prompted. |
| | **Example:**
 `Router> enable` | |
| Step 2 | **configure terminal** | Enters global configuration mode. |
| | **Example:**
 `Router# configure terminal` | |
| Step 3 | **ixi application cme** | Enters XML-application configuration mode for configuring Cisco IOS XML infrastructure parameters for the Cisco Unified CME application.
 Note This command defines URL of Cisco Unified CME XML server as `http://<routerIPaddress>/ios_xml_app/cme`. |
| | **Example:**
 `Router(config)# ixi application cme` | |
| Step 4 | **response timeout** `-1 | seconds` | Sets a timeout for responding to the XML application and overwrites the IXI transport level timeout.
 * `-1`—No application-specific timeout is specified. This is the default.
 * `seconds`—Length of timeout, in seconds. Range is 0 to 60. |
| | **Example:**
 `Router(config-xml-app)# response timeout 30` | |
| Step 5 | **no shutdown** | Enables XML communication with the application. |
| | **Example:**
 `Router(conf-xml-app)# no shutdown` | |
| Step 6 | **end** | Returns to privileged EXEC mode. |
| | **Example:**
 `Router(config-xml-app)# end` | |

Define Authentication for XML Access

To authenticate users for XML access, perform the following steps:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **telephony-service**
4. **xml user** `user-name password` `password privilege-level`
5. **end**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 telephony-service</td>
<td>Enters telephony-service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# telephony-service</td>
<td></td>
</tr>
<tr>
<td>Step 4 xml user user-name password privilege-level</td>
<td>Defines an authorized user.</td>
</tr>
<tr>
<td>Example:</td>
<td>- user-name—Unique alphanumeric string that is authorized user name. Maximum length of string is 19 characters.</td>
</tr>
<tr>
<td>Router(config-telephony)# xml user user23 password 3Rs92uzQ 15</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-telephony)# end</td>
<td></td>
</tr>
</tbody>
</table>

Define XML Event Table Parameters

The XML event table is an internal buffer that stores captured and time-stamped events, such as phones registering and unregistering and extension status. One event equals one entry in the table. To set the maximum number of events or entries that can be stored in the XML event table and the length of time that events are retained before they are deleted from the table, perform the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. telephony-service
4. log table max-size *number*
5. log table retain-timer *minutes*
6. end
7. show fb-its-log
8. clear telephony-service xml-event-log

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable
- Enter your password if prompted. |
| 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| 3 | telephony-service | Enters telephony-service configuration mode.
Example:
Router(config)# |
| 4 | log table max-size number | Sets the number of entries in the XML event table.
Example:
Router(config-telephony)# log table max-size 100
- number—Number of entries. Range is 0 to 1000. Default is 150. |
| 5 | log table retain-timer minutes | Sets the number of minutes to retain entries in the event table before they are deleted.
Example:
Router(config-telephony)# log table retain-timer 30
- minutes—Number of minutes. Range is 2 to 500. Default is 15. |
| 6 | end | Returns to privileged EXEC mode.
Example:
Router(config-telephony)# end |
| 7 | show fb-its-log | Displays the event logs.
Example:
Router# show fb-its-log |
| 8 | clear telephony-service xml-event-log | Clears XML event logs.
Example:
Router# clear telephony-service xml-event-log |

Troubleshooting the XML Interface

- Use the `debug cme-xml` command to view debug messages for the Cisco Unified CME XML interface.
Configuration Examples for XML API

Example for XML Transport Parameters

The following example selects HTTP as the XML transport method:

```
ip http server
ixi transport http
response size 8
request outstanding 2
request timeout 30
no shutdown
```

Example for XML Application Parameters

The following example sets the application response timeout to 30 seconds.

```
ixi application cme
response timeout 30
no shutdown
```

Example for XML Authentication

The following example selects HTTP as the XML transport method. It allows access for user23 with the password 3Rs92uzQ, and sets up access list 99 that accepts requests from the IP address 192.168.146.72.

```
ixi transport http
ip http server
! 
telephony-service
xml user user23 password 3Rs92uzQ 15
```

Example for XML Event Table

The following example sets the maximum number of entries in the XML event table to 100 and the number of minutes to retain entries at 30:

```
telephony-service
log table max-size 100
log table retain-timer 30
```

Where to Go Next

For developer information on the XML API, see XML Provisioning Guide for Cisco CME/SRST.
Feature Information for XML API

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 121: Feature Information for XML API

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco Unified CME Version</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Blocking Based on Date and Time</td>
<td>4.0</td>
<td>The XML API was modified and is now provided through the Cisco IOS XML infrastructure. It supports all Cisco Unified CME features.</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>The XML API was introduced.</td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>The log password, xmittest, xmlschema, and xmlthread commands were deprecated.</td>
</tr>
</tbody>
</table>