Cisco 1.2 GHz GS7000 Remote PHY Module Compatible 2X2 Segmentable Node Installation and Configuration Guide

First Published: 2018-09-28

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

PREFACE

Preface xi
For Your Safety xi
Explanation of Warning and Caution Icons xi
Important xii
Important Safety Instructions xii
Read and Retain Instructions xii
Follow Instructions and Heed Warnings xii
Terminology xii
Electric Shock Hazard xii
Equipment Placement xiii
Strand (Aerial) Installation xiii
Pedestal, Service Closet, Equipment Room or Underground Vault Installation xiii
Connection to Network Power Sources xiv
AC Power Shunts xiv
Equipotential Bonding xiv
General Servicing Precautions xiv
Electrostatic Discharge xv
Batteries xv
Safety xv
Disposal xvi
Modifications xvi
Accessories xvi
Electromagnetic Compatibility Regulatory Requirements xvi
EMC Compliance Statements xvii
Laser Safety xvii
Warning: Radiation xvii
Contents

Warning: Fiber Optic Cables xviii
Safe Operation for Software Controlling Optical Transmission Equipment xviii
Laser Warning Labels xviii
Location of Labels on Equipment xx

CHAPTER 1
General Information
1. Physical Description
2. Functional Description
3. Features
4. Node Inputs/Outputs Diagram
5. Module Functional Description

CHAPTER 2
Theory of Operation
9. System Diagrams
 - 1x4 FCM and 4x1 RCM with RPD Module
 - 1x4 FCM Analog and 4x1 RCM with Analog Optics
 - 1x4 FCM and 4x2 RCM with RPD Module
 - 1x4 FCM Analog and 4x2 RCM with Analog Optics
 - 2x4 FCM and 4x2 RCM with RPD Module
 - 2x4 FCM Overlay and 4x1 RCM with RPD and Overlay
 - Forward Path
 - Forward Path Signal Routing
 - Reverse Path
 - Reverse Path Signal Routing
10. Power Distribution
11. RF Amplifier Module
 - Functional Diagrams
 - Forward Band Amplification 4-Way Path Description
 - Forward Configuration Module
 - Forward Band Linear Equalizer Module
 - Node Signal Director Jumper/Splitter Module
 - Reverse Band Amplification Path Description
 - Reverse Configuration Module
12. Forward Configuration Module
13. Forward Configuration Module
14. Forward Configuration Module

Contents

CHAPTER 3

Installation

Tools and Test Equipment

Node Fastener Torque Specifications

Installing Cisco Remote PHY Device Module in the node

For 1x2 RPD

For 2x2 RPD

Node Housing Ports

Strand Mounting the Node

Pedestal or Wall Mounting the Node

Fiber Optic Cable Installation

Color Code

Fiber Management System

Install Fiber Optic Cable

RF Cable Installation

Trimming the Center Conductor

Trimming Using the Integrated Cradle

Trimming Using the Strip Line Mark
CHAPTER 6

Troubleshooting 95

No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off 95
No RF Output: Fiber Optic Light Level is Good, Receiver Optical Power LED is on 97
Poor C/N Performance 98
Poor Distortion Performance 100
Poor Frequency Response 102
No RF Output from Reverse Receiver 103
Reference: 2x2 RPD Module LEDs 104

APPENDIX A

Technical Information 107

Linear Tilt Chart 107
 Amplifier Output Linear Tilt Chart for 1.2 GHz 107
 Amplifier Output Linear Tilt Chart for 1 GHz 107
Forward Equalizer Chart 108
 1.2 GHz Forward Linear Equalizers 108
 1 GHz Forward Linear Equalizers 109

APPENDIX B

Enhanced Digital Return Multiplexing Applications 111

Enhanced Digital Return System Overview 111
 Features 111
 System Functional Diagram 112
 EDR Transmitter Module 113
EDR Receiver Module 116
Receiver Operating Modes 117
Single 2:1 Mode 118
Dual 1:1 Mode 118
Dual 2:1 Mode 119
Single 2:1 on Primary + Single 1:1 on Secondary 119
Single 1:1 on Primary + Single 2:1 on Secondary 120
EDR OPM and LCM 120
Enhanced Digital Return System Installation 121
Required Tools 121
Operating Environment 122
Installing the EDR Transmitter 122
To Install the OPM Module in the EDR Transmitter 122
To Route the Fiber Jumper 123
To Install the EDR Transmitter 124
To Connect the Long-haul Fiber 125
To Connect the EDR LCM for Status Monitoring 126
Installing the EDR Receiver 126
To Install the OPM Module on the Receiver Module 126
To Configure the Receiver Mode 127
Transmitter Module Setup Procedure 127
EDR Transmitter Status Indicators 127
Reverse Balancing the Node with EDR 128
Method of Generating and Monitoring Test Signals 129
Reverse Balancing and Alignment Procedure 129
Balancing and Alignment 130
Troubleshooting 130
Transmitter Module Troubleshooting Chart 131

APPENDIX C

Expanded Fiber Tray 135
Expanded Fiber Tray Overview 135
Expanded Fiber Tray Installation 136
Fiber Management System 139
Maintaining Fiber Bend Radius 139
APPENDIX D Glossary 145
Preface

- For Your Safety, on page xi
- Important Safety Instructions, on page xii
- Laser Safety, on page xvii
- Laser Warning Labels, on page xviii

For Your Safety

Explanation of Warning and Caution Icons

Avoid personal injury and product damage! Do not proceed beyond any symbol until you fully understand the indicated conditions.

The following warning and caution icons alert you to important information about the safe operation of this product:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>You may find this symbol in the document that accompanies this product. This symbol indicates important operating or maintenance instructions.</td>
</tr>
<tr>
<td>!</td>
<td>You may find this symbol affixed to the product. This symbol means electric shock hazard. This symbol indicates a live terminal where a dangerous voltage may be present; the tip of the flash points to the terminal device.</td>
</tr>
<tr>
<td>☐</td>
<td>You may find this symbol affixed to the product. This symbol indicates a protective ground terminal.</td>
</tr>
<tr>
<td>☐</td>
<td>You may find this symbol affixed to the product. This symbol indicates a chassis terminal (normally used for equipotential bonding).</td>
</tr>
<tr>
<td>!</td>
<td>You may find this symbol affixed to the product. This symbol warns of a potentially hot surface.</td>
</tr>
<tr>
<td>!</td>
<td>You may find this symbol affixed to the product and in this document. This symbol indicates an infrared laser that transmits intensity-modulated light and emits invisible laser radiation or an LED that transmits intensity-modulated light.</td>
</tr>
</tbody>
</table>
Important

Please read this entire guide. If this guide provides installation or operation instructions, give particular attention to all safety statements included in this guide.

Important Safety Instructions

Read and Retain Instructions

Carefully read all safety and operating instructions before operating this equipment, and retain them for future reference.

Follow Instructions and Heed Warnings

Follow all operating and use instructions. Pay attention to all warnings and cautions in the operating instructions, as well as those that are affixed to this equipment.

Terminology

The terms defined below are used in this document. The definitions given are based on those found in safety standards.

- **Service Personnel** - The term *service personnel* applies to trained and qualified individuals who are allowed to install, replace, or service electrical equipment. The service personnel are expected to use their experience and technical skills to avoid possible injury to themselves and others due to hazards that exist in service and restricted access areas.

- **User and Operator** - The terms *user* and *operator* apply to persons other than service personnel.

- **Ground(ing) and Earth(ing)** - The terms *ground(ing)* and *earth(ing)* are synonymous. This document uses *ground(ing)* for clarity, but it can be interpreted as having the same meaning as *earth(ing)*.

Electric Shock Hazard

This equipment meets applicable safety standards.
Warning

To reduce risk of electric shock, perform only the instructions that are included in the operating instructions. Refer all servicing to qualified service personnel only.

Electric shock can cause personal injury or even death. Avoid direct contact with dangerous voltages at all times.

Know the following safety warnings and guidelines:

• Only qualified service personnel are allowed to perform equipment installation or replacement.

• Only qualified service personnel are allowed to remove chassis covers and access any of the components inside the chassis.

Equipment Placement

Warning

Avoid personal injury and damage to this equipment. An unstable mounting surface may cause this equipment to fall.

To protect against equipment damage or injury to personnel, comply with the following:

• Install this equipment in a restricted access location (access restricted to service personnel).

• Make sure the mounting surface or rack is stable and can support the size and weight of this equipment.

Strand (Aerial) Installation

Caution

Be aware of the size and weight of strand-mounted equipment during the installation operation. Ensure that the strand can safely support the equipment’s weight.

Pedestal, Service Closet, Equipment Room or Underground Vault Installation

Warning

Avoid the possibility of personal injury. Ensure proper handling/lifting techniques are employed when working in confined spaces with heavy equipment.
• Ensure this equipment is securely fastened to the mounting surface or rack where necessary to protect against damage due to any disturbance and subsequent fall.

• Ensure the mounting surface or rack is appropriately anchored according to manufacturer’s specifications.

• Ensure the installation site meets the ventilation requirements given in the equipment’s data sheet to avoid the possibility of equipment overheating.

• Ensure the installation site and operating environment is compatible with the equipment’s International Protection (IP) rating specified in the equipment’s data sheet.

Connection to Network Power Sources

Refer to this equipment’s specific installation instructions in this manual or in companion manuals in this series for connection to network ferro-resonant AC power sources.

AC Power Shunts

AC power shunts may be provided with this equipment.

Important

The power shunts (where provided) must be removed before installing modules into a powered housing. With the shunts removed, power surge to the components and RF-connectors is reduced.

Caution

RF connectors and housing seizure assemblies can be damaged if shunts are not removed from the equipment before installing or removing modules from the housing.

Equipotential Bonding

If this equipment is equipped with an external chassis terminal marked with the IEC 60417-5020 chassis icon (Lesbian), the installer should refer to CENELEC standard EN 50083-1 or IEC standard IEC 60728-11 for correct equipotential bonding connection instructions.

General Servicing Precautions

Warning

Avoid electric shock! Opening or removing this equipment’s cover may expose you to dangerous voltages.
These servicing precautions are for the guidance of qualified service personnel only. To reduce the risk of electric shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so. Refer all servicing to qualified service personnel.

Be aware of the following general precautions and guidelines:

- **Servicing** - Servicing is required when this equipment has been damaged in any way, such as power supply cord or plug is damaged, liquid has been spilled or objects have fallen into this equipment, this equipment has been exposed to rain or moisture, does not operate normally, or has been dropped.

- **Wristwatch and Jewelry** - For personal safety and to avoid damage of this equipment during service and repair, do not wear electrically conducting objects such as a wristwatch or jewelry.

- **Lightning** - Do not work on this equipment, or connect or disconnect cables, during periods of lightning.

- **Labels** - Do not remove any warning labels. Replace damaged or illegible warning labels with new ones.

- **Covers** - Do not open the cover of this equipment and attempt service unless instructed to do so in the instructions. Refer all servicing to qualified service personnel only.

- **Moisture** - Do not allow moisture to enter this equipment.

- **Cleaning** - Use a damp cloth for cleaning.

- **Safety Checks** - After service, assemble this equipment and perform safety checks to ensure it is safe to use before putting it back into operation.

Electrostatic Discharge

Electrostatic discharge (ESD) results from the static electricity buildup on the human body and other objects. This static discharge can degrade components and cause failures.

Take the following precautions against electrostatic discharge:

- Use an anti-static bench mat and a wrist strap or ankle strap designed to safely ground ESD potentials through a resistive element.

- Keep components in their anti-static packaging until installed.

- Avoid touching electronic components when installing a module.

Batteries

This product may contain batteries. Special instructions apply regarding the safe use and disposal of batteries:

Safety

- Insert batteries correctly. There may be a risk of explosion if the batteries are incorrectly inserted.

- Do not attempt to recharge ’disposable’ or ‘non-reusable’ batteries.
• Please follow instructions provided for charging ‘rechargeable’ batteries.
• Replace batteries with the same or equivalent type recommended by manufacturer.
• Do not expose batteries to temperatures above 100°C (212°F).

Disposal

• The batteries may contain substances that could be harmful to the environment.
• Recycle or dispose of batteries in accordance with the battery manufacturer’s instructions and local/national disposal and recycling regulations.

• The batteries may contain perchlorate, a known hazardous substance, so special handling and disposal of this product might be necessary. For more information about perchlorate and best management practices for perchlorate-containing substance, see http://www.dtsc.ca.gov/hazardouswaste/perchlorate.

Modifications

This equipment has been designed and tested to comply with applicable safety, laser safety, and EMC regulations, codes, and standards to ensure safe operation in its intended environment. Refer to this equipment's data sheet for details about regulatory compliance approvals.

Do not make modifications to this equipment. Any changes or modifications could void the user’s authority to operate this equipment.

Modifications have the potential to degrade the level of protection built into this equipment, putting people and property at risk of injury or damage. Those persons making any modifications expose themselves to the penalties arising from proven non-compliance with regulatory requirements and to civil litigation for compensation in respect of consequential damages or injury.

Accessories

Use only attachments or accessories specified by the manufacturer.

Electromagnetic Compatibility Regulatory Requirements

This equipment meets applicable electromagnetic compatibility (EMC) regulatory requirements. Refer to this equipment's data sheet for details about regulatory compliance approvals. EMC performance is dependent upon the use of correctly shielded cables of good quality for all external connections, except the power source, when installing this equipment.

Ensure compliance with cable/connector specifications and associated installation instructions where given elsewhere in this manual.
EMC Compliance Statements

Where this equipment is subject to USA FCC and/or Industry Canada rules, the following statements apply:

- **FCC Statement for Class A Equipment**
 This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when this equipment is operated in a commercial environment.

 This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case users will be required to correct the interference at their own expense.

- **Industry Canada - Industrie Canadiene Statement**
 This apparatus complies with Canadian ICES-003.

 Cet appareil est conforme à la norme NMB-003 du Canada.

- **CENELEC/CISPR Statement with Respect to Class A Information Technology Equipment**
 This is a Class A equipment. In a domestic environment this equipment may cause radio interference in which case the user may be required to take adequate measures.

Laser Safety

This equipment contains an infrared laser that transmits intensity-modulated light and emits invisible radiation.

Warning: Radiation

- Avoid personal injury! Use of controls, adjustments, or procedures other than those specified herein may result in hazardous radiation exposure.

- Avoid personal injury! The laser light source on this equipment (if a transmitter) or the fiber cables connected to this equipment emit invisible laser radiation. Avoid direct exposure to the laser light source.

- Avoid personal injury! Viewing the laser output (if a transmitter) or fiber cable with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.

- Do not apply power to this equipment if the fiber is unmated or unterminated.

- Do not stare into an unmated fiber or at any mirror-like surface that could reflect light emitted from an unterminated fiber.

- Do not view an activated fiber with optical instruments (e.g., eye loupes, magnifiers, microscopes).

- Use safety-approved optical fiber cable to maintain compliance with applicable laser safety requirements.
Warning: Fiber Optic Cables

⚠️ Warning ⚠️

Avoid personal injury! Qualified service personnel may only perform the procedures in this manual. Wear safety glasses and use extreme caution when handling fiber optic cables, particularly during splicing or terminating operations. The thin glass fiber core at the center of the cable is fragile when exposed by the removal of cladding and buffer material. It easily fragments into glass splinters. Using tweezers, place splinters immediately in a sealed waste container and dispose of them safely in accordance with local regulations.

⚠️ Warning ⚠️

Eye injury can occur - do not pull optical connector or look into the connector or the fiber cable while the node is energized.

Safe Operation for Software Controlling Optical Transmission Equipment

If this manual discusses software, the software described is used to monitor and/or control ours and other vendors’ electrical and optical equipment designed to transmit video, voice, or data signals. Certain safety precautions must be observed when operating equipment of this nature.

For equipment specific safety requirements, refer to the appropriate section of the equipment documentation. For safe operation of this software, refer to the following warnings.

⚠️ Warning ⚠️

- Ensure that all optical connections are complete or terminated before using this equipment to remotely control a laser device. An optical or laser device can pose a hazard to remotely located personnel when operated without their knowledge.
- Allow only personnel trained in laser safety to operate this software. Otherwise, injuries to personnel may occur.
- Restrict access of this software to authorized personnel only.
- Install this software in equipment that is located in a restricted access area.

Laser Warning Labels

One or more of the labels shown below are located on this product.
Location of Labels on Equipment

The following illustrations display the location of warning labels on this equipment.
CHAPTER 1

General Information

This manual describes the installation and operation of the 1.2 GHz GS7000 Remote PHY Device (RPD) 2X2 Segmentable Node.

- Physical Description, on page 1
- Functional Description, on page 3
- Features, on page 4
- Node Inputs/Outputs Diagram, on page 5
- Module Functional Description, on page 5

Physical Description

This node is the latest generation 1.2 GHz optical node platform which uses the housing developed for the GS7000 Node Platform.

The base of the housing contains:

- an RF amplifier module
- AC power routing
- forward and reverse configuration modules (configuration will vary)

The lid of the housing contains:

- a fiber management tray and track
- optical receiver and transmitter modules (configuration will vary)
- a Remote PHY Module
- power supplies (one or two)
- a status monitor/local control module (optional)

Not every node contains all of these modules. This node is a versatile node that can be configured to meet various network requirements.

The following illustration shows the external housing of the node.
The following illustration shows the node internal modules and components.
Functional Description

This node is used in broadband hybrid fiber/coax (HFC) networks. It is configured with the receivers, transmitters, configuration modules, RPD, and other modules to meet your unique network requirements. This platform allows independent segmentation and redundancy for both the forward and reverse paths in a reliable, cost-effective package.

This node receives forward optical inputs (to either the analog receiver or the RPD module), converts the input to an electrical radio frequency (RF) signal, and outputs the RF signals at up to six ports. The forward bandwidth is from 54 MHz (or 86, 102, 258 MHz) to 1218 MHz. The lower edge of the passband is primarily determined by the diplex filter and the High and Low Pass filter module assemblies. Diplex filter choices are 42/54 MHz, 65/86 MHz, 85/102 MHz, and 204/258 MHz.
The forward path of the node can be deployed with either an RPD module (in a digital optical only configuration), a broadcast 1310/1550 nm optical receiver (in an analog only configuration), or both (in an overlay configuration). With any of these configurations, signal can be distributed to either four output ports (all high level) or six output ports (two high level and four low level).

The forward path can be non-segmented by using one optical receiver or a 1X2 RPD module that feeds all output ports (with 1X4 configuration module). The forward path can also be segmented into a left-right configuration using a 2X2 RPD module. The type of forward segmentation is determined by the type of Forward Configuration Module installed in the node.

The node’s reverse path is also capable of segmentation. Reverse traffic can be segmented or combined and routed through either a 1X2 or 2X2 RPD module. It can also be routed through one or two DFB (Distributed Feedback) or EDR (Enhanced Digital Return) reverse optical transmitters when used without an RPD. Reverse segmentation is determined by the type of Reverse Configuration Module installed in the node, and pad orientation selection on the OIB.

This node accepts Optical Transmitter Modules based on the existing GS7000 analog optical transmitters. Reverse optical transmitters can be installed to transmit data, video, or both. Reverse bandwidth is determined by the diplex filter and the reverse amplifier assembly.

The node utilizes the transmitter and receiver module covers that have been designed to allow fiber pigtails storage within them, providing improved fiber management within the node.

45 - 90 V AC input power is converted to +24.5, +8.5, -6.0, and +5.5 V DC by an internal power supply to power the node.

Features

The node has the following features:

- Six ports 1.2 GHz RF platform
- Uses rugged GaN (Gallium nitride) Technology on the output stage
- Uses standard GainMaker style accessories (i.e., attenuator pads, equalizers, diplexers and crowbar)
- Field accessible plug-in Forward Interstage Linear Equalizers, Forward/Reverse Configuration Modules, and Node Signal Directors
- 3-state reverse switch (on/off/-6 dB) allows each reverse input to be isolated for noise and ingress troubleshooting (status monitor or local control module required)
- Fiber entry ports on both ends of housing lid
- Fiber management tray and track provides easy access to fiber connections
- Primary and redundant power supplies with passive load sharing
- Spring loaded seizure assemblies allow coax connectors to be installed or removed without removing amplifier chassis or spring-loaded mechanism from the rear of the housing base
- Dual/Split AC powering
- Space provided for mounting WDM modules inside the housing lid
Node Inputs/Outputs Diagram

The following diagram shows the system-level inputs and outputs of the node.

![Node Inputs/Outputs Diagram](Image 1)

Note
- The AC can be applied to any RF port and routed, if required, to the other ports.
- The DC power supply modules can be powered through any RF port (1 through 6).

Module Functional Description

This table briefly describes each module. The node may not contain all these modules. See Theory of Operation, on page 9 for detailed descriptions of the modules.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Amplifier</td>
<td>The RF Amplifier Module includes:</td>
</tr>
<tr>
<td></td>
<td>• four separate and independent forward amplification paths, each having one or two RF outputs</td>
</tr>
<tr>
<td></td>
<td>• four independent reverse inputs</td>
</tr>
<tr>
<td></td>
<td>• forward and reverse bandwidths that are established by diplexer, forward high pass filter, and reverse low pass filter assembly selection</td>
</tr>
<tr>
<td>Module</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Forward Configuration Module | There are five types of forward configuration modules for the node.
• The RPD 1x4 Forward Configuration Module (GS7K-FCM-RPD-14=) is used when the node is configured with a 1X2 RPD module. This FCM routes a single downstream signal to all four RF ports of the node. This module splits the signals equally to the output of the node.
• The RPD 1x4 Forward Configuration Module with Overlay (GS7K-FCM-OLA-14=) is used when the node is configured with a 1X2 RPD module and a single analog overlay optical receiver. The signal of the RPD module and receiver are combined and routed to all four or six RF ports of the node. In this overlay configuration, a low pass filter is incorporated into the pad for the OIB Rx pad location. This combined filter/pad is used to define the overlay band as well as set the level of the Rx signal.
• The RPD 1x4 Forward Configuration Module Analog Only (GS7K-FCM-ANA-14=) is used with a single standard or low input GS7000 Node receiver when an RPD module is not used in the node. This FCM will route the same forward signal to all node RF ports.
• The RPD 2x4 Forward Configuration Module (GS7K-FCM-RPD-24=) is used when the node is configured with a 2X2 RPD module. The two segmented outputs of the RPD module are routed to opposite sides of the launch amplifier. One RPD output provides the downstream signal for RF ports 1-3 of the node and the other RPD output provides signal to RF ports 4-6 of the node.
• The RPD 2x4 Forward Configuration Module with Analog Overlay (GS7K-FCM-OLA-24=) is used when the GS7000 Node is configured with a 2X2 RPD module and an analog overlay receiver. In this configuration, the RPD has two segmented outputs which are routed to opposite sides of the launch amplifier and both signals are combined with the signal from the receiver as well. One RPD output combined with the receiver provides the downstream signal for RF ports 1-3 of the node and the other RPD output combined with receiver signal provides signal to RF ports 4-6 of the node. For optimization, a filter pad is recommended for the analog overlay path. |
Module Functional Description

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
</table>
| Reverse Configuration Module | There are two types of reverse configuration modules for the node.
• The RPD 4x1 Reverse Configuration Module (GS7K-RCM-RPD-41=) can be used with either a 1X2 RPD or 2X2 RPD. This RCM can also be used in nodes without an RPD module. In this configuration, either an analog or EDR transmitter can be used. This RCM combines the signal from all 4 node RF ports to be routed to either the RPD module or transmitter. This module provides 2 copies of all return path data and if a copy is not used, it should be terminated with a 75 ohm terminator on the OIB.
• The RPD 4x2 Reverse Configuration Module (GS7K-RCM-RPD-42=) can be used with either a 1x2 or 2X2 RPD module or a 2:1 EDR transmitter, or 2 analog transmitters, or 2 1:1 EDR transmitters. The transmitters can be used in a configuration where an RPD module is not used. This RCM combines reverse inputs from ports 1 and 2/3 and routes them to either RPD input 2 or Transmitter 2 on the OIB; it also combines reverse inputs from ports 4 and 5/6 and routes them to either RPD input 1 or Transmitter 1 on the OIB. |
| Optical Receiver | This module converts an optical signal from the headend into a forward path RF signal. An SC/APC fiber connector is standard. Optical power, test points, and status LEDs are provided. |
| Optical Transmitter | This module converts reverse path RF signals from the network into an optical signal. An SC/APC fiber connector is standard. Multiple transmitter options are available such as uncooled DFB, 1550 ITU, and EDR. EDR uses the included LC/APC connector that jumps over to an SC/APC bulkhead. Optical power, test points, and status LEDs are provided. |
| Status Monitor/Local Control Module (SM/LCM) | The local control module monitors the input optical power of the transmitter and receiver modules, plus AC power entry and power supply voltage rails. It also provides local reverse path wink and shutdown capabilities through the PC-based GS7000 ViewPort software. It can be upgraded to a status monitor which provides node monitoring and control capability at the cable plant's headend. This module is not required for normal operation of the node. |
| Power Supply | The node power supply module has multiple output voltages of +24.5, +8.5, -6.0, and +5.5 V DC. A second power supply can be installed in the node for redundancy or load sharing.
The node can be set up in the following powering configurations:
• two power supplies powered by different AC sources
• two power supplies using the same AC source
• a single supply using a single AC source |
| Fiber Management Tray and Track | The fiber management system secures and protects the optical fiber inside the node housing. |
Module Functional Description

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Interface Board</td>
<td>The Optical Interface Board (OIB) provides all interconnections between the modules in the housing lid of the node. Each module in the lid plugs directly into the OIB through a connector header or row of sockets. Input attenuator pads are provided on the OIB for each optical receiver in the housing lid. Output attenuator pads are provided on the OIB for each optical transmitter in the housing lid.</td>
</tr>
</tbody>
</table>
CHAPTER 2

Theory of Operation

This chapter describes the theory of operation for the 1.2 GHz GS7000 Remote PHY Device (RPD) 2X2 Segmentable Node, including functional descriptions of each module in the node.

- System Diagrams, on page 9
- Forward Path, on page 15
- Reverse Path, on page 16
- Power Distribution, on page 17
- RF Amplifier Module, on page 17
- Forward Configuration Module, on page 20
- Reverse Configuration Module, on page 22
- Optical Interface Board, on page 23
- Optical Receiver Module, on page 24
- Optical Analog Transmitter Module, on page 26
- Local Control Module, on page 27
- Power Supply Module, on page 30

System Diagrams

1x4 FCM and 4x1 RCM with RPD Module

The following diagrams show the signal flow for the node with RPD 1x4 Forward Configuration Module and RPD 4x1 Reverse Configuration Module.
Note

Dash line means the module is not installed.

1x4 FCM Analog and 4x1 RCM with Analog Optics

The following diagrams show the signal flow for the node with RPD 1x4 Forward Configuration Module Analog Only Configuration and RPD 4x1 Reverse Configuration Module.
Dash line means the module is not installed.

1x4 FCM and 4x2 RCM with RPD Module

The following diagrams show the signal flow for the node with RPD 1x4 Forward Configuration Module and RPD 4x2 Reverse Configuration Module.
1x4 FCM Analog and 4x2 RCM with Analog Optics

The following diagrams show the signal flow for the node with RPD 1x4 Forward Configuration Module Analog Only Configuration and RPD 4x2 Reverse Configuration Module.

Note: Dash line means the module is not installed.
Dash line means the module is not installed.

2x4 FCM and 4x2 RCM with RPD Module

The following diagrams show the signal flow for the node with RPD 2x4 Forward Configuration Module and RPD 4x2 Reverse Configuration Module.
Dash line means the module is not installed.

2x4 FCM Overlay and 4x1 RCM with RPD and Overlay

The following diagrams show the signal flow for the node with RPD 2x4 Forward Configuration Module Overlay and RPD 4x1 Reverse Configuration Module.
Dash line means the module is not installed.

Forward Path

Forward path refers to signals received by the node from the hub or headend. These signals are amplified in the node and routed to subscribers through the cable distribution network.

Forward Path Signal Routing

The 1.2 GHz G57000 Remote PHY Device (RPD) 2X2 Segmentable Node 4-way forward path signal routing functions are described below.
Stage	Description
1 | 1310 nm or 1550 nm optical signals from the headend are applied to receiver module 1 and/or RPD module in the node.
2 | The receiver module detects the signal on the optical carrier applied to it and outputs an electrical RF signal to the node Optical Interface Board (OIB). Receiver can be used as the sole source of forward signals or as an overlay source to 550MHz to supplement the RPD. RPD 1x2 or 2x2 can be the source for forward path signals and can be used in conjunction with the analog RX for overlay.
3 | The RF signals travel across the OIB and cables to the Forward Configuration Module (FCM). The FCM determines how RF signals from the different modules are routed to the four independent forward amplification paths in the RF amplifier module. The FCM routes the RF signals entering it between the four forward amplification paths in the RF amplifier module.
4 | Each of the forward amplification paths in the RF amplifier module is composed of one input amplification stage and one interstage amplification stages in series followed by a power doubler output amplification stage. This topology provides one driven output port for each of the forward amplification paths in the RF amplifier module, for a total of four driven node output ports.
5 | Each of the forward amplification paths in the RF amplifier module also contains padding, trimming, thermal compensation, equalization, and filtering circuitry.
6 | Node signal directors are present at two of the nodes forward output ports and allow the signals at those ports to be redirected to the nodes auxiliary output ports or split equally between the primary and auxiliary node output ports. In this way, the node can be configured to have up to six output ports.

Reverse Path

Reverse path refers to signals received by the node from the cable distribution network. These signals are amplified in the node and returned to the headend optically through the fiber portion of the network. The reverse path is not used in all networks.

Reverse Path Signal Routing

The node’s reverse path signal routing functions are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reverse path RF signals are applied to node RF ports 1, 2, 4, and 5.</td>
</tr>
<tr>
<td>2</td>
<td>The RF signals from each of the four node RF ports are amplified independently in the RF amplifier module and routed to the Reverse Configuration Module (RCM).</td>
</tr>
<tr>
<td>3</td>
<td>Each of the reverse amplification paths in the RF amplifier module also contains padding, trimming, filtering, -6 db wink, and RF On/Off switch circuitry.</td>
</tr>
</tbody>
</table>
Power Distribution

The node is powered by one or two power supplies.

The node’s power distribution functions are described below.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45 to 90 V AC is applied to one or two power supply modules in the node.</td>
</tr>
<tr>
<td>2</td>
<td>The power supply module(s) convert(s) the AC input to +24.5, +8.5, -6.0, and +5.5 V DC.</td>
</tr>
<tr>
<td>3</td>
<td>The +24.5, +8.5, -6.0, and +5.5 V DC lines are routed to node internal modules.</td>
</tr>
<tr>
<td>4</td>
<td>If two power supplies are installed and both are active, the load is shared equally between them.</td>
</tr>
<tr>
<td>5</td>
<td>An AC segmentable shunt is available to separate the AC connection to ports 1-3 from that of ports 4-6. This allows the node to be configured where one power supply is powered from ports 1-3 and a second power supply is powered from ports 4-6.</td>
</tr>
</tbody>
</table>

RF Amplifier Module

This section describes the RF amplifier module. The RF amplifier module contains the forward band and the reverse band amplifiers.

Functional Diagrams

The following diagrams show how the RF amplifier functions.
Figure 1: Forward Amplifier

1.2GHz GS7000 Node
4 Way Forward Segmentable Launch Amplifier Module

Figure 2: Reverse Amplifier and OIB

Reverse Amplifier PWB

Optical Interface PWB
Forward Band Amplification 4-Way Path Description

The RF amplifier module provides all forward signal amplification outside the optical receiver or RPD module in the GS7000 Node.

The segmentable launch amplifier contains four independent forward amplification paths, each having one input near the center of the amplifier module and one, two or three outputs at one end of the amplifier module. Each of the forward paths is comprised of the forward configuration module, an input gain block, a frequency response trim circuit, a thermal compensation circuit, an inter-stage pad, a 2-way splitter or RF switch circuit, an inter-stage gain block, a plug-in forward band linear equalizer, an output pad, an output gain block, a diplex filter, a bi-directional 20 dB down forward test point, and finally an AC bypass circuit.

The thermal circuit on the RF amplifier module is designed to compensate for the RF forward path thermal movement of the entire node RF station. This includes the forward path amplifier module circuitry, RF cables, and optical interface board circuitry. It does not include the thermal movement of the optical receivers or RPD.

Forward Configuration Module

The forward configuration module determines the forward path topology in the RF amplifier module and the node. The output signals from one receiver and/or RPD enter the forward configuration module where they are combined and/or directed to the two independent forward paths in the RF amplifier module. Forward path segmentation and/or redundancy are set by plugging the appropriate forward configuration module into the RF amplifier module. The forward configuration module is a plug-in, field accessible module. See Forward Configuration Module, on page 20 for more information.

Forward Band Linear Equalizer Module

The forward band linear equalizer module sets the overall forward path tilt of the RF amplifier module and the node. The 1.2GHz GS7000 Node launch amplifier is shipped with four 18.0 dB linear equalizers installed in the RF amplifier module. One equalizer is installed in each of the four amplifier module forward paths. This sets the nodes forward path tilt to 17.5 dB linear. Forward band linear equalizer modules of other values are available. This allows the nodes forward path tilt to be adjusted as needed. The forward band linear equalizer module is a plug-in, field accessible module. See Forward Equalizer Chart, on page 108.

Node Signal Director Jumper/Splitter Module

The node signal director jumper/splitter module is a plug-in, field accessible module. It is present on the center output ports on either end of the RF amplifier module. The orientation of these modules determines where the RF amplifiers center output port signals are directed. The node signal director jumper allows the center output port signals to be routed to either the amplifiers primary center output port or to its auxiliary corner output port. The node signal director splitter module splits the center output port signals equally between the primary and auxiliary output ports.

Reverse Band Amplification Path Description

The RF amplifier module provides all reverse signal amplification outside the optical transmitter and RPD module in the node. It contains four independent reverse paths comprised of an AC bypass circuit, a bi-directional 20 dB down reverse test point, a diplex filter, an input pad, a low pass filter, a 6 dB switched attenuator, a 16 dB gain block, a second low pass filter, an RF on/off switch, a frequency response trim circuit, and a reverse configuration module. The 6 dB switched attenuator and RF on/off switch circuits allow each reverse path to have 6 dB (wink) and on/off capabilities. These circuits are controllable from the headend via...
the status monitor or locally via the local control module and a hand held controller. A serial communication link is provided between status monitor or local control module and the reverse band launch amplifier. Circuitry on the amplifier converts the serial communications to parallel control signals and routes them as needed.

Reverse Configuration Module

The reverse configuration module determines the reverse path topology in the RF amplifier module and node. The input signals from four independent amplifier module output ports enter the reverse configuration module where they are combined and/or directed to one to two optical transmitters or RPD US path. Reverse path segmentation and or redundancy is set by plugging the appropriate reverse configuration module into the RF amplifier module. The reverse configuration module is a plug-in, field accessible module. See Reverse Configuration Module, on page 22 for more information.

Forward Configuration Module

The forward configuration module determines the forward path topology in the RF amplifier module and the node. The output signals from one optical receiver and/or RPD module enter the forward configuration module where they are combined or directed to the four independent forward paths in the RF amplifier module. The various types of the forward configuration module are described below.

RPD 1x4 Forward Configuration Module Description

The RPD 1x4 Forward Configuration Module is used when the node is configured with a 1X2 RPD module. This FCM routes a single downstream signal to all four RF ports of the node. This module splits the signals equally to the inputs of the node.

The following diagram shows how this module functions.

![Diagram of RPD 1x4 Forward Configuration Module]

RPD 1x4 Forward Configuration Module with Overlay Description

The RPD 1x4 Forward Configuration Module with Overlay is used when the node is configured with a 1X2 RPD module and a single analog overlay optical receiver. The signal of the RPD module and receiver are combined and routed to all four RF ports of the node. In this overlay configuration a low pass filter is inserted in the OIB RCVR1 Attenuator location. Attenuator/Filters are available in 1 dB increments and limit the overlay path to 550MHz.

The following diagram shows how this module functions.
RPD 1x4 Forward Configuration Module Analog Only Description

The RPD 1x4 Forward Configuration Module Analog Only is used with a single standard GS7000 Node receiver when an RPD module is not used in the node. This FCM will route the forward signal to all node RF ports.

The following diagram shows how this module functions.

RPD 2x4 Forward Configuration Module Description

The RPD 2x4 Forward Configuration Module is used when the node is configured with a 2X2 RPD module. The two segmented outputs of the RPD module are routed to opposite sides of the launch amplifier. One RPD output provides the downstream signal for RF ports 1-3 of the node and the other RPD output provides signal to RF ports 4-6 of the node.

The following diagram shows how this module functions.
RPD 2x4 Forward Configuration Module with Analog Overlay Description

The RPD 2x4 Forward Configuration Module with Analog Overlay is used when the GS7000 Node is configured with a 2X2 RPD module and an analog overlay receiver. In this configuration, the RPD has two segmented outputs which are routed to opposite sides of the launch amplifier and both signals are combined with the signal from the receiver as well. One RPD output combined with the receiver provides the downstream signal for RF ports 1-3 of the node and the other RPD output combined with receiver signal provides signal to RF ports 4-6 of the node.

The following diagram shows how this module functions.

Reverse Configuration Module

The reverse configuration module determines the reverse path topology in the RF amplifier module and node. The input signals from four independent amplifier module output ports enter the reverse configuration module where they are combined and/or directed to optical transmitters and/or RPD US. The two RPD compatible reverse configuration modules are described below.

RPD 4x1 Reverse Configuration Module Description

The RPD 4x1 Reverse Configuration Module can be used with either a 1X2 RPD or 2X2 RPD. This RCM can also be used in nodes without an RPD module. In this configuration, either an analog or EDR transmitter should be used. This RCM combines the signal from all 4 node RF ports to be routed to either the RPD module and/or transmitter.

Note

This module has 2 redundant copies of upstream signals and if an output is unused, it should be terminated in the OIB.

The following diagram shows how this module functions.
RPD 4x2 Reverse Configuration Module Description

The RPD 4x2 Reverse Configuration Module can be used with either a 1x2 or 2x2 RPD module or a 2:1 EDR transmitter, or 2 analog transmitters, or 2 1:1 EDR transmitters. The transmitters should be used in a configuration where an RPD module is not used. This RCM combines reverse inputs from ports 1 and 2/3 and routes them to either RPD input 2 or Transmitter 2 on the OIB; it also combines reverse inputs from ports 4 and 5/6 and routes them to either RPD input 1 or Transmitter 1 on the OIB.

The following diagram shows how this module functions.

Optical Interface Board

The Optical Interface Board (OIB) provides all interconnections between the modules in the housing lid of the node. The modules in the housing lid can include the RPD, optical receiver, optical transmitter, power supply, and status monitoring/local control modules. Each module in the lid plugs directly into the OIB through a connector header or row of sockets. Input attenuator pads are provided on the OIB for the optical receiver in the housing lid. Output attenuator pads are provided on the OIB for optical transmitter or RPD. All RF and power cables running between the housing lid and base also plug into the OIB.

The OIB is field replaceable. All modules, power supplies, RF cables, power cables, and OIB mounting screws must be removed in order to remove the OIB from the housing lid.

The upstream status monitoring signal goes through LPF then splits. Splitter output 1 goes through a 17dB coupler into transmitter 1 input. Splitter output 2 goes through a plug-in attenuator pad, a 17dB coupler and into transmitter 2 input.

The purpose of the attenuator Tx2 SM Term is to terminate the upstream status monitoring signal going into transmitter 2 when either the node is segmented or EDR transmitter is in use. When the node is configured in EDR mode, a 75 dB pad must be placed in the Tx2 SM Term.
Optical Receiver Module

The optical receiver module takes in optical signals and puts out forward band RF signals. The module cover has a sliding tray incorporated into it allowing the receivers fiber pigtail to be spooled up and contained within the receiver module. This greatly improves fiber management within the node.

The optical receiver module plugs directly into the optical interface board via a connector header and is secured in place with two screws. An input attenuator pad is provided on the optical interface board for the receiver mounted in the housing lid.

All optical receiver test points are provided and are accessible through holes in the module housing. The optical power test points for the optical receiver module has a scaling ratio of 1 V = 1 mW. A -20 dB RF power test point is accessible through the front panel.

The optical receiver module has an optical power LED to indicate the presence of optical power that is either above or below the specified range. ON indicates optical power is within operating limits and OFF indicates that optical power is below the alarm threshold.

Figure 3: Optical Receiver Module

![Diagram of Optical Receiver Module]

The optical power level into the optical receiver module is monitored by the status monitor or local control module.

The following diagram shows how the optical receiver module functions.
There are two types of the receiver module: Standard Input Optical Receiver and Low Input Optical Receiver.

The optical input range for the low input receiver is 0.1 w to 0.63 w (-10 dBm to -2 dBm). Compared to the standard input optical receiver (the optical input range is -6 dBm to +2 dBm (0.25 w to 1.58 w)), the low input optical receiver can work with lower optical input level, in order to support fiber deep applications.

The illustration below is Low Input Receiver RF Output Level and Transmitter OMI: Rx Switch in 0 dB Setting:
The illustration below is Low Input Receiver RF Output Level and Transmitter OMI: Rx Switch in -8 dB Setting:

For the detailed information about the low input optical receiver, please refer to the latest GS7000 Data Sheet.

Optical Analog Transmitter Module

The optical analog transmitter module takes in reverse band RF signals and puts out optical signals. The node is designed to work specifically with the existing mid gain, temperature compensated DFB optical transmitters. Other mid and high gain optical transmitters may be installed in the node with varying effects on the overall
node specifications. The new module cover fits on all existing optical transmitters. This module cover has a sliding tray incorporated into it allowing the transmitters fiber pigtail to be spooled up and contained within the transmitter module. This greatly improves fiber management within the node.

The optical transmitter module plugs directly into the optical interface board via a connector header and are secured in place with two screws. Output attenuator pad is provided on the optical interface board for each transmitter mounted in the housing lid.

RF test points are accessible through holes in the module housing. The optical power test point for the optical transmitter module has a scaling ratio of 1 V = 1 mW. A -20 dB RF power test point is accessible through the module top cover.

The top cover contains a status monitor LED. Each optical transmitter module laser power indicator turns off when the laser power output falls outside the alarm threshold. It is on (green) when within the alarm threshold.

Figure 6: Optical Analog Transmitter Module

![Image](image1.png)

The following diagram shows how the optical analog transmitter module functions.

Figure 7: Optical Analog Transmitter Module Diagram

![Image](image2.png)

Local Control Module

A local control module and a status monitor are available for the node. A status monitor consists of a local control module with a transponder core module installed in the housing. The same housing is used for both units. The units perform the following function:
• Local Control Module – reverse path troubleshooting
• Status Monitor - adds status monitoring capability to the local control module
• DOCSIS capability

Status Monitor Description

Note

It is impossible to use RPD module and status monitor in one node.

The status monitor is DOCSIS compliant and provides node monitoring and control capability at the cable plant's headend. The following node voltages and signals are monitored and their status reported to the headend by the status monitor.

- Receiver optical input level
- Transmitter optical output level (all transmitters)
- AC power presence and peak voltage (for split AC powering cases, AC power from both sides of node housing is monitored)
- DC voltages from both primary and redundant power supplies

Commands are sent from the headend to the status monitor. The status monitor communicates serially with the RF amplifier module, the reverse band 6 dB (wink) attenuators on the reverse amplifier PWB, and the reverse band on/off switches on the reverse amplifier PWB.

Note

Configuration parameters for the transponder core module, such as IP address, can be changed using the PC-based GS7000 ViewPort software.
Local Control Module Description

The local control module locally monitors the following node voltages and signals:

- Receiver optical input level
- Transmitter optical output level (all transmitters)
- AC power presence and peak voltage (for split AC powering cases, AC power from both sides of node housing is monitored)
- DC voltages from both primary and redundant power supplies

The local control module is equipped with a USB port to allow local control of the optional forward band redundancy switches, the reverse band 6 dB (wink) attenuators, the reverse band on/off switches, through the PC-based GS7000 ViewPort software. All parameters monitored by the local control module can be displayed and reviewed using ViewPort.

Note The transponder core module can be seen through the Heart Beat/Receive/Error indicator cutout in the cover.
The local control module can be upgraded to a status monitor through the addition of a transponder core module. The transponder core module plugs directly onto the local control module’s PWB. The mechanical housing for the status monitor and the local control module are the same. The Heart Beat, Receive, and Error indicator LEDs are only present if the transponder module is installed.

Power Supply Module

The power supply module converts a quasi-square wave, 50 – 60 Hz AC input voltage into four well-regulated DC output voltages. The supply is an off-line, switched-mode power supply with a large operating range. This reduces service outages by converting long duration AC surges into load power. The power supply is a constant power device, meaning that it automatically adjusts its internal operating parameters for the most efficient use of the different levels of input voltage and current it will receive within the cable plant.

The DC output voltages generated by the power supply, at given load currents, are shown below:

- +24.5 VDC @ 6.2 Amps
- +8.5 VDC @ 1.0 Amps
- +5.5 VDC @ 1.3 Amps
- -6.0 VDC @ 0.8 Amps
Test points are provided on top of the power supply module for AC input and all output DC voltage rails.

The power supply module plugs directly into the optical interface board, no external cables are required. A node can be configured with one or two power supplies. AC input voltage can be routed to both power supplies commonly from any node output port. In addition, AC input voltages can be routed in a split fashion to the two power supplies. AC input voltages from the left half of the node (output ports 1 – 3) can be routed to power supply 1 independent of AC input voltages from the right half of the node (output ports 4 – 6) being routed to power supply 2. Each of the power supplies output voltage rails is diode OR'd within the supply. This creates common DC powering circuits when multiple supplies are present in the node.

Node Power Limitations

The node must be configured in a manner that prevents potential thermal overloads. Heat generated by the node can reduce the life of the equipment.

Caution

The life of the equipment may be reduced if configured to draw more than the recommended level of power from the power supplies.

Two power supplies can provide a maximum power level of 155 watts to the node. The RF amplifier uses the majority of the available power. Maintain the total power consumption of all modules in the housing within
these guidelines to minimize the heat generated. Find the optimal configuration by summing the power consumption of the RF amplifier plus the other individual modules in the housing using the following table.

Important

Do not populate the housing with any combination of modules that would draw more than the available power of 155 watts.

The following table lists the modules and their respective electrical parameters.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Type</th>
<th>Maximum Power Draw (Watts)</th>
<th>Typical Power Draw (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td>1310 nm dff, analog CWDM</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Transmitter</td>
<td>analog DWDM</td>
<td>5.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Standard Input Receiver</td>
<td>operating</td>
<td>4.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard Input Receiver</td>
<td>standby</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>operating</td>
<td>4.1</td>
<td>3.85</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>standby</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>1x2 RPD</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>2x2 RPD</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Status Monitor/ Local Control Module</td>
<td></td>
<td>2.6</td>
<td>0.9</td>
</tr>
<tr>
<td>RF Amplifier</td>
<td>4-way forward segmentable</td>
<td>72.8</td>
<td>72.9</td>
</tr>
<tr>
<td>1:1 EDR Transmitter</td>
<td></td>
<td>< 3</td>
<td></td>
</tr>
<tr>
<td>2:1 EDR Transmitter</td>
<td></td>
<td>< 7</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3

Installation

This chapter describes the installation of the node.

- Tools and Test Equipment, on page 33
- Installing Cisco Remote PHY Device Module in the node, on page 35
- Node Housing Ports, on page 41
- Strand Mounting the Node, on page 42
- Pedestal or Wall Mounting the Node, on page 44
- Fiber Optic Cable Installation, on page 46
- RF Cable Installation, on page 51
- Applying Power to the Node, on page 53

Tools and Test Equipment

The following tools and equipment are required for installation.

- Torque wrench capable of 5 to 12 ft-lbs (6.8 to 16.3 Nm)
- 4-inch to 6-inch extension for torque wrench
- 1/2-inch socket for strand clamp bolts and cover bolts
- 1/4-inch flat-blade screwdriver
- #2 Phillips-head screwdriver
- Long-nose pliers
- 1/2-inch deep-well socket for seizure connector
- True-RMS digital voltmeter (DVM)
- EXFO FOT 22AX optical power meter with adapters
- Optical connector cleaning supplies
- Optical connector microscope with appropriate adapters for your optical connectors
Node Fastener Torque Specifications

Be sure to follow these torque specifications when assembling/mounting the node.

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque Specification</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing closure bolts</td>
<td>5 to 12 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.8 to 16.3 Nm)</td>
<td></td>
</tr>
<tr>
<td>Test point port plugs</td>
<td>5 to 8 ft-lbs</td>
<td></td>
</tr>
<tr>
<td>Housing plugs</td>
<td>5 to 8 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.8 to 10.8 Nm)</td>
<td></td>
</tr>
<tr>
<td>Strand clamp mounting bracket bolts</td>
<td>5 to 8 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.8 to 10.8 Nm)</td>
<td></td>
</tr>
<tr>
<td>Pedestal mounting bolts</td>
<td>8 to 10 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.8 to 13.6 Nm)</td>
<td></td>
</tr>
<tr>
<td>Module securing screws (Tx, Rx, PS, and SM/LCM modules)</td>
<td>25 to 30 in-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.8 to 3.4 Nm)</td>
<td></td>
</tr>
<tr>
<td>RF Amplifier assembly shoulder screws (cross head screw)</td>
<td>18 to 20 in-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.0 to 2.3 Nm)</td>
<td></td>
</tr>
<tr>
<td>Seizure nut</td>
<td>2 to 5 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.7 to 6.8 Nm)</td>
<td></td>
</tr>
<tr>
<td>RF cable connector</td>
<td>Per manufacturer instructions</td>
<td></td>
</tr>
<tr>
<td>Fiber optic cable connector</td>
<td>20 to 25 ft-lbs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(27.1 to 33.9 Nm)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The typical insertion force required for RF connectors and RF terminators is 20-30 lbsf. However, in some field situations the required insertion force can be higher. RF Connector/Terminators used should be able to withstand at least 80 pounds of insertion force without damage to the center pin.
Installing Cisco Remote PHY Device Module in the node

For 1x2 RPD

Step 1 Open the Cisco GS7000 node; remove all the transmitter and receiver modules (if any).

Step 2 Insert the location pin on the OIB of the Cisco GS7000 node into the location hole on the Cisco RPD. Tighten the screws on the Cisco RPD with recommended torque.
For 1x2 RPD

1. Screw
2. Locating Hole
Step 3 Insert the SC connector of the fiber cable into the SC adapter. Insert the LC connector of the fiber cable into the SFP+ module. The SC connector marked with “TX” on the label needs to be installed into the SC adapter marked with “TX” on top of the fiber tray. The SC connector marked with “RX” on the label needs to be installed into the SC adapter marked with “RX” on top of the fiber tray.
For 2x2 RPD

Step 1
Open the Cisco GS7000 node; remove all the transmitter and receiver modules (if any).

Step 2
Insert the location pin on the OIB of the Cisco GS7000 node into the location hole on the Cisco RPD. Tighten the screws on the Cisco RPD with recommended torque.
1. Locating Pin
For 2x2 RPD

1. Screw
2. Locating Hole
Step 3
Insert the SC connector of the fiber cable into the SC adapter. Insert the LC connector of the fiber cable into the SFP+ module. The SC connector marked with “TX” on the label needs to be installed into the SC adapter marked with “TX” on top of the fiber tray. The SC connector marked with “RX” on the label needs to be installed into the SC adapter marked with “RX” on top of the fiber tray.

Node Housing Ports

The following illustration shows the location of available RF ports, fiber ports, and test points on the node housing.
External test points are only active on models with the "Amplifier Type 3 - External Test Points Activated" option.

When replacing test point port plugs, torque from 5 to 8 ft-lbs (6.8 to 10.8 Nm).

Strand Mounting the Node

The following procedure explains how to install the node on a strand (aerial installation). Strand mounting allows street-side access to the housing, and the housing does not need to be opened.

Be aware of the size and weight of the node while strand mounting. Ensure that the strand can safely support the node’s maximum weight. A fully loaded node weighs over 50 lbs (22.7 kg).

Ensure the ground area below the installation site is clear of personnel before hoisting the node. If possible, block off walkway below the hoisting area to prevent pedestrian traffic during hoisting.

Failure to observe these admonishments can result in serious injury or death.

1. Check the strand size. The minimum strand diameter should be 5/16 inch.

2. Attach the strand clamp brackets to the housing in the position shown in the following illustration. Use a torque wrench tightens the strand clamp bracket bolts from 5 ft-lb to 8 ft-lbs (6.8 to 10.8 Nm).
3. Loosen the strand clamp bolts to separate the clamps enough to insert the strand, but do not remove them. Then lift the housing into proper position on the strand.

4. Slip the clamps over the strand and finger-tighten the clamp bolts. This allows additional side-to-side movement of the housing as needed.

5. Move the housing as needed to install the coaxial cable and connectors. See the illustrations below for an example.

Figure 10: Powered from Left
If supplying power to the node through a main output port, a power inserter must be installed to inject the AC voltage onto the RF signal.

6. Use a torque wrench and a 1/2-inch socket to tighten the strand clamp bolts from 5 ft-lb to 8 ft-lbs (6.8 to 10.8 Nm).

Note

A slight tilt of the face of the housing is normal. Cable tension will cause the housing to hang more closely to vertical.

7. Connect the coaxial cable to the pin connector according to the pin connector manufacturer’s specifications.

8. Continue to Fiber Optic Cable Installation, on page 46 and RF Cable Installation, on page 51.

Pedestal or Wall Mounting the Node

Two mounting holes on the housing allow pedestal or wall mounting.
Follow this procedure for pedestal or wall mounting.

Warning

- Be aware of the size and weight of the node while mounting. A fully loaded node weighs over 50 lbs (22.7 kg).
- Ensure that proper handling/lifting techniques are employed when working in confined spaces with heavy equipment.
- Failure to observe these warnings can result in serious injury or death.

1. Remove the cover of the pedestal.
2. Remove the self-tapping bolts from the strand clamps, if previously installed, and set the bolts and strand clamps aside.
3. Position the node horizontally in the enclosure and allow for free flow of air around it. Inadequate airflow could cause the node to exceed thermal parameters. Line up the bolt holes on the bottom of the housing with the mounting holes on the pedestal bracket provided by the pedestal manufacturer.
The node housing must be mounted horizontally, as shown, to ensure proper airflow over the housing cooling fins. Do NOT mount the node housing vertically.

4. Secure the node housing to the pedestal bracket using the strand clamp bracket bolts you removed in step 2. Insert the bolts into the mounting holes. Use the strand clamps as spacers if necessary. Torque the bolts from 8 ft-lb to 10 ft-lb (10.8 Nm to 13.6 Nm).

5. Connect the coaxial cable to the pin connector according to connector manufacturer’s specifications.

6. Ground the equipment in accordance with local codes and regulations.

7. Continue to Fiber Optic Cable Installation, on page 46 and RF Cable Installation, on page 51.

Fiber Optic Cable Installation

The node can accept a fiber optic cable connector from either the right or left side of the housing, or both. The fiber optic cable(s) carries forward and reverse optical signals.

This procedure assumes a specific type of connector as an example. Your connector may be different from the one shown in these illustrations. Be sure to install the connector according to the connector manufacturer’s instructions.
Fiber optic cable installation is a critical procedure. Incorrect installation can result in severely degraded node performance. Be sure to carefully follow fiber connector manufacturer’s instructions. See Care and Cleaning of Optical Connectors, on page 90.

Photos in this section show the 4x4 configurable node, but are still applicable for the context in this section.

Color Code

Fiber connectors and adapters are labeled with the following color code.

This is only a suggested setup. Your fiber assignment may be different. Refer to your network diagrams to verify your color code.

<table>
<thead>
<tr>
<th>Connector/Adapter Number</th>
<th>Fiber Color Code</th>
<th>Connects to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blue</td>
<td>forward receiver 1</td>
</tr>
<tr>
<td>2</td>
<td>Orange</td>
<td>forward receiver 2</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>reverse transmitter 1</td>
</tr>
<tr>
<td>4</td>
<td>Brown</td>
<td>reverse transmitter 2</td>
</tr>
<tr>
<td>5</td>
<td>Slate</td>
<td>spare</td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td>spare</td>
</tr>
<tr>
<td>7</td>
<td>Red</td>
<td>spare</td>
</tr>
<tr>
<td>8</td>
<td>Black</td>
<td>spare</td>
</tr>
</tbody>
</table>

Fiber Management System

The fiber management system is made up of a fiber tray and a fiber routing track. The fiber tray provides a convenient location to store excess fiber and up to two WDM modules in the node. The tray is hinged to allow it to move out of the way during the insertion of the fibers and for installation or replacement of the node power supplies. The fiber routing track provides a channel for routing fiber pigtails to their appropriate optical modules as well as a location to snap in unused fiber connectors for storage.

The following illustration shows the design of the fiber tray.
Fibers are spooled in a counterclockwise direction in the tray.

The following illustrations show the location and layout of the fiber tray and track in the housing lid.

Install Fiber Optic Cable

Install fiber optic cable as described below.
Laser light hazard. The laser light source on this product emits invisible laser radiation. Avoid direct exposure. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

- Do not apply power to this product if the fiber is unmated or unterminated.
- Do not stare into an unmated fiber or at any mirror-like surface that could reflect light that is emitted from an unterminated fiber.
- Do not view an activated fiber with optical instruments.

1. The first step depends on whether the fiber optic cable is factory installed or not.

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>fiber optic cable is factory installed</td>
<td>splice fiber pigtail of optical fiber input cable to your splice enclosure and continue to RF Cable Installation, on page 51.</td>
</tr>
<tr>
<td>fiber optic cable is not installed</td>
<td>go to step 2.</td>
</tr>
</tbody>
</table>

2. Select the right or left fiber connection port for use and remove its sealing plug.

3. Push in the two release tabs at the top of the fiber tray and swivel the top of the fiber tray up and back to allow a clear view of the fiber routing channel below.
4. One at a time, carefully insert fibers with attached connectors through the fiber connection port, the fiber channel, and then up and through the fiber entry point in the bottom of the fiber tray. Do not bend or kink fibers. Though not necessary, you can also remove the power supplies and open the fiber routing channel cover for additional access.

![Fiber Tray Release Tabs](image)

Note
If using the alternate (right-side) fiber connection port, you have to route the fibers through the fiber channel in the fiber track located underneath the unused fiber holders.

5. Hold the connector body to prevent rotation of the connector or fibers.
6. Carefully thread the 5/8-inch threaded nut into the threaded hole of the fiber port. Tighten to 20 to 25 ft-lbs (27.1 to 33.9Nm).

7. Firmly tighten the rotational nut against the 5/8-inch threaded nut.

8. Push heat shrink tubing over the connector and fiber port and shrink in place.

9. Identify individual fibers according to their color code and determine to which receiver or transmitter module each fiber will connect.

10. Pivot the fiber tray back down and snap it into place on top of the power supply with its locking tabs.

11. Open the fiber tray cover and carefully wind the fibers around the spool in a counterclockwise direction. Be sure to leave enough fiber so that each connector can reach its intended module. Note that different diameter spool paths are provided to properly adjust the fiber length.

12. Route each fiber to its intended module through the fiber track as shown.

13. Before connection, carefully clean the optical connectors on both fiber and module according to the procedures in Care and Cleaning of Optical Connectors, on page 90.

14. Open the receiver or transmitter module fiber connector cover. Carefully slide the fiber connector into the module connector until it clicks.

15. Repeat steps 12 and 13 for each receiver and transmitter module.

16. Splice fiber pigtail of optical fiber input cable to your splice enclosure.

17. Continue to RF Cable Installation, on page 51.

RF Cable Installation

The node can accept up to four RF cables. These cables carry forward path RF signal outputs and reverse path RF signal inputs. The RF cables also supply the 45 to 90 V AC power input.

Trimming the Center Conductor

The node requires pin-type connectors for all RF connections.

Standard pin connectors, with pins extending 1.5 in. to 1.6 in. (3.8 cm to 4.064 cm) from connector shoulder, require no trimming. You must trim longer pins before inserting them into the housing.
Trimming Using the Integrated Cradle

To trim long pins using the integrated cradle, follow these steps.

1. Place the connector on the cradle as shown in the following illustration.

2. If the center conductor extends past the CUT stanchion on the housing, trim the pin flush with the end of the CUT stanchion.

3. Remove any burrs or sharp edges from the trimmed end of the pin.

Trimming Using the Strip Line Mark

To trim long pins using the strip line mark on the housing, follow these steps.

1. Place the connector above the entry port so that it lines up with its installed position.
2. If the center conductor extends past the STRIP line on the housing, trim the pin flush with the STRIP line.

3. Remove any burrs or sharp edges from the trimmed end of the pin.

Connecting the RF Cables to the Node Housing

Follow these steps to connect the RF cables.

1. Determine which ports receive an RF cable for your configuration.

2. The length of the RF connector center pin is critical to proper operation. The pin length must be 1.6 inches (4.064 cm). Trim pin if necessary before installation. See Trimming the Center Conductor, on page 51.

Assemble each RF connector to its cable according to manufacturer’s instructions.

3. Remove the sealing plug of each port to which cables connect. Note that Ports 1, 3, 4, and 6 have the option of a vertical or horizontal connection.

4. Insert the appropriate coaxial connector of each RF cable to the desired housing port and torque to the manufacturer’s specification. Do not exceed recommended torque.

5. Repeat steps 2 through 4 for each RF port used.

6. Continue to Applying Power to the Node.

Applying Power to the Node

The node requires input power of 45 to 90 V AC from an external power source. This power is supplied through one or more of the RF cables.
The powering configuration is flexible and can be changed to meet most network requirements. Power direction is configured by installing AC shunts for the ports through which you want to pass AC power. An AC segmentable shunt is provided to configure power direction between the two sides of the node.

The following schematic diagram illustrates node powering.

Node Powering Procedure

Follow these steps to apply power.

1. Determine which of the RF cables carry 45 to 90 V AC input power.

2. Install shunts in the locations that correspond to the AC-powered RF ports. Each port’s shunt is located on the RF amplifier module near the port as shown in the following illustration.

Note
Shunts are available with both red and black tops. Use red to indicate that power is applied to that port. Use black to indicate that input power is not applied.
3. If desired, remove shunts to block AC power at the individual ports.

4. The next step depends on the power path, as follows:

<table>
<thead>
<tr>
<th>IF...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>power will pass from left side of housing (Ports 1, 2, and 3) to right side of housing (Ports 4, 5, and 6)</td>
<td>ensure that the AC segmentable shunt is installed.</td>
</tr>
<tr>
<td>power is to be blocked between left side of housing (Ports 1, 2, and 3) and right side of housing (Ports 4, 5 and 6)</td>
<td>ensure that the AC segmentable shunt is removed.</td>
</tr>
<tr>
<td>Ports 1, 2, and 3 are powered from one source and Ports 4, 5 and 6 are powered from another source</td>
<td>ensure that the AC segmentable shunt is removed.</td>
</tr>
</tbody>
</table>

5. Continue to **Voltage Check Procedure**.

Voltage Check Procedure

Always check both AC and DC voltages during initial setup of the node. Follow these steps to check AC and DC voltages.

1. Use a true-rms DVM to check for 45 to 90 V AC input voltage at the AC test point on the power supply module.
2. Check for the various DC output voltages (+24.5, +8.5, -6.0, and +5.5) of the power supply at the DC test points on the power supply module.

3. Verify that the Power ON LED on the receiver module is on.

4. Carefully close the housing lid. See Opening and Closing the Housing, on page 81.
Setup and Operation

This chapter describes how to set up and operate the 1.2 GHz GS7000 Remote PHY Device (RPD) 2X2 Segmentable Node. These procedures assume the node is installed according to the procedures in Chapter 3 of this manual.

Refer to your network design diagrams during setup. The design diagrams should specify the exact input and output signal levels required for your network. The node is configured to have a specific amount of gain at 18 dB of linear tilt from 52 MHz to 1218 MHz.

• Tools and Test Equipment, on page 57
• Forward Path Setup Procedure, on page 59
• Reverse Path Setup Procedure, on page 62
• Reconfiguring Forward Signal Routing, on page 63
• Reconfiguring Reverse Signal Routing, on page 72

Tools and Test Equipment

Tools and test equipment required for setup are listed below. Equivalent items may be substituted. Ensure test equipment is calibrated and in good working order.

• Fluke Model 77 (or equivalent) true-rms digital voltmeter (DVM) with 0.001 resolution.
• Signal generator capable of generating carriers at 55.25 MHz and 1.2GHz
• “F” barrel adapter – 1.2 GHz
• Field strength meter capable of measuring up to 1.2GHz
• Field sweep receiver/transmitter with a minimum bandwidth of 1.2 GHz
• EXFO FOT 22AX optical power meter with adapters
• Fiber optic jumper to test transmitter optical output power
• Glendale Technologies optical eye protection blocking 900–1600 nm light
RF Assembly

Become familiar with the function and component layout of the RF assembly before aligning the node. The cover of the RF assembly is printed with a diagram that shows the functional signal flow and identifies each field-replaceable component.

Some of these components (pads, equalizers, and node signal directors) are removed and replaced with different value components during the setup procedures.

The following illustrations show the 4-way forward segmentable node RF assembly.

Figure 12: Left side Ports 1, 2, and 3 illustration
Forward Path Setup Procedure

Perform the following steps to set up the forward path.

The procedure uses an example with a transmitter modulation index of 2.5% per channel and the 1.2GHz node with RF output level of 54 dBmV @ 1218 MHz.

1. Ensure all unused RF ports are terminated with 75 ohms. Use an AC load if AC is routed to the RF port.
2. Open the housing according to Opening and Closing the Housing, on page 81.
3. Carefully disconnect the forward path optical fiber(s), if connected.
Warning

Laser hazard. This product contains a class 3B laser with no safety interlocks. Under no circumstances should connectors be viewed with equipment enabled. Direct viewing of connectors can cause eye damage. Failure to adhere to this admonishment may result in serious injury to the eye(s) or even blindness.

Caution

Disconnecting the optical fibers of a working network element will interrupt customer service.

Note

Ensure all optical connectors are clean. See Care and Cleaning of Optical Connectors, on page 90.

4. Use an optical power meter to measure the level of the input light signal from the forward path optical fiber cable(s). Signal should be 0 dBm, 1mW, nominal. For a standard receiver, record the measurement(s).

5. Connect the forward path optical fiber(s) to the receiver. Use a DVM to measure DC voltage at receiver optical power level test point. Scale: 1V DC = 1mW (1310 nm transmitter) and 1.12 V DC = 1mW (1550 nm transmitter).

6. Set the receiver module attenuator switch as follows:
THEN set the attenuator switch to...

<table>
<thead>
<tr>
<th>IF received optical power is...</th>
<th>THEN set the attenuator switch to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Receiver</td>
<td>-2 to +2 dBm 8 dB</td>
</tr>
<tr>
<td></td>
<td>-6 to -2 dBm 0 dB</td>
</tr>
<tr>
<td>Low Input Receiver</td>
<td>-6 to -2 dBm 8 dB</td>
</tr>
<tr>
<td></td>
<td>-10 to -6 dBm 0 dB</td>
</tr>
</tbody>
</table>

For standard input receiver, check the RF level at the -20 dB RF test point. Signal level should be +7 dBmV at the test point with 0 dBm optical input power and 2.5% index modulation of the laser headend transmitter. (With optical receiver attenuator set to the -8 dB switch setting.) This represents an optical receiver output of +27 dBmV.

7. For standard input receiver, check the RF level at the -20 dB RF test point. Signal level should be +7 dBmV at the test point with 0 dBm optical input power and 2.5% index modulation of the laser headend transmitter. (With optical receiver attenuator set to the -8 dB switch setting.) This represents an optical receiver output of +27 dBmV.

<table>
<thead>
<tr>
<th>For standard receiver</th>
<th>For low input receiver</th>
<th>Att/OMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output level</td>
<td>27dBmV</td>
<td>27dBmV</td>
</tr>
<tr>
<td>Input optical power</td>
<td>0dBm</td>
<td>-4dBm</td>
</tr>
<tr>
<td>Att/OMI</td>
<td>8 dB/2.5%</td>
<td>8 dB/2.5%</td>
</tr>
</tbody>
</table>

8. The next step depends on your RF output levels.

9. If all four of the node's output ports are to have equal output levels, re-balancing of the RF level should not be required for 4-way segmentation.

To achieve an output level of 54 dBmV @ 1218 MHz / 50.7 dBmV @ 1002 MHz
- with 27 dBmV output from the optical receiver, install a 15 dB attenuator pad into the optical interface board just above the receiver module.

Go to step 12, on page 61.

10. If the node's output RF ports are to be driven at different levels, the port with the highest output level should be used to set up the node. Measure signal level at the forward RF test point, on the amplifier module, to identify the port with the highest level output signal. Verify the output power level is correct using the OIB Pad as in Step 9, on page 61.

Go to step 11, on page 61.

11. Increase the attenuator pad value at the FWD PORT OUT PAD locations on the RF amplifier module to reduce the output level of the ports which need to be driven at a lower level than the port used to setup the node. See Technical Information, on page 107 for pad selection charts.

12. The GS7000 Node is set for 18 dB of linear tilt between 54 and 1218 MHz / 14.7 dB between 54 MHz and 1002 MHz.

4-Way Forward Segmentable RF Amplifier Note: Four 18.0 dB linear field replaceable equalizers are installed in the node at the factory, one each on the four independent forward amplification paths.
This achieves 18.0 dB of linear tilt between 54 MHz and 1218 MHz (14.7 dB between 54 MHz and 1002 MHz).

If your network requires a different value, remove the field replaceable 18 dB equalizers and replace with equalizers of the appropriate value. See Forward Equalizer Chart, on page 108.

13. If the RPD module is installed, make sure the correct FCM is used, and then plug an attenuator pad (value depends on the operator’s network) in OIB. When using the Analog Receiver for Overlay, the attenuator pad selected for the OIB will be 8 dB lesser value. Improved system performance is achieved by installing a combination Filter/Attenuator Pad, Cisco Part Number FLTRPD-RPD-55-xx.

14. Continue to Reverse Path Setup Procedure or close the housing according to Opening and Closing the Housing, on page 81.

Reverse Path Setup Procedure

This procedure describes how to perform the reverse path setup. Perform this procedure only if your node has an active reverse path.

Perform the following steps to set up the proper level into the reverse path optical transmitters.

1. Open the housing according to Opening and Closing the Housing, on page 81.

2. Verify the level of the input reverse RF signals at the RF test points located near the main ports of the RF amp module. Nominal level is +17 dBmV per channel. Install the appropriate value input pad at the REV PORT IN PAD location to attenuate the signal to the desired level for the reverse path of the node.

3. With the input to the node port set to 17 dBmV per channel, a 4 dB transmitter input attenuator pad should be installed on the optical interface board (just above the transmitter module) to achieve 13 dBmV level into the optical transmitter (-7 dBmV at the transmitter -20 dB test point). This RF input level into the high gain reverse transmitter will achieve an optical modulation index (OMI) of 10%.

4. Repeat steps 2 and 3 for each RF port carrying a reverse path signal.

5. Use an optical power meter to measure the transmitter optical output power. (1330 nm or 1550 nm)
6. Using a DVM, measure the DC voltage at the optical test point and record the value.

7. Check the connection of the optical connector. Make sure the optical connector is seated and verify that the fiber bend radius is greater than 1 inch.

Warning

When handling optical fibers always follow laser safety precautions.

8. If the RPD module is installed, make sure the correct RCM is used, and then plug an attenuator pad (value depends on the operator’s network) in OIB.

Reconfiguring Forward Signal Routing

This section describes how to configure the forward signal routing of the node.

The receiver module/RPD and the forward configuration module determine the forward signal routing. Each module must be in its proper slot to achieve the different node configurations.

The following table shows the required modules for various node configurations.

Note

All pad values are approximate starting values.

<table>
<thead>
<tr>
<th>If the configuration is…</th>
<th>Then use configuration module…</th>
<th>Install...</th>
</tr>
</thead>
<tbody>
<tr>
<td>one 1x2 RPD module, four outputs</td>
<td>RPD 1x4 Forward</td>
<td>one 1x2 RPD module</td>
</tr>
<tr>
<td>one 1x2 RPD module, one single analog overlay optical receiver, four outputs</td>
<td>RPD 1x4 Forward with Analog Overlay</td>
<td>one 1x2 RPD module, one single analog overlay optical receiver</td>
</tr>
<tr>
<td>one single GS7000 node optical receiver, four outputs</td>
<td>RPD 1x4 Forward Analog Only</td>
<td>one single GS7000 node optical receiver</td>
</tr>
<tr>
<td>one 2x2 RPD module, four outputs</td>
<td>RPD 2x4 Forward</td>
<td>one 2x2 RPD module</td>
</tr>
<tr>
<td>one 2x2 RPD module, one single analog overlay optical receiver, four outputs</td>
<td>RPD 2x4 Forward with Analog Overlay</td>
<td>one 2x2 RPD module, one single analog overlay optical receiver</td>
</tr>
</tbody>
</table>

RPD 1x4 Forward Configuration Module

A 1x2 RPD module feeds all RF output ports.

Install 1x2 RPD module and FCM in the correct positions as shown in the following illustration.
The following diagram illustrates forward path signal flow in this configuration module.

<table>
<thead>
<tr>
<th></th>
<th>RPD 1x4 Forward Configuration Module</th>
<th></th>
<th>Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1x2 RPD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1 GHz: ~6 dB
- 1.2 GHz: ~16 dB
RPD 1x4 Forward Configuration Module with Analog Overlay

The signal of the 1x2 RPD module and receiver are combined and routed to all four RF ports of the node.

Install 1x2 RPD module, receiver and FCM in the correct positions as shown in the following illustration.
The following diagram illustrates forward path signal flow in this configuration module.

<table>
<thead>
<tr>
<th></th>
<th>Receiver Module</th>
<th></th>
<th>Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 GHz: attenuator switch 0 dB</td>
<td>4</td>
<td>1 GHz: ~6 dB</td>
</tr>
<tr>
<td></td>
<td>1.2 GHz: attenuator switch 8 dB</td>
<td></td>
<td>1.2 GHz: ~16 dB</td>
</tr>
<tr>
<td>2</td>
<td>RPD 1x4 Forward Configuration Module with Analog Overlay</td>
<td>5</td>
<td>Low Pass Filter Pad: 12 dB</td>
</tr>
<tr>
<td>3</td>
<td>1x2 RPD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RPD 1x4 Forward Configuration Module Analog Only

A single GS7000 node receiver feeds all RF output ports.

Install receiver and FCM in the correct positions as shown in the following illustration.
Table 1: Configuration Module Components

<table>
<thead>
<tr>
<th></th>
<th>Component</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| 1 | Receiver Module | - 1 GHz: attenuator switch 0 dB
- 1.2 GHz: attenuator switch 8 dB |
| 2 | RPD 1x4 Forward Configuration Module Analog Only | |
| 3 | Pad | - 1 GHz: ~ 6 dB
- 1.2 GHz: ~ 16 dB |

The following diagram illustrates forward path signal flow in this configuration module.
RPD 2x4 Forward Configuration Module

A 2x2 RPD module feeds all RF output ports. One RPD output provides the downstream signal for RF ports 1-3 of the node and the other RPD output provides signal to RF ports 4-6 of the node.

Install 2x2 RPD module and FCM in the correct positions as shown in the following illustration.
The following diagram illustrates forward path signal flow in this configuration module.

<table>
<thead>
<tr>
<th></th>
<th>RPD 2x4 Forward Configuration Module</th>
<th></th>
<th>2x2 RPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 GHz: ~ 6 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.2 GHz: ~ 16 dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RPD 2x4 Forward Configuration Module with Analog Overlay

The signal of the 2x2 RPD module and receiver are combined and routed to all RF ports of the node.

Install 2x2 RPD module, receiver and FCM in the correct positions as shown in the following illustration.
The following diagram illustrates forward path signal flow in this configuration module.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPD 2x4 Forward Configuration Module with Analog Overlay</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Pad</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>• 1 GHz: ~ 6 dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1.2 GHz: ~ 16 dB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2x2 RPD</td>
<td></td>
</tr>
</tbody>
</table>
Reconfiguring Reverse Signal Routing

This section describes how to configure the reverse signal routing of the node.

The transmitter modules and the reverse configuration module determine the reverse signal routing. Each module must be in its proper slot to achieve the different node configurations.

The following table shows the required modules and their slot locations for various node configurations.

<table>
<thead>
<tr>
<th>If the configuration is…</th>
<th>Then use configuration module…</th>
<th>Install…</th>
</tr>
</thead>
<tbody>
<tr>
<td>four inputs</td>
<td>RPD 4x1 Reverse</td>
<td>1x2 RPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x2 RPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analog transmitter, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EDR transmitter</td>
</tr>
<tr>
<td>four inputs</td>
<td>RPD 4x2 Reverse</td>
<td>1x2 RPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x2 RPD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2:1 EDR transmitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 analog transmitters, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1:1 EDR transmitters</td>
</tr>
</tbody>
</table>

RPD 4x1 Reverse Configuration Module

This RCM combines the signal from all 4 node RF ports to either the RPD module and/or transmitter. Install 1x2 RPD module and RCM in the correct positions as shown in the following illustration.
Install 2x2 RPD module and RCM in the correct positions as shown in the following illustration.
Or, install transmitter and RCM in the correct positions as shown in the following illustration.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPD 4x1 Reverse Configuration Module</td>
<td>3</td>
<td>Pad, vertically installed, 4 dB</td>
</tr>
<tr>
<td>2</td>
<td>2x2 RPD</td>
<td>4</td>
<td>Pad, vertically installed, 4 dB</td>
</tr>
</tbody>
</table>
The following diagram illustrates reverse path signal flow in this configuration module.
RPD 4x2 Reverse Configuration Module

This RCM combines the signal from all 4 node RF ports to either the RPD module and/or transmitter.

Install 1x2 or 2x2 RPD module and RCM in the correct positions as shown in the following illustration.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPD 4x2 Reverse Configuration Module</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1x2 or 2x2 RPD</td>
<td></td>
</tr>
</tbody>
</table>

Or, install transmitter and RCM in the correct positions as shown in the following illustration.
The following diagram illustrates reverse path signal flow in this configuration module.

<table>
<thead>
<tr>
<th></th>
<th>RPD 4x2 Reverse Configuration Module</th>
<th>3</th>
<th>Pad, 2 places, horizontally installed, 4 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPD 4x2 Reverse Configuration Module</td>
<td>3</td>
<td>Pad, 2 places, horizontally installed, 4 dB</td>
</tr>
<tr>
<td>2</td>
<td>2:1 EDR Transmitter, 2 Analog Transmitter, or 2 1:1 EDR Transmitter</td>
<td>3</td>
<td>Pad, 2 places, horizontally installed, 4 dB</td>
</tr>
</tbody>
</table>
CHAPTER 5

Maintenance

This section describes maintenance procedures for the 1.2 GHz GS7000 Remote PHY Device (RPD) 2X2 Segmentable Node.

- Opening and Closing the Housing, on page 81
- Preventative Maintenance, on page 82
- Removing and Replacing Modules, on page 85
- Care and Cleaning of Optical Connectors, on page 90

Opening and Closing the Housing

Installation or maintenance of the node requires opening the housing to access the internal modules.

Proper housing closure is important to maintaining the node in good working condition. Proper closure ensures a good seal against the environment, protecting the internal modules.

Opening the Housing

Open the housing as follows.

1. Remove the bolts securing the lid to the base.
2. Carefully open the lid to allow access to the inside of the housing.
3. Inspect gaskets on the cover flange and on the test port plugs.
4. Replace any gaskets showing signs of wear (cracked, twisted, pinched, or dry) with new, silicon-lubricated gaskets.

Closing the Housing

Close the housing as follows.

1. Ensure any worn gaskets are replaced, and the gaskets are clean and in the correct position.
2. Carefully close the lid.
Preventative Maintenance

Preventive maintenance procedures are regularly scheduled actions that help prevent failures and maintain the appearance of the equipment.

Schedule

Perform the preventive maintenance procedures at these intervals.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection</td>
<td></td>
</tr>
<tr>
<td>External Surfaces</td>
<td>Semiannually</td>
</tr>
<tr>
<td>Connectors</td>
<td>Semiannually</td>
</tr>
<tr>
<td>Indicators</td>
<td>Semiannually</td>
</tr>
</tbody>
</table>
Visual Inspection

Visually inspect the following items.

<table>
<thead>
<tr>
<th>What to Inspect</th>
<th>How to Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior surfaces</td>
<td>Inspect for:</td>
</tr>
<tr>
<td></td>
<td>• dust, dirt, lubricants, or other foreign matter worn spots or deep scratches</td>
</tr>
<tr>
<td></td>
<td>• corrosion</td>
</tr>
<tr>
<td></td>
<td>• marred protective finish exposing bare metal</td>
</tr>
<tr>
<td></td>
<td>• missing, incorrect or obliterated marking, decals, or reference designators</td>
</tr>
<tr>
<td>Connectors</td>
<td>Inspect for:</td>
</tr>
<tr>
<td></td>
<td>• broken, loose, bent, corroded, or missing pins</td>
</tr>
<tr>
<td></td>
<td>• cracked insulator inserts</td>
</tr>
<tr>
<td>Wiring and cables</td>
<td>Inspect for:</td>
</tr>
<tr>
<td></td>
<td>• cuts, nicks, burns, or abrasions</td>
</tr>
<tr>
<td></td>
<td>• exposed bare conductors</td>
</tr>
<tr>
<td></td>
<td>• sharp bends</td>
</tr>
<tr>
<td></td>
<td>• pinched or damaged wires</td>
</tr>
<tr>
<td></td>
<td>• broken or loose lacing or clamps</td>
</tr>
</tbody>
</table>

Cleaning

Clean exterior surfaces of the equipment at least annually.
Consumable Materials

Use the materials listed below (or equivalent) when cleaning the equipment.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isopropyl alcohol</td>
<td>TT-I-735</td>
</tr>
<tr>
<td>Cheesecloth</td>
<td>CC-C-440</td>
</tr>
<tr>
<td>Spray-type contact cleaner</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Procedure

Clean the equipment as described below.

1. Use a small paintbrush to brush dust from connectors.
2. Wipe surfaces dry with clean, dry cheesecloth.
3. Clean exterior surfaces with clean cheesecloth moistened with isopropyl alcohol or general-purpose detergent. Do not let alcohol or detergent get inside equipment or connectors.

Warning

Isopropyl alcohol is flammable. Use isopropyl alcohol only in well-ventilated areas away from energized electrical circuits and heated objects such as soldering irons or open flames. Avoid excessive inhalation of vapors or prolonged or repeated contact with skin. Wear industrial rubber gloves and industrial safety goggles to avoid contact with skin. Do not take internally. Failure to comply with this admonishment can cause injury, physical disorder, or death.

Caution

Do not use cleaning fluids containing trichloroethylene, trichloroethane, acetone or petroleum-based cleaners on equipment. Failure to comply with this caution could harm equipment surfaces.

4. Clean electrical contacts with spray-type contact cleaner.
5. Clean internal connectors and circuit boards with hand-controlled, dry-air jet. Do not use pressure exceeding 15 lb/in² (1.05 kg/cm², or 103.43 kPa).
6. Clean interior surfaces with clean cheesecloth moistened with isopropyl alcohol or general-purpose detergent.
7. Clean internal electrical contacts with clean cheesecloth moistened with spray-type contact cleaner.
8. Dry interior with clean, dry cheesecloth.
Removing and Replacing Modules

This procedure describes how to remove and replace the internal modules of the node. All field-replaceable modules can be removed and replaced without removing power from the node.

Field-replaceable modules include:

- Forward optical receiver modules
- Reverse optical transmitter modules
- Status monitor/local control module
- Forward configuration module
- Reverse configuration module
- Equalizers
- Node signal directors
- Power supply modules
- RF amplifier assembly
- RPD Module

Caution

Removing power from the node will interrupt customer service. Removing any module, except for the status monitor/local control module, will interrupt customer service unless that module has a redundant backup.

Module Replacement Procedure

Follow this procedure to remove and replace an optical receiver, optical transmitter, optical amplifier, optical switch, status monitor/local control module, or power supply module.

1. Open the housing. See Opening and Closing the Housing, on page 81.
2. Carefully tag and remove any optical fibers from RPD, receiver or transmitter module.

Warning

Laser light hazard. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

3. Loosen the screws securing the module.
4. Lift the module straight up out of the housing to unplug it.
Note
Pull up on the built-in handle on RPD, receiver module, transmitter module, status monitor/local control module, or power supply module.

5. Position the new module in the same location and carefully slide the module into its slot until connected to the optical interface board.

6. Tighten the screws securing the module. Torque screws to 25 to 30 in-lbs (2.8 to 3.4 Nm).

7. Carefully reconnect any optical fibers that were removed from the original module. Clean optical connectors before reconnecting. See Care and Cleaning of Optical Connectors, on page 90 for cleaning procedure.

Warning
Laser light hazard. Never look into the end of an optical fiber or connector. Failure to observe this warning can result in eye damage or blindness.

8. Close the housing. See Opening and Closing the Housing, on page 81.

Important
If you are using a Local Control Module in the node be sure to press the Auto Set-Up button on the cover of the LCM before you close the node housing. This allows the LCM to check for, and detect, installed modules. If the modules are not detected during this discovery process, they cannot be monitored and controlled by the LCM. The node must be powered and the modules operating properly in order to be detected.

9. Perform the setup procedure in Setup and Operation, on page 57 to verify node performance.

Accessing the Receiver/Transmitter Module Fiber Spool and Connector

Optical receivers and transmitter modules have an integrated fiber spool inside the module housing. This allows the fiber pigtail to be spooled up and contained within the module housing.

You may need to access this spool to clean or replace a fiber pigtail or connector.

Follow this procedure to access the module fiber spool and connector.

1. Pull up on the two module cover knurled tabs. Use a slight rocking motion.

Note
If the module is out of the housing, it is easier to hold the module in both hands and pull up on the two module cover knurled tabs with your thumbs. You can also insert a flat blade screwdriver into the cover release tab slot on the right side of the module housing to assist with opening the cover.

The module cover opens as shown.
2. Pull the fiber connector straight out from the side of the module cover to remove it.

3. Disassemble the fiber connector and pigtail for cleaning if necessary.

4. Reattach the fiber connector to the module cover and close the cover.
Forward/Reverse Configuration Module, Equalizer, and Node Signal Director Replacement Procedure

The forward and reverse configuration modules, equalizers, and node signal directors plug into the RF amplifier assembly through cut-outs in its cover.

To remove these modules, pull up carefully on their integrated handles until they separate from the RF amplifier assembly.

RF Amplifier Assembly Replacement Procedure

Follow this procedure to remove and replace the RF amplifier assembly.

1. Open the housing. See Opening and Closing the Housing, on page 81.
2. Remove the AC power shunts and make a note of their location for reinstallation in the replacement RF amplifier assembly.

Caution

Damage to the node may result if AC power shunts are not removed before replacing the RF amplifier assembly.

3. Unplug AC1/DC connector, forward path connector, reverse path connector and AC2 connector on the RF amplifier assembly.
4. Loosen the seven shoulder screws securing the RF amplifier assembly to the housing.
The screw locations are identified by number, 1 through 7.

5. Insert a flat-blade screwdriver into the small holes in the metal handles on each side of the RF amplifier assembly and pry up carefully to disconnect the RF amplifier assembly’s rear panel connectors.

Be careful not to damage the housing with the screwdriver.
6. Grasp the two metal handles on the RF amplifier assembly and carefully lift the RF assembly out of the housing.

7. To replace the RF amplifier assembly in the housing, carefully align the assembly in the housing, lower it into place and push down to reconnect the rear panel connectors.

8. Secure the RF amplifier assembly to the housing with the seven cross-head shoulder screws.

Important
Tighten the screws in order by number, 1 through 7. Repeat the sequence twice, ending with a torque of 18 to 20 in-lbs (2.0 to 2.25 Nm).

9. Plug AC 1/DC connector, forward path connector, reverse path connector and AC2 connector on the RF amplifier assembly.

10. Reinstall the AC power shunts in their proper locations on the RF amp assembly.

11. Close the housing. See Opening and Closing the Housing, on page 81.

12. Perform the setup procedure in Setup and Operation, on page 57 to verify node performance.

Care and Cleaning of Optical Connectors

Caution
Proper operation of this equipment requires clean optical fibers. Dirty fibers will adversely affect performance. Proper cleaning is imperative.

The proper procedure for cleaning optical connectors depends on the connector type. The following describes general instructions for fiber-optic cleaning. Use your company's established procedures, if any, but also consider the following.
Cleaning fiber-optic connectors can help prevent interconnect problems and aid system performance. When optical connectors are disconnected or reconnected, the fiber surface can become dirty or scratched, reducing system performance.

Inspect connectors prior to mating, clean as needed, and then remove all residues. Inspect connectors after cleaning to confirm that they are clean and undamaged.

Recommended Equipment

- CLETOP or OPTIPOP ferrule cleaner (CLETOP Type A for SC, Type B for LC)
- Compressed air (also called “canned air”)
- Lint-free wipes moistened with optical-grade (99%) isopropyl alcohol
- Bulkhead swabs for LC or SC type connectors (choose appropriate type)
- Optical connector scope

Tips for Optimal Fiber-Optic Connector Performance

- Do not connect or disconnect optical connectors with optical power present.
- Always use compressed air before cleaning the fiber-optic connectors and when cleaning connector end caps.
- Always install or leave end caps on connectors when they are not in use.
- If you have any degraded signal problems, clean the fiber-optic connector.
- Advance a clean portion of the ferrule cleaner reel for each cleaning.
- Turn off optical power before making or breaking optical connections to avoid microscopic damage to fiber mating surfaces.

To Clean Optical Connectors

Warning

- Avoid personal injury! Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.
- Avoid personal injury! The laser light source on this equipment emits invisible laser radiation. Avoid direct exposure to the laser light source.
- Avoid personal injury! Viewing the laser output with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.

- Connect or disconnect fiber only when equipment is OFF or in Service mode.
- Do not apply power to this equipment if the fiber is unmated or unterminated.
• Do not look into an unmated fiber or at any mirror-like surface that could reflect light that is emitted from an unterminated fiber.

• Do not view an activated fiber with optical instruments such as eye loupes, magnifiers, or microscopes.

• Use safety-approved optical fiber cable to maintain compliance with applicable laser safety requirements.

Connector cleanliness is crucially important for optimum results in fiber optic communications links. Even the smallest amount of foreign material can make it impossible to obtain the expected insertion and return losses. This can reduce the range of the equipment, shorten its expected service life, and possibly prevent the link from initializing at all.

New equipment is supplied with clean optical connectors and bulkheads. Clean these connectors and bulkheads in the field only if you observe and can verify an optical output problem.

Connectors and Bulkheads

Most fiber optic connectors are of the physical contact (PC) type. PC type connectors are designed to touch their mating connector to prevent air gaps, which cause reflections. For optimum performance, all dirt must be removed.

Bulkheads can also become dirty enough to affect performance, either from airborne dust or from contamination introduced by connectors.

Warning

Avoid damage to your eyes! Do not look into any optical connector while the system is active. Even if the unit is off, there may still be hazardous optical levels present.

Note

Read the above warning before performing cleaning procedures.

Cleaning Connectors

It is important that all external jumper connectors be cleaned before inserting them into the optical module. Follow these steps to clean fiber optic connectors that will be connected to the optical module:

Important

Before you begin, remove optical power from the module or ensure that optical power has been removed.

1. Inspect the connector through an optical connector scope. If the connector is damaged, e.g., scratched, burned, etc., replace the jumper.

2. If the connector is dirty but otherwise undamaged, clean the connector as follows:
 1. Make several swipes across the face of the connector with the appropriate ferrule cleaner. This will remove dust and some films.
 2. Listen for a slight "squeak" typically generated during this process, indicating a clean connector.
 3. Inspect the connector again through the scope to confirm that it is clean.
3. If a second inspection indicates that further cleaning is needed:
 1. Use 99% isopropyl alcohol and a lint-free wipe to clean the connector.
 2. Use the appropriate ferrule cleaner again to remove any film left over from the alcohol.
 3. Inspect the connector again through the scope and confirm that it is clean.

4. If necessary, repeat steps 3a-3c until the connector is clean.

Cleaning Bulkheads

Note

It is generally more difficult to clean bulkhead connectors and verify their condition due to limited accessibility of the fiber end face. For this reason, even on products with accessible bulkhead connectors, you should only attempt to clean a bulkhead connector when a dirty connector is indicated.

Follow these steps to clean the bulkhead:

Warning

- Avoid personal injury! Use of controls, adjustments, or performance of procedures other than those specified herein may result in hazardous radiation exposure.
- Avoid personal injury! The laser light source on this equipment emits invisible laser radiation. Avoid direct exposure to the laser light source.
- Avoid personal injury! Viewing the laser output with optical instruments (such as eye loupes, magnifiers, or microscopes) may pose an eye hazard.

1. Insert a dry bulkhead swab into the bulkhead and rotate the swab several times.
2. Remove the swab and discard. Swabs may be used only once.
3. Check the bulkhead optical surface with a fiber connector scope to confirm that it is clean. If further cleaning is needed:
 1. Moisten a new bulkhead swab using a lint-free wipe moistened with optical-grade (99%) isopropyl alcohol.
 2. With the connector removed, fully insert the bulkhead swab into the bulkhead and rotate the swab several times.
 3. Remove the swab and discard. Swabs may be used only once.
 4. Check with a fiber connector scope again to confirm that there is no dirt or alcohol residue on the optical surface.
 5. If any alcohol residue remains, clean it off with a new dry bulkhead swab.

4. Mate all connectors to bulkheads and proceed to Verifying Equipment Operation below.
5. It is also recommended that all connectors be visually inspected after cleaning to verify the connector is clean and undamaged.

Verifying Equipment Operation

Perform circuit turn-up. If the equipment does not come up, i.e., fails verification or indicates a reflection problem, clean the connectors and bulkheads again.
Troubleshooting

This troubleshooting section lists common problems and their solutions. If a troubleshooting procedure directs you to replace a module of the 1.2 GHz GS7000 Remote PHY Device (RPD) 2X2 Segmentable Node, see Removing and Replacing Modules, on page 85.

- No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off, on page 95
- No RF Output: Fiber Optic Light Level is Good, Receiver Optical Power LED is on, on page 97
- Poor C/N Performance, on page 98
- Poor Distortion Performance, on page 100
- Poor Frequency Response, on page 102
- No RF Output from Reverse Receiver, on page 103
- Reference: 2x2 RPD Module LEDs, on page 104

No RF Output at Receiver RF Test Point: Optical Power LED on Receiver Module is off

Follow this troubleshooting flowchart. Also see the notes following the chart.
These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For standard receiver</td>
<td>This unit will have no RF output.</td>
</tr>
<tr>
<td>For low input receiver</td>
<td>This unit will have no RF output.</td>
</tr>
</tbody>
</table>
| 1 | The receiver will not function below this DC level which is equal to -10 dBm.
- The optimum light level input is -6 to 2 dBm.
- For every 1 dBm change in optical input power, the RF output will change by 2 dB.
- Excessively high light input levels (> +2 dBm) will cause distortions and/or damage the photo diode. |
| 2 | The receiver will not function below this DC level which is equal to -10 dBm.
- The optimum light level input is -10 to -2 dBm.
- For every 1 dBm change in optical input power, the RF output will change by 2 dB.
- Excessively high light input levels (> -2 dBm) will cause distortions and/or damage the photo diode. |
No RF Output: Fiber Optic Light Level is Good, Receiver Optical Power LED is on

Follow this troubleshooting flowchart. Also see the notes following the chart.

Start (See Note 1)

Connect a coax test lead to the RF output test point of the receiver.

Is RF present? (See Note 2)

No

Replace the receiver module.

Yes

Install pads, ECs or jumpers as necessary.

No

Is a pad, EC or jumper installed in all pad and EQ locations?

Clear RF amplifier module.

Yes

End

Verify pad, ECs or jumpers as necessary.

Verify all devices "upstream" of the laser input and correct the problem.

Is RF Present?

No

Replace the laser.

Yes

Verify the RF input into the laser.

End

These notes apply to the previous troubleshooting flowchart.
Note

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For standard receiver</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Note

- Assumes 2.5% OMI/CH or 20% composite.
- Assumes 1310 nm wavelength / Add one dB for 1550.
- Assumes 0dB attenuator switch setting unless noted, if otherwise subtract attenuator value from reading.
- Assumes -4dB optical input, if otherwise add or subtract 2dB RF for each 1dB optical input.

Poor C/N Performance

Follow this troubleshooting flowchart. Also see the notes following the chart.
These notes apply to the previous troubleshooting flowchart.

Note Description

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF drive level to the laser must be set to the laser manufacturer’s specification.</td>
</tr>
<tr>
<td>2</td>
<td>It is possible that the distribution module is set up incorrectly. See the pad and equalizer selection charts in Appendix A for correct pad and equalization. The C/N performance will suffer if the RF levels are too low into the first gain stage or the interstage.</td>
</tr>
</tbody>
</table>
It is important to monitor the DC level at the receiver module because in the process of cleaning the connectors, the transfer of light through each connector may improve or degrade. The DC reading should degrade if there is a reflection in the path depending on the severity of the core mismatch. Scratches on the surface of the fiber of the connector can cause reflections. Scratched connectors must be replaced.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>It is important to monitor the DC level at the receiver module because in the process of cleaning the connectors, the transfer of light through each connector may improve or degrade. The DC reading should degrade if there is a reflection in the path depending on the severity of the core mismatch. Scratches on the surface of the fiber of the connector can cause reflections. Scratched connectors must be replaced.</td>
</tr>
<tr>
<td>4</td>
<td>For standard receiver</td>
</tr>
<tr>
<td></td>
<td>Attenuate the light to simulate the amount of light that should be at the node and rerun the C/N performance. Add components into the path one at a time until the problem is found. Change jumpers, couplers, fibers and connectors one at a time, taking C/N measurements after each change. A phenomenon called “shot noise” will occur if the light level is too high into the receiver. This is noise generated by the photo diode when the light is converted back to RF. An optical input level exceeding +2 dBm at the detector will also generate distortions.</td>
</tr>
</tbody>
</table>

Note:
- Assumes 2.5% OMI/CH or 20% composite.
- Assumes 1310 nm wavelength / Add one dB for 1550.
- Assumes 0dB attenuator switch setting unless noted, if otherwise subtract attenuator value from reading.
- Assumes -4dB optical input, if otherwise add or subtract 2dB RF for each 1dB optical input.

Poor Distortion Performance

Follow this troubleshooting flowchart. Also see the notes following the chart.
These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Recommended RF input levels are:
 - Headend transmitter module: 14 dBmV

 Note Based on 79-channel loading. The input will increase as the channel loading decreases. |
Poor Frequency Response

Follow this troubleshooting flowchart. Also see the notes following the chart.

Troubleshooting

Poor Frequency Response

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>For standard receiver
The range for optical light input level is -6 to +2 dBm which converts to 0.25 to 1.6 V DC. The optimum operating range is -3 dBm to +2 dBm which converts to 0.5 to 1.6 V DC. Levels higher than +2 dBm can cause the photo diode to generate distortions, which add to the distortion performance of the link, effectively degrading the distortion performance.**
For low input receiver
The range for optical light input level is -10 to -2 dBm which converts to 0.1 to 0.6 V DC. The optimum operating range is -6 dBm to -2 dBm which converts to 0.25 to 0.6 V DC. Levels higher than -2 dBm can cause the photo diode to generate distortions, which add to the distortion performance of the link, effectively degrading the distortion performance.</td>
</tr>
<tr>
<td>3</td>
<td>Attenuate the light to simulate the amount of light that should be at the 1.2 GHz GS7000 Node and rerun the distortion performance. If the distortion performance improves, there is too much light. An inline optical attenuator or a coupler with a higher loss can reduce the light, or the laser may have to be replaced with a lower launch power.</td>
</tr>
<tr>
<td>4</td>
<td>Attenuate the RF input level into the amplifier by increasing the pad value at the OIB. If the distortion perform improves, there is too much RF.</td>
</tr>
</tbody>
</table>

Troubleshooting Flowchart

[Diagram of troubleshooting flowchart]

Follow this troubleshooting flowchart. Also see the notes following the chart.
These notes apply to the previous troubleshooting flowchart.

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Be sure all unused ports are properly terminated into 75 ohms to prevent mismatches. The frequency response is cumulative and reflects the response of each active device in the link:
 - The frequency response for the transmitter is dependent on the transmitter manufacturer's specification.
 - The frequency response of the node is ±1.0 dB from 52 MHz to 1218 MHz (for optical receiver and amplifier combined). |
| 2 | It is possible that the RF amplifier is set up incorrectly. Always check to see that padding and equalization is correct to ensure proper levels at the inputs to each gain stage. See the pad and equalizer selection charts in Technical Information, on page 107 for correct pad and equalization. |

No RF Output from Reverse Receiver

Follow this troubleshooting flowchart.
Reference: 2x2 RPD Module LEDs

This section contains LED definition for the 2x2 RPD module. It provides a coarse-grained indication of device connectivity to field technicians during their installation or repair of the RPD.

<table>
<thead>
<tr>
<th>LED</th>
<th>LED Pattern or Color</th>
<th>State Indicated</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>System LEDs</td>
<td>Green - 2 Hz Flash Pattern</td>
<td>Power-on - Initializing</td>
<td>Required - Indicates power good</td>
</tr>
<tr>
<td></td>
<td>Green - 4 Hz Flash Pattern</td>
<td>IP acquired via DHCP, synchronizing and acquiring configuration</td>
<td>Required - Indicates remote SSHv2 session possible</td>
</tr>
<tr>
<td></td>
<td>Green - Steady</td>
<td>System status good - Connections good</td>
<td>No faults detected</td>
</tr>
<tr>
<td></td>
<td>Red - 2 Hz Flash Pattern</td>
<td>Connection fault - No physical connection to CIN or RF interfaces</td>
<td>Loose connection, connector faults, water ingress at connector, wavelength mismatch, etc.</td>
</tr>
<tr>
<td></td>
<td>Red - 4 Hz Flash Pattern</td>
<td>Configuration fault - Failed synchronization or failed to receive configuration from Principal CCAP Core</td>
<td>Wrong DHCP configuration, unreachable hosts, failed authentication with CCAP Core, etc.</td>
</tr>
<tr>
<td></td>
<td>Red - Steady</td>
<td>System fault - Device cannot initialize</td>
<td>Indicates hardware fault, always indicated by a steadily illuminated LED.</td>
</tr>
<tr>
<td></td>
<td>Amber - Various</td>
<td>Warning - RPD operational but operation is imperfect</td>
<td>Vendor-defined LED behavior. May indicate high error rates in CIN or RF ports, marginal operating conditions, etc.</td>
</tr>
<tr>
<td>CIN LEDs</td>
<td>Flash Pattern</td>
<td>Per [IEEE 802.3x]</td>
<td>Indicates connection state</td>
</tr>
<tr>
<td></td>
<td>Unilluminated</td>
<td>Ethernet port failure or port administratively disabled</td>
<td>Indicates possible port failure or a port which has been configured to be disabled</td>
</tr>
<tr>
<td>D-RF LEDs</td>
<td>2 Hz Flash Pattern</td>
<td>Power-on - Downstream RF initializing</td>
<td>At least one pilot and/or alignment tone active</td>
</tr>
<tr>
<td></td>
<td>4 Hz Flash Pattern</td>
<td>Channel or channels activated</td>
<td>Awaiting downstream channel set configuration</td>
</tr>
<tr>
<td></td>
<td>Steadily Illuminated</td>
<td>Downstream channel set configuration obtained</td>
<td>Downstream channels operational</td>
</tr>
<tr>
<td></td>
<td>Unilluminated</td>
<td>RF port fault or RF port mute</td>
<td>Fault detected in RF port or RF port muted by CCAP Core</td>
</tr>
<tr>
<td>LED</td>
<td>LED Pattern or Color</td>
<td>State Indicated</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>U-RF LEDs</td>
<td>2 Hz Flash Pattern</td>
<td>At least one upstream channel configuration received (and a MAP was received for that channel), awaiting upstream burst transmissions</td>
<td>Indicates that the RPD has received and applied at least one upstream channel configuration</td>
</tr>
<tr>
<td></td>
<td>4 Hz Flash Pattern</td>
<td>First upstream transmission recognized</td>
<td>Indicates at least one CM's burst transmission has been received</td>
</tr>
<tr>
<td></td>
<td>Steadily Illuminated</td>
<td>At least one CM has successfully completed upstream ranging</td>
<td>Upstream deemed operational</td>
</tr>
<tr>
<td></td>
<td>Unilluminated</td>
<td>Upstream RF port fault or no configuration</td>
<td>Fault detected in US RF port or no configuration received</td>
</tr>
</tbody>
</table>
Reference: 2x2 RPD Module LEDs
Technical Information

This appendix contains tilt, forward and reverse equalizer charts.

- Linear Tilt Chart, on page 107
- Forward Equalizer Chart, on page 108

Linear Tilt Chart

Amplifier Output Linear Tilt Chart for 1.2 GHz

The following chart can be used to determine the operating level at a particular frequency considering the operating linear tilt.

Amplifier Output Linear Tilt Chart for 1 GHz

The following chart can be used to determine the operating level at a particular frequency considering the operating linear tilt.
If the amplifier’s 1 GHz output level is 49.0 dBmV with a linear operating tilt of 14.5 dB (from 50 to 1 GHz), the corresponding output level at 750 MHz would be 45.1 dBmV. This was found by taking the difference in tilt between 1 GHz and 750 MHz (14.5 – 10.6 = 3.9 dB). Then subtract the difference in tilt from the operating level (49.0 - 3.9 = 45.1 dBmV).

Forward Equalizer Chart

1.2 GHz Forward Linear Equalizers

The following table shows the 1.2 GHz forward linear equalizer loss.

<table>
<thead>
<tr>
<th>EQ Value (dB)</th>
<th>Insertion Loss at (MHz)</th>
<th>Total Tilt (52-1218 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1218</td>
<td>1000</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>1.6</td>
</tr>
<tr>
<td>4.5</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0</td>
<td>2.1</td>
</tr>
<tr>
<td>7.5</td>
<td>1.0</td>
<td>2.4</td>
</tr>
<tr>
<td>9.0</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>10.5</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>12.0</td>
<td>1.0</td>
<td>3.2</td>
</tr>
<tr>
<td>13.5</td>
<td>1.0</td>
<td>3.5</td>
</tr>
<tr>
<td>15.0</td>
<td>1.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>
1 GHz Forward Linear Equalizers

The following table shows the 1 GHz forward linear equalizer loss.

<table>
<thead>
<tr>
<th>EQ Value (dB)</th>
<th>Insertion Loss at (MHz)</th>
<th>Total Tilt (52-1218 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1218</td>
<td>1000</td>
</tr>
<tr>
<td>16.5</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>18.0</td>
<td>1.0</td>
<td>4.3</td>
</tr>
<tr>
<td>19.5</td>
<td>1.2</td>
<td>4.8</td>
</tr>
<tr>
<td>21.0</td>
<td>1.2</td>
<td>5.0</td>
</tr>
<tr>
<td>22.5</td>
<td>1.2</td>
<td>5.3</td>
</tr>
<tr>
<td>24.0</td>
<td>1.2</td>
<td>5.6</td>
</tr>
</tbody>
</table>
1 GHz Forward Linear Equalizers
Enhanced Digital Return Multiplexing Applications

This appendix explains the installation and application of the Cisco Enhanced Digital Return (EDR) 85 Multiplexing System in the GS7000 Node.

The products are intended for digital transmission of reverse path signals over a fiber optic link from the node to the headend.

The Cisco Enhanced Digital Return (EDR) 85 System expands the functionality of GS7000 and GainMaker 4-Port and Reverse Segmentable Nodes by increasing the performance, reach, and efficiency of the reverse path transmissions.

The Cisco EDR 85 System includes EDR Transmitter modules that install in GainMaker and GS7000 Nodes, and companion Cisco Prisma® high-density (HD) EDR PRX85 Receiver modules that install in a Prisma II or Prisma II XD chassis at the headend or hub. The transmitter and receiver use Small Form Factor Pluggable (SFP) optical pluggable modules (OPMs) for enhanced flexibility. The Cisco EDR 85 System operates over the 5-85 MHz range and supports all standard reverse frequency bandwidths at 40, 42, 55, 65, and 85 MHz.

The Cisco Enhanced Digital Return (EDR) 85 Systems includes the EDR 1:1 multiplexing system and the 2:1 multiplexing system.

- Enhanced Digital Return System Overview, on page 111
- Enhanced Digital Return System Installation, on page 121
- Transmitter Module Setup Procedure, on page 127
- Reverse Balancing the Node with EDR, on page 128
- Troubleshooting, on page 130

Enhanced Digital Return System Overview

Features

The EDR Enhanced Digital Return 1:1 and 2:1 Multiplexing Systems have the following features.

- High-performance Digital Return technology
 - 12 bit encoding enables transmission of analog video in the reverse band
 - High-order digital modulation signals (e.g.,16 QAM, 64 QAM, and 256 QAM)
• Multiple operating modes in the EDR receiver support EDR transmitter
• Optical Pluggable Modules (OPM) enable flexible inventory management
• Long reach transmission capabilities eliminate the need for optical amplifiers, reducing cost and space requirements
• Capable of sending 80 individual 5 – 85 MHz reverse signals over a single fiber
 • Compatible with Cisco’s 40 wavelength DWDM system
• Enables independent balancing of reverse traffic at EDR receiver RF ports
• Simplified setup reduces installation time and expertise requirements
• Distance- and temperature-independent link performance simplifies engineering and maintenance requirements
• Space-saving, high-density deployment in Prisma II or Prisma II XD chassis increases deployment cost-efficiency
• Optional monitoring of node (GS7000) and Tx (GS7000 and GainMaker) parameters available at the receiver

The EDR 2:1 Enhanced Digital Return Multiplexing System leverages 2:1 multiplexing to reduce fiber usage.

System Functional Diagram

The following illustration shows how the GS7000 Node functions in Enhanced Digital Return configuration with 1:1 EDR transmitter module installed as the transmitter.
When the node is configured in either segmented or EDR mode, a 75 dB pad must be placed in the Tx2 SM Term.

This configuration requires a 4x1 Reverse Configuration Module (for 6-port OIB), as shown.

EDR Transmitter Module

At the transmit (node) end of the system, reverse-path RF input signals from each node port are routed to an EDR 2:1 or EDR 1:1 Transmitter module in the housing lid. The transmitter module converts each signal to a baseband digital data stream and combines the signals into a serial data stream using time-division multiplexing (TDM). The baseband data stream is then converted to an optical signal for transmission to the
headend or hub. The double-wide (2:1) transmitter modules occupy two transmitter slots and the 1:1 modules occupy one slot.

The EDR 1:1 transmitter introduces one single RF inputs to produce the discrete 5 to 85 MHz RF signal, while the EDR 2:1 transmitter introduces two RF inputs to produce two discrete 5 to 85 MHz RF signals. The transmitter module also converts each signal to a baseband digital data stream and time division multiplexes the two streams into a single data stream.

The data stream is carried optically over fiber, via an SFP type OPM module, to a remote hub or headend location where the optical signal is detected and converted back to a serial electrical signal. The data is then de-scrambled and de-framed and switched to a Digital-to-Analog Converter (DAC), where the analog spectrum that was sampled at the transmit side is reconstructed. The baseband data stream is converted to an optical signal for transmission back to the headend or hub.

The following block diagrams show the transmitter module's internal components.

Figure 14: EDR 1:1 Transmitter Module

Figure 15: EDR 2:1 Transmitter Module

The following illustrations show the transmitter module components.
1. The EDR transmitter cannot monitor the GainMaker Node parameters.
2. The EDR LCM module needs to be installed for EDR transmitter status monitoring.
3. The status monitor interface is not used for data transmission. The Cisco DOCSIS transponder is needed when data transmission is required.

The transmitter module uses the same style housing as the optical receivers and transmitters, and it uses the single-wide module housing. As such, it occupies one standard transmitter positions in the node lid.
1. The EDR transmitter cannot monitor the node parameters.

2. The EDR LCM module needs to be installed for EDR transmitter status monitoring.

3. The status monitor interface is not used for data transmission. The Cisco DOCSIS transponder is needed when data transmission is required.

Note

The transmitter module uses the same style housing as the optical receivers and transmitters, except that it uses double-wide module housing. As such, it occupies two standard transmitter positions in the node lid.

EDR Receiver Module

At the receive end, typically in a large hub or headend, the EDR Receiver module receives the optical signal and performs the conversion back to the baseband data stream. The resulting data streams are converted back to analog reverse path signals for routing to termination equipment. The EDR Receiver module is available in the High Density form factor. The receiver OPMs are available in Standard Range (SR) and Extended Range (XR) configurations. Both configurations feature a dual LC/PC optical input connector that feeds two independent reverse optical receivers, each with its own RF output port.

A single EDR Receiver module occupies one slot in a Cisco Prisma II XD chassis. Two EDR HD receiver modules can be vertically stacked in an associated Prisma II Host Module that occupies a single-wide slot in the Prisma II standard chassis. Up to 26 HD modules can operate in a standard 6 rack unit (6RU) chassis (the 56-connector version of the chassis is required to make use of both receivers in one chassis slot). Up to 16 HD modules can operate in the Prisma II XD chassis. The ability to mix EDR Receiver modules with other Prisma II HD modules in the same chassis greatly enhances the flexibility of the platform.

For instructions on installing the receiver, refer to the Prisma II Chassis Installation and Operation Guide.
The following illustration shows the receiver module.

![Receiver Module Illustration]

The following block diagram shows the receiver module's internal components.

![Receiver Block Diagram]

At the headend, the reverse optical receiver converts the optical signal back to an RF signal that is then routed out through the receiver's RF output.

For detailed information on the EDR receiver module, refer to the Cisco Prisma II EDR Receiver Installation Guide.

Receiver Operating Modes

The receiver module supports receiver mode configuration performed by setting the proper mode ID numbers in the Prisma II Web UI system.

The following diagrams provide a basic walk-through of all the supported modes for the EDR receiver module. The receiver can be configured for any of the following modes of operation:

- Single 2:1
- Dual 1:1
- Dual 2:1
• Single 2:1 on Primary + Single 1:1 on Secondary
• Single 1:1 on Primary + Single 2:1 on Secondary
• Legacy Single 2:1
• Legacy Dual 2:1

Single 2:1 Mode

Referring to the diagram below, the EDR transmitter digitizes and combines two RF signals (RF 1 + RF 2) into one serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial stream is de-serialized, converted back to its two analog RF components, and then sent to the two RF connectors on the back of the module. RF 1 appears on RF port A, and RF 2 appears on RF port B.

Note

The optical fiber must be plugged into the top receiver on the OPM.

Figure 18: Single 2:1

Dual 1:1 Mode

Referring to the diagram below, the EDR transmitter digitizes a single RF signal (RF 1) into a serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial streams from two separate transmitters are deserialized and converted back to an analog RF signal. The RF signal (RF 1) for each transmitter is sent separately to the two RF connectors on the back of the module.
Dual 1:1

Referring to the diagram below, two EDR transmitters are connected to one receiver. Each EDR transmitter digitizes and combines two RF signals (RF1 + RF2) into one serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial streams from the two separate transmitters are deserialized and converted back to their two analog RF components. Since the receiver only has two RF ports, the combined signals (RF1 + RF2) for each transmitter are sent to the two RF connectors on the back of the module.

Dual 2:1 Mode

Referring to the diagram below, two EDR transmitters are connected to one receiver. Each EDR transmitter digitizes and combines two RF signals (RF1 + RF2) into one serial stream and transmits it over optical fiber to the receiver. At the receiver, the serial streams from the two separate transmitters are deserialized and converted back to their two analog RF components. Since the receiver only has two RF ports, the combined signals (RF1 + RF2) for each transmitter are sent to the two RF connectors on the back of the module.

Single 2:1 on Primary + Single 1:1 on Secondary

This mode is a combination of the 2:1 and 1:1 modes described above. Referring to the diagram below, one EDR transmitter digitizes and combines two RF signals (RF1 + RF2) into one serial stream and transmits it over optical fiber to the receiver. The other EDR transmitter digitizes a single RF signal (RF1). At the receiver, the serial streams from two separate transmitters are deserialized and converted back to their two analog RF components. The combined Transmitter 1 signal (RF1 + RF2) is sent to RF port A, and the Transmitter 2 signal (RF1) is sent to RF port B on the back of the module.
Single 1:1 on Primary + Single 2:1 on Secondary

This mode is identical to the mode just described, except that the 2:1 transmitter is connected to the second receiver and the 1:1 transmitter is connected to the primary receiver.

EDR OPM and LCM

The reverse transmitter converts the RF test signal(s) to an optical signal using the installed Optical Module (OPM) and transmits it to the headend (or hub site) via fiber optic cable. At the headend, the reverse optical receiver also converts the optical signal back to an RF signal that is then routed out through the receiver's RF output using its installed OPM module.
The EDR Local Control Module is required for in-band status monitoring the node signaling and data transmission.

The packet cable is delivered with the EDR LCM module. Refer to the installation section in the following content for instructions on local status monitoring connection.

Refer to the following sections for EDR OPM and LCM installation.

Enhanced Digital Return System Installation

Perform these installation instructions only if you are upgrading the GS7000 Node with the EDR. If your node came with the EDR installed, go to Reverse Balancing the Node with EDR, on page 128.

Required Tools

The following tools and equipment are needed to configure and install the EDR.

- ½-inch hex driver or ratchet
- Two adjustable wrenches for coaxial connectors
- Standard flat-head or phillips-head screwdriver
- Torque wrench, capable of settings up to 100 in-lb (11.3 Nm)
Operating Environment

Before operating the node with the EDR installed, ensure that the operating environment meets the following standards.

- Ambient temperature range outside the node must be maintained between -40°C and +60°C (-40°F to 140°F).
- Storage temperature range of the EDR must be maintained between -40°C to +85°C (-40°F to 185°F).
- Humidity range must be maintained between 5% to 95% non-condensing before installation of the EDR Digital Return module(s).

Installing the EDR Transmitter

The transmitter module uses the same style housing as the optical receivers and transmitters, except that it uses double-wide module housing. As such, it occupies two standard transmitter positions in the node lid.

If your EDR transmitter comes without OPM module installed, you need to order the fiber jumper and the OPM module from our sales representatives, and perform the following steps to install the OPM module and connect the fiber jumper to the installed OPM module before installing the EDR transmitter.

To Install the OPM Module in the EDR Transmitter

⚠️ Caution

The OPM modules are electro-static sensitive devices. Always use an ESD wrist strap or similar individual grounding device when handling OPM modules or coming in contact with modules.

1. Connect the blue LC connector to the transmit bore of the OPM module before installing the module. Refer to the EDR OPM and LCM, on page 120 section for details for the OPM module.

2. Close the bale-clasp before inserting the OPM module.
3. Connect the blue LC connector to the transmit bore of the OPM module.

4. Line up the OPM module with the port, and slide it into the port.

5. Proceed to next section for installation.

The following diagram shows the OPM module installed on the 1:1 transmitter module.

The following diagram shows the OPM module installed on the 2:1 transmitter module.

Caution

Removing and installing an OPM module can shorten its useful life. Do not remove and insert OPM modules more often than is absolutely necessary.

To Route the Fiber Jumper

Make sure the transmitter module is installed with the OPM module before routing the fiber jumper. The fiber jumper must be routed carefully in the fiber tray and aligned under the fiber jumper clip one by one.

The following diagram shows the fiber jumper connection for 1:1 transmitter.
The following diagram shows the fiber jumper connection for 2:1 transmitter.

Note

1. When removing faulty OPM module, press and remove the blue LC connector before you can open the bale clasp.
2. OPM modules should be installed before installing the fiber jumper.

To Install the EDR Transmitter

Follow these steps to install the transmitter module(s).

1. See Module Replacement Procedure, on page 85 for instructions on installing these modules in the housing.
2. Remove any existing transmitter modules from the positions in which you want to install the EDR transmitter module(s).
3. Install one to two 1:1 transmitter modules in the housing lid as required for your application.
### IF you are installing...	THEN...

only one transmitter module
install the module in transmitter positions XMTR 1,
install a 75 Ohm Termination Pad in XMTR2 OIB Location
AND
install an appropriate Reverse Configuration Module in the RF amplifier assembly.
Refer to the Reverse Configuration Module, on page 22 for details.

two transmitter modules
install the modules in transmitter positions XMTR 1/XMTR 2
AND
install an appropriate Reverse Configuration Module in the RF amplifier assembly.
Refer to the Reverse Configuration Module, on page 22 for details.

4. Install one 2:1 transmitter modules in the housing lid as required for your application.

### IF you are installing...	THEN...

only one transmitter module
install the modules in transmitter positions XMTR 1/XMTR 2
AND
install an appropriate Reverse Configuration Module in the RF amplifier assembly.
Refer to the Reverse Configuration Module, on page 22 for details.

Warning

Laser transmitters when disconnected from their optical fiber path emit invisible laser radiation, which is harmful to the human eye. If viewed at close range, the radiation may be of sufficient power to cause instantaneous damage to the retina of the eye. Only trained service personnel using proper safety precautions and equipment such as protective eyewear should disconnect and service the laser transmitter equipment.

To Connect the Long-haul Fiber

1. Insert the fiber-optic start-head to the optical adapter.
2. Route fiber on the fiber tray of GS7000 GainMaker Node.
3. Connect the fiber-optic end-head to the receive bore of the OPM module installed on the Receiver of the Prisma II platform.

4. The receiver OPM module requires LC connector, conversion maybe needed.

5. Clean the LC connector's fiber-optic end-faces.

See the following Tip for a pointer to a fiber-optic inspection and cleaning white paper.

To Connect the EDR LCM for Status Monitoring

The LCM module is equipped with the interface ribbon cable. The cable can be used to connect the LCM module and the Status Monitor point of the desired EDR transmitter module for local status monitoring.

Note

Local Status monitoring supports one EDR transmitter module at a time.

Insert the cable head-end with the red marker on back.

Press the Auto Set-Up button on the LCM to initiate module discovery.

The Auto-Setup process typically takes up to 30 seconds.

Note

Node data monitoring is only available for GS7000 Nodes with a transponder-less EDR LCM installed. The PC-based GS7000 ViewPort software is not available for GsS7000 Node.

Installing the EDR Receiver

For detailed information on installing the EDR receiver module on the Prisma II, refer to the Cisco Prisma II EDR Receiver Installation Guide.

To Install the OPM Module on the Receiver Module

The following diagram shows the OPM module installed on the receiver module of the Prisma II.
To Configure the Receiver Mode

The receiver mode can be configured in the Web UI interface though connection with the Prisma II platform. For complete configuration steps and setup precautions, refer to the Cisco Prisma II EDR Receiver Installation Guide, and the Cisco Prisma II Platform Configuration Guide.

Transmitter Module Setup Procedure

Perform the following steps to set up the reverse transmitter module(s).

1. Open the housing according to Opening and Closing the Housing, on page 81.

2. In the base of the housing verify that the Reverse Configuration Module installed in the RF amplifier is correct for your application.

3. Verify the level of the reverse path RF signal at the RF test points on the RF module. Nominal level is +15 dBmV per channel. Install the appropriate value input pad at the REV PORT IN PAD location to give the desired signal level into the node.

4. Repeat step 3 for each RF cable carrying a reverse path signal.

5. Measure the transmitter module(s) optical output power.

6. Check the connection of the optical connector. Make sure the optical connector is seated and verify fiber bend radius is greater than 1 inch.

⚠️

Warning

⚠️

When handling optical fibers always follow laser safety precautions.

EDR Transmitter Status Indicators

The transmitter module has two status indicator LEDs.

The following section describes the LED status and the correspondent indications. The input level overdrive indicates the input signal level exceeds the limit of 35 dBmV.

For EDR 1:1 transmitter module, the following table lists the LED status and the indicated OPM, and the overdrive status of the RF port.

<table>
<thead>
<tr>
<th>LED</th>
<th>Indication</th>
<th>Power (PWR)</th>
<th>Laser (LSR)</th>
<th>OPM Module</th>
<th>Port Input Overdrive</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td>Green</td>
<td>Green</td>
<td>Cisco Standard OPM Module</td>
<td>No</td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Reverse Balancing the Node with EDR

This section explains the reverse balancing procedures for the GS7000 Node using EDR.

When balancing the reverse path, reference your system design print for the required reverse signal level. Use appropriate padding and equalization to provide proper signal level to the reverse transmitter.

Caution

Never attempt to reconfigure the unit beyond its normal setup. Changes to the node’s configuration may cause degradations that affect its performance. Do not use digital carrier measurement to set up the forward or reverse paths. Familiarize yourself with your cable system’s specifications before performing the setup.
There are a variety of test equipment combinations that enable proper balancing of the reverse path. Regardless of the type of equipment used, the balancing process is fundamentally the same. A reverse RF test signal (or signals) of known amplitude is injected into the RF path at the RF input of the node. The reverse transmitter converts the RF test signal(s) to an optical signal and transmits it to the headend (or hub site) via fiber optic cable. At the headend, the reverse optical receiver converts the optical signal back to an RF signal that is then routed out through the receiver's RF output. The amplitude of the injected test signal must be monitored at the receiver's output, and compared to the expected (design value) amplitude.

Method of Generating and Monitoring Test Signals

The reverse RF test signals that are injected into the reverse path of the RF launch amplifier being balanced may be generated by the following method.

- Multiple CW signal (tone) generator
- Reverse sweep transmitter

The amplitude of the received test signals at the output of the reverse optical receiver in the headend or hub may be measured and monitored using the following:

- Spectrum analyzer (when using a CW generator for test signals)
- Signal level meter (when using a CW generator for test signals)
- Reverse sweep receiver (when using a reverse sweep transmitter for test signal)

The variance in relative amplitude of the received signal from desired (reference) may be relayed to the field technician via the following:

- Radio (by a second technician in the headend/hub who is monitoring a spectrum analyzer or signal level meter)
- A dedicated forward TV channel, whose associated modulator has its video input being generated by a video camera focused on the spectrum analyzer display
- An associated forward data carrier (if using a particular type of reverse sweep system)

If a portable reverse sweep generator with built-in forward data receiver is used to generate the reverse test signals, only one technician is required to perform the balancing. This type of system is becoming increasingly popular due to its ease of use.

In this case, the sweep system includes a combination reverse sweep receiver and forward data transmitter, which is located in the headend/hub. The frequency response characteristics of the received sweep signal (including relative amplitude and tilt) are converted by the headend sweep receiver to a data format, and transmitted in the forward RF path as a data carrier (by combining it into the forward headend combiner). The portable sweep generator/data receiver that is injecting the test signal into the RF launch amplifier's reverse path in the field is simultaneously receiving the incoming data carrier via the forward RF path. The incoming data is converted back to a sweep display that represents what is being received by the headend unit.

Reverse Balancing and Alignment Procedure

Digital Return technology is designed to have a constant link gain, regardless of the length of fiber or amount of passive optical loss in the link. That is, if the RF signal amplitude of all ports in all nodes is set to a constant
value, the signal level at the output of the receiver will be balanced automatically to a constant power level. Minor differences in levels can be trimmed out at the receiver with no penalty to link performance.

Balancing and Alignment

Follow these steps to reverse balance and align the node with EDR.

1. Refer to the reverse system design print on the RF amplifier assembly cover and inject the proper level into the forward output test point of a port of the RF launch amplifier with a reverse sweep transmitter or a CW signal generator. The insertion loss of all forward output test points is 20 dB (relative to corresponding port).

Note

For the location of the forward output test point of each port, see RF Assembly, on page 58.

Important

To calculate the correct signal level to inject, add the reverse input level (from the design print) to the insertion loss of the forward output test point.

\[\text{Formula: } \text{Reverse input} + \text{Insertion loss} = \text{Signal generator setting} \]

Example: Reverse input = 15 dBmV, Insertion loss = 20 dB

Result: Signal generator setting = 15 dBmV + 20 dB = 35 dBmV

Note

The ADC full-scale (100%) level for a single CW carrier is +33 dBmV. This is the level at which the ADC begins clipping.

Note

The reverse attenuator (pad) and reverse equalizer in the GS7000 Node is selected during the reverse system design, and it is based on the drive level into the digital module which is determined by system performance requirements, type and quantity of return carriers, etc. Consult data sheet to determine proper operational level.

2. Verify the level of the reverse output test point. This output level leaves the RF launch amplifier via the coaxial cable to the multiplexing digital module input. (Use an SMB connector to F-connector test cable.)

3. Have the person in the headend refer to the headend system design and set the output of the receiver to the specified output level. See the instruction guide that was shipped with receiver for setup procedures.

Troubleshooting

The following equipment may be necessary to perform some troubleshooting procedures.

- Cisco fiber optic ferrule cleaner, part number 468517, to clean fiber optic connectors
- Cisco 99% alcohol and lint free wipes to clean fiber connectors
• Optical power meter to measure light levels
• Proper fiber connector for optical power meter to make optical connections
• Digital voltmeter to measure voltages
• Spectrum analyzer or a field strength meter to measure RF levels
• Cisco test probe, part number 501111, to access test points
• Cisco external test probe, part number 562580, to access external test points

Transmitter Module Troubleshooting Chart

Follow the steps in the table below to troubleshoot the transmitter module on LED signaling.

For EDR 1:1 Transmitter Module

<table>
<thead>
<tr>
<th>LED Warning</th>
<th>Indication</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR LSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF OFF</td>
<td>No power supply.</td>
<td>Verify the power supply of the node with the transmitter installed. Verify that connectors of the transmitter are clicked into the interface connectors in the transponder slot. If still no power supply, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td>Green Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is installed.</td>
<td>No need for troubleshooting. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
<tr>
<td>Green Orange (Blink)</td>
<td>Input Level Overdrive.</td>
<td>Verify the input level of RF port. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV.</td>
</tr>
</tbody>
</table>

For EDR 2:1 Transmitter Module

<table>
<thead>
<tr>
<th>LED Warning</th>
<th>Indication</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR LSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF OFF</td>
<td>No power supply.</td>
<td>Verify the power supply of the node with the transmitter installed. Verify that connectors of the transmitter are clicked into the interface connectors in the transponder slot. If still no power supply, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td>LED Warning</td>
<td>Indication</td>
<td>Possible Solutions</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>PWR</td>
<td>LSR</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is installed. No need for troubleshooting. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
<tr>
<td>Green</td>
<td>Orange (Blink)</td>
<td>Input Level Overdrive. Verify the input level of RF port 2. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV.</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Green</td>
<td>Non-Cisco Standard OPM Module is in use. Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV.</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Orange (Solid)</td>
<td>Non-Cisco Standard OPM Module is in use. Output Level Overdrive. Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
<tr>
<td>Orange (Blink)</td>
<td>Orange (Blink)</td>
<td>Non-Cisco Standard OPM Module is in use. Input Level Overdrive. Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Verify the input level of RF port 1. The output level overdrive indicates the output signal level exceeds the limit of 35 dBmV. Cisco Standard OPM Module is highly recommended for better system performance and stability. See the data sheet of the node for ordering information.</td>
</tr>
</tbody>
</table>

Follow the steps in the table below to troubleshoot the transmitter module.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No optical signal output</td>
<td>Laser temperature could be too high or low.</td>
<td>Allow up to one minute after power is ON for the temperature to stabilize. If still no output, contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Laser could be faulty.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Automatic power control circuit failure.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>Damaged fiber.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
<tr>
<td></td>
<td>One or more power supply voltages are out of specification.</td>
<td>Check the power supply for proper operation.</td>
</tr>
<tr>
<td></td>
<td>No AC at receptacle.</td>
<td>Check the receptacle for AC power.</td>
</tr>
<tr>
<td></td>
<td>Blown fuse on the power supply.</td>
<td>Check the power supply fuse and replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Faulty module.</td>
<td>Contact the Cisco Technical Service Center for assistance.</td>
</tr>
</tbody>
</table>
Expanded Fiber Tray Overview

The expanded fiber tray is an optional replacement for the standard fiber tray in the GS7000 Node. The expanded fiber tray provides additional space for fiber management/storage and the installation of additional bulkhead adaptors. The expanded fiber tray also provides the space for the installation of various passive devices such as CWDM and OADM cassettes and raw WDM cartridges.

The expanded fiber tray provides the following features:

- Design allows for configuration flexibility.
- Built-in fiber guides and tabs aid management of slack fiber and maintenance of minimum bend radiuses.
- Accommodates most commercially available optical passive devices.
- Circular indexed slot pattern in tray base allows flexibility in mounting components.
- Custom mounting clips provided to secure various components in tray.
- Tray design facilitates additional securing of fibers and components with Velcro straps.

The following illustration shows the unassembled expanded fiber tray components.
Expanded Fiber Tray Installation

Perform the following steps to install the expanded fiber tray in the node.

1. If you are replacing a standard fiber tray in an existing node, go to step 2.
 If you are not replacing a standard fiber tray, go to step 3.

2. Remove any installed fibers from the existing standard fiber tray and then remove the fiber tray from the node by pulling up on the fiber tray assembly as shown in the following illustration.
3. Make sure that the expanded fiber tray clear cover is secured in place on the fiber tray.

Note
Push down on the cover at the cover locking tabs around the periphery of the fiber tray to secure the cover.

4. Insert the expanded fiber tray part way into the node lid as shown in the following illustration.
Important

- Make sure that the fiber tray fits into the two guide slots in the fiber track near the power supplies.
- Make sure that the fingers and locking tabs on the other end of the fiber tray are inserted between the fiber track and the aluminum node housing.

5. Push down on the fiber tray housing until the fiber tray snaps into place and is fully inserted into the node as shown in the following illustration.

6. Pivot the fiber tray down and snap it into place on top of the power supplies with its locking tabs and in the node lid with its hold-down tab as shown in the following illustration.
Fiber Management System

The fiber management system is made up of a fiber tray and a fiber routing track. The fiber tray provides a convenient location to mount passive devices and store excess fiber. The tray is hinged to allow it to move out of the way during the insertion of the fibers and for installation or replacement of the various node modules. The fiber routing track provides a channel for routing fiber pigtails to their appropriate optical modules as well as a location to snap in unused fiber connectors for storage.

The expanded fiber tray provides various clips to hold passive devices and bulkhead adaptors neatly in the tray while providing easy access. An indexed pattern of mounting slots in the tray allows you to install a variety of components in the tray in various configurations. Several features are incorporated into the tray to provide fiber protection and aid in maintaining the proper bend radius of the fiber. A sheet of blank, stick-on, labels is also included for use in identifying the installed components and configuration.

Quality fiber management focuses on four key areas, as follows:

- Maintaining fiber bend radius
- Proper fiber routing
- Connectors and bulkhead access
- Fiber protection

Maintaining Fiber Bend Radius

Observe the following considerations regarding fiber bend radius:

- Bent fibers can induce higher losses that can lead to signal degradation and service disruption.
- Current industry standards call for a minimum bend radius of 1.5 inches (38 mm).
- Using bend insensitive fiber, as defined in ITU-T G.657.A, can allow for a smaller bend radius. However, this does not diminish the need to control fiber bends.
- The expanded fiber tray provides several guide walls for spooling and routing fiber. Use these guides to maintain the bend radius of the fiber.

Proper Fiber Routing

Observe the following considerations regarding fiber routing:

- Poor fiber routing is a major cause of bend radius violations.
- Proper fiber routing provides well-defined paths, making it easier to access individual fibers.
- Easy to follow paths aid technicians in performing fiber tracing, testing, and reconfiguration.
- When fiber is not managed, slack fiber tends to become entangled, making tracing and rearrangement difficult.
- The expanded fiber tray provides fiber guides to contain slack fiber. Slack fiber can be coiled in a circular fashion using the guides on the left side of the tray, or by routing through the guides on the outer edge of the tray.
• The FIBER guides are designed to allow Velcro tie-down straps to be looped through the posts to further maintain neat fiber placement.

Connector and Bulkhead Access

Observe the following considerations regarding connector and bulkhead access:

• Connector access is critical for reconfiguration, testing, maintenance, and troubleshooting.

• The expanded fiber tray provides a clip which can accommodate up to four SC-type bulkhead adapters, and a smaller clip which can hold up to two SC-type bulkhead adapters.

• The clips can be placed in any one of the three circular retaining tracks in various orientations.

Fiber Protection

Observe the following considerations regarding fiber protection:

• Fibers are subject to serious damage from mishandling that can cause pinching and bending of the fiber beyond its capabilities.

• The expanded fiber tray comes with a clear protective cover. After fibers have been properly routed in the tray, the cover should be closed and locked in position with the locking tabs before stowing the tray in the node.
• Always route fibers in the tray using the fiber guides located about the tray periphery. This will retain the fiber within the tray and prevent inadvertent displacement or pinching of the cable when opening or closing the node.

• The mounting surface of the tray faces downward in the stowed position and upwards when the tray is in the access position, thereby discouraging inadvertent contact with the fibers and passive devices.

Passive Device and Bulkhead Mounting

Mounting clips are provided for installing available passive devices and bulkhead adaptors. These clips can be used to mount devices in various orientations in any of the three circular retaining tracks in the expanded fiber tray. The following illustrations show the available mounting clips.

The following illustration shows a 2-adaptor clip for bulkhead adaptors.

![2-Adaptor Clip](image1.png)

The following illustration shows a 4-adaptor clip for bulkhead adaptors.

![4-Adaptor Clip](image2.png)

The following illustration shows a 3-cartridge clip holding raw WDM cartridges.

![3-Cartridge Clip](image3.png)
The following illustration shows a CWDM clip.

The following illustration shows a cassette device clip holding a demultiplexer.
Fiber Installation

For general instructions on installing and routing the fiber optic cables in the node, refer to the Fiber Optic Cable Installation, on page 46.

Multi-Wave O-Band Demultiplexer Configuration Example

As the demand for bandwidth continues to grow and clusters of homes decrease into smaller serving areas, networks can become capacity constrained or “fiber starved.” A cost-effective approach to solving this problem uses multiple wavelengths on a single fiber.

The Prisma II™ Multi-Wavelength (O-Band) system solution enables dramatic bandwidth increase over a single optical fiber. This system uses forward transmitters capable of co-propagating multiple wavelengths in the 1320 nm to 1335 nm window down a single fiber using wavelength division multiplexing (WDM), with each transmitter carrying a full RF load.

The multi-wavelength solution is ideal for segmentation of node service areas because they enable the reuse of existing fiber up to six times, over distances of up to 30 kilometers.

The following illustration shows a cassette style O-Band demultiplexer configuration of the expanded fiber tray.

Using the O-Band demultiplexer in the expanded fiber tray, the four multiplexed 13xx multi-wave forward path signals are demultiplexed and feed into the four individual receiver modules to achieve 4x forward segmentation with a single fiber.
This solution requires an O-Band multiplexer at the headend.
Glossary

The following list describes acronyms and definitions for terms used throughout this document:

- **A**: ampere. A unit of measure for electrical current.
- **ac, AC**: alternating current. An electric current that reverses its direction at regularly recurring intervals.
- **AC/RF**: alternating current radio frequency.
- **AFC**: automatic frequency control. An arrangement whereby the tuning of a circuit is automatically maintained within specified limits with respect to a reference frequency.
- **AGC**: automatic gain control. A process or means by which gain is automatically adjusted in a specified manner as a function of input level or other specified parameters.
- **AMPL**: amplitude.
- **amplifier cascade**: two or more amplifiers in a series, the output of one feeding the input of another.
- **attenuation**: The difference between transmitted and received signal strength due to loss through equipment, lines, or other transmission medium. Usually expressed in decibels.
- **attenuator**: A passive device designed to reduce signal strength without distorting the waveform. Usually specified in dB.
- **AUX**: auxiliary.
- **baseband**: The original band of frequencies occupied by the signal before it modulates the carrier frequency to form the transmitted signal. Characteristic of any network technology that uses a single carrier frequency and requires all stations attached to the network to participate in every transmission.
- **baud (Bd)**: A measure of signaling rate based on the number of signaling events per unit of time.
- **beamwidth**: The included angle between two rays (usually the half-power points) on the radiation pattern, which includes the maximum lobe, of an antenna.
- **BIOS**: basic input/output system.
- **blanking level**: The amplitude of the front and back porches of the composite video signal. The blanking level separates the range containing picture information from the range containing synchronization information.
- **BNC**: A coaxial connector that uses two bayonet lugs on the side of the female connector. BNC stands for Bayonet Neill Concelman and is named after Amphenol engineer Carl Concelman.
• **BPF**: bandpass filter.

• **BW**: bandwidth. A measure of the information-carrying capacity of a communications channel, for example the range of usable frequencies that can be carried by a CATV system. The bandwidth corresponds to the difference between the lowest and highest frequency that can be carried by the channel.

• **C/N or CNR**: carrier-to-noise ratio. The ratio, in decibels, of the carrier to that of the noise in a receiver's IF bandwidth after specified band limiting and before any nonlinear process such as amplitude limiting and detection takes place.

• **C/T**: carrier-to-noise temperature ratio.

• **CISC**: Complex Instruction Set Computer. A computer that uses many different types of instructions to conduct its operations, i.e., IBM PCs, Apple Macintosh's, IBM 370 mainframes.

• **compression**: The non-linear change of gain at one level of a signal with respect to the change of gain at another level for the same signal. Also, the elimination of redundant information from an audio, data, or video signal to reduce transmission requirements.

• **CW**: continuous wave.

• **CWDM**: coarse wave-division multiplexing. CWDM allows a modest number of channels, typically eight or less, to be stacked in the 1550 nm region of the fiber called the C-Band. This capacity is greater than WDM (wave-division multiplexing) and less than DWDM (dense wave-division multiplexing).

• **dB**: decibel. One tenth of a bel, the number of decibels denoting the ratio of two amounts of power being ten times the common logarithm of this ratio.

• **dBC**: decibels relative to a reference carrier.

• **dBi**: decibels of gain relative to an isotropic radiator.

• **dBm**: decibels relative to 1 milliwatt.

• **dBmV**: decibels relative to 1 millivolt.

• **dBuV**: decibels relative to 1 microvolt.

• **dBW**: decibels relative to 1 watt.

• **DC**: directional coupler.

• **dc, DC**: direct current. An electric current flowing in one direction only and substantially constant in value.

• **deviation**: The peak difference between the instantaneous frequency of the modulated wave and the carrier frequency, in an FM system.

• **differential gain**: The difference in amplification of a signal (superimposed on a carrier) between two different levels of carrier.

• **diplex filter**: A filter which divides the frequency spectrum into a high frequency segment and a low frequency segment so that two different signals can be sent down the same transmission path.

• **distribution**: The activities associated with the movement of material, usually finished products or service parts, from the manufacturer to the customer.

• **distribution system**: The part of a CATV system consisting of the transmission medium (coaxial cables, fiber optic cables, etc.) used to carry signals from the headend system to subscriber terminals.
• **DSP**: digital signal processor.

• **duplexer**: A device which permits the connection of both a receiver and a transmitter to a common antenna.

• **DVM**: digital voltmeter.

• **DWDM**: dense wave-division multiplexing. A method of placing multiple wavelengths of light into a single fiber that yields higher bandwidth capacity. Dense WDM indicates close spacing and more than 4 to 8 wavelengths.

• **EC**: European Community.

• **EEPROM**: electrically erasable programmable read-only memory.

• **EMC**: electromagnetic compatibility. A measure of equipment tolerance to external electromagnetic fields.

• **emission designer**: An FCC or CCIR code that defines the format of radiation from a transmitter.

• **EPROM**: erasable programmable read-only memory.

• **EQ**: equalizer.

• **equalization**: The process of compensating for an undesired result. For example, equalizing tilt in a distribution system.

• **ERP**: effective radiated power.

• **ESD**: electrostatic discharge. Discharge of stored static electricity that can damage electronic equipment and impair electrical circuitry, resulting in complete or intermittent failures.

• **FCM**: forward configuration module.

• **FET**: field-effect transistor. A transistor in which the conduction is due entirely to the flow of majority carriers through a conduction channel controlled by an electric field arising from a voltage applied between the gate and source electrodes.

• **FM**: frequency modulation. A transmission technique in which the frequency of the carrier varies in accordance with the modulating signal.

• **frequency**: The number of similar shapes in a communications or electrical path in a unit of time. For example, the number of sine waves moving past a fixed point in a second.

• **frequency agile**: The ability to change from one frequency to another without changing components.

• **frequency response**: The effect that changing the frequency has on the magnitude of a signal.

• **ft-lb**: foot-pound. A measure of torque defined by the application of one pound of force on a lever at a point on the lever that is one foot from the pivot point.

• **gain**: A measure of the increase in signal level, relative to a reference, in an amplifier. Usually expressed in decibels.

• **Hertz**: A unit of frequency equal to one cycle per second.

• **HFC**: hybrid fiber/coaxial. A network that uses a combination of fiber optics and coaxial cable to transport signals from one place to another. A broadband network using standard cable television transmission components, such as optical transmitters and receivers, coaxial cable, amplifiers, and power supplies.
The broadband output stream is transmitted as an optical signal, over the high-speed, fiber optic transmission lines to local service areas where it is split, converted to electrical RF signals, and distributed to set-tops over coaxial cable.

- **I/O**: input/output.
- **IC**: integrated circuit.
- **IF**: intermediate frequency. The common frequency which is mixed with the frequency of a local oscillator to produce the outgoing radio frequency (RF) signal.
- **in-lb**: inch-pound. A measure of torque defined by the application of one pound of force on a lever at a point on the lever that is one inch from the pivot point.
- **ITU**: International Telecommunications Union.
- **LE**: line extender.
- **LED**: light-emitting diode. An electronic device that lights up when electricity passes through it.
- **LNC**: low-noise converter.
- **Mbps**: megabits per second. A unit of measure representing a rate of one million bits (megabits) per second.
- **multipath, multipath transmission**: The phenomenon which results from a signal traveling from point to point by more than one path so that several copies of the signal arrive at the destination at different times or at different angles.
- **Nm**: Newton meter. A measure of torque defined by the application of one Newton of force on a lever at a point on the lever that is one meter from the pivot point. (1 Nm = 0.737561 ft-lb)
- **OIB**: optical interface board.
- **PCB**: printed circuit board.
- **PROM**: programmable read-only memory. A memory chip on which data can be written only once. Once data has been written onto a PROM, it cannot be written to again.
- **PWB**: printed wiring board.
- **QAM**: quadrature amplitude modulation. An amplitude and phase modulation technique for representing digital information and transmitting that data with minimal bandwidth. Both phase and amplitude of carrier waves are altered to represent the binary code. By manipulating two factors, more discrete digital states are possible and therefore larger binary schemes can be represented.
- **QPSK**: quadrature phase-shift keying. A phase modulation technique for representing digital information. QPSK produces four discrete states, each state representing two bits of information.
- **RCM**: reverse configuration module.
- **RCVR**: receiver.
- **reverse path**: Signal flow direction toward the headend.
- **RF**: radio frequency. The frequency in the portion of the electromagnetic spectrum that is above the audio frequencies and below the infrared frequencies, used in radio transmission systems.
• **RFI**: radio frequency interference.

• **RMA**: return material authorization. A form used to return products.

• **RPD**: remote PHY device.

• **RX**: receive or receiver.

• **S/N or SNR**: signal-to-noise ratio. The ratio, in decibels, of the maximum peak-to-peak voltage of the video signal, including synchronizing pulse, to the root-mean-square voltage of the noise. Provides a measure and indication of signal quality.

• **SA**: system amplifier.

• **SM**: status monitor.

• **SMC**: status monitoring and control. The process by which the operation, configuration, and performance of individual elements in a network or system are monitored and controlled from a central location.

• **SMIU**: status monitor interface unit.

• **SNMP**: simple network management protocol. A protocol that governs network management and the monitoring of network devices and their functions.

• **synchronous transmission**: A transmission mode in which the sending and receiving terminal equipment are operating continuously at the same rate and are maintained in a desired phase relationship.

• **torque**: A force that produces rotation or torsion. Usually expressed in lb-ft (pound-feet) or N-m (Newton-meters). The application of one pound of force on a lever at a point on the lever that is one foot from the pivot point would produce 1 lb-ft of torque.

• **TX**: transmit or transmitter.

• **UPS**: un-interruptible power supply.

• **uV**: microvolt. One millionth of a volt.

• **V**: volt.

• **W**: watt. A measure of electrical power required to do work at the rate of one joule per second. In a purely resistive load, 1 Watt = 1 Volt x 1 Amp.