CONTENTS

PREFACE
Preface v
Audience v
Conventions v
Related Cisco UCS Documentation vii
Documentation Feedback vii

CHAPTER 1
RDMA Over Converged Ethernet (RoCE) version 2 1
RDMA Over Converged Ethernet (RoCE) v2 1

CHAPTER 2
Configuring SMB Direct with RoCEv2 in Windows 3
Guidelines for Using SMB Direct support on Windows 2019 using RDMA over converged Ethernet (RoCE) v2 3
Overview of Configuring RoCEv2 Modes 1 and 2 in Windows 5
Windows Requirements 5
Configuring SMB Direct Mode 1 on UCS Manager 6
Configuring SMB Direct Mode 1 on the Host System 8
Configuring Mode 2 on UCS Manager 12
Configuring Mode 2 on the Host System 15

CHAPTER 3
Configuring NVMe Over Fabrics (NVMeoF) with RoCEv2 in Linux 19
Guidelines for using NVMe over Fabrics (NVMeoF) with RoCEv2 on Linux 19
Linux Requirements 20
Configuring RoCEv2 for NVMeoF on UCS Manager 21
Enabling an SRIOV BIOS Policy 22
Configuring RoCEv2 for NVMeoF on the Host System 22
Installing Cisco enic and enic_rdma Drivers 23
Preface

- Audience, on page v
- Conventions, on page v
- Related Cisco UCS Documentation, on page vii
- Documentation Feedback, on page vii

Audience

This guide is intended primarily for data center administrators with responsibilities and expertise in one or more of the following:

- Server administration
- Storage administration
- Network administration
- Network security

Conventions

<table>
<thead>
<tr>
<th>Text Type</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI elements</td>
<td>GUI elements such as tab titles, area names, and field labels appear in this font. Main titles such as window, dialog box, and wizard titles appear in this font.</td>
</tr>
<tr>
<td>TUI elements</td>
<td>In a Text-based User Interface, text the system displays appears in this font.</td>
</tr>
<tr>
<td>System output</td>
<td>Terminal sessions and information that the system displays appear in this font.</td>
</tr>
<tr>
<td>CLI commands</td>
<td>CLI command keywords appear in this font. Variables in a CLI command appear in this font.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>Text Type</td>
<td>Indication</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Note

Means reader take note. Notes contain helpful suggestions or references to material not covered in the document.

Tip

Means the following information will help you solve a problem. The tips information might not be troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Timesaver

Means the described action saves time. You can save time by performing the action described in the paragraph.

Caution

Means reader be careful. In this situation, you might perform an action that could result in equipment damage or loss of data.

Warning

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS
Related Cisco UCS Documentation

Documentation Roadmaps

For a complete list of all B-Series documentation, see the *Cisco UCS B-Series Servers Documentation Roadmap* available at the following URL: https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/overview/guide/UCS_roadmap.html

For a complete list of all C-Series documentation, see the *Cisco UCS C-Series Servers Documentation Roadmap* available at the following URL: https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/overview/guide/ucs_rack_roadmap.html.

For information on supported firmware versions and supported UCS Manager versions for the rack servers that are integrated with the UCS Manager for management, refer to Release Bundle Contents for Cisco UCS Software.

Other Documentation Resources

Follow Cisco UCS Docs on Twitter to receive document update notifications.

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to ucs-docfeedback@external.cisco.com. We appreciate your feedback.
RDMA Over Converged Ethernet (RoCE) version 2

• RDMA Over Converged Ethernet (RoCE) v2, on page 1

RDMA Over Converged Ethernet (RoCE) v2

RDMA over Converged Ethernet version 2 (RoCEv2) is an internet layer protocol, which means that RoCEv2 packets can be routed. RoCEv2 allows direct memory access over the network by encapsulating an Infiniband (IB) transport packet over Ethernet.

The RoCEv2 protocol exists on top of either the UDP/IPv4 or the UDP/IPv6 protocol. The UDP destination port number 4791 has been reserved for RoCEv2. Since RoCEv2 packets are routable, the RoCEv2 protocol is sometimes called Routable RoCE.

RoCEv2 is supported on the Windows and Linux platforms.
Configuring SMB Direct with RoCEv2 in Windows

Guidelines for Using SMB Direct support on Windows 2019 using RDMA over converged Ethernet (RoCE) v2

General Guidelines and Limitations:

- Cisco UCS Manager release 4.1.x and later releases support Microsoft SMB Direct with RoCEv2 on Microsoft Windows Server 2019. Cisco recommends that you have all KB updates from Microsoft for your Windows Server 2019.

 \[\text{Note}\] RoCEv2 is not supported on Microsoft Windows Server 2016.

- Cisco recommends you check UCS Hardware and Software Compatibility specific to your UCS Manager release to determine support for Microsoft SMB Direct with RoCEv2 on Microsoft Windows 2019.

- Microsoft SMB Direct with RoCEv2 is supported only with fourth generation Cisco UCS VIC 1400 Series adapters. It is not supported with UCS VIC 12xx Series and 13xx Series adapters. SMB Direct with RoCEv2 is supported on all UCS Fabric Interconnects.

 \[\text{Note}\] RoCE v1 is not supported with any fourth generation Cisco UCS VIC 1400 Series adapters.
• RoCEv2 configuration is supported only between Cisco adapters. Interoperability between Cisco adapters and third party adapters is not supported.

• RoCEv2 supports two RoCEv2 enabled vNIC per adapter and four virtual ports per adapter interface, independent of SET switch configuration.

• RoCEv2 cannot be used on the same vNIC interface as NVGRE, NetFlow, and VMQ features.

• RoCEv2 cannot be used with usNIC.

• RoCEv2-enabled vNIC interfaces must have the no-drop QoS system class enabled in UCS Manager.

• The RoCE Properties queue pairs setting must for be a minimum of 4 queue pairs.

• Maximum number of queue pairs per adapter is 2048.

• The QoS No Drop class configuration must be properly configured on upstream switches such as Cisco Nexus 9000 series switches. QoS configurations will vary between different upstream switches.

• The maximum number of memory regions per rNIC interface is 131072.

• UCS Manager does not support fabric failover for vNICs with RoCEv2 enabled.

• SMB Direct with RoCEv2 is supported on both IPv4 and IPv6.

• RoCEv2 cannot be used with GENEVE offload.

MTU Properties:

• In older versions of the VIC driver, the MTU was derived from either a UCS Manager service profile or from the Cisco IMC vNIC MTU setting in standalone mode. This behavior changed for 4th generation VIC 1400 Series adapters, where MTU is controlled from the Windows OS Jumbo Packet advanced property. A value configured from UCS Manager or Cisco IMC has no effect.

• The RoCEv2 MTU value is always power-of-two and its maximum limit is 4096.

• RoCEv2 MTU is derived from the Ethernet MTU.

• RoCEv2 MTU is the highest power-of-two that is less than the Ethernet MTU. For example:
 • if the Ethernet value is 1500, then the RoCEv2 MTU value is 1024
 • if the Ethernet value is 4096, then the RoCEv2 MTU value is 4096
 • if the Ethernet value is 9000, then the RoCEv2 MTU value is 4096

Windows NDPKI Modes of Operation:

• Cisco's implementation of Network Direct Kernel Provider Interface (NDPKI) supports two modes of operation: Mode 1 and Mode 2. Modes 1 and 2 relate to the implementation of Network Direct Kernel Provider Interface (NDKPI); Mode 1 is native RDMA, and Mode 2 involves configuration for the virtual port with RDMA. Cisco does not support NDPKI Mode 3 operation.

• The recommended default adapter policy for RoCEv2 Mode1 is Win-HPN-SMBd.

 The recommended default adapter policy for RoCEv2 Mode2 is MQ-SMBd.

• RoCEv2 enabled vNICs for Mode2 operation require the QoS host control policy set to full.

• Mode 2 is inclusive of Mode 1: Mode 1 must be enabled to operate Mode 2.
• On Windows, the RoCEv2 interface supports MSI & MSIX interrupt modes. By default, it is in MSIX interrupt mode. Cisco recommends you avoid changing interrupt mode when the interface is configured with RoCEv2 properties.

Downgrade Limitations:
• Cisco recommends you remove the RoCEv2 configuration before downgrading to any non-supported RoCEv2 release. If the configuration is not removed or disabled, downgrade will fail.

Overview of Configuring RoCEv2 Modes 1 and 2 in Windows

Configuration of RoCEv2 on the Windows platform requires first configuring RoCEv2 Mode 1, then configuring RoCEv2 Mode 2. Modes 1 and 2 relate to the implementation of Network Direct Kernel Provider Interface (NDKPI): Mode 1 is native RDMA, and Mode 2 involves configuration for the virtual port with RDMA.

To configure RoCEv2 mode 1, you will:
• Configure a no-drop class in CoS System Class. By default, Platinum with CoS 5 is a default in UCS Manager.
• Configure an Ethernet adapter policy for Mode 1 in UCS Manager.
• Configure Mode 1 on the host system.

RoCEv2 Mode 1 must be configured before configuring Mode 2.

To configure RoCEv2 mode 2, you will:
• Either create an Ethernet VMQ connection policy for RoCEv2 or use the UCS Manager MQ-SMBd policy.

Windows Requirements

Configuration and use of RDMA over Converged Ethernet for RoCEv2 in Windows Server requires the following:
• Windows 2019 with latest Microsoft updates
• UCS Manager release 4.1.1 or later
• VIC Driver version 5.4.0.x or later
• UCS M5 B-Series or C-Series servers with VIC 1400 Series adapters: only Cisco UCS VIC 1400 Series adapters are supported.

Note
All Powershell commands or advanced property configurations are common across Windows 2019 unless explicitly mentioned.
Configuring SMB Direct Mode 1 on UCS Manager

To avoid possible RDMA packet drops, make sure same no-drop COS is configured across the network.

Before you begin

Configure a no-drop class in UCSM QoS Policies and use it for RDMA supported interfaces. Go to LAN > LAN Cloud > QoS System Class and enable Priority Platinum with CoS 5.

Procedure

Step 1 In the Navigation pane, click Servers.

Step 2 Expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy.

If the system does not include multitenancy, expand the root node.

Step 4 Expand Adapter Policies and choose the existing adapter policy for Win-HPN-SMBd.

If using a user-defined adapter policy, use the configuration steps below.

a) On the General tab, scroll down to RoCE and click the Enabled radio button.

b) In the RoCE Properties field, under Version 1, click the Disabled radio button. For Version 2, click the Enabled radio button.
c) For **Queue Pairs**, enter **256**.

d) For **Memory Regions**, enter **131072**.

e) For **Resource Groups**, enter **2**.

f) For **Priority**, choose **Platinum No-Drop COS** from the dropdown.

This setting assumes you are using the default No-Drop policy.

g) Click **Save Changes**.

Step 5

Next, create an Ethernet Adapter Policy. In the Navigation pane, click **LAN**.

Step 6

Expand **LAN > Policies**.

Step 7

Right-click the **vNIC Templates** node and choose **Create vNIC Template**.

Step 8

Go to **vNIC Properties** under the General tab and modify the vNIC policy settings as follows:

a) Set **MTU** to **1500** or **4096**.

b) For the Adapter Policy, select **Win-HPN-SMBd**

c) For the **QoS policy**, specify **Platinum**.

Step 9

Click **Save Changes**.
Step 10 After you save the changes, UCS Manager will prompt you to reboot. Reboot the system.

What to do next
When the server comes back up, configure RoCEv2 mode 1 on the Host.

Configuring SMB Direct Mode 1 on the Host System

You will configure connection between smb-client and smb-server on two host interfaces. For each of these servers, smb-client and smb-server, configure the RoCEv2-enabled vNIC as described below.

Before you begin
Configure RoCEv2 for Mode 1 in UCS Manager.

Procedure

Step 1 In the Windows host, go to the Device Manager and select the appropriate Cisco VIC Internet Interface.
Step 2 Go to Tools > Computer Management > Device Manager > Network Adapter > click on VIC Network Adapter > Properties > Advanced > Network Direct Functionality. Perform this operation for both the smb-server and smb-client vNICs.
Step 3
Verify that RoCE is enabled on the host operating system using PowerShell.

The `Get-NetOffloadGlobalSetting` command shows NetworkDirect is enabled.

```
PS C:\Users\Administrator> Get-NetOffloadGlobalSetting
ReceiveSideScaling : Enabled
ReceiveSegmentCoalescing : Enabled
Chimney : Disabled
TaskOffload : Enabled
NetworkDirect : Enabled
NetworkDirectAcrossIPSubnets : Blocked
PacketCoalescingFilter : Disabled
```

Note If the NetworkDirect setting is showing as disabled, enable it using the command:
```
Set-NetOffloadGlobalSetting -NetworkDirect enabled
```

Step 4
Bring up Powershell and enter the command:
```
get-SmbClientNetworkInterface
```
Step 5 Enter `enable - netadapterrdma [-name] ["Ethernetname"]`

Step 6 Verify the overall RoCEv2 Mode 1 configuration at the Host as follows:

a) Use the Powershell command `netstat -xan` to verify the listeners in both the smb-client and smb-server Windows host; listeners will be shown in the command output.

b) Go to the smb-client server fileshare and start an I/O operation.

c) Go to the performance monitor and check that it displays the RDMA activity.

Step 7 In the Powershell command window, check the connection entries with the `netstat -xan` output command to make sure they are displayed. You can also run `netstat -xan` from the command prompt. If the connection entry shows up in netstat-xan output, the RoCEv2 mode1 connections are correctly established between client and server.
By default, Microsoft's SMB Direct establishes two RDMA connections per RDMA interface. You can change the number of RDMA connections per RDMA interface to one or any number of connections.

For example, to increase the number of RDMA connections to 4, type the following command in PowerShell:

```powershell
PS C:\Users\Administrator> Set-ItemProperty -Path `n"HKLM:\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\Parameters" `nConnectionCountPerRdmaNetworkInterface -Type DWORD -Value 4 -Force
```

Configuring Mode 2 on UCS Manager

You will apply the VMQ Connection Policy as vmmq.

Before you begin

Configure RoCEv2 Policies in Mode 1.

Use the pre-defined default adapter policy “MQ-SMBd”, or configure a user-defined Ethernet adapter policy with the following recommended RoCE-specific parameters:
• RoCE: Enabled
• Version 1: disabled
• Version 2: enabled
• Queue Pairs: 256
• Memory Regions: 65536
• Resource Groups: 2
• Priority: Platinum

Create a VMQ connection policy with the following values:
• Multi queue : Enabled
• Number of sub-vNIC: 16
• VMMQ adapter policy: MQ-SMBd
Procedure

Step 1 In the Navigation pane, click Servers.

Step 2 Expand Servers > Service Profiles.

Step 3 Expand Service Profiles > vNICs and choose the VMQ Connection policy profile to configure.

Step 4 Go to vNIC Properties under the General tab and scroll down to the Policies area. Modify the vNIC policy settings as follows:

a) For the Adapter Policy, make sure it uses \texttt{Win-HPN-SMBd} or the adapter policy configured earlier for Mode 1.

b) For the QoS policy, select \texttt{best-effort}.

Step 5 Click Save Changes.

Step 6 In the Navigation pane, click LAN.

Step 7 Expand LAN > Policies > QoS Policy Best Effort.

Step 8 Set Host Control to Full.
Click **Save Changes**.

After you save the changes, UCS Manager will prompt you to reboot. Reboot the interface.

What to do next

When the server comes back up, configure Mode 2 on the Host.

Configuring Mode 2 on the Host System

This task uses Hyper-V virtualization software that is compatible with Windows Server 2019.

Before you begin

- Configure and confirm the connection for Mode 1 for both the UCS Manager and Host.
- Configure Mode 2 in UCS Manager.

Procedure

Step 1 Go to the Hyper-V switch manager.

Step 2 Create a new Virtual Network Switch (vswitch) for the RoCEv2-enabled Ethernet interface.

a) Choose **External Network** and select **VIC Ethernet Interface 2** and **Allow management operating system to share this network adapter**.

b) Click **OK** to create the virtual switch.
Bring up the Powershell interface.

Step 3 Configure the non-default vport and enable RDMA with the following Powershell commands:

```
add-vmNetworkAdapter -switchname vswitch -name vp1 -managementOS
enable-netAdapterRdma -name "vEthernet (vp1"
```

a) Configure set-switch using the following Powershell command.

```
new-vmswitch -name setswitch -netAdapterName "Ethernet x" -enableEmbeddedTeam $true
```

This creates the switch. Use the following to display the interfaces:

```
get-netadapterrdma
add-vmNetworkAdapter -switchname setswtch -name svp1
```
You will see the new vport when you again enter

```
get-netadapterrdma
```

b) Add a vport.

```
add-vmNetworkAdapter -switchname setswtch name svp1
```

You will see the new vport when you again enter

```
get-netadapterrdma
```

c) Enable the RDMA on the vport:

```
enable-netAdapterRdma -name “vEthernet (svp1)”
```

Step 4
Configure the IPv4 addresses on the RDMA enabled vport in both servers.

Step 5
Create a share in smb-server and map the share in the smb-client.

a) For smb-client and smb-server in the host system, configure the RoCEv2-enabled vNIC as described above.

b) Configure the IPv4 addresses of the primary fabric and sub-vNICs in both servers, using the same IP subnet and same unique vlan for both.

c) Create a share in smb-server and map the share in the smb-client.

Step 6
Finally, verify the Mode 2 configuration.

a) Use the Powershell command `netstat -xan` to display listeners and their associated IP addresses.

```
PS C:\Users\Administrator> netstat -xan
```

```
Active NetworkDirect Connections, Listeners, SharedEndpoints

Mode     IfIndex Type   Local Address               Foreign Address       PID
Kernel   9 Listener  10.37.61.23:445              NA                   0
Kernel   26 Listener 10.37.60.158:445             NA                   0

PS C:\Users\Administrator>
```

b) Start any RDMA I/O in the file share in smb-client.

```
Computer Management
```

```
\WIN-R50G91HKMFT       Hyper-V Virtual Ethernet Adapter #2
```

```
RDMA Activity
```

```
RDMA Accepted Connections 2.000
RDMA Active Connections 0.000
RDMA Completion Queue Errors 0.000
RDMA Connection Errors 0.000
RDMA Failed Connection Attempts 0.000
RDMA Inbound Bytes/sec 598,340,974,354
RDMA Inbound Frames/sec 553,016,389
RDMA Inbound Frames/sec 6,588,510,951
RDMA Outbound Bytes/sec 35,589,270
```

c) Issue the `netstat -xan` command again and check for the connection entries to verify they are displayed.
What to do next

Troubleshoot any items if necessary.
Configuring NVMe Over Fabrics (NVMeoF) with RoCEv2 in Linux

Guidelines for using NVMe over Fabrics (NVMeoF) with RoCEv2 on Linux

General Guidelines and Limitations:

- Cisco UCS Manager release 4.1.x and later releases support RoCEv2 on Redhat Enterprise Linux 7.6 with Linux Z-kernel 3.10.0-957.27.2 and Redhat Enterprise Linus 7.7 with Linux Z-kernel-3.10.0-1062.9.1. Red Hat Enterprise Linux 7.7 supports both IPv4 and IPv6.

 Note: Additional Linux distributions will be supported in later UCS Manager 4.1.x releases.

- Cisco recommends you check UCS Hardware and Software Compatibility specific to your UCS Manager release to determine support for NVMeoF. NVMeoF is supported on UCS M5 and later B-Series and C-Series servers.

- NVMe over RDMA with RoCEv2 is supported only with the fourth generation Cisco UCS VIC 1400 Series adapters. NVMe over RDMA is not supported on UCS 6324 Fabric Interconnects or on UCS VIC 1200 Series and 1300 Series adapters. It is supported on all Fabric Interconnects except for the UCS 6324 Fabric Interconnect.

- When creating RoCEv2 interfaces, use Cisco UCS Manager provided Linux-NVMe-RoCE adapter policy.
Do not use the default Linux Adapter policy with RoCEv2; RoCEv2 interfaces will not be created in the OS.

- When configuring RoCEv2 interfaces, use both the enic and enic_rdma binary drivers downloaded from Cisco.com and install the matched set of enic and enic_rdma drivers. Attempting to use the binary enic_rdma driver downloaded from Cisco.com with an inbox enic driver will not work.

- RoCEv2 supports maximum two RoCEv2 enabled interfaces per adapter.

- Booting from an NVMeoF namespace is not supported.

- Layer 3 routing is not supported.

- RoCEv2 does not support bonding.

- Saving a crashdump to an NVMeoF namespace during a system crash is not supported.

- NVMeoF cannot be used with usNIC, VMFEX, VxLAN, VMQ, VMMQ, NVGRE, GENEVE Offload, and DPDK features.

- Netflow monitoring is not supported on RoCEv2 interfaces.

- In the Linux-NVMe-RoCE policy, do not change values of Queue Pairs, Memory Regions, Resource Groups, and Priority settings other than to Cisco provided default values. NVMeoF functionality may not be guaranteed with different settings for Queue Pairs, Memory Regions, Resource Groups, and Priority.

- The QoS no drop class configuration must be properly configured on upstream switches such as Cisco Nexus 9000 series switches. QoS configurations will vary between different upstream switches.

- Set MTU size correctly on the VLANs and QoS policy on upstream switches.

- Spanning Tree Protocol (STP) may cause temporary loss of network connectivity when a failover or failback event occurs. To prevent this issue from occurring, disable STP on uplink switches.

- UCS Manager does not support fabric failover for vNICs with RoCEv2 enabled.

Interrupts

- Linux RoCEv2 interface supports only MSIx interrupt mode. Cisco recommends avoiding changing interrupt mode when the interface is configured with RoCEv2 properties.

- The minimum interrupt count for using RoCEv2 with Linux is 8.

Downgrade Limitations:

- Cisco recommends you remove the RoCEv2 configuration before downgrading to any non-supported RoCEv2 release.

Linux Requirements

Configuration and use of RoCEv2 in Linux requires the following:
• Redhat Enterprise Linux 7.6 with Linux Z-kernel 3.10.0-957.27.2 and Redhat Enterprise Linus 7.7 with Linux Z-kernel-3.10.0-1062.9.1 and above

Note Additional Linux distributions will be supported in later releases.

• InfiniBand kernel API module ib_core
• UCS Manager release 4.1.1 or later
• Minimum VIC firmware 5.1(1x) for IPv4 support and 5.1(2x) for IPv6 support
• UCS M5 B-Series or C-Series servers with Cisco UCS VIC 1400 Series adapters
• eNIC driver version 4.0.0.6-802-21 or later provided with the 4.1.1 release package
• enic_rdma driver version 1.0.0.6-802-21 or later provided with the 4.1.1 release package

Note Use eNIC driver version 4.0.0.10-802.34 or later and enic_rdma driver version 1.0.0.10-802.34 or later for IPv6 support.

• A storage array that supports NVMeoF connection

Configuring RoCEv2 for NVMeoF on UCS Manager

Use these steps to configure the RoCEv2 interface on UCS Manager.

Procedure

Step 1 In the Navigation pane, click Servers.
Step 2 Expand Servers > Service Profiles.
Step 3 Expand the node for the organization where you want to create the policy.
 If the system does not include multitennancy, expand the root node.
Step 4 Click on vNICs and go to the Network tab in the work area.
 Modify the vNIC policy, according to the steps below.
 a) On the Network tab, scroll down to the desired vNIC and click on it, then click Modify.
 b) A popup dialog box will appear. Scroll down to the Adapter Performance Profile area, and click on the dropdown area for the Adapter Policy. Choose Linux-NVMe-RoCE from the drop-down list.
 c) Click OK.
Step 5 Click Save Changes.
Step 6 Select Reboot.
Enabling an SRIOV BIOS Policy

Use these steps to configure the server's service profile with the RoCE v2 vNIC and enable the SRIOV BIOS policy before enabling the IOMMU driver in the Linux kernel.

Procedure

Step 1 In the the Navigation pane, click Servers.

Step 2 Expand Servers > Service Profiles

Step 3 Expand the node for the organization where you want to create the policy.

If the system does not include multitenancy, expand the root node.

Step 4 Select the service profile node where you want to enable SRIOV.

Step 5 In the Work pane, select Policies tab.

Step 6 In the Policies Area, expand BIOS Policy.

Step 7 Choose the default SRIOV BIOS Policy from the BIOS Policy drop-down list.

Step 8 Click Save Changes.

Configuring RoCEv2 for NVMeoF on the Host System

Before you begin

Configure the server’s service profile with RoCEv2 vNIC and the SRIOV enabled BIOS policy.

Procedure

Step 1 Open the /etc/default/grub file for editing.

Step 2 Add intel_iommu=on to the end of the line for GRUB_CMDLINE_LINUX as shown in the sample file below.

```
sample /etc/default/grub configuration file after adding intel_iommu=on:
# cat /etc/default/grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap biosdevname=1 rhgb quiet intel_iommu=on
GRUB_DISABLE_RECOVERY="true"
```

Step 3 After saving the file, run the following command to generate a new grub.cfg file

For Legacy boot:

```
# grub2-mkconfig -o /boot/grub2/grub.cfg
```

For UEFI boot:
Step 4
Reboot the server. You must reboot your server for the changes to take after enabling IOMMU.

Step 5
Verify that the server booted with the `intel_iommu=on` option by checking the output file.

```
cat /proc/cmdline | grep iommu
```

Note its inclusion at the end of the output.

```
[root@localhost basic-setu]# cat /proc/cmdline | grep iommu
BOOT_IMAGE=vmlinuz-3.10.0-957.27.2.el7.x86_64 root=/dev/mapper/rhel-root ro crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet intel iommu=on LANG=en US.UTF-8
```

What to do next
Download the enic and enic_rdma drivers.

Installing Cisco enic and enic_rdma Drivers

The enic_rdma driver requires enic driver. When installing enic and enic_rdma drivers, download and use the matched set of enic and enic_rdma drivers on Cisco.com. Attempting to use the binary enic_rdma driver downloaded from Cisco.com with an inbox enic driver, will not work.

Procedure

Step 1
Install the enic and enic_rdma rpm packages:

```
# rpm -ivh kmod-enic-<version>.x86_64.rpm kmod-enic rdma-<version>.x86_64.rpm
```

Note
During enic_rdma installation, the enic_rdalibnvdimm module may fail to install on RHEL 7.7 because the nvdimm-security.conf dracut module needs spaces in the `add_drivers` value. For workaround, please follow the instruction from the following links:

- https://access.redhat.com/solutions/4386041
- https://bugzilla.redhat.com/show_bug.cgi?id=1740383

Step 2
The enic_rdma driver is now installed but not loaded in the running kernel. Reboot the server to load enic_rdma driver into the running kernel.

Step 3
Verify the installation of enic_rdma driver and RoCE v2 interface:

```
# dmesg | grep enic_rdma
[ 4.025979] enic_rdma: Cisco VIC Ethernet NIC RDMA Driver, ver 1.0.0.6-802.21 init
[ 4.052792] enic 0000:62:00.1 eth1: enic_rdma: IPv4 RoCEv2 enabled
[ 4.081032] enic 0000:62:00.2 eth2: enic_rdma: IPv4 RoCEv2 enabled
```

Step 4
Load the nvme-rdma kernel module:

```
# modprobe nvme-rdma
```

After server reboot, nvme-rdma kernel module is unloaded. To load nvme-rdma kernel module every server reboot, create nvme_rdma.conf file using:

```
# echo nvme_rdma > /etc/modules-load.d/nvme_rdma.conf
```
Discovering the NVMe Target

Use this procedure to discover the NVMe target and connect NVMe namespaces.

Before you begin

Install `nvme-cli` version 1.6 or later if it is not installed already.

Note

Skip to Step 2 below if `nvme-cli` version 1.7 or later is installed.

Configure the IP address on the RoCE v2 interface and make sure the interface can ping the target IP.

Procedure

Step 1

Create an nvme folder in `/etc`, then manually generate host nqn.

```
# mkdir /etc/nvme
# nvme gen-hostnqn > /etc/nvme/hostnqn
```

Step 2

Create a `settos.sh` file and run the script to set priority flow control (PFC) in IB frames.

Note

To avoid failure of sending NVMeOFS traffic, you must create and run this script after every server reboot.

```
# cat settos.sh
#!/bin/bash
for f in `ls /sys/class/infiniband`;
    do
        echo "setting TOS for IB interface:" $f
        mkdir -p /sys/kernel/config/rdma_cm/$f/ports/1
        echo 186 > /sys/kernel/config/rdma_cm/$f/ports/1/default_roce_tos
        done
```

Step 3

Discover the NVMe target by entering the following command.

```
nvme discover --transport=rdma --traddr=<IP address of transport target port>
```

For example, to discover the target at 50.2.85.200:

```
# nvme discover --transport=rdma --traddr=50.2.85.200
```

Discovery Log Number of Records 1, Generation counter 2

Discovery Log Entry 0

trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not required
portid: 3
trsvcid: 4420
subnqn: nqn.2010-06.com.purestorage:flasharray.9a703295ee2954e
taddr: 50.2.85.200
rdma_prtype: roce-v2
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000

Note To discover the NVMe target using IPv6, put the IPv6 target address next to the traddr option.

Step 4 Connect to the discovered NVMe target by entering the following command.
	nvme connect --transport=rdma --traddr=<IP address of transport target port> -n <subnqn value from nvme discover>

For example, to discover the target at 50.2.85.200 and the subnqn value found above:

nvme connect --transport=rdma --traddr=50.2.85.200 -n nqn.2010-06.com.purestorage:flasharray.9a703295ee2954e

Note To connect to the discovered NVMe target using IPv6, put the IPv6 target address next to the traddr option.

Step 5 Use the nvme list command to check mapped namespaces:

nvme list

<table>
<thead>
<tr>
<th>Node</th>
<th>SN</th>
<th>Usage</th>
<th>Format</th>
<th>Model</th>
<th>Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/nvme0n1</td>
<td>09A703295EE2954E</td>
<td>4.29 GB / 4.29 GB</td>
<td>512 B + 0 B</td>
<td>Pure Storage FlashArray</td>
<td>72656</td>
</tr>
<tr>
<td>/dev/nvme0n2</td>
<td>09A703295EE2954E</td>
<td>5.37 GB / 5.37 GB</td>
<td>512 B + 0 B</td>
<td>Pure Storage FlashArray</td>
<td>72657</td>
</tr>
</tbody>
</table>

Setting Up Device Mapper Multipath

If your system is configured with Device Mapper multipathing (DM Multipath), use the following steps to set up Device Mapper multipath.

Procedure

Step 1 Install the device-mapper-multipath package if it is not installed already

Step 2 Enable and start multipathd:

mpathconf --enable --with_multipathd y

Step 3 Edit the etc/multipath.conf file to use the following values:
Step 4 Flush with the updated multipath device maps.
 # multipath -F

Step 5 Restart multipath service:
 # systemctl restart multipathd.service

Step 6 Rescan multipath devices:
 # multipath -v2

Step 7 Check the multipath status:
 # multipath -ll

Deleting the RoCEv2 Interface Using UCS Manager

Use these steps to remove the RoCE v2 interface.

Procedure

Step 1 In the Navigation pane, click Servers.

Step 2 Expand Servers > Service Profiles.

Step 3 Expand the node for the organization where you want to create the policy. If the system does not include
multitenancy, expand the root node

Step 4 Click on vNICs and go to the Network tab in the work area.
 Modify the vNIC policy, according to the steps below.
 a) On the Network tab, scroll down to the desired vNIC and click on it, then click Modify.
 b) A popup dialog box will appear. Scroll down to the Adapter Performance Profile area, and click on the
 dropdown area for the Adapter Policy. Choose Linux from the drop-down list.
 c) Click OK.

Step 5 Click Save Changes.
CHAPTER 4

Using the UCS Manager CLI to Configure the RoCEv2 Interface

- Configure Windows SMBDirect RoCEv2 Interface using UCS Manager CLI, on page 27
- Configuring the Linux RoCEv2 Interface Using the UCS Manager CLI, on page 28
- Deleting the Windows RoCEv2 Interface Using the CLI for UCS Manager, on page 29
- Deleting the Linux RoCEv2 Interface Using the UCS Manager CLI, on page 30

Configure Windows SMBDirect RoCEv2 Interface using UCS Manager CLI

Use the following steps to configure the RoCEv2 interface in the Cisco UCS Manager CLI.

Before you begin

You must log in with admin privileges.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **Example:**
UCS-A # scope service-profile server
chassis-id / blade-id or rack_server-id | Enter the service profile for the specified chassis, blade or UCS managed rack server ID. |
| Step 2 | **Example:**
UCS-A /org/service-profile # show vnic | Display the vNICs available on the server. |
| Step 3 | **Example:**
UCS-A /org/service-profile # scope vnic
vnic name | Enter the vnic mode for the specified vNIC. |
| Step 4 | To configure Windows SMBDirect RoCEv2 Mode 1:
Example: | Specifies a Windows SMBDirect RoCEv2 adapter policy for RoCEv2 Mode 1. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/service-profile/vnic # set adapter-policy Win-HPN-SMBd</td>
<td>Configures Windows Mode 2, after creating a VMQ connection policy and assigning the adapter policy MQ-SMBd:</td>
</tr>
<tr>
<td>Step 5</td>
<td>Example:</td>
</tr>
<tr>
<td>To configure Windows SMBDirect RoCEv2 Mode 2:</td>
<td>UCS-A# scope org</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org # create vmq-conn-policy policy name</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/vmq-conn-policy* # set multi-queue enabled</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/vmq-conn-policy* # set vmmq-sub-vnic-count 64</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/vmq-conn-policy* # set vmmq-adaptor-profile-name MQ-SMBd</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/vmq-conn-policy* # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/vmq-conn-policy #</td>
</tr>
<tr>
<td>Step 6</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/service-profile/vnic* # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commit the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the RoCEv2 Win-HPN-SMBd adapter policy:

```
UCS-A# scope service-profile server 1/1
UCS-A /org/service-profile # show vnic

vNIC:

<table>
<thead>
<tr>
<th>Name</th>
<th>Fabric ID</th>
<th>Dynamic MAC Addr</th>
<th>Virtualization Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth00</td>
<td>A B</td>
<td>00:25:B5:3A:84:00</td>
<td>NONE</td>
</tr>
<tr>
<td>eth01</td>
<td>A</td>
<td>00:25:B5:3A:84:01</td>
<td>NONE</td>
</tr>
<tr>
<td>eth02</td>
<td>B</td>
<td>00:25:B5:3A:84:02</td>
<td>NONE</td>
</tr>
</tbody>
</table>
```

Use the following steps to configure the RoCEv2 interface for Linux in the Cisco UCS Manager CLI.

Before you begin

You must log in with admin privileges.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Example: UCS-A # scope service-profile server chassis-id / blade-id or rack_server-id</td>
<td>Enter the service profile for the specified chassis, blade or UCS managed rack server ID.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Example: UCS-A /org/service-profile # show vnic</td>
<td>Display the vNICs available on the server.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Example: UCS-A /org/service-profile # scope vnic vnic name</td>
<td>Enter the vnic mode for the specified vNIC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Example: UCS-A /org/service-profile/vnic # set adapter-policy Linux-NVMe-RoCE</td>
<td>Specify Linux-NVMe-RoCE as the adapter policy for the vNIC that you want to use for NVMeoF.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Example: UCS-A /org/service-profile/vnic* # commit-buffer</td>
<td>Commit the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the RoCEv2 Linux adapter policy on the eth01 vNIC:

Example
```
UCS-A# scope service-profile server 1/1
UCS-A /org/service-profile # show vnic
vNIC: Name Fabric ID Dynamic MAC Addr Virtualization Preference
------------------ --------- ------------------ -------------------------
eth00 A B 00:25:B5:3A:84:00 NONE
eth01 A 00:25:B5:3A:84:01 NONE
eth02 B 00:25:B5:3A:84:02 NONE
UCS-A /org/service-profile/vnic eth01
UCS-A /org/service-profile/vnic # set adapter-policy Linux-NVMe-RoCE
UCS-A /org/service-profile/vnic* # commit-buffer
UCS-A /org/service-profile/vnic #
```

Deleting the Windows RoCEv2 Interface Using the CLI for UCS Manager

Use the following steps to delete the Windows RoCEv2 interface in the Cisco UCS Manager CLI.

Before you begin

You must log in with admin privileges.
Deleting the Linux RoCEv2 Interface Using the UCS Manager CLI

Use the following steps to delete the Linux RoCEv2 interface in the Cisco UCS Manager CLI.

Before you begin
You must log in with admin privileges.

Deleting the Linux RoCEv2 Interface Using the UCS Manager CLI

Use the following steps to delete the Linux RoCEv2 interface in the Cisco UCS Manager CLI.

Before you begin
You must log in with admin privileges.
Procedure

| Step 1 | **Example:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A # scope service-profile server chassis-id / blade-id or rack_server-id</td>
</tr>
<tr>
<td></td>
<td>Purpose: Enter the service profile for the specified chassis, blade or UCS managed rack server ID.</td>
</tr>
</tbody>
</table>

| Step 2 | **Example:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /org/service-profile # show vnic</td>
</tr>
<tr>
<td></td>
<td>Purpose: Display the vNICs available on the server.</td>
</tr>
</tbody>
</table>

| Step 3 | **Example:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /org/service-profile # scope vnic vnic name</td>
</tr>
<tr>
<td></td>
<td>Purpose: Enter the vnic mode for the specified vNIC.</td>
</tr>
</tbody>
</table>

| Step 4 | **Example:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /org/service-profile/vnic # set adapter-policy Linux</td>
</tr>
<tr>
<td></td>
<td>Purpose: Removes Linux-NVMe-RoCE policy by setting the default Linux adapter policy.</td>
</tr>
</tbody>
</table>

| Step 5 | **Example:**
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /org/service-profile/vnic* # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Purpose: Commit the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

This example shows how to remove the RoCEv2 interface on the eth01 vNIC on Linux.

Example

```
UCS-A# scope service-profile server 1/1
UCS-A /org/service-profile # show vnic

vNIC:  Name     Fabric ID Dynamic MAC Addr  Virtualization Preference
   ---------  ------  ------------------  -----------------------
eth00 A B  00:25:B5:3A:84:00  NONE       
eth01 A  00:25:B5:3A:84:01  NONE       
eth02 B  00:25:B5:3A:84:02  NONE       
UCS-A /org/service-profile # scope vnic eth01
UCS-A /org/service-profile/vnic # set adapter-policy Linux
UCS-A /org/service-profile/vnic* # commit-buffer
```
Deleting the Linux RoCEv2 Interface Using the UCS Manager CLI
Known Issues in RoCEv2

The following known issues are present in the RoCEv2 release.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Conditions</th>
<th>Workaround</th>
</tr>
</thead>
</table>
| When sending high bandwidth NVMe traffic on some Cisco Nexus 9000 switches, the switch port that connected to the storage sometimes reaches the max PFC peak and does not automatically clear the buffers. In Nexus 9000 switches, the nxos command "show hardware internal buffer info pkt-stats input peak" shows that the Peak_cell or PeakQos value for the port reaches more than 1000. | The NVMe traffic will drop. | To recover the switch from this error mode.
1. Log into the switch.
2. Locate the port that connected to the storage and shut down the port using "shutdown" command
3. Execute the following commands one by one:
 # clear counters
 # clear counter buffers module 1
 # clear qos statistics
4. Run no shutdown on the port that was shut down. |
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Conditions</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>On VIC 1400 Series adapters, the neNIC driver for Windows 2019 can be installed on Windows 2016 and the Windows 2016 driver can be installed on Windows 2019. However, this is an unsupported configuration.</td>
<td>Case 1: Installing Windows 2019 neNIC driver on Windows 2016 succeeds—but on Windows 2016 RDMA is not supported. Case 2: Installing Windows 2016 neNIC driver on Windows 2019 succeeds—but on Windows 2019 RDMA comes with default disabled state, instead of enabled state.</td>
<td>The driver binaries for Windows 2016 and Windows 2019 are in folders that are named accordingly. Install the correct binary on the platform that is being built/upgraded.</td>
</tr>
</tbody>
</table>