

 [image: ../images/cover_page.jpg]

 Chapter 1. Why Generic API Task

 Cisco UCS Director has a repository of out-of-the box tasks that are built around specific operations for a particular device. These tasks have
 pre-defined inputs and pre-defined outputs. These tasks are developed by developers who understand Cisco UCS Director framework and also have domain expertise around the device for which the task is meant for.

 In certain situations, these out-of-the box tasks doesn’t meet your requirements. Say, for example:

 	

 If new parameters are added to the device specific API to enhance the existing functionality, you have to wait till the next
 release for the task enhancement from the Cisco UCS Director development team.

 	

 If the device exposes a new functionality, you have to wait till the next release to get the additional task for a given connector
 to utilize the new functionality.

 	

 If you want to orchestrate the device operations which is currently not supported by Cisco UCS Director as a connector, you have to wait for the release of Cisco UCS Director in which the new device is supported as a connector.

 	

 If you want to trigger a Web service by taking run-time parameters as the tasks are executed in Cisco UCS Director, this approach is currently not supported.

 To overcome these situations, Cisco UCS Director provides:

 	

 A custom task framework where you can utilize CloupiaScript to write any device specific logic and achieve the desired result.

 Custom tasks provide the required flexibility but at the same time you must have good understanding about the Cisco UCS Director exposed APIs and on how to write CloupiaScript (which is mainly JavaScript).

 	

 Generic tasks such as, SSH task, which allows you to automate operations on device which can be accessed through SSH. As SSH
 is a standard way of interacting with devices, you can easily automate such operations without depending on the out-of-the-box
 tasks.

 Most of the devices which require the use of custom tasks expose their functionalities via APIs (XML/JSON). The standard way
 of consuming any API is a normal HTTP/HTTPs-based call which is provided by clients such as Postman, in a very simple way.

 In the Release 6.6, Generic API task is introduced as an out-of-box task to help you to consume any API in a standard HTTP/HTTPs
 manner.

 The pre-defined structure of a HTTP/HTTPs based API includes:

 	

 IP address

 	

 Port

 	

 URL path

 	

 Headers

 	

 Request body

 	

 Authentication parameters

 What you can expect from Generic API Task

 The generic API task:

 	

 Offers a simple interface to consume any API.

 	

 Allows you to define run-time variables which can be evaluated during run-time or as task input.

 	

 Provides ways to output the response or part of the response, as needed.

 	

 Supports rollback operation.

 	

 Consumes information about the devices that are managed by Cisco UCS Director.

 Generic API Task
 	 Structure

 The generic API task
 		has an additional page to define the API structure and required variables. The
 		figure 1 provides the generic API structure of devices not managed by
 		Cisco UCS Director.
 		
 	

 Generic API Task – Unmanaged Device

[image: ../images/306483.jpg]

 The figure 2 provides
 		the generic API structure of devices managed by
 		Cisco UCS Director.
 		
 	

 Generic API Task
 		 – Managed Device

[image: ../images/306484.jpg]

 In this page, you can:
 		
 	

 	
 		
 Define API to make
 			 GET, POST, DELETE and PUT methods based HTTP calls.
 		

 		

 	
 		
 Consume JSON or
 			 XML based APIs.
 		

 		

 	
 		
 Opt to enable
 			 HTTP-based authentication to internally append an authorization header with
 			 username and password encoded in Base64 format.
 		

 		

 	
 		
 Check the
 			 Use
 				selected Account/policy credentials check box to use existing
 			 credentials. Uncheck this box to provide the credential information as task
 			 input.
 		

 		

 	
 		
 Define outputs for
 			 the task using standards such as XPath and JSONPath. You can find out the XPath
 			 or JSONPath of the node or element value in the response and define the same as
 			 task output.
 		

 		

 	
 		
 Opt to enable or
 			 disable to output the complete API response.
 		

 		

 Defining Outputs

 You can choose to define outputs based on the XPath or JSONPath of the variables in the API response. You can also choose
 to output the complete response as an output or hide the complete response during the task execution.

 Example 1: Executing a Login API for the Cisco UCS Manager
 						Account

 When you execute a login API for the Cisco UCS Manager
 						 account using a generic API task, the successful response for the API is as follows:

 <aaaLogin
 response="yes"
 outCookie="<real_cookie>"
 outRefreshPeriod="600"
 outPriv="aaa,ext-lan-policy,ext-lan-qos,ext-san-policy,operations,
 pod-policy,pod-qos,read-only"
 outDomains="mgmt02-dummy"
 outChannel="noencssl"
 outEvtChannel="noencssl">
</aaaLogin>

 If you want to use the value of outCookie attribute from this response as an input parameter for further operations, you have to define an output variable as:

 	

 Output Name : Cookie

 	

 Path : /aaaLogin/@outCookie

 Where, /aaaLogin/@outCookie is the XPath for the outCookie attribute.

 Example 2: Making a JSON based Login REST API call to an APIC device

 The JSON response of a successful login API call to an APIC device is as follows:

 Response:

 {
 "imdata" : [{
 "aaaLogin" : {
 "attributes" : {
 "token" :
 "GkZl5NLRZJl5+jqChouaZ9CYjgE58W/pMccR+LeXmdO0obG9NB
 Iwo1VBo7+YC1oiJL9mS6I9qh62BkX+Xddhe0JYrTmSG4JcKZ4t3
 bcP2Mxy3VBmgoJjwZ76ZOuf9V9AD6Xl83lyoR4bLBzqbSSU1R2N
 IgUotCGWjZt5JX6CJF0=",
 "refreshTimeoutSeconds" : "300",
 "lastName" : "Washington",
 "firstName" : "George"
 },
 "children" : [{
 ...
 ...
}

 The token attribute is required to perform any other API calls on the device. Hence, you have to fetch the value for the token
 attribute.

 As the output is a JSON response, find the JSONPath for the token attribute. The JSONPath is similar to XPath where we traverse
 the element from the parent element.

 The JSONPath for the token attribute from the response is as follows:

 JSONPath: $.imdata[0].aaaLogin.attributes.token

 You have to define the output in the Generic API task as:

 	

 Output Name : Cookie

 	

 Path : $.imdata[0].aaaLogin.attributes.token

 Example 3: Using XPath or JSONPath in-built Filtering Capability

 Using the in-built filtering capability of XPath and JSONPath, you can define the XPath or JSONPath of an element and set
 some filtering criteria.

 Let’s take the following JSON response which displays a list of employee details:

 Response:

 [
 {
 'name': 'John',
 'address1': null,
 'empId': 10,
 'salary': 0.0
 },
 {
 'name': 'George',
 'address1': null,
 'empId': 11,
 'salary': 0.0
 },
 {
 'name': Frank',
 'address1': null,
 'empId': 12,
 'salary': 0.0
 }
]

 If you want to fetch the ID of employee Frank, you can use the filtering criteria as in the following JSONPath expression:

 $.[?(@.name=="Frank")].empId

 You have to define the task output using the JSONPath expression as:

 	

 Output Name : Employee_Id

 	

 Path : $.[?(@.name=="Frank")].empId

 	[image: ../images/note.gif]
Note
 	

 If there are more than one employee with the name Frank, you will get the comma separated employee IDs as [13, 14, 20].

 Similar to this example, you can use the XPath filtering capabilities to filter XML response and output the desired node or
 element value from the response.

 Defining Variables

 You can define variables in a task definition as follows:

 @{INPUT VARIABLE}

 For example, you can define the user name and employee name as: @{Username}, @{Employee Name}

 Variables can be used in the following places:

 	
 API Path—You can define variables in the API path which will form the URL for the API call, and these variables become the task input.
 The API path is evaluated during the task execution.

 	

 Request Content—You can define variables in the request body content and these variables become the task input. The body content is evaluated
 during the task execution.

 	

 Output Path—You can define variables in the XPath or JSONPath expression output, and these variables become the task input. The output
 path is evaluated during the task execution and it is used to find the required output from XML or JSON response.

 These variables become the task input and the values for the variables can be input either as a mapped input or task input.

 Sample: Defining Variables in an API Path

 In this example, let’s see how you can execute the getEmployeeDetails API (available at the following URL) to fetch employee
 details by passing run-time employee ID using the generic API task.

 https://[IP]:[Port]/getEmployeeDetails/[Employee ID]

 To execute the API using the generic API task, the employee ID must be set as a variable and the value must be provided at
 run-time. The IP address and port values are also required but can be static in nature.

 You can define the API structure using the generic API task as follows:

 	

 IP Address : xx.xx.xx.xx

 	

 Port : 443

 	

 API Path : /getEmployeeDetails/@{Employee_ID}

 The @{Employee_ID} notation creates a task input named as Employee_ID. You can map the input to either workflow input or define
 the value statically as task input.

 Sample: Defining Variables in a Request Content

 In most of the HTTP API calls, a body content is sent as a payload. The payload contains the information required to perform
 the basic operation, such as, Post, Put, and so on.

 Let’s take an example of getting a session ID from Cisco UCS Manager
 						 which can further be used as a parameter to perform other operations.

 The API path required to get session ID is /nuova. The request content that needs to be sent to the URL is:

 <aaaLogin inName= [User Name] inPassword= [Password] />

 The API structure defined using a generic API task to retrieve a session ID is as follows:

 	

 IP Address : xx.xx.xx.xx

 	

 Port : 443

 	

 API Path : /nuova

 	

 Request Content: <aaaLogin inName= @{User_Name} inPassword= @{Password.encrypt} />

 Here, the User_Name and Password variables are the task input and the values can be provided either statically or as mapped
 input.

 The .encrypt keyword is used to make sure that the generated task input type for the defined variable is password and the
 password will not be visible in the task or during the task execution.

 By default, the task input type of the defined variable is generic text.

 For devices managed in Cisco UCS Director, the request content can also be defined using the following keywords:

 <aaaLogin inName= @{Account.username} inPassword= @{Account.password} />

 Or

 <aaaLogin inName= @{CredPolicy.username} inPassword= @{CredPolicy.password} />

 The @{Account.username} and @{Account.password} keywords are used to retrieve user name and password information from an existing account of Cisco UCS Director. The generic API task fetches the information for the selected account internally and use the information during the API
 execution. These keywords don’t appear as the task input in the next page, as the values are fetched internally from Cisco UCS Director.

 The @{CredPolicy.username} and @{CredPolicy.password} keywords can be used when the user wants to provide credential information using a credential policy defined in Cisco UCS Director. These keywords can be used for devices which are not managed by Cisco UCS Director, but the device credential information is input from the credential policy in Cisco UCS Director. These keywords don’t appear as the task input in the next page, as values are fetched internally from Cisco UCS Director.

 Sample: Defining Variables in the Output Path

 In certain situations, you may want to use variables in the XPath or the JSONPath of the element available in the response.
 For example, let’s take the following JSON response of an API execution that displays the employee details.

 Response:

 [
 {
 'name': 'John',
 'address1': null,
 'empId': 10,
 'salary': 0.0
 },
 {
 'name': 'George',
 'address1': null,
 'empId': 11,
 'salary': 0.0
 },
 {
 'name': Frank',
 'address1': null,
 'empId': 12,
 'salary': 0.0
 }
]

 To output the employee ID of an employee, the following JSONPath is used:

 $.[?(@.name=="Frank")].empId

 If you want to pass the employee name as a variable to get the employee name at run-time and to get the employee ID for the
 same as task output, you can define variables in the output path definition using the @{Variable_Name} notation.

 The JSONPath to find employee ID for the employee name that is passed as a variable is as follows:

 $.[?(@.name=="@{Employee_Name}")].empId

 The Employee_Name variable is the task input, and it can get value as a task input or a mapped input. The variable value is evaluated at run-time
 during the task execution, and then the JSONPath is evaluated based on the JSON response. Finally, the evaluated JSONPath
 value is output as the task output.

 In the same way, you can define the variable in the XPath definition while defining the output of the generic API task.

 Defining Headers

 Generic API task allows you to define the HTTP header that is required for HTTP/HTTPS based API execution. The header parameters
 are consumed as task input in the next page automatically, and the parameters get value statically or as a mapped input during
 run-time.

 If you want to pass the header value with some portion of it as static and rest of the portion as a variable, use the dollar
 ($) concept available in Cisco UCS Director to define the value (with static and variable portion) for the header.

 For example, in the following figure, there are two header parameters required for the API execution:

 Task – Header Parameters

[image: ../images/306459.jpg]

 These header parameters are automatically set as task input, and the values for the parameters can be provided either statically
 or as a mapped input.

 Say, if the value required for the Cookie parameter is as follows:

 X-Device-Token=[TOKEN_VALUE]

 Where, the X-Device-Token is a fixed part and TOKEN_VALUE is a value which can be a variable.

 To define the value for the Cookie task input, use the dollar symbol as in the following figure:

 Cookie Task Input

[image: ../images/306460.jpg]

 HTTP Basic Authentication

 In certain situations, the API execution may require passing of authentication parameters using the HTTP basic authentication
 method.

 HTTP Basic Authentication is a standard way to authenticate clients with server. The authentication information is passed
 using an Authorization header parameter that contains the word Basic followed by a space and a Base64-encoded string username:password.

 Generic API task allows you to define basic authentication mechanism in one of the following ways:

 	

 Allows you to provide the credential information (username and password) as task input. In this case, two task inputs are
 auto-generated (Auth_Username and Auth_Password) and you can provide the required values as task input or mapped input.

 	

 Allows you to use the existing device credential or information in a credential policy for basic authentication parameter.
 In this case, the required information is fetched internally from Cisco UCS Director and no input is required from user.

 	[image: ../images/note.gif]
Note
 	

 Generic API task automatically adds the required header for HTTP Basic authentication (Authorization) with required formatted
 value while making the API call. You need not define this header manually.

 Defining Rollback API

 To define rollback API for the generic API task, perform the following:

 	

 Define the minimal required rollback API definitions, such as, URL, headers, API path, and request body.

 	

 Use @Variable notation to define variables which appears as task input for the task.

 	

 Use the @Variables notation in the rollback URL and rollback body content.

 	

 Use the keywords (such as, Account.username, Account.password, CredPolicy.username and CredPolicy.password) in the rollback
 URL and rollback body content.

 Defining Rollback Workflow

 To define rollback workflow for the generic API task, perform the following:

 	

 Choose a workflow that has to be triggered during the rollback of a task.

 	

 Configure the workflow inputs and provide information about the values to be passed to the workflow during rollback.

 	

 You can choose to take a workflow input value as task input. Value can be provided as task input or mapped input.

 	

 You can choose to provide the workflow input value using pre-defined keywords (such as, Account.username, Account.password,
 DeviceCred.username, and DeviceCred.password).

 	

 You can also choose to use the outputs defined in the task as input value for the rollback workflow.

 Full Cisco Trademarks with Software License

 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS
 MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
 RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
 WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL
 RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

 THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT
 ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE
 INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE
 LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

 The Cisco implementation of TCP header compression is an adaptation of
 a program developed by the University of California, Berkeley (UCB) as part of
 UCB's public domain version of the UNIX operating system. All rights reserved.
 Copyright © 1981, Regents of the University of California.

 NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
 SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE
 ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
 WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
 PRACTICE.

 IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT,
 SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
 LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO
 USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

 Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone
 numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown
 for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and
 coincidental.

 Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries.
 To view a list of Cisco trademarks, go to this URL: https:/​/​www.cisco.com/​go/​trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
 a partnership relationship between Cisco and any other company. (1721R)

 images/306459.jpg
[=] Header Parameters

Header Key
Cookie

Content-type

images/306460.jpg
Cookie*

X-Device-Token=${Token}

images/306483.jpg
Dynanic Task npts and Outputs
o iy L)

o w

[Ep—
+su
Voo

O pmcson
0.0t o ks iy 0 9WTHf e e B2 08 e
e ey e o, s e o st i b
s T ARt i vt v ORI T et ek i s 55
et i e e e k.

) Ot ten
+ /8 T2 Q7
owpaane | put

images/cover_shelf.jpg
Nnmim
cisco

—

3
Working with Generic
API Task of Cisco UCS
Director, Release...

TR

images/306484.jpg
Orchestration Workflows

s
B
e [
} oy - 2

. E—
0 s T AR e kv i
T b ok o et o

B [——
e (7T)
-)
Jra—

[y —

+ /8 Tewm Q

[y

T sk AuernonSechcti
USSU—

oo

et et sccn
0 s T A b6t vt i et . Th i e ik ot e .
o betne oo s o ot i Pk
U Giaccmet e o e o T e s o i et
T e vk Ak et gt P 8 s .|

et

0.0t o et iy o ORI el il 8 . s
e e sy ch v ok o st e B

N AVt Gk et i NI Th it okt 55
N i s v ke e

) Ot n
+ s m

Tozmms Q7

images/cover_page.jpg
lllllllll
CISCO.

==

Working with Generic API Task of
Cisco UCS Director, Release 6.6

©2018 Cisco Systems, Inc. Allrights reserved

L

