afren]n
CISCO.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0

First Published: 2016-09-16

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN' NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network

topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://

WWW.ciSco.com/ gO/ trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

©2016 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks

CONTENTS

Preface Preface v
Audience v
Conventions v
Related Documentation vii
Documentation Feedback vii

Obtaining Documentation and Submitting a Service Request vii

CHAPTER 1 New and Changed Information for this Release 1

New and Changed Information for this Release 1

CHAPTER 2 Overview 3
Cisco UCS Director, Custom Tasks, and CloupiaScript 3
Structure of an Example 3
How to Use the Examples 4

Getting Inputs and Outputs of a Service Request 5

CHAPTER 3 Examples 7
Logging in CloupiaScript 8
Handling Numeric Input 9
SSH to a Network Device 10
Accessing a Network Element Account 11
Accessing a Session or API for Virtual and Physical Accounts 12
Accessing Reports 16
Accessing a Delegate API 18
Accessing and Operating on a Database Table 18
Provisioning a Catalog Multiple Times 19

Calling or Executing a Workflow Task 20

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

. Contents

Setting a Task to Successful or Failed Status 21

Invoking Another Workflow 22

Calling an API on a Remote Cisco UCS Director 23

Executing a Critical Section 24

Obtaining Complete List of VLANSs across PODs 25

Obtaining Complete List of IPs Used per Pod 26

Locking or Unlocking a VDC 27

Creating a Task to Obtain the List of Hosts from a VMware Cluster 28
Moving Multiple VMs across VDCs 29

Rolling Back a Task in a Workflow 31

Integrating with ServiceNow Ticketing 31

Sending Emails from the Cloupia Script 34

Archiving Older Service Requests Automatically 35
Determining the Workflow Submitter Information 36

Resizing a Virtual Machine Disk 37

Uploading a JAR File 38

Invoking a Library for a Custom Task 39

Using the Registered List of Values (LOV) in a Custom Task 40
Using a Tabular Report in a Custom Workflow Task 41

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

Preface

* Audience, page v

» Conventions, page v

Related Documentation, page vii
» Documentation Feedback, page vii

» Obtaining Documentation and Submitting a Service Request, page vii

Audience

This guide is intended primarily for data center administrators who use Cisco UCS Director and who have
responsibilities and expertise in one or more of the following:

* Server administration

* Storage administration
» Network administration
* Network security

* Virtualization and virtual machines

Conventions

Text Type Indication

GUI elements GUI elements such as tab titles, area names, and field labels appear in this font.

Main titles such as window, dialog box, and wizard titles appear in this font.

Document titles Document titles appear in this font.

TUI elements In a Text-based User Interface, text the system displays appearsin this font.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

. Conventions

A

Preface

Text Type

Indication

System output

Terminal sessions and information that the system displays appear in this
font.

CLI commands

CLI command keywords appear in this font.

Variables in a CLI command appear in this font.

[]

Elements in square brackets are optional.

xlylz

Required alternative keywords are grouped in braces and separated by vertical
bars.

[xlylz]

Optional alternative keywords are grouped in brackets and separated by vertical
bars.

string

A nonquoted set of characters. Do not use quotation marks around the string or
the string will include the quotation marks.

Nonprinting characters such as passwords are in angle brackets.

Default responses to system prompts are in square brackets.

An exclamation point (!) or a pound sign (#) at the beginning of a line of code
indicates a comment line.

Note

A

Means reader take note. Notes contain helpful suggestions or references to material not covered in the

document.

Caution

Je

Tip

Means reader be careful. In this situation, you might perform an action that could result in equipment

damage or loss of data.

Means the following information will help you solve a problem. The tips information might not be
troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Timesaver

Means the described action saves time. You can save time by performing the action described in the

paragraph.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Preface

y'\

Related Documentation .

Warning

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you
work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with
standard practices for preventing accidents. Use the statement number provided at the end of each warning
to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

Related Documentation

Cisco UCS Director Documentation Roadmap

For a complete list of Cisco UCS Director documentation, see the Cisco UCS Director Documentation
Roadmap available at the following URL: http://www.cisco.com/en/US/docs/unified _computing/ucs/
ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html.

Cisco UCS Documentation Roadmaps

For a complete list of all B-Series documentation, see the Cisco UCS B-Series Servers Documentation Roadmap
available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

For a complete list of all C-Series documentation, see the Cisco UCS C-Series Servers Documentation Roadmap
available at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc.

Note

The Cisco UCS B-Series Servers Documentation Roadmap includes links to documentation for Cisco
UCS Manager and Cisco UCS Central. The Cisco UCS C-Series Servers Documentation Roadmap includes
links to documentation for Cisco Integrated Management Controller.

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments
to ucs-director-docfeedback@cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's
New in Cisco Product Documentation RSS feed. RSS feeds are a free service.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

http://www.cisco.com/en/US/docs/unified_computing/ucs/ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html
http://www.cisco.com/en/US/docs/unified_computing/ucs/ucs-director/doc-roadmap/b_UCSDirectorDocRoadmap.html
http://www.cisco.com/go/unifiedcomputing/b-series-doc
http://www.cisco.com/go/unifiedcomputing/c-series-doc
mailto:ucs-director-docfeedback@cisco.com
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html
http://www.cisco.com/assets/cdc_content_elements/rss/whats_new/whatsnew_rss_feed.xml
http://www.cisco.com/assets/cdc_content_elements/rss/whats_new/whatsnew_rss_feed.xml

Preface |
. Obtaining Documentation and Submitting a Service Request

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[vii | |

CHAPTER 1

New and Changed Information for this Release

* New and Changed Information for this Release, page 1

New and Changed Information for this Release

No significant changes were made to this guide for the current release.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
I

New and Changed Information for this Release |
. New and Changed Information for this Release

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[2 | |

CHAPTER

Overview

This chapter contains the following sections:

» Cisco UCS Director, Custom Tasks, and CloupiaScript, page 3
« Structure of an Example, page 3
* How to Use the Examples, page 4

» Getting Inputs and Outputs of a Service Request, page 5

Cisco UCS Director, Custom Tasks, and CloupiaScript

Cisco UCS Director provides automated, profile-based provisioning, management, and reporting of
infrastructure resources. Cisco UCS Director incorporates a powerful orchestration engine that enables complex
operations on any element of your converged infrastructure, both physical and virtual. These operations are
embodied in workflows, which are scripted sequences of individual tasks. Cisco UCS Director comes complete
with a large library of tasks.

The tasks in Cisco UCS Director are written in CloupiaScript, a version of JavaScript with libraries that enable
orchestration operations. With CloupiaScript, it is possible to embed scripts in workflow tasks and to write
custom tasks.

You should be familiar with Cisco UCS Director and Cisco UCS Director Orchestrator to take advantage of
the scripted examples in this Cookbook.

For information about installation and administration of Cisco UCS Director, see the Cisco UCS Director
Administration Guide. For help using the Cisco UCS Director Orchestrator, see the Cisco UCS Director
Orchestration Guide. For a reference to CloupiaScript classes and methods, see the CloupiaScript Javadoc
included with the Cisco UCS Director Script Bundle.

Structure of an Example

Under a descriptive title, each example comprises the following sections:
Objective

What the example is designed to accomplish.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
I

http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-maintenance-guides-list.html
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-maintenance-guides-list.html
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-installation-and-configuration-guides-list.html
http://www.cisco.com/c/en/us/support/servers-unified-computing/ucs-director/products-installation-and-configuration-guides-list.html

Overview |
. How to Use the Examples

Context

When you would use the example, when you would not use it, and why.

Prerequisites

What conditions have to exist for the example to work.

Components

Which objects and methods are used in the example, and what the input variables represent.

Code

The example code.

Results

What output is expected from the example code.

Implementation

Notes on implementing the example, including what modifications might be necessary to implement
it.

See Also
Related Examples

How to Use the Examples

This document is a collection of examples, recipes, if you will, for using CloupiaScript, a server-side scripting
solution for use with Cisco UCS Director; Orchestrator. Like a cookbook, you can use this document in at
least three ways:

* You can follow the examples as written (substituting your own variables, of course) to complete tasks
without necessarily knowing everything about the steps you are following.

* You can use the examples as templates and adapt them to similar tasks in your work.

* You can study the examples to figure out “how things are done” in CloupiaScript and, along with the
CloupiaScript Javadoc reference, generalize to using different methods for other tasks you need to script.

The examples are chosen to illustrate common use cases and are intended to facilitate all three of these modes
of use.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[4] |

| Overview
Getting Inputs and Outputs of a Service Request .

Getting Inputs and Outputs of a Service Request

To view the input or output of a service request, do the following:

Step 1 Navigate to Organization > Service Request and click the Service Requests tab.

Step 2 Choose a service request and click View Details.
A pop-up window appears.

Step 3 Click Input/Output.
The input and output of the workflow and sub-workflow appear.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 B

Overview |
. Getting Inputs and Outputs of a Service Request

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[6 | |

CHAPTER

Examples

This chapter contains the following sections:
* Logging in CloupiaScript, page 8
¢ Handling Numeric Input, page 9
» SSH to a Network Device, page 10
» Accessing a Network Element Account, page 11
» Accessing a Session or API for Virtual and Physical Accounts, page 12
» Accessing Reports, page 16
» Accessing a Delegate API, page 18
» Accessing and Operating on a Database Table, page 18
» Provisioning a Catalog Multiple Times, page 19
* Calling or Executing a Workflow Task, page 20
» Setting a Task to Successful or Failed Status, page 21
 Invoking Another Workflow, page 22
 Calling an API on a Remote Cisco UCS Director, page 23
« Executing a Critical Section , page 24
» Obtaining Complete List of VLANs across PODs, page 25
» Obtaining Complete List of IPs Used per Pod, page 26
» Locking or Unlocking a VDC, page 27
* Creating a Task to Obtain the List of Hosts from a VMware Cluster, page 28
* Moving Multiple VMs across VDCs, page 29
» Rolling Back a Task in a Workflow, page 31
« Integrating with ServiceNow Ticketing, page 31

» Sending Emails from the Cloupia Script, page 34

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Logging in CloupiaScript

* Archiving Older Service Requests Automatically, page 35

¢ Determining the Workflow Submitter Information, page 36

* Resizing a Virtual Machine Disk, page 37

» Uploading a JAR File, page 38

 Invoking a Library for a Custom Task, page 39

» Using the Registered List of Values (LOV) in a Custom Task, page 40
» Using a Tabular Report in a Custom Workflow Task, page 41

Logging in CloupiaScript

Objective

Print messages to the Service Request log.

Context

You want to view the output log statements.

Prerequisites

None

Components
The Logger object provides the following methods for logging:
* addDebug — Displays the debug messages in gray.
* addInfo — Displays the normal messages in black.
* addWarning — Displays the warning messages in orange.

* addError — Displays the error messages in red.

Code

logger.addDebug (“About to process the user request’);

logger.addInfo (“User “+ctxt.getUserId()+” has requested to provision this”);
logger.addWarning (“Resource has reached maximum capacity.”);
logger.addError (“Failed to provision the resource.”);

Results

The messages that are passed to the logger object are printed.

Implementation

No modifications required to implement this code.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[8 | |

Examples

Handling Numeric Input .

Handling Numeric Input

Objective

Process a numeric input in a custom task.

Prerequisites

The custom task must first be defined in Cisco UCS Director with a text or numeric input.

Components

Custom task libraries are not required.

Code
// Handle a number defined as a text input
function handleNumbers () {
var strInput = input.stringInput;
var convertedCustomTaskStringInput = null;
if (strInput != null) {
// Use the Java Integer wrapper object
convertedCustomTaskStringInput = new java.lang.Integer (strlInput);
logger.addInfo ("convertedCustomTaskStringInput = " +

convertedCustomTaskStringInput) ;
}

}
handleNumbers () ;

// Handle a number defined as a numeric input
function handleNumbers () {

var strInput = input.Input * 2;

var convertedCustomTaskStringInput = null;

if (strInput != null) {

// Use the java Integer wrapper object
convertedCustomTaskStringInput = strInput;
logger.addInfo ("convertedCustomTaskStringInput = " +
convertedCustomTaskStringInput) ;

}

}
handleNumbers () ;

Results

The script prints the input value to the log.

Implementation

The implementation is straightforward: take the input variable from the custom task's built-in input
object and provide it as an argument to the Java Integer wrapper object. If the given input is not a
number, a NumberFormatException error is thrown that appears in the log.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

Examples
. SSH to a Network Device

SSH to a Network Device

Objective

Access a network device using SSH.

Context

You want a custom task to log into a device (for example, a VM) using SSH and run a command on
the device.

Prerequisites

An SSH-enabled device should be available on the network with a known IP address, username, and
password. The custom task is defined with the following inputs:

* ipAddress (IP address of the remote device)
» username (on the device)
* password (on the device)

» command (a command to issue to the device)

Components

com.cloupia.lib.util.ssh.SSHClient - This API connects to a remote ssh server or device and executes
a command, printing the result to standard out (stdout).

Code

importPackage (com.cloupia.lib.util.ssh);
importPackage (java.io) ;

function testSSHClient () {

var client = new SSHClient (input.ipAddress, 22, // 22 = SSH standard port
input.userName, input.password);

client.connect () ;

var session = client.openShell (511,25); // (511, 25) = (columns, rows)
var shellStream = new PrintStream(session.getOutputStream());
shellStream.println (input.command) ;

shellStream.flush () ;

client.disconnect();

}

testSSHClient () ;
Results

An SSH connection is opened and the command is sent to the remote device. The connection is then
closed.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Examples
Accessing a Network Element Account .

Implementation

The client.openShell() method in the example code internally uses a thirdparty library API:
com.maverick.ssh.SshSession.requestPseudoTerminal().

This script does not verify the result of the command. In fact, it does not open the session input stream
at all, and simply disconnects after sending the command. You would obviously want to do more error
checking if you implemented this script in production.

Accessing a Network Element Account

Objective

Connect the network device and send CLI commands.

Context

You want to send the CLI command to the device.

Prerequisites

The network device should have been added in UCS Director.

Components

*» NetworkDeviceManager - This component accepts device details as an argument and establishes
a connection to the device. After the connection is created, the user can manage the network device
by sending the commands.

» com.cloupia.lib.claaS.network.model.DeviceCredential - The ‘DeviceCredential” API holds device
details.

Code

importPackage (com.cloupia.feature.networkController);
importPackage (com.cloupia.feature.networkController.model) ;
importPackage (com.cloupia.lib.cIaas.network.model) ;
importPackage (com.cloupia.feature.networkController.collector) ;
importPackage (com.cloupia.lib.util);

var devCreds = NetworkPersistenceUtil.getDeviceCredential (dcName, devIP);

var status = NetworkPersistenceUtil.getDeviceStatus (dcName, devIP);
var device = NetworkDeviceManager.getDevice (devCreds) ;
var failedMessages = new ArrayList();

var cmdAndOutputMsgs = new ArrayList();

var errCounter = new Counter();

var script = new CLIScript();

script.addLine ("<cli command here>");

script.execute (device, errCounter, failedMessages, cmdAndOutputMsgs) ;

// Log commands and their responses
NetworkDBUtil.logCommandsAndResponses (actionLogger, devCreds, cmdAndOutputMsgs) ;

// Append any exceptions to action logger

NetworkDBUtil.logCommandExceptions (actionLogger, devCreds, errCounter,
failedMessages) ;

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Accessing a Session or API for Virtual and Physical Accounts

Results

The command is executed on the device and the command output is printed in the log.

Implementation

No modifications required to implement this code.

Accessing a Session or API for Virtual and Physical Accounts

Objective

Create a session object and access the Cisco UCS Director API.

Context

You want to connect the device, a virtual account, or a physical account to send queries. To achieve
this, you need to establish a connection to the account, which is called creating a session.

Prerequisites

The virtual or physical account should be added in UCS Director.

Components
The Logger object provides the following methods for logging:
* addDebug — Displays the debug messages in gray.
* addInfo — Displays the normal messages in black.
* addWarning — Displays the warning messages in orange.

* addError — Displays the error messages in red.

NetAppSession - This API creates a session on the NetAPP device and sends XML commands to the
device

NetAppAPI - This API obtains details about the NetApp device. The API has several built-in methods
to obtain details and configure the NetApp device. For example, This API has the built-in method to
obtain the 'InitiatorGroups.'

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[12| |

Examples

Accessing a Session or API for Virtual and Physical Accounts .

Code

For NetApp

importPackage (com.cloupia.lib.cIaaS.netapp);
importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (com.cloupia.lib.cIaaS.netapp.model) ;
function getNetAppApi ()
{
var filerIdentity = new NetAppFilerIdentity (input.accountName) ;
var accountName = null;
if (filerIdentity != null)
{
accountName = filerIdentity.getAccountName () ;
}
var account = InfrastructureDataUtil.getAccount (accountName) ;
var session = new NetAppSession (account);
var api = new NetAppAPI (session);
logger.addInfo ("API: "+api);
}
getNetAppApi () ;

For VMware

importPackage (com.cloupia.lib.cIaaS.vmware) ;
importPackage (com.cloupia.service.cIM.inframgr) ;

function accessVMWareAccount () {

var accountName = input.accountName;
var account = InfraPersistenceUtil.getAccount (accountName) ;
var si = new VCenterConnectionManager (account) .getServicelnstance();

var driver = new VCenterDriver () ;

}

accessVMWareAccount () ;

Use the veenterDriver API to invoke the VMware APIs and CRUD operations. For example:

driver.updateSingleVM (Account creds, GenericVM gvm, VMWareVMSummary vmsummary, boolean
includeSnapshotInfo) ;

driver.vmAction (Account account, VMWareManagerData data, String vmName, String action,
ActionParam[] param, int requestId, ServerProfile profile, GenericVM gvm) ;

REST API:

APIProvider.getInstance () .performAction (ReportContext context, VMActionU-
til.ACTION DELETE VM DISKS, String comment, String userId, ActionParam[] actionParams)

Invoke inventory:

var controller =
com.cloupia.service.cIM.inframgr.InfraMgrImpl.getController (account.getAccountName ()) ;
controller.requestImmediatePoll () ;

For HyperV

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

importPackage (com.
importPackage (com.
importPackage (com.
importPackage (com.

Accessing a Session or API for Virtual and Physical Accounts

cloupia.
cloupia.
cloupia.
cloupia.

feature.hypervController.userApi);

service.cIM.inframgr) ;

lib.cIaaS.hyperv.model) ;
lib.cIaaS.hyperv.psapi);

function accessHyperVAccount () {

var accountName =

var remoteAgent =

agent.getAccessKey
var targetServer =
creds.gethDomain ()

var api = new SCVMMAPI (remoteAgent,

"hyperv";

07

new TargetServer (creds.getHServer (),
creds.getHPasswd ()) ;
targetServer, SCVMMAPI.TIME 5 MINS) ;

+ ll\\ll

var creds = InfraPersistenceUtil.getAccount (accountName) ;
var agent = InfraPersistenceUtil.getWinRemoteAgent (creds.gethPSAgentIP());
new RemoteAgent (agent.getAddress(),

+ creds.getHUserId(),

logger.addInfo ("Hyperv api: "+api);

}

accessHyperVAccoun

API Example:

api.openRemoteSess

response=api.getResponse ("get-vmmserver -computername
response=api.getExample ("New-VirtualDiskDrive -VM \"" + vmName + "\" -SCSI -Size " +
-LUN " + lun + " -FileName

size + " -Bus " +

t();

ion();

bus + "

if (!HypervUtil.isScvmm2008 (accountName)) {
isStatusOk ("New-SCVirtualDiskDrive", api);

telse(

isStatusOk ("New-VirtualDiskDrive", api);

}

api.closeRemoteSes

ucCs

importPackage (com.
importPackage (com.
importPackage (com.
importPackage (com.
importPackage (com.

sion () ;

cloupia.
cloupia.
cloupia.
cloupia.
cloupia.

service.cIM.inframgr) ;
feature.ucsController)
lib.cIaaS.hyperv.psapi
model.cIM) ;
lib.cIaaS.ucs);

function accessUCSAccount () {

var account =

InfrastructureDataU-til.getAccountByType (input.accountName, InfraAccountTypes.UCSM) ;
api = UcsDataPersistenceUtil.getNewUcsAPISession (account);

logger.addInfo ("Got the UCSM api: "+api);

UcsSessionPoolManager.getInstance () .closeSession (api) ;

}

accessUCSAccount ()

EMC

’

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

)

agent.getPortNumber (),

+ diskName +

Examples

+ creds.getHServer());

+ type);

Examples

Accessing a Session or API for Virtual and Physical Accounts .

importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (com.cloupia.lib.cIaaS.emc.vmax.model) ;
importPackage (com.cloupia.lib.cIaaS.emc.vmax.);
importPackage (com.cloupia.model.cIM) ;

function accessEMCAccount ()

{

var identity = new.EMCVMAXDeviceIdentity(deviceId);

var account = InfrastructureDatatil.getAccountByType
(identity.getAccountName (), InfraAccountTypes.EMC VMAX) ;
var vmaxapl = new com.cloupia.lib.cIaaS.emc.vmax.EmcVmaxApi ();

// Use the Vmax API for the EMC VMAX tasks.
var account = com.cloupia.service.cIM.inframgr.InfrastructureDataUtil.getAccountByType

(accountName, com.cloupia.model.cIM.InfraAccountTypes.EMC VNX) ;
var api = new com.cloupia.lib.cIaaS.emc.vnx.VnxBlockXmlAPI (account) ;
api.sendEmcCimRequest (String methodHdrToUse, String requestStr);

}

Example:

api.sendCimRequest (“CreateRAIDGroupWithPowerSavingSetting”

Use the VNX API for the EMC VNX tasks or operations.

Inventory:

InventoryManager.collectSubSystemInventory (account,api);
List<VNXClariionSubsystem> subsystems =
EmcPersisten-ceUtil.getEMCVNXClariionSubsystemsByAccount (account.getDcName (), ac-
count.getAccountName ()) ;

InventoryManager.getBlockFullInventory (account) ;

Cisco UCS Manager Account Connection

To configure or manage Cisco UCS, you require connection to a Cisco UCS Manager account. The
following sample code helps obtain a connection to the Cisco UCS Manager account.

importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (com.cloupia.feature.ucsController);
importPackage (com.cloupia.model.cIM) ;

function accessUCSMAccount () {

var account =InfrastructureDataUtil.getAccountByType (<Account Name>,
nfraAccountTypes.UCSM) ;

var api =.UcsDataPersistenceUtil.getNewUcsAPISession (account);

var cookie = api.getLoginResponse () .getOutCookie () ;

var sessionId = api.getSessionId();

}

accessUCSMAccount () ;
Description of Fields:
* <Account Name>: Name of the Cisco UCS Manager account.

* InfraAccountTypes.UCSM: Type of the account.

Results

After the connection is established, you can send commands to the respective account.

Implementation

The functions are defined in the Cisco UCS Director features. If required, they can be reused by accessing
the feature API instead of redefining the same functions. Also, session objects are defined in Cisco
UCS Director.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Accessing Reports

Accessing Reports

Objective

Access the existing Cisco UCS Director reports and filter the report data.

Context

You want to obtain a report and filter the data in the report per requirements.

Prerequisites

Report Name and Context are required to fetch the reports.

Components

ctxt.getAPI().getConfigTableReport - This method returns the TabularReport object, which contains
the report details.

ctxt.getAPI().getTabularReport - This method returns the TabularReport object, which contains the
report details.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[16| |

Examples
Accessing Reports .

Code

importPackage (com.cloupia.model.cIM) ;
importPackage (com.cloupia.lib.util.managedreports) ;

function getReport (reportContext, reportName)
{
var report = null;
try
{
report = ctxt.getAPI().getConfigTableReport (reportContext, reportName) ;

} catch (e)
{
}
if (report == null)
{
return ctxt.getAPI().getTabularReport (reportName, reportContext);

} else
{

var source = report.getSourceReport();

return ctxt.getAPI().getTabularReport (source, reportContext);

}

function getReportView (reportContext, reportName)

{

var report = getReport (reportContext, reportName) ;

if (report == null)
{
logger.addError ("No such report exists for the specified context
"t+reportName) ;
return null;
}
return new TableView (report);

}

function accessReports () {

//Refer the following code to create report context.

var reportName="TABULAR REPORT PER CLOUD VMS CONFIG REPORT";

//To create a context, pass the values for arguments in the given order: type,
cloudName, APIReportID. To get these values, click Report Metadata in the corresponding
report.

var repContext = new ReportContext(1, "vmwarelO9","VMS-TO");

logger.addInfo ("reportContext "+repContext);

var report = getReportView (repContext, reportName);

logger.addInfo ("Report:"+report);

//The report can be filtered by coloumns.

//To retrieve the VMs in the ON power state, use the following line:

report = report.filterRowsByColumn ("Power State", "ON", false);
var rowCnt = report.rowCount();
logger.addInfo ("Number of powered on Vms: "+ rowCnt);
}
accessReports () ;
Results

The code fetches the VM report and filters the data according to the 'ON' Power State.

Implementation

No modifications required to implement this code.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples
. Accessing a Delegate APl

Accessing a Delegate API

Objective

Access the delegate API by passing the namespace of delegate in the accessDelegate API method of
APIProvider.java.

Context

You want to access delegate APIs using namespace and perform further operations.

Prerequisites

Namespace is required to access delegate API implementation instance.

Code

function accessDelegateAPI () {
var api = ctxt.getAPI();
var delegateOdj = api.getAPIDelegate (“chargeback:userAPICheckFunds”) ;

}
accessDelegateAPI();

Results

The above sample returns the delegate API implementation instance (delegateOdj). You can execute
any method in the delegate class.

Implementation

No modifications required to implement this code.

Accessing and Operating on a Database Table

Objective

Access and operate a table of a Cisco UCS Director database by passing the corresponding PoJo. (PoJo
represents a database table.)

Context

You want a script to access a database table and obtain its details.

Prerequisites

Requires a valid PoJo class name and a valid query to retrieve information.

Components

ObjStoreHelper.getStore - This method accesses the database table and obtains its details.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Examples
Provisioning a Catalog Multiple Times .

Code

var accountName ="UCSM 98";
var spbn ="org-root/org-DEV Org/ls-finalTemp2";

var query = "accountName == '" + accountName +

"' && serviceProfileName == '" + spDn + "'";
var store = ObjStoreHelper.getStore (new UcsServer () .getClass());
var server = store.query (query);

logger.addInfo ("SIZE:"+server.size());

Results

The getStore() method of the ObjStoreHelper class takes the name of a model class as input and returns
the corresponding object store as output.

Implementation

No modifications required to implement this code.

Provisioning a Catalog Multiple Times

Objective

Provision a catalog multiple times.

Context

You want to provision multiple VMs.

Prerequisites
Enter the following details to provision catalogs:
* CATALOG _ID: ID for catalogs to be provisioned.
» VDC ID: ID of VDC for particular catalogs.
* PROVISION_QTY: Number of times the catalogs need to be provisioned.

Components

VDCUtil - Use this API to obtain VDC details.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

Examples |
. Calling or Executing a Workflow Task

Code

var catlId = ctxt.getInput (CATALOG ID);
var vdcId = ctxt.getInput(VDC ID);
var quantity = Integer.valueOf (ctxt.getInput (PROVISION QTY)) ;

From the input, you need to load the following objects:
var vdc = VDCUtil.getVDC (vdcId) ;

var vdcName = vdc.getVdcName () ;

var cat = VDCUtil.getVDCCatalogItem(catId);
var catName = cat.getCatalogltemName () ;

Create a loop to provision the catalogs n number of times and use thread sleep method to delay between
provisioning. Also create an additional parameter for execution.
Array of service request ID to view status:

var childSrIdArray = [];
Comment is passed as an input parameter to call method:

var comment = "";
Set the duration of the VMs as -1 (or number of hours):

var duration = -1;

Set the begin time:

var beginTime = -1;

for (var ctr = 0; ctr < quantity; ctr = ctr + 1) {

logger.addInfo ("Provision VM ="+ (ctr+l) + " of "+qgty);

var srlId = ctxt.getAPI().userAPISubmitServiceRequest (catName, vdcName,
duration, beginTime, 1, comment);

childSrIdArray[ctr] = srId;

var milliseconds = delaySecondsBetweenInvocation * 1000;

Thread.sleep(milliseconds) ;
}
Check the successful execution of API using the following code.

for (var i=0; i<childSrIdArray.length; i++)

{

var childSrId = childSrIdArrayl[i];

var status = ctxt.waitForCompletion (childSrId, 1800000) ;

if (status == 0) {
logger.addInfo ("Provisioned SR ID ="+ childSrId+ " successfully.");
} else {
logger.addError ("SR ID ="+ childSrId+ " failed");
}
}
Results

The script provisions VMs as per PROVISION_QTY input. The userAPISubmitServiceRequest class
provisions the VMs.

Implementation

See the code above for modifications you might require to implement the code.

Calling or Executing a Workflow Task

Objective

Invoke a workflow task from CloupiaScript using an inner task.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[20 | |

| Examples
Setting a Task to Successful or Failed Status .

Prerequisites

Inner task name and set of inputs are required.

Components

ctxt.createInnerTaskContext() - Use this method to access the task variables and to set the input values.

Code

// Task Label: Create VM Disk
// Task Name: Create VM Disk

function Create VM Disk(
{

var task = ctxt.createlInnerTaskContext ("Create VM Disk");

// Input 'Select VM', mandatory=true, mappableTo=vm
task.setInput ("Select VM", input.vmId);

// Input 'Disk Size (GB)', mandatory=true, mappableTo=gen text input
task.setInput ("Disk Size (GB)", input.diskSize);

// Input 'Select Disk Type', mandatory=true, mappableTo=gen text input
task.setInput ("Select Disk Type", input.diskType):;

// Input 'Select Datastore', mandatory=false, mappableTo=dataStoreName
task.setInput ("Select Datastore", input.datastoreName) ;

// Input 'Thin Provisioning', mandatory=false, mappableTo=
task.setInput ("Thin Provisioning", input.thinProvision);

// Execute the task. On failure, the task throws an exception error
task.execute();

}

// Invoke the task
Create VM Disk();

Results

The script executes the Create VM task as inner task.

Implementation

No modifications required to implement this code.

Setting a Task to Successful or Failed Status

Objective

Set the Task status to Successful or Failed based on the given condition.

Prerequisites

None

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

Examples |
. Invoking Another Workflow

Components

ctxt - Used to set the status message of the workflow task.

Code
if (true) {
ctxt.setFailed (“Error output message”); // to set the task status as failed
ctxt.exit(); // to exit task flow normally
} else {
ctxt.setSuccessful(); // to set the task status to successful
}
Results

Sets the task status as failed or successful based on the given condition.

Implementation

No modifications required to implement this code.

Invoking Another Workflow

Objective

Invoke a workflow from another workflow.

Context

You want to invoke another workflow using Cloupia script.

Prerequisites

Workflow name and workflow parameters are required.

Components

Using the userAPISubmitWorkflowServiceRequest("workflow name", params, parent_srld) API, you
can invoke another workflow. The following parameters are required:

» workflow name: Name of the workflow to be invoked.
* params: List of parameters to be passed to the invoking workflow.

* parent_srld: Links the child workflow to the service request ID.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[2 | |

Examples

Calling an API on a Remote Cisco UCS Director .

Code

var params util.createNameValuelList () ;

params.addNameValue (util.createNameValue (“Input A", “Value A"));
params.addNameValue (util.createNameValue (“Input B”, “Value B"));
params.addNameValue (util.createNameValue (“Input C”, “Value C"));

var childSrId= ctxt.getAPI () .userAPISubmitWorkflowServiceRequest (
“Task Y”, params, ctxt.getSrId());

// wait for completion of the workflow. Or a maximum of 60 seconds
// status code can be one 0 (Success), 1 (failed), -1 (Invalid SR ID)
var status = ctxt.waitForCompletion (childSrId, 60000);

// Now that workflow is complete, we can access the output variable D of the workflow
Task_ Y
var output y = ctxt.getOutput ("Task Y.D"", childSrId);

Results

The above script invokes another workflow with the given inputs and generates a service request.

Implementation

The Input Name provided in the parameter list must be the same as the Input Name defined in the
workflow that is being invoked. The parameter parent_srld is required to make the invoking workflow
as child.

The child service request won’t be visible in the Service Request logs. If you want to invoke the workflow
as separate service request, pass parent srld as -1.

Calling an APl on a Remote Cisco UCS Director

Objective

Execute an API remotely by selecting the required server IP address in the API browser.

Context

You want to call an API on a remote Cisco UCS Director.

Prerequisites

Requires a remote UCSD server.

Components

JsonUtil - Sends the RestAPI call remotely.

CloupiaClient - Creates the connection.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Executing a Critical Section

Code

var client = new CloupiaClient (server, 443, key);

// first parameter is the remote server-address, the second parameter is remote
//server-port, while the third parameter is rest-api-access-key.

JsonUtil.prettyPrint (client.sendJSONRequest (opName, paramList)));

// first parameter is operationName / or API name, second parameter is the API argument
list as specified in the API signature.

To obtain a tabular report:

client.sendJSONRequest ("userAPIGetTabularReport", Arrays.asList (new String[]{"vm",
"2319", "DISKS-TO0"})));

To obtain all catalogs:

client.sendJSONRequest ("userAPIGetAllCatalogs", null);
To obtain all VM actions:

client.sendJSONRequest ("userAPIGetAvailableVMActions", Arrays.asList(new Stringl[]
{"2293"}));

To submit a service request:

client.sendJSONRequest ("userAPISubmitServiceRequest" , Arrays.aslList (new String[]
{cata-logName, vdcName,
durationHours, beginTime, gty, comments }));

To execute a workflow :

client.sendJSONRequest ("userAPISubmitWorkflowServiceRequest", Arrays.asList (new Object[]
{workflowName, nameValueList, -1 }));
// param 1 is workflowName

Results

The script calls the API from the remote UCS Director.

Implementation

Provide the server IP address and port number to the CloupiaClient method.

Executing a Critical Section

Objective

Allow exclusive access to a thread to execute a critical section using the CriticalSection API.

Context

The CriticalSection API helps a workflow thread (running with a context srId) gain exclusive access
to a critical section with a specified sectionName or lockName. Any other thread wanting access to the
critical section must wait until the exitCriticalSection API releases the section from the thread holding
the lock.

Prerequisites

None

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[24 | |

| Examples
Obtaining Complete List of VLANs across PODs .

Components

CriticalSectionUtil - use the class to guard the critical section.

Code

To enter a critical section and effectively obtain a lock, use:

public static void enterCriticalSection (CustomActionTriggerContext context,
CustomAction-
Logger logger, String lockName) throws Exception

When the thread wants to release all locks held by the service request, use the following API:

public static void exitCriticalSection (CustomActionTriggerContext context, CustomAction-
Logger logger) throws Exception

Results

When there are multiple requests, the above mentioned APIs help execute requests, one at a time.

Implementation

No modifications required to implement this code.

Obtaining Complete List of VLANs across PODs

Objective
Obtain all VLAN IDs available within an account.

Context

You want to obtain all the VLAN IDs that are configured on the UCS device.

Prerequisites

You require access to a UCSM account.

Components

UcsDataPersistenceUtil - This class fetches the VLAN IDs.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

. Obtaining Complete List of IPs Used per Pod

Code

importPackage (com.cloupia.feature.ucsController); //UcsDataPersistenceUtil

//importPackage (java.lang) ;
importPackage (java.util) ;

importPackage (com.cloupia.lib.claaS.ucs.model) ; //UcsVLAN
//var accountName = input.name;
var accountName = "DR UCSM30";

wn .
’

var vlanIdsPerAccount =

var ucsVlanList = UcsDataPersistenceUtil.getVLAN (accountName) ;

var vLanList = new ArrayList();
for (var i=0;i<ucsVlanList.size () ;i++) {
var ucsVLAN = ucsVlanList.get (i) ;

vlanIdsPerAccount = vlanIdsPerAccount+ucsVLAN.getId()+",";

vLanList.add (ucsVLAN.getId());
}

logger.addInfo ("No of vlan ids:"+ucsVlanList.size());

Examples

vlanIdsPerAccount = vlanIdsPerAccount.substring (0, vlanIdsPerAccount.length()-1);

logger.addInfo (accountName+":"+vlanIdsPerAccount) ;
//output.vlanIdsPerAccount = vlanIdsPerAccount;

Results

Comma separated VLAN IDs. For example: DR_UCSM30:1,1,205,1135,1136,1001.

Implementation

No modifications required to implement this code.

Obtaining Complete List of IPs Used per Pod

Objective

Obtain all the virtual account IPs available in one pod.

Context

You know a pod name and want to obtain all the Virtual Account IPs from the pod.

Prerequisites

Virtual account should be available in the pod.

Components

InfraPersistenceUtil.getAllFlexPodAccounts - Returns all the account names added in the pod.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

Examples

Locking or Unlocking a VDC

Code

importPackage (com.cloupia.model.cIM); //Account

importPackage (com.cloupia.service.cIM.inframgr); //InfraPersistenceUtil
var podName = "Default Pod";

// var podName = input. podName;

var allAcct = ctxt.getAPI().getAllAccounts();
logger.addInfo ("No of accounts:"+allAcct.length);

var accList = InfraPersistenceUtil.getAllFlexPodAccounts (podName) ;
logger.addInfo ("No of accounts in the pod "+podName+" is:"+accList.size()):;
var 1listOfIPsPerPod = "";
for (var count = 0;count < accList.size();count++) {

var acc = acclList.get (count);

logger.addInfo ("Account name:"+acc.getAccountName ()) ;

if (acc.getAccountType () ==CloudTypes.VMWARE) {

1istOfIPsPerPod = listOfIPsPerPod+acc.getVServer ()+",";

} else if (acc.getAccountType () ==CloudTypes.HYPERV) {

1istOfIPsPerPod = listOfIPsPerPod+acc.getHServer()+",";
}
}
1istOfIPsPerPod = 1listOfIPsPerPod.substring (0, 1istOfIPsPerPod.length()-1);
logger.addInfo (podName+":"+1istOfIPsPerPod) ;
output.listOfIPsPerPod = listOfIPsPerPod;}
getListOfIPs () ;

Results

The output is a comma separated list of all the IPs in the pod. For example: 172.29.110.196,
172.25.168.80, 172.29.109.82.

Implementation

No modifications required to implement this code.

Locking or Unlocking a VDC

Objective

To lock or unlock a VDC.

Prerequisites

VDC must be created.

Components

VDCUTil - Use the method to lock the VDC
VDCUftil.setLocked() - Use the method to lock or unlock VDC

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Creating a Task to Obtain the List of Hosts from a VMware Cluster

Code

importPackage
importPackage
importPackage
function lock
{

var flag=false;

vdcId=input.VDC;

var vdc;

try {

vdc=VDCUtil.getVDC (input.VDC) ;

vdc.setLocked (input.VdcLocked) ; //Pass the value ‘true’ to lock the VDC.

//To unlock the VDC, pass the value as

com.cloupia.model.cIM);
com.cloupia.service.cIM.inframgr) ;
java.util);

)

false.
flag=VDCUtil.modifyVDC (vdc) ;
}
catch (e) {
logger.addError ("Exception error when modifying VDC.");
ctxt.setFailed(e);
ctxt.exit ()
}
if(flag) {
logger.addInfo ("Successfully modified VDC.");
vdc=VDCUtil.getVDC (vdcId) ;
output.vdcId=vdcId;
output.isLocked=vdc.isLocked() ;
} else {
logger.addInfo ("Unable to modify VDC.");
}

}

lock () ;

Results
The script locks the VDC. This can be verified in UCS Director.

Implementation

No modifications required to implement this code.

Creating a Task to Obtain the List of Hosts from a VMware
Cluster

Objective

Obtain the list of hosts from a VMware Cluster.

Context

You want to view all the hosts in a VMware cluster.

Prerequisites

A VMware cluster must be available.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[28 | |

| Examples

Moving Multiple VMs across VDCs .

Components

InfraPersistenceUtil - This object obtains the list of hosts from a VMware cluster.

Code

importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (java.util) ;

function getListOfHosts () {
var listofHosts =

InfraPersistenceUtil.getVMWareHostsByCluster (input.VMWAREACCOUNT, input.CLUSTER) ;
return listOfHosts;

}

Results

Comma separated hosts are mapped to the Associate VNX LUN as a datastore task. However, this
operation is applicable on all hosts in a cluster, not just a single host.

Implementation

No modifications required to implement this code.

Moving Multiple VMs across VDCs

Objective

Move all VMs from one VDC to another VDC.

Prerequisites

VDC should be available to move the VMs.

Components
VDCUtil - This object obtains the VDC details.

GroupManagerImpl.getVMDataByVMId(vmlId) - This object obtains the VM details by passing the
VM ID as argument.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples
Moving Multiple VMs across VDCs

Code

importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (java.util);

function moveVMsAcrossVDC () {

var sourceVdc = input.sourceVDC;

var sourceVdcId = parselnt (sourceVdc);

var sourceVdcName = VDCUtil.getVDC (sourceVdcId) .getVdcName () ;
logger.addInfo ("vDC:"+sourceVdcName + "--> vDC Id: "+sourceVdcId);

var destinationVdc = input.destinationVDC;

var destinationVdcId = parselnt (destinationVdc) ;

var destinationVdcName = VDCUtil.getVDC (destinationVdcId) .getVdcName () ;
logger.addInfo ("vDC:"+destinationVdcName+"--> +vDC Id: "+destinationVdcId) ;
var vmLists = VDCUtil.getVMsAssociatedWithVDC (sourcevVdcId) ;

for (var i=0; i<vmLists.size();i++) {
var vmId = vmLists.get(1i);
logger.addInfo ("vmId:"+vmId) ;
try{
var vmData = GroupManagerImpl.getVMDataByVMId (vmId) ;
var vmsummary = ctxt.getAPI().getVMBasicInfo (vmId);
var vmType = vmsummary.getVmType () ;
var vmName = "";
if (vmType.equals ("VMWare"))
vmName = ctxt.getAPI () .getVMwareVMInfo (vmId) .getName ()
else if (vmType.equals ("Hyper-v"))
vmName = InfraPersistenceUtil.getHyperVVMSummary (vmId) .getName () ;

if (vmData != null)
{
logger.addInfo ("Assigning VM:"+vmName+" to vDC:"+vdcName) ;
vmData.setVdcId (destinationVdcId) ;
GroupManagerImpl.assignGroupToVM (vmData) ;
}else(
logger.warn ("The VM has no assignment (VM User Data)");
vmData = new VMUserData() ;
vmData.setVmId (vmId) ;
vmData.setVdcId (destinationVdcId) ;
GroupManagerImpl.assignGroupToVM (vmData) ;

}

}catch (e) {
logger.addError ("Error while assigning VMs to VDC");
ctxt.setFailed("Failed to assign VM to VDC");
ctxt.exit () ;
}
}

output.Result = " VMs successfully assigned to destination VDC:"+ destinationVdc;

Results
All VMs in VDC 1 are now moved to VDC 2.

Implementation

No modifications required to implement this code.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Examples
Rolling Back a Task in a Workflow .

Rolling Back a Task in a Workflow

Objective
Roll back a task in a workflow using the change tracker APL

Context

You performed an operation and you now want to revert it. For example, you created a VM, but then
want to roll back and delete the VM.

Prerequisites

The workflow should have been successfully executed.

Components

The undo task handler name and undo config object are the important parameters to execute the undo
task. The undo task needs the data for the original task to undo the actions done by the original task.

Related API for undoing modify/delete operations: ChangeTracker.undoableResourceModified and
ChangeTracker.undoableResourceDeleted.

Both the API calls have the same set of parameters. Each task in the workflow needs undo support
using the change tracker API to successfully roll back the entire workflow.

Code

importPackage (com.cloupia.service.cIM.inframgr.customactions) ;

importPackage (com.cloupia.feature.accounts.wftasks);

function doRollBack () {

var undoTaskHandlerName = DeleteGroupConfig.HANDLER NAME;

var configObject = new DeleteGroupConfig (input.groupId+ "")
ChangeTracker.undoableResourceModified (input.assetType, input.assetld, input.assetlLabel,
input.description, undoTaskHandlerName, configObject) ;

}
doRollBack () ;

Results

The group with the given ID is deleted after executing the task.

Implementation

No modifications required to implement this code.

Integrating with ServiceNow Ticketing

Objective

Reset data on a demo instance using ServiceNow.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

Examples |
. Integrating with ServiceNow Ticketing

Context

ServiceNow is a software platform that supports IT service management and automates common
business processes. This software as a service (SaaS) platform contains a number of modular applications
that can vary by instance and user. It uses the HttpClient API to send the HTTP request and handle the
HTTP response.

ServiceNow provides several demo instances, which you can use for testing. The demo login and
password is admin/admin. The demo login and password should be verified in ServiceNow, because
they change regularly.

Prerequisites
ServiceNow resets the data on each demo instance daily. You must enable JSON plugin on ServiceNow

to make this API work. Refer to the Service Now Website on how to activate the Plugin section.

Components

HttpClient - Used to communicate with the ServiceNow software.

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

Examples

Integrating with ServiceNow Ticketing .

Code

importPackage (java.util) ;

importPackage (java.io) ;

importPackage (com.cloupia.lib.util);

importPackage (com.cloupia.model.cIM) ;

importPackage (com.cloupia.service.cIM.inframgr) ;
importPackage (org.apache.commons.httpclient) ;
importPackage (org.apache.commons.httpclient.cookie);
importPackage (org.apache.commons.httpclient.methods) ;

importPackage (org.apache.commons.httpclient.auth);
//var login= ctxt.getInput ("LOGIN")
//var password = ctxt.getInput ("PASSWORD") ;

var login = "admin";

var password = "admin";

var instance = "demoOll.service-now.com";

var url = "/incident.do?JSON&sysparm action=insert";

// Link to Service-now documentation
//http://wiki.servicenow.com/index.php?title=JSON Web Service#insert
var map = new HashMap () ;

map.put ("sysparm_action", "insert");

map.put ("short description", "Sample incident #5");
map.put ("impact", "2");

map.put ("urgency", "2");

map.put ("caller id", "Joe Z");

map.put ("category", "software");

var data = JSON.javaToJdsonString(map, map.getClass());
logger.addInfo ("JSON Data = "+data);

var httpClient = new HttpClient ();
httpClient.getHostConfiguration () .setHost (instance, 443, "https");

httpClient.getParams () .setAuthenticationPreemptive (true) ;
httpClient.getParams () .setCookiePolicy ("default");
var defaultcreds = new UsernamePasswordCredentials (login, password) ;

httpClient.getState () .setCredentials (new AuthScope (instance, -1, null), defaultcreds);
var httpMethod = new PostMethod(url);

httpMethod.setRequestEntity (new StringRequestEntity (data));
httpMethod.addRequestHeader ("Content-Type", "application/json");
httpClient.executeMethod (httpMethod) ;

var statuscode = httpMethod.getStatusCode() ;

logger.addInfo ("STATUSCODE = "+statuscode) ;

if (statuscode != 200)

{

logger.addError ("Ticket failed to open, with the following code "+statuscode);
if (statuscode == 302)

{

logger.addWarning ("Likely cause of failure is that the JSON plugin is not activated
on the Service Now instance. ");

logger.addWarning ("Check documentation on how to enable the plugin: "+
"http://wiki.servicenow.com/index.php?title=JSON Web Service#insert "+

" (see section 2)");

}

httpMethod.releaseConnection () ;

// Set this task as failed.

ctxt.setFailed("Unable to open ticket");

} else

{

var reader = new InputStreamReader (httpMethod.getResponseBodyAsStream());

var resp = JSON.getJsonElement (reader, null);
logger.addInfo ("Response = "+resp);
var entry = resp.get("records").get (0);

logger.addInfo ("Ticket Number "+entry.get ("number"));
logger.addInfo ("Ticket Sys id "+entry.get ("sys id"));
httpMethod.releaseConnection() ;

}

Results

The script communicates with the ServiceNow software.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples

Sending Emails from the Cloupia Script

Implementation

Mention the server address and username/passwords before executing the script.

Sending Emails from the Cloupia Script

Objective

Send an email after a specific operation has been completed.

Context

You want to send an email after a particular operation is completed. For example, you want to send an
email after a VM has been provisioned.

Prerequisites

Log on to UCS Director and navigate to Administration > System > Mail Setup. In Mail Setup, make
sure that the report values are not empty.

Components

MailManager - Used to send email.

Code

importPackage (com.cloupia.model.cIM) ;

importPackage (com.cloupia.lib.util.mail) ;

importPackage (com.cloupia.fw.objstore);

function getMailSettings ()

{

return ObjStoreHelper.getStore((new MailSettings()) .getClass()) .getSingleton () ;
}

// Assume the To Email Address is in the input variable 'Email Address'
var toEmail = [ctxt.getlInput ("Email Address") 1;

Cisco UCS Director Cloupia Script Configuration Guide, Release 5.0

17

Cloupia Script Samples

Sending Emails from the Cloupia Script

var message = new EmailMessageRequest () ;

message.setToAddrs (toEmail) ;

// other methods in the message object are

// setToAddr (emailAddress) -- Sets a single email address in To list

// setCcAddr (emailAddress) -- Sets a single email address in Cc list

// setBccAddr (emailAddress) -- Sets a single email address in Bcc list

// setCcAddrs (emailAddressArray) -- Sets an array of email addresses in the CC
//list

// setBccAddrs (emailAddressArray) -- Sets an array of email addresses in BCC
//1list

message.setSubject ("Test Email");

message.setFromAddress ("no-reply@cisco.com") ;

var body = "<hl>This is a sample Email </hl>
Sample content";
message.setMessageBody (body) ;

// By default, content type is text or HTML. The following method can be used to modify

//content type

message.setContentType ("text/plain™) ;

logger.addInfo ("Sending email");

MailManager.sendEmail ("Sample Email", getMailSettings (), message);

Jll Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Examples
Archiving Older Service Requests Automatically .

Results

An email is sent to the respective email recipient.

Implementation

No modifications required to implement this code.

Archiving Older Service Requests Automatically

Objective

Set up the Cloupia script to archive all service requests (SRs) that are older than 30 days.

Context

You find that the number of SR IDs are high and want to hide the SR IDs in the UI. You want to execute
an workflow that makes sure that only the SRs in the last 30 days are shown in the daily report.

Prerequisites

Service request ID should be created.

Components

WorkFlowManager.getInstance().archive() - This method is used to archive SR IDs.

Code

importPackage (com.cloupia.model.cIM) ;

importPackage (com.cloupia.fw.objstore);

importPackage (com.cloupia.service.cIM.inframgr.workflowmgr) ;
importPackage (com.cloupia.service.cIM.inframgr.cmdb) ;
importPackage (java.lang) ;

function getOlderSRs (ageInDays) {

var timeStamp = System.currentTimeMillis() - (ageInDays* (24*60*60*1000)) ;
var store = ObjStoreHelper.getStore ((new ServiceRequest()).getClass());
return store.query("isArchived == false && requestTime < "+timeStamp);

}
var srlList = getOlderSRs (30);
logger.addInfo ("There are "+srlist.size()+" SRs to be archived");

for (var i=0; i<srList.size(); i++) {

try {
var sr = srlist.get(i);
logger.addDebug (" ["+i+"] Archiving SR "+sr.getRequestId());
// Archive the SR
WorkFlowManager.getInstance () .archive (sr.getRequestId());

// Add an entry into the Change Log
CMDB.getInstance () .change (ctxt.getUserId (), 0, "Request archived by Workflow", sr);

} catch (e) {

logger.addError ("Error :"+e.message);
}

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
|

Examples
. Determining the Workflow Submitter Information

Results

The SR IDs are archived and not shown in UI after the workflow is executed.

Implementation

Need to pass the number of days as argument in the line getOlderSRs(). The above example archives
all service requests that are older than 30 days.

Determining the Workflow Submitter Information

Objective

Access the user details of the person who submitted the workflow, such as the first name, last name,
and email address.

Context

You want to know the details of the person that submitted the workflow, such as the User ID, first
name, last name, and email ID.

Prerequisites

None

Components

APILoginProfile - The ctxt.getAPI().and userAPIGetMyLoginProfile() methods return the
APILoginProfile object, which contains the user details.

The following example uses these workflow level variables to capture and save the information that is
retrieved by the script and used by other tasks:

+« SUBMITTER EMAIL

* SUBMITTER FIRSTNAME
* SUBMITTER LASTNAME

+ SUBMITTER GROUPNAME

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[36| |

Examples

Resizing a Virtual Machine Disk

Code

importPackage (java.lang) ;
importPackage (com.cloupia.model.cIM) ;
importPackage (com.cloupia.service.cIM.inframgr) ;

var userlId = ctxt.getUserId();

// Get the current workflow submitter’s profile

var userProfile = ctxt.getAPI () .userAPIGetMyLoginProfile();
var firstName = userProfile.getFirstName () ;

var lastName = userProfile.getLastName () ;

var groupName = userProfile.getGroupName () ;

var groupld = userProfile.getGroupId()

var role = userProfile.getRole();

var email = userProfile.getEmail () ;

// Add debug statements to SR log

logger.addDebug ("UserId="+userId+", Name="+firstName + " "+ lastName +",
Email="+email+", group="+groupName+", "+"Role="+role);

// Save to workflow variables as necessary

ctxt.updateInput ("SUBMITTER EMAIL", email);
ctxt.updateInput ("SUBMITTER FIRSTNAME", firstName);
ctxt.updateInput ("SUBMITTER LASTNAME", lastName) ;
ctxt.updateInput ("SUBMITTER GROUPNAME", groupName) ;

Results

The example script prints the User ID, name, email, group, and the role of the workflow submitter.

Implementation

No modifications required to implement this code.

Resizing a Virtual Machine Disk

Objective

Resize the disk of a VM after it has been provisioned.

Context

Prerequisites

The VM should have the disk. The library task 'Resize VM Disk' is available for reference.

Components

VMWareVMSummary - The ctxt.getAPI().getVMwareVMInfo(vmid) method returns the object,
VMWareVMSummary

ctxt.getAPI().performAction() - Performs VM disk resize operation

vmid - Input variable, which points to the VM that needs to be resized

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Uploading a JAR File

Code

importPackage (java.lang) ;

importPackage (java.util);

importPackage (com.cloupia.model.cIM) ;
importPackage (com.cloupia.service.cIM.inframgr) ;
function resizeVmDisk (vmidstr, diskName, sizeInGB)
{

var vmid = Integer.parselnt (vmidstr);

// create the context to

var vmcontext = util.createContext ("vm", null, vmidstr);
// obtain VM details

var vminfo = ctxt.getAPI().getVMwareVMInfo (vmid) ;

var vmname = vminfo.getName () ;

var nameparam = new ActionParam("vmName", vmname) ;

var sizeparam = new ActionParam("vmSize", sizeInGB);

var diskparam = new ActionParam("vmDiskLabel", diskName) ;
var paramarr = [nameparam, sizeparam, diskparam];

logger.addInfo ("About to resize VM "+vmidstr+" name="+vmname) ;

Examples

var status = ctxt.getAPI () .performAction (vmcontext,"diskResize","Resizing VM to

test the script",ctxt.getUserId(),paramarr);
logger.addInfo ("status = "+status);
}

var vmidstrl = ctxt.getInput ("VMID");
resizeVmDisk (vmidstrl, "Hard Disk 1", "10");

Results

The VM disk is resized after the script is executed.

Implementation

No modifications required to implement this code.

See Also
Refer to additional in-built library tasks in UCS Director.

Uploading a JAR File

Objective

Make available an external JAR file for a custom task by uploading the JAR file through the Script

Module.

Context

You want to access an external JAR file for a custom task.

Prerequisites

In UCS Director, navigate to Orchestration > Script Module and upload the JAR file.

Components

Script Module

Cisco UCS Director CloupiaScript Cookbook, Release 6.0

| Examples
Invoking a Library for a Custom Task .

Code

Suppose the sample JAR file "Calculatedemo.jar" contains the following code:

package com.calculate;

public class CalculateDemo {

public int add(int nl,int n2) {
return nl+n2;

}

public int multiply(int nl,int n2) {
return nl*n2;

}

}

The following script helps complete the custom task using the Calculatedemo.jar file.

loadJar ("Modl/calculatedemo.jar") ;
importPackage (com.calculate) ;

var demo = new CalculateDemo () ;

var demol new com.calculate.CalculateDemo () ;
logger.addInfo (demo) ;

var sum = demo.add(5,6);

logger.addInfo ("Sum:"+sum) ;

logger.addInfo (demol) ;

var mul = demol.multiply(3,4);

logger.addInfo ("Multiplication:"+mul) ;

Results

The uploaded JAR file is accessed from the custom task successfully.

Implementation

No modifications required to implement this code.

Invoking a Library for a Custom Task

Objective

Invoke library functions for a custom task.

Context

You have some reusable code and want to use it across multiple custom tasks. You can add the reusable
code in a library and invoke the library from the custom task.

Prerequisites

In UCS Director, navigate to Orchestration > Script Module. Create a library with the reusable code.

Components

Script Module

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Using the Registered List of Values (LOV) in a Custom Task

Code

Suppose the library "lib1" contains the following reusable code:

function mul (a,b) {
return a*b;

}

function add(a,b) {
return a+b;

}

Invoke the library using the following script:

loadLibrary (“Mod1/1ib1”) ;

var mul = mul (5,6);
logger.addInfo ("The product is:"+mul) ;
var add = add(5,06);
logger.addInfo ("The sum is:"+add);

Results

The library is accessed and the custom task is executed successfully.

Implementation

No modifications required to implement this code.

Using the Registered List of Values (LOV) in a Custom Task

Objective

Access a registered LOV from a custom task.

Context

Prerequisites

In UCS Director, navigate to Orchestration > Script Module and register the List of Values (LOV).

Components

Script Module

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[40| |

Examples

Using a Tabular Report in a Custom Workflow Task .

Code

{

var lovProvider = new.com.cloupia.service.cIM.inframgr.forms.wizard.LOVProviderIf ({
getLOVs : function(session) {

//Implement this section based on your requirement

var SitelList = SitePersistenceUtil.getAllClusterSites();
var formlovs==[];

if (SiteList==null) {

return formlovs;

}

if(SiteList.size ()==0) {

return formlovs;

}

var formlov;

for (var count = 0;count<SitelList.size () ;count++)
{

var clusterSite = Sitelist.get (count);

var siteName = clusterSite.getSiteName () ;
formlov = new FormLOVPair (siteName, siteName) ;
formlovs[count] = formlov;

}

return formlovs;

//End of implementation for Lovprovider
}

}) i

return lovProvider;

Results

The script helps access a site list of LOVs from a custom task.

Implementation

To access an LOV from the custom task, create a custom task and define a variable. The variable name
should be the same as the LOV created in the Script Module.

Using a Tabular Report in a Custom Workflow Task

Objective

Access a registered tabular report from a custom task.

Prerequisites

In UCS Director, navigate to Orchestration > Script Module and add a tabular report. Then modify the
table to add column entries.

Components

Script Module

Cisco UCS Director CloupiaScript Cookbook, Release 6.0 i

Examples |
. Using a Tabular Report in a Custom Workflow Task

Code

Add the following code to the tabular report.
{

Varmodel = new TabularReportInternalModel () ;
model.addNumberColumn (“Site ID”, “Site ID”");
model.addTextColumn (“Site Name”, “Site Name”);
model.addTextColumn (“Description”, “Description”);
model.completedHeader () ;
//Obtain values from the database and populate the model object as shown below.
//The model object is generated depending on the Column entries.
//model .addNumberValue (0) ;
//model.addTextValue (“Site Name”);
//model .addTextValue (“Description”) ;
//model.completedRow () ;
//Start of your implementation. Implement this section based on your requirements.
Var SitelList = SitePersistenceUtil.getAllClusterSites();
For (count = 0;count<SitelList.size();count++)

{
Var site = Sitelist.get (count);
model.addNumberValue (site.getClusterSiteId());
model.addTextValue (site.getSiteName ()) ;
model.addTextValue (site.getDescription());
model.addTextValue (site.getContactName ()) ;
model.completedRow () ;

}

//End of your implementation
model.updateReport (report) ;
}

Results

The tabular report is accessed from the custom task and your requirement is implemented.

Implementation

To access the tabular report from the custom task, create a custom task and define a variable. The
variable name should be the same as the tabular report name created in the Script Module.

Cisco UCS Director CloupiaScript Cookbook, Release 6.0
[42 | |

	Cisco UCS Director CloupiaScript Cookbook, Release 6.0
	Contents
	Preface
	Audience
	Conventions
	Related Documentation
	Documentation Feedback
	Obtaining Documentation and Submitting a Service Request

	New and Changed Information for this Release
	New and Changed Information for this Release

	Overview
	Cisco UCS Director, Custom Tasks, and CloupiaScript
	Structure of an Example
	How to Use the Examples
	Getting Inputs and Outputs of a Service Request

	Examples
	Logging in CloupiaScript
	Handling Numeric Input
	SSH to a Network Device
	Accessing a Network Element Account
	Accessing a Session or API for Virtual and Physical Accounts
	Accessing Reports
	Accessing a Delegate API
	Accessing and Operating on a Database Table
	Provisioning a Catalog Multiple Times
	Calling or Executing a Workflow Task
	Setting a Task to Successful or Failed Status
	Invoking Another Workflow
	Calling an API on a Remote Cisco UCS Director
	Executing a Critical Section
	Obtaining Complete List of VLANs across PODs
	Obtaining Complete List of IPs Used per Pod
	Locking or Unlocking a VDC
	Creating a Task to Obtain the List of Hosts from a VMware Cluster
	Moving Multiple VMs across VDCs
	Rolling Back a Task in a Workflow
	Integrating with ServiceNow Ticketing
	Sending Emails from the Cloupia Script
	Archiving Older Service Requests Automatically
	Determining the Workflow Submitter Information
	Resizing a Virtual Machine Disk
	Uploading a JAR File
	Invoking a Library for a Custom Task
	Using the Registered List of Values (LOV) in a Custom Task
	Using a Tabular Report in a Custom Workflow Task

