THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at http://cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1101R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2011 Cisco Systems, Inc. All rights reserved.

© 2012 Cisco Systems, Inc. All rights reserved.
Chassis Discovery Policy 11
Dynamic vNIC Connection Policy 12
Ethernet and Fibre Channel Adapter Policies 12
Global Cap Policy 13
Host Firmware Package 14
IPMI Access Profile 14
Local Disk Configuration Policy 15
Management Firmware Package 15
Management Interfaces Monitoring Policy 16
Network Control Policy 16
Power Control Policy 17
Power Policy 17
Quality of Service Policy 17
Rack Server Discovery Policy 18
Server Autoconfiguration Policy 18
Server Discovery Policy 18
Server Inheritance Policy 18
Server Pool Policy 19
Server Pool Policy Qualifications 19
vHBA Template 19
VM Lifecycle Policy 20
vNIC Template 20
vNIC/vHBA Placement Policies 20
Operational Policies 21
Fault Collection Policy 21
Flow Control Policy 21
Maintenance Policy 22
Scrub Policy 22
Serial over LAN Policy 23
Statistics Collection Policy 23
Statistics Threshold Policy 23
Pools 24
Server Pools 24
MAC Pools 24
UUID Suffix Pools 25
CHAPTER 2

Overview of Cisco UCS Manager

About Cisco UCS Manager

Tasks You Can Perform in Cisco UCS Manager

Tasks You Cannot Perform in Cisco UCS Manager

Cisco UCS Manager in a High Availability Environment
CHAPTER 3
Overview of Cisco UCS Manager GUI

Overview of Cisco UCS Manager GUI 43
Fault Summary Area 43
Navigation Pane 44
Toolbar 46
Work Pane 46
StatusBar 46
Table Customization 47
LAN Uplinks Manager 48
Internal Fabric Manager 48
Hybrid Display 48
Web Session Limits 49
Logging in to Cisco UCS Manager GUI through HTTPS 49
Logging in to Cisco UCS Manager GUI through HTTP 50
Logging Off Cisco UCS Manager GUI 50
Changing the Cisco UCS Manager GUI Properties 51
Determining the Acceptable Range of Values for a Field 52
Copying the XML 53

PART II
System Configuration 55

CHAPTER 4
Configuring the Fabric Interconnects

Initial System Setup 57
Setup Mode 58
System Configuration Type 58
Management Port IP Address 58
Performing an Initial System Setup for a Standalone Configuration 59
Initial System Setup for a Cluster Configuration 61
Performing an Initial System Setup on the First Fabric Interconnect 61
Performing an Initial System Setup on the Second Fabric Interconnect 63
Enabling a Standalone Fabric Interconnect for Cluster Configuration 64
Ethernet Switching Mode 64
Configuring Ethernet Switching Mode 65
Fibre Channel Switching Mode 66
CHAPTER 5 Configuring Ports 69

Server and Uplink Ports on the Fabric Interconnect 69
Configuring Server Ports 70
Configuring Uplink Ethernet Ports 71
Changing the Properties of an Uplink Ethernet Port 71
Configuring an FCoE Storage Port 72
Reconfiguring a Port on a Fabric Interconnect 73
Enabling a Port on a Fabric Interconnect 73
Disabling a Port on a Fabric Interconnect 74
Unconfiguring a Port on a Fabric Interconnect 74
Appliance Ports 74
 Configuring an Appliance Port 74
 Modifying the Properties of an Appliance Port 76
Fibre Channel Storage Ports 78
 Configuring a Fibre Channel Storage Port 78
 Restoring an Uplink Fibre Channel Port 79
Default Zoning 79
 Enabling Default Zoning 80
Disabling Default Zoning 80
Uplink Ethernet Port Channels 81
 Creating an Uplink Ethernet Port Channel 81
 Enabling an Uplink Ethernet Port Channel 82
 Disabling an Uplink Ethernet Port Channel 83
 Adding Ports to and Removing Ports from an Uplink Ethernet Port Channel 83
 Deleting an Uplink Ethernet Port Channel 84
Appliance Port Channels 84
 Creating an Appliance Port Channel 84
 Enabling an Appliance Port Channel 86
Disabling an Appliance Port Channel 87
 Adding Ports to and Removing Ports from an Appliance Port Channel 87
 Deleting an Appliance Port Channel 88
Fibre Channel Port Channels 88

Creating a Fibre Channel Port Channel 88

Enabling a Fibre Channel Port Channel 89

Disabling a Fibre Channel Port Channel 89

Adding Ports to and Removing Ports from a Fibre Channel Port Channel 90

Modifying the Properties of a Fibre Channel Port Channel 90

Deleting a Fibre Channel Port Channel 91

Configuring Server Ports with the Internal Fabric Manager 91

Internal Fabric Manager 91

Launching the Internal Fabric Manager 92

Configuring a Server Port with the Internal Fabric Manager 92

Unconfiguring a Server Port with the Internal Fabric Manager 92

Enabling a Server Port with the Internal Fabric Manager 93

Disabling a Server Port with the Internal Fabric Manager 93

CHAPTER 6

Configuring Communication Services 95

Communication Services 95

Configuring CIM-XML 96

Configuring HTTP 97

Configuring HTTPS 97

Certificates, Key Rings, and Trusted Points 97

Creating a Key Ring 98

Creating a Certificate Request for a Key Ring 99

Creating a Trusted Point 99

Importing a Certificate into a Key Ring 100

Configuring HTTPS 101

Deleting a Key Ring 101

Deleting a Trusted Point 101

Configuring SNMP 102

Information about SNMP 102

SNMP Functional Overview 102

SNMP Notifications 103

SNMP Security Levels and Privileges 103

Supported Combinations of SNMP Security Models and Levels 103

SNMPv3 Security Features 104
SNMP Support in Cisco UCS 105
Enabling SNMP and Configuring SNMP Properties 105
Creating an SNMP Trap 106
Deleting an SNMP Trap 108
Creating an SNMPv3 user 108
Deleting an SNMPv3 User 109
Enabling Telnet 109
Disabling Communication Services 109

CHAPTER 7 Configuring Authentication 111
Authentication Services 111
Guidelines and Recommendations for Remote Authentication Providers 111
User Attributes in Remote Authentication Providers 112
LDAP Group Rule 114
Configuring LDAP Providers 114
Configuring Default Properties for LDAP Providers 114
Creating an LDAP Provider 115
Changing the LDAP Group Rule for an LDAP Provider 118
Deleting an LDAP Provider 120
LDAP Group Mapping 120
Creating an LDAP Group Map 120
Deleting an LDAP Group Map 121
Configuring RADIUS Providers 121
Configuring Default Properties for RADIUS Providers 121
Creating a RADIUS Provider 122
Deleting a RADIUS Provider 124
Configuring TACACS+ Providers 124
Configuring Default Properties for TACACS+ Providers 124
Creating a TACACS+ Provider 124
Deleting a TACACS+ Provider 126
Configuring Multiple Authentication Systems 126
Multiple Authentication Systems 126
Provider Groups 126
Creating an LDAP Provider Group 126
Deleting an LDAP Provider Group 127
CHAPTER 8
Configuring Organizations 135
Organizations in a Multi-Tenancy Environment 135
Hierarchical Name Resolution in a Multi-Tenancy Environment 136
Creating an Organization under the Root Organization 137
Creating an Organization under a Sub-Organization 138
Deleting an Organization 138

CHAPTER 9
Configuring Role-Based Access Control 139
Role-Based Access Control 139
User Accounts for Cisco UCS Manager 139
Guidelines for Cisco UCS Manager Usernames 140
Reserved Words: Local User Accounts 141
Guidelines for Cisco UCS Manager Passwords 142
Web Session Limits for User Accounts 142
User Roles 142
Default User Roles 143
Reserved Words: User Roles 144
Privileges 144
User Locales 146
Configuring User Roles 147
Creating a User Role 147
Adding Privileges to a User Role 148
Removing Privileges from a User Role 148
Deleting a User Role 148

Configuring Locales 149
- Creating a Locale 149
- Assigning an Organization to a Locale 149
- Deleting an Organization from a Locale 150
- Deleting a Locale 150

Configuring User Accounts 150
- Creating a User Account 150
- Enabling the Password Strength Check for Locally Authenticated Users 153
- Setting the Web Session Limits for Cisco UCS Manager GUI Users 154
- Changing the Locales Assigned to a Locally Authenticated User Account 154
- Changing the Roles Assigned to a Locally Authenticated User Account 155
- Enabling a User Account 155
- Disabling a User Account 156
- Deleting a Locally Authenticated User Account 156

Monitoring User Sessions 156

CHAPTER 10
Managing Firmware 159

Overview of Firmware 159
Firmware Image Management 160
- Firmware Image Headers 161
- Firmware Image Catalog 161
Firmware Versions 162
Firmware Upgrades 163
- Guidelines and Cautions for Firmware Upgrades 163
- Required Order of Components for Firmware Activation 166
- Required Order for Adding Support for Previously Unsupported Servers 168
- Direct Firmware Upgrade at Endpoints 168
 - Stages of a Direct Firmware Upgrade 169
 - Outage Impacts of Direct Firmware Upgrades 170
- Firmware Upgrades through Service Profiles 171
 - Host Firmware Package 171
 - Management Firmware Package 172
 - Stages of a Firmware Upgrade through Service Profiles 172
Firmware Downgrades 173
Completing the Prerequisites for Upgrading the Firmware 173
 Prerequisites for Upgrading and Downgrading Firmware 173
Creating an All Configuration Backup File 174
Verifying the Overall Status of the Fabric Interconnects 176
Verifying the High Availability Status and Roles of a Cluster Configuration 176
Verifying the Status of I/O Modules 177
Verifying the Status of Servers 177
Verifying the Status of Adapters on Servers in a Chassis 178

Downloading and Managing Firmware Packages 178
 Obtaining Software Bundles from Cisco 178
 Downloading Firmware Images to the Fabric Interconnect from a Remote Location 180
 Downloading Firmware Images to the Fabric Interconnect from the Local File System 181
 Canceling an Image Download 182
 Determining the Contents of a Firmware Package 183
 Checking the Available Space on a Fabric Interconnect 183
 Deleting Firmware Packages from a Fabric Interconnect 183
 Deleting Firmware Images from a Fabric Interconnect 184

Directly Updating Firmware at Endpoints 184
 Updating the Firmware on Multiple Endpoints 184
 Updating the Firmware on an Adapter 186
 Activating the Firmware on an Adapter 187
 Updating the CIMC Firmware on a Server 187
 Activating the CIMC Firmware on a Server 188
 Updating the Firmware on an IOM 189
 Activating the Firmware on an IOM 190
 Activating the Board Controller Firmware on a Server 190
 Activating the Cisco UCS Manager Software 191
 Activating the Firmware on a Subordinate Fabric Interconnect 191
 Activating the Firmware on a Primary Fabric Interconnect 192
 Activating the Firmware on a Standalone Fabric Interconnect 193

Updating Firmware through Service Profiles 194
 Host Firmware Package 194
 Creating a Host Firmware Package 195
 Updating a Host Firmware Package 196
Management Firmware Package 197
Creating a Management Firmware Package 197
Updating a Management Firmware Package 198
Adding Firmware Packages to an Existing Service Profile 198
Verifying Firmware Versions on Components 199
Managing the Capability Catalog 199
 Capability Catalog 199
 Contents of the Capability Catalog 200
 Updates to the Capability Catalog 200
 Activating a Capability Catalog Update 201
 Verifying that the Capability Catalog Is Current 201
 Viewing a Capability Catalog Provider 202
 Downloading Individual Capability Catalog Updates 202
 Obtaining Capability Catalog Updates from Cisco 202
 Updating the Capability Catalog from a Remote Location 203
 Updating the Capability Catalog from the Local File System 204
 Updating Management Extensions 204
 Management Extensions 204
 Activating a Management Extension 205

CHAPTER 11

Configuring DNS Servers 207
 DNS Servers in Cisco UCS 207
 Adding a DNS Server 207
 Deleting a DNS Server 208

CHAPTER 12

Configuring System-Related Policies 209
 Configuring the Chassis Discovery Policy 209
 Chassis Discovery Policy 209
 Configuring the Chassis Discovery Policy 210
 Configuring the Rack Server Discovery Policy 211
 Rack Server Discovery Policy 211
 Configuring the Rack Server Discovery Policy 211
 Configuring the Aging Time for the MAC Address Table 212
 Aging Time for the MAC Address Table 212
 Configuring the Aging Time for the MAC Address Table 212
CHAPTER 13

Managing Licenses 213

Licenses 213
Obtaining the Host ID for a Fabric Interconnect 214
Determining the Grace Period Available for a Port or Feature 215
Obtaining a License 215
Downloading Licenses to the Fabric Interconnect from the Local File System 216
Downloading Licenses to the Fabric Interconnect from a Remote Location 217
Installing a License 218
Viewing the Licenses Installed on a Fabric Interconnect 219
Determining the Expiry Date of a License 220
Uninstalling a License 220

PART III

Network Configuration 223

CHAPTER 14

Using the LAN Uplinks Manager 225

LAN Uplinks Manager 225
Launching the LAN Uplinks Manager 226
Changing the Ethernet Switching Mode with the LAN Uplinks Manager 226
Configuring a Port with the LAN Uplinks Manager 226
Configuring Server Ports 227
 Enabling a Server Port with the LAN Uplinks Manager 227
 Disabling a Server Port with the LAN Uplinks Manager 228
 Unconfiguring a Server Port with the LAN Uplinks Manager 228
Configuring Uplink Ethernet Ports 228
 Enabling an Uplink Ethernet Port with the LAN Uplinks Manager 228
 Disabling an Uplink Ethernet Port with the LAN Uplinks Manager 229
 Unconfiguring an Uplink Ethernet Port with the LAN Uplinks Manager 229
Configuring Uplink Ethernet Port Channels 229
 Creating a Port Channel with the LAN Uplinks Manager 229
 Enabling a Port Channel with the LAN Uplinks Manager 230
 Disabling a Port Channel with the LAN Uplinks Manager 231
 Adding Ports to a Port Channel with the LAN Uplinks Manager 231
 Removing Ports from a Port Channel with the LAN Uplinks Manager 232
 Deleting a Port Channel with the LAN Uplinks Manager 232
Configuring LAN Pin Groups 232
 Creating a Pin Group with the LAN Uplinks Manager 232
 Deleting a Pin Group with the LAN Uplinks Manager 233
Configuring Named VLANs 233
 Creating a Named VLAN with the LAN Uplinks Manager 233
 Deleting a Named VLAN with the LAN Uplinks Manager 236
Configuring QoS System Classes with the LAN Uplinks Manager 236

CHAPTER 15 Configuring VLANs 239
 Named VLANs 239
 Private VLANs 240
 VLAN Port Limitations 241
 Configuring Named VLANs 242
 Creating a Named VLAN 242
 Deleting a Named VLAN 245
 Configuring Private VLANs 246
 Creating a Primary VLAN for a Private VLAN 246
 Creating a Secondary VLAN for a Private VLAN 250
 Viewing the VLAN Port Count 253

CHAPTER 16 Configuring LAN Pin Groups 255
 LAN Pin Groups 255
 Creating a LAN Pin Group 255
 Deleting a LAN Pin Group 256

CHAPTER 17 Configuring MAC Pools 257
 MAC Pools 257
 Creating a MAC Pool 257
 Deleting a MAC Pool 258

CHAPTER 18 Configuring Quality of Service 259
 Quality of Service 259
 Configuring System Classes 259
 System Classes 259
 Configuring QoS System Classes 260

Cisco UCS Manager GUI Configuration Guide, Release 1.4
CHAPTER 21
Configuring SAN Pin Groups 293
SAN Pin Groups 293
Creating a SAN Pin Group 293
Deleting a SAN Pin Group 294

CHAPTER 22
Configuring WWN Pools 295
WWN Pools 295
Configuring WWNN Pools 296
Creating a WWNN Pool 296
Adding a WWN Block to a WWNN Pool 297
Deleting a WWN Block from a WWNN Pool 297
Adding a WWNN Initiator to a WWNN Pool 297
Deleting a WWNN Initiator from a WWNN Pool 298
Deleting a WWNN Pool 299
Configuring WWPN Pools 299
Creating a WWPN Pool 299
Adding a WWN Block to a WWPN Pool 300
Deleting a WWN Block from a WWPN Pool 300
Adding a WWPN Initiator to a WWPN Pool 301
Deleting a WWPN Initiator from a WWPN Pool 302
Deleting a WWPN Pool 302

CHAPTER 23
Configuring Storage-Related Policies 303
Configuring vHBA Templates 303
vHBA Template 303
Creating a vHBA Template 303
Deleting a vHBA Template 305
Binding a vHBA to a vHBA Template 305
Unbinding a vHBA from a vHBA Template 306
Configuring Fibre Channel Adapter Policies 306
Ethernet and Fibre Channel Adapter Policies 306
Creating a Fibre Channel Adapter Policy 307
Deleting a Fibre Channel Adapter Policy 311

PART V Server Configuration 313

CHAPTER 24 Configuring Server-Related Pools 315
Configuring Server Pools 315
 Server Pools 315
 Creating a Server Pool 315
 Deleting a Server Pool 316
 Adding Servers to a Server Pool 317
 Removing Servers from a Server Pool 317
Configuring UUID Suffix Pools 317
 UUID Suffix Pools 317
 Creating a UUID Suffix Pool 318
 Deleting a UUID Suffix Pool 319

CHAPTER 25 Setting the Management IP Address 321
Management IP Address 321
 Configuring the Management IP Address on a Blade Server 322
 Configuring a Blade Server to Use a Static IP Address 322
 Configuring a Blade Server to Use the Management IP Pool 322
 Configuring the Management IP Address on a Rack Server 323
 Configuring a Rack Server to Use a Static IP Address 323
 Configuring a Rack Server to Use the Management IP Pool 324
 Setting the Management IP Address on a Service Profile 324
 Setting the Management IP Address on a Service Profile Template 325
Configuring the Management IP Pool 325
 Management IP Pool 325
 Creating an IP Address Block in the Management IP Pool 326
 Deleting an IP Address Block from the Management IP Pool 327

CHAPTER 26 Configuring Server-Related Policies 329
Configuring BIOS Settings 329
Server BIOS Settings 329
 Main BIOS Settings 330
 Processor BIOS Settings 332
 Intel Directed I/O BIOS Settings 336
 RAS Memory BIOS Settings 338
 Serial Port BIOS Settings 340
 USB BIOS Settings 340
 PCI Configuration BIOS Settings 341
 Boot Options BIOS Settings 342
 Server Management BIOS Settings 342
BIOS Policy 347
 Default BIOS Settings 347
 Creating a BIOS Policy 347
 Modifying the BIOS Defaults 348
 Viewing the Actual BIOS Settings for a Server 349
Configuring Boot Policies 350
 Boot Policy 350
 Creating a Boot Policy 351
 Deleting a Boot Policy 354
Configuring IPMI Access Profiles 354
 IPMI Access Profile 354
 Creating an IPMI Access Profile 354
 Deleting an IPMI Access Profile 355
Configuring Local Disk Configuration Policies 356
 Local Disk Configuration Policy 356
 Guidelines for all Local Disk Configuration Policies 356
 Guidelines for Local Disk Configuration Policies Configured for RAID 357
 Creating a Local Disk Configuration Policy 358
 Changing a Local Disk Configuration Policy 360
 Deleting a Local Disk Configuration Policy 361
Configuring Scrub Policies 361
 Scrub Policy 361
 Creating a Scrub Policy 362
 Deleting a Scrub Policy 363
Configuring Serial over LAN Policies 363
Serial over LAN Policy 363
Creating a Serial over LAN Policy 363
Deleting a Serial over LAN Policy 364
Configuring Server Autoconfiguration Policies 365
Server Autoconfiguration Policy 365
Creating an Autoconfiguration Policy 365
Deleting an Autoconfiguration Policy 366
Configuring Server Discovery Policies 367
Server Discovery Policy 367
Creating a Server Discovery Policy 367
Deleting a Server Discovery Policy 368
Configuring Server Inheritance Policies 368
Server Inheritance Policy 368
Creating a Server Inheritance Policy 368
Deleting a Server Inheritance Policy 369
Configuring Server Pool Policies 370
Server Pool Policy 370
Creating a Server Pool Policy 370
Deleting a Server Pool Policy 371
Configuring Server Pool Policy Qualifications 371
Server Pool Policy Qualifications 371
Creating Server Pool Policy Qualifications 372
Deleting Server Pool Policy Qualifications 377
Deleting Qualifications from Server Pool Policy Qualifications 377
Configuring vNIC/vHBA Placement Policies 378
vNIC/vHBA Placement Policies 378
vCon to Adapter Placement 378
vNIC/vHBA to vCon Assignment 379
Creating a vNIC/vHBA Placement Policy 380
Deleting a vNIC/vHBA Placement Policy 381
Explicitly Assigning a vNIC to a vCon 381
Explicitly Assigning a vHBA to a vCon 383

CHAPTER 27

Deferring Deployment of Service Profile Updates 385
Deferred Deployment of Service Profiles 385
Deferred Deployment Schedules 386
Maintenance Policy 386
Pending Activities 387
Guidelines and Limitations for Deferred Deployment 387
Configuring Schedules 388
Creating a Schedule 388
Creating a One Time Occurrence for a Schedule 393
Creating a Recurring Occurrence for a Schedule 395
Deleting a One Time Occurrence from a Schedule 397
Deleting a Recurring Occurrence from a Schedule 397
Deleting a Schedule 397
Configuring Maintenance Policies 398
Creating a Maintenance Policy 398
Deleting a Maintenance Policy 399
Managing Pending Activities 400
Viewing Pending Activities 400
Deploying a Service Profile Change Waiting for User Acknowledgement 400
Deploying All Service Profile Changes Waiting for User Acknowledgement 401
Deploying a Scheduled Service Profile Change Immediately 401
Deploying All Scheduled Service Profile Changes Immediately 401

CHAPTER 28

Configuring Service Profiles 403
Service Profiles that Override Server Identity 403
Service Profiles that Inherit Server Identity 404
Service Profile Templates 404
Guidelines and Recommendations for Service Profiles 405
Creating Service Profiles 405
Creating a Service Profile with the Expert Wizard 405
Page 1: Identifying the Service Profile 406
Page 2: Configuring the Storage Options 407
Page 3: Configuring the Networking Options 412
Page 4: Setting the vNIC/vHBA Placement 417
Page 5: Setting the Server Boot Order 419
Page 6: Adding the Maintenance Policy 422
Page 7: Specifying the Server Assignment 423
Page 8: Adding Operational Policies 425

Creating a Service Profile that Inherits Server Identity 427
Creating a Hardware Based Service Profile for a Blade Server 430
Creating a Hardware Based Service Profile for a Rack-Mount Server 431

Working with Service Profile Templates 432
Creating a Service Profile Template 432

Page 1: Identifying the Service Profile Template 432
Page 2: Specifying the Storage Options 433
Page 3: Specifying the Networking Options 438
Page 4: Setting the vNIC/vHBA Placement 443
Page 5: Setting the Server Boot Order 445
Page 6: Adding the Maintenance Policy 448
Page 7: Specifying the Server Assignment Options 449
Page 8: Adding Operational Policies 451

Creating One or More Service Profiles from a Service Profile Template 453
Creating a Template Based Service Profile for a Blade Server 453
Creating a Template Based Service Profile for a Rack-Mount Server 454
Creating a Service Profile Template from a Service Profile 454

Managing Service Profiles 455
Cloning a Service Profile 455
Associating a Service Profile with a Server or Server Pool 456
Disassociating a Service Profile from a Server or Server Pool 457
Associating a Service Profile Template with a Server Pool 457
Disassociating a Service Profile Template from its Server Pool 458
Changing the UUID in a Service Profile 458
Changing the UUID in a Service Profile Template 459
Resetting the UUID Assigned to a Service Profile from a Pool in a Service Profile Template 460
Modifying the Boot Order in a Service Profile 461
Creating a vNIC for a Service Profile 463
Resetting the MAC Address Assigned to a vNIC from a Pool in a Service Profile Template 466
Deleting a vNIC from a Service Profile 467
Creating a vHBA for a Service Profile 467
Changing the WWPN for a vHBA 470
CHAPTER 29

Managing Power in Cisco UCS 475

Power Management in Cisco UCS 475
Rack Server Power Management 475
Power Management Precautions 475
Configuring the Power Policy 476
 Power Policy 476
 Configuring the Power Policy 476
Configuring the Global Cap Policy 476
 Global Cap Policy 476
 Configuring the Global Cap Policy 477
Configuring Policy-Driven Chassis Group Power Capping 477
 Policy-Driven Chassis Group Power Capping 477
Configuring Power Groups 478
 Power Groups 478
 Creating a Power Group 478
 Adding a Chassis to a Power Group 480
 Removing a Chassis from a Power Group 480
 Deleting a Power Group 480
Configuring Power Control Policies 481
 Power Control Policy 481
 Creating a Power Control Policy 481
 Deleting a Power Control Policy 482
Configuring Manual Blade-Level Power Capping 482
 Manual Blade-Level Power Capping 482
 Setting the Blade-Level Power Cap for a Server 483
 Viewing the Blade-Level Power Cap 484

PART VI

VN-Link Configuration 485
Distributed Virtual Switches 509
Configuring a Distributed Virtual Switch 510
Managing Distributed Virtual Switches 513
 Adding a Folder to a vCenter 513
 Adding a Datacenter to a vCenter 515
 Adding a Folder to a Datacenter 517
 Deleting a Folder from a vCenter 518
 Deleting a Datacenter 519
 Deleting a Folder from a Datacenter 519
 Deleting a Distributed Virtual Switch from a Folder 519

CHAPTER 34 Configuring Port Profiles 521
 Port Profiles 521
 Port Profile Clients 522
 Creating a Port Profile 522
 Modifying the VLANs in a Port Profile 523
 Changing the Native VLAN for a Port Profile 524
 Adding a VLAN to a Port Profile 524
 Removing a VLAN from a Port Profile 524
 Deleting a Port Profile 525
 Creating a Profile Client 525
 Modifying a Profile Client 526
 Deleting a Profile Client 527

CHAPTER 35 Configuring VN-Link Related Policies 529
 Configuring Dynamic vNIC Connection Policies 529
 Dynamic vNIC Connection Policy 529
 Creating a Dynamic vNIC Connection Policy 530
 Changing a Dynamic vNIC Connection Policy 531
 Deleting a Dynamic vNIC Connection Policy 531
 Configuring the VM Lifecycle Policy 532
 VM Lifecycle Policy 532
 Configuring the VM Lifecycle Policy 532
 Viewing Dynamic vNIC Properties in a VM 533
CHAPTER 36 Managing Pending Deletions 535
 Pending Deletions for VN-Link Tasks 535
 Viewing Pending Deletions 536
 Changing the Properties of a Pending Deletion 536
 Deleting a Pending Deletion 537

PART VII System Management 539

CHAPTER 37 Managing Time Zones 541
 Time Zones 541
 Setting the Time Zone 541
 Adding an NTP Server 542
 Deleting an NTP Server 542

CHAPTER 38 Managing the Chassis 543
 Chassis Management in Cisco UCS Manager GUI 543
 Guidelines for Removing and Decommissioning Chassis 543
 Acknowledging a Chassis 544
 Decommissioning a Chassis 545
 Removing a Chassis 545
 Recommissioning a Single Chassis 545
 Recommissioning Multiple Chassis 546
 Renumbering a Chassis 547
 Toggling the Locator LED 548
 Turning on the Locator LED for a Chassis 548
 Turning off the Locator LED for a Chassis 548
 Viewing the POST Results for a Chassis 548

CHAPTER 39 Managing Blade Servers 551
 Blade Server Management 551
 Guidelines for Removing and Decommissioning Blade Servers 552
 Booting Blade Servers 552
 Booting a Blade Server 552
 Booting a Server from the Service Profile 553
Determining the Boot Order of a Blade Server 553
Shutting Down Blade Servers 554
 Shutting Down a Blade Server 554
 Shutting Down a Server from the Service Profile 554
Resetting a Blade Server 555
Reacknowledging a Blade Server 556
Removing a Server from a Chassis 556
Decommissioning a Blade Server 557
Reacknowledging a Server Slot in a Chassis 557
Removing a Non-Existent Blade Server from the Configuration Database 558
Turning the Locator LED for a Blade Server On and Off 558
Resetting the CMOS for a Blade Server 559
Resetting the CIMC for a Blade Server 559
Recovering the Corrupt BIOS on a Blade Server 560
Viewing the POST Results for a Blade Server 561

CHAPTER 40 Managing Rack-Mount Servers 563

Rack-Mount Server Management 563
Guidelines for Removing and Decommissioning Rack-Mount Servers 564
Booting Rack-Mount Servers 564
 Booting a Rack-Mount Server 564
 Booting a Server from the Service Profile 565
 Determining the Boot Order of a Rack-Mount Server 565
Shutting Down Rack-Mount Servers 566
 Shutting Down a Rack-Mount Server 566
 Shutting Down a Server from the Service Profile 566
Resetting a Rack-Mount Server 567
Reacknowledging a Rack-Mount Server 568
Decommissioning a Rack-Mount Server 568
Removing a Non-Existent Rack-Mount Server from the Configuration Database 569
Turning the Locator LED for a Rack-Mount Server On and Off 569
Resetting the CMOS for a Rack-Mount Server 569
Resetting the CIMC for a Rack-Mount Server 570
Recovering the Corrupt BIOS on a Rack-Mount Server 570
Viewing the POST Results for a Rack-Mount Server 571
CHAPTER 41 Starting the KVM Console 573
KVM Console 573
Virtual KVM Console 574
Starting the KVM Console from a Server 577
Starting the KVM Console from a Service Profiles 577
Starting the KVM Console from the KVM Launch Manager 577

CHAPTER 42 Managing the I/O Modules 579
I/O Module Management in Cisco UCS Manager GUI 579
Resetting an I/O Module 579
Viewing the POST Results for an I/O Module 579

CHAPTER 43 Backing Up and Restoring the Configuration 581
Backup and Export Configuration 581
Backup Types 581
Considerations and Recommendations for Backup Operations 582
Import Configuration 583
Import Methods 583
System Restore 583
Required User Role for Backup and Import Operations 583
Backup Operations 584
Creating a Backup Operation 584
Running a Backup Operation 587
Modifying a Backup Operation 587
Deleting One or More Backup Operations 588
Import Operations 588
Creating an Import Operation 588
Running an Import Operation 591
Modifying an Import Operation 592
Deleting One or More Import Operations 592
Restoring the Configuration for a Fabric Interconnect 593

CHAPTER 44 Recovering a Lost Password 595
Recovering a Lost Password 595
PART VIII
System Monitoring 601

CHAPTER 45
Monitoring Traffic 603
Traffic Monitoring 603
Guidelines and Recommendations for Traffic Monitoring 604
Creating a Traffic Monitoring Session 605
Adding Sources for Traffic Monitoring 606
Activating a Traffic Monitoring Session 606
Deleting a Traffic Monitoring Session 607

CHAPTER 46
Monitoring Hardware 609
Monitoring a Fabric Interconnect 609
Monitoring a Chassis 610
Monitoring a Blade Server 612
Monitoring a Rack-Mount Server 614
Monitoring an I/O Module 616
Monitoring Management Interfaces 617
Management Interfaces Monitoring Policy 617
Configuring the Management Interfaces Monitoring Policy 618

CHAPTER 47
Configuring Statistics-Related Policies 621
Configuring Statistics Collection Policies 621
Statistics Collection Policy 621
Modifying a Statistics Collection Policy 622
Configuring Statistics Threshold Policies 624
Statistics Threshold Policy 624
Creating a Server and Server Component Threshold Policy 624
Adding a Threshold Class to an Existing Server and Server Component Threshold Policy 626
CHAPTER 48 Configuring Call Home 633

Call Home 633
Call Home Considerations and Guidelines 635
Cisco UCS Faults and Call Home Severity Levels 636
Cisco Smart Call Home 637
Configuring Call Home 638
Disabling Call Home 641
Enabling Call Home 641
Configuring System Inventory Messages 642
 Configuring System Inventory Messages 642
 Sending a System Inventory Message 642
Configuring Call Home Profiles 643
 Call Home Profiles 643
 Creating a Call Home Profile 643
 Deleting a Call Home Profile 646
Configuring Call Home Policies 646
 Call Home Policies 646
 Configuring a Call Home Policy 647
 Disabling a Call Home Policy 649
 Enabling a Call Home Policy 649
 Deleting a Call Home Policy 649
Example: Configuring Call Home for Smart Call Home 650
 Configuring Smart Call Home 650
 Configuring the Default Cisco TAC-1 Profile 651
 Configuring System Inventory Messages for Smart Call Home 652
 Registering Smart Call Home 653

CHAPTER 49 Managing the System Event Log 655

System Event Log 655
Viewing the System Event Log for an Individual Server 656
Viewing the System Event Log for the Servers in a Chassis 656
Configuring the SEL Policy 656
Managing the System Event Log for a Server 658
 Copying One or More Entries in the System Event Log 658
 Printing the System Event Log 659
 Refreshing the System Event Log 659
 Manually Backing Up the System Event Log 659
 Manually Clearing the System Event Log 659

CHAPTER 50
Configuring Settings for Faults, Events, and Logs 661
 Configuring Settings for the Fault Collection Policy 661
 Fault Collection Policy 661
 Configuring the Fault Collection Policy 662
 Configuring Settings for the Core File Exporter 663
 Core File Exporter 663
 Configuring the Core File Exporter 663
 Disabling the Core File Exporter 664
 Configuring the Syslog 664
Preface

This preface includes the following sections:

• Audience, page xxxiii
• New and Changed Information for this Release, page xxxiii
• Organization, page xxxvi
• Conventions, page xxxvii
• Related Documentation, page xxxviii
• Documentation Feedback, page xxxviii
• Obtaining Documentation and Submitting a Service Request, page xxxviii

Audience

This guide is intended primarily for data center administrators with responsibilities and expertise in one or more of the following:

• Server administration
• Storage administration
• Network administration
• Network security

New and Changed Information for this Release

The following table provides an overview of the significant changes to this guide for this current release. The table does not provide an exhaustive list of all changes made to the configuration guides or of the new features in this release. For information about new supported hardware in this release, see the Release Notes for Cisco UCS Manager available through the Cisco UCS B-Series Servers Documentation Roadmap.
Table 1: New Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server BIOS setting enhancements</td>
<td>Enables you to configure additional BIOS settings.</td>
<td>Configuring Server-Related Policies, on page 329</td>
</tr>
<tr>
<td>Chassis level power capping</td>
<td>Enables you to set power capping at the chassis level.</td>
<td>Managing Power in Cisco UCS, on page 475</td>
</tr>
<tr>
<td>Deferred deployment of service profile changes</td>
<td>Enables you to schedule the deployment of service profile changes that cause the associated server to reboot.</td>
<td>Deferring Deployment of Service Profile Updates, on page 385</td>
</tr>
<tr>
<td>Fibre Channel switching support</td>
<td>Enables you to configure the Fibre Channel switching mode for the fabric interconnects.</td>
<td>Configuring the Fabric Interconnects, on page 57</td>
</tr>
<tr>
<td>Firmware upgrade enhancements</td>
<td>Adds support for the new method of releasing firmware bundles.</td>
<td>Managing Firmware, on page 159</td>
</tr>
<tr>
<td>LDAP enhancements</td>
<td>Provides enhancements to the LDAP integration, including support for LDAP groups.</td>
<td>Configuring Authentication, on page 111</td>
</tr>
<tr>
<td>MAC address synchronization</td>
<td>Enhances failover in a cluster configuration by replicating MAC addresses on both the primary and the secondary fabric interconnects.</td>
<td>System Configuration Type, on page 58</td>
</tr>
<tr>
<td>Management IP address enhancements</td>
<td>Enables you to configure a static or pooled management IP address on a server and in the service profile associated with a server.</td>
<td>Setting the Management IP Address, on page 321</td>
</tr>
<tr>
<td>Multiple simultaneous authorizations</td>
<td>Enables you to configure Cisco UCS Manager to use more than one primary authentication database to authorize remote user logins.</td>
<td>Configuring Authentication, on page 111</td>
</tr>
<tr>
<td>Port and port channel types</td>
<td>Adds support for additional types of ports and port channels, including Fibre Channel storage ports, Fibre Channel over Ethernet storage ports, appliance ports for network-attached storage, and Fibre Channel port channels.</td>
<td>Configuring Ports, on page 69</td>
</tr>
<tr>
<td>Private VLAN</td>
<td>Enables you to configure private VLANs in the Cisco UCS instance.</td>
<td>Configuring VLANs, on page 239</td>
</tr>
</tbody>
</table>
Table 2: Significant Changes in the April 2011 Release

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes to UCS Manager Configuration Guide document versioning</td>
<td>Cisco UCS Manager Configuration Guide, version 1.4 includes version 1.4(1) information as well as all changes from subsequent maintenance releases.</td>
<td>Preface, on page ?</td>
</tr>
<tr>
<td>Link to new "Cisco 6100 Series Configuration Limits for Cisco UCS Manager, Release 1.4" document</td>
<td>Enables you to navigate from the Cisco UCS Manager Configuration Guides to the "Cisco 6100 Series Configuration Limits for Cisco UCS Manager, Release 1.4" documentation.</td>
<td>Initial System Setup, on page 57</td>
</tr>
<tr>
<td>Configuring Named VLAN chapter renamed</td>
<td>The chapter previously called "Configuring Named VLANs" is now called "Configuring VLANs."</td>
<td>Configuring VLANs, on page 239</td>
</tr>
<tr>
<td>VLAN Port Count Limitations</td>
<td>Provides information about the port count limit and which ports contribute to the VLAN port count.</td>
<td>Configuring VLANs, on page 239</td>
</tr>
<tr>
<td>VLAN Port Count</td>
<td>Enables you to view the VLAN port count for a fabric interconnect.</td>
<td>Configuring VLANs, on page 239</td>
</tr>
<tr>
<td>Change to the range of reserved VLAN IDs</td>
<td>VLAN ID 4048 is now reserved.</td>
<td>Configuring VLANs, on page 239</td>
</tr>
</tbody>
</table>
Organization

This document includes the following parts:

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>Introduction</td>
<td>Contains chapters that provide an overview of Cisco Unified Computing System (Cisco UCS) and Cisco UCS Manager.</td>
</tr>
<tr>
<td>Part 2</td>
<td>System Configuration</td>
<td>Contains chapters that describe how to configure fabric interconnects, ports, communication services, primary authentication, and role-based access control configuration, and how to manage firmware and the Capability Catalog on a system.</td>
</tr>
<tr>
<td>Part 3</td>
<td>Network Configuration</td>
<td>Contains chapters that describe how to configure named VLANs, LAN pin groups, MAC pools, and Quality of Service (QoS).</td>
</tr>
<tr>
<td>Part 4</td>
<td>Storage Configuration</td>
<td>Contains chapters that describe how to configure named VSANs, SAN pin groups, and WWN pools.</td>
</tr>
<tr>
<td>Part 5</td>
<td>Server Configuration</td>
<td>Contains chapters that describe how to configure server-related policies, server-related pools, service profiles, and server power usage.</td>
</tr>
<tr>
<td>Part 6</td>
<td>System Management</td>
<td>Contains chapters that describe how to manage a Cisco UCS instance, including managing the chassis, servers, and I/O modules, and how to back up and restore the configuration.</td>
</tr>
<tr>
<td>Part 7</td>
<td>System Monitoring</td>
<td>Contains chapters that describe how use Cisco UCS Manager to monitor a Cisco UCS instance, including configuring Call Home, monitoring data traffic, monitoring hardware, configuring statistics-related policies, and configuring faults, events, and logs. For more information about Cisco UCS faults and logs, see the Cisco UCS Manager B-Series Troubleshooting Guide and the Cisco UCS Faults and Error Messages Reference.</td>
</tr>
</tbody>
</table>
Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold font</td>
<td>Commands, keywords, GUI elements, and user-entered text appear in bold font.</td>
</tr>
<tr>
<td>italic font</td>
<td>Document titles, new or emphasized terms, and arguments for which you supply values are in italic font.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td>courier font</td>
<td>Terminal sessions and information that the system displays appear in courier font.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Note

Means *reader take note.*

Tip

Means *the following information will help you solve a problem.*

Caution

Means *reader be careful.* In this situation, you might perform an action that could result in equipment damage or loss of data.
Related Documentation

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to ucs-docfeedback@external.cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the *What's New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
PART I

Introduction

• Overview of Cisco Unified Computing System, page 3
• Overview of Cisco UCS Manager, page 39
• Overview of Cisco UCS Manager GUI, page 43
Overview of Cisco Unified Computing System

This chapter includes the following sections:

- About Cisco Unified Computing System, page 3
- Unified Fabric, page 4
- Server Architecture and Connectivity, page 6
- Traffic Management, page 26
- Opt-In Features, page 30
- Virtualization in Cisco UCS, page 33

About Cisco Unified Computing System

Cisco Unified Computing System (Cisco UCS) fuses access layer networking and servers. This high-performance, next-generation server system provides a data center with a high degree of workload agility and scalability.

The hardware and software components support Cisco's unified fabric, which runs multiple types of data center traffic over a single converged network adapter.

Architectural Simplification

The simplified architecture of Cisco UCS reduces the number of required devices and centralizes switching resources. By eliminating switching inside a chassis, network access-layer fragmentation is significantly reduced.

Cisco UCS implements Cisco unified fabric within racks and groups of racks, supporting Ethernet and Fibre Channel protocols over 10 Gigabit Cisco Data Center Ethernet and Fibre Channel over Ethernet (FCoE) links. This radical simplification reduces the number of switches, cables, adapters, and management points by up to two-thirds. All devices in a Cisco UCS instance remain under a single management domain, which remains highly available through the use of redundant components.
High Availability

The management and data plane of Cisco UCS is designed for high availability and redundant access layer fabric interconnects. In addition, Cisco UCS supports existing high availability and disaster recovery solutions for the data center, such as data replication and application-level clustering technologies.

Scalability

A single Cisco UCS instance supports multiple chassis and their servers, all of which are administered through one Cisco UCS Manager. For more detailed information about the scalability, speak to your Cisco representative.

Flexibility

A Cisco UCS instance allows you to quickly align computing resources in the data center with rapidly changing business requirements. This built-in flexibility is determined by whether you choose to fully implement the stateless computing feature.

Pools of servers and other system resources can be applied as necessary to respond to workload fluctuations, support new applications, scale existing software and business services, and accommodate both scheduled and unscheduled downtime. Server identity can be abstracted into a mobile service profile that can be moved from server to server with minimal downtime and no need for additional network configuration.

With this level of flexibility, you can quickly and easily scale server capacity without having to change the server identity or reconfigure the server, LAN, or SAN. During a maintenance window, you can quickly do the following:

• Deploy new servers to meet unexpected workload demand and rebalance resources and traffic.
• Shut down an application, such as a database management system, on one server and then boot it up again on another server with increased I/O capacity and memory resources.

Optimized for Server Virtualization

Cisco UCS has been optimized to implement VN-Link technology. This technology provides improved support for server virtualization, including better policy-based configuration and security, conformance with a company’s operational model, and accommodation for VMware’s VMotion.

Unified Fabric

With unified fabric, multiple types of data center traffic can run over a single Data Center Ethernet (DCE) network. Instead of having a series of different host bus adapters (HBAs) and network interface cards (NICs) present in a server, unified fabric uses a single converged network adapter. This type of adapter can carry LAN and SAN traffic on the same cable.

Cisco UCS uses Fibre Channel over Ethernet (FCoE) to carry Fibre Channel and Ethernet traffic on the same physical Ethernet connection between the fabric interconnect and the server. This connection terminates at a converged network adapter on the server, and the unified fabric terminates on the uplink ports of the fabric interconnect. On the core network, the LAN and SAN traffic remains separated. Cisco UCS does not require that you implement unified fabric across the data center.

The converged network adapter presents an Ethernet interface and Fibre Channel interface to the operating system. At the server, the operating system is not aware of the FCoE encapsulation because it sees a standard Fibre Channel HBA.
At the fabric interconnect, the server-facing Ethernet port receives the Ethernet and Fibre Channel traffic. The fabric interconnect (using Ethertype to differentiate the frames) separates the two traffic types. Ethernet frames and Fibre Channel frames are switched to their respective uplink interfaces.

Fibre Channel over Ethernet

Cisco UCS leverages Fibre Channel over Ethernet (FCoE) standard protocol to deliver Fibre Channel. The upper Fibre Channel layers are unchanged, so the Fibre Channel operational model is maintained. FCoE network management and configuration is similar to a native Fibre Channel network.

FCoE encapsulates Fibre Channel traffic over a physical Ethernet link. FCoE is encapsulated over Ethernet with the use of a dedicated Ethertype, 0x8906, so that FCoE traffic and standard Ethernet traffic can be carried on the same link. FCoE has been standardized by the ANSI T11 Standards Committee.

Fibre Channel traffic requires a lossless transport layer. Instead of the buffer-to-buffer credit system used by native Fibre Channel, FCoE depends upon the Ethernet link to implement lossless service.

Ethernet links on the fabric interconnect provide two mechanisms to ensure lossless transport for FCoE traffic:

- Link-level flow control
- Priority flow control

Link-Level Flow Control

IEEE 802.3x link-level flow control allows a congested receiver to signal the endpoint to pause data transmission for a short time. This link-level flow control pauses all traffic on the link.

The transmit and receive directions are separately configurable. By default, link-level flow control is disabled for both directions.

On each Ethernet interface, the fabric interconnect can enable either priority flow control or link-level flow control (but not both).

Priority Flow Control

The priority flow control (PFC) feature applies pause functionality to specific classes of traffic on the Ethernet link. For example, PFC can provide lossless service for the FCoE traffic, and best-effort service for the standard Ethernet traffic. PFC can provide different levels of service to specific classes of Ethernet traffic (using IEEE 802.1p traffic classes).

PFC decides whether to apply pause based on the IEEE 802.1p CoS value. When the fabric interconnect enables PFC, it configures the connected adapter to apply the pause functionality to packets with specific CoS values.

By default, the fabric interconnect negotiates to enable the PFC capability. If the negotiation succeeds, PFC is enabled and link-level flow control remains disabled (regardless of its configuration settings). If the PFC negotiation fails, you can either force PFC to be enabled on the interface or you can enable IEEE 802.3x link-level flow control.
Server Architecture and Connectivity

Overview of Service Profiles

Service profiles are the central concept of Cisco UCS. Each service profile serves a specific purpose: ensuring that the associated server hardware has the configuration required to support the applications it will host.

The service profile maintains configuration information about the server hardware, interfaces, fabric connectivity, and server and network identity. This information is stored in a format that you can manage through Cisco UCS Manager. All service profiles are centrally managed and stored in a database on the fabric interconnect.

Every server must be associated with a service profile.

Important

At any given time, each server can be associated with only one service profile. Similarly, each service profile can be associated with only one server at a time.

After you associate a service profile with a server, the server is ready to have an operating system and applications installed, and you can use the service profile to review the configuration of the server. If the server associated with a service profile fails, the service profile does not automatically fail over to another server.

When a service profile is disassociated from a server, the identity and connectivity information for the server is reset to factory defaults.

Network Connectivity through Service Profiles

Each service profile specifies the LAN and SAN network connections for the server through the Cisco UCS infrastructure and out to the external network. You do not need to manually configure the network connections for Cisco UCS servers and other components. All network configuration is performed through the service profile.

When you associate a service profile with a server, the Cisco UCS internal fabric is configured with the information in the service profile. If the profile was previously associated with a different server, the network infrastructure reconfigures to support identical network connectivity to the new server.

Configuration through Service Profiles

A service profile can take advantage of resource pools and policies to handle server and connectivity configuration.

Hardware Components Configured by Service Profiles

When a service profile is associated with a server, the following components are configured according to the data in the profile:

- Server, including BIOS and CIMC
- Adapters
- Fabric interconnects
You do not need to configure these hardware components directly.

Server Identity Management through Service Profiles

You can use the network and device identities burned into the server hardware at manufacture or you can use identities that you specify in the associated service profile either directly or through identity pools, such as MAC, WWN, and UUID.

The following are examples of configuration information that you can include in a service profile:

- Profile name and description
- Unique server identity (UUID)
- LAN connectivity attributes, such as the MAC address
- SAN connectivity attributes, such as the WWN

Operational Aspects configured by Service Profiles

You can configure some of the operational functions for a server in a service profile, such as the following:

- Firmware packages and versions
- Operating system boot order and configuration
- IPMI and KVM access

vNIC Configuration by Service Profiles

A vNIC is a virtualized network interface that is configured on a physical network adapter and appears to be a physical NIC to the operating system of the server. The type of adapter in the system determines how many vNICs you can create. For example, a converged network adapter has two NICs, which means you can create a maximum of two vNICs for each adapter.

A vNIC communicates over Ethernet and handles LAN traffic. At a minimum, each vNIC must be configured with a name and with fabric and network connectivity.

vHBA Configuration by Service Profiles

A vHBA is a virtualized host bus adapter that is configured on a physical network adapter and appears to be a physical HBA to the operating system of the server. The type of adapter in the system determines how many vHBAs you can create. For example, a converged network adapter has two HBAs, which means you can create a maximum of two vHBAs for each of those adapters. In contrast, a network interface card does not have any HBAs, which means you cannot create any vHBAs for those adapters.

A vHBA communicates over FCoE and handles SAN traffic. At a minimum, each vHBA must be configured with a name and fabric connectivity.

Service Profiles that Override Server Identity

This type of service profile provides the maximum amount of flexibility and control. This profile allows you to override the identity values that are on the server at the time of association and use the resource pools and policies set up in Cisco UCS Manager to automate some administration tasks.

You can disassociate this service profile from one server and then associate it with another server. This re-association can be done either manually or through an automated server pool policy. The burned-in settings,
such as UUID and MAC address, on the new server are overwritten with the configuration in the service profile. As a result, the change in server is transparent to your network. You do not need to reconfigure any component or application on your network to begin using the new server.

This profile allows you to take advantage of and manage system resources through resource pools and policies, such as the following:

- Virtualized identity information, including pools of MAC addresses, WWN addresses, and UUIDs
- Ethernet and Fibre Channel adapter profile policies
- Firmware package policies
- Operating system boot order policies

Unless the service profile contains power management policies, a server pool qualification policy, or another policy that requires a specific hardware configuration, the profile can be used for any type of server in the Cisco UCS instance.

You can associate these service profiles with either a rack-mount server or a blade server. The ability to migrate the service profile depends upon whether you choose to restrict migration of the service profile.

Note

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association may fail.

Service Profiles that Inherit Server Identity

This hardware-based service profile is the simplest to use and create. This profile uses the default values in the server and mimics the management of a rack-mounted server. It is tied to a specific server and cannot be moved or migrated to another server.

You do not need to create pools or configuration policies to use this service profile.

This service profile inherits and applies the identity and configuration information that is present at the time of association, such as the following:

- MAC addresses for the two NICs
- For a converged network adapter or a virtual interface card, the WWN addresses for the two HBAs
- BIOS versions
- Server UUID

Important

The server identity and configuration information inherited through this service profile may not be the values burned into the server hardware at manufacture if those values were changed before this profile is associated with the server.
Service Profile Templates

With a service profile template, you can quickly create several service profiles with the same basic parameters, such as the number of vNICs and vHBAs, and with identity information drawn from the same pools.

Tip

If you need only one service profile with similar values to an existing service profile, you can clone a service profile in the Cisco UCS Manager GUI.

For example, if you need several service profiles with similar values to configure servers to host database software, you can create a service profile template, either manually or from an existing service profile. You then use the template to create the service profiles.

Cisco UCS supports the following types of service profile templates:

Initial template

Service profiles created from an initial template inherit all the properties of the template. However, after you create the profile, it is no longer connected to the template. If you need to make changes to one or more profiles created from this template, you must change each profile individually.

Updating template

Service profiles created from an updating template inherit all the properties of the template and remain connected to the template. Any changes to the template automatically update the service profiles created from the template.

Policies

Policies determine how Cisco UCS components will act in specific circumstances. You can create multiple instances of most policies. For example, you might want different boot policies, so that some servers can PXE boot, some can SAN boot, and others can boot from local storage.

Policies allow separation of functions within the system. A subject matter expert can define policies that are used in a service profile, which is created by someone without that subject matter expertise. For example, a LAN administrator can create adapter policies and quality of service policies for the system. These policies can then be used in a service profile that is created by someone who has limited or no subject matter expertise with LAN administration.

You can create and use two types of policies in Cisco UCS Manager:

- Configuration policies that configure the servers and other components
- Operational policies that control certain management, monitoring, and access control functions

Configuration Policies

Boot Policy

The boot policy determines the following:

- Configuration of the boot device
• Location from which the server boots
• Order in which boot devices are invoked

For example, you can choose to have associated servers boot from a local device, such as a local disk or CD-ROM (VMedia), or you can select a SAN boot or a LAN (PXE) boot.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect. If you do not include a boot policy in a service profile, the server uses the default settings in the BIOS to determine the boot order.

Important

Changes to a boot policy may be propagated to all servers created with an updating service profile template that includes that boot policy. Reassociation of the service profile with the server to rewrite the boot order information in the BIOS is auto-triggered.

Guidelines

When you create a boot policy, you can add one or more of the following to the boot policy and specify their boot order:

<table>
<thead>
<tr>
<th>Boot type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN boot</td>
<td>Boots from an operating system image on the SAN. You can specify a primary</td>
</tr>
<tr>
<td></td>
<td>and a secondary SAN boot. If the primary boot fails, the server attempts to</td>
</tr>
<tr>
<td></td>
<td>boot from the secondary. We recommend that you use a SAN boot, because it</td>
</tr>
<tr>
<td></td>
<td>offers the most service profile mobility within the system. If you boot</td>
</tr>
<tr>
<td></td>
<td>from the SAN when you move a service profile from one server to another,</td>
</tr>
<tr>
<td></td>
<td>the new server boots from the exact same operating system image. Therefore,</td>
</tr>
<tr>
<td></td>
<td>the new server appears to be the exact same server to the network.</td>
</tr>
<tr>
<td>LAN boot</td>
<td>Boots from a centralized provisioning server. It is frequently used to</td>
</tr>
<tr>
<td></td>
<td>install operating systems on a server from that server.</td>
</tr>
<tr>
<td>Local disk boot</td>
<td>If the server has a local drive, boots from that drive.</td>
</tr>
<tr>
<td>Note</td>
<td>Cisco UCS Manager does not differentiate between the types of local drives.</td>
</tr>
<tr>
<td></td>
<td>If an operating system has been installed on more than one local drive or</td>
</tr>
<tr>
<td></td>
<td>on an internal USB drive (eUSB), you cannot specify which of these local</td>
</tr>
<tr>
<td></td>
<td>drives the server should use as the boot drive.</td>
</tr>
<tr>
<td>Virtual media boot</td>
<td>Mimics the insertion of a physical CD-ROM disk (read-only) or floppy disk</td>
</tr>
<tr>
<td></td>
<td>(read-write) into a server. It is typically used to manually install</td>
</tr>
<tr>
<td></td>
<td>operating systems on a server.</td>
</tr>
</tbody>
</table>
The default boot order is as follows:

1. Local disk boot
2. LAN boot
3. Virtual media read-only boot
4. Virtual media read-write boot

Chassis Discovery Policy

The chassis discovery policy determines how the system reacts when you add a new chassis. Cisco UCS Manager uses the settings in the chassis discovery policy to determine the minimum threshold for the number of links between the chassis and the fabric interconnect. However, the configuration in the chassis discovery policy does not prevent you from connecting multiple chassis to the fabric interconnects in a Cisco UCS instance and wiring those chassis with a different number of links.

If you have a Cisco UCS instance that has some chassis wired with 1 link, some with 2 links, and some with 4 links, we recommend that you configure the chassis discovery policy for the minimum number links in the instance so that Cisco UCS Manager can discover all chassis. After the initial discovery, you must reacknowledge the chassis that are wired for a greater number of links and Cisco UCS Manager configures the chassis to use all available links.

Cisco UCS Manager cannot discover any chassis that is wired for fewer links than are configured in the chassis discovery policy. For example, if the chassis discovery policy is configured for 4 links, Cisco UCS Manager cannot discover any chassis that is wired for 1 link or 2 links. Reacknowledgement of the chassis does not resolve this issue.

The following table provides an overview of how the chassis discovery policy works in a multi-chassis Cisco UCS instance:

Table 3: Chassis Discovery Policy and Chassis Links

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
</tr>
</tbody>
</table>
Dynamic vNIC Connection Policy

This policy determines how the VN-link connectivity between VMs and dynamic vNICs is configured. This policy is required for Cisco UCS instances that include servers with virtual interface card adapters on which you have installed VMs and configured dynamic vNICs.

Note

If you Vmotion a server that is configured with dynamic vNICs, the dynamic interface used by the vNICs fails and Cisco UCS Manager raises a fault to notify you of that failure.

When the server comes back up, Cisco UCS Manager assigns new dynamic vNICs to the server. If you are monitoring traffic on the dynamic vNIC, you must reconfigure the monitoring source.

Each Dynamic vNIC connection policy must include an adapter policy and designate the number of vNICs that can be configured for any server associated with a service profile that includes the policy.

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling

Number of Links Wired for the Chassis

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 2 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
</tr>
<tr>
<td>4 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 4 link.</td>
</tr>
</tbody>
</table>
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- **Max LUNs Per Target**—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.

- **Link Down Timeout**—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5 s in SANsurfer.

- **Max Data Field Size**—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

Important

We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

\[
\text{Completion Queues} = \text{Transmit Queues} + \text{Receive Queues} \\
\text{Interrupt Count} = (\text{Completion Queues} + 2) \text{ rounded up to nearest power of 2}
\]

For example, if Transmit Queues = 1 and Receive Queues = 8 then:

- Completion Queues = 1 + 8 = 9
- Interrupt Count = (9 + 2) rounded up to the nearest power of 2 = 16

Global Cap Policy

The global cap policy is a global policy that specifies whether policy-driven chassis group power capping or manual blade-level power capping will be applied to all servers in a chassis.

We recommend that you use the default power capping method: policy-driven chassis group power capping.
Important

Any change to the manual blade-level power cap configuration will result in the loss of any groups or configuration options set for policy-driven chassis group power capping.

Host Firmware Package

This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

- Adapter
- BIOS
- Board Controller
- FC Adapters
- HBA Option ROM
- Storage Controller

Tip

You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

Prerequisites

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

IPMI Access Profile

This policy allows you to determine whether IPMI commands can be sent directly to the server, using the IP address. For example, you can send commands to retrieve sensor data from the CIMC. This policy defines the IPMI access, including a username and password that can be authenticated locally on the server, and whether the access is read-only or read-write.
You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Local Disk Configuration Policy

This policy configures any optional SAS local drives that have been installed on a server through the onboard RAID controller of the local drive. This policy enables you to set a local disk mode for all servers that are associated with a service profile that includes the local disk configuration policy.

The local disk modes include the following:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.

- **RAID 0 Stripes**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.

- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.

- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.

- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.

- **RAID 6 Stripes Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.

- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.

- **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

You must include this policy in a service profile, and that service profile must be associated with a server for the policy to take effect.

Management Firmware Package

This policy enables you to specify a set of firmware versions that make up the management firmware package (also known as a management firmware pack). The management firmware package includes the Cisco Integrated Management Controller (CIMC) on the server. You do not need to use this package if you upgrade the CIMC directly.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the CIMC firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect.
Management Interfaces Monitoring Policy

This policy defines how the mgmt0 Ethernet interface on the fabric interconnect should be monitored. If Cisco UCS detects a management interface failure, a failure report is generated. If the configured number of failure reports is reached, the system assumes that the management interface is unavailable and generates a fault. By default, the management interfaces monitoring policy is disabled.

If the affected management interface belongs to a fabric interconnect which is the managing instance, Cisco UCS confirms that the subordinate fabric interconnect's status is up, that there are no current failure reports logged against it, and then modifies the managing instance for the end-points.

If the affected fabric interconnect is currently the primary inside of a high availability setup, a failover of the management plane is triggered. The data plane is not affected by this failover.

You can set the following properties related to monitoring the management interface:

- Type of mechanism used to monitor the management interface.
- Interval at which the management interface's status is monitored.
- Maximum number of monitoring attempts that can fail before the system assumes that the management is unavailable and generates a fault message.

Important

In the event of a management interface failure on a fabric interconnect, the managing instance may not change if one of the following occurs:

- A path to the end-point through the subordinate fabric interconnect does not exist.
- The management interface for the subordinate fabric interconnect has failed.
- The path to the end-point through the subordinate fabric interconnect has failed.

Network Control Policy

This policy configures the network control settings for the Cisco UCS instance, including the following:

- Whether the Cisco Discovery Protocol (CDP) is enabled or disabled
- How the VIF behaves if no uplink port is available in end-host mode
- Whether the server can use different MAC addresses when sending packets to the fabric interconnect

The network control policy also determines the action that Cisco UCS Manager takes on the remote Ethernet interface, vEthernet interface, or vFibreChannel interface when the associated border port fails.

By default, the **Action on Uplink Fail** property in the network control policy is configured with a value of link-down. For adapters such as the Cisco UCS M81KR Virtual Interface Card, this default behavior directs Cisco UCS Manager to bring the vEthernet or vFibreChannel interface down if the associated border port fails. For Cisco UCS systems using a non-VM-FEX capable converged network adapter that supports both Ethernet and FCoE traffic, such as Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, this default behavior directs Cisco UCS Manager to bring the remote Ethernet interface down if the associated border port fails. In this scenario, any vFibreChannel interfaces that are bound to the remote Ethernet interface are brought down as well.
Cisco UCS Manager, version 1.4(2) and earlier did not enforce the **Action on Uplink Fail** property for those types of non-VM-FEX capable converged network adapters mentioned above. If the **Action on Uplink Fail** property was set to link-down, Cisco UCS Manager would ignore this setting and instead issue a warning. Therefore, if your implementation includes one of those converged network adapters and the adapter is expected to handle both Ethernet and FCoE traffic, we recommend that you configure the **Action on Uplink Fail** property with a value of warning.

Please note that this configuration may result in an Ethernet teaming driver not being able to detect a link failure when the border port goes down.

Power Control Policy

Cisco UCS uses the priority set in the power control policy, along with the blade type and configuration, to calculate the initial power allocation for each blade within a chassis. During normal operation, the active blades within a chassis can borrow power from idle blades within the same chassis. If all blades are active and reach the power cap, service profiles with higher priority power control policies take precedence over service profiles with lower priority power control policies.

Priority is ranked on a scale of 1-10, where 1 indicates the highest priority and 10 indicates lowest priority. The default priority is 5.

For mission-critical application a special priority called no-cap is also available. Setting the priority to no-cap prevents Cisco UCS from leveraging unused power from that particular blade server. The server is allocated the maximum amount of power that that blade can reach.

Note You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Power Policy

The power policy is a global policy that specifies the redundancy for power supplies in all chassis in the Cisco UCS instance. This policy is also known as the PSU policy.

For more information about power supply redundancy, see *Cisco UCS 5108 Server Chassis Hardware Installation Guide*.

Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.
Rack Server Discovery Policy

The rack server discovery policy determines how the system reacts when you add a new rack-mount server. Cisco UCS Manager uses the settings in the rack server discovery policy to determine whether any data on the hard disks are scrubbed and whether server discovery occurs immediately or needs to wait for explicit user acknowledgement.

Cisco UCS Manager cannot discover any rack-mount server that has not been correctly cabled and connected to the fabric interconnects. For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

Server Autoconfiguration Policy

Cisco UCS Manager uses this policy to determine how to configure a new server. If you create a server autoconfiguration policy, the following occurs when a new server starts:

1. The qualification in the server autoconfiguration policy is executed against the server.
2. If the server meets the required qualifications, the server is associated with a service profile created from the service profile template configured in the server autoconfiguration policy. The name of that service profile is based on the name given to the server by Cisco UCS Manager.
3. The service profile is assigned to the organization configured in the server autoconfiguration policy.

Server Discovery Policy

This discovery policy determines how the system reacts when you add a new server. If you create a server discovery policy, you can control whether the system conducts a deep discovery when a server is added to a chassis, or whether a user must first acknowledge the new server. By default, the system conducts a full discovery.

If you create a server discovery policy, the following occurs when a new server starts:

1. The qualification in the server discovery policy is executed against the server.
2. If the server meets the required qualifications, Cisco UCS Manager applies the following to the server:
 - Depending upon the option selected for the action, either discovers the new server immediately or waits for a user to acknowledge the new server
 - Applies the scrub policy to the server

Server Inheritance Policy

This policy is invoked during the server discovery process to create a service profile for the server. All service profiles created from this policy use the values burned into the blade at manufacture. The policy performs the following:

- Analyzes the inventory of the server
- If configured, assigns the server to the selected organization
- Creates a service profile for the server with the identity burned into the server at manufacture
You cannot migrate a service profile created with this policy to another server.

Server Pool Policy

This policy is invoked during the server discovery process. It determines what happens if server pool policy qualifications match a server to the target pool specified in the policy.

If a server qualifies for more than one pool and those pools have server pool policies, the server is added to all those pools.

Server Pool Policy Qualifications

This policy qualifies servers based on the inventory of a server conducted during the discovery process. The qualifications are individual rules that you configure in the policy to determine whether a server meets the selection criteria. For example, you can create a rule that specifies the minimum memory capacity for servers in a data center pool.

Qualifications are used in other policies to place servers, not just by the server pool policies. For example, if a server meets the criteria in a qualification policy, it can be added to one or more server pools or have a service profile automatically associated with it.

You can use the server pool policy qualifications to qualify servers according to the following criteria:

- Adapter type
- Chassis location
- Memory type and configuration
- Power group
- CPU cores, type, and configuration
- Storage configuration and capacity
- Server model

Depending upon the implementation, you may configure several policies with server pool policy qualifications including the following:

- Autoconfiguration policy
- Chassis discovery policy
- Server discovery policy
- Server inheritance policy
- Server pool policy

vHBA Template

This template is a policy that defines how a vHBA on a server connects to the SAN. It is also referred to as a vHBA SAN connectivity template.

You need to include this policy in a service profile for it to take effect.
VM Lifecycle Policy

The VM lifecycle policy determines how long Cisco UCS Manager retains offline VMs and offline dynamic vNICs in its database. If a VM or dynamic vNIC remains offline after that period, Cisco UCS Manager deletes the object from its database.

All virtual machines (VMs) on Cisco UCS servers are managed by vCenter. Cisco UCS Manager cannot determine whether an inactive VM is temporarily shutdown, has been deleted, or is in some other state that renders it inaccessible. Therefore, Cisco UCS Manager considers all inactive VMs to be in an offline state.

Cisco UCS Manager considers a dynamic vNIC to be offline when the associated VM is shutdown, or the link between the fabric interconnect and the I/O module fails. On rare occasions, an internal error can also cause Cisco UCS Manager to consider a dynamic vNIC to be offline.

The default VM and dynamic vNIC retention period is 15 minutes. You can set that for any period of time between 1 minute and 7200 minutes (or 5 days).

Note

The VMs that Cisco UCS Manager displays are for information and monitoring only. You cannot manage VMs through Cisco UCS Manager. Therefore, when you delete a VM from the Cisco UCS Manager database, you do not delete the VM from the server or from vCenter.

vNIC Template

This policy defines how a vNIC on a server connects to the LAN. This policy is also referred to as a vNIC LAN connectivity policy.

You need to include this policy in a service profile for it to take effect.

Note

If your server has two Emulex or QLogic NICs (Cisco UCS CNA M71KR-E or Cisco UCS CNA M71KR-Q), you must configure vNIC policies for both adapters in your service profile to get a user-defined MAC address for both NICs. If you do not configure policies for both NICs, Windows still detects both of them in the PCI bus. Then because the second eth is not part of your service profile, Windows assigns it a hardware MAC address. If you then move the service profile to a different server, Windows sees additional NICs because one NIC did not have a user-defined MAC address.

vNIC/vHBA Placement Policies

vNIC/vHBA placement policies are used to determine what types of vNICs or vHBAs can be assigned to the physical adapters on a server. Each vNIC/vHBA placement policy contains four virtual network interface connections (vCons) that are virtual representations of the physical adapters. When a vNIC/vHBA placement policy is assigned to a service profile, and the service profile is associated with a server, the vCons in the vNIC/vHBA placement policy are assigned to the physical adapters.

If you do not include a vNIC/vHBA placement policy in the service profile or you use the default configuration for a server with two adapters, Cisco UCS Manager defaults to the **All** configuration and equally distributes the vNICs and vHBAs between the adapters.
You can use this policy to assign vNICs or vHBAs to either of the two vCons. Cisco UCS Manager uses the vCon assignment to determine how to assign the vNICs and vHBAs to the physical adapter during service profile association.

- **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
- **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.
- **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.
- **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

Operational Policies

Fault Collection Policy

The fault collection policy controls the lifecycle of a fault in a Cisco UCS instance, including when faults are cleared, the flapping interval (the length of time between the fault being raised and the condition being cleared), and the retention interval (the length of time a fault is retained in the system).

A fault in Cisco UCS has the following lifecycle:

1. A condition occurs in the system and Cisco UCS Manager raises a fault. This is the active state.
2. When the fault is alleviated, it is cleared if the time between the fault being raised and the condition being cleared is greater than the flapping interval, otherwise, the fault remains raised but its status changes to soaking-clear. Flapping occurs when a fault is raised and cleared several times in rapid succession. During the flapping interval the fault retains its severity for the length of time specified in the fault collection policy.
3. If the condition reoccurs during the flapping interval, the fault remains raised and its status changes to flapping. If the condition does not reoccur during the flapping interval, the fault is cleared.
4. When a fault is cleared, it is deleted if the clear action is set to delete, or if the fault was previously acknowledged; otherwise, it is retained until either the retention interval expires, or if the fault is acknowledged.
5. If the condition reoccurs during the retention interval, the fault returns to the active state. If the condition does not reoccur, the fault is deleted.

Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS instance send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.
When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Maintenance Policy

A maintenance policy determines how Cisco UCS Manager reacts when a change that requires a server reboot is made to a service profile associated with a server or to an updating service profile bound to one or more service profiles.

The maintenance policy specifies how Cisco UCS Manager deploys the service profile changes. The deployment can occur in one of the following ways:

- Immediately
- When acknowledged by a user with admin privileges
- Automatically at the time specified in the schedule

If the maintenance policy is configured to deploy the change during a scheduled maintenance window, the policy must include a valid schedule. The schedule deploys the changes in the first available maintenance window.

Scrub Policy

This policy determines what happens to local data and to the BIOS settings on a server during the discovery process and when the server is disassociated from a service profile. Depending upon how you configure a scrub policy, the following can occur at those times:

Disk Scrub

One of the following occurs to the data on any local drives on disassociation:

- If enabled, destroys all data on any local drives
- If disabled, preserves all data on any local drives, including local storage configuration

BIOS Settings Scrub

One of the following occurs to the BIOS settings when a service profile containing the scrub policy is disassociated from a server:

- If enabled, erases all BIOS settings for the server and and resets them to the BIOS defaults for that server type and vendor
- If disabled, preserves the existing BIOS settings on the server
Serial over LAN Policy

This policy sets the configuration for the serial over LAN connection for all servers associated with service profiles that use the policy. By default, the serial over LAN connection is disabled.

If you implement a serial over LAN policy, we recommend that you also create an IPMI profile.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Statistics Collection Policy

A statistics collection policy defines how frequently statistics are to be collected (collection interval) and how frequently the statistics are to be reported (reporting interval). Reporting intervals are longer than collection intervals so that multiple statistical data points can be collected during the reporting interval, which provides Cisco UCS Manager with sufficient data to calculate and report minimum, maximum, and average values.

For NIC statistics, Cisco UCS Manager displays the average, minimum, and maximum of the change since the last collection of statistics. If the values are 0, there has been no change since the last collection.

Statistics can be collected and reported for the following five functional areas of the Cisco UCS system:

- Adapter—statistics related to the adapters
- Chassis—statistics related to the blade chassis
- Host—this policy is a placeholder for future support
- Port—statistics related to the ports, including server ports, uplink Ethernet ports, and uplink Fibre Channel ports
- Server—statistics related to servers

Note

Cisco UCS Manager has one default statistics collection policy for each of the five functional areas. You cannot create additional statistics collection policies and you cannot delete the existing default policies. You can only modify the default policies.

Statistics Threshold Policy

A statistics threshold policy monitors statistics about certain aspects of the system and generates an event if the threshold is crossed. You can set both minimum and maximum thresholds. For example, you can configure the policy to raise an alarm if the CPU temperature exceeds a certain value, or if a server is overutilized or underutilized.

These threshold policies do not control the hardware or device-level thresholds enforced by endpoints, such as the CIMC. Those thresholds are burned in to the hardware components at manufacture.

Cisco UCS enables you to configure statistics threshold policies for the following components:

- Servers and server components
- Uplink Ethernet ports
- Ethernet server ports, chassis, and fabric interconnects
You cannot create or delete a statistics threshold policy for Ethernet server ports, uplink Ethernet ports, or uplink Fibre Channel ports. You can only configure the existing default policy.

Pools

Pools are collections of identities, or physical or logical resources, that are available in the system. All pools increase the flexibility of service profiles and allow you to centrally manage your system resources.

You can use pools to segment unconfigured servers or available ranges of server identity information into groupings that make sense for the data center. For example, if you create a pool of unconfigured servers with similar characteristics and include that pool in a service profile, you can use a policy to associate that service profile with an available, unconfigured server.

If you pool identifying information, such as MAC addresses, you can pre-assign ranges for servers that will host specific applications. For example, all database servers could be configured within the same range of MAC addresses, UUIDs, and WWNs.

Server Pools

A server pool contains a set of servers. These servers typically share the same characteristics. Those characteristics can be their location in the chassis, or an attribute such as server type, amount of memory, local storage, type of CPU, or local drive configuration. You can manually assign a server to a server pool, or use server pool policies and server pool policy qualifications to automate the assignment.

If your system implements multi-tenancy through organizations, you can designate one or more server pools to be used by a specific organization. For example, a pool that includes all servers with two CPUs could be assigned to the Marketing organization, while all servers with 64 GB memory could be assigned to the Finance organization.

A server pool can include servers from any chassis in the system. A given server can belong to multiple server pools.

MAC Pools

A MAC pool is a collection of network identities, or MAC addresses, that are unique in their layer 2 environment and are available to be assigned to vNICs on a server. If you use MAC pools in service profiles, you do not have to manually configure the MAC addresses to be used by the server associated with the service profile.

In a system that implements multi-tenancy, you can use the organizational hierarchy to ensure that MAC pools can only be used by specific applications or business services. Cisco UCS Manager uses the name resolution policy to assign MAC addresses from the pool.

To assign a MAC address to a server, you must include the MAC pool in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server.

You can specify your own MAC addresses or use a group of MAC addresses provided by Cisco.
UUID Suffix Pools
A UUID suffix pool is a collection of SMBIOS UUIDs that are available to be assigned to servers. The first number of digits that constitute the prefix of the UUID are fixed. The remaining digits, the UUID suffix, are variable. A UUID suffix pool ensures that these variable values are unique for each server associated with a service profile which uses that particular pool to avoid conflicts.

If you use UUID suffix pools in service profiles, you do not have to manually configure the UUID of the server associated with the service profile.

WWN Pools
A WWN pool is a collection of WWNs for use by the Fibre Channel vHBAs in a Cisco UCS instance. You create separate pools for the following:

- WW node names assigned to the server
- WW port names assigned to the vHBA

Important
A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WWN prefix for all blocks in a pool:
20:00:00:25:B5:XX:XX:XX

If you use WWN pools in service profiles, you do not have to manually configure the WWNs that will be used by the server associated with the service profile. In a system that implements multi-tenancy, you can use a WWN pool to control the WWNs used by each organization.

You assign WWNs to pools in blocks. For each block or individual WWN, you can assign a boot target.

WWNN Pools
A WWNN pool is a WWN pool that contains only WW node names. If you include a pool of WWNNs in a service profile, the associated server is assigned a WWNN from that pool.

WWPN Pools
A WWPN pool is a WWN pool that contains only WW port names. If you include a pool of WWPNs in a service profile, the port on each vHBA of the associated server is assigned a WWPN from that pool.

Management IP Pool
The management IP pool is a collection of external IP addresses. Cisco UCS Manager reserves each block of IP addresses in the management IP pool for external access that terminates in the CIMC on a server.

You can configure service profiles and service profile templates to use IP addresses from the management IP pool. You cannot configure servers to use the management IP pool.

All IP addresses in the management IP pool must be in the same subnet as the IP address of the fabric interconnect.
Traffic Management

Oversubscription

Oversubscription occurs when multiple network devices are connected to the same fabric interconnect port. This practice optimizes fabric interconnect use, since ports rarely run at maximum speed for any length of time. As a result, when configured correctly, oversubscription allows you to take advantage of unused bandwidth. However, incorrectly configured oversubscription can result in contention for bandwidth and a lower quality of service to all services that use the oversubscribed port.

For example, oversubscription can occur if four servers share a single uplink port, and all four servers attempt to send data at a cumulative rate higher than available bandwidth of uplink port.

Oversubscription Considerations

The following elements can impact how you configure oversubscription in a Cisco UCS instance:

Ratio of Server-Facing Ports to Uplink Ports

You need to know what how many server-facing ports and uplink ports are in the system, because that ratio can impact performance. For example, if your system has twenty ports that can communicate down to the servers and only two ports that can communicate up to the network, your uplink ports will be oversubscribed. In this situation, the amount of traffic created by the servers can also affect performance.

Number of Uplink Ports from Fabric Interconnect to Network

You can choose to add more uplink ports between the Cisco UCS fabric interconnect and the upper layers of the LAN to increase bandwidth. In Cisco UCS, you must have at least one uplink port per fabric interconnect to ensure that all servers and NICs to have access to the LAN. The number of LAN uplinks should be determined by the aggregate bandwidth needed by all Cisco UCS servers.

FC uplink ports are available on the expansion slots only. You must add more expansion slots to increase number of available FC uplinks. Ethernet uplink ports can exist on the fixed slot and on expansion slots.

For example, if you have two Cisco UCS 5100 series chassis that are fully populated with half width Cisco UCS B200-M1 servers, you have 16 servers. In a cluster configuration, with one LAN uplink per fabric interconnect, these 16 servers share 20GbE of LAN bandwidth. If more capacity is needed, more uplinks from the fabric interconnect should be added. We recommend that you have symmetric configuration of the uplink in cluster configurations. In the same example, if 4 uplinks are used in each fabric interconnect, the 16 servers are sharing 80 GB of bandwidth, so each has approximately 5 GB of capacity. When multiple uplinks are used on a Cisco UCS fabric interconnect the network design team should consider using a port channel to make best use of the capacity.
Number of Uplink Ports from I/O Module to Fabric Interconnect

You can choose to add more bandwidth between I/O module and fabric interconnect by using more uplink ports and increasing the number of cables. In Cisco UCS, you can have one, two, or four cables connecting a I/O module to a Cisco UCS fabric interconnect. The number of cables determines the number of active uplink ports and the oversubscription ratio. For example, one cable results in 8:1 oversubscription for one I/O module. If two I/O modules are in place, each with one cable, and you have 8 half-width blades, the 8 blades will be sharing two uplinks (one left IOM and one right IOM). This results in 8 blades sharing an aggregate bandwidth of 20 GB of Unified Fabric capacity. If two cables are used, this results in 4:1 oversubscription per IOM (assuming all slots populated with half width blades), and four cables result in 2:1 oversubscription. The lower oversubscription ratio gives you higher performance, but is also more costly as you consume more fabric interconnect ports.

Number of Active Links from Server to Fabric Interconnect

The amount of non-oversubscribed bandwidth available to each server depends on the number of I/O modules used and the number of cables used to connect those I/O modules to the fabric interconnects. Having a second I/O module in place provides additional bandwidth and redundancy to the servers. This level of flexibility in design ensures that you can provide anywhere from 80 Gbps (two I/O modules with four links each) to 10 Gbps (one I/O module with one link) to the chassis.

With 80 Gbps to the chassis, each half-width server in the Cisco UCS instance can get up to 10 Gbps in a non-oversubscribed configuration, with an ability to use up to 20 Gbps with 2:1 oversubscription.

Guidelines for Estimating Oversubscription

When you estimate the optimal oversubscription ratio for a fabric interconnect port, consider the following guidelines:

Cost/Performance Slider

The prioritization of cost and performance is different for each data center and has a direct impact on the configuration of oversubscription. When you plan hardware usage for oversubscription, you need to know where the data center is located on this slider. For example, oversubscription can be minimized if the data center is more concerned with performance than cost. However, cost is a significant factor in most data centers, and oversubscription requires careful planning.

Bandwidth Usage

The estimated bandwidth that you expect each server to actually use is important when you determine the assignment of each server to a fabric interconnect port and, as a result, the oversubscription ratio of the ports. For oversubscription, you must consider how many GBs of traffic the server will consume on average, the ratio of configured bandwidth to used bandwidth, and the times when high bandwidth use will occur.

Network Type

The network type is only relevant to traffic on uplink ports, because FCoE does not exist outside Cisco UCS. The rest of the data center network only differentiates between LAN and SAN traffic. Therefore, you do not need to take the network type into consideration when you estimate oversubscription of a fabric interconnect port.
Pinning

Pinning in Cisco UCS is only relevant to uplink ports. You can pin Ethernet or FCoE traffic from a given server to a specific uplink Ethernet port or uplink FC port.

When you pin the NIC and HBA of both physical and virtual servers to uplink ports, you give the fabric interconnect greater control over the unified fabric. This control ensures more optimal utilization of uplink port bandwidth.

Cisco UCS uses pin groups to manage which NICs, vNICs, HBAs, and vHBAs are pinned to an uplink port. To configure pinning for a server, you can either assign a pin group directly, or include a pin group in a vNIC policy, and then add that vNIC policy to the service profile assigned to that server. All traffic from the vNIC or vHBA on the server travels through the I/O module to the same uplink port.

Pinning Server Traffic to Server Ports

All server traffic travels through the I/O module to server ports on the fabric interconnect. The number of links for which the chassis is configured determines how this traffic is pinned.

The pinning determines which server traffic goes to which server port on the fabric interconnect. This pinning is fixed. You cannot modify it. As a result, you must consider the server location when you determine the appropriate allocation of bandwidth for a chassis.

Note

You must review the allocation of ports to links before you allocate servers to slots. The cabled ports are not necessarily port 1 and port 2 on the I/O module. If you change the number of links between the fabric interconnect and the I/O module, you must reacknowledge the chassis to have the traffic rerouted.

All port numbers refer to the fabric interconnect-side ports on the I/O module.

Chassis with One I/O Module

<table>
<thead>
<tr>
<th>Links on Chassis</th>
<th>Servers Pinned to Link 1</th>
<th>Servers Pinned to Link 2</th>
<th>Servers Pinned to Link 3</th>
<th>Servers Pinned to Link 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link</td>
<td>All server slots</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2 links</td>
<td>Slots 1, 3, 5, and 7</td>
<td>Slots 2, 4, 6, and 8</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4 links</td>
<td>Slots 1 and 5</td>
<td>Slots 2 and 6</td>
<td>Slots 3 and 7</td>
<td>Slots 4 and 8</td>
</tr>
</tbody>
</table>

Chassis with Two I/O Modules

If a chassis has two I/O modules, traffic from one I/O module goes to one of the fabric interconnects and traffic from the other I/O module goes to the second fabric interconnect. You cannot connect two I/O modules to a single fabric interconnect.

<table>
<thead>
<tr>
<th>Fabric Interconnect Configured in vNIC</th>
<th>Server Traffic Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Server traffic goes to fabric interconnect A. If A fails, the server traffic does not fail over to B.</td>
</tr>
</tbody>
</table>
Server Traffic Path

Fabric Interconnect Configured in vNIC	Server Traffic Path
B | All server traffic goes to fabric interconnect B. If B fails, the server traffic does not fail over to A.
A-B | All server traffic goes to fabric interconnect A. If A fails, the server traffic fails over to B.
B-A | All server traffic goes to fabric interconnect B. If B fails, the server traffic fails over to A.

Guidelines for Pinning

When you determine the optimal configuration for pin groups and pinning for an uplink port, consider the estimated bandwidth usage for the servers. If you know that some servers in the system will use a lot of bandwidth, ensure that you pin these servers to different uplink ports.

Quality of Service

Cisco UCS provides the following methods to implement quality of service:

- System classes that specify the global configuration for certain types of traffic across the entire system
- QoS policies that assign system classes for individual vNICs
- Flow control policies that determine how uplink Ethernet ports handle pause frames

System Classes

Cisco UCS uses Data Center Ethernet (DCE) to handle all traffic inside a Cisco UCS instance. This industry standard enhancement to Ethernet divides the bandwidth of the Ethernet pipe into eight virtual lanes. Two virtual lanes are reserved for internal system and management traffic. You can configure quality of service for the other six virtual lanes. System classes determine how the DCE bandwidth in these six virtual lanes is allocated across the entire Cisco UCS instance.

Each system class reserves a specific segment of the bandwidth for a specific type of traffic. This provides a level of traffic management, even in an oversubscribed system. For example, you can configure the Fibre Channel Priority system class to determine the percentage of DCE bandwidth allocated to FCoE traffic.

The following table describes the system classes that you can configure:

Table 4: System Classes

<table>
<thead>
<tr>
<th>System Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>A configurable set of system classes that you can include in the QoS policy for a service profile. Each system class manages one lane of traffic. All properties of these system classes are available for you to assign custom settings and policies.</td>
</tr>
<tr>
<td>Gold</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Bronze</td>
<td></td>
</tr>
</tbody>
</table>
System Class

<table>
<thead>
<tr>
<th>System Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Effort</td>
<td>A system class that sets the quality of service for the lane reserved for Basic Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a drop policy that allows it to drop data packets if required. You cannot disable this system class.</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>A system class that sets the quality of service for the lane reserved for Fibre Channel over Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a no-drop policy that ensures it never drops data packets. You cannot disable this system class.</td>
</tr>
</tbody>
</table>

Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.

Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS instance send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.

When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Opt-In Features

Each Cisco UCS instance is licensed for all functionality. Depending upon how the system is configured, you can decide to opt in to some features or opt out of them for easier integration into existing environment. If a process change happens, you can change your system configuration and include one or both of the opt-in features.

The opt-in features are as follows:
Stateless computing, which takes advantage of mobile service profiles with pools and policies where each component, such as a server or an adapter, is stateless.

Multi-tenancy, which uses organizations and role-based access control to divide the system into smaller logical segments.

Stateless Computing

Stateless computing allows you to use a service profile to apply the personality of one server to a different server in the same Cisco UCS instance. The personality of the server includes the elements that identify that server and make it unique in the instance. If you change any of these elements, the server could lose its ability to access, use, or even achieve booted status.

The elements that make up a server's personality include the following:

- Firmware versions
- UUID (used for server identification)
- MAC address (used for LAN connectivity)
- World Wide Names (used for SAN connectivity)
- Boot settings

Stateless computing creates a dynamic server environment with highly flexible servers. Every physical server in a Cisco UCS instance remains anonymous until you associate a service profile with it, then the server gets the identity configured in the service profile. If you no longer need a business service on that server, you can shut it down, disassociate the service profile, and then associate another service profile to create a different identity for the same physical server. The "new" server can then host another business service.

To take full advantage of the flexibility of statelessness, the optional local disks on the servers should only be used for swap or temp space and not to store operating system or application data.

You can choose to fully implement stateless computing for all physical servers in a Cisco UCS instance, to not have any stateless servers, or to have a mix of the two types.

If You Opt In to Stateless Computing

Each physical server in the Cisco UCS instance is defined through a service profile. Any server can be used to host one set of applications, then reassigned to another set of applications or business services, if required by the needs of the data center.

You create service profiles that point to policies and pools of resources that are defined in the instance. The server pools, WWN pools, and MAC pools ensure that all unassigned resources are available on an as-needed basis. For example, if a physical server fails, you can immediately assign the service profile to another server. Because the service profile provides the new server with the same identity as the original server, including WWN and MAC address, the rest of the data center infrastructure sees it as the same server and you do not need to make any configuration changes in the LAN or SAN.

If You Opt Out of Stateless Computing

Each server in the Cisco UCS instance is treated as a traditional rack mount server.

You create service profiles that inherit the identify information burned into the hardware and use these profiles to configure LAN or SAN connectivity for the server. However, if the server hardware fails, you cannot reassign the service profile to a new server.
Multi-Tenancy

Multi-tenancy allows you to divide up the large physical infrastructure of an instance into logical entities known as organizations. As a result, you can achieve a logical isolation between organizations without providing a dedicated physical infrastructure for each organization.

You can assign unique resources to each tenant through the related organization, in the multi-tenant environment. These resources can include different policies, pools, and quality of service definitions. You can also implement locales to assign or restrict user privileges and roles by organization, if you do not want all users to have access to all organizations.

If you set up a multi-tenant environment, all organizations are hierarchical. The top-level organization is always root. The policies and pools that you create in root are system-wide and are available to all organizations in the system. However, any policies and pools created in other organizations are only available to organizations that are above it in the same hierarchy. For example, if a system has organizations named Finance and HR that are not in the same hierarchy, Finance cannot use any policies in the HR organization, and HR cannot access any policies in the Finance organization. However, both Finance and HR can use policies and pools in the root organization.

If you create organizations in a multi-tenant environment, you can also set up one or more of the following for each organization or for a sub-organization in the same hierarchy:

- Resource pools
- Policies
- Service profiles
- Service profile templates

If You Opt In to Multi-Tenancy

Each Cisco UCS instance is divided into several distinct organizations. The types of organizations you create in a multi-tenancy implementation depends upon the business needs of the company. Examples include organizations that represent the following:

- Enterprise groups or divisions within a company, such as marketing, finance, engineering, or human resources
- Different customers or name service domains, for service providers

You can create locales to ensure that users have access only to those organizations that they are authorized to administer.

If You Opt Out of Multi-Tenancy

The Cisco UCS instance remains a single logical entity with everything in the root organization. All policies and resource pools can be assigned to any server in the instance.
Virtualization in Cisco UCS

Overview of Virtualization

Virtualization allows the creation of multiple virtual machines to run in isolation, side-by-side on the same physical machine.

Each virtual machine has its own set of virtual hardware (RAM, CPU, NIC) upon which an operating system and fully configured applications are loaded. The operating system sees a consistent, normalized set of hardware regardless of the actual physical hardware components.

In a virtual machine, both hardware and software are encapsulated in a single file for rapid copying, provisioning, and moving between physical servers. You can move a virtual machine, within seconds, from one physical server to another for zero-downtime maintenance and continuous workload consolidation.

The virtual hardware makes it possible for many servers, each running in an independent virtual machine, to run on a single physical server. The advantages of virtualization include better use of computing resources, greater server density, and seamless server migration.

Virtualization in Cisco UCS

Cisco UCS provides hardware-level server virtualization. Hardware-level server virtualization allows a server to be simulated at the physical level and cannot be detected by existing software, including the operating system, drivers, and management tools. If underlying hardware faults require you to recreate the virtual server in another location, the network and existing software remain unaware that the physical server has changed.

Server virtualization allows networks to rapidly adapt to changing business and technical conditions. The lower level integration with the virtualized environment in Cisco UCS improves visibility and control of the virtual machine environment, and enhances the overall agility of the system. In addition, this virtualization ensures that there is no performance penalty or overhead for applications while running.

The virtualized environment available in a Cisco UCS server depends upon the type of adapter installed in the server. For example, a virtual interface card (VIC) adapter provides a unique and flexible virtualized environment and support for virtual machines. The other adapters support the standard integration and virtualized environment with VMware.

Virtualization with Network Interface Cards and Converged Network Adapters

Network interface card (NIC) and converged network adapters support virtualized environments with the standard VMware integration with ESX installed on the server and all virtual machine management performed through the VC.

Portability of Virtual Machines

If you implement service profiles you retain the ability to easily move a server identity from one server to another. After you image the new server, the ESX treats that server as if it were the original.
Communication between Virtual Machines on the Same Server

These adapters implement the standard communications between virtual machines on the same server. If an ESX host includes multiple virtual machines, all communications must go through the virtual switch on the server.

If the system uses the native VMware drivers, the virtual switch is out of the network administrator's domain and is not subject to any network policies. As a result, for example, QoS policies on the network are not applied to any data packets traveling from VM1 to VM2 through the virtual switch.

If the system includes another virtual switch, such as the Nexus 1000, that virtual switch is subject to the network policies configured on that switch by the network administrator.

Virtualization with a Virtual Interface Card Adapter

Virtual interface card (VIC) adapters support virtualized environments with VMware. These environments support the standard VMware integration with ESX installed on the server and all virtual machine management performed through the VMware vCenter.

This virtualized adapter supports the following:

- Dynamic vNICs in a virtualized environment with VM software, such as vSphere. This solution enables you to divide a single physical blade server into multiple logical PCIE instances.
- Static vNICs in a single operating system installed on a server.

With a VIC adapter, the solution you choose determines how communication works. This type of adapter supports the following communication solutions:

- Cisco VN-Link in hardware, which is a hardware-based method of handling traffic to and from a virtual machine. Details of how to configure this solution are available in this document.
- Cisco VN-Link in software, which is a software-based method of handling traffic to and from a virtual machine and uses the Nexus 1000v virtual switch. Details of how to configure this solution are available in the Nexus 1000v documentation.
- Single operating system installed on the server without virtualization, which uses the same methods of handling traffic as the other Cisco UCS adapters.

Cisco VN-Link

Cisco Virtual Network Link (VN-Link) is a set of features and capabilities that enable you to individually identify, configure, monitor, migrate, and diagnose virtual machine interfaces in a way that is consistent with the current network operation models for physical servers. VN-Link literally indicates the creation of a logical link between a vNIC on a virtual machine and a Cisco UCS fabric interconnect. This mapping is the logical equivalent of using a cable to connect a NIC with a network port on an access-layer switch.

VN-Link in Hardware

Cisco VN-Link in hardware is a hardware-based method of handling traffic to and from a virtual machine on a server with a VIC adapter. This method is sometimes referred to as pass-through switching. This solution replaces software-based switching with ASIC-based hardware switching and improves performance.
The distributed virtual switch (DVS) framework delivers VN-Link in hardware features and capabilities for virtual machines on Cisco UCS servers with VIC adapters. This approach provides an end-to-end network solution to meet the new requirements created by server virtualization.

With VN-Link in hardware, all traffic to and from a virtual machine passes through the DVS and the hypervisor. and then returns to the virtual machine on the server. Switching occurs in the fabric interconnect (hardware). As a result, network policies can be applied to traffic between virtual machines. This capability provides consistency between physical and virtual servers.

The following figure shows the traffic paths taken by VM traffic on a Cisco UCS server with a VIC adapter:

Figure 1: Traffic Paths for VM traffic with VN-Link in Hardware

![Traffic Paths for VM traffic with VN-Link in Hardware](image)

Extension File for Communication with VMware vCenter

For Cisco UCS instances that use VIC adapters to implement VN-Link in hardware, you must create and install an extension file to establish the relationship and communications between Cisco UCS Manager and the VMware vCenter. This extension file is an XML file that contains vital information, including the following:

- Extension key
- Public SSL certificate

If you need to have two Cisco UCS instances share the same set of distributed virtual switches in a vCenter, you can create a custom extension key and import the same SSL certificate in the Cisco UCS Manager for each Cisco UCS instance.

Extension Key

The extension key includes the identity of the Cisco UCS instance. By default, this key has the value Cisco UCS GUID, as this value is identical across both fabric interconnects in a cluster configuration.

When you install the extension, vCenter uses the extension key to create a distributed virtual switch (DVS).

Public SSL Certificate

Cisco UCS Manager generates a default, self-signed SSL certificate to support communication with vCenter. You can also provide your own custom certificate.
Custom Extension Files

You can create a custom extension file for a Cisco UCS instance that does not use either or both of the default extension key or SSL certificate. For example, you can create the same custom key in two different Cisco UCS instances when they are managed by the same VMware vCenter instance.

Important

You cannot change an extension key that is being used by a DVS or vCenter. If you want to use a custom extension key, we recommend that you create and register the custom key before you create the DVS in Cisco UCS Manager to avoid any possibility of having to delete and recreate the associated DVS.

Distributed Virtual Switches

Each VMware ESX host has its own software-based virtual switch (vSwitch) in its hypervisor that performs the switching operations between its virtual machines (VMs). The Cisco UCS distributed virtual switch (DVS) is a software-based virtual switch that runs alongside the vSwitch in the ESX hypervisor, and can be distributed across multiple ESX hosts. Unlike vSwitch, which uses its own local port configuration, a DVS associated with multiple ESX hosts uses the same port configuration across all ESX hosts.

After associating an ESX host to a DVS, you can migrate existing VMs from the vSwitch to the DVS, and you can create VMs to use the DVS instead of the vSwitch. With the hardware-based VN-Link implementation, when a VM uses the DVS, all VM traffic passes through the DVS and ASIC-based switching is performed by the fabric interconnect.

In Cisco UCS Manager, DVSes are organized in the following hierarchy:

```
vCenter
  Folder (optional)
  Datacenter
    Folder (required)
    DVS
```

At the top of the hierarchy is the vCenter, which represents a VMware vCenter instance. Each vCenter contains one or more datacenters, and optionally vCenter folders with which you can organize the datacenters. Each datacenter contains one or more required datacenter folders. Datacenter folders contain the DVSes.

Port Profiles

Port profiles contain the properties and settings used to configure virtual interfaces in Cisco UCS for VN-Link in hardware. The port profiles are created and administered in Cisco UCS Manager. There is no clear visibility into the properties of a port profile from VMware vCenter.

In VMware vCenter, a port profile is represented as a port group. Cisco UCS Manager pushes the port profile names to vCenter, which displays the names as port groups. None of the specific networking properties or settings in the port profile are visible in VMware vCenter.

After a port profile is created, assigned to, and actively used by one or more DVSes, any changes made to the networking properties of the port profile in Cisco UCS Manager are immediately applied to those DVSes.

You must configure at least one port profile client for a port profile, if you want Cisco UCS Manager to push the port profile to VMware vCenter.

Port Profile Clients

The port profile client determines the DVSes to which a port profile is applied. By default, the port profile client specifies that the associated port profile applies to all DVSes in the vCenter. However, you can configure the client to apply the port profile to all DVSes in a specific datacenter or datacenter folder, or only to one DVS.
VN-Link in Hardware Considerations

How you configure a Cisco UCS instance for VN-Link in hardware has several dependencies. The information you need to consider before you configure VN-Link in hardware includes the following:

- A Cisco UCS instance can have a maximum of 4 vCenters
- Each vCenter can have a maximum of 8 distributed virtual switches
- Each distributed virtual switch can have a maximum of 4096 ports
- Each port profile can have a maximum of 4096 ports
- Each Cisco UCS instance can have a maximum of 256 port profiles

Note

The VMware DVS implementation requires that you configure and connect a maximum of two uplinks. To fulfill this configuration requirement, you must create a maximum of two static vNICs in Cisco UCS Manager. These static vNICs only exist to fulfill the VMware vCenter uplinks requirement and do not forward any data traffic.

VMware vCenter cannot support more than two uplinks. If you attempt to create and configure a third static vNIC for VMware vCenter, a configuration error is reported.
Overview of Cisco UCS Manager

This chapter includes the following sections:

- About Cisco UCS Manager, page 39
- Tasks You Can Perform in Cisco UCS Manager, page 40
- Tasks You Cannot Perform in Cisco UCS Manager, page 42
- Cisco UCS Manager in a High Availability Environment, page 42

About Cisco UCS Manager

Cisco UCS Manager is the management system for all components in a Cisco UCS instance. Cisco UCS Manager runs within the fabric interconnect. You can use any of the interfaces available with this management service to access, configure, administer, and monitor the network and server resources for all chassis connected to the fabric interconnect.

Multiple Management Interfaces

Cisco UCS Manager includes the following interfaces you can use to manage a Cisco UCS instance:

- Cisco UCS Manager GUI
- Cisco UCS Manager CLI
- XML API
- KVM
- IPMI

Almost all tasks can be performed in any of the interfaces, and the results of tasks performed in one interface are automatically displayed in another.

However, you cannot do the following:

- Use Cisco UCS Manager GUI to invoke Cisco UCS Manager CLI.
- View the results of a command invoked through Cisco UCS Manager CLI in Cisco UCS Manager GUI.
- Generate CLI output from Cisco UCS Manager GUI.
Centralized Management
Cisco UCS Manager centralizes the management of resources and devices, rather than using multiple management points. This centralized management includes management of the following devices in a Cisco UCS instance:

- Fabric interconnects.
- Software switches for virtual servers.
- Power and environmental management for chassis and servers.
- Configuration and firmware updates for server network interfaces (Ethernet NICs and converged network adapters).
- Firmware and BIOS settings for servers.

Support for Virtual and Physical Servers
Cisco UCS Manager abstracts server state information—including server identity, I/O configuration, MAC addresses and World Wide Names, firmware revision, and network profiles—into a service profile. You can apply the service profile to any server resource in the system, providing the same flexibility and support to physical servers, virtual servers, and virtual machines connected to a virtual device provided by a VIC adapter.

Role-Based Administration and Multi-Tenancy Support
Cisco UCS Manager supports flexibly defined roles so that data centers can use the same best practices with which they manage discrete servers, storage, and networks to operate a Cisco UCS instance. You can create user roles with privileges that reflect user responsibilities in the data center. For example, you can create the following:

- Server administrator roles with control over server-related configurations.
- Storage administrator roles with control over tasks related to the SAN.
- Network administrator roles with control over tasks related to the LAN.

Cisco UCS is multi-tenancy ready, exposing primitives that allow systems management software using the API to get controlled access to Cisco UCS resources. In a multi-tenancy environment, Cisco UCS Manager enables you to create locales for user roles that can limit the scope of a user to a particular organization.

Tasks You Can Perform in Cisco UCS Manager
You can use Cisco UCS Manager to perform management tasks for all physical and virtual devices within a Cisco UCS instance.

Cisco UCS Hardware Management
You can use Cisco UCS Manager to manage all hardware within a Cisco UCS instance, including the following:

- Chassis
- Servers
- Fabric interconnects
- Fans
• Ports
• Interface cards
• I/O modules

Cisco UCS Resource Management

You can use Cisco UCS Manager to create and manage all resources within a Cisco UCS instance, including the following:

• Servers
• WWN addresses
• MAC addresses
• UUIDs
• Bandwidth

Server Administration in a Cisco UCS Instance

A server administrator can use Cisco UCS Manager to perform server management tasks within a Cisco UCS instance, including the following:

• Create server pools and policies related to those pools, such as qualification policies
• Create policies for the servers, such as discovery policies, scrub policies, and IPMI policies
• Create service profiles and, if desired, service profile templates
• Apply service profiles to servers
• Monitor faults, alarms, and the status of equipment

Network Administration in a Cisco UCS Instance

A network administrator can use Cisco UCS Manager to perform tasks required to create LAN configuration for a Cisco UCS instance, including the following:

• Configure uplink ports, port channels, and LAN PIN groups
• Create VLANs
• Configure the quality of service classes and definitions
• Create the pools and policies related to network configuration, such as MAC address pools and Ethernet adapter profiles

Storage Administration in a Cisco UCS Instance

A storage administrator can use Cisco UCS Manager to perform tasks required to create SAN configuration for a Cisco UCS instance, including the following:

• Configure ports, port channels, and SAN PIN groups
• Create VSANs
• Configure the quality of service classes and definitions
• Create the pools and policies related to the network configuration, such as WWN pools and Fibre Channel adapter profiles

Tasks You Cannot Perform in Cisco UCS Manager

You cannot use Cisco UCS Manager to perform certain system management tasks that are not specifically related to device management within a Cisco UCS instance

No Cross-System Management

You cannot use Cisco UCS Manager to manage systems or devices that are outside the Cisco UCS instance where Cisco UCS Manager is located. For example, you cannot manage heterogeneous environments, such as non-Cisco UCS x86 systems, SPARC systems, or PowerPC systems.

No Operating System or Application Provisioning or Management

Cisco UCS Manager provisions servers and, as a result, exists below the operating system on a server. Therefore, you cannot use it to provision or manage operating systems or applications on servers. For example, you cannot do the following:

• Deploy an OS, such as Windows or Linux
• Deploy patches for software, such as an OS or an application
• Install base software components, such as anti-virus software, monitoring agents, or backup clients
• Install software applications, such as databases, application server software, or web servers
• Perform operator actions, including restarting an Oracle database, restarting printer queues, or handling non-Cisco UCS user accounts
• Configure or manage external storage on the SAN or NAS storage

Cisco UCS Manager in a High Availability Environment

In a high availability environment with two fabric interconnects, you can run a separate instance of Cisco UCS Manager on each fabric interconnect. The Cisco UCS Manager on the primary fabric interconnect acts as the primary management instance, and the Cisco UCS Manager on the other fabric interconnect is the subordinate management instance.

The two instances of Cisco UCS Manager communicate across a private network between the L1 and L2 Ethernet ports on the fabric interconnects. Configuration and status information is communicated across this private network to ensure that all management information is replicated. This ongoing communication ensures that the management information for Cisco UCS persists even if the primary fabric interconnect fails. In addition, the "floating" management IP address that runs on the primary Cisco UCS Manager ensures a smooth transition in the event of a failover to the subordinate fabric interconnect.
Overview of Cisco UCS Manager GUI

This chapter includes the following sections:

- Overview of Cisco UCS Manager GUI, page 43
- Logging in to Cisco UCS Manager GUI through HTTPS, page 49
- Logging in to Cisco UCS Manager GUI through HTTP, page 50
- Logging Off Cisco UCS Manager GUI, page 50
- Changing the Cisco UCS Manager GUI Properties, page 51
- Determining the Acceptable Range of Values for a Field, page 52
- Copying the XML, page 53

Overview of Cisco UCS Manager GUI

Cisco UCS Manager GUI is the Java application that provides a GUI interface to Cisco UCS Manager. You can start and access Cisco UCS Manager GUI from any computer that meets the requirements listed in the System Requirements section of the Cisco UCS Software Release Notes.

Each time you start Cisco UCS Manager GUI, Cisco UCS Manager uses Java Web Start technology to cache the current version of the application on your computer. As a result, you do not have to download the application every time you log in. You only have to download the application the first time that you log in from a computer after the Cisco UCS Manager software has been updated on a system.

Tip

The title bar displays the name of the Cisco UCS instance to which you are connected.

Fault Summary Area

The Fault Summary area displays in the upper left of Cisco UCS Manager GUI. This area displays a summary of all faults that have occurred in the Cisco UCS instance.
Each type of fault is represented by a different icon. The number below each icon indicates how many faults of that type have occurred in the system. If you click an icon, Cisco UCS Manager GUI opens the Faults tab in the Work area and displays the details of all faults of that type.

The following table describes the types of faults each icon in the Fault Summary area represents:

<table>
<thead>
<tr>
<th>Fault Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Alarms</td>
<td>Critical problems exist with one or more components. These issues should be researched and fixed immediately.</td>
</tr>
<tr>
<td>Major Alarms</td>
<td>Serious problems exist with one or more components. These issues should be researched and fixed immediately.</td>
</tr>
<tr>
<td>Minor Alarms</td>
<td>Problems exist with one or more components that may adversely affect system performance. These issues should be researched and fixed as soon as possible before they become major or critical issues.</td>
</tr>
<tr>
<td>Warning Alarms</td>
<td>Potential problems exist with one or more components that may adversely affect system performance if they are allowed to continue. These issues should be researched and fixed as soon as possible before the problem grows worse.</td>
</tr>
</tbody>
</table>

Tip
If you only want to see faults for a specific object, navigate to that object and then review the Faults tab for that object.

Navigation Pane

The Navigation pane displays on the left side of Cisco UCS Manager GUI below the Fault Summary area. This pane provides centralized navigation to all equipment and other components in the Cisco UCS instance. When you select a component in the Navigation pane, the object displays in the Work area.

The Navigation pane has five tabs. Each tab includes the following elements:

- A Filter combo box that you can use to filter the navigation tree to view all nodes or only one node.
- An expandable navigation tree that you can use to access all components on that tab. An icon next to an folder indicates that the node or folder has subcomponents.

Equipment Tab

This tab contains a basic inventory of the equipment in the Cisco UCS instance. A system or server administrator can use this tab to access and manage the chassis, fabric interconnects, servers, and other hardware. A red, orange, or yellow rectangle around a device name indicate that the device has a fault.

The major nodes below the Equipment node in this tab are the following:

- Chassis
- Fabric Interconnects
Servers Tab
This tab contains the server-related components, such as service profiles, polices, and pools. A server administrator typically accesses and manages the components on this tab.
The major nodes below the Servers node in this tab are the following:
• Service Profiles
• Service Profile Templates
• Policies
• Pools

LAN Tab
This tab contains the components related to LAN configuration, such as LAN pin groups, quality of service classes, VLANs, policies, pools, and the internal domain. A network administrator typically accesses and manages the components on this tab.
The major nodes below the LAN node in this tab are the following:
• LAN Cloud
• Policies
• Pools
• Internal LAN Domains

SAN Tab
This tab contains the components related to SAN configuration, such as pin groups, VSANs, policies, and pools. A storage administrator typically accesses and manages the components on this tab.
The major nodes below the SAN node in this tab are the following:
• SAN Cloud
• Policies
• Pools

VM Tab
This tab contains the components required to configure VN-Link in Hardware for servers with a VIC adapter. For example, you use components on this tab to configure the connection between Cisco UCS Manager and VMware vCenter, to configure distributed virtual switches, port profiles, and to view the virtual machines hosted on servers in the Cisco UCS instance.
The major node below the All node in this tab is the VMware node.

Admin Tab
This tab contains system-wide settings, such as user manager and communication services, and troubleshooting components, such as faults and events. The system administrator typically accesses and manages the components on this tab.
The major nodes below the All node in this tab are the following:
• Faults, Events and Audit Log
• User Management
• Key Management
• Communication Management
• Stats Management
• Timezone Management
• Capability Catalog

Toolbar

The toolbar displays on the right side of Cisco UCS Manager GUI above the Work pane. You can use the menu buttons in the toolbar to perform common actions, including the following actions:

• Navigate between previously viewed items in the Work pane
• Create elements for the Cisco UCS instance
• Set options for Cisco UCS Manager GUI
• Access online help for Cisco UCS Manager GUI

Work Pane

The Work pane displays on the right side of Cisco UCS Manager GUI. This pane displays details about the component selected in the Navigation pane.

The Work pane includes the following elements:

• A navigation bar that displays the path from the main node of the tab in the Navigation pane to the selected element. You can click any component in this path to display that component in the Work pane.

• A content area that displays tabs with information related to the component selected in the Navigation pane. The tabs displayed in the content area depends upon the selected component. You can use these tabs to view information about the component, create components, modify properties of the component, and examine a selected object.

Status Bar

The status bar displays across the bottom of Cisco UCS Manager GUI. The status bar provides information about the state of the application.

On the left, the status bar displays the following information about your current session in Cisco UCS Manager GUI:

• A lock icon that indicates the protocol you used to log in. If the icon is locked, you connected with HTTPS and if the icon is unlocked, you connected with HTTP.

• The username you used to log in.

• The IP address of the server where you logged in.
On the right, the status bar displays the system time.

Table Customization

Cisco UCS Manager GUI enables you to customize the tables on each tab. You can change the type of content that you view and filter the content.

Table Customization Menu Button

This menu button in the upper right of every table enables you to control and customize your view of the table. The drop-down menu for this button includes the following options:

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Name</td>
<td>The menu contains an entry for each column in the table. Click a column name to display or hide the column.</td>
</tr>
<tr>
<td>Horizontal Scroll</td>
<td>If selected, adds a horizontal scroll bar to the table. If not selected, when you widen one of the columns, all columns to the right narrow and do not scroll.</td>
</tr>
<tr>
<td>Pack All Columns</td>
<td>Resizes all columns to their default width.</td>
</tr>
<tr>
<td>Pack Selected Column</td>
<td>Resizes only the selected column to its default width.</td>
</tr>
</tbody>
</table>

Table Content Filtering

The Filter button above each table enables you to filter the content in the table according to the criteria that you set in the Filter dialog box. The dialog box includes the following filtering options:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable option</td>
<td>No filtering criteria is used on the content of the column. This is the default setting.</td>
</tr>
<tr>
<td>Equal option</td>
<td>Displays only that content in the column which exactly matches the value specified.</td>
</tr>
<tr>
<td>Not Equal option</td>
<td>Displays only that content in the column which does not exactly match the value specified.</td>
</tr>
</tbody>
</table>
| Wildcard option | The criteria you enter can include one of the following wildcards:
 | • _ (underscore) or ? (question mark)—replaces a single character
<pre><code> | • % (percent sign) or * (asterisk)—replaces any sequence of characters |
</code></pre>
<p>| Less Than option | Displays only that content in the column which is less than the value specified. |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less Than Or Equal option</td>
<td>Displays only that content in the column which is less than or equal to the value specified.</td>
</tr>
<tr>
<td>Greater Than option</td>
<td>Displays only that content in the column which is greater than the value specified.</td>
</tr>
<tr>
<td>Greater Than Or Equal option</td>
<td>Displays only that content in the column which is greater than or equal to the value specified.</td>
</tr>
</tbody>
</table>

LAN Uplinks Manager

The LAN Uplinks Manager provides a single interface where you can configure the connections between Cisco UCS and the LAN. You can use the LAN Uplinks Manager to create and configure the following:

- Ethernet switching mode
- Uplink Ethernet ports
- Port channels
- LAN pin groups
- Named VLANs
- Server ports
- QoS system classes

Some of the configuration that you can do in the LAN Uplinks Manager can also be done in nodes on other tabs, such as the Equipment tab or the LAN tab.

Internal Fabric Manager

The Internal Fabric Manager provides a single interface where you can configure server ports for a fabric interconnect in a Cisco UCS instance. The Internal Fabric Manager is accessible from the General tab for that fabric interconnect.

Some of the configuration that you can do in the Internal Fabric Manager can also be done in nodes on the Equipment tab, on the LAN tab, or in the LAN Uplinks Manager.

Hybrid Display

For each chassis in a Cisco UCS instance, Cisco UCS Manager GUI provides a hybrid display that includes both physical components and connections between the chassis and the fabric interconnects.

This tab displays detailed information about the connections between the selected chassis and the fabric interconnects. It has an icon for the following:

- Each fabric interconnect in the system
• The I/O module (IOM) in the selected component, which is shown as an independent unit to make the connection paths easier to see
• The selected chassis showing the servers and PSUs

The lines between the icons represent the connections between the following:
• DCE interface on each server and the associated server port on the IOM. These connections are created by Cisco and cannot be changed.
• Server port on the IOM and the associated port on the fabric interconnect. You can change these connections if desired.

You can mouse over the icons and lines to view tooltips identifying each component or connection, and you can double-click any component to view properties for that component.

If there is a fault associated with the component or any of its subcomponents, Cisco UCS Manager GUI displays a fault icon on top of the appropriate component. If there are multiple fault messages, Cisco UCS Manager GUI displays the icon associated with the most serious fault message in the system.

Web Session Limits

Web session limits are used by Cisco UCS Manager to restrict the number of web sessions (both GUI and XML) permitted access to the system at any one time.

By default, the number of concurrent web sessions allowed by Cisco UCS Manager is set to the maximum value: 256.

Logging in to Cisco UCS Manager GUI through HTTPS

The default HTTPS web link for Cisco UCS Manager GUI is `https://UCSManager_IP`, where `UCSManager_IP` represents the IP address assigned to Cisco UCS Manager. This IP address can be one of the following:

• Cluster configuration: `UCSManager_IP` represents the virtual or cluster IP address assigned to Cisco UCS Manager. Do not use the IP addresses assigned to the management port on the fabric interconnects.

• Standalone configuration: `UCSManager_IP` represents the IP address for the management port on the fabric interconnect

Procedure

Step 1
In your web browser, type the Cisco UCS Manager GUI web link or select the bookmark in your browser.

Step 2
If a *Security Alert* dialog box appears, click *Yes* to accept the security certificate and continue.

Step 3
In the Cisco UCS Manager page, click *Launch*.
Depending upon the web browser you use to log in, you may be prompted to download or save the .JNLP file.

Step 4
If a *Security* dialog box displays, do the following:
 a) (Optional) Check the check box to accept all content from Cisco.
b) Click **Yes** to accept the certificate and continue.

Step 5 In the **Login** dialog box, do the following:

a) Enter your username and password.
b) If the Cisco UCS instance implements domains, select the appropriate domain from the **Domain** drop-down list.
c) Click **Login**.

Logging in to Cisco UCS Manager GUI through HTTP

The default HTTP web link for Cisco UCS Manager GUI is `http://UCSManager_IP`, where `UCSManager_IP` represents the IP address assigned to Cisco UCS Manager. This IP address can be one of the following:

- **Cluster configuration**: `UCSManager_IP` represents the virtual or cluster IP address assigned to Cisco UCS Manager. Do not use the IP addresses assigned to the management port on the fabric interconnects.
- **Standalone configuration**: `UCSManager_IP` represents the IP address for the management port on the fabric interconnect

Procedure

Step 1 In your web browser, type the Cisco UCS Manager GUI web link or select the bookmark in your browser.

Step 2 In the Cisco UCS Manager page, click **Launch**.

Depending upon the web browser you use to log in, you may be prompted to download or save the JNLP file.

Step 3 In the **Login** dialog box, do the following:

a) Enter your username and password.
b) If the Cisco UCS instance implements domains, select the appropriate domain from the **Domain** drop-down list.
c) Click **Login**.

Logging Off Cisco UCS Manager GUI

Procedure

Step 1 In Cisco UCS Manager GUI, click **Exit** in the upper right.

Cisco UCS Manager GUI blurs on your screen to indicate that you cannot use it and displays the **Exit** dialog box.
Step 2 From the drop-down list, select one of the following:

- **Exit** to log out and shut down Cisco UCS Manager GUI.
- **Log Off** to log out of Cisco UCS Manager GUI and log in a different user.

Step 3 Click **OK**.

Changing the Cisco UCS Manager GUI Properties

Procedure

Step 1
In the toolbar, click **Options** to open the **Properties** dialog box.

Step 2
(Optional) To specify if Cisco UCS Manager GUI will require confirmation for certain procedures, do the following:

a) In the right pane, click **Confirmation Messages**.

b) In the left pane, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm Deletion check box</td>
<td>If checked, Cisco UCS Manager GUI requires that you confirm all delete operations.</td>
</tr>
<tr>
<td>Confirm Discard Changes check box</td>
<td>If checked, Cisco UCS Manager GUI requires that you confirm before the system discards any changes.</td>
</tr>
<tr>
<td>Confirm Modification/Creation check box</td>
<td>If checked, Cisco UCS Manager GUI requires that you confirm before the system modifies or creates objects.</td>
</tr>
<tr>
<td>Confirm Successful Operations check box</td>
<td>If checked, Cisco UCS Manager GUI displays a confirmation when operations are successful.</td>
</tr>
</tbody>
</table>

Step 3
(Optional) To configure SSH external applications, do the following:

a) In the right pane, click **External Applications**.

b) In the left pane, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH field</td>
<td>The application to use for SSH processing.</td>
</tr>
<tr>
<td>SSH Parameters field</td>
<td>Any parameters to include in all SSH commands.</td>
</tr>
</tbody>
</table>

Step 4
(Optional) To change the session properties, do the following:
a) In the right pane, click **Session**.
b) In the **Session** page, update one or more of the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatically Reconnect check box</td>
<td>If checked, the system tries to reconnect if communication between the GUI and the fabric interconnect is interrupted.</td>
</tr>
<tr>
<td>GUI Inactivity Time Out drop-down list</td>
<td>The number of minutes the system should wait before ending an inactive session. To specify that the session should not time out regardless of the length of inactivity, choose NEVER.</td>
</tr>
<tr>
<td>Reconnection Interval field</td>
<td>If the Automatically Reconnect check box is checked, this is the number of seconds the system waits before trying to reconnect.</td>
</tr>
</tbody>
</table>

Step 5 (Optional) To change the look of Cisco UCS Manager GUI, do the following:
a) In the right pane, click **Visual Enhancements**.
b) In the **Visual Enhancements** page, update one or more of the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max History Size field</td>
<td>The number of tabs the system should store in memory for use with the Forward and Back toolbar buttons.</td>
</tr>
<tr>
<td>Right Aligned Labels check box</td>
<td>If checked, all labels are right-aligned with respect to one another. Otherwise all labels are left-aligned.</td>
</tr>
<tr>
<td>Show Image while Dragging check box</td>
<td>If checked, when you drag an object from one place to another, the GUI displays a transparent version of that object until you drop the object in its new location.</td>
</tr>
<tr>
<td>Wizard Transition Effects check box</td>
<td>If checked, when you go to a new page in a wizard the first page fades out and the new page fades in. Otherwise the page changes without a visible transition.</td>
</tr>
</tbody>
</table>

Step 6 Click **OK**.

Determining the Acceptable Range of Values for a Field

Some properties have a restricted range of values that you can enter. You can use this procedure to determine that acceptable range for fields in a dialog box, window, or tab. You cannot use this procedure to determine the acceptable range of values for properties listed in a table or tree.
Procedure

Step 1 Place your cursor in the field for which you want to check the range to give focus to that field.

Step 2 Press Alt + Shift + R. Cisco UCS Manager GUI displays the acceptable range of values for a few seconds. The range disappears if you click anywhere on the screen.

Copying the XML

To assist you in developing scripts or creating applications with the XML API for Cisco UCS, Cisco UCS Manager GUI includes an option to copy the XML used to create an object in Cisco UCS Manager. This option is available on the right-click menu for most object nodes in the Navigation pane, such as the Port Profiles node or the node for a specific service profile.

Procedure

Step 1 In the Navigation pane, navigate to the object for which you want to copy the XML.

Step 2 Right-click on that object and choose Copy XML.

Step 3 Paste the XML into an XML editor, Notepad, or another application.
PART II

System Configuration

• Configuring the Fabric Interconnects, page 57
• Configuring Ports, page 69
• Configuring Communication Services, page 95
• Configuring Authentication, page 111
• Configuring Organizations, page 135
• Configuring Role-Based Access Control, page 139
• Managing Firmware, page 159
• Configuring DNS Servers, page 207
• Configuring System-Related Policies, page 209
• Managing Licenses, page 213
Configuring the Fabric Interconnects

This chapter includes the following sections:

- Initial System Setup, page 57
- Performing an Initial System Setup for a Standalone Configuration, page 59
- Initial System Setup for a Cluster Configuration, page 61
- Enabling a Standalone Fabric Interconnect for Cluster Configuration, page 64
- Ethernet Switching Mode, page 64
- Configuring Ethernet Switching Mode, page 65
- Fibre Channel Switching Mode, page 66
- Configuring Fibre Channel Switching Mode, page 66
- Changing the Properties of the Fabric Interconnects, page 67
- Determining the Leadership Role of a Fabric Interconnect, page 68

Initial System Setup

The first time that you access a fabric interconnect in a Cisco UCS instance, a setup wizard prompts you for the following information required to configure the system:

- Installation method (GUI or CLI)
- Setup mode (restore from full system backup or initial setup)
- System configuration type (standalone or cluster configuration)
- System name
- Admin password
- Management port IP address and subnet mask
- Default gateway IP address
- DNS Server IP address
• Default domain name

Setup Mode

You can choose to either restore the system configuration from an existing backup file, or manually set up the system by going through the Setup wizard. If you choose to restore the system, the backup file must be reachable from the management network.

System Configuration Type

You can configure a Cisco UCS instance to use a single fabric interconnect in a standalone configuration or to use a redundant pair of fabric interconnects in a cluster configuration.

A cluster configuration provides high availability. If one fabric interconnect becomes unavailable, the other takes over. Only one management port (Mgmt0) connection is required to support a cluster configuration; however, both Mgmt0 ports should be connected to provide link-level redundancy.

In addition, a cluster configuration actively enhances failover recovery time for redundant virtual interface (VIF) connections. When an adapter has an active VIF connection to one fabric interconnect and a standby VIF connection to the second, the learned MAC addresses of the active VIF are replicated but not installed on the second fabric interconnect. If the active VIF fails, the second fabric interconnect installs the replicated MAC addresses and broadcasts them to the network through gratuitous ARP messages, shortening the switchover time.

Note

The cluster configuration provides redundancy only for the management plane. Data redundancy is dependent on the user configuration and may require a third-party tool to support data redundancy.

To use the cluster configuration, the two fabric interconnects must be directly connected together using Ethernet cables between the L1 (L1-to-L1) and L2 (L2-to-L2) high availability ports, with no other fabric interconnects in between. This allows the two fabric interconnects to continuously monitor the status of each other and quickly know when one has failed.

Both fabric interconnects in a cluster configuration must go through the initial setup process. The first fabric interconnect to be set up must be enabled for a cluster configuration. Then, when the second fabric interconnect is set up, it detects the first fabric interconnect as a peer fabric interconnect in the cluster.

For more information, refer to the Cisco UCS 6100 Series Fabric Interconnect Hardware Installation Guide.

Management Port IP Address

In a standalone configuration, you must specify only one IP address and the subnet mask for the single management port on the fabric interconnect.

In a cluster configuration, you must specify the following three IP addresses in the same subnet:

• Management port IP address for fabric interconnect A
• Management port IP address for fabric interconnect B
• Cluster IP address
Performing an Initial System Setup for a Standalone Configuration

Before You Begin

1. Verify the following physical connections on the fabric interconnect:
 - The console port is physically connected to a computer terminal or console server
 - The management Ethernet port (mgmt0) is connected to an external hub, switch, or router

 For more information, refer to the Cisco UCS Hardware Installation Guide for your fabric interconnect.

2. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit

3. Collect the following information that you will need to supply during the initial setup:
 - System name.
 - Password for the admin account. Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.
 - Management port IP address and subnet mask.
 - Default gateway IP address.
 - DNS server IP address (optional).
 - Domain name for the system (optional).

Procedure

Step 1 Connect to the console port.
Step 2 Power on the fabric interconnect.
You will see the power on self-test messages as the fabric interconnect boots.
Step 3 At the installation method prompt, enter gui.
Step 4 If the system cannot access a DHCP server, you are prompted to enter the following information:
 - IP address for the management port on the fabric interconnect
 - Subnet mask for the management port on the fabric interconnect
 - IP address for the default gateway assigned to the fabric interconnect
Step 5 Copy the web link from the prompt into a supported web browser and go to the Cisco UCS Manager GUI launch page.

Step 6 On the Cisco UCS Manager GUI launch page, select **Express Setup**.

Step 7 On the **Express Setup** page, select **Initial Setup** and click **Submit**.

Step 8 In the **Cluster and Fabric Setup** Area, select the **Standalone Mode** option.

Step 9 In the **System Setup** Area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name field</td>
<td>The name assigned to the Cisco UCS instance</td>
</tr>
<tr>
<td></td>
<td>In a standalone configuration, the system adds "-A" to the system name.</td>
</tr>
<tr>
<td></td>
<td>In a cluster configuration, the system adds "-A" to the fabric interconnect</td>
</tr>
<tr>
<td></td>
<td>assigned to fabric A, and "-B" to the fabric interconnect assigned to fabric B.</td>
</tr>
<tr>
<td>Admin Password field</td>
<td>The password used for the Admin account on the fabric interconnect.</td>
</tr>
<tr>
<td></td>
<td>Choose a strong password that meets the guidelines for Cisco UCS Manager</td>
</tr>
<tr>
<td></td>
<td>passwords. This password cannot be blank.</td>
</tr>
<tr>
<td>Confirm Admin Password field</td>
<td>The password used for the Admin account on the fabric interconnect.</td>
</tr>
<tr>
<td>Mgmt IP Address field</td>
<td>The static IP address for the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>Mgmt IP Netmask field</td>
<td>The subnet mask for the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>Default Gateway field</td>
<td>The IP address for the default gateway assigned to the management port</td>
</tr>
<tr>
<td></td>
<td>on the fabric interconnect.</td>
</tr>
<tr>
<td>DNS Server IP field</td>
<td>The IP address for the DNS server assigned to the fabric interconnect.</td>
</tr>
<tr>
<td>Domain Name field</td>
<td>The name of the domain in which the fabric interconnect resides.</td>
</tr>
</tbody>
</table>

Step 10 Click **Submit**.

A page displays the results of your setup operation.
Initial System Setup for a Cluster Configuration

Performing an Initial System Setup on the First Fabric Interconnect

Before You Begin

1. Verify the following physical connections on the fabric interconnect:
 - A console port on the first fabric interconnect is physically connected to a computer terminal or console server
 - The management Ethernet port (mgmt0) is connected to an external hub, switch, or router
 - The L1 ports on both fabric interconnects are directly connected to each other
 - The L2 ports on both fabric interconnects are directly connected to each other

 For more information, refer to the Cisco UCS Hardware Installation Guide for your fabric interconnect.

2. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit

3. Collect the following information that you will need to supply during the initial setup:
 - System name.
 - Password for the admin account. Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.
 - Three static IP addresses: two for the management port on both fabric interconnects (one per fabric interconnect) and one for the cluster IP address used by Cisco UCS Manager.
 - Subnet mask for the three static IP addresses.
 - Default gateway IP address.
 - DNS server IP address (optional).
 - Domain name for the system (optional).

Procedure

Step 1 Connect to the console port.
Step 2 Power on the fabric interconnect.
You will see the power on self-test messages as the fabric interconnect boots.

Step 3
At the installation method prompt, enter gui.

Step 4
If the system cannot access a DHCP server, you are prompted to enter the following information:

- IP address for the management port on the fabric interconnect
- Subnet mask for the management port on the fabric interconnect
- IP address for the default gateway assigned to the fabric interconnect

Step 5
Copy the web link from the prompt into a web browser and go to the Cisco UCS Manager GUI launch page.

Step 6
On the Cisco UCS Manager GUI launch page, select **Express Setup**.

Step 7
On the **Express Setup** page, select **Initial Setup** and click **Submit**.

Step 8
In the **Cluster and Fabric Setup** Area:

a) Click the **Enable Clustering** option.

b) For the **Fabric Setup** option, select **Fabric A**.

c) In the **Cluster IP Address** field, enter the IP address that Cisco UCS Manager will use.

Step 9
In the **System Setup** Area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **System Name** field | The name assigned to the Cisco UCS instance
In a standalone configuration, the system adds "-A" to the system name. In a cluster configuration, the system adds "-A" to the fabric interconnect assigned to fabric A, and "-B" to the fabric interconnect assigned to fabric B. |
| **Admin Password** field | The password used for the Admin account on the fabric interconnect.
Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank. |
| **Confirm Admin Password** field | The password used for the Admin account on the fabric interconnect. |
| **Mgmt IP Address** field | The static IP address for the management port on the fabric interconnect. |
| **Mgmt IP Netmask** field | The subnet mask for the management port on the fabric interconnect. |
| **Default Gateway** field | The IP address for the default gateway assigned to the management port on the fabric interconnect. |
| **DNS Server IP** field | The IP address for the DNS server assigned to the fabric interconnect. |
Performing an Initial System Setup on the Second Fabric Interconnect

Before You Begin

You must ensure the following:

- A console port on the second fabric interconnect is physically connected to a computer terminal or console server
- You know the password for the admin account on the first fabric interconnect that you configured.

Procedure

Step 1
Connect to the console port.

Step 2
Power on the fabric interconnect.
You will see the power on self-test messages as the fabric interconnect boots.

Step 3
At the installation method prompt, enter gui.

Step 4
If the system cannot access a DHCP server, you are prompted to enter the following information:

- IP address for the management port on the fabric interconnect
- Subnet mask for the management port on the fabric interconnect
- IP address for the default gateway assigned to the fabric interconnect

Step 5
Copy the web link from the prompt into a web browser and go to the Cisco UCS Manager GUI launch page.

Step 6
On the Cisco UCS Manager GUI launch page, select Express Setup.

Step 7
On the Express Setup page, select Initial Setup and click Submit.
The fabric interconnect should detect the configuration information for the first fabric interconnect.

Step 8
In the Cluster and Fabric Setup Area:

a) Select the Enable Clustering option.
b) For the Fabric Setup option, make sure Fabric B is selected.

Step 9
In the System Setup Area, enter the password for the Admin account into the Admin Password of Master field.

Step 10
Click Submit.
Enabling a Standalone Fabric Interconnect for Cluster Configuration

You can add a second fabric interconnect to an existing Cisco UCS instance that uses a single standalone fabric interconnect. To do this, you must enable the standalone fabric interconnect for cluster operation, and then add the second fabric interconnect to the cluster.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters local management mode.</td>
</tr>
<tr>
<td>UCS-A# connect local-mgmt</td>
<td>Enters local management mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables cluster operation on the standalone fabric interconnect with the specified IP address. When you enter this command, you are prompted to confirm that you want to enable cluster operation. Type yes to confirm.</td>
</tr>
<tr>
<td>UCS-A(local-mgmt) # enable cluster ip-addr</td>
<td>Enables cluster operation on the standalone fabric interconnect with the specified IP address. When you enter this command, you are prompted to confirm that you want to enable cluster operation. Type yes to confirm.</td>
</tr>
</tbody>
</table>

The following example enables a standalone fabric interconnect with IP address 192.168.1.101 for cluster operation:

```
UCS-A# connect local-mgmt
UCS-A(local-mgmt)# enable cluster 192.168.1.101
```

This command will enable cluster mode on this setup. You cannot change it back to stand-alone. Are you sure you want to continue? (yes/no): yes

What to Do Next

Add the second fabric interconnect to the cluster.

Ethernet Switching Mode

The Ethernet switching mode determines how the fabric interconnect behaves as a switching device between the servers and the network. The fabric interconnect operates in either of the following Ethernet switching modes:

End-Host Mode

End-host mode allows the fabric interconnect to act as an end host to the network, representing all server (hosts) connected to it through vNICs. This is achieved by pinning (either dynamically pinned or hard pinned) vNICs to uplink ports, which provides redundancy toward the network, and makes the uplink ports appear as server ports to the rest of the fabric. When in end-host mode, the fabric interconnect does not run the Spanning Tree Protocol (STP) and avoids loops by denying uplink ports from forwarding traffic to each other, and by denying egress server traffic on more than one uplink port at a time. End-host mode is the default Ethernet switching mode and should be used if either of the following are used upstream:
Layer 2 switching for L2 aggregation
Virtual Switching System (VSS) aggregation layer

When end-host mode is enabled, if a vNIC is hard pinned to an uplink port and this uplink port goes down, the system cannot re-pin the vNIC, and the vNIC remains down.

Note

Switch Mode
Switch mode is the traditional Ethernet switching mode. The fabric interconnect runs STP to avoid loops, and broadcast and multicast packets are handled in the traditional way. Switch mode is not the default Ethernet switching mode, and should be used only if the fabric interconnect is directly connected to a router, or if either of the following are used upstream:
- Layer 3 aggregation
- VLAN in a box

Note
For both Ethernet switching modes, even when vNICs are hard pinned to uplink ports, all server-to-server unicast traffic in the server array is sent only through the fabric interconnect and is never sent through uplink ports. Server-to-server multicast and broadcast traffic is sent through all uplink ports in the same VLAN.

Configuring Ethernet Switching Mode

When you change the Ethernet switching mode, Cisco UCS Manager logs you out and restarts the fabric interconnect. For a cluster configuration, Cisco UCS Manager restarts both fabric interconnects sequentially. The second fabric interconnect can take several minutes to complete the change in Ethernet switching mode and become system ready. The configuration is retained.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area of the General tab, click one of the following links:
- Set Ethernet Switching Mode
- Set Ethernet End-Host Mode

The link for the current mode is dimmed.
Step 5 In the dialog box, click Yes.
Cisco UCS Manager restarts the fabric interconnect, logs you out, and disconnects Cisco UCS Manager GUI.

Fibre Channel Switching Mode

The Fibre Channel switching mode determines how the fabric interconnect behaves as a switching device between the servers and storage devices. The fabric interconnect operates in either of the following Fibre Channel switching modes:

End-Host Mode

End-host mode allows the fabric interconnect to act as an end host to the connected fibre channel networks, representing all server (hosts) connected to it through vHBAs. This is achieved by pinning (either dynamically pinned or hard pinned) vHBAs to Fibre Channel uplink ports, which makes the Fibre Channel ports appear as server ports (N-ports) to the rest of the fabric. When in end-host mode, the fabric interconnect avoids loops by denying uplink ports from receiving traffic from one another.

End-host mode is synonymous with NPV mode. This is the default Fibre Channel Switching mode.

Note

When end-host mode is enabled, if a vHBA is hard pinned to a uplink Fibre Channel port and this uplink port goes down, the system cannot re-pin the vHBA, and the vHBA remains down.

Switch Mode

Switch mode is the traditional Fibre Channel switching mode. Switch mode allows the fabric interconnect to connect directly to a storage device. Enabling Fibre Channel switch mode is useful in POD models where there is no SAN (for example, a single Cisco UCS system connected directly to storage), or where a SAN exists (with an upstream MDS).

Note

In Fibre Channel switch mode, SAN pin groups are irrelevant. Any existing SAN pin groups will be ignored.

Switch mode is not the default Fibre Channel switching mode. Enabling Fibre Channel switching mode requires a license.

Configuring Fibre Channel Switching Mode

Important

When you change the Fibre Channel switching mode, Cisco UCS Manager logs you out and restarts the fabric interconnect. For a cluster configuration, Cisco UCS Manager restarts both fabric interconnects sequentially. The second fabric interconnect can take several minutes to complete the change in Fibre Channel switching mode and become system ready.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area of the General tab, click one of the following links:

- Set Fibre Channel Switching Mode
- Set Fibre Channel End-Host Mode

The link for the current mode is dimmed.

Step 5 In the dialog box, click Yes.
Cisco UCS Manager restarts the fabric interconnect, logs you out, and disconnects Cisco UCS Manager GUI.

Changing the Properties of the Fabric Interconnects

Note To change the subnet for a Cisco UCS instance, you must simultaneously change all subnets, the virtual IP address used to access Cisco UCS Manager, and the IP addresses for all fabric interconnects.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, click All.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area, click Management Interfaces to open the Management Interfaces dialog box.
Step 5 To change only the virtual IP address that you use to access Cisco UCS Manager, enter the desired IP address in the IP Address field in the Virtual IP area.
Step 6 To change only the name assigned to the Cisco UCS instance, enter the desired name in the Name field in the Virtual IP area.
Step 7 To change the subnet, IP address, and default gateway assigned to the fabric interconnects, update the following fields:

a) In the Virtual IP area, change the IP address used to access Cisco UCS Manager in the IP Address field.
b) In the Fabric Interconnect area for each fabric interconnect, update the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address field</td>
<td>The IP address to use when communicating with the fabric interconnect.</td>
</tr>
<tr>
<td>Subnet Mask field</td>
<td>The associated subnet mask.</td>
</tr>
</tbody>
</table>
Determining the Leadership Role of a Fabric Interconnect

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In the Equipment tab, expand Equipment > Fabric Interconnects.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the fabric interconnect for which you want to identify the role.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the General tab, click the down arrows on the High Availability Details bar to expand that area.</td>
</tr>
<tr>
<td>Step 6</td>
<td>View the Leadership field to determine whether the fabric interconnect is the primary or subordinate.</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Gateway field</td>
<td>The associated gateway.</td>
</tr>
</tbody>
</table>
Configuring Ports

This chapter includes the following sections:

- Server and Uplink Ports on the Fabric Interconnect, page 69
- Configuring Server Ports, page 70
- Configuring Uplink Ethernet Ports, page 71
- Changing the Properties of an Uplink Ethernet Port, page 71
- Configuring an FCoE Storage Port, page 72
- Reconfiguring a Port on a Fabric Interconnect, page 73
- Enabling a Port on a Fabric Interconnect, page 73
- Disabling a Port on a Fabric Interconnect, page 74
- Unconfiguring a Port on a Fabric Interconnect, page 74
- Appliance Ports, page 74
- Fibre Channel Storage Ports, page 78
- Uplink Ethernet Port Channels, page 81
- Appliance Port Channels, page 84
- Fibre Channel Port Channels, page 88
- Configuring Server Ports with the Internal Fabric Manager, page 91

Server and Uplink Ports on the Fabric Interconnect

Each fabric interconnect has a set of ports in a fixed port module that you can configure as either server ports or uplink Ethernet ports. These ports are not reserved. They cannot be used by a Cisco UCS instance until you configure them. You can add expansion modules to increase the number of uplink ports on the fabric interconnect or to add uplink Fibre Channel ports to the fabric interconnect.

You need to create LAN pin groups and SAN pin groups to pin traffic from servers to an uplink port.

Each fabric interconnect can include the following types of ports:
Server Ports

Server ports handle data traffic between the fabric interconnect and the adapter cards on the servers. You can only configure server ports on the fixed port module. Expansion modules do not include server ports.

Uplink Ethernet Ports

Uplink Ethernet ports handle Ethernet traffic between the fabric interconnect and the next layer of the network. All network-bound Ethernet traffic is pinned to one of these ports. By default, Ethernet ports are unconfigured. However, you can configure them to function in the following ways:

- Server
- Uplink
- FCoE
- Appliance

You can configure uplink Ethernet ports on either the fixed module or an expansion module.

Uplink Fibre Channel Ports

Uplink Fibre Channel ports handle FCoE traffic between the fabric interconnect and the next layer of the storage area network. All network-bound FCoE traffic is pinned to one of these ports. By default, Fibre Channel ports are uplink. However, you can configure them to function as Fibre Channel storage ports. This is useful in cases where a Cisco UCS requires a connection to a Direct-Attached Storage (DAS) device.

You can only configure uplink Fibre Channel ports on an expansion module. The fixed module does not include uplink Fibre Channel ports.

Configuring Server Ports

You can only configure server ports on the fixed port module. Expansion modules do not include server ports. This task describes only one method of configuring ports. You can also configure ports from a right-click menu, from the General tab for the port, or in the LAN Uplinks Manager.

Procedure

Step 1
In the Navigation pane, click the Equipment tab.

Step 2
In the Equipment tab, expand Fabric Interconnects > Fabric_Interconnect_Name > Fixed Module > Unconfigured Ports.

Step 3
Click one or more ports under the Unconfigured Ports node.

Step 4
Drag the selected port or ports and drop them in the Server Ports node. The port or ports are configured as server ports, removed from the list of unconfigured ports, and added to the Server Ports node.
Configuring Uplink Ethernet Ports

You can configure uplink Ethernet ports on either the fixed module or an expansion module. This task describes only one method of configuring uplink Ethernet ports. You can also configure uplink Ethernet ports from a right-click menu or from the General tab for the port.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Depending upon the location of the ports you want to configure, expand one of the following:
 • Fixed Module
 • Expansion Module
Step 4 Click one or more of the ports under the Unconfigured Ethernet Ports node.
 If you want to reconfigure a server port, appliance port, or FCoE storage port, expand the appropriate node.
Step 5 Drag the selected port or ports and drop them in the Uplink Ethernet Ports node.
 The port or ports are configured as uplink Ethernet ports, removed from the list of unconfigured ports, and added to the Uplink Ethernet Ports node.

What to Do Next

If desired, change the properties for the default flow control policy and admin speed of the uplink Ethernet port.

Changing the Properties of an Uplink Ethernet Port

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Depending upon the location of the ports you want to configure, expand one of the following:
 • Fixed Module
 • Expansion Module
Configuring an FCoE Storage Port

You can configure FCoE storage ports on either the fixed module or an expansion module. This task describes only one method of configuring FCoE storage ports. You can also configure FCoE storage ports from the General tab for the port.

Before You Begin
The Fibre Channel switching mode must be set to Switching for these ports to be valid. The storage ports cannot function in end-host mode.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Depending upon the location of the ports you want to configure, expand one of the following:
 • Fixed Module
 • Expansion Module
Step 4 Click one or more of the ports under the Unconfigured Ethernet Ports node.
 If you want to reconfigure an uplink Ethernet port, server port, or appliance port, expand the appropriate node.
Step 5 Right-click the selected port or ports and choose Configure as FCoE Storage Port.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 7 Click OK.
 The port or ports are configured as FCoE storage ports, removed from the list of unconfigured ports, and added to the Storage Ethernet Ports node.
Reconfiguring a Port on a Fabric Interconnect

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.</td>
</tr>
</tbody>
</table>
| Step 3 | Depending upon the location of the ports you want to reconfigure, expand one of the following:
 - Fixed Module
 - Expansion Module |
| Step 4 | Click the port or ports you want to reconfigure. |
| Step 5 | Drag the selected port or ports and drop them in the appropriate node. The port or ports are reconfigured as the appropriate type of port, removed from the original node, and added to the new node. |

Example: Reconfiguring an Uplink Ethernet Port as a Server Port

1. Expand the Uplink Ethernet Ports node and select the port you want to reconfigure.
2. Drag the port and drop it into the Server Ports node.

Enabling a Port on a Fabric Interconnect

After you enable or disable a port on a fabric interconnect, wait for at least 1 minute before you reacknowledge the chassis. If you reacknowledge the chassis too soon, the pinning of server traffic from the chassis may not be updated with the changes to the port that you enabled or disabled.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the LAN tab, expand LAN > LAN Cloud.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand Fabric_Interconnect_Name > Ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the port that you want to enable and choose Enable Port.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
Disabling a Port on a Fabric Interconnect

After you enable or disable a port on a fabric interconnect, wait for at least 1 minute before you reacknowledge the chassis. If you reacknowledge the chassis too soon, the pinning of server traffic from the chassis may not be updated with the changes to the port that you enabled or disabled.

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > LAN Cloud.
Step 3 Expand Fabric_Interconnect_Name > Ports.
Step 4 Right-click the port that you want to disable and choose Disable Port.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Unconfiguring a Port on a Fabric Interconnect

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Depending upon the location of the ports you want to unconfigure, expand one of the following:
 • Fixed Module
 • Expansion Module
Step 4 Click the port or ports you want to unconfigure.
Step 5 Drag the selected port or ports and drop them in the Unconfigured Ports node.
 The port or ports are unconfigured, removed from the original node, and added to the new node.

Appliance Ports

Configuring an Appliance Port

You can configure Appliance ports on either the fixed module or an expansion module.

This task describes only one method of configuring appl ports. You can also configure appliance ports from the General tab for the port.
Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, expand **Equipment > Fabric Interconnects > Fabric_Interconnect_Name**.

Step 3 Depending upon the location of the ports you want to configure, expand one of the following:

- **Fixed Module**
- **Expansion Module**

Step 4 Click one or more of the ports under the **Unconfigured Ethernet Ports** node. If you want to reconfigure a server port, uplink Ethernet port, or FCoE storage port, expand the appropriate node.

Step 5 Right-click the selected port or ports and choose **Configure as Appliance Port**.

Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Step 7 In the **Configure as Appliance Port** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority drop-down list</td>
<td>The QoS priority assigned to this port. This can be:</td>
</tr>
<tr>
<td></td>
<td>• best-effort—This priority is reserved for the Basic Ethernet traffic lane.</td>
</tr>
<tr>
<td></td>
<td>• bronze—Use this priority for vNIC traffic only.</td>
</tr>
<tr>
<td></td>
<td>• fc—Use this priority for vHBA traffic only.</td>
</tr>
<tr>
<td></td>
<td>• gold—Use this priority for vNIC traffic only.</td>
</tr>
<tr>
<td></td>
<td>• platinum—Use this priority for vNIC traffic only.</td>
</tr>
<tr>
<td></td>
<td>• silver—Use this priority for vNIC traffic only.</td>
</tr>
<tr>
<td>Pin Group drop-down list</td>
<td>The LAN pin group that you want to use as the appliance pin target to the specified fabric and port, or fabric and port channel</td>
</tr>
<tr>
<td>Create LAN Pin Group link</td>
<td>Click this link if you want to create a LAN pin group.</td>
</tr>
<tr>
<td>Admin Speed field</td>
<td>The data transfer rate for this port. Select the value that matches the destination to which the port is linked. This can be:</td>
</tr>
<tr>
<td></td>
<td>• 1Gbps</td>
</tr>
<tr>
<td></td>
<td>• 10Gbps</td>
</tr>
</tbody>
</table>

Note The admin speed can only be changed for certain ports. For more information, see the *Hardware Installation Guide* for your fabric interconnect.
Appliance Ports

### Name	Description
Port Mode field | The port mode used for the appliance port. By default, the mode is set to trunk. This can be:
- trunk—If you click this radio button, check one or more check boxes in the table to assign VLANs to the appliance port.
- access—If you click this radio button, choose a VLAN from the Select VLAN drop-down list to assign it to the appliance port.
You can also assign an Ethernet target endpoint to the appliance port if you choose this mode.
You can also click Create VLAN to create a VLAN to assign to the appliance port.

Ethernet Target Endpoint check box | Check this check box if you want to assign a VLAN or target MAC address to the appliance port. This option is only available if you configure the appliance port to use the access port mode.

Name field | A user-defined name for the endpoint.
This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Step 8
Click OK.
The port or ports are configured as Appliance ports, removed from the list of unconfigured ports, and added to the Storage Ethernet Ports node.

Modifying the Properties of an Appliance Port

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.

Step 3 Depending upon the location of the appliance port you want to modify, expand one of the following:

- Fixed Module
- Expansion Module
Step 4 Expand **Appliance Ports**.
Step 5 Click the appliance port for which you want to modify the properties.
Step 6 In the **Work** pane, click the **General** tab.
Step 7 In the **Actions** area, click **Show Interface**.
You may need to expand or use the scroll bars in the **Properties** dialog box to see all the fields.
Step 8 In the **Properties** dialog box, modify the values in one or more of the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Label field</td>
<td>A user-defined name that can be used for internal tracking or customized identification. Enter up to 32 characters. You can use any characters or spaces except <code>^</code> (carat), <code>\</code> (backslash), <code>></code> (greater than), <code><</code> (less than), <code>'</code> (single quote), <code>"</code> (double quote), <code>´</code> (accent mark).</td>
</tr>
</tbody>
</table>
| **Admin Speed** field | The data transfer rate for this port. Select the value that matches the destination to which the port is linked. This can be:
- 1Gbps
- 10Gbps

Note The admin speed can only be changed for certain ports. For more information, see the **Hardware Installation Guide** for your fabric interconnect. |
| **Priority** drop-down list |
- **best-effort**—This priority is reserved for the Basic Ethernet traffic lane.
- **bronze**—Use this priority for vNIC traffic only.
- **fc**—Use this priority for vHBA traffic only.
- **gold**—Use this priority for vNIC traffic only.
- **platinum**—Use this priority for vNIC traffic only.
- **silver**—Use this priority for vNIC traffic only. |
| **Pin Group** drop-down list | The LAN pin group that you want to use as the appliance pin target to the specified fabric and port, or fabric and port channel |
| **MAC Address** field | The MAC address for the endpoint in **nn:nn:nn:nn:nn:nn** format.
If you do not see this field, the port does not have an Ethernet target endpoint set. Click **Add Ethernet Target Endpoint** in the **Actions** area to add an endpoint. |
Fibre Channel Storage Ports

Configuring a Fibre Channel Storage Port

This task describes only one method of configuring FC storage ports. You can also configure FC storage ports from the **General** tab for the port.

Before You Begin

The Fibre Channel switching mode must be set to Switching for these ports to be valid. The storage ports cannot function in end-host mode.

Procedure

1. In the **Navigation** pane, click the **Equipment** tab.
2. On the **Equipment** tab, expand **Equipment > Fabric Interconnects > Fabric_Interconnect_Name**.
3. Expand the **Expansion Module** node.
4. Click one or more of the ports under the **Uplink FC Ports** node.
5. Right-click the selected port or ports and choose **Configure as FC Storage Port**.
6. If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
7. Click **OK**.

The port or ports are configured as FC storage ports, removed from the list of uplink FC ports, and added to the **Storage FC Ports** node.
Restoring an Uplink Fibre Channel Port

This task describes only one method of restoring an FC storage port to function as an uplink FC port. You can also reconfigure FC storage ports from the General tab for the port.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the Expansion Module node.</td>
</tr>
<tr>
<td>4</td>
<td>Click one or more of the ports under the Storage FC Ports node.</td>
</tr>
<tr>
<td>5</td>
<td>Right-click the selected port or ports and choose Configure as FC Uplink Port.</td>
</tr>
<tr>
<td>6</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
<tr>
<td>7</td>
<td>Click OK. The port or ports are configured as uplink FC ports, removed from the list of FC storage ports, and added to the Uplink FC Ports node.</td>
</tr>
</tbody>
</table>

Default Zoning

Zoning allows you to set up access control between hosts and storage devices. When a zone is configured or the configuration is updated, this information is propagated to all the other switches in the fabric.

In Cisco UCS, the zoning configuration is inherited from an upstream switch. You cannot configure zoning or view information about your zoning configuration through Cisco UCS Manager. The only configurable zoning option in Cisco UCS Manager is whether the default zone in a VSAN (nodes not assigned to any zone) permits or denies access among its members.

When default zoning is enabled, all traffic is permitted among members of the default zone.

When default zoning is disabled, all traffic is denied among members of the default zone.

Default zoning is applied on a per-VSAN basis. You cannot enable default zoning at the fabric level.

Note

Default zoned configurations are not recommended for production deployments, which must always use direct connect Fibre Channel topologies with upstream MDS or Nexus 5000 switches.
Enabling Default Zoning

Procedure

1. **Step 1** In the Navigation pane, click the SAN tab.
2. **Step 2** In the SAN tab, click the SAN node.
3. **Step 3** In the Work pane, click the VSANs tab.
4. **Step 4** Click one of the following subtabs, depending upon the type of VSAN for which you want to enable default zoning:
 - **All** Displays all VSANs in the Cisco UCS instance.
 - **Dual Mode** Displays the VSANs that are accessible to both fabric interconnects.
 - **Switch A** Displays the VSANs that are accessible to only fabric interconnect A.
 - **Switch B** Displays the VSANs that are accessible to only fabric interconnect B.
5. **Step 5** In the table, double-click the VSAN. Cisco UCS Manager GUI displays the General tab for the VSAN.
6. **Step 6** In the Actions area, click Enable Default Zoning.
7. **Step 7** If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Disabling Default Zoning

Procedure

1. **Step 1** In the Navigation pane, click the SAN tab.
2. **Step 2** In the SAN tab, click the SAN node.
3. **Step 3** In the Work pane, click the VSANs tab.
4. **Step 4** Click one of the following subtabs, depending upon the type of VSAN for which you want to disable default zoning:
 - **All** Displays all VSANs in the Cisco UCS instance.
 - **Dual Mode** Displays the VSANs that are accessible to both fabric interconnects.
 - **Switch A** Displays the VSANs that are accessible to only fabric interconnect A.
Uplink Ethernet Port Channels

An uplink Ethernet port channel allows you to group several physical uplink Ethernet ports (link aggregation) to create one logical Ethernet link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add uplink Ethernet ports to the port channel. You can add up to eight uplink Ethernet ports to a port channel.

Note
Cisco UCS uses Link Aggregation Control Protocol (LACP), not Port Aggregation Protocol (PAGP), to group the uplink Ethernet ports into a port channel. If the ports on the upstream switch are not configured for LACP, the fabric interconnects treat all ports in an uplink Ethernet port channel as individual ports and therefore forward packets.

Creating an Uplink Ethernet Port Channel

Procedure

Step 1 In the Navigation pane, click the **LAN** tab.

Step 2 On the **LAN** tab, expand **LAN > LAN Cloud**.

Step 3 Expand the node for the fabric interconnect where you want to add the port channel.

Step 4 Right-click the **Port Channels** node and choose **Create Port Channel**.

Step 5 In the **Set Port Channel Name** page of the Create Port Channel wizard, do the following:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID field</td>
<td>The identifier for the port channel. Enter an integer between 1 and 256. This ID cannot be changed after the port channel has been saved.</td>
</tr>
</tbody>
</table>
Name field

A user-defined name for the port channel. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

b) Click **Next**.

Step 6
In the **Add Ports** page of the **Create Port Channel** wizard, do the following:

a) In the **Ports** table, choose one or more ports to include in the port channel.
b) Click the **>>** button to add the ports to the **Ports in the port channel** table. You can use the **<<** button to remove ports from the port channel.

Note
Cisco UCS Manager warns you if you select a port that has been configured as a server port. You can click **Yes** in the dialog box to reconfigure that port as an uplink Ethernet port and include it in the port channel.

Step 7
Click **Finish**.

Enabling an Uplink Ethernet Port Channel

Procedure

Step 1
In the **Navigation** pane, click the **LAN** tab.

Step 2
On the **LAN** tab, expand **LAN > LAN Cloud**.

Step 3
Expand the node for the fabric interconnect that includes the port channel you want to enable.

Step 4
Expand the **Port Channels** node.

Step 5
Right-click the port channel you want to enable and choose **Enable Port Channel**.

Step 6
If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Disabling an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the LAN tab, expand LAN > LAN Cloud.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the fabric interconnect that includes the port channel you want to disable.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Expand the Port Channels node.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Right-click the port channel you want to disable and choose Enable Port Channel.</td>
</tr>
</tbody>
</table>

Adding Ports to and Removing Ports from an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the LAN tab, expand LAN > LAN Cloud > Fabric > Port Channels.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the port channel to which you want to add or remove ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Add Ports.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Add Ports dialog box, do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• To add ports, choose one or more ports in the Ports table, and then click the >> button to add the ports to the Ports in the port channel table.</td>
</tr>
<tr>
<td></td>
<td>• To remove ports, choose one or more ports in the Ports in the port channel table, and then click the << button to remove the ports from the port channel and add them to the Ports table.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>
Deleting an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the LAN tab, expand LAN > LAN Cloud.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the fabric interconnect where you want to delete the port channel.</td>
</tr>
<tr>
<td>4</td>
<td>Click the Port Channels node.</td>
</tr>
<tr>
<td>5</td>
<td>In the General tab for the Port Channels node, choose the port channel you want to delete.</td>
</tr>
<tr>
<td>6</td>
<td>Right-click the port channel and choose Delete.</td>
</tr>
</tbody>
</table>

Appliance Port Channels

An appliance port channel allows you to group several physical appliance ports (link aggregation) to create one logical Ethernet storage link for the purpose of providing fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add appliance ports to the port channel. You can add up to eight appliance ports to a port channel.

Note

Cisco UCS uses static mode, not Link Aggregation Control Protocol (LACP), to group the appliance ports into a port channel.

Creating an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the LAN tab, expand LAN > Appliances.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the fabric interconnect where you want to add the port channel.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click the Port Channels node and choose Create Port Channel.</td>
</tr>
<tr>
<td>5</td>
<td>In the Set Port Channel Name page of the Create Port Channel wizard, complete the following fields to specify the identity and other properties of the port channel:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID field</td>
<td>The unique identifier of the port channel. Enter an integer between 1 and 256. This ID cannot be changed after the port channel has been saved.</td>
</tr>
</tbody>
</table>
A user-defined name for the port channel. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters.

The quality of service setting associated with this port channel. This can be:

- **fc**—Use this priority for QoS policies that control vHBA traffic only.
- **platinum**—Use this priority for QoS policies that control vNIC traffic only.
- **gold**—Use this priority for QoS policies that control vNIC traffic only.
- **silver**—Use this priority for QoS policies that control vNIC traffic only.
- **bronze**—Use this priority for QoS policies that control vNIC traffic only.
- **best-effort**—Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic.

The pin group associated with this port channel.

Step 6
In the VLANs area, do the following:

a) In the Port Mode field, click one of the following radio buttons to select the mode you want to use for the port channel:

- **trunk**
- **access**

With either mode selected, you can click the Create VLAN link to create a new VLAN.

b) If you clicked the trunk radio button, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select column</td>
<td>Check the check box in this column for each VLAN you want to use.</td>
</tr>
<tr>
<td>Native VLAN column</td>
<td>To designate one of the VLANs as the native VLAN, click the radio button in this column.</td>
</tr>
</tbody>
</table>
c) If you clicked the access radio button, choose a VLAN from the Select VLAN drop-down list.

Step 7
(Optional) If you want to add an endpoint, check the Ethernet Target Endpoint check box and complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the endpoint. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address for the endpoint.</td>
</tr>
</tbody>
</table>

Step 8 Click Next.

Step 9 In the Add Ports page of the Create Port Channel wizard, do the following:

a) In the Ports table, choose one or more ports to include in the port channel.
b) Click the >> button to add the ports to the Ports in the port channel table.

 You can use the << button to remove ports from the port channel.

Note Cisco UCS Manager warns you if your configuration could cause issues with service profiles or port configurations. You can click Yes in the dialog box if you want to create the port channel despite those potential issues.

Step 10 Click Finish.

Enabling an Appliance Port Channel

Procedure

Step 1 In the Navigation pane, click the LAN tab.

Step 2 On the LAN tab, expand LAN > Appliances.

Step 3 Expand the node for the fabric interconnect that includes the port channel you want to enable.

Step 4 Expand the Port Channels node.

Step 5 Right-click the port channel you want to enable and choose Enable Port Channel.

Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Disabling an Appliance Port Channel

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Appliances.
Step 3 Expand the node for the fabric interconnect that includes the port channel you want to disable.
Step 4 Expand the Port Channels node.
Step 5 Right-click the port channel you want to disable and choose Disable Port Channel.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Adding Ports to and Removing Ports from an Appliance Port Channel

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Appliances > Fabric > Port Channels.
Step 3 Click the port channel to which you want to add or remove ports.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Add Ports.
Step 6 In the Add Ports dialog box, do one of the following:

- To add ports, choose one or more ports in the Ports table, and then click the >> button to add the ports to the Ports in the port channel table.
- To remove ports, choose one or more ports in the Ports in the port channel table, and then click the << button to remove the ports from the port channel and add them to the Ports table.

Step 7 Click OK.
Deleting an Appliance Port Channel

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Appliances.
Step 3 Expand the node for the fabric interconnect that includes the port channel you want to enable.
Step 4 Expand the Port Channels node.
Step 5 Right-click the port channel you want to enable and choose Disable Port Channel.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Fibre Channel Port Channels

A Fibre Channel port channel allows you to group several physical Fibre Channel ports (link aggregation) to create one logical Fibre Channel link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add Fibre Channel ports to the port channel.

You can create up to four Fibre Channel port channels in each Cisco UCS instance. Each Fibre Channel port channel can include a maximum of 16 uplink Fibre Channel ports.

Creating a Fibre Channel Port Channel

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 On the SAN tab, expand SAN > SAN Cloud.
Step 3 Expand the node for the fabric where you want to create the port channel.
Step 4 Right-click the FC Port Channels node and choose Create Port Channel.
Step 5 In the Set Port Channel Name page of the Create Port Channel wizard, do the following:

- Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID field</td>
<td>The identifier for the port channel. Enter an integer between 1 and 256. This ID cannot be changed after the port channel has been saved.</td>
</tr>
<tr>
<td>Name field</td>
<td>A user-defined name for the port channel. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
b) Click Next.

Step 6 In the Add Ports page of the Create Port Channel wizard, do the following:

- a) From the Port Channel Admin Speed drop-down list, select the admin speed for traffic on the port channel.
- b) In the Ports table, choose one or more ports to include in the port channel.
- c) Click the >> button to add the ports to the Ports in the port channel table.

 You can use the << button to remove ports from the port channel.

Step 7 Click Finish.

Enabling a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the SAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the SAN tab, expand SAN > SAN Cloud > Fabric > FC Port Channels.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the port channel you want to enable.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Enable Port Channel.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Disabling a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the SAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the SAN tab, expand SAN > SAN Cloud > Fabric > FC Port Channels.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the port channel you want to disable.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Disable Port Channel.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
Adding Ports to and Removing Ports from a Fibre Channel Port Channel

Procedure

Step 1 In the Navigation pane, click the SAN tab.

Step 2 On the SAN tab, expand SAN > SAN Cloud > Fabric > FC Port Channels.

Step 3 Click the port channel to which you want to add or remove ports.

Step 4 In the Work pane, click the General tab.

Step 5 In the Actions area, click Add Ports.

Step 6 In the Add Ports dialog box, do one of the following:

- To add ports, choose one or more ports in the Ports table, and then click the >> button to add the ports to the Ports in the port channel table.

- To remove ports, choose one or more ports in the Ports in the port channel table, and then click the << button to remove the ports from the port channel and add them to the Ports table.

Step 7 Click OK.

Modifying the Properties of a Fibre Channel Port Channel

Note If you are connecting two Fibre Channel port channels, the admin speed for both port channels must match for the link to operate. If the admin speed for one or both of the Fibre Channel port channels is set to auto, Cisco UCS adjusts the admin speed automatically.

Procedure

Step 1 In the Navigation pane, click the SAN tab.

Step 2 On the SAN tab, expand SAN > SAN Cloud > Fabric > FC Port Channels.

Step 3 Click the port channel that you want to modify.

Step 4 In the Work pane, click the General tab.

Step 5 In the Actions area, change the values in one or more of the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The user-defined name given to the port channel. This name can be between 1 and 16 alphanumeric characters.</td>
</tr>
<tr>
<td>VSAN drop-down list</td>
<td>The VSAN associated with the port channel.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Port Channel Admin Speed</td>
<td>The admin speed of the port channel. This can be:</td>
</tr>
<tr>
<td>drop-down list</td>
<td>• 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>• 2 Gbps</td>
</tr>
<tr>
<td></td>
<td>• 4 Gbps</td>
</tr>
<tr>
<td></td>
<td>• 8 Gbps</td>
</tr>
<tr>
<td></td>
<td>• auto</td>
</tr>
</tbody>
</table>

Step 6 Click **Save Changes**.

Deleting a Fibre Channel Port Channel

Procedure

- **Step 1** In the **Navigation** pane, click the **LAN** tab.
- **Step 2** On the **SAN** tab, expand **SAN > SAN Cloud > Fabric > FC Port Channels**.
- **Step 3** Right-click the port channel you want to delete and choose **Delete**.
- **Step 4** If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Configuring Server Ports with the Internal Fabric Manager

Internal Fabric Manager

The Internal Fabric Manager provides a single interface where you can configure server ports for a fabric interconnect in a Cisco UCS instance. The Internal Fabric Manager is accessible from the **General** tab for that fabric interconnect.

Some of the configuration that you can do in the Internal Fabric Manager can also be done in nodes on the **Equipment** tab, on the **LAN** tab, or in the LAN Uplinks Manager.
Launching the Internal Fabric Manager

Procedure

Step 1	In the Navigation pane, click the Equipment tab.
Step 2	On the Equipment tab, expand Equipment > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3	Click Fixed Module.
Step 4	In the Work pane, click Internal Fabric Manager in the Actions area. The Internal Fabric Manager opens in a separate window.

Configuring a Server Port with the Internal Fabric Manager

Procedure

Step 1	In the Internal Fabric Manager, click the down arrows to expand the Unconfigured Ports area.
Step 2	Right-click the port that you want to configure and choose Configure as Server Port.
Step 3	If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 4	If you have completed all tasks in the Internal Fabric Manager, click OK.

Unconfiguring a Server Port with the Internal Fabric Manager

Procedure

Step 1	In the Internal Fabric Manager, click the server port in the Server Ports table.
Step 2	Click Unconfigure Port.
Step 3	If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 4	If you have completed all tasks in the Internal Fabric Manager, click OK.
Enabling a Server Port with the Internal Fabric Manager

Procedure

Step 1 In the Internal Fabric Manager, click the server port in the Server Ports table.
Step 2 Click Enable Port.
Step 3 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 4 If you have completed all tasks in the Internal Fabric Manager, click OK.

Disabling a Server Port with the Internal Fabric Manager

Procedure

Step 1 In the Internal Fabric Manager, click the server port in the Server Ports table.
Step 2 Click Disable Port.
Step 3 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 4 If you have completed all tasks in the Internal Fabric Manager, click OK.
Configuring Communication Services

This chapter includes the following sections:

- Communication Services, page 95
- Configuring CIM-XML, page 96
- Configuring HTTP, page 97
- Configuring HTTPS, page 97
- Configuring SNMP, page 102
- Enabling Telnet, page 109
- Disabling Communication Services, page 109

Communication Services

You can use the following communication services to interface third-party applications with Cisco UCS:

<table>
<thead>
<tr>
<th>Communication Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM XML</td>
<td>This service is disabled by default and is only available in read-only mode. The default port is 5988. This common information model is one of the standards defined by the Distributed Management Task Force.</td>
</tr>
<tr>
<td>Communication Service</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HTTP</td>
<td>This service is enabled on port 80 by default. You must enable either HTTP or HTTPS to run Cisco UCS Manager GUI. If you select HTTP, all data is exchanged in clear text mode. For security purposes, we recommend that you enable HTTPS and disable HTTP. By default, Cisco UCS redirects any attempt to communicate via HTTP to the HTTPS equivalent. We recommend that you do not change this behavior. Note If you are upgrading to Cisco UCS, version 1.4(1), this does not happen by default. If you want to redirect any attempt to communicate via HTTP to an HTTPS equivalent, you should enable Redirect HTTP to HTTPS in Cisco UCS Manager.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>This service is enabled on port 443 by default. With HTTPS, all data is exchanged in encrypted mode through a secure server. For security purposes, we recommend that you only use HTTPS and either disable or redirect HTTP communications.</td>
</tr>
<tr>
<td>SMASH CLP</td>
<td>This service is enabled for read-only access and supports a limited subset of the protocols, such as the <code>show</code> command. You cannot disable it. This shell service is one of the standards defined by the Distributed Management Task Force.</td>
</tr>
<tr>
<td>SNMP</td>
<td>This service is disabled by default. If enabled, the default port is 161. You must configure the community and at least one SNMP trap. Enable this service only if your system includes integration with an SNMP server.</td>
</tr>
<tr>
<td>SSH</td>
<td>This service is enabled on port 22. You cannot disable it, nor can you change the default port. This service provides access to the Cisco UCS Manager CLI.</td>
</tr>
<tr>
<td>Telnet</td>
<td>This service is disabled by default. This service provides access to the Cisco UCS Manager CLI.</td>
</tr>
</tbody>
</table>

Configuring CIM-XML

Procedure

1. In the **Navigation** pane, click the **Admin** tab.
2. On the **Admin** tab, expand **All > Communication Management > Communication Services**.
3. Select the **Communication Services** tab.
4. In the **CIM-XML** area, click the **enabled** radio button.
The CIM-XML area expands to display the available configuration options.

Step 5
(Optional) In the Port field, change the default port that Cisco UCS Manager GUI will use for CIM-XML. The default port is 5988.

Step 6
Click Save Changes.

Configuring HTTP

Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
On the Admin tab, expand All > Communication Management > Communication Services.

Step 3
Click the Communication Services tab.

Step 4
In the HTTP area, click the enabled radio button. The HTTP area expands to display the available configuration options.

Step 5
(Optional) In the Port field, change the default port that Cisco UCS Manager GUI uses for HTTP. The default port is 80.

Step 6
(Optional) In the Redirect HTTP to HTTPS field, click the enabled radio button. You must also configure and enable HTTPS to enable redirection of HTTP logins to the HTTPS login. Once enabled, you cannot disable the redirection until you have disabled HTTPS.

Step 7
Click Save Changes.

Configuring HTTPS

Certificates, Key Rings, and Trusted Points

HTTPS uses components of the Public Key Infrastructure (PKI) to establish secure communications between two devices, such as a client's browser and Cisco UCS Manager.

Encryption Keys and Key Rings

Each PKI device holds a pair of asymmetric Rivest-Shamir-Adleman (RSA) encryption keys, one kept private and one made public, stored in an internal key ring. A message encrypted with either key can be decrypted with the other key. To send an encrypted message, the sender encrypts the message with the receiver's public key, and the receiver decrypts the message using its own private key. A sender can also prove its ownership of a public key by encrypting (also called 'signing') a known message with its own private key. If a receiver can successfully decrypt the message using the public key in question, the sender's possession of the corresponding private key is proven. Encryption keys can vary in length, with typical lengths from 512 bits to 2048 bits. In general, a longer key is more secure than a shorter key. Cisco UCS Manager provides a default key ring with an initial 1024-bit key pair, and allows you to create additional key rings.
Certificates

To prepare for secure communications, two devices first exchange their digital certificates. A certificate is a file containing a device's public key along with signed information about the device's identity. To merely support encrypted communications, a device can generate its own key pair and its own self-signed certificate. When a remote user connects to a device that presents a self-signed certificate, the user has no easy method to verify the identity of the device, and the user's browser will initially display an authentication warning. By default, Cisco UCS Manager contains a built-in self-signed certificate containing the public key from the default key ring.

Trusted Points

To provide stronger authentication for Cisco UCS Manager, you can obtain and install a third-party certificate from a trusted source, or trusted point, that affirms the identity of your device. The third-party certificate is signed by the issuing trusted point, which can be a root certificate authority (CA) or an intermediate CA or trust anchor that is part of a trust chain that leads to a root CA. To obtain a new certificate, you must generate a certificate request through Cisco UCS Manager and submit the request to a trusted point.

Creating a Key Ring

Cisco UCS Manager supports a maximum of 8 key rings, including the default key ring.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Key Management.
Step 3 Right-click Key Management and choose Create Key Ring.
Step 4 In the Create Key Ring dialog box, do the following:
 a) In the Name field, enter a unique name for the key ring.
 b) In the Modulus field, select one of the following radio buttons to specify the SSL key length in bits:
 • mod512
 • mod1024
 • mod1536
 • mod2048
 c) Click OK.

What to Do Next

Create a certificate request for this key ring.
Creating a Certificate Request for a Key Ring

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Admin tab, expand All > Key Management.</td>
</tr>
<tr>
<td>3</td>
<td>Click the key ring for which you want to create a certificate request.</td>
</tr>
<tr>
<td>4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>5</td>
<td>In the General tab, click Create Certificate Request.</td>
</tr>
<tr>
<td>6</td>
<td>In the Create Certificate Request dialog box, complete the following fields:</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Password field</td>
</tr>
<tr>
<td></td>
<td>Confirm Password field</td>
</tr>
<tr>
<td></td>
<td>Subject field</td>
</tr>
<tr>
<td></td>
<td>IP Address field</td>
</tr>
<tr>
<td>7</td>
<td>Click OK.</td>
</tr>
<tr>
<td>8</td>
<td>Copy the text of the certificate request out of the Request field and save in a file.</td>
</tr>
<tr>
<td>9</td>
<td>Send the file with the certificate request to the trust anchor or certificate authority.</td>
</tr>
</tbody>
</table>

What to Do Next

Create a trusted point and set the certificate chain for the certificate of trust received from the trust anchor.

Creating a Trusted Point

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Admin tab, expand All > Key Management.</td>
</tr>
<tr>
<td>3</td>
<td>Right-click Key Management and choose Create Trusted Point.</td>
</tr>
<tr>
<td>4</td>
<td>In the Create Trusted Point dialog box, complete the following fields:</td>
</tr>
<tr>
<td>Name field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the trusted point. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Certificate Chain field</td>
<td>The certificate information for this trusted point.</td>
</tr>
</tbody>
</table>

Step 5
Click OK.

What to Do Next
When you receive the certificate from the trust anchor or certificate authority, import it into the key ring.

Importing a Certificate into a Key Ring

Procedure

Step 1 In the Navigation pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > Key Management**.

Step 3 Click the key ring into which you want to import the certificate.

Step 4 In the **Work** pane, click the **General** tab.

Step 5 In the **Certificate** area, complete the following fields:

 a) From the **Trusted Point** drop-down list, select the trusted point for the trust anchor that granted this certificate.

 b) In the **Certificate** field, paste the text from the certificate you received from the trust anchor or certificate authority.

 Tip If the fields in an area are not displayed, click the **Expand** icon to the right of the heading.

Step 6 Click **Save Changes**.

What to Do Next
Configure your HTTPS service with the key ring.
Configuring HTTPS

After you complete the HTTPS configuration, including changing the port and key ring to be used by HTTPS, all current HTTP and HTTPS sessions are closed without warning as soon as you save or commit the transaction.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Select the Communication Services tab.
Step 4 In the HTTPS area, click the enabled radio button. The HTTPS area expands to display the available configuration options.
Step 5 (Optional) In the Port field, change the default port that Cisco UCS Manager GUI uses for HTTPS. The default port is 443.
Step 6 (Optional) From the Key Ring drop-down list, choose the key ring you created for HTTPS.
Step 7 Click Save Changes.

Deleting a Key Ring

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Key Management.
Step 3 Right-click the key ring you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Trusted Point

Before You Begin

Ensure that the trusted point is not used by a key ring.
Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Key Management.
Step 3 Right-click the trusted point you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 5 Click OK.

Configuring SNMP

Information about SNMP

The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

SNMP Functional Overview

The SNMP framework consists of three parts:

- An SNMP manager—The system used to control and monitor the activities of network devices using SNMP.
- An SNMP agent—The software component within Cisco UCS, the managed device, that maintains the data for Cisco UCS and reports the data, as needed, to the SNMP manager. Cisco UCS includes the agent and a collection of MIBs. To enable the SNMP agent and create the relationship between the manager and agent, enable and configure SNMP in Cisco UCS Manager.
- A managed information base (MIB)—The collection of managed objects on the SNMP agent. Cisco UCS release 1.4(1) and higher support a larger number of MIBs than earlier releases.

Cisco UCS supports SNMPv1, SNMPv2c and SNMPv3. Both SNMPv1 and SNMPv2c use a community-based form of security. SNMP is defined in the following:

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Cisco UCS Manager generates SNMP notifications as either traps or informs. Traps are less reliable than informs because the SNMP manager does not send any acknowledgment when it receives a trap, and Cisco UCS Manager cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the Cisco UCS Manager does not receive the PDU, it can send the inform request again.

SNMP Security Levels and Privileges

SNMPv1, SNMPv2c, and SNMPv3 each represent a different security model. The security model combines with the selected security level to determine the security mechanism applied when the SNMP message is processed.

The security level determines the privileges required to view the message associated with an SNMP trap. The privilege level determines whether the message needs to be protected from disclosure or authenticated. The supported security level depends upon which security model is implemented. SNMP security levels support one or more of the following privileges:

- noAuthNoPriv—No authentication or encryption
- authNoPriv—Authentication but no encryption
- authPriv—Authentication and encryption

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy that is set up for a user and the role in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security mechanism is employed when handling an SNMP packet.

Supported Combinations of SNMP Security Models and Levels

The following table identifies what the combinations of security models and levels mean.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>Model</td>
<td>Level</td>
<td>Authentication</td>
<td>Encryption</td>
<td>What Happens</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the Hash-Based Message Authentication Code</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(HMAC) Message Digest 5 (MD5) algorithm or the HMAC Secure Hash Algorithm</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Provides Data Encryption Standard (DES) 56-bit encryption in addition to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>authentication based on the Cipher Block Chaining (CBC) DES (DES-56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>standard.</td>
</tr>
</tbody>
</table>

SNMPv3 Security Features

SNMPv3 provides secure access to devices by a combination of authenticating and encrypting frames over the network. SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages. The SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- **Message integrity**—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur non-maliciously.

- **Message origin authentication**—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.

- **Message confidentiality and encryption**—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.
SNMP Support in Cisco UCS

Cisco UCS provides the following support for SNMP:

Support for MIBs
Cisco UCS supports read-only access to MIBs.
For information about the specific MIBs available for Cisco UCS and where you can obtain them, see the MIB Quick Reference for Cisco UCS.

Authentication Protocols for SNMPv3 Users
Cisco UCS supports the following authentication protocols for SNMPv3 users:

- HMAC-MD5-96 (MD5)
- HMAC-SHA-96 (SHA)

AES Privacy Protocol for SNMPv3 Users
Cisco UCS uses Advanced Encryption Standard (AES) as one of the privacy protocols for SNMPv3 message encryption and conforms with RFC 3826.

The privacy password, or priv option, offers a choice of DES or 128-bit AES encryption for SNMP security encryption. If you enable AES-128 configuration and include a privacy password for an SNMPv3 user, Cisco UCS Manager uses the privacy password to generate a 128-bit AES key. The AES privacy password can have a minimum of eight characters. If the passphrases are specified in clear text, you can specify a maximum of 64 characters.

Enabling SNMP and Configuring SNMP Properties
SNMP messages from a Cisco UCS domain display the fabric interconnect name rather than the system name.

Procedure

1. **Step 1** In the Navigation pane, click the Admin tab.
2. **Step 2** On the Admin tab, expand All > Communication Management > Communication Services.
3. **Step 3** Select the Communication Services tab.
4. **Step 4** In the SNMP area, click the enabled radio button.
 The SNMP area expands to display the available configuration options. You cannot change the port on which Cisco UCS Manager communicates with the SNMP host.
5. **Step 5** Complete the following fields:
Creating an SNMP Trap

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Select the Communication Services tab.
Step 4 In the SNMP Traps area, click +.
Step 5 In the Create SNMP Trap dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address field</td>
<td>The IP address of the SNMP host to which Cisco UCS Manager should send the trap.</td>
</tr>
</tbody>
</table>
Community/Username field
The SNMP v1 or v2c community name or the SNMP v3 username Cisco UCS Manager includes when it sends the trap to the SNMP host. This must be the same as the community or username that is configured for the SNMP service.
Enter an alphanumeric string between 1 and 32 characters. Do not use @ (at sign), \ (backslash), " (double quote), ? (question mark) or an empty space.

Port field
The port on which Cisco UCS Manager communicates with the SNMP host for the trap.
The default port is 162.

Version field
The SNMP version and model used for the trap. This can be:
- v1
- v2c
- v3

Type field
If you select v2c or v3 for the version, the type of trap to send. This can be:
- traps
- informs

v3 Privilege field
If you select v3 for the version, the privilege associated with the trap. This can be:
- auth—Authentication but no encryption
- noauth—No authentication or encryption
- priv—Authentication and encryption

Step 6
Click OK.

Step 7
Click Save Changes.
Deleting an SNMP Trap

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Select the Communication Services tab.
Step 4 In the SNMP Traps area, click the row in the table that corresponds to the user you want to delete.
Step 5 Click the Delete icon to the right of the table.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 7 Click Save Changes.

Creating an SNMPv3 user

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Select the Communication Services tab.
Step 4 In the SNMP Users area, click +.
Step 5 In the Create SNMP User dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The username assigned to the SNMP user. An SNMP username cannot be the same as a local username. Choose an SNMP username that does not match a local username.</td>
</tr>
<tr>
<td>Auth Type field</td>
<td>The authorization type. This can be:</td>
</tr>
<tr>
<td></td>
<td>• MD5</td>
</tr>
<tr>
<td></td>
<td>• SHA</td>
</tr>
<tr>
<td>Use AES-128 check box</td>
<td>If checked, this user uses AES-128 encryption.</td>
</tr>
<tr>
<td>Password field</td>
<td>The password for this user.</td>
</tr>
<tr>
<td>Confirm Password field</td>
<td>The password again for confirmation purposes.</td>
</tr>
<tr>
<td>Privacy Password field</td>
<td>The privacy password for this user.</td>
</tr>
<tr>
<td>Confirm Privacy Password field</td>
<td>The privacy password again for confirmation purposes.</td>
</tr>
</tbody>
</table>
Deleting an SNMPv3 User

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Select the Communication Services tab.
Step 4 In the SNMP Users area, click the row in the table that corresponds to the user you want to delete.
Step 5 Click the Delete icon to the right of the table.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 7 Click Save Changes.

Enabling Telnet

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Communication Services.
Step 3 Click the Communication Services tab.
Step 4 In the Telnet area, click the enabled radio button.
Step 5 Click Save Changes.

Disabling Communication Services

Note We recommend that you disable all communication services that are not required to interface with other network applications.
Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > Communication Management > Communication Services.

Step 3 On the Communication Services tab, click the disable radio button for each service that you want to disable.

Step 4 Click Save Changes.
Configuring Authentication

This chapter includes the following sections:

- Authentication Services, page 111
- Guidelines and Recommendations for Remote Authentication Providers, page 111
- User Attributes in Remote Authentication Providers, page 112
- LDAP Group Rule, page 114
- Configuring LDAP Providers, page 114
- Configuring RADIUS Providers, page 121
- Configuring TACACS+ Providers, page 124
- Configuring Multiple Authentication Systems, page 126
- Selecting a Primary Authentication Service, page 131

Authentication Services

Cisco UCS supports two methods to authenticate user logins:

- Through user accounts local to Cisco UCS Manager
- Remotely through one of the following protocols:
 - LDAP
 - RADIUS
 - TACACS+

Guidelines and Recommendations for Remote Authentication Providers

If a system is configured for one of the supported remote authentication services, you must create a provider for that service to ensure that Cisco UCS Manager can communicate with it. In addition, you need to be aware of the following guidelines that impact user authorization:
User Accounts in Remote Authentication Services

User accounts can exist locally in Cisco UCS Manager or in the remote authentication server. The temporary sessions for users who log in through remote authentication services can be viewed through Cisco UCS Manager GUI or Cisco UCS Manager CLI.

User Roles in Remote Authentication Services

If you create user accounts in the remote authentication server, you must ensure that the accounts include the roles those users require for working in Cisco UCS Manager and that the names of those roles match the names used in Cisco UCS Manager. Depending on the role policy, a user may not be allowed to log in or will be granted only read-only privileges.

User Attributes in Remote Authentication Providers

For RADIUS and TACACS+ configurations, you must configure a user attribute for Cisco UCS in each remote authentication provider through which users log in to Cisco UCS Manager. This user attribute holds the roles and locales assigned to each user.

Note: This step is not required for LDAP configurations that use LDAP Group Mapping to assign roles and locales.

When a user logs in, Cisco UCS Manager does the following:

1. Queries the remote authentication service.
2. Validates the user.
3. If the user is validated, checks for the roles and locales assigned to that user.

The following table contains a comparison of the user attribute requirements for the remote authentication providers supported by Cisco UCS.

Table 6: Comparison of User Attributes by Remote Authentication Provider

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>Custom Attribute</th>
<th>Schema Extension</th>
<th>Attribute ID Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP</td>
<td>Not required if group mapping is used</td>
<td>Optional. You can choose to do either of the following: • Do not extend the LDAP schema and configure an existing, unused attribute that meets the requirements. • Extend the LDAP schema and create a custom attribute with a unique name, such as CiscoAVPair.</td>
<td>The Cisco LDAP implementation requires a unicode type attribute. If you choose to create the CiscoAVPair custom attribute, use the following attribute ID: 1.3.6.1.4.1.9.287247.1 A sample OID is provided in the following section.</td>
</tr>
</tbody>
</table>

Optional if group mapping is not used |
Attribute ID Requirements

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>Custom Attribute</th>
<th>Schema Extension</th>
<th>Attribute ID Requirements</th>
</tr>
</thead>
</table>
| RADIUS | Optional | Optional. You can choose to do either of the following:
 • Do not extend the RADIUS schema and use an existing, unused attribute that meets the requirements.
 • Extend the RADIUS schema and create a custom attribute with a unique name, such as cisco-avpair. | The vendor ID for the Cisco RADIUS implementation is 009 and the vendor ID for the attribute is 001.
The following syntax example shows how to specify multiples user roles and locales if you choose to create the cisco-avpair attribute:
shell:roles="admin,aaa"
shell:locales="L1,abc". Use a comma "," as the delimiter to separate multiple values. |
| TACACS+ | Required | Required. You must extend the schema and create a custom attribute with the name cisco-av-pair. | The cisco-av-pair name is the string that provides the attribute ID for the TACACS+ provider.
The following syntax example shows how to specify multiples user roles and locales when you create the cisco-av-pair attribute:
cisco-av-pair=shell:roles="admin,aaa"
shell:locales="L1,abc". Using an asterisk (*) in the cisco-av-pair attribute syntax flags the locale as optional, preventing authentication failures for other Cisco devices that use the same authorization profile. Use a space as the delimiter to separate multiple values. |

Sample OID for LDAP User Attribute

The following is a sample OID for a custom CiscoAVPair attribute:

```
CN=CiscoAVPair,CN=Schema,CN=Configuration,CN=X
objectClass: top
objectClass: attributeSchema
cn: CiscoAVPair
distinguishedName: CN=CiscoAVPair,CN=Schema,CN=Configuration,CN=X
instanceType: 0x4
uSNCreated: 26318654
attributeID: 1.3.6.1.4.1.9.287247.1
attributeSyntax: 2.5.5.12
isSingleValued: TRUE
showInAdvancedViewOnly: TRUE
adminDisplayName: CiscoAVPair
adminDescription: UCS User Authorization Field
oMSyntax: 64
```
LDAP Group Rule

The LDAP group rule is used to determine whether Cisco UCS should use LDAP groups when assigning user roles and locales to a remote user.

Configuring LDAP Providers

Configuring Default Properties for LDAP Providers

The properties that you configure in this task are the default settings for all LDAP provider connections defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.

Before You Begin

If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with Cisco UCS. This account should be given a non-expiring password.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > LDAP.
Step 3 Complete the following fields in the Properties area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout field</td>
<td>The length of time in seconds the system should spend trying to contact the LDAP database before it times out. Enter an integer from 1 to 60 seconds. The default value is 30 seconds. This property is required.</td>
</tr>
<tr>
<td>Attribute field</td>
<td>An LDAP attribute that stores the values for the user roles and locales. This property is always a name-value pair. The system queries the user record for the value that matches this attribute name. If you do not want to extend your LDAP schema, you can configure an existing, unused LDAP attribute with the Cisco UCS roles and locales. Alternatively, you can create an attribute named CiscoAVPair in the remote authentication service with the following attribute ID: 1.3.6.1.4.1.9.287247.1</td>
</tr>
</tbody>
</table>
Name | **Description**
--- | ---
Base DN field | The specific distinguished name in the LDAP hierarchy where the server should begin a search when a remote user logs in and the system attempts to get the user's DN based on their username. The maximum supported string length is 127 characters.
This property is required. If you do not specify a base DN on this tab then you must specify one on the **General** tab for every LDAP provider defined in this Cisco UCS instance.

Filter field | The LDAP search is restricted to those usernames that match the defined filter.
This property is required. If you do not specify a filter on this tab then you must specify one on the **General** tab for every LDAP provider defined in this Cisco UCS instance.

Step 4
Click **Save Changes**.

What to Do Next
Create an LDAP provider.

Creating an LDAP Provider

Cisco UCS Manager supports a maximum of 16 LDAP providers.

Before You Begin

If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with Cisco UCS. This account should be given a non-expiring password.

- In the LDAP server, perform one of the following configurations:
 - Configure LDAP groups. LDAP groups contain user role and locale information.
 - Configure users with the attribute that holds the user role and locale information for Cisco UCS Manager. You can choose whether to extend the LDAP schema for this attribute. If you do not want to extend the schema, use an existing LDAP attribute to hold the Cisco UCS user roles and locales. If you prefer to extend the schema, create a custom attribute, such as the CiscoAVPair attribute.

 The Cisco LDAP implementation requires a unicode type attribute.

 If you choose to create the CiscoAVPair custom attribute, use the following attribute ID:
 1.3.6.1.4.1.9.287247.1

 - For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.
If you want to use secure communications, create a trusted point containing the certificate of the root certificate authority (CA) of the LDAP server in Cisco UCS Manager.

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > User Management > LDAP**.

Step 3 In the **Work** pane, click the **General** tab.

Step 4 In the **Actions** area, click **Create LDAP Provider**.

Step 5 On the **Create LDAP Provider** page of the wizard, do the following:

a) Complete the following fields with information about the LDAP service you want to use:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname field</td>
<td>The hostname or IP address on which the LDAP provider resides. If SSL is enabled, this field must exactly match a Common Name (CN) in the security certificate of the LDAP database.</td>
</tr>
<tr>
<td>Order field</td>
<td>The order in which Cisco UCS uses this provider to authenticate users. Enter an integer between 1 and 16, or enter lowest-available or 0 (zero) if you want Cisco UCS to assign the next available order based on the other providers defined in this Cisco UCS instance.</td>
</tr>
<tr>
<td>Bind DN field</td>
<td>The distinguished name (DN) for an LDAP database account that has read and search permissions for all objects under the base DN. The maximum supported string length is 127 characters.</td>
</tr>
<tr>
<td>Base DN field</td>
<td>The specific distinguished name in the LDAP hierarchy where the server should begin a search when a remote user logs in and the system attempts to get the user's DN based on their username. The maximum supported string length is 127 characters. This value is required unless a default base DN has been set on the LDAP General tab.</td>
</tr>
<tr>
<td>Port field</td>
<td>The port through which Cisco UCS communicates with the LDAP database. The standard port number is 389.</td>
</tr>
<tr>
<td>Enable SSL check box</td>
<td>If checked, encryption is required for communications with the LDAP database. If unchecked, authentication information will be sent as clear text. LDAP uses STARTTLS. This allows encrypted communication using port 389.</td>
</tr>
</tbody>
</table>
The LDAP search is restricted to those usernames that match the defined filter. This value is required unless a default filter has been set on the LDAP General tab.

Attribute field

An LDAP attribute that stores the values for the user roles and locales. This property is always a name-value pair. The system queries the user record for the value that matches this attribute name.

If you do not want to extend your LDAP schema, you can configure an existing, unused LDAP attribute with the Cisco UCS roles and locales. Alternatively, you can create an attribute named CiscoAVPair in the remote authentication service with the following attribute ID: 1.3.6.1.4.1.9.287247.1

This value is required unless a default attribute has been set on the LDAP General tab.

Password field

The password for the LDAP database account specified in the Bind DN field.

Confirm Password field

The LDAP database password repeated for confirmation purposes.

Timeout field

The length of time in seconds the system should spend trying to contact the LDAP database before it times out.

Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified on the LDAP General tab. The default is 30 seconds.

b) Click Next.

Step 6

On the LDAP Group Rule page of the wizard, do the following:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Authorization</td>
<td>Whether Cisco UCS also searches LDAP groups when authenticating and assigning user roles and locales to remote users. This can be:</td>
</tr>
<tr>
<td></td>
<td>• disable—Cisco UCS does not access any LDAP groups.</td>
</tr>
<tr>
<td></td>
<td>• enable—Cisco UCS searches all LDAP groups mapped in this Cisco UCS instance. If the remote user is found, Cisco UCS assigns the user roles and locales defined for that LDAP group in the associated LDAP group map.</td>
</tr>
<tr>
<td></td>
<td>Note Role and locale assignment is cumulative. If a user is included in multiple groups, or has a role or locale specified in the LDAP attribute, Cisco UCS assigns that user all the roles and locales mapped to any of those groups or attributes.</td>
</tr>
</tbody>
</table>
Group Recursion field

Whether Cisco UCS searches both the mapped groups and their parent groups. This can be:

- **non-recursive**—Cisco UCS searches only the groups mapped in this Cisco UCS instance. If none of the groups containing the user explicitly set the user's authorization properties, Cisco UCS uses the default settings.
- **recursive**—Cisco UCS searches each mapped grouped and all its parent groups for the user's authorization properties. These properties are cumulative, so for each group Cisco UCS finds with explicit authorization property settings, it applies those settings to the current user. Otherwise it uses the default settings.

Target Attribute field

The attribute Cisco UCS uses to determine group membership in the LDAP database.

The supported string length is 63 characters. The default string is `memberOf`.

b) Click **Finish**.

What to Do Next

For implementations involving a single LDAP database, select LDAP as the authentication service.

For implementations involving multiple LDAP databases, configure an LDAP provider group.

Changing the LDAP Group Rule for an LDAP Provider

Procedure

1. **Step 1** In the **Navigation** pane, click the **Admin** tab.
2. **Step 2** On the **Admin** tab, expand **All > User Management > LDAP**.
3. **Step 3** Expand **LDAP Providers** and choose the LDAP provider for which you want to change the group rule.
4. **Step 4** In the **Work** pane, click the **General** tab.
5. **Step 5** In the **LDAP Group Rules** area, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Group Authorization** field | Whether Cisco UCS also searches LDAP groups when authenticating and assigning user roles and locales to remote users. This can be:
 • **disable**—Cisco UCS does not access any LDAP groups.
 • **enable**—Cisco UCS searches all LDAP groups mapped in this Cisco UCS instance. If the remote user is found, Cisco UCS assigns the user roles and locales defined for that LDAP group in the associated LDAP group map.

 Note Role and locale assignment is cumulative. If a user is included in multiple groups, or has a role or locale specified in the LDAP attribute, Cisco UCS assigns that user all the roles and locales mapped to any of those groups or attributes. |
| **Group Recursion** field | Whether Cisco UCS searches both the mapped groups and their parent groups. This can be:
 • **non-recursive**—Cisco UCS searches only the groups mapped in this Cisco UCS instance. If none of the groups containing the user explicitly set the user's authorization properties, Cisco UCS uses the default settings.
 • **recursive**—Cisco UCS searches each mapped grouped and all its parent groups for the user's authorization properties. These properties are cumulative, so for each group Cisco UCS finds with explicit authorization property settings, it applies those settings to the current user. Otherwise it uses the default settings. |
| **Target Attribute** field | The attribute Cisco UCS uses to determine group membership in the LDAP database.
 The supported string length is 63 characters. The default string is `memberOf`. |

Step 6 Click **Save Changes**.
Deleting an LDAP Provider

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > User Management > LDAP.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand LDAP Providers.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the LDAP provider you want to delete and choose Delete.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

LDAP Group Mapping

For organizations that already use LDAP groups to restrict access to LDAP databases, group membership information can be used by UCSM to assign a role or locale to an LDAP user during login. This eliminates the need to define role or locale information in the LDAP user object when Cisco UCS Manager is deployed.

When a user logs in to Cisco UCS Manager, information about the user’s role and locale are pulled from the LDAP group map. If the role and locale criteria match the information in the policy, access is granted.

Role and locale definitions are configured locally in UCSM and do not update automatically based on changes to an LDAP directory. When deleting or renaming LDAP groups in an LDAP directory, it is important that you update your Cisco UCS Manager instance with the change.

An LDAP group map can be configured to include any of the following combinations of roles and locales:

- Roles only
- Locales only
- Both roles and locales

For example, consider an LDAP group representing a group of server administrators at a specific location. The LDAP group map might be configured to include user roles like server-profile and server-equipment. To restrict access to server administrators at a specific location, the locale could be set to a particular site name.

Note

Cisco UCS Manager includes many out-of-the-box user roles but does not include any locales. Mapping an LDAP provider group to a locale requires that you create a custom locale.

Creating an LDAP Group Map

Before You Begin

- Create an LDAP group in the LDAP server.
- Configure the distinguished name for the LDAP group in the LDAP server.
- Create locales in Cisco UCS Manager (optional).
- Create custom roles in Cisco UCS Manager (optional).

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > LDAP.

Step 3 Right-click LDAP Group Maps and choose Create LDAP Group Map.

Step 4 In the Create LDAP Group Map dialog box, do the following:

a) In the LDAP Group DN field, enter the distinguished name of the group in the LDAP database. **Important** This name must match the name in the LDAP database exactly.

b) In the Roles table, check the check boxes for all roles that you want to assign to users who are included in the group map.

c) In the Locales table, check the check boxes for all locales that you want to assign to users who are included in the group map.

d) Click OK.

What to Do Next

Set the LDAP group rule.

Deleting an LDAP Group Map

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > LDAP.

Step 3 Expand LDAP Group Maps.

Step 4 Right-click the LDAP group map you want to delete and choose Delete.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring RADIUS Providers

Configuring Default Properties for RADIUS Providers

The properties that you configure in this task are the default settings for all RADIUS provider connections defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.
Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 In the Admin tab, expand User Management > RADIUS.

Step 3 Complete the following fields in the Properties area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout field</td>
<td>The length of time in seconds the system should spend trying to contact the RADIUS database before it times out. Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified on the RADIUS General tab. The default is 5 seconds.</td>
</tr>
<tr>
<td>Retries field</td>
<td>The number of times to retry the connection before the request is considered to have failed.</td>
</tr>
</tbody>
</table>

Step 4 Click Save Changes.

What to Do Next

Create a RADIUS provider.

Creating a RADIUS Provider

Cisco UCS Manager supports a maximum of 16 RADIUS providers.

Before You Begin

Perform the following configuration in the RADIUS server:

- Configure users with the attribute that holds the user role and locale information for Cisco UCS Manager. You can choose whether to extend the RADIUS schema for this attribute. If you do not want to extend the schema, use an existing RADIUS attribute to hold the Cisco UCS user roles and locales. If you prefer to extend the schema, create a custom attribute, such as the cisco-avpair attribute.

 The vendor ID for the Cisco RADIUS implementation is 009 and the vendor ID for the attribute is 001.

 The following syntax example shows how to specify multiples user roles and locales if you choose to create the cisco-avpair attribute: `shell:roles="admin,aaa" shell:locales="L1,abc"`. Use a comma `,` as the delimiter to separate multiple values.

- For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.
Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
On the Admin tab, expand All > User Management > RADIUS.

Step 3
In the Create RADIUS Provider dialog box:

a) Complete the fields with the information about the RADIUS service you want to use.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname field</td>
<td>The hostname or IP address on which the RADIUS provider resides.</td>
</tr>
<tr>
<td>Note</td>
<td>If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Order field</td>
<td>The order in which Cisco UCS uses this provider to authenticate users.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer between 1 and 16, or enter lowest-available or 0 (zero) if you want Cisco UCS to assign the next available order based on the other providers defined in this Cisco UCS instance.</td>
</tr>
<tr>
<td>Key field</td>
<td>The SSL encryption key for the database.</td>
</tr>
<tr>
<td>Confirm Key field</td>
<td>The SSL encryption key repeated for confirmation purposes.</td>
</tr>
<tr>
<td>Authorization Port field</td>
<td>The port through which Cisco UCS communicates with the RADIUS database.</td>
</tr>
<tr>
<td>Timeout field</td>
<td>The length of time in seconds the system should spend trying to contact the RADIUS database before it times out.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified on the RADIUS General tab. The default is 5 seconds.</td>
</tr>
<tr>
<td>Retries field</td>
<td>The number of times to retry the connection before the request is considered to have failed.</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a value, Cisco UCS uses the value specified on the RADIUS General tab.</td>
</tr>
</tbody>
</table>

b) Click OK.

Step 4
Click Save Changes.

What to Do Next
For implementations involving a single RADIUS database, select RADIUS as the primary authentication service.

For implementations involving multiple RADIUS databases, configure a RADIUS provider group.
Deleting a RADIUS Provider

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 In the Admin tab, expand User Management > RADIUS.
Step 3 Right-click the RADIUS provider you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring TACACS+ Providers

Configuring Default Properties for TACACS+ Providers

The properties that you configure in this task are the default settings for all TACACS+ provider connections defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 In the Admin tab, expand User Management > TACACS+.
Step 3 In the Properties area, complete the Timeout field:
 The length of time in seconds the system should spend trying to contact the TACACS+ database before it times out.
 Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified on the TACACS+ General tab. The default is 5 seconds.
Step 4 Click Save Changes.

What to Do Next
Create an TACACS+ provider.

Creating a TACACS+ Provider

Cisco UCS Manager supports a maximum of 16 TACACS+ providers.

Before You Begin
Perform the following configuration in the TACACS+ server:

- Create the cisco-av-pair attribute. You cannot use an existing TACACS+ attribute.
The cisco-av-pair name is the string that provides the attribute ID for the TACACS+ provider.

The following syntax example shows how to specify multiples user roles and locales when you create the cisco-av-pair attribute: `cisco-av-pair=shell:roles="admin aaa" shell:locales="L1 abc"`. Using an asterisk (*) in the cisco-av-pair attribute syntax flags the locale as optional, preventing authentication failures for other Cisco devices that use the same authorization profile. Use a space as the delimiter to separate multiple values.

- For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > User Management > TACACS+.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Actions area of the General tab, click Create TACACS+ Provider.</td>
</tr>
</tbody>
</table>
| **Step 4** | In the Create TACACS+ Provider dialog box:
 a) Complete the fields with the information about the TACACS+ service you want to use. |

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname field</td>
<td>The hostname or IP address on which the TACAS+ provider resides.</td>
</tr>
<tr>
<td>Order field</td>
<td>The order in which Cisco UCS uses this provider to authenticate users.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer between 1 and 16, or enter lowest-available or 0 (zero) if</td>
</tr>
<tr>
<td></td>
<td>you want Cisco UCS to assign the next available order based on the other</td>
</tr>
<tr>
<td></td>
<td>providers defined in this Cisco UCS instance.</td>
</tr>
<tr>
<td>Key field</td>
<td>The SSL encryption key for the database.</td>
</tr>
<tr>
<td>Confirm Key field</td>
<td>The SSL encryption key repeated for confirmation purposes.</td>
</tr>
<tr>
<td>Port field</td>
<td>The port through which Cisco UCS should communicate with the TACACS+</td>
</tr>
<tr>
<td></td>
<td>database.</td>
</tr>
<tr>
<td>Timeout field</td>
<td>The length of time in seconds the system should spend trying to contact</td>
</tr>
<tr>
<td></td>
<td>the TACACS+ database before it times out.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global</td>
</tr>
<tr>
<td></td>
<td>timeout value specified on the TACACS+ General tab. The default is 5 seconds.</td>
</tr>
</tbody>
</table>
b) Click OK.

Step 5 Click Save Changes.

What to Do Next

For implementations involving a single TACACS+ database, select TACACS+ as the primary authentication service.

For implementations involving multiple TACACS+ databases, configure a TACACS+ provider group.

Deleting a TACACS+ Provider

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 In the Admin tab, expand User Management > TACACS+.

Step 3 Right-click the TACACS+ provider you want to delete and choose Delete.

Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Multiple Authentication Systems

Multiple Authentication Systems

You can configure Cisco UCS to use multiple authentication systems by configuring the following features:

- Provider groups
- Authentication domains

Provider Groups

A provider group is a set of providers that will be used by Cisco UCS during the authentication process. Cisco UCS Manager allows you to create a maximum of 16 provider groups, with a maximum of eight providers allowed per group.

During authentication, all the providers within a provider group are tried in order. If all of the configured servers are unavailable or unreachable, Cisco UCS Manager automatically falls back to the local authentication method using the local username and password.

Creating an LDAP Provider Group

Creating an LDAP provider group allows you to authenticate using multiple LDAP databases.
Authenticating with a single LDAP database does not require you to set up an LDAP provider group.

Before You Begin

Create one or more LDAP providers.

Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
On the Admin tab, expand All > User Management > LDAP.

Step 3
Right-click LDAP Provider Groups and choose Create LDAP Provider Group.

Step 4
In the Create LDAP Provider Group dialog box, do the following:

a) In the Name field, enter a unique name for the group. This name can be between 1 and 127 characters. You cannot use . (period), _ (underscore), or - (hyphen).

b) In the LDAP Providers table, choose one or more providers to include in the group.

 - Click the >> button to add the providers to the Included Providers table.
 - You can use the << button to remove providers from the group.

c) After you have added all desired providers to the provider group, click OK.

What to Do Next

Configure an authentication domain or select a default authentication service.

Deleting an LDAP Provider Group

Before You Begin

Remove the provider group from an authentication configuration.

Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
On the Admin tab, expand All > User Management > LDAP.

Step 3
Expand LDAP Provider Groups.

Step 4
Right-click the LDAP provider group you want to delete and choose Delete.

Step 5
If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Creating a RADIUS Provider Group

Creating a RADIUS provider group allows you to authenticate using multiple RADIUS databases.
Before You Begin
Create one or more RADIUS providers.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > RADIUS.
Step 3 Right-click RADIUS Provider Groups and choose Create RADIUS Provider Group.
Step 4 In the Create RADIUS Provider Group dialog box, do the following:
 a) In the Name field, enter a unique name for the group.
 This name can be between 1 and 127 characters. You cannot use . (period), _ (underscore), or - (hyphen).
 b) In the RADIUS Providers table, choose one or more providers to include in the group.
 c) Click the >> button to add the providers to the Included Providers table.
 You can use the << button to remove providers from the group.
 d) After you have added all desired providers to the provider group, click OK.

What to Do Next
Configure an authentication domain or select a default authentication service.

Deleting a RADIUS Provider Group
You cannot delete a provider group if it is being used by an authentication configuration.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > RADIUS.
Step 3 Expand RADIUS Provider Groups.
Step 4 Right-click the RADIUS provider group you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Creating a TACACS+ Provider Group
Creating a TACACS+ provider group allows you to authenticate using multiple TACACS+ databases.
Before You Begin

Create one or more TACACS+ providers.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > TACACS+.
Step 3 Right-click TACACS+ Provider Groups and choose Create TACACS+ Provider Group.
Step 4 In the Create TACACS+ Provider Group dialog box, do the following:
 a) In the Name field, enter a unique name for the group. This name can be between 1 and 127 characters. You cannot use . (period), _ (underscore), or - (hyphen).
 b) In the TACACS+ Providers table, choose one or more providers to include in the group.
 c) Click the >> button to add the providers to the Included Providers table. You can use the << button to remove providers from the group.
 d) After you have added all desired providers to the provider group, click OK.

Deleting a TACACS+ Provider Group

You cannot delete a provider group if it is being used by an authentication configuration.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > TACACS+.
Step 3 Expand TACACS+ Provider Groups.
Step 4 Right-click the TACACS+ provider group you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Authentication Domains

Authentication domains are used by Cisco UCS Manager to leverage multiple authentication systems. Each authentication domain is specified and configured during login. If no authentication domain is specified, the default authentication service configuration is used.
You can create up to eight authentication domains. Each authentication domain is associated with a provider group and realm in Cisco UCS Manager. If no provider group is specified, all servers within the realm are used.

Creating an Authentication Domain

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > User Management > Authentication.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click Authentication Domains and choose Create a Domain.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Create a Domain dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the domain. This name can be between 1 and 127 characters. You cannot use . (period), _ (underscore), or - (hyphen). Note: For systems using RADIUS as their preferred authentication protocol, the authentication domain name is considered part of the user name and counts toward the 32 character limit for locally created user names. Since Cisco UCS inserts 5 characters for formatting, authentication will fail if the domain name and user name combined total more than 27 characters.</td>
</tr>
<tr>
<td>Realm field</td>
<td>The authentication protocol that will be applied to users in this domain. This can be: • local—The user account must be defined locally in this Cisco UCS instance. • radius—The user must be defined on the RADIUS server specified for this Cisco UCS instance. • tacacs—The user must be defined on the TACACS+ server specified for this Cisco UCS instance. • ldap—The user must be defined on the LDAP server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td>Provider Group drop-down list</td>
<td>If the Realm is set to anything other than local, this field allows you to select the associated provider group, if any.</td>
</tr>
</tbody>
</table>

| Step 5 | Click OK. |
Selecting a Primary Authentication Service

Selecting the Console Authentication Service

Before You Begin

If the system uses a remote authentication service, create a provider for that authentication service. If the system uses only local authentication through Cisco UCS, you do not need to create a provider first.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > User Management > Authentication.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Native Authentication.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Console Authentication area, complete the following fields:</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>Realm field</td>
<td>The method by which a user logging into the console is authenticated. This can be:</td>
</tr>
<tr>
<td></td>
<td>• local—The user account must be defined locally in this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• radius—The user must be defined on the RADIUS server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• tacacs—The user must be defined on the TACACS+ server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• ldap—The user must be defined on the LDAP server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• none—If the user account is local to this Cisco UCS instance, no password is required when the user logs into the console.</td>
</tr>
<tr>
<td>Provider Group drop-down list</td>
<td>The provider group to be used to authenticate a user logging into the console.</td>
</tr>
</tbody>
</table>

Step 6 Click Save Changes.
Selecting the Default Authentication Service

Before You Begin
If the system uses a remote authentication service, create a provider for that authentication service. If the system uses only local authentication through Cisco UCS, you do not need to create a provider first.

Procedure

Step 1	In the Navigation pane, click the Admin tab.
Step 2	On the Admin tab, expand All > User Management > Authentication.
Step 3	Click Native Authentication.
Step 4	In the Work pane, click the General tab.
Step 5	In the Default Authentication area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realm field</td>
<td>The default method by which a user is authenticated during remote login. This can be:</td>
</tr>
<tr>
<td></td>
<td>• local — The user account must be defined locally in this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• radius — The user must be defined on the RADIUS server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• tacacs — The user must be defined on the TACACS+ server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• ldap — The user must be defined on the LDAP server specified for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• none — If the user account is local to this Cisco UCS instance, no password is required when the user logs in remotely.</td>
</tr>
<tr>
<td>Provider Group drop-down list</td>
<td>The default provider group to be used to authenticate the user during remote login.</td>
</tr>
</tbody>
</table>

| Step 6 | Click Save Changes. |

Role Policy for Remote Users
By default, if user roles are not configured in Cisco UCS Manager read-only access is granted to all users logging in to Cisco UCS Manager from a remote server using the LDAP, RADIUS, or TACACS protocols.
For security reasons, it might be desirable to restrict access to those users matching an established user role in Cisco UCS Manager.

You can configure the role policy for remote users in the following ways:

assign-default-role

Does not restrict user access to Cisco UCS Manager based on user roles. Read-only access is granted to all users unless other user roles have been defined in Cisco UCS Manager.

This is the default behavior.

no-login

Restricts user access to Cisco UCS Manager based on user roles. If user roles have not been assigned for the remote authentication system, access is denied.

Configuring the Role Policy for Remote Users

Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
On the Admin tab, expand All > User Management > Authentication.

Step 3
Click Native Authentication.

Step 4
In the Work pane, click the General tab.

Step 5
In the Role Policy for Remote Users field, click one of the following radio buttons to determine what happens when a user attempts to log in and the remote authentication provider does not supply a user role with the authentication information:

- **no-login**—The user is not allowed to log in to the system, even if the username and password are correct.
- **assign-default-role**—The user is allowed to log in with a read-only user role.

Step 6
Click Save Changes.
Configuring Organizations

This chapter includes the following sections:

- Organizations in a Multi-Tenancy Environment, page 135
- Hierarchical Name Resolution in a Multi-Tenancy Environment, page 136
- Creating an Organization under the Root Organization, page 137
- Creating an Organization under a Sub-Organization, page 138
- Deleting an Organization, page 138

Organizations in a Multi-Tenancy Environment

Multi-tenancy allows you to divide up the large physical infrastructure of an instance into logical entities known as organizations. As a result, you can achieve a logical isolation between organizations without providing a dedicated physical infrastructure for each organization.

You can assign unique resources to each tenant through the related organization, in the multi-tenant environment. These resources can include different policies, pools, and quality of service definitions. You can also implement locales to assign or restrict user privileges and roles by organization, if you do not want all users to have access to all organizations.

If you set up a multi-tenant environment, all organizations are hierarchical. The top-level organization is always root. The policies and pools that you create in root are system-wide and are available to all organizations in the system. However, any policies and pools created in other organizations are only available to organizations that are above it in the same hierarchy. For example, if a system has organizations named Finance and HR that are not in the same hierarchy, Finance cannot use any policies in the HR organization, and HR cannot access any policies in the Finance organization. However, both Finance and HR can use policies and pools in the root organization.

If you create organizations in a multi-tenant environment, you can also set up one or more of the following for each organization or for a sub-organization in the same hierarchy:

- Resource pools
- Policies
- Service profiles
Hierarchical Name Resolution in a Multi-Tenancy Environment

In a multi-tenant environment, Cisco UCS uses the hierarchy of an organization to resolve the names of policies and resource pools. When Cisco UCS Manager searches for details of a policy or a resource assigned to a pool, the following occurs:

1. Cisco UCS Manager checks for policies and pools with the specified name within the organization assigned to the service profile or policy.

2. If a policy is found or an available resource is inside a pool, Cisco UCS Manager uses that policy or resource. If the pool does not have any available resources at the local level, Cisco UCS Manager moves up in the hierarchy to the parent organization and searches for a pool with the same name. Cisco UCS Manager repeats this step until the search reaches the root organization.

3. If the search reaches the root organization and has not found an available resource or policy, Cisco UCS Manager returns to the local organization and begins to search for a default policy or available resource in the default pool.

4. If an applicable default policy or available resource in a default pool is found, Cisco UCS Manager uses that policy or resource. If the pool does not have any available resources, Cisco UCS Manager moves up in the hierarchy to the parent organization and searches for a default pool. Cisco UCS Manager repeats this step until the search reaches the root organization.

5. If Cisco UCS Manager cannot find an applicable policy or available resource in the hierarchy, it returns an allocation error.

Example: Server Pool Name Resolution in a Single-Level Hierarchy

In this example, all organizations are at the same level below the root organization. For example, a service provider creates separate organizations for each customer. In this configuration, organizations only have access to the policies and resource pools assigned to that organization and to the root organization.

In this example, a service profile in the XYZcustomer organization is configured to use servers from the XYZcustomer server pool. When resource pools and policies are assigned to the service profile, the following occurs:

1. Cisco UCS Manager checks for an available server in the XYZcustomer server pool.

2. If the XYZcustomer server pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager checks the root organization for a server pool with the same name.

3. If the root organization includes an XYZcustomer server pool and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager returns to the XYZcustomer organization to check the default server pool.

4. If the default pool in the XYZcustomer organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager checks the default server pool in the root organization.
5. If the default server pool in the root organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager returns an allocation error.

Example: Server Pool Name Resolution in a Multi-Level Hierarchy

In this example, each organization includes at least one suborganization. For example, a company could create organizations for each major division in the company and for subdivisions of those divisions. In this configuration, each organization has access to its local policies and resource pools and to the resource pools in the parent hierarchy.

In this example, the Finance organization includes two sub-organizations, AccountsPayable and AccountsReceivable. A service profile in the AccountsPayable organization is configured to use servers from the AP server pool. When resource pools and policies are assigned to the service profile, the following occurs:

1. Cisco UCS Manager checks for an available server in the AP server pool defined in the service profile.
2. If the AP server pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager moves one level up the hierarchy and checks the Finance organization for a pool with the same name.
3. If the Finance organization includes a pool with the same name and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the root organization for a pool with the same name.
4. If the root organization includes a pool with the same name and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager returns to the AccountsPayable organization to check the default server pool.
5. If the default pool in the AccountsPayable organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the default server pool in the Finance organization.
6. If the default pool in the Finance organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the default server pool in the root organization.
7. If the default server pool in the root organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager returns an allocation error.

Creating an Organization under the Root Organization

Procedure

Step 1. On the toolbar, choose New > Create Organization.

Step 2. In the Name field of the Create Organization dialog box, enter a unique name for the organization.
Creating an Organization under a Sub-Organization

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 In the Servers tab, expand Service Profiles > root. You can also access the Sub-Organizations node under the Policies or Pools nodes.
Step 3 Expand the Sub-Organizations node and do one of the following:
 • To create an organization directly under root, right-click Sub-Organizations and choose Create Organization.
 • To create an organization under a lower-level sub-organization, expand the sub-organization nodes in the hierarchy and then right-click the sub-organization under which you want to create the new organization and choose Create Organization.
Step 4 In the Name field of the Create Organization dialog box, enter a unique name for the organization. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
Step 5 In the Description field, enter a description for the organization.
Step 6 Click OK.

Deleting an Organization

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 Navigate to the organization that you want to delete.
Step 3 Right-click the organization and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Role-Based Access Control

This chapter includes the following sections:

- Role-Based Access Control, page 139
- User Accounts for Cisco UCS Manager, page 139
 - User Roles, page 142
 - User Locales, page 146
 - Configuring User Roles, page 147
 - Configuring Locales, page 149
 - Configuring User Accounts, page 150
 - Monitoring User Sessions, page 156

Role-Based Access Control

Role-Based Access Control (RBAC) is a method of restricting or authorizing system access for users based on user roles and locales. A role defines the privileges of a user in the system and the locale defines the organizations (domains) that a user is allowed access. Because users are not directly assigned privileges, management of individual user privileges is simply a matter of assigning the appropriate roles and locales.

A user is granted write access to desired system resources only if the assigned role grants the access privileges and the assigned locale allows access. For example, a user with the Server Administrator role in the Engineering organization could update server configurations in the Engineering organization but could not update server configurations in the Finance organization unless the locales assigned to the user include the Finance organization.

User Accounts for Cisco UCS Manager

User accounts are used to access the system. Up to 48 user accounts can be configured in each Cisco UCS instance. Each user account must have a unique username and password.

A user account can be set with a SSH public key. The public key can be set in either of the two formats: OpenSSH and SECSH.
Default User Account

Each Cisco UCS instance has a default user account, admin, which cannot be modified or deleted. This account is the system administrator or superuser account and has full privileges. There is no default password assigned to the admin account; you must choose the password during the initial system setup.

The admin account is always active and does not expire. You cannot configure the admin account as inactive.

Local User Accounts

Local user accounts are authenticated directly through the fabric interconnect and can be enabled or disabled by anyone with admin or aaa privileges. Once a local user account is disabled, the user cannot log in. Configuration details for disabled local user accounts are not deleted by the database. If you re-enable a disabled local user account, the account becomes active again with the existing configuration, including username and password.

Remote User Accounts

A remotely authenticated user account is any user account that is authenticated through LDAP, RADIUS, or TACACS+.

If a user maintains a local user account and a remote user account simultaneously, the roles defined in the local user account override those maintained in the remote user account.

Expiration of User Accounts

User accounts can be configured to expire at a predefined time. When the expiration time is reached, the user account is disabled.

By default, user accounts do not expire.

Note

After you configure a user account with an expiration date, you cannot reconfigure the account to not expire. You can, however, configure the account with the latest date available.

Guidelines for Cisco UCS Manager Usernames

The username is also used as the login ID for Cisco UCS Manager. When you assign usernames to Cisco UCS Manager user accounts, consider the following guidelines and restrictions:

• The login ID can contain between 1 and 32 characters, including the following:
 ○ Any alphabetic character
 ○ Any digit
 ○ _ (underscore)
 ○ - (dash)
 ○ . (dot)

• The unique username for each user account cannot be all-numeric. You cannot create a local user with an all-numeric username.
• The unique username must start with an alphabetic character. It cannot start with a number or a special character, such as an underscore.

After you create a user account, you cannot change the username. You must delete the user account and create a new one.

Reserved Words: Local User Accounts

The following words cannot be used when creating a local user account in Cisco UCS Manager.

• root
• bin
• daemon
• adm
• ip
• sync
• shutdown
• halt
• news
• uucp
• operator
• games
• gopher
• nobody
• nsceed
• mailnull
• mail
• rpcuser
• rpc
• mtuser
• ftpuser
• ftp
• man
• sys
• samdme
• debug
Guidelines for Cisco UCS Manager Passwords

A password is required for each locally authenticated user account. A user with admin or aaa privileges can configure Cisco UCS Manager to perform a password strength check on user passwords. If the password strength check is enabled, each user must have a strong password.

Cisco recommends that each user have a strong password. If you enable the password strength check for locally authenticated users, Cisco UCS Manager rejects any password that does not meet the following requirements:

• Must contain a minimum of 8 characters and a maximum of 64 characters.
• Must contain at least three of the following:
 ◦ Lower case letters
 ◦ Upper case letters
 ◦ Digits
 ◦ Special characters
• Must not contain a character that is repeated more than 3 times consecutively, such as aaabbb.
• Must not be identical to the username or the reverse of the username.
• Must pass a password dictionary check. For example, the password must not be based on a standard dictionary word.
• Must not contain the following symbols: $(dollarsign), ? (question mark), and = (equals sign).
• Should not be blank for local user and admin accounts.

Web Session Limits for User Accounts

Web session limits are used by Cisco UCS Manager to restrict the number of web sessions (both GUI and XML) a given user account is permitted to access at any one time.

By default, the number of concurrent web sessions allowed by Cisco UCS Manager is set to 32; although this value can be configured up to the system maximum of 256.

User Roles

User roles contain one or more privileges that define the operations allowed for the user who is assigned the role. A user can be assigned one or more roles. A user assigned multiple roles has the combined privileges of all assigned roles. For example, if Role1 has storage related privileges, and Role2 has server related privileges, users who are assigned to both Role1 and Role2 have storage and server related privileges.

A Cisco UCS instance can contain up to 48 user roles, including the default user roles.

All roles include read access to all configuration settings in the Cisco UCS instance. The difference between the read-only role and other roles is that a user who is only assigned the read-only role cannot modify the system state. A user assigned another role can modify the system state in that user's assigned area or areas.

Roles can be created, modified to add new or remove existing privileges, or deleted. When a role is modified, the new privileges are applied to all users assigned to that role. Privilege assignment is not restricted to the
privileges defined for the default roles. That is, you can use a custom set of privileges to create a unique role. For example, the default Server Administrator and Storage Administrator roles have different set of privileges, but a new Server and Storage Administrator role can be created that combines the privileges of both roles.

If a role is deleted after it has been assigned to users, it is also deleted from those user accounts.

User profiles on AAA servers (RADIUS or TACACS+) should be modified to add the roles corresponding to the privileges granted to that user. The attribute is used to store the role information. The AAA servers return this attribute with the request and parse it to get the roles. LDAP servers return the roles in the user profile attributes.

Note
If a local user account and a remote user account have the same username, any roles assigned to the remote user are overridden by those assigned to the local user.

Default User Roles

The system contains the following default user roles:

AAA Administrator
Read-and-write access to users, roles, and AAA configuration. Read access to the rest of the system.

Administrator
Complete read-and-write access to the entire system. The default admin account is assigned this role by default and it cannot be changed.

Facility Manager
Read-and-write access to power management operations through the power-mgmt privilege. Read access to the rest of the system.

Network Administrator
Read-and-write access to fabric interconnect infrastructure and network security operations. Read access to the rest of the system.

Operations
Read-and-write access to systems logs, including the syslog servers, and faults. Read access to the rest of the system.

Read-Only
Read-only access to system configuration with no privileges to modify the system state.

Server Equipment Administrator
Read-and-write access to physical server related operations. Read access to the rest of the system.

Server Profile Administrator
Read-and-write access to logical server related operations. Read access to the rest of the system.
Server Security Administrator
Read-and-write access to server security related operations. Read access to the rest of the system.

Storage Administrator
Read-and-write access to storage operations. Read access to the rest of the system.

Reserved Words: User Roles
The following words cannot be used when creating custom roles in Cisco UCS Manager.
- network-admin
- network-operator
- vdc-admin
- vdc-operator
- server-admin

Privileges
Privileges give users assigned to user roles access to specific system resources and permission to perform specific tasks. The following table lists each privilege and the user role given that privilege by default.

Table 7: User Privileges

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
<th>Default Role Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>System security and AAA</td>
<td>AAA Administrator</td>
</tr>
<tr>
<td>admin</td>
<td>System administration</td>
<td>Administrator</td>
</tr>
<tr>
<td>ext-lan-config</td>
<td>External LAN configuration</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-policy</td>
<td>External LAN policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-qos</td>
<td>External LAN QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-security</td>
<td>External LAN security</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-san-config</td>
<td>External SAN configuration</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>ext-san-policy</td>
<td>External SAN policy</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>ext-san-qos</td>
<td>External SAN QoS</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>ext-san-security</td>
<td>External SAN security</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>fault</td>
<td>Alarms and alarm policies</td>
<td>Operations</td>
</tr>
<tr>
<td>Privilege</td>
<td>Description</td>
<td>Default Role Assignment</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>operations</td>
<td>Logs and Smart Call Home</td>
<td>Operations</td>
</tr>
<tr>
<td>pod-config</td>
<td>Pod configuration</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-policy</td>
<td>Pod policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-qos</td>
<td>Pod QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-security</td>
<td>Pod security</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>power-mgmt</td>
<td>Read-and-write access to power management operations</td>
<td>Facility Manager</td>
</tr>
<tr>
<td>read-only</td>
<td>Read-only access</td>
<td>Read-Only</td>
</tr>
<tr>
<td></td>
<td>Read-only cannot be selected as a privilege; it is assigned to every user role.</td>
<td></td>
</tr>
<tr>
<td>server-equipment</td>
<td>Server hardware management</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-maintenance</td>
<td>Server maintenance</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-policy</td>
<td>Server policy</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-security</td>
<td>Server security</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-config</td>
<td>Service profile configuration</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-config-policy</td>
<td>Service profile configuration policy</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-ext-access</td>
<td>Service profile end point access</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-network</td>
<td>Service profile network</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-network-policy</td>
<td>Service profile network policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-qos</td>
<td>Service profile QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-qos-policy</td>
<td>Service profile QoS policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-security</td>
<td>Service profile security</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-security-policy</td>
<td>Service profile security policy</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-server</td>
<td>Service profile server management</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-server-oper</td>
<td>Service profile consumer</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>Privilege</td>
<td>Description</td>
<td>Default Role Assignment</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>service-profile-server-policy</td>
<td>Service profile pool policy</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-storage</td>
<td>Service profile storage</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>service-profile-storage-policy</td>
<td>Service profile storage policy</td>
<td>Storage Administrator</td>
</tr>
</tbody>
</table>

User Locales

A user can be assigned one or more locales. Each locale defines one or more organizations (domains) the user is allowed access, and access would be limited to the organizations specified in the locale. One exception to this rule is a locale without any organizations, which gives unrestricted access to system resources in all organizations.

A Cisco UCS instance can contain up to 48 user locales.

Users with AAA privileges (AAA Administrator role) can assign organizations to the locale of other users. The assignment of organizations is restricted to only those in the locale of the user assigning the organizations. For example, if a locale contains only the Engineering organization then a user assigned that locale can only assign the Engineering organization to other users.

Note

You cannot assign a locale to users with one or more of the following privileges:

- aaa
- admin
- operations

You can hierarchically manage organizations. A user that is assigned at a top level organization has automatic access to all organizations under it. For example, an Engineering organization can contain a Software Engineering organization and a Hardware Engineering organization. A locale containing only the Software Engineering organization has access to system resources only within that organization; however, a locale that contains the Engineering organization has access to the resources for both the Software Engineering and Hardware Engineering organizations.
Configuring User Roles

Creating a User Role

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > User Services.

Step 3 Right-click User Services and choose Create Role.
You can also right-click Roles to access that option.

Step 4 In the Create Role dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>A user-defined name for this user role. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Privileges list box</td>
<td>A list of the privileges defined in the system. Click a privilege to view a description of that privilege. Check the check box to assign that privilege to the selected user.</td>
</tr>
</tbody>
</table>

Help Section

| Description field | A description of the most recent privilege you clicked in the Privileges list box. |

Step 5 Click OK.
Adding Privileges to a User Role

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > User Services.
Step 3 Expand the Roles node.
Step 4 Choose the role to which you want to add privileges.
Step 5 In the General tab, check the boxes for the privileges you want to add to the role.
Step 6 Click Save Changes.

Removing Privileges from a User Role

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > User Services.
Step 3 Expand the Roles node.
Step 4 Choose the role from which you want to remove privileges.
Step 5 In the General tab, uncheck the boxes for the privileges you want to remove from the role.
Step 6 Click Save Changes.

Deleting a User Role

When you delete a user role, Cisco UCS Manager removes that role from all user accounts to which the role has been assigned.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > User Services.
Step 3 Expand the Roles node.
Step 4 Right-click the role you want to delete and choose Delete.
Step 5 In the Delete dialog box, click Yes.
Configuring Locales

Creating a Locale

Before You Begin

One or more organizations must exist before you create a locale.

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > User Services.

Step 3 Right-click Locales and choose Create a Locale.

Step 4 In the Create Locale page, do the following:

a) In the Name field, enter a unique name for the locale.
 - This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

b) Click Next.

Step 5 In the Assign Organizations dialog box, do the following:

a) Expand the Organizations area to view the organizations in the Cisco UCS instance.

b) Expand the root node to see the sub-organizations.

c) Click an organization that you want to assign to the locale.

d) Drag the organization from the Organizations area and drop it into the design area on the right.

e) Repeat Steps b and c until you have assigned all desired organizations to the locale.

Step 6 Click Finish.

What to Do Next

Add the locale to one or more user accounts. For more information, see Changing the Locales Assigned to a Locally Authenticated User Account, on page 154.

Assigning an Organization to a Locale

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > User Services.

Step 3 Expand the Locales node and click the locale to which you want to add an organization.

Step 4 In the Work pane, click the General tab.

Step 5 In the Organizations area, click + on the table icon bar.

Step 6 In the Assign Organizations dialog box, do the following:
a) Expand the **Organizations** area to view the organizations in the Cisco UCS instance.
b) Expand the root node to see the sub-organizations.
c) Click an organization that you want to assign to the locale.
d) Drag the organization from the **Organizations** area and drop it into the design area on the right.
e) Repeat Steps b and c until you have assigned all desired organizations to the locale.

Step 7
Click **OK**.

Deleting an Organization from a Locale

Procedure

Step 1
In the **Navigation** pane, click the **Admin** tab.

Step 2
On the **Admin** tab, expand **All** > **User Management** > **User Services**.

Step 3
Expand the **Locales** node and click the locale from which you want to delete an organization.

Step 4
In the **Work** pane, click the **General** tab.

Step 5
In the **Organizations** area, right-click the organization that you want to delete from the locale and choose **Delete**.

Step 6
Click **Save Changes**.

Deleting a Locale

Procedure

Step 1
In the **Navigation** pane, click the **Admin** tab.

Step 2
On the **Admin** tab, expand **All** > **User Management** > **User Services**.

Step 3
Expand the **Locales** node.

Step 4
Right-click the locale you want to delete and choose **Delete**.

Step 5
If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Configuring User Accounts

Creating a User Account

At a minimum, we recommend that you create the following users:

- Server administrator account
Network administrator account
Storage administrator

Before You Begin
Perform the following tasks, if the system includes any of the following:

• Remote authentication services, ensure the users exist in the remote authentication server with the appropriate roles and privileges.

• Multi-tenancy with organizations, create one or more locales. If you do not have any locales, all users are created in root and are assigned roles and privileges in all organizations.

• SSH authentication, obtain the SSH key.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > User Management > User Services.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click User Services and choose Create User to open the User Properties dialog box. You can also right-click Locally Authenticated Users to access that option.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Complete the following fields with the required information about the user:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Login ID field| The account name that is used when logging into this account. This account must be unique and meet the guidelines and restrictions for Cisco UCS Manager user accounts.
• The login ID can contain between 1 and 32 characters, including the following:
 - Any alphabetic character
 - Any digit
 - _ (underscore)
 - - (dash)
 - . (dot)
• The unique username for each user account cannot be all-numeric. You cannot create a local user with an all-numeric username.
• The unique username must start with an alphabetic character. It cannot start with a number or a special character, such as an underscore.
After you save the user, the login ID cannot be changed. You must delete the user account and create a new one. |
| First Name field | The first name of the user. This field can contain up to 32 characters. |
Configuring User Accounts

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Name field</td>
<td>The last name of the user. This field can contain up to 32 characters.</td>
</tr>
<tr>
<td>Email field</td>
<td>The email address for the user.</td>
</tr>
<tr>
<td>Phone field</td>
<td>The telephone number for the user.</td>
</tr>
</tbody>
</table>
| **Password** field | The password associated with this account. If password strength check is enabled, a user's password must be strong and Cisco UCS Manager rejects any password that does not meet the following requirements:
 - Must contain a minimum of 8 characters and a maximum of 64 characters.
 - Must contain at least three of the following:
 - Lower case letters
 - Upper case letters
 - Digits
 - Special characters
 - Must not contain a character that is repeated more than 3 times consecutively, such as aaabbb.
 - Must not be identical to the username or the reverse of the username.
 - Must pass a password dictionary check. For example, the password must not be based on a standard dictionary word.
 - Must not contain the following symbols: $ (dollar sign), ? (question mark), and = (equals sign).
 - Should not be blank for local user and admin accounts. |
| **Confirm Password** field | The password a second time for confirmation purposes. |
| **Account Status** field | If the status is set to active, a user can log into Cisco UCS Manager with this login ID and password. |
| **Account Expires** check box | If checked, this account expires and cannot be used after the date specified in the Expiration Date field. |

Note
After you configure a user account with an expiration date, you cannot reconfigure the account to not expire. You can, however, configure the account with the latest date available.
### Name	Description
Expiration Date field | The date on which the account expires. The date should be in the format `yyyy-mm-dd`. Click the down arrow at the end of this field to view a calendar that you can use to select the expiration date.

Note Cisco UCS Manager GUI displays this field when you check the `Account Expires` check box.

Step 5 In the **Roles** area, check one or more boxes to assign roles and privileges to the user account.

Note Do not assign locales to users with an admin or aaa role.

Step 6 (Optional) If the system includes organizations, check one or more check boxes in the **Locales** area to assign the user to the appropriate locales.

Step 7 In the **SSH** area, complete the following fields:

a) In the **Type** field, do the following:
 - **Password Required**—The user must enter a password when they log in.
 - **Key**—SSH encryption is used when this user logs in.

b) If you chose **Key**, enter the SSH key in the **SSH data** field.

Step 8 Click **OK**.

Enabling the Password Strength Check for Locally Authenticated Users

You must be a user with admin or aaa privileges to enable the password strength check. If the password strength check is enabled, Cisco UCS Manager does not permit a user to choose a password that does not meet the guidelines for a strong password.

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > User Management > User Services**.

Step 3 Click the **Locally Authenticated Users** node.

Step 4 In the **Work** pane, check the **Password Strength Check** check box in the **Properties** area.

Step 5 Click **Save Changes**.
Setting the Web Session Limits for Cisco UCS Manager GUI Users

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > Communication Management > Communication Services.

Step 3 Click the Communication Services tab.

Step 4 In the Web Session Limits area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Sessions Per User</td>
<td>The maximum number of concurrent HTTP and HTTPS sessions allowed for each user. Enter an integer between 1 and 256.</td>
</tr>
<tr>
<td>Maximum Sessions</td>
<td>The maximum number of concurrent HTTP and HTTPS sessions allowed for all users within the system. Enter an integer between 1 and 256.</td>
</tr>
</tbody>
</table>

Step 5 Click Save Changes.

Changing the Locales Assigned to a Locally Authenticated User Account

Note

Do not assign locales to users with an admin or aaa role.

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > User Management > User Services > Locally Authenticated Users.

Step 3 Click the user account that you want to modify.

Step 4 In the Work pane, click the General tab.

Step 5 In the Locales area, do the following:

- To assign a new locale to the user account, check the appropriate check boxes.
- To remove a locale from the user account, uncheck the appropriate check boxes.

Step 6 Click Save Changes.
Changing the Roles Assigned to a Locally Authenticated User Account

Changes in user roles and privileges do not take effect until the next time the user logs in. If a user is logged in when you assign a new role to or remove an existing role from a user account, the active session continues with the previous roles and privileges.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > User Services > Locally Authenticated Users.
Step 3 Click the user account that you want to modify.
Step 4 In the Work pane, click the General tab.
Step 5 In the Roles area, do the following:
 • To assign a new role to the user account, check the appropriate check boxes.
 • To remove a role from the user account, uncheck the appropriate check boxes.
Step 6 Click Save Changes.

Enabling a User Account

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > User Management > User Services > Locally Authenticated Users.
Step 3 Click the user that you want to enable.
Step 4 In the Work pane, click the General tab.
Step 5 In the Account Status field, click the active radio button.
Step 6 Click Save Changes.
Disabling a User Account

Procedure

- **Step 1** In the Navigation pane, click the Admin tab.
- **Step 2** On the Admin tab, expand All > User Management > User Services > Locally Authenticated Users.
- **Step 3** Click the user that you want to disable.
- **Step 4** In the Work pane, click the General tab.
- **Step 5** In the Account Status field, click the inactive radio button. The admin user account is always set to active. It cannot be modified.
- **Step 6** Click Save Changes.

Deleting a Locally Authenticated User Account

Procedure

- **Step 1** In the Navigation pane, click the Admin tab.
- **Step 2** On the Admin tab, expand All > User Management > User Services.
- **Step 3** Expand the Locally Authenticated Users node.
- **Step 4** Right-click the user account you want to delete and choose Delete.
- **Step 5** In the Delete dialog box, click Yes.

Monitoring User Sessions

You can monitor Cisco UCS Manager sessions for both locally authenticated users and remotely authenticated users, whether they logged in through the CLI or the GUI.

Procedure

- **Step 1** In the Navigation pane, click the Admin tab.
- **Step 2** In the Admin tab, expand All > User Management.
- **Step 3** Click the User Services node.
- **Step 4** In the Work pane, click the Sessions tab.

The tab displays the following details of user sessions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name column</td>
<td>The name for the session.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>User column</td>
<td>The username that is involved in the session.</td>
</tr>
<tr>
<td>Fabric ID column</td>
<td>The fabric interconnect that the user logged in to for the session.</td>
</tr>
<tr>
<td>Login Time column</td>
<td>The date and time the session started.</td>
</tr>
<tr>
<td>Terminal Type column</td>
<td>The kind of terminal the user is logged in through.</td>
</tr>
<tr>
<td>Host column</td>
<td>The IP address from which the user is logged in.</td>
</tr>
<tr>
<td>Current Session column</td>
<td>If this column displays Y, the associated user session is currently active.</td>
</tr>
</tbody>
</table>
Managing Firmware

This chapter includes the following sections:

- Overview of Firmware, page 159
- Firmware Image Management, page 160
- Firmware Versions, page 162
- Firmware Upgrades, page 163
- Firmware Downgrades, page 173
- Completing the Prerequisites for Upgrading the Firmware, page 173
- Downloading and Managing Firmware Packages, page 178
- Directly Updating Firmware at Endpoints, page 184
- Updating Firmware through Service Profiles, page 194
- Verifying Firmware Versions on Components, page 199
- Managing the Capability Catalog, page 199
- Updating Management Extensions, page 204

Overview of Firmware

Cisco UCS uses firmware obtained from and certified by Cisco to support the endpoints in a Cisco UCS instance. Each endpoint is a component in the instance that requires firmware to function. The upgrade order for the endpoints in a Cisco UCS instance depends upon the upgrade path, but includes the following:

- Cisco UCS Manager
- I/O modules
- Fabric interconnects
- Endpoints physically located on adapters, including NIC and HBA firmware, and Option ROM (where applicable) that can be upgraded through firmware packages included in a service profile
Endpoints physically located on servers, such as the BIOS, storage controller (RAID controller), and Cisco Integrated Management Controller (CIMC) that can be upgraded through firmware packages included in a service profile.

See the required order of steps for your upgrade path to determine the appropriate order in which to upgrade the endpoints in your Cisco UCS instance.

Note

Beginning with Cisco UCS, Release 1.4(1), Cisco is releasing firmware upgrades in multiple bundles, rather than one large firmware package. For more information see *Firmware Image Management*, on page 160.

Cisco maintains a set of best practices for managing firmware images and updates in this document and in the following technical note: *Unified Computing System Firmware Management Best Practices*.

This document uses the following definitions for managing firmware:

Upgrade

Changes the firmware running on an endpoint to another image, such as a release or patch. Upgrade includes both update and activation.

Update

Copies the firmware image to the backup partition on an endpoint.

Activate

Sets the firmware in the backup partition as the active firmware version on the endpoint. Activation can require or cause the reboot of an endpoint.

For Management Extensions and Capability Catalog upgrades, update and activate occur simultaneously. You only need to update or activate those upgrades. You do not need to perform both steps.

Firmware Image Management

Cisco delivers all firmware updates to Cisco UCS components in bundles of images. Cisco UCS firmware updates are available to be downloaded in the following bundles:

Cisco UCS Infrastructure Software Bundle

This bundle includes the following firmware images that are required to update the following components:

- Cisco UCS Manager software
- Kernel and system firmware for the fabric interconnects
- I/O module firmware
Cisco UCS B-Series Blade Server Software Bundle

This bundle includes the following firmware images that are required to update the firmware for the blade servers in a Cisco UCS instance. In addition to the bundles created for a release, these bundles can also be released between infrastructure bundles to enable Cisco UCS Manager to support a blade server that is not included in the most recent infrastructure bundle.

- CIMC firmware
- BIOS firmware
- Board controller firmware
- Third-party firmware images required by the new server

Cisco UCS C-Series Rack-Mount Server Software Bundle

This bundle includes firmware images that are required to update the following components on rack-mount servers that have been integrated with and are managed by Cisco UCS Manager:

- CIMC
- BIOS
- Adapters
- Storage controllers

Note

You cannot use this bundle for standalone C-series servers. The firmware management system in those servers cannot interpret the header required by Cisco UCS Manager. For information on how to upgrade standalone C-series servers, see the C-series configuration guides.

Cisco also provides release notes, which you can obtain on the same website from which you obtained the bundles.

Firmware Image Headers

Every firmware image has a header, which includes the following:

- Checksum
- Version information
- Compatibility information that the system can use to verify the compatibility of component images and any dependencies

Firmware Image Catalog

Cisco UCS Manager provides you with two views of the catalog of firmware images and their contents that have been downloaded to the fabric interconnect:
Packages

This view provides you with a read-only representation of the firmware bundles that have been downloaded onto the fabric interconnect. This view is sorted by image, not by the contents of the image. For packages, you can use this view to see which component images are in each downloaded firmware bundle.

Images

The images view lists the component images available on the system. You cannot use this view to see complete firmware bundles or to group the images by bundle. The information available about each component image includes the name of the component, the image size, the image version, and the vendor and model of the component.

You can use this view to identify the firmware updates available for each component. You can also use this view to delete obsolete and unneeded images. Cisco UCS Manager deletes a package after all images in the package have been deleted.

Tip

Cisco UCS Manager stores the images in bootflash on the fabric interconnect. In a cluster system, space usage in bootflash on both fabric interconnects is the same, because all images are synchronized between them. If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete images to free up space.

Firmware Versions

The firmware versions on an endpoint depend upon the type of endpoint. The endpoints physically located on a fabric interconnect have different versions than those physically located on a server or I/O module.

Firmware Versions in CIMC, I/O Modules, and Adapters

Each CIMC, I/O module, and adapter has two slots for firmware in flash. Each slot holds a version of firmware. One slot is active and the other is the backup slot. A component boots from whichever slot is designated as active.

The following firmware version terminology is used in Cisco UCS Manager:

Running Version

The running version is the firmware that is active and in use by the endpoint.

Startup Version

The startup version is the firmware that will be used when the endpoint next boots up. Cisco UCS Manager uses the activate operation to change the startup version.

Backup Version

The backup version is the firmware in the other slot and is not in use by the endpoint. This version can be firmware that you have updated to the endpoint but have not yet activated, or it can be an older firmware version that was replaced by a recently activated version. Cisco UCS Manager uses the update operation to replace the image in the backup slot.
If the endpoint cannot boot from the startup version, it boots from the backup version.

Firmware Versions in the Fabric Interconnect and Cisco UCS Manager

You can only activate the fabric interconnect firmware and Cisco UCS Manager on the fabric interconnect. The fabric interconnect and Cisco UCS Manager firmware do not have backup versions, because all the images are stored on the fabric interconnect. As a result, the number of bootable fabric interconnect images is not limited to two, like the server CIMC and adapters. Instead, the number of bootable fabric interconnect images is limited by the available space in the memory of the fabric interconnect and the number of images stored there.

The fabric interconnect and Cisco UCS Manager firmware have running and startup versions of the kernel and system firmware. The kernel and system firmware must run the same versions of firmware.

Firmware Upgrades

Cisco UCS firmware is upgraded through a combination of the following methods:

- **Direct upgrade at the endpoints.** For a cluster configuration with two fabric interconnects, a direct upgrade can be minimally disruptive to data traffic. However, it requires that the Cisco UCS instance does not include firmware policies for those endpoints that you upgrade directly. You cannot avoid disruption to traffic in a Cisco UCS instance with only one fabric interconnection.

- **Upgrades to server endpoints through service profiles that include a host firmware package, a management firmware package, or both.** This method is disruptive to data traffic and should be performed during a maintenance window.

Note

Direct upgrade is not available for all endpoints, including the server BIOS, storage controller, HBA firmware, and HBA option ROM. You must upgrade those endpoints through the host firmware package included in the service profile associated with the server.

Guidelines and Cautions for Firmware Upgrades

Before you upgrade the firmware for any endpoint in a Cisco UCS instance, consider the following guidelines and cautions:

Determine Appropriate Type of Firmware Upgrade for Each Endpoint

Some endpoints, such as adapters and the server CIMC, can be upgraded through either a direct firmware upgrade or a firmware package included in a service profile. The configuration of a Cisco UCS instance determines how you upgrade these endpoints. If the service profiles associated with the servers include a host firmware package, upgrade the adapters for those servers through the firmware package. In the same way, if the service profiles associated with the servers include a management firmware package, upgrade the CIMC for those servers through the firmware package.

Upgrades of a CIMC through a management firmware package or an adapter through a firmware package in the service profile associated with the server take precedence over direct firmware upgrades. You cannot directly upgrade an endpoint if the service profile associated with the server includes a firmware package. To perform a direct upgrade, you must remove the firmware package from the service profile.
Always Upgrade Cisco UCS Gen-2 Adapters through a Host Firmware Package

You cannot upgrade Cisco UCS Gen-2 adapters directly at the endpoints. You must upgrade the firmware on those adapters through a host firmware package.

No Server or Chassis Maintenance

Caution
Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Number of Fabric Interconnects

For a cluster configuration with two fabric interconnects, you can take advantage of the failover between the fabric interconnects and perform a direct firmware upgrade of the endpoints without disrupting data traffic. However, you cannot avoid disrupting data traffic for those endpoints which must be upgraded through a host or management firmware package.

For a standalone configuration with a single fabric interconnect, you can minimize the disruption to data traffic when you perform a direct firmware upgrade of the endpoints. However, you must reboot the fabric interconnect to complete the upgrade and, therefore, cannot avoid disrupting traffic.

Do Not Activate All Endpoints Simultaneously in Cisco UCS Manager GUI

If you use Cisco UCS Manager GUI to update the firmware, do not select ALL from the Filter drop-down list in the Activate Firmware dialog box to activate all endpoints simultaneously. Many firmware releases and patches have dependencies that require the endpoints to be activated in a specific order for the firmware update to succeed. This order can change depending upon the contents of the release or patch. Activating all endpoints does not guarantee that the updates occur in the required order and can disrupt communications between the endpoints and the fabric interconnects and Cisco UCS Manager. For information about the dependencies in a specific release or patch, see the release notes provided with that release or patch.

Impact of Activation for Adapters and I/O Modules

During a direct upgrade, you should configure Set Startup Version Only for an adapter. With this setting, the activated firmware moves into the pending-next-boot state, and the server is not immediately rebooted. The activated firmware does not become the running version of firmware on the adapter until the server is rebooted. You cannot configure Set Startup Version Only for an adapter in the host firmware package.

If a server is not associated with a service profile, the activated firmware moves into the pending-next-boot state. Cisco UCS Manager does not reboot the endpoints or activate the firmware until the server is associated with a service profile. If necessary, you can manually reboot an unassociated server to activate the firmware.

When you configure Set Startup Version Only for an I/O module, the I/O module is rebooted when the fabric interconnect in its data path is rebooted. If you do not configure Set Startup Version Only for an I/O module, the I/O module reboots and disrupts traffic. In addition, if Cisco UCS Manager detects a protocol and firmware version mismatch between the fabric interconnect and the I/O module, Cisco UCS Manager automatically updates the I/O module with the firmware version that matches the firmware in the fabric interconnect and then activates the firmware and reboots the I/O module again.
Avoid Replacing RAID-Configured Hard Disks Prior to Upgrade

Under the following circumstances, Cisco UCS Manager may scrub all data on a hard disk as part of the RAID synchronization process during an upgrade of the server firmware:

- The hard disks in the server are configured for RAID.
- One or more of the RAID-configured hard disks in the server are removed.
- The hard disk or disks are replaced with hard disks that are configured with a pre-existing RAID and the local disk configuration policy included in the service profile on the server is not used to configure those hard disks.
- The server firmware is upgraded, causing the server to reboot and Cisco UCS Manager to begin the RAID synchronization process.

If the original hard disks contained vital data that needs to preserved, avoid inserting new hard disks that are already configured for RAID.

VLAN 4048 is Reserved in Releases 1.4(1) and Higher

As of Release 1.4(1), VLAN 4048 is a reserved VLAN. If your Cisco UCS instances is configured to use VLAN 4048, you must reconfigure that VLAN to use a different ID before you upgrade.

Impact of Upgrade to Release 1.3(1i) or Higher

An upgrade from an earlier Cisco UCS firmware release to release 1.3(1i) or higher has the following impact on the Protect Configuration property of the local disk configuration policy the first time servers are associated with service profiles after the upgrade:

Unassociated Servers

After you upgrade the Cisco UCS instance, the initial server association proceeds without configuration errors whether or not the local disk configuration policy matches the server hardware. Even if you enable the Protect Configuration property, Cisco UCS does not protect the user data on the server if there are configuration mismatches between the local disk configuration policy on the previous service profile and the policy in the new service profile.

Note

If you enable the Protect Configuration property and the local disk configuration policy encounters mismatches between the previous service profile and the new service profile, all subsequent service profile associations with the server are blocked.

Associated Servers

Any servers that are already associated with service profiles do not reboot after the upgrade. Cisco UCS Manager does not report any configuration errors if there is a mismatch between the local disk configuration policy and the server hardware.

When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.
Disable Call Home before Upgrading to Avoid Unnecessary Alerts (Optional)

When you upgrade a Cisco UCS instance, Cisco UCS Manager restarts the components to complete the upgrade process. This restart causes events that are identical to service disruptions and component failures that trigger Call Home alerts to be sent. If you do not disable Call Home before you begin the upgrade, you can ignore the alerts generated by the upgrade-related component restarts.

Cannot Upgrade Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter

The firmware on the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter (N20-AI0002), Intel-based adapter card, is burned into the hardware at manufacture. You cannot upgrade the firmware on this adapter.

Required Order of Components for Firmware Activation

If you upgrade firmware by individual components in a Cisco UCS instance, activate the updates in the required order for quicker activation and to avoid potential issues with conflicting firmware versions.

Required Order when Upgrading from Cisco UCS, Release 1.3(1) and Later

1. (Optional) Call Home—If the Cisco UCS instance includes Call Home or Smart Call Home, disable Call Home if you do not want to receive unnecessary alerts when Cisco UCS Manager restarts components to complete the firmware activation.
2. Adapter—If you plan to upgrade the adapters directly, perform this step first. However, if you prefer or if the adapters require it, you can omit this step and upgrade the adapters as part of the last step, in a host firmware package.
3. CIMC—If you upgrade the adapters in the host firmware package, perform this step first.
4. Cisco UCS Manager.
5. I/O module—Activate with Set Startup Version only.
6. Fabric interconnect (subordinate)—If you are upgrading a system with a cluster configuration, activate the subordinate fabric interconnect first.
7. Fabric interconnect (primary)—If you are upgrading a system with a cluster configuration, activate the primary fabric interconnect second.
8. Host firmware package—Must be the last step in the upgrade process. We recommend that you upgrade the board controller firmware during this step to avoid an additional reboot of the server. You must upgrade the following firmware in a host firmware package:
 - BIOS
 - Storage controller
 - Gen 2 adapters
9. (Optional) Call Home—If you disabled Call Home before the upgrading the firmware, enable Call Home.

Required Order when Upgrading from Cisco UCS, Release 1.0(2) and Later

1. (Optional) Call Home—If the Cisco UCS instance includes Call Home or Smart Call Home, disable Call Home if you do not want to receive unnecessary alerts when Cisco UCS Manager restarts components to complete the firmware activation.
2 Adapter—If you plan to upgrade the adapters directly, perform this step first. However, if you prefer or if the adapters require it, you can omit this step and upgrade the adapters as part of the last step, in a host firmware package.

3 BMC—If you upgrade the adapters in the host firmware package, perform this step first.

4 Cisco UCS Manager.

5 I/O module—Activate with Set Startup Version only.

6 Fabric interconnect (subordinate)—If you are upgrading a system with a cluster configuration, activate the subordinate fabric interconnect first.

7 Fabric interconnect (primary)—If you are upgrading a system with a cluster configuration, activate the primary fabric interconnect second.

8 Host firmware package—Must be the last step in the upgrade process. We recommend that you upgrade the board controller firmware during this step to avoid an additional reboot of the server. You must upgrade the following firmware in a host firmware package:
 - BIOS
 - Storage controller
 - Gen 2 adapters

9 (Optional) Call Home—If you disabled Call Home before the upgrading the firmware, enable Call Home.

Required Order when Upgrading from Cisco UCS, Release 1.0(1)

1 (Optional) Call Home—If the Cisco UCS instance includes Call Home or Smart Call Home, disable Call Home if you do not want to receive unnecessary alerts when Cisco UCS Manager restarts components to complete the firmware activation.

2 Adapter (interface card)—If you plan to upgrade the adapters directly, perform this step first. However, if you prefer, you can omit this step and upgrade the adapters as part of the last step, in a host firmware package.

3 BMC—If you upgrade the adapters in the host firmware package, perform this step first.

4 I/O module—Activate with Set Startup Version only.

5 Fabric interconnect (subordinate)—If you are upgrading a system with a cluster configuration, activate the subordinate fabric interconnect first.

6 Fabric interconnect (primary)—If you are upgrading a system with a cluster configuration, activate the primary fabric interconnect second.

7 Cisco UCS Manager.

8 Host firmware package—Must be the last step in the upgrade process. We recommend that you upgrade the board controller firmware during this step to avoid an additional reboot of the server. You must upgrade the following firmware in a host firmware package:
 - BIOS
 - Storage controller
 - Gen 2 adapters
9 (Optional) Call Home—If you disabled Call Home before the upgrading the firmware, enable Call Home.

Required Order for Adding Support for Previously Unsupported Servers

From Cisco UCS, Release 1.4(1) and later, the method for adding support for previously unsupported type of servers, such as a new blade server or a rack-mount server, to an existing Cisco UCS instance requires the following additional steps after you upgrade your existing firmware to the new release.

Adding Support for a Previously Unsupported Cisco UCS Blade Server

After you upgrade the firmware for the existing components, you can add support for a previously unsupported server that was released between infrastructure bundle releases. When you add the first server of a previously unsupported type of blade server, you must perform the steps to enable Cisco UCS Manager to support that type of server in the following order:

1 Insert the blade server into the chassis as described in the server installation guide. Cisco UCS Manager cannot discover the server as it is unsupported, and the finite state machine (FSM) for the discovery fails with an unsupported server error.

2 Obtain the B-Series server bundle for the new blade server from Cisco.com and download it to the fabric interconnect.

3 Activate the Capability Catalog image from the server bundle.

4 Activate the Management Extension from the server bundle.

5 Wait for Cisco UCS Manager to retry discovery of the new server. If server discovery does not begin within a few minutes, acknowledge the server.

Note: You only need to perform these steps for the first server of a previously unsupported type of blade server. Cisco UCS Manager discovers all subsequent servers of that type automatically.

Integrating a Cisco UCS Rack-Mount Server

After you upgrade the firmware for the existing components, you can integrate a Cisco UCS rack-mount server. When you integrate a rack-mount server, you must perform the steps in the following order:

1 If you have not already done so, configure the rack server discovery policy in Cisco UCS Manager.

2 Follow the instructions in the server installation guide for installing and integrating a rack-mount server in a system managed by Cisco UCS Manager.

3 Wait for Cisco UCS Manager to discover the new server. If server discovery does not begin within a few minutes, acknowledge the server.

Direct Firmware Upgrade at Endpoints

If you follow the correct procedure and apply the upgrades in the correct order, a direct firmware upgrade and the activation of the new firmware version on the endpoints is minimally disruptive to traffic in a Cisco UCS instance.
You can directly upgrade the firmware on the following endpoints:

- Adapters
- CIMCs
- I/O modules
- Board controllers
- Cisco UCS Manager
- Fabric interconnects

The adapter and board controller firmware can also be upgraded through the host firmware package in the service profile. If you use a host firmware package to upgrade this firmware, you can reduce the number of times a server needs to be rebooted during the firmware upgrade process.

Note

Upgrades of a CIMC through a management firmware package or an adapter through a firmware package in the service profile associated with the server take precedence over direct firmware upgrades. You cannot directly upgrade an endpoint if the service profile associated with the server includes a firmware package. To perform a direct upgrade, you must remove the firmware package from the service profile.

Stages of a Direct Firmware Upgrade

Cisco UCS Manager separates the direct upgrade process into two stages to ensure that you can push the firmware to an endpoint while the system is running without affecting uptime on the server or other endpoints.

Update

During this stage, the system copies the selected firmware version from the primary fabric interconnect to the backup partition in the endpoint and verifies that the firmware image is not corrupt. The update process always overwrites the firmware in the backup slot.

The update stage applies only to the following endpoints:

- Adapters
- CIMCs
- I/O modules

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Activate

During this stage, the system sets the specified image version (normally the backup version) as the startup version and, if you do not specify **Set Startup Version Only**, immediately reboots the endpoint. When the
When the firmware is activated, the endpoint is rebooted and the new firmware becomes the active kernel version and system version. If the endpoint cannot boot from the startup firmware, it defaults to the backup version and raises a fault.

Caution

When you configure **Set Startup Version Only** for an I/O module, the I/O module is rebooted when the fabric interconnect in its data path is rebooted. If you do not configure **Set Startup Version Only** for an I/O module, the I/O module reboots and disrupts traffic. In addition, if Cisco UCS Manager detects a protocol and firmware version mismatch between the fabric interconnect and the I/O module, Cisco UCS Manager automatically updates the I/O module with the firmware version that matches the firmware in the fabric interconnect and then activates the firmware and reboots the I/O module again.

Outage Impacts of Direct Firmware Upgrades

When you perform a direct firmware upgrade on an endpoint, you can disrupt traffic or cause an outage in one or more of the endpoints in the Cisco UCS instance.

Outage Impact of a Fabric Interconnect Firmware Upgrade

When you upgrade the firmware for a fabric interconnect, you cause the following outage impacts and disruptions:

- The fabric interconnect reboots.
- The corresponding I/O modules reboot.

Outage Impact of a Cisco UCS Manager Firmware Upgrade

A firmware upgrade to Cisco UCS Manager causes the following disruptions:

- Cisco UCS Manager GUI—All users logged in to Cisco UCS Manager GUI are logged out and their sessions ended.
 Any unsaved work in progress is lost.
- Cisco UCS Manager CLI—All users logged through telnet are logged out and their sessions ended. Console sessions are not ended.

Outage Impact of an I/O Module Firmware Upgrade

When you upgrade the firmware for an I/O module, you cause the following outage impacts and disruptions:
• For a standalone configuration with a single fabric interconnect, data traffic is disrupted when the I/O module reboots. For a cluster configuration with two fabric interconnects, data traffic fails over to the other I/O module and the fabric interconnect in its data path.

• If you activate the new firmware as the startup version only, the I/O module reboots when the corresponding fabric interconnect is rebooted.

• If you activate the new firmware as the running and startup version, the I/O module reboots immediately.

• An I/O module can take up to ten minutes to become available after a firmware upgrade.

Outage Impact of a CIMC Firmware Upgrade
When you upgrade the firmware for a CIMC in a server, you impact only the CIMC and internal processes. You do not interrupt server traffic. This firmware upgrade causes the following outage impacts and disruptions to the CIMC:

• Any activities being performed on the server through the KVM console and vMedia are interrupted.

• Any monitoring or IPMI polling is interrupted.

Outage Impact of an Adapter Firmware Upgrade
If you activate the firmware for an adapter and do not configure the Set Startup Version Only option, you cause the following outage impacts and disruptions:

• The server reboots.

• Server traffic is disrupted.

Firmware Upgrades through Service Profiles
You can use service profiles to upgrade the server and adapter firmware, including the BIOS on the server, by defining the following policies and including them in the service profile associated with a server:

• Host Firmware Package policy

• Management Firmware Package policy

Note
You cannot upgrade the firmware on an I/O module, fabric interconnect, or Cisco UCS Manager through service profiles. You must upgrade the firmware on those endpoints directly.

Host Firmware Package
This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

• Adapter

• BIOS
You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

Prerequisites

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

Management Firmware Package

This policy enables you to specify a set of firmware versions that make up the management firmware package (also known as a management firmware pack). The management firmware package includes the Cisco Integrated Management Controller (CIMC) on the server. You do not need to use this package if you upgrade the CIMC directly.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the CIMC firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Stages of a Firmware Upgrade through Service Profiles

You can use the host and management firmware package policies in service profiles to upgrade server and adapter firmware.
If you modify a host firmware package by adding an endpoint or changing firmware versions for an existing endpoint, Cisco UCS Manager upgrades the endpoints and reboots all servers associated with that firmware package as soon as the changes are saved, disrupting data traffic to and from the servers.

New Service Profile
For a new service profile, this upgrade takes place over the following stages:

Firmware Package Policy Creation
During this stage, you create the host and/or management firmware packages and include them in the appropriate firmware policies.

Service Profile Association
During this stage, you include the firmware packages in a service profile, and then associate the service profile with a server. The system pushes the selected firmware versions to the endpoints. For a host firmware package, the server is rebooted to ensure that the endpoints are running the versions specified in the firmware package.

Existing Service Profile
If the service profile is already associated with a server, Cisco UCS Manager upgrades the firmware as soon as you save the changes to the host firmware packages. For a host firmware package, Cisco UCS Manager reboots the server as soon as the change is saved.

Firmware Downgrades
You downgrade firmware in a Cisco UCS instance in the same way that you upgrade firmware. The package or version that you select when you update the firmware determines whether you are performing an upgrade or a downgrade.

Completing the Prerequisites for Upgrading the Firmware

Prerequisites for Upgrading and Downgrading Firmware
All endpoints in a Cisco UCS instance must be fully functional and all processes must be complete before you begin a firmware upgrade or downgrade on those endpoints. You cannot upgrade or downgrade an endpoint that is not in a functional state. For example, the firmware on a server that has not been discovered cannot be upgraded or downgraded. An incomplete process, such as an FSM that has failed after the maximum number of retries, can cause the upgrade or downgrade on an endpoint to fail. If an FSM is in progress, Cisco UCS Manager queues up the update and activation and runs them when the FSM has completed successfully.

Colored boxes around components on the Equipment tab may indicate that an endpoint on that component cannot be upgraded or downgraded. Verify the status of that component before you attempt to upgrade the endpoints.
The Installed Firmware tab in Cisco UCS Manager GUI does not provide sufficient information to complete these prerequisites.

Before you upgrade or downgrade firmware in a Cisco UCS instance, complete the following prerequisites:

- Back up the configuration into an All Configuration backup file.
- For a cluster configuration, verify that the high availability status of the fabric interconnects shows that both are up and running.
- For a standalone configuration, verify that the Overall Status of the fabric interconnect is Operable.
- Verify that all servers, I/O modules, and adapters are fully functional. An inoperable server cannot be upgraded.
- Verify that all servers have been discovered. They do not need to be powered on or associated with a service profile.

Creating an All Configuration Backup File

This procedure assumes that you do not have an existing backup operation for an All Configuration backup file.

Before You Begin

Obtain the backup server IP address and authentication credentials.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 Click the All node.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area, click Backup.
Step 5 In the Backup Configuration dialog box, click Create Backup Operation.
Step 6 In the Create Backup Operation dialog box, do the following:
 a) Complete the following fields:
 - **Admin State** field—Click the enabled radio button to run the backup operation as soon as you click OK.
 - **Type** field—Click the All Configuration radio button to create an XML backup file that includes all system and logical configuration information.
 - **Preserve Identities** check box—If the Cisco UCS instance includes any identities derived from pools that you need to preserve, check this check box.

Identities such as MAC addresses, WWNNs, WWPNs, or UUIDS are assigned at runtime. If you do not want these identities to change after you import the backup file, you must check this check box. If you do not, these identities may be changed after the import and operations such as a PXE boot or a SAN boot may no longer function.
• **Protocol** field—Click the one of the following radio buttons to indicate the protocol you want to use to transfer the file to the backup server:

 - FTP
 - TFTP
 - SCP
 - SFTP

• **Hostname** field—Enter the IP address or hostname of the location where the backup file is to be stored. This can be a server, storage array, local drive, or any read/write media that the fabric interconnect can access through the network. If you use a hostname, you must configure Cisco UCS Manager to use a DNS server.

• **Remote File** field—Enter the full path to the backup configuration file. This field can contain the filename as well as the path. If you omit the filename, the backup procedure assigns a name to the file.

• **User** field—Enter the username that Cisco UCS Manager should use to log in to the backup location. You do not need to complete this field if you selected TFTP for the protocol.

• **Password** field—Enter the password associated with the username. You do not need to complete this field if you selected TFTP for the protocol.

b) Click **OK**.

Step 7 If Cisco UCS Manager displays a confirmation dialog box, click **OK**.

If you set the **Admin State** field to enabled, Cisco UCS Manager takes a snapshot of the configuration type that you selected and exports the file to the network location. The backup operation displays in the **Backup Operations** table in the **Backup Configuration** dialog box.

Step 8 (Optional) To view the progress of the backup operation, do the following:

a) If the operation does not display in the **Properties** area, click the operation in the **Backup Operations** table.

b) In the **Properties** area, click the down arrows on the **FSM Details** bar. The **FSM Details** area expands and displays the operation status.

Step 9 Click **OK** to close the **Backup Configuration** dialog box.

The backup operation continues to run until it is completed. To view the progress, re-open the **Backup Configuration** dialog box.
Verifying the Overall Status of the Fabric Interconnects

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects.
Step 3 Click the node for the fabric interconnect that you want to verify.
Step 4 In the Work pane, click the General tab.
Step 5 In the Status area, verify that the Overall Status is operable. If the status is not operable, run a show tech-support command and contact Cisco Technical Support. Do not proceed with the firmware upgrade. For more information about the show tech-support command, see Cisco UCS Manager B-Series Troubleshooting Guide.

Verifying the High Availability Status and Roles of a Cluster Configuration

The high availability status is the same for both fabric interconnects in a cluster configuration.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects.
Step 3 Click the node for one of the fabric interconnects in the cluster.
Step 4 In the Work pane, click the General tab.
Step 5 If the fields in the High Availability Details area are not displayed, click the Expand icon to the right of the heading.
Step 6 Verify that the following fields display the following values:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Required Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready field</td>
<td>Yes</td>
</tr>
<tr>
<td>State field</td>
<td>Up</td>
</tr>
</tbody>
</table>

If the values are different, run a show tech-support command and contact Cisco Technical Support. Do not proceed with the firmware upgrade.

Step 7 Note the value in the Leadership field to determine whether the fabric interconnect is the primary or subordinate. You need to know this information to upgrade the firmware on the fabric interconnects.
Verifying the Status of I/O Modules

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, expand Equipment > Chassis.</td>
</tr>
<tr>
<td>3</td>
<td>Click on the chassis for which you want to verify the status of the I/O modules.</td>
</tr>
<tr>
<td>4</td>
<td>In the Work pane, click the IO Modules tab.</td>
</tr>
<tr>
<td>5</td>
<td>For each I/O module, verify that the following columns display the following values:</td>
</tr>
<tr>
<td></td>
<td>Field Name</td>
</tr>
<tr>
<td></td>
<td>Overall Status column</td>
</tr>
<tr>
<td></td>
<td>Operability column</td>
</tr>
</tbody>
</table>

If the values are different, run a `show tech-support` command and contact Cisco Technical Support. Do not proceed with the firmware upgrade.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Repeat Steps 3 through 5 to verify the status of the I/O modules in each chassis.</td>
</tr>
</tbody>
</table>

Verifying the Status of Servers

If a server is inoperable, you can proceed with the upgrade for other servers in the Cisco UCS instance. However, you cannot upgrade the inoperable server.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, click Equipment.</td>
</tr>
<tr>
<td>3</td>
<td>In the Work pane, click the Servers tab to display a list of all servers in all chassis.</td>
</tr>
<tr>
<td>4</td>
<td>For each server, verify that the following columns display the following values:</td>
</tr>
<tr>
<td></td>
<td>Field Name</td>
</tr>
<tr>
<td></td>
<td>Overall Status column</td>
</tr>
<tr>
<td></td>
<td>Operability column</td>
</tr>
<tr>
<td></td>
<td>If the value indicates a failure, such as discovery-failed, the endpoints on that server cannot be upgraded.</td>
</tr>
</tbody>
</table>
Step 5 If you need to verify that a server has been discovered, do the following:

a) Right-click the server for which you want to verify the discovery status and choose **Show Navigator**.

b) In the **Status Details** area of the **General** tab, verify that the **Discovery State** field displays a value of **complete**.

 If the fields in the **Status Details** area are not displayed, click the **Expand** icon to the right of the heading.

Verifying the Status of Adapters on Servers in a Chassis

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, expand **Equipment > Chassis > Chassis Number > Servers**.

Step 3 Click the server for which you want to verify the status of the adapters.

Step 4 In the **Work** pane, click the **Inventory** tab.

Step 5 In the **Inventory** tab, click the **Interface Cards** subtab.

Step 6 For each adapter, verify that the following columns display the following values:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Desired Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Status column</td>
<td>ok</td>
</tr>
<tr>
<td>Operability column</td>
<td>operable</td>
</tr>
</tbody>
</table>

If the fields show a different value and the adapter is inoperable, you can proceed with the upgrade for other adapters on the servers in the Cisco UCS instance. However, you cannot upgrade the inoperable adapter.

Downloading and Managing Firmware Packages

Obtaining Software Bundles from Cisco

Before You Begin

Determine which of the following software bundles you need to update the Cisco UCS instance:

- Cisco UCS Infrastructure Software Bundle—Required for all Cisco UCS instances.
- Cisco UCS B-Series Blade Server Software Bundle—Required for all Cisco UCS instances that include blade servers.
• Cisco UCS C-Series Rack-Mount Server Software Bundle—Only required for Cisco UCS instances that include integrated rack-mount servers. This bundle contains firmware to enable Cisco UCS Manager to manage those servers and is not applicable to standalone C-Series rack-mount servers.

Procedure

Step 1
In a web browser, navigate to http://www.cisco.com.

Step 2
Under Support, click Download Software.

Step 3
Click Unified Computing and Servers.

Step 4
If prompted, enter your Cisco.com username and password to log in.

Step 5
Navigate to the software bundles you need, as follows:

<table>
<thead>
<tr>
<th>Bundle</th>
<th>Navigation Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS Infrastructure Software Bundle</td>
<td>Click Cisco UCS Infrastructure and UCS Manager Software > Unified Computing System (UCS) Infrastructure Software Bundle.</td>
</tr>
</tbody>
</table>

Tip
The Unified Computing System (UCS) Documentation Roadmap Bundle, which is accessible through these paths, is a downloadable ISO image of all Cisco UCS documentation.

Step 6
On the first page from which you download a software bundle, click the Release Notes link to download the latest version of the Release Notes.

Step 7
For each software bundle that you want to download, do the following:

a) Click the link for the release you want to download.
 The release number is followed by a number and a letter in parentheses. The number identifies the maintenance release level, and the letter differentiates between patches of that maintenance release. For more information about what is in each maintenance release and patch, see the latest version of the Release Notes.

b) Click one of the following buttons and follow the instructions provided:
 - **Download Now**—Allows you to download the software bundle immediately.
 - **Add to Cart**—Adds the software bundle to your cart to be downloaded at a later time.

c) Follow the prompts to complete your download of the software bundle(s).

Step 8
Read the Release Notes before upgrading your Cisco UCS instance.

What to Do Next
Download the software bundles to the fabric interconnect.
Downloading Firmware Images to the Fabric Interconnect from a Remote Location

Note
In a cluster setup, the image file for the firmware bundle is downloaded to both fabric interconnects, regardless of which fabric interconnect is used to initiate the download. Cisco UCS Manager maintains all firmware packages and images in both fabric interconnects in sync. If one fabric interconnect is down, the download still finishes successfully. The images are synced to the other fabric interconnect when it comes back online.

Before You Begin
Obtain the required firmware bundles from Cisco.

Procedure

Step 1
In the Navigation pane, click the Equipment tab.

Step 2
On the Equipment tab, click the Equipment node.

Step 3
In the Work pane, click the Firmware Management tab.

Step 4
Click the Installed Firmware tab.

Step 5
Click Download Firmware.

Step 6
In the Download Firmware dialog box, click the Remote File System radio button in the Location of the Image File field.

Step 7
Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol field</td>
<td>The protocol to use when communicating with the remote server. This can be:</td>
</tr>
<tr>
<td></td>
<td>• FTP</td>
</tr>
<tr>
<td></td>
<td>• TFTP</td>
</tr>
<tr>
<td></td>
<td>• SCP</td>
</tr>
<tr>
<td></td>
<td>• SFTP</td>
</tr>
<tr>
<td>Note</td>
<td>TFTP has a file size limitation of 32 MB. Because firmware bundles can be much larger than that, we recommend that you do not select TFTP for firmware downloads.</td>
</tr>
</tbody>
</table>

| **Server** field | If the file came from a remote server, this is the IP address or hostname of the remote server on which the files resides. If the file came from a local source, this field displays "local". |
| **Note** | If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager. |

| **Filename** field | The name of the firmware file. |

### Name	Description
Path field | The absolute path to the file on the remote server. If you use SCP, the absolute path is always required. If you use any other protocol, you may not need to specify a remote path if the file resides in the default download folder. For details about how your file server is configured, contact your system administrator.

User field | The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP.

Password field | The password for the remote server username. This field does not apply if the protocol is TFTP.

Step 8
Click **OK**.
Cisco UCS Manager GUI begins downloading the firmware bundle to the fabric interconnect.

Step 9
(Optional) Monitor the status of the download on the **Download Tasks** tab.

Note
If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete bundles on the **Packages** tab to free up space. To view the available space in bootflash, navigate to the fabric interconnect on the **Equipment** tab and expand the **Local Storage Information** area on the **General** tab.

Step 10
Repeat this task until all the required firmware bundles have been downloaded to the fabric interconnect.

What to Do Next
After the image file for the firmware bundles have downloaded completely, update the firmware on the endpoints.

Downloading Firmware Images to the Fabric Interconnect from the Local File System

Note
In a cluster setup, the image file for the firmware bundle is downloaded to both fabric interconnects, regardless of which fabric interconnect is used to initiate the download. Cisco UCS Manager maintains all firmware packages and images in both fabric interconnects in sync. If one fabric interconnect is down, the download still finishes successfully. The images are synced to the other fabric interconnect when it comes back online.

Before You Begin
Obtain the required firmware bundles from Cisco.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 Click the Installed Firmware tab.
Step 5 Click Download Firmware.
Step 6 In the Download Firmware dialog box, click the Local File System radio button in the Location of the Image File field.
Step 7 In the Filename field, type the full path and a name of the image file. If you do not know the exact path to the folder where the firmware image file is located, click Browse and navigate to the file.
Step 8 Click OK. Cisco UCS Manager GUI begins downloading the firmware bundle to the fabric interconnect.
Step 9 (Optional) Monitor the status of the firmware bundle download on the Download Tasks tab.
Note If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete bundles on the Packages tab to free up space. To view the available space in bootflash, navigate to the fabric interconnect on the Equipment tab and expand the Local Storage Information area on the General tab.
Step 10 Repeat this task until all the required firmware bundles have been downloaded to the fabric interconnect.

What to Do Next

After the image file for the firmware bundles have downloaded completely, update the firmware on the endpoints.

Canceling an Image Download

You can cancel the download task for an image only while it is in progress. After the image has downloaded, deleting the download task does not delete the image that was downloaded. You cannot cancel the FSM related to the image download task.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 Expand the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 On the Download Tasks tab, right-click the task you want to cancel and select Delete.
Determining the Contents of a Firmware Package

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>3</td>
<td>In the Work pane, click the Firmware Management tab.</td>
</tr>
<tr>
<td>4</td>
<td>On the Packages subtab, click the + icon next to a package to view its contents.</td>
</tr>
</tbody>
</table>
| 5 | To take a snapshot of the package contents, do the following:
| | a) Highlight the rows that include the image name and its contents.
| | b) Right-click and choose Copy.
| | c) Paste the contents of your clipboard into a text file or other document. |

Checking the Available Space on a Fabric Interconnect

If an image download fails, check whether the bootflash on the fabric interconnect or fabric interconnects in the Cisco UCS has sufficient available space.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, expand Equipment > Fabric Interconnects.</td>
</tr>
<tr>
<td>3</td>
<td>Click the fabric interconnect on which you want to check the available space.</td>
</tr>
<tr>
<td>4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
</tbody>
</table>
| 5 | Expand the Local Storage Information area.
| | When you download a firmware image bundle, a fabric interconnect needs at least twice as much available space as the size of the firmware image bundle. If the bootflash does not have sufficient space, delete the obsolete firmware, core files, and other unneeded objects from the fabric interconnect. |

Deleting Firmware Packages from a Fabric Interconnect

Use this procedure if you want to delete an entire firmware package or bundle. If you prefer you can also delete one or more of the individual images in a package.

For releases prior to Cisco UCS, Release 1.3(1), you cannot delete firmware packages from the Packages tab. After you delete all images from the package, Cisco UCS Manager removes the packages.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 On the Firmware Management tab, click the Packages tab.
Step 5 In the table, click the package that you want to delete. You can use the Shift key or Ctrl key to select multiple entries.
Step 6 Right-click the highlighted package or packages and choose Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Cisco UCS Manager deletes the selected package or packages and all images contained within each package.

Deleting Firmware Images from a Fabric Interconnect

Use this procedure if you want to delete only a single image from a package.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 On the Firmware Management tab, click the Images tab.
Step 5 In the table, click the image that you want to delete. You can use the Shift key or Ctrl key to select multiple entries.
Step 6 Right-click the highlighted image or images and choose Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Directly Updating Firmware at Endpoints

Updating the Firmware on Multiple Endpoints

You can use this procedure to update the firmware on the following endpoints:

• Adapters
• CIMCs
• I/O modules
Caution
Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

Step 1
In the Navigation pane, click the Equipment tab.

Step 2
On the Equipment tab, click the Equipment node.

Step 3
In the Work pane, click the Firmware Management tab.

Step 4
On the Installed Firmware subtab, click Update Firmware.
Cisco UCS Manager GUI opens the Update Firmware dialog box and verifies the firmware versions for all endpoints in the Cisco UCS instance. This step may take a few minutes, depending upon the number of chassis and servers.

Step 5
In the Update Firmware dialog box, do the following:

a) From the Filter drop-down list on the menu bar, select ALL.
 If you want to update all endpoints of a specific type, such as all adapters, select that type from the drop-down list.

b) From the Set Version drop-down list on the menu bar, select the firmware version to which you want to update the endpoints.

c) Click OK.
 If one or more endpoints cannot be directly updated, Cisco UCS Manager displays a notification message. After you acknowledge the notification message, Cisco UCS Manager updates the firmware for all other endpoints on servers that can be directly updated.

Cisco UCS Manager copies the selected firmware image to the backup memory partition and verifies that the image is not corrupt. The image remains as the backup version until you explicitly activate it. Cisco UCS Manager begins all updates at the same time. However, some updates may complete at different times.

The update is complete when the Update Firmware dialog box displays ready in the Update Status column for all updated endpoints.

Step 6
(Optional) To monitor the progress of the update to a specific endpoint, right-click the endpoint and choose Show Navigator.
Cisco UCS Manager displays the progress in the Update Status area on the General tab. If the navigator has an FSM tab, you can also monitor the progress there. An entry in the Retry # field may not indicate that the update has failed. The retry count also includes retries that occur when Cisco UCS Manager retrieves the update status.

What to Do Next
Activate the firmware.
Updating the Firmware on an Adapter

Caution
Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

Step 1 In the Navigation pane, click the **Equipment** tab.
Step 2 On the **Equipment** tab, expand **Equipment > Chassis > Chassis Number > Servers**.
Step 3 Expand the node for the server which includes the adapter you want to update.
Step 4 Expand the **Interface Cards** and select the interface card for the adapter you want to upgrade.
Step 5 In the **General** tab, click **Update Firmware**.
Step 6 In the **Update Firmware** dialog box, do the following:
 a) From the **Version** drop-down list, select the firmware version to which you want to update the endpoint.
 b) (Optional) If you want to update the firmware regardless of any possible incompatibilities or currently executing tasks, check the **Ignore Compatibility Check** check box.
 c) Click **OK**.
 If one or more endpoints cannot be directly updated, Cisco UCS Manager displays a notification message. After you acknowledge the notification message, Cisco UCS Manager updates the firmware for all other endpoints on servers that can be directly updated.

Cisco UCS Manager copies the selected firmware package to the backup memory slot, where it remains until you explicitly activate it.

Step 7 (Optional) Monitor the status of the update in the **Update Status** area.
The update process can take several minutes. Do not activate the firmware until the selected firmware package displays in the **Backup Version** field in the **Firmware** area of the **General** tab.

What to Do Next
Activate the firmware.
Activating the Firmware on an Adapter

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3 Expand the node for the server that includes the adapter for which you want to activate the updated firmware.

Step 4 Expand Interface Cards and select the interface card for the adapter.

Step 5 In the General tab, click Activate Firmware.

Step 6 In the Activate Firmware dialog box, do the following:

a) Select the appropriate version from the Version To Be Activated drop-down list.
 If one or more of the selected endpoints are not configured with the desired version as the backup version, Cisco UCS Manager GUI does not display that version in the Set Version drop-down list. You must select the version from the Startup Version column for each individual endpoint.

b) (Optional) If you want to activate the firmware regardless of any possible incompatibilities or currently executing tasks, check the Ignore Compatibility Check check box.

c) If you want to set the start up version and not change the version running on the endpoint, check the Set Startup Version Only check box.
 During a direct upgrade, you should configure Set Startup Version Only for an adapter. With this setting, the activated firmware moves into the pending-next-boot state, and the server is not immediately rebooted. The activated firmware does not become the running version of firmware on the adapter until the server is rebooted. You cannot configure Set Startup Version Only for an adapter in the host firmware package.

d) Click OK.

Updating the CIMC Firmware on a Server

Caution
Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3 Expand the node for the server for which you want to update the CIMC.

Step 4 In the General tab, click the Inventory tab.

Step 5 Click the CIMC tab.

Step 6 In the Actions area, click Update Firmware.

Step 7 In the Update Firmware dialog box, do the following:

a) From the Version drop-down list, select the firmware version to which you want to update the endpoint.

b) (Optional) If you want to update the firmware regardless of any possible incompatibilities or currently executing tasks, check the Ignore Compatibility Check check box.

c) Click OK.

Cisco UCS Manager copies the selected firmware package to the backup memory slot, where it remains until you explicitly activate it.

Step 8 (Optional) Monitor the status of the update in the Update Status area.

The update process can take several minutes. Do not activate the firmware until the selected firmware package displays in the Backup Version field in the Firmware area of the General tab.

What to Do Next

Activate the firmware.

Activating the CIMC Firmware on a Server

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3 Expand the node for the server that includes the CIMC for which you want to activate the updated firmware.

Step 4 On the General tab, click the Inventory tab.

Step 5 Click the CIMC tab.

Step 6 In the Actions area, click Activate Firmware.

Step 7 In the Activate Firmware dialog box, do the following:

a) Select the appropriate version from the Version To Be Activated drop-down list.

If one or more of the selected endpoints are not configured with the desired version as the backup version, Cisco UCS Manager GUI does not display that version in the Set Version drop-down list. You must select the version from the Startup Version column for each individual endpoint.

b) (Optional) If you want to activate the firmware regardless of any possible incompatibilities or currently executing tasks, check the Ignore Compatibility Check check box.
c) If you want to set the start up version and not change the version running on the endpoint, check the **Set Startup Version Only** check box.

If you configure **Set Startup Version Only**, the activated firmware moves into the pending-next-reboot state and the endpoint is not immediately rebooted. The activated firmware does not become the running version of firmware until the endpoint is rebooted.

d) Click **OK**.

Updating the Firmware on an IOM

⚠️ **Caution**

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > IO Modules.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the I/O module that you want to update.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the General tab, click Update Firmware.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Update Firmware dialog box, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) From the Version drop-down list, select the firmware version to which you want to update the endpoint.</td>
</tr>
<tr>
<td></td>
<td>b) (Optional) If you want to update the firmware regardless of any possible incompatibilities or currently executing tasks, check the Ignore Compatibility Check check box.</td>
</tr>
<tr>
<td></td>
<td>c) Click OK.</td>
</tr>
<tr>
<td></td>
<td>Cisco UCS Manager copies the selected firmware package to the backup memory slot, where it remains until you explicitly activate it.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Monitor the status of the update in the Update Status area.</td>
</tr>
<tr>
<td></td>
<td>The update process can take several minutes. Do not activate the firmware until the selected firmware package displays in the Backup Version field in the Firmware area of the General tab.</td>
</tr>
</tbody>
</table>

What to Do Next

Activate the firmware.
Activating the Firmware on an IOM

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > IO Modules.

Step 3 Select the IO Module node that includes the I/O module for which you want to activate the updated firmware.

Step 4 In the General tab, click Activate Firmware.

Step 5 In the Activate Firmware dialog box, do the following:
 a) Select the appropriate version from the Version To Be Activated drop-down list.
 If one or more of the selected endpoints are not configured with the desired version as the backup version, Cisco UCS Manager GUI does not display that version in the Set Version drop-down list. You must select the version from the Startup Version column for each individual endpoint.
 b) (Optional) If you want to activate the firmware regardless of any possible incompatibilities or currently executing tasks, check the Ignore Compatibility Check check box.
 c) If you want to set the startup version and not change the version running on the endpoint, check the Set Startup Version Only check box.
 If you configure Set Startup Version Only, the activated firmware moves into the pending-next-reboot state and the endpoint is not immediately rebooted. The activated firmware does not become the running version of firmware until the endpoint is rebooted.
 d) Click OK.

Activating the Board Controller Firmware on a Server

Only certain servers, such as the Cisco UCS B440 High Performance blade server and the Cisco UCS B230 blade server, have board controller firmware. The board controller firmware controls many of the server functions, including eUSBs, LEDs, and I/O connectors.

Note This activation procedure causes the server to reboot. Depending upon whether or not the service profile associated with the server includes a maintenance policy, the reboot can occur immediately. To reduce the number of times a server needs to be rebooted during the upgrade process, we recommend that you upgrade the board controller firmware through the host firmware package in the service profile as the last step of upgrading a Cisco UCS domain, along with the server BIOS.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, click the Equipment node.

Step 3 In the Work pane, click the Firmware Management tab.

Step 4 On the Installed Firmware subtab, click Activate Firmware.
Cisco UCS Manager GUI opens the **Update Firmware** dialog box and verifies the firmware versions for all endpoints in the Cisco UCS instance. This step may take a few minutes, depending upon the number of chassis and servers.

Step 5 From the **Filter** drop-down list on the menu bar of the **Activate Firmware** dialog box, select **Board Controller**. Cisco UCS Manager GUI displays all servers that have board controllers in the **Activate Firmware** dialog box.

Step 6 From the drop-down list in the **Startup Version** column, select the version to which you want to update the software.

Step 7 If you want to activate the firmware regardless of any possible incompatibilities or currently executing tasks, check the **Ignore Compatibility Check** check box.

Step 8 Click **OK**.

Activating the Cisco UCS Manager Software

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, click the **Equipment** node.

Step 3 In the **Work** pane, click the **Firmware Management** tab.

Step 4 On the **Installed Firmware** subtab, click **Activate Firmware**.

Cisco UCS Manager GUI opens the **Update Firmware** dialog box and verifies the firmware versions for all endpoints in the Cisco UCS instance. This step may take a few minutes, depending upon the number of chassis and servers.

Step 5 On the **UCS Manager** row of the **Activate Firmware** dialog box, do the following:

a) From the drop-down list in the **Startup Version** column, select the version to which you want to update the software.

b) (Optional) If you want to activate the firmware regardless of any possible incompatibilities or currently executing tasks, check the **Ignore Compatibility Check** check box.

c) Click **OK**.

Cisco UCS Manager makes the selected version the startup version and schedules the activation to occur when the fabric interconnects are upgraded.

Activating the Firmware on a Subordinate Fabric Interconnect

Before You Begin

Determine which fabric interconnect in the cluster is the subordinate fabric interconnect.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 On the Installed Firmware subtab, click Activate Firmware.
 Cisco UCS Manager GUI opens the Update Firmware dialog box and verifies the firmware versions for all endpoints in the Cisco UCS instance. This step may take a few minutes, depending upon the number of chassis and servers.
Step 5 From the Filter drop-down list on the menu bar, choose Fabric Interconnects.
Step 6 On the menu bar, check the Ignore Compatibility Check check box.
Step 7 On the row of the Activate Firmware dialog box for the subordinate fabric interconnect, do the following:
 a) In the Kernel row, choose the firmware version to which you want to upgrade from the drop-down list in the Startup Version column.
 b) In the System row, choose the firmware version to which you want to upgrade from the drop-down list in the Startup Version column.
Step 8 Click Apply.
 Cisco UCS Manager updates and activates the firmware and reboots the fabric interconnect and any I/O module in the data path to that fabric interconnect, disrupting data traffic to and from that fabric interconnect. However, assuming the Cisco UCS domain is configured to permit traffic and port failover, data traffic fails over to the primary fabric interconnect and is not disrupted.
Step 9 Verify the high availability status of the subordinate fabric interconnect.
 If the High Availability Details area for the fabric interconnect does not show the following values, contact Cisco Technical Support immediately. Do not continue to update the primary fabric interconnect.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Required Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready field</td>
<td>Yes</td>
</tr>
<tr>
<td>State field</td>
<td>Up</td>
</tr>
</tbody>
</table>

What to Do Next
If the high availability status of the subordinate fabric interconnect contains the required values, update and activate the primary fabric interconnect.

Activating the Firmware on a Primary Fabric Interconnect
This procedure continues directly from Activating the Firmware on a Subordinate Fabric Interconnect, on page 191 and assumes you are on the Firmware Management tab.

Before You Begin
Activate the subordinate fabric interconnect.
Procedure

Step 1 On the **Installed Firmware** subtab, click **Activate Firmware**. Cisco UCS Manager GUI opens the **Update Firmware** dialog box and verifies the firmware versions for all endpoints in the Cisco UCS instance. This step may take a few minutes, depending upon the number of chassis and servers.

Step 2 From the **Filter** drop-down list on the menu bar, choose **Fabric Interconnects**.

Step 3 On the menu bar, check the **Ignore Compatibility Check** check box.

Step 4 On the row of the **Activate Firmware** dialog box for the subordinate fabric interconnect, do the following:
 a) In the **Kernel** row, choose the firmware version to which you want to upgrade from the drop-down list in the **Startup Version** column.
 b) In the **System** row, choose the firmware version to which you want to upgrade from the drop-down list in the **Startup Version** column.

Step 5 Click **Apply**. Cisco UCS Manager updates and activates the firmware and reboots the fabric interconnect and any I/O module in the data path to that fabric interconnect, disrupting data traffic to and from that fabric interconnect. However, assuming the Cisco UCS domain is configured to permit traffic and port failover, data traffic fails over to the other fabric interconnect, which becomes the primary. When it comes back up, this fabric interconnect is the subordinate fabric interconnect.

Step 6 Verify the high availability status of the fabric interconnect.
If the **High Availability Details** area for the fabric interconnect does not show the following values, contact Cisco Technical Support immediately.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Required Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready field</td>
<td>Yes</td>
</tr>
<tr>
<td>State field</td>
<td>Up</td>
</tr>
</tbody>
</table>

Activating the Firmware on a Standalone Fabric Interconnect

For a standalone configuration with a single fabric interconnect, you can minimize the disruption to data traffic when you perform a direct firmware upgrade of the endpoints. However, you must reboot the fabric interconnect to complete the upgrade and, therefore, cannot avoid disrupting traffic.

Tip

If you ever need to recover the password to the admin account that was created when you configured the fabric interconnects for the Cisco UCS domain, you must know the running kernel version and the running system version. If you do not plan to create additional accounts, we recommend that you save the path to these firmware versions in a text file so that you can access them if required.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 Expand the Fabric Interconnects node and click the standalone fabric interconnect.
Step 4 On the General tab, click Activate Firmware.
Step 5 In the Activate Firmware dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel Version drop-down list</td>
<td>Choose the version that you want to use for the kernel.</td>
</tr>
<tr>
<td>System Version drop-down list</td>
<td>Choose the version you want to use for the system.</td>
</tr>
<tr>
<td>Ignore Compatibility Check check box</td>
<td>By default, Cisco UCS makes sure that the firmware version is compatible with everything running on the server before it activates that version. Check this check box if you want Cisco UCS to activate the firmware without making sure that it is compatible first.</td>
</tr>
</tbody>
</table>

Note We recommend that you use this option only when explicitly directed to do so by a technical support representative.

Step 6 Click OK.

Cisco UCS Manager activates the firmware and reboots the fabric interconnect and any I/O module in the data path to that fabric interconnect. For a standalone fabric interconnect, this disrupts all data traffic in the Cisco UCS domain.

Updating Firmware through Service Profiles

Host Firmware Package

This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

- Adapter
- BIOS
- Board Controller
- FC Adapters
- HBA Option ROM
- Storage Controller
Tip
You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

Prerequisites
This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

Creating a Host Firmware Package

Tip
You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

Before You Begin
Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Procedure

Step 1
In the Navigation pane, click the Servers tab.

Step 2
On the Servers tab, expand Servers > Policies.

Step 3
Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4
Right-click Host Firmware Packages and choose Create Package.

Step 5
In the Create Host Firmware Package dialog box, enter a unique name and description for the package. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Step 6
On each sub-tab, do the following for each type of firmware you want to include in the package:
Updating Firmware through Service Profiles

a) In the **Select** column, ensure that the check box for the appropriate lines are checked.

b) In the **Vendor**, **Model**, and **PID** columns, verify that the information matches the servers you want to update with this package.
 The model and model number (PID) must match the servers that are associated with this firmware package.
 If you select the wrong model or model number, Cisco UCS Manager cannot install the firmware update.

c) In the **Version** column, choose the firmware version to which you want to update the firmware.

Step 7
When you have added all the desired firmware to the package, click **OK**.

What to Do Next
Include the policy in a service profile and/or template.

Updating a Host Firmware Package

If the policy is included in one or more service profiles associated with a server and those service profiles do not include maintenance policies, Cisco UCS Manager updates and activates the firmware in the server and adapter with the new versions and reboots the server as soon as you save the host firmware package policy.

Before You Begin
Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Procedure

Step 1
In the **Navigation** pane, click the **Servers** tab.

Step 2
On the **Servers** tab, expand **Servers > Policies**.

Step 3
Expand the node for the organization that includes the policy you want to update.
If the system does not include multi-tenancy, expand the **root** node.

Step 4
Expand **Host Firmware Packages** and choose the policy you want to update.

Step 5
In the **Work** pane, click the **General** tab.

Step 6
On each sub-tab, do the following for each type of firmware you want to include in the package:
 a) In the **Select** column, ensure that the check box for the appropriate lines are checked.
 b) In the **Vendor**, **Model**, and **PID** columns, verify that the information matches the servers you want to update with this package.
 The model and model number (PID) must match the servers that are associated with this firmware package.
 If you select the wrong model or model number, Cisco UCS Manager cannot install the firmware update.
 c) In the **Version** column, choose the firmware version to which you want to update the firmware.

Step 7
Click **Save Changes**.
Cisco UCS Manager verifies the model numbers and vendor against all servers associated with service profiles that include this policy. If the model numbers and vendor match a firmware version in the policy, Cisco UCS Manager updates the firmware according to the settings in the maintenance policies included in the service profiles.
Management Firmware Package

This policy enables you to specify a set of firmware versions that make up the management firmware package (also known as a management firmware pack). The management firmware package includes the Cisco Integrated Management Controller (CIMC) on the server. You do not need to use this package if you upgrade the CIMC directly.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the CIMC firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Creating a Management Firmware Package

Before You Begin

Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Procedure

Step 1
In the Navigation pane, click the Servers tab.

Step 2
On the Servers tab, expand Servers > Policies.

Step 3
Expand the node for the organization where you want to create the policy.
If the system does not include multi-tenancy, expand the root node.

Step 4
Right-click Management Firmware Packages and select Create Package.

Step 5
In the Create Management Firmware Package dialog box, enter a unique name and description for the package.
This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Step 6
In the firmware table, do the following:

a) In the Select column, ensure that the check box for the appropriate lines are checked.
b) In the Vendor, Model, and PID columns, verify that the information matches the servers you want to update with this package.
 The model and model number (PID) must match the servers that are associated with this firmware package.
 If you select the wrong model or model number, Cisco UCS Manager cannot install the firmware update.
c) In the Version column, choose the firmware version to which you want to update the firmware.

Step 7
When you have added the desired firmware to the package, click OK.
What to Do Next
Include the policy in a service profile and/or template.

Updating a Management Firmware Package
If the policy is included in one or more service profiles associated with a server and those service profiles do not include maintenance policies, Cisco UCS Manager updates and activates the management firmware in the server with the new versions and reboots the server as soon as you save the management firmware package policy

Before You Begin
Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization that includes the policy you want to update. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Expand Management Firmware Packages and choose the policy you want to update.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Work pane, click the General tab.</td>
</tr>
</tbody>
</table>
| Step 6 | In the firmware table, do the following:
 a) In the Select column, ensure that the check box for the appropriate lines are checked.
 b) In the Vendor, Model, and PID columns, verify that the information matches the servers you want to update with this package.
 The model and model number (PID) must match the servers that are associated with this firmware package. If you select the wrong model or model number, Cisco UCS Manager cannot install the firmware update.
 c) In the Version column, choose the firmware version to which you want to update the firmware. |
| Step 7 | Click Save Changes. Cisco UCS Manager verifies the model numbers and vendor against all servers associated with service profiles that include this policy. If the model numbers and vendor match a firmware version in the policy, Cisco UCS Manager updates the firmware according to the settings in the maintenance policies included in the service profiles. |

Adding Firmware Packages to an Existing Service Profile
If the service profile does not include a maintenance policy and is associated with a server, Cisco UCS Manager updates and activates the firmware in the server with the new versions and reboots the server as soon as you save the changes to the service profile.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the organization that includes the service profile that you want to update. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>4</td>
<td>Click the service profile to which you want to add the firmware packages.</td>
</tr>
<tr>
<td>5</td>
<td>In the Work pane, click the Policies tab.</td>
</tr>
<tr>
<td>6</td>
<td>Click the down arrows to expand the Firmware Policies section.</td>
</tr>
<tr>
<td>7</td>
<td>To add a host firmware package, select the desired policy from the Host Firmware drop-down list.</td>
</tr>
<tr>
<td>8</td>
<td>To add a management firmware package, select the desired policy from the Management Firmware drop-down list.</td>
</tr>
<tr>
<td>9</td>
<td>Click Save Changes.</td>
</tr>
</tbody>
</table>

Verifying Firmware Versions on Components

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>3</td>
<td>In the Work pane, click the Firmware Management tab.</td>
</tr>
<tr>
<td>4</td>
<td>On the Installed Firmware tab, review the firmware versions listed for each component.</td>
</tr>
</tbody>
</table>

Managing the Capability Catalog

Capability Catalog

The Capability Catalog is a set of tunable parameters, strings, and rules. Cisco UCS Manager uses the catalog to update the display and configurability of components such as newly qualified DIMMs and disk drives for servers.

The catalog is divided by hardware components, such as the chassis, CPU, local disk, and I/O module. You can use the catalog to view the list of providers available for that component. There is one provider per hardware component. Each provider is identified by the vendor, model (PID), and revision. For each provider, you can also view details of the equipment manufacturer and the form factor.
Contents of the Capability Catalog

The contents of the Capability Catalog include the following:

Implementation-Specific Tunable Parameters

- Power and thermal constraints
- Slot ranges and numbering
- Adapter capacities

Hardware-Specific Rules

- Firmware compatibility for components such as the BIOS, CIMC, RAID controller, and adapters
- Diagnostics
- Hardware-specific reboot

User Display Strings

- Part numbers, such as the CPN, PID/VID
- Component descriptions
- Physical layout/dimensions
- OEM information

Updates to the Capability Catalog

Capability Catalog updates are included in each Cisco UCS Manager update. Unless otherwise instructed by Cisco Technical Support, you only need to activate the Capability Catalog update after you've downloaded, updated, and activated an Cisco UCS Infrastructure Software Bundle.

As soon as you activate a Capability Catalog update, Cisco UCS Manager immediately updates to the new baseline catalog. You do not have to perform any further tasks. Updates to the Capability Catalog do not require you to reboot any component in the Cisco UCS instance or to reinstall Cisco UCS Manager.

Each Cisco UCS Manager release contains a baseline catalog. In rare circumstances, Cisco releases an update to the Capability Catalog and makes it available on the same site where you download firmware images. The catalog update is compatible with Cisco UCS, Release 1.3(1) and later.
Activating a Capability Catalog Update

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Capability Catalog node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Catalog Update Tasks tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Activate Catalog.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Activate Catalog dialog box, choose the capability catalog update that you want to activate from the Version to be Activated drop-down list.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>

Verifying that the Capability Catalog Is Current

Before You Begin

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Capability Catalog node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Catalog Update Tasks tab.</td>
</tr>
<tr>
<td></td>
<td>The current version of the capability catalog is located on the upper right of that tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>On Cisco.com, determine the most recent release of the capability catalog available. For more information about the location of capability catalog updates, see Obtaining Capability Catalog Updates from Cisco, on page 202.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If a more recent version of the capability catalog is available on Cisco.com, update the capability catalog with that version.</td>
</tr>
</tbody>
</table>
Viewing a Capability Catalog Provider

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Capability Catalog.
Step 3 In the Work pane, click the tab for the provider you want to view.
Step 4 To view the details of a provider, do the following:
 a) In the table, click the row with the vendor, model, and revision of the provider you want to view.
 b) Click the Expand icon to the right of the heading to display the properties for the following areas:
 • Equipment Manufacturing area
 • Form Factor area

Downloading Individual Capability Catalog Updates

Obtaining Capability Catalog Updates from Cisco

Procedure

Step 1 In a web browser, navigate to http://www.cisco.com.
Step 2 Under Support, click Download Software.
Step 3 Click Unified Computing.
Step 4 If prompted, enter your Cisco.com username and password to log in.
Step 5 Click Cisco UCS Manager Capability Catalog Software > Unified Computing System (UCS) Manager Capability Catalog.
Step 6 Click the link for the latest release of the Capability Catalog.
Step 7 Click one of the following buttons and follow the instructions provided:
 • Download Now—Allows you to download the catalog update immediately
 • Add to Cart—Adds the catalog update to your cart to be downloaded at a later time
Step 8 Follow the prompts to complete your download of the catalog update.

What to Do Next
Update the Capability Catalog.
Updating the Capability Catalog from a Remote Location

You cannot perform a partial update to the Capability Catalog. When you update the Capability Catalog, all components included in the catalog image are updated.

A B-series server bundle includes the Capability Catalog update for that server. You do not need to download a separate Capability Catalog update. You only need to activate the Capability Catalog update.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Capability Catalog node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Catalog Update Tasks tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Update Catalog.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Update Catalog dialog box, click the Remote File System radio button in the Location of the Image File field.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Complete the following fields:</td>
</tr>
</tbody>
</table>

Name	**Description**
Protocol field | The protocol to use when communicating with the remote server. This can be:
• FTP
• TFTP
• SCP
• SFTP |
Server field | The IP address or hostname of the remote server on which the catalog image resides. |
Filename field | The name of the catalog executable you want to download. |
Path field | The absolute path to the catalog image file on the remote server, if required.
If you use SCP, the absolute path is always required. If you use any other protocol, you may not need to specify a remote path if the file resides in the default download folder. For details about how your file server is configured, contact your system administrator. |
User field | The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP. |
Password field | The password for the remote server username. This field does not apply if the protocol is TFTP. |
Step 8
Click **OK**.

Cisco UCS Manager downloads the image and updates the Capability Catalog. You do not need to reboot any hardware components.

What to Do Next

Activate the Capability Catalog update.

Updating the Capability Catalog from the Local File System

You cannot perform a partial update to the Capability Catalog. When you update the Capability Catalog, all components included in the catalog image are updated.

A B-series server bundle includes the Capability Catalog update for that server. You do not need to download a separate Capability Catalog update. You only need to activate the Capability Catalog update.

Procedure

Step 1
In the **Navigation** pane, click the **Admin** tab.

Step 2
On the **Admin** tab, expand **All**.

Step 3
Click the **Capability Catalog** node.

Step 4
In the **Work** pane, click the **Catalog Update Tasks** tab.

Step 5
Click **Update Catalog**.

Step 6
In the **Download Firmware** dialog box, click the **Local File System** radio button in the **Location of the Image File** field.

Step 7
In the **Filename** field, type the full path and name of the image file.
If you do not know the exact path to the folder where the firmware image file is located, click **Browse** and navigate to the file.

Step 8
Click **OK**.

Cisco UCS Manager downloads the image and updates the Capability Catalog. You do not need to reboot any hardware components.

What to Do Next

Activate the Capability Catalog update.

Updating Management Extensions

Management Extensions

Management Extension updates are included in each Cisco UCS Manager update. Unless otherwise instructed by Cisco Technical Support, you only need to activate the Management Extension update after you’ve downloaded, updated, and activated an Cisco UCS Infrastructure Software Bundle.
Management Extensions enable you to add support for previously unsupported servers and other hardware to Cisco UCS Manager. For example, you may need to activate a Management Extension if you want to add a new, previously unsupported server to an existing Cisco UCS instance.

The Management Extension image contains the images, information, and firmware required by Cisco UCS Manager to be able to manage the new hardware.

Cisco UCS Manager may need to access a Management Extension when you activate. Therefore, the Management Extension is locked during the activation and update process.

Activating a Management Extension

The Management Extension is included in the server bundle that you have already downloaded. You do not need to download the Management Extension separately.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Management Extension node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Activate Management Extension.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Activate Management Extension dialog box, choose the management extension that you want to activate from the Version to be Activated drop-down list.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>
Configuring DNS Servers

This chapter includes the following sections:

- DNS Servers in Cisco UCS, page 207
- Adding a DNS Server, page 207
- Deleting a DNS Server, page 208

DNS Servers in Cisco UCS

You need to specify an external DNS server for each Cisco UCS instance to use if the system requires name resolution of hostnames. For example, you cannot use a name such as www.cisco.com when you are configuring a setting on a fabric interconnect if you do not configure a DNS server. You would need to use the IP address of the server.

Adding a DNS Server

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 In the Admin tab, expand All > Communication Services.
Step 3 Click DNS Management.
Step 4 In the Work pane, click the General tab.
Step 5 In the DNS Server area, click +.
Step 6 In the Specify DNS Server dialog box, enter the IP address of the DNS server.
Step 7 Click OK.
Deleting a DNS Server

Procedure

- **Step 1** In the Navigation pane, click the Admin tab.
- **Step 2** In the Admin tab, expand All > Communication Services.
- **Step 3** Click DNS Management.
- **Step 4** In the Work pane, click the General tab.
- **Step 5** In the DNS Server area, right-click the DNS server you want to delete and choose Delete.
- **Step 6** If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
- **Step 7** Click Save Changes.
Configuring System-Related Policies

This chapter includes the following sections:

- Configuring the Chassis Discovery Policy, page 209
- Configuring the Rack Server Discovery Policy, page 211
- Configuring the Aging Time for the MAC Address Table, page 212

Configuring the Chassis Discovery Policy

Chassis Discovery Policy

The chassis discovery policy determines how the system reacts when you add a new chassis. Cisco UCS Manager uses the settings in the chassis discovery policy to determine the minimum threshold for the number of links between the chassis and the fabric interconnect. However, the configuration in the chassis discovery policy does not prevent you from connecting multiple chassis to the fabric interconnects in a Cisco UCS instance and wiring those chassis with a different number of links.

If you have a Cisco UCS instance that has some chassis wired with 1 link, some with 2 links, and some with 4 links, we recommend that you configure the chassis discovery policy for the minimum number links in the instance so that Cisco UCS Manager can discover all chassis. After the initial discovery, you must reacknowledge the chassis that are wired for a greater number of links and Cisco UCS Manager configures the chassis to use all available links.

Cisco UCS Manager cannot discover any chassis that is wired for fewer links than are configured in the chassis discovery policy. For example, if the chassis discovery policy is configured for 4 links, Cisco UCS Manager cannot discover any chassis that is wired for 1 link or 2 links. Reacknowledgement of the chassis does not resolve this issue.

The following table provides an overview of how the chassis discovery policy works in a multi-chassis Cisco UCS instance:
Table 8: Chassis Discovery Policy and Chassis Links

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
</tr>
<tr>
<td>2 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 2 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS instance.</td>
</tr>
<tr>
<td>4 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS instance as a chassis wired with 4 link.</td>
</tr>
</tbody>
</table>

Configuring the Chassis Discovery Policy

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.
Step 2 On the **Equipment** tab, click the **Equipment** node.
Step 3 In the **Work** pane, click the **Policies** tab.
Step 4 Click the **Global Policies** subtab.
Step 5 In the **Chassis Discovery Policy** area, choose the number of links to be used by the chassis from the **Action** drop-down list.
Step 6 Click **Save Changes**.
Configuring the Rack Server Discovery Policy

Rack Server Discovery Policy

The rack server discovery policy determines how the system reacts when you add a new rack-mount server. Cisco UCS Manager uses the settings in the rack server discovery policy to determine whether any data on the hard disks are scrubbed and whether server discovery occurs immediately or needs to wait for explicit user acknowledgement.

Cisco UCS Manager cannot discover any rack-mount server that has not been correctly cabled and connected to the fabric interconnects. For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

Configuring the Rack Server Discovery Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the Policies tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click the Global Policies subtab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Rack Server Discovery Policy area, complete the following fields:</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Action field</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scrub Policy drop-down list</td>
</tr>
</tbody>
</table>

Step 6 Click **Save Changes**.
Configuring the Aging Time for the MAC Address Table

Aging Time for the MAC Address Table

To efficiently switch packets between ports, the fabric interconnect maintains a MAC address table. It dynamically builds the MAC address table by using the MAC source address from the packets received and the associated port on which the packets were learned. The fabric interconnect uses an aging mechanism, defined by a configurable aging timer, to determine how long an entry remains in the MAC address table. If an address remains inactive for a specified number of seconds, it is removed from the MAC address table. You can configure the amount of time (age) that a MAC address entry (MAC address and associated port) remains in the MAC address table.

Configuring the Aging Time for the MAC Address Table

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>3</td>
<td>In the Work pane, click the Policies tab.</td>
</tr>
<tr>
<td>4</td>
<td>Click the Global Policies subtab.</td>
</tr>
<tr>
<td>5</td>
<td>In the MAC Address Table Aging area, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Time field</td>
<td>The length of time an idle MAC address remains in the MAC address table before it is removed by Cisco UCS. This can be:</td>
</tr>
<tr>
<td></td>
<td>• never—MAC addresses are never removed from the table regardless of how long they have been idle.</td>
</tr>
<tr>
<td></td>
<td>• mode-default—The system uses the default value. If the fabric interconnect is set to end-host mode, the default is 14,500 seconds. If it is set to switching mode, the default is 300 seconds.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the dd:hh:mm:ss field which allows you to enter a custom value.</td>
</tr>
<tr>
<td>dd:hh:mm:ss field</td>
<td>The length of time a MAC address must remain idle before Cisco UCS removes it from the MAC address table. This field is only visible if you choose other for the aging time. Enter a time in the format days:hours:minutes:seconds.</td>
</tr>
</tbody>
</table>

Step 6 Click Save Changes.
Managing Licenses

This chapter includes the following sections:

- Licenses, page 213
- Obtaining the Host ID for a Fabric Interconnect, page 214
- Determining the Grace Period Available for a Port or Feature, page 215
- Obtaining a License, page 215
- Downloading Licenses to the Fabric Interconnect from the Local File System, page 216
- Downloading Licenses to the Fabric Interconnect from a Remote Location, page 217
- Installing a License, page 218
- Viewing the Licenses Installed on a Fabric Interconnect, page 219
- Determining the Expiry Date of a License, page 220
- Uninstalling a License, page 220

Licenses

Port licenses for each Cisco UCS fabric interconnect are factory installed and shipped with the hardware. At a minimum, each fabric interconnect ships with the following counted licenses pre-installed:

- Cisco UCS 6120XP fabric interconnect—pre-installed licenses for the first eight Ethernet ports enabled in Cisco UCS Manager and any Fibre Channel ports on expansion modules
- Cisco UCS 6140XP fabric interconnect—pre-installed licenses for the first sixteen Ethernet ports enabled in Cisco UCS Manager and any Fibre Channel ports on expansion modules

Port licenses are not bound to physical ports. When you disable a licensed port, that license is then retained for use with the next enabled port.

If you want to use additional fixed ports, you must purchase and install licenses for those ports.
Grace Period

If you attempt to use a port that does not have an installed license, Cisco UCS initiates a 120 day grace period. The grace period is measured from the first use of the port without a license and is paused when a valid license file is installed. The amount of time used in the grace period is retained by the system.

Note
Each physical port has its own grace period. Initiating the grace period on a single port does not initiate the grace period for all ports.

If a licensed port is unconfigured, that license is transferred to a port functioning within a grace period. If multiple ports are acting within grace periods, the license is moved to the port whose grace period is closest to expiring.

High Availability Configurations
To avoid inconsistencies during failover, we recommend that both fabric interconnects in the cluster have the same number of ports licensed. If symmetry is not maintained and failover occurs, Cisco UCS enables the missing licenses and initiates the grace period for each port being used on the failover node.

Obtaining the Host ID for a Fabric Interconnect

The host ID is also known as the serial number.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects.
Step 3 Click the node for the fabric interconnect for which you want to obtain the host ID.
Step 4 In the Work pane, click the General tab.
Step 5 In the Properties area, the host ID is listed in the Serial Number (SN) field.

What to Do Next
Obtain the required licenses from Cisco.
Determining the Grace Period Available for a Port or Feature

Procedure

Step 1 In the Navigation pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > License Management**.

Step 3 In the **Work** pane, click the **General** tab.

Step 4 Click a feature in the table to view the following details, including the used grace period, of that feature in the **General** tab below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the feature to which the license applies.</td>
</tr>
<tr>
<td>Scope field</td>
<td>The fabric associated with the license.</td>
</tr>
<tr>
<td>Absolute Quantity field</td>
<td>The total number of licenses available. This value is the sum of the number of default licenses plus the number of purchased licenses.</td>
</tr>
<tr>
<td>Used Quantity field</td>
<td>The number of licenses currently being used by the system. If this value exceeds the total number of licenses available, then some ports will stop functioning after their associated grace period expires.</td>
</tr>
<tr>
<td>Default Quantity field</td>
<td>The default number of licenses provided for this Cisco UCS instance.</td>
</tr>
<tr>
<td>Operational State field</td>
<td>The operational state of the license.</td>
</tr>
<tr>
<td>Grace Period Used field</td>
<td>The number of grace period days that this license has used. After the grace period ends, Cisco UCS disables the feature until a new license is purchased. To view the total number of grace period days available, see the Grace Period column in the License table.</td>
</tr>
<tr>
<td>Peer Status field</td>
<td>If this field displays matching, than the license is installed on both fabrics.</td>
</tr>
</tbody>
</table>

Obtaining a License

Note This process may change after the release of this document. If one or more of these steps no longer applies, contact your Cisco representative for information on how to obtain a license file.
Before You Begin

Obtain the following:

- Host ID or serial number for the fabric interconnect
- Claim certificate or other proof of purchase document for the fabric interconnect or expansion module

Procedure

Step 1 Obtain the product authorization key (PAK) from the claim certificate or other proof of purchase document.
Step 2 Locate the website URL in the claim certificate or proof of purchase document.
Step 3 Access the website URL for the fabric interconnect and enter the serial number and the PAK. Cisco sends you the license file by email. The license file is digitally signed to authorize use on only the requested fabric interconnect. The requested features are also enabled once Cisco UCS Manager accesses the license file.

What to Do Next

Install the license on the fabric interconnect.

Downloading Licenses to the Fabric Interconnect from the Local File System

In a cluster setup, we recommend that you download and install licenses to both fabric interconnects in matching pairs. An individual license is only downloaded to the fabric interconnect that is used to initiate the download.

Before You Begin

Obtain the required licenses from Cisco.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > License Management.
Step 3 Click the node for the fabric interconnect to which you want to download the license.
Step 4 In the Work pane, click the Download Tasks tab.
Step 5 Click Download License.
Step 6 In the Download License dialog box, click the Local File System radio button in the Location of the Image File field.
Step 7 In the Filename field, type the full path and and name of the license file. If you do not know the exact path to the folder where the license file is located, click Browse and navigate to the file.
Step 8 Click **OK**.
Cisco UCS Manager GUI begins downloading the license to the fabric interconnect.

Step 9 (Optional) Monitor the status of the download on the **Download Tasks** tab.

Note If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete bundles on the **Packages** tab to free up space. To view the available space in bootflash, navigate to the fabric interconnect on the **Equipment** tab and expand the **Local Storage Information** area on the **General** tab.

Step 10 Repeat this task until all the required licenses have been downloaded to the fabric interconnect.

What to Do Next
After all of the download tasks have completed, install the licenses.

Downloading Licenses to the Fabric Interconnect from a Remote Location

Note In a cluster setup, we recommend that you download and install licenses to both fabric interconnects in matching pairs. An individual license is only downloaded to the fabric interconnect that is used to initiate the download.

Before You Begin
Obtain the required licenses from Cisco.

Procedure

Step 1 In the Navigation pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > License Management**.

Step 3 Click the node for the fabric interconnect to which you want to download the license.

Step 4 In the **Work** pane, click the **Download Tasks** tab.

Step 5 Click **Download License**.

Step 6 In the **Download License** dialog box, click the **Remote File System** radio button in the **Location of the Image File** field.

Step 7 Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol field</td>
<td>The protocol to use when communicating with the remote server. This can be:</td>
</tr>
<tr>
<td></td>
<td>• FTP</td>
</tr>
<tr>
<td></td>
<td>• TFTP</td>
</tr>
<tr>
<td></td>
<td>• SCP</td>
</tr>
<tr>
<td></td>
<td>• SFTP</td>
</tr>
</tbody>
</table>
Installing a License

What to Do Next

After all of the download tasks have completed, install the licenses.

Installing a License

Before You Begin

Obtain the required licenses from Cisco.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server field</td>
<td>The IP address or hostname of the remote server on which the files resides.</td>
</tr>
<tr>
<td>Filename field</td>
<td>The name of the license file you want to download.</td>
</tr>
<tr>
<td>Path field</td>
<td>The absolute path to the license file on the remote server, if required.</td>
</tr>
<tr>
<td>User field</td>
<td>The username the system should use to log in to the remote server.</td>
</tr>
<tr>
<td>Password field</td>
<td>The password for the remote server username. This field does not apply if the protocol is TFTP.</td>
</tr>
</tbody>
</table>

Step 8

Click **OK**.

Cisco UCS Manager GUI begins downloading the license to the fabric interconnect.

Step 9

(Optional) Monitor the status of the download on the **Download Tasks** tab.

Note

If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete bundles on the **Packages** tab to free up space. To view the available space in bootflash, navigate to the fabric interconnect on the **Equipment** tab and expand the **Local Storage Information** area on the **General** tab.

Step 10

Repeat this task until all the required licenses have been downloaded to the fabric interconnect.
Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > License Management**.

Step 3 In the **Work** pane, click the **Downloaded License Files** tab.

Step 4 Choose the license you want to install from the table.

Step 5 Click the **Install License** button.

Step 6 In the **Install License** dialog box, click **Yes**.
Cisco UCS Manager GUI installs the license and activates the unlicensed port or feature.

Viewing the Licenses Installed on a Fabric Interconnect

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > License Management**.

Step 3 In the **Work** pane, click the **Installed Licenses** tab to view the following details of all licenses installed on the fabric interconnect:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>License File ID column</td>
<td>The unique identifier for the license.</td>
</tr>
<tr>
<td>Operational State column</td>
<td>The operational state of the license.</td>
</tr>
<tr>
<td>Operational State Description column</td>
<td>Details about the operational state.</td>
</tr>
<tr>
<td>Scope column</td>
<td>The fabric on which this license is installed.</td>
</tr>
<tr>
<td>Version column</td>
<td>The version of the license.</td>
</tr>
<tr>
<td>Administrative State column</td>
<td>The administrative state of the license.</td>
</tr>
</tbody>
</table>

Step 4 Click a license in the table to view the following details of that license in the **Contents** tab below:
You may need to expand the license file to view the details of individual licenses in the file.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name column</td>
<td>A navigation tree that lets you view a particular component along with its subcomponents. You can right-click a component to view any actions available for that component.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Total Qty column</td>
<td>The total number of licenses available in the license package file.</td>
</tr>
<tr>
<td>Type column</td>
<td>The license type.</td>
</tr>
<tr>
<td>Expiry column</td>
<td>The date that the licenses expire.</td>
</tr>
<tr>
<td>Quantity column</td>
<td>The quantity of licenses of the given type in the license package file.</td>
</tr>
<tr>
<td>PAK column</td>
<td></td>
</tr>
<tr>
<td>Signature column</td>
<td>The signature key associated with the licenses of the given type.</td>
</tr>
<tr>
<td>Vendor column</td>
<td>The company that issued the license package file.</td>
</tr>
<tr>
<td>Version column</td>
<td>The version of the license package file.</td>
</tr>
</tbody>
</table>

Determining the Expiry Date of a License

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > License Management.

Step 3 In the Work pane, click the Installed Licenses tab.

Step 4 Click a license in the table to view the details of that license in the Contents tab below.

Step 5 In the Contents tab, expand the license file to view all licenses in the file.

Step 6 In the Expiry column, view the expiry date of the license.

Uninstalling a License

Note Permanent licenses cannot be uninstalled if they are in use. You can only uninstall a permanent license that is not in use. If you try to delete a permanent license that is being used, Cisco UCS Manager rejects the request with an error message.
Before You Begin

- Back up the Cisco UCS Manager configuration.
- Disable the feature or port associated with the license you want to uninstall.

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > License Management.
Step 3 In the Work pane, click the Installed Licenses tab.
Step 4 Choose the license you want to uninstall from the table.
Step 5 Click the Clear License button.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Cisco UCS Manager deactivates the license, removes the license from the list of licenses, and deletes the license from the fabric interconnect. In a cluster setup, you must uninstall the license from the other fabric interconnect.
PART III

Network Configuration

- Using the LAN Uplinks Manager, page 225
- Configuring VLANs, page 239
- Configuring LAN Pin Groups, page 255
- Configuring MAC Pools, page 257
- Configuring Quality of Service, page 259
- Configuring Network-Related Policies, page 269
Using the LAN Uplinks Manager

This chapter includes the following sections:

- LAN Uplinks Manager, page 225
- Launching the LAN Uplinks Manager, page 226
- Changing the Ethernet Switching Mode with the LAN Uplinks Manager, page 226
- Configuring a Port with the LAN Uplinks Manager, page 226
- Configuring Server Ports, page 227
- Configuring Uplink Ethernet Ports, page 228
- Configuring Uplink Ethernet Port Channels, page 229
- Configuring LAN Pin Groups, page 232
- Configuring Named VLANs, page 233
- Configuring QoS System Classes with the LAN Uplinks Manager, page 236

LAN Uplinks Manager

The LAN Uplinks Manager provides a single interface where you can configure the connections between Cisco UCS and the LAN. You can use the LAN Uplinks Manager to create and configure the following:

- Ethernet switching mode
- Uplink Ethernet ports
- Port channels
- LAN pin groups
- Named VLANs
- Server ports
- QoS system classes
Some of the configuration that you can do in the LAN Uplinks Manager can also be done in nodes on other tabs, such as the Equipment tab or the LAN tab.

Launching the LAN Uplinks Manager

Procedure

1. **Step 1** In the Navigation pane, click the LAN tab.
2. **Step 2** On the LAN tab, click the LAN node.
3. **Step 3** In the Work pane, click the LAN Uplinks Manager link on the LAN Uplinks tab.
 The LAN Uplinks Manager opens in a separate window.

Changing the Ethernet Switching Mode with the LAN Uplinks Manager

Important

When you change the Ethernet switching mode, Cisco UCS Manager logs you out and restarts the fabric interconnect. For a cluster configuration, Cisco UCS Manager restarts both fabric interconnects sequentially. The second fabric interconnect can take several minutes to complete the change in Ethernet switching mode and become system ready. The configuration is retained.

Procedure

1. **Step 1** In the LAN Uplinks Manager, click the LAN Uplinks tab.
2. **Step 2** In the Uplink Mode area, click one of the following buttons:
 - Set Ethernet Switching Mode
 - Set Ethernet End-Host Mode
 The button for the current switching mode is dimmed.
3. **Step 3** In the dialog box, click Yes.
 Cisco UCS Manager restarts the fabric interconnect, logs you out, and disconnects Cisco UCS Manager GUI.

Configuring a Port with the LAN Uplinks Manager

You can only configure server ports on the fixed port module. Expansion modules do not include server ports.
Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports area, click the down arrows to expand the Unconfigured Ports section.
Step 3 Expand Fabric Interconnects > Fabric_Interconnect_Name.
Step 4 Expand one of the following:
 - Fixed Module — To configure a port in the fixed module as a server port or an uplink Ethernet port.
 - Expansion Module Number — To enable a port in an expansion module as an uplink Ethernet port.
 You cannot configure ports in expansion modules as server ports.

If no ports are listed below the node that you expanded, all ports in that module have already been configured.

Step 5 Right-click the port that you want to configure and choose one of the following:
 - Configure as Server Port
 - Configure as Uplink Port

Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Server Ports

Enabling a Server Port with the LAN Uplinks Manager

This procedure assumes that the port has been configured as a server port, but is disabled.

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports area, click the down arrows to expand the Server Ports section.
Step 3 Expand Fabric Interconnects > Fabric_Interconnect_Name.
Step 4 Right-click the port that you want to enable and choose Enable.
Disabling a Server Port with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports area, click the down arrows to expand the Server Ports section.
Step 3 Expand Fabric Interconnects > Fabric_Interconnect_Name.
Step 4 Right-click the port that you want to disable and choose Disable.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Unconfiguring a Server Port with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports area, click the down arrows to expand the Server Ports section.
Step 3 Expand Fabric Interconnects > Fabric_Interconnect_Name.
Step 4 Right-click the port that you want to unconfigure and choose Unconfigure.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Uplink Ethernet Ports

Enabling an Uplink Ethernet Port with the LAN Uplinks Manager

This procedure assumes that the port has been configured as an uplink Ethernet port, but is disabled.

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, expand Interfaces > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Right-click the port that you want to enable and choose Enable Interface.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Disabling an Uplink Ethernet Port with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, expand Interfaces > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Right-click the port that you want to disable and choose Disable Interfaces. You can select multiple ports if you want to disable more than one uplink Ethernet port.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

The disabled port is removed from the list of enabled interfaces and returned to the Unconfigured Ports list.

Unconfiguring an Uplink Ethernet Port with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, expand Interfaces > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Click the port that you want to unconfigure. You can select multiple ports if you want to unconfigure more than one uplink Ethernet port.
Step 4 Click Disable Interface.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

The disabled port is removed from the list of enabled interfaces and returned to the Unconfigured Ports list.

Configuring Uplink Ethernet Port Channels

Creating a Port Channel with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, click Create Port Channel.
Step 3 From the pop-up menu, select one of the following fabric interconnects where you want to create the port channel:

• Fabric Interconnect A
Step 4 In the Set Port Channel Name page of the Create Port Channel wizard, do the following:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID field</td>
<td>The identifier for the port channel. Enter an integer between 1 and 256. This ID cannot be changed after the port channel has been saved.</td>
</tr>
<tr>
<td>Name field</td>
<td>A user-defined name for the port channel. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>

b) Click Next.

Step 5 In the Add Ports page of the Create Port Channel wizard, do the following:

a) In the Ports table, choose one or more ports to include in the port channel.

b) Click the >> button to add the ports to the Ports in the port channel table.

You can use the << button to remove ports from the port channel.

Note: Cisco UCS Manager warns you if you select a port that has been configured as a server port. You can click Yes in the dialog box to reconfigure that port as an uplink Ethernet port and include it in the port channel.

Step 6 Click Finish.

Enabling a Port Channel with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.

Step 2 In the Ports and Port Channels area, expand Port Channels > Fabric Interconnects > Fabric_Interconnect_Name.

Step 3 Right-click the port channel that you want to enable and choose Enable Port Channel.

Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Disabling a Port Channel with the LAN Uplinks Manager

Procedure

Step 1	In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2	In the Ports and Port Channels area, expand Port Channels > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3	Right-click the port channel that you want to disable and choose Disable Port Channel.
Step 4	If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Adding Ports to a Port Channel with the LAN Uplinks Manager

Procedure

Step 1	In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2	In the Ports and Port Channels area, expand Port Channels > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3	Right-click the port channel to which you want to add ports and choose Add Ports.
Step 4	In the Add Ports dialog box, do the following:
	a) In the Ports table, choose one or more ports to include in the port channel.
	b) Click the >> button to add the ports to the Ports in the port channel table.
	You can use the << button to remove ports from the port channel.
	Note Cisco UCS Manager warns you if you select a port that has been configured as a server port. You can click Yes in the dialog box to reconfigure that port as an uplink Ethernet port and include it in the port channel.
Step 5	Click OK.
Removing Ports from a Port Channel with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, expand Port Channels > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Expand the port channel from which you want to remove ports.
Step 4 Right-click the port you want to remove from the port channel and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Port Channel with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the LAN Uplinks tab.
Step 2 In the Ports and Port Channels area, expand Port Channels > Fabric Interconnects > Fabric_Interconnect_Name.
Step 3 Right-click the port channel you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring LAN Pin Groups

Creating a Pin Group with the LAN Uplinks Manager

In a system with two fabric interconnects, you can associate the pin group with only one fabric interconnect or with both fabric interconnects.

Before You Begin

Configure the ports and port channels with which you want to configure the pin group. You can only include ports and port channels configured as uplink ports in a LAN pin group.
Procedure

Step 1 In the LAN Uplinks Manager, click the **LAN Uplinks** tab.

Step 2 In the **Ports and Port Channels** area, click **Create Pin Group**.

Step 3 In the **Create LAN Pin Group** dialog box, enter a unique name and description for the pin group.

Step 4 To pin traffic for fabric interconnect A, do the following in the **Targets** area:
 a) Check the **Fabric Interconnect A** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select the port or port channel you want to associate with the pin group.

Step 5 To pin traffic for fabric interconnect B, do the following in the **Targets** area:
 a) Check the **Fabric Interconnect B** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select the port or port channel you want to associate with the pin group.

Step 6 Click **OK**.

What to Do Next
Include the pin group in a vNIC template.

Deleting a Pin Group with the LAN Uplinks Manager

Procedure

Step 1 In the LAN Uplinks Manager, click the **LAN Uplinks** tab.

Step 2 In the **Pin Groups** area, right-click the pin group you want to delete and choose **Delete**.

Step 3 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Configuring Named VLANs

Creating a Named VLAN with the LAN Uplinks Manager

In a Cisco UCS domain with two switches, you can create a named VLAN that is accessible to both switches or to only one switch.
You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.
VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Important

Procedure

Step 1 In the LAN Uplinks Manager, click the **VLANs** tab.

Step 2 On the icon bar to the right of the table, click +.
If the + icon is disabled, click an entry in the table to enable it.

Step 3 In the **Create VLANs** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Name/Prefix</td>
<td>For a single VLAN, this is the VLAN name. For a range of VLANs, this is the prefix that the system uses for each VLAN name. The VLAN name is case sensitive. This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
| **Configuration options** | You can choose one of the following:
 • **Common/Global**—The VLANs apply to both fabrics and use the same configuration parameters in both cases
 • **Fabric A**—The VLANs only apply to fabric A.
 • **Fabric B**—The VLAN only apply to fabric B.
 • **Both Fabrics Configured Differently**—The VLANs apply to both fabrics but you can specify different VLAN IDs for each fabric.
For upstream disjoint L2 networks, we recommend that you choose **Common/Global** to create VLANs that apply to both fabrics. |
To create one VLAN, enter a single numeric ID. To create multiple VLANs, enter individual IDs or ranges of IDs separated by commas. A VLAN ID can:

- Be between 1 and 3967
- Be between 4049 and 4093
- Overlap with other VLAN IDs already defined on the system

For example, to create six VLANs with the IDs 4, 22, 40, 41, 42, and 43, you would enter 4, 22, 40-43.

Important You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Sharing Type field

Whether this VLAN is subdivided into private or secondary VLANs. This can be one of the following:

- **None**—This VLAN does not have any secondary or private VLANs.
- **Primary**—This VLAN can have one or more secondary VLANs, as shown in the **Secondary VLANs** area.
- **Isolated**—This is a private VLAN. The primary VLAN with which it is associated is shown in the **Primary VLAN** drop-down list.

Primary VLAN drop-down list

If the **Sharing Type** field is set to **Isolated**, this is the primary VLAN associated with this private VLAN.

Check Overlap button

Click this button to determine whether the VLAN ID overlaps with any other IDs on the system.

Step 4 Click **OK**. Cisco UCS Manager adds the VLAN to one of the following **VLANs** nodes:

- The **LAN Cloud > VLANs** node for a VLAN accessible to both fabric interconnects.
- The **Fabric_Interconnect_Name > VLANs** node for a VLAN accessible to only one fabric interconnect.
Deleting a Named VLAN with the LAN Uplinks Manager

If Cisco UCS Manager includes a named VLAN with the same VLAN ID as the one you delete, the VLAN is not removed from the fabric interconnect configuration until all named VLANs with that ID are deleted.

Procedure

Step 1 In the LAN Uplinks Manager, click the VLANs tab.
Step 2 Click one of the following subtabs, depending upon what type of VLAN you want to delete:

<table>
<thead>
<tr>
<th>Subtab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Displays all VLANs in the Cisco UCS instance.</td>
</tr>
<tr>
<td>Dual Mode</td>
<td>Displays the VLANs that are accessible to both fabric interconnects.</td>
</tr>
<tr>
<td>Fabric A</td>
<td>Displays the VLANs that are accessible to only fabric interconnect A.</td>
</tr>
<tr>
<td>Fabric B</td>
<td>Displays the VLANs that are accessible to only fabric interconnect B.</td>
</tr>
</tbody>
</table>

Step 3 In the table, click the VLAN you want to delete. You can use the Shift key or Ctrl key to select multiple entries.
Step 4 Right-click the highlighted VLAN or VLANs and select Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring QoS System Classes with the LAN Uplinks Manager

The type of adapter in a server may limit the maximum MTU supported. For example, network MTU above the maximums may cause the packet to be dropped for the following adapters:

- The Cisco UCS M71KRCNA adapter, which supports a maximum MTU of 9216.
- The Cisco UCS 82598KR-CI adapter, which supports a maximum MTU of 14000.

Procedure

Step 1 In the LAN Uplinks Manager, click the QoS tab.
Step 2 Update the following properties for the system class you want to configure to meet the traffic management needs of the system:

Note Some properties may not be configurable for all system classes.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled check box</td>
<td>If checked, the associated QoS class is configured on the fabric interconnect and can be assigned to a QoS policy. If unchecked, the class is not configured on the fabric interconnect and any QoS policies associated with this class default to Best Effort or, if a system class is configured with a Cos of 0, to the Cos 0 system class.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is always checked for Best Effort and Fibre Channel.</td>
</tr>
<tr>
<td>Cos field</td>
<td>The class of service. You can enter an integer value between 0 and 6, with 0 being the lowest priority and 6 being the highest priority. We recommend that you do not set the value to 0, unless you want that system class to be the default system class for traffic if the QoS policy is deleted or the assigned system class is disabled.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is set to 7 for internal traffic and to any for Best Effort. Both of these values are reserved and cannot be assigned to any other priority.</td>
</tr>
<tr>
<td>Packet Drop check box</td>
<td>If checked, packet drop is allowed for this class. If unchecked, packets cannot be dropped during transmission. This field is always unchecked for the Fibre Channel class, which never allows dropped packets, and always checked for Best Effort, which always allows dropped packets.</td>
</tr>
<tr>
<td>Weight drop-down list</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• An integer between 1 and 10. If you enter an integer, Cisco UCS determines the percentage of network bandwidth assigned to the priority level as described in the Weight (%) field.</td>
</tr>
<tr>
<td></td>
<td>• best-effort.</td>
</tr>
<tr>
<td></td>
<td>• none.</td>
</tr>
<tr>
<td>Weight (%) field</td>
<td>To determine the bandwidth allocated to a channel, Cisco UCS:</td>
</tr>
<tr>
<td></td>
<td>1 Adds the weights for all the channels</td>
</tr>
<tr>
<td></td>
<td>2 Divides the channel weight by the sum of all weights to get a percentage</td>
</tr>
<tr>
<td></td>
<td>3 Allocates that percentage of the bandwidth to the channel</td>
</tr>
</tbody>
</table>
MTU drop-down list

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>The maximum transmission unit for the channel. This can be:</td>
</tr>
<tr>
<td></td>
<td>• An integer between 1500 and 9216. This value corresponds to the maximum packet size.</td>
</tr>
<tr>
<td></td>
<td>• \textit{fc}—A predefined packet size of 2240.</td>
</tr>
<tr>
<td></td>
<td>• \textit{normal}—A predefined packet size of 1500.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is always set to \textit{fc} for Fibre Channel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multicast Optimized check box</th>
<th>If checked, the class is optimized to send packets to multiple destinations simultaneously.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>This option is not applicable to the Fibre Channel.</td>
</tr>
</tbody>
</table>

Step 3

Do one of the following:

- Click **OK** to save your changes and exit from the LAN Uplinks Manager.
- Click **Apply** to save your changes without exiting from the LAN Uplinks Manager.
Configuring VLANs

This chapter includes the following sections:

- Named VLANs, page 239
- Private VLANs, page 240
- VLAN Port Limitations, page 241
- Configuring Named VLANs, page 242
- Configuring Private VLANs, page 246
- Viewing the VLAN Port Count, page 253

Named VLANs

A named VLAN creates a connection to a specific external LAN. The VLAN isolates traffic to that external LAN, including broadcast traffic.

The name that you assign to a VLAN ID adds a layer of abstraction that allows you to globally update all servers associated with service profiles that use the named VLAN. You do not need to reconfigure the servers individually to maintain communication with the external LAN.

You can create more than one named VLAN with the same VLAN ID. For example, if servers that host business services for HR and Finance need to access the same external LAN, you can create VLANs named HR and Finance with the same VLAN ID. Then, if the network is reconfigured and Finance is assigned to a different LAN, you only have to change the VLAN ID for the named VLAN for Finance.

In a cluster configuration, you can configure a named VLAN to be accessible only to one fabric interconnect or to both fabric interconnects.
Guidelines for VLAN IDs

Important
You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

The VLAN name is case sensitive.

Private VLANs

A private VLAN (PVLAN) partitions the Ethernet broadcast domain of a VLAN into subdomains and allows you to isolate some ports. Each subdomain in a PVLAN includes a primary VLAN and one or more secondary VLANs. All secondary VLANs in a PVLAN must share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another.

Isolated VLANs

All secondary VLANs in a Cisco UCS domain must be isolated VLANs. Cisco UCS does not support community VLANs.

Ports on Isolated VLANs

Communications on an isolated VLAN can only use the associated port in the primary VLAN. These ports are isolated ports and are not configurable in Cisco UCS Manager. If the primary VLAN includes multiple secondary VLANs, those isolated VLANs cannot communicate directly with each other.

An isolated port is a host port that belongs to an isolated secondary VLAN. This port has complete isolation from other ports within the same private VLAN domain. PVLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports. You can have more than one isolated port in a specified isolated VLAN. Each port is completely isolated from all other ports in the isolated VLAN.

Guidelines for Uplink Ports

When you create PVLANs, be aware of the following guidelines:

- The uplink Ethernet port channel cannot be in promiscuous mode.
- Each primary VLAN can have only one isolated VLAN.
- VIFs on VNTAG adapters can have only one isolated VLAN.
Guidelines for VLAN IDs

Important

You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

The VLAN name is case sensitive.

VLAN Port Limitations

Cisco UCS Manager limits the number of VLAN port instances that can be configured under border and server domains on a fabric interconnect to 6000.

Types of Ports Included in the VLAN Port Count

The following types of ports are counted in the VLAN port calculation:

- Border uplink Ethernet ports
- Border uplink Ether-channel member ports
- FCoE ports in a SAN cloud
- Ethernet ports in a NAS cloud
- Static and dynamic vNICs created through service profiles
- VM vNICs created as part of a port profile in a hypervisor in hypervisor domain

Based on the number of VLANs configured for these ports, Cisco UCS Manager keeps track of the cumulative count of VLAN port instances and enforces the VLAN port limit during validation. Cisco UCS Manager reserves some pre-defined VLAN port resources for control traffic. These include management VLANs configured under HIF and NIF ports.

VLAN Port Limit Enforcement

Cisco UCS Manager validates VLAN port availability during the following operations.

- Configuring and unconfiguring border ports and border port channels
- Adding or removing VLANs from a cloud
- Configuring or unconfiguring SAN or NAS ports
- Associating or disassociating service profiles that contain configuration changes
- Configuring or unconfiguring VLANs under vNICs or vHBAs
- Upon receiving creation or deleting notifications from a VMWare vNIC, from an ESX hypervisor
Note
This is outside the control of Cisco UCS Manager

- Fabric interconnect reboot
- Cisco UCS Manager upgrade or downgrade

Cisco UCS Manager strictly enforces the VLAN port limit on service profile operations. If Cisco UCS Manager detects that you have exceeded the VLAN port limit service profile configuration will fail during deployment.

Exceeding the VLAN port count in a border domain is less disruptive. When the VLAN port count is exceeded in a border domain Cisco UCS Manager changes the allocation status to Exceeded. In order to change the status back to Available, you should complete one of the following actions:

- Unconfigure one or more border ports
- Remove VLANs from the LAN cloud
- Unconfigure one or more vNICs or vHBAs

Configuring Named VLANs

Creating a Named VLAN

In a Cisco UCS domain that is configured for high availability, you can create a named VLAN that is accessible to both fabric interconnects or to only one fabric interconnect.

Important
You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, click the LAN node.
Step 3 In the Work pane, click the VLANs tab.
Step 4 On the icon bar to the right of the table, click +.
 If the + icon is disabled, click an entry in the table to enable it.
Step 5 In the Create VLANs dialog box, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Name/Prefix</td>
<td>For a single VLAN, this is the VLAN name. For a range of VLANs, this is the prefix that the system uses for each VLAN name. The VLAN name is case sensitive. This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Configuration options</td>
<td>You can choose one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Common/Global—The VLANs apply to both fabrics and use the same configuration parameters in both cases</td>
</tr>
<tr>
<td></td>
<td>• Fabric A—The VLANs only apply to fabric A.</td>
</tr>
<tr>
<td></td>
<td>• Fabric B—The VLAN only apply to fabric B.</td>
</tr>
<tr>
<td></td>
<td>• Both Fabrics Configured Differently—The VLANs apply to both fabrics but you can specify different VLAN IDs for each fabric.</td>
</tr>
<tr>
<td></td>
<td>For upstream disjoint L2 networks, we recommend that you choose Common/Global to create VLANs that apply to both fabrics.</td>
</tr>
<tr>
<td>VLAN IDs field</td>
<td>To create one VLAN, enter a single numeric ID. To create multiple VLANs, enter individual IDs or ranges of IDs separated by commas. A VLAN ID can:</td>
</tr>
<tr>
<td></td>
<td>• Be between 1 and 3967</td>
</tr>
<tr>
<td></td>
<td>• Be between 4049 and 4093</td>
</tr>
<tr>
<td></td>
<td>• Overlap with other VLAN IDs already defined on the system</td>
</tr>
<tr>
<td></td>
<td>For example, to create six VLANs with the IDs 4, 22, 40, 41, 42, and 43, you would enter 4, 22, 40-43.</td>
</tr>
<tr>
<td>Important</td>
<td>You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.</td>
</tr>
<tr>
<td></td>
<td>VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.</td>
</tr>
</tbody>
</table>
Whether this VLAN is subdivided into private or secondary VLANs. This can be one of the following:

- **None** — This VLAN does not have any secondary or private VLANs.
- **Primary** — This VLAN can have one or more secondary VLANs, as shown in the Secondary VLANs area.
- **Isolated** — This is a private VLAN. The primary VLAN with which it is associated is shown in the Primary VLAN drop-down list.

If the Sharing Type field is set to Isolated, this is the primary VLAN associated with this private VLAN.

Step 6 If you clicked the **Check Overlap** button, do the following:

a) Click the **Overlapping VLANs** tab and review the following fields to verify that the VLAN ID does not overlap with any IDs assigned to existing VLANs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID column</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• A</td>
</tr>
<tr>
<td></td>
<td>• B</td>
</tr>
<tr>
<td></td>
<td>• dual — The component is accessible to either fabric interconnect. This setting applies to virtual LAN and SAN networks created at the system level as opposed to the fabric interconnect level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name column</td>
<td>The name of the VLAN.</td>
</tr>
<tr>
<td>VLAN column</td>
<td>The numeric id for the VLAN.</td>
</tr>
<tr>
<td>DN column</td>
<td>The full path to the VLAN. Click the link in this column to view the properties for the VLAN.</td>
</tr>
</tbody>
</table>

b) Click the **Overlapping VSANs** tab and review the following fields to verify that the VLAN ID does not overlap with any FCoE VLAN IDs assigned to existing VSANs:
Name column
- **Description**

This can be:
- A
- B
- dual — The component is accessible to either fabric interconnect. This setting applies to virtual LAN and SAN networks created at the system level as opposed to the fabric interconnect level.

<table>
<thead>
<tr>
<th>Name column</th>
<th>The name of the VSAN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID column</td>
<td>The numeric id for the VSAN.</td>
</tr>
<tr>
<td>FCoE VLAN ID column</td>
<td>The unique identifier assigned to the VLAN used for Fibre Channel connections.</td>
</tr>
<tr>
<td>DN column</td>
<td>The full path to the VSAN. Click the link in this column to view the properties for the VSAN.</td>
</tr>
</tbody>
</table>

Step 7
Click **OK**.

Cisco UCS Manager adds the VLAN to one of the following **VLANs** nodes:
- The **LAN Cloud > VLANs** node for a VLAN accessible to both fabric interconnects.
- The **Fabric_Interconnect_Name > VLANs** node for a VLAN accessible to only one fabric interconnect.

Deleting a Named VLAN

If Cisco UCS Manager includes a named VLAN with the same VLAN ID as the one you delete, the VLAN is not removed from the fabric interconnect configuration until all named VLANs with that ID are deleted.

If you are deleting a private primary VLAN, make sure to reassign the secondary VLANs to another working primary VLAN.
Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, click the LAN node.
Step 3 In the Work pane, click the VLANs tab.
Step 4 Click one of the following subtabs, depending upon what type of VLAN you want to delete:

<table>
<thead>
<tr>
<th>Subtab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Displays all VLANs in the Cisco UCS instance.</td>
</tr>
<tr>
<td>Dual Mode</td>
<td>Displays the VLANs that are accessible to both fabric interconnects.</td>
</tr>
<tr>
<td>Fabric A</td>
<td>Displays the VLANs that are accessible to only fabric interconnect A.</td>
</tr>
<tr>
<td>Fabric B</td>
<td>Displays the VLANs that are accessible to only fabric interconnect B.</td>
</tr>
</tbody>
</table>

Step 5 In the table, click the VLAN you want to delete. You can use the Shift key or Ctrl key to select multiple entries.
Step 6 Right-click the highlighted VLAN or VLANs and select Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Private VLANs

Creating a Primary VLAN for a Private VLAN

In a Cisco UCS domain that is configured for high availability, you can create a primary VLAN that is accessible to both fabric interconnects or to only one fabric interconnect.

Important You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.
Procedure

Step 1
In the Navigation pane, click the LAN tab.

Step 2
On the LAN tab, click the LAN node.

Step 3
In the Work pane, click the VLANs tab.

Step 4
On the icon bar to the right of the table, click +.
If the + icon is disabled, click an entry in the table to enable it.

Step 5
In the Create VLANs dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| VLAN Name/PREFIX | For a single VLAN, this is the VLAN name. For a range of VLANs, this is the prefix that the system uses for each VLAN name.
 The VLAN name is case sensitive.
 This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved. |
| Configuration options | You can choose one of the following:
 • **Common/Global**—The VLANs apply to both fabrics and use the same configuration parameters in both cases
 • **Fabric A**—The VLANs only apply to fabric A.
 • **Fabric B**—The VLAN only apply to fabric B.
 • **Both Fabrics Configured Differently**—The VLANs apply to both fabrics but you can specify different VLAN IDs for each fabric.
 For upstream disjoint L2 networks, we recommend that you choose **Common/Global** to create VLANs that apply to both fabrics.
VLAN IDs field
To create one VLAN, enter a single numeric ID. To create multiple VLANs, enter individual IDs or ranges of IDs separated by commas. A VLAN ID can:
- Be between 1 and 3967
- Be between 4049 and 4093
- Overlap with other VLAN IDs already defined on the system

For example, to create six VLANs with the IDs 4, 22, 40, 41, 42, and 43, you would enter 4, 22, 40-43.

Important You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Sharing Type field
Whether this VLAN is subdivided into private or secondary VLANs. This can be one of the following:
- **None**—This VLAN does not have any secondary or private VLANs.
- **Primary**—This VLAN can have one or more secondary VLANs, as shown in the **Secondary VLANs** area.
- **Isolated**—This is a private VLAN. The primary VLAN with which it is associated is shown in the **Primary VLAN** drop-down list.

Primary VLAN drop-down list
If the **Sharing Type** field is set to **Isolated**, this is the primary VLAN associated with this private VLAN.

Check Overlap button
Click this button to determine whether the VLAN ID overlaps with any other IDs on the system.

Step 6 If you clicked the **Check Overlap** button, do the following:

a) Click the **Overlapping VLANs** tab and review the following fields to verify that the VLAN ID does not overlap with any IDs assigned to existing VLANs.
b) Click the **Overlapping VSANs** tab and review the following fields to verify that the VLAN ID does not overlap with any FCoE VLAN IDs assigned to existing VSANs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID</td>
<td>This can be:</td>
</tr>
<tr>
<td>column</td>
<td>• A</td>
</tr>
<tr>
<td></td>
<td>• B</td>
</tr>
<tr>
<td></td>
<td>• dual — The component is accessible to either fabric interconnect. This setting applies to virtual LAN and SAN networks created at the system level as opposed to the fabric interconnect level.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the VSAN.</td>
</tr>
<tr>
<td>ID</td>
<td>The numeric id for the VSAN.</td>
</tr>
<tr>
<td>FCoE VLAN ID</td>
<td>The unique identifier assigned to the VLAN used for Fibre Channel connections.</td>
</tr>
<tr>
<td>DN</td>
<td>The full path to the VSAN. Click the link in this column to view the properties for the VSAN.</td>
</tr>
</tbody>
</table>

c) Click **OK**.
d) If Cisco UCS Manager identified any overlapping VLAN IDs or FCoE VLAN IDs, change the VLAN ID to one that does not overlap with an existing VLAN.

Step 7
Click **OK**.
Cisco UCS Manager adds the primary VLAN to one of the following **VLANs** nodes:
• The **LAN Cloud > VLANs** node for a primary VLAN accessible to both fabric interconnects.

• The **Fabric_Interconnect_Name > VLANs** node for a primary VLAN accessible to only one fabric interconnect.

Creating a Secondary VLAN for a Private VLAN

In a Cisco UCS domain that is configured for high availability, you can create a secondary VLAN that is accessible to both fabric interconnects or to only one fabric interconnect.

Important

You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Before You Begin

Create the primary VLAN.

Procedure

1. In the *Navigation* pane, click the **LAN** tab.
2. On the **LAN** tab, click the **LAN** node.
3. In the *Work* pane, click the **VLANs** tab.
4. On the icon bar to the right of the table, click `+`.

 If the `+` icon is disabled, click an entry in the table to enable it.

5. In the *Create VLANs* dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Name/Prefix</td>
<td>For a single VLAN, this is the VLAN name. For a range of VLANs, this is the prefix that the system uses for each VLAN name. This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
Configuration options

You can choose one of the following:

- **Common/Global**—The VLANs apply to both fabrics and use the same configuration parameters in both cases.
- **Fabric A**—The VLANs only apply to fabric A.
- **Fabric B**—The VLAN only apply to fabric B.
- **Both Fabrics Configured Differently**—The VLANs apply to both fabrics but you can specify different VLAN IDs for each fabric.

For upstream disjoint L2 networks, we recommend that you choose **Common/Global** to create VLANs that apply to both fabrics.

VLAN IDs field

To create one VLAN, enter a single numeric ID. To create multiple VLANs, enter individual IDs or ranges of IDs separated by commas. A VLAN ID can:

- Be between 1 and 3967
- Be between 4049 and 4093
- Overlap with other VLAN IDs already defined on the system

For example, to create six VLANs with the IDs 4, 22, 40, 41, 42, and 43, you would enter 4, 22, 40-43.

Important

You cannot create VLANs with IDs from 3968 to 4048. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Sharing Type field

Whether this VLAN is subdivided into private or secondary VLANs. This can be one of the following:

- **None**—This VLAN does not have any secondary or private VLANs.
- **Primary**—This VLAN can have one or more secondary VLANs, as shown in the **Secondary VLANs** area.
- **Isolated**—This is a private VLAN. The primary VLAN with which it is associated is shown in the **Primary VLAN** drop-down list.

Primary VLAN drop-down list

If the **Sharing Type** field is set to **Isolated**, this is the primary VLAN associated with this private VLAN.
Step 6
If you clicked the **Check Overlap** button, do the following:

a) Click the **Overlapping VLANs** tab and review the following fields to verify that the VLAN ID does not overlap with any IDs assigned to existing VLANs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• A</td>
</tr>
<tr>
<td></td>
<td>• B</td>
</tr>
<tr>
<td></td>
<td>• dual—The component is accessible to either fabric interconnect. This setting applies to virtual LAN and SAN networks created at the system level as opposed to the fabric interconnect level.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the VLAN.</td>
</tr>
<tr>
<td>VLAN</td>
<td>The numeric id for the VLAN.</td>
</tr>
<tr>
<td>DN</td>
<td>The full path to the VLAN. Click the link in this column to view the properties for the VLAN.</td>
</tr>
</tbody>
</table>

b) Click the **Overlapping VSANs** tab and review the following fields to verify that the VLAN ID does not overlap with any FCoE VLAN IDs assigned to existing VSANs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• A</td>
</tr>
<tr>
<td></td>
<td>• B</td>
</tr>
<tr>
<td></td>
<td>• dual—The component is accessible to either fabric interconnect. This setting applies to virtual LAN and SAN networks created at the system level as opposed to the fabric interconnect level.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the VSAN.</td>
</tr>
<tr>
<td>ID</td>
<td>The numeric id for the VSAN.</td>
</tr>
<tr>
<td>FCoE VLAN ID</td>
<td>The unique identifier assigned to the VLAN used for Fibre Channel connections.</td>
</tr>
</tbody>
</table>
c) Click OK.
d) If Cisco UCS Manager identified any overlapping VLAN IDs or FCoE VLAN IDs, change the VLAN ID to one that does not overlap with an existing VLAN.

Step 7 Click OK.
Cisco UCS Manager adds the primary VLAN to one of the following **VLANs** nodes:

- The **LAN Cloud > VLANs** node for a primary VLAN accessible to both fabric interconnects.
- The **Fabric_Interconnect_Name > VLANs** node for a primary VLAN accessible to only one fabric interconnect.

Viewing the VLAN Port Count

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, expand **Equipment > Fabric Interconnects**.

Step 3 Click the fabric interconnect for which you want to view the VLAN port count.

Step 4 In the **Work** pane, click the **General** tab.

Step 5 In the **General** tab, click the down arrows on the **VLAN Port Count** bar to expand that area.
Cisco UCS Manager GUI displays the following details:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Port Limit</td>
<td>The maximum number of VLAN ports allowed on this fabric interconnect.</td>
</tr>
<tr>
<td>Access VLAN Port Count</td>
<td>The number of available VLAN access ports.</td>
</tr>
<tr>
<td>Border VLAN Port Count</td>
<td>The number of available VLAN border ports.</td>
</tr>
<tr>
<td>Allocation Status</td>
<td>The VLAN port allocation status.</td>
</tr>
</tbody>
</table>
Configuring LAN Pin Groups

This chapter includes the following sections:

- LAN Pin Groups, page 255
- Creating a LAN Pin Group, page 255
- Deleting a LAN Pin Group, page 256

LAN Pin Groups

Cisco UCS uses LAN pin groups to pin Ethernet traffic from a vNIC on a server to an uplink Ethernet port or port channel on the fabric interconnect. You can use this pinning to manage the distribution of traffic from the servers.

To configure pinning for a server, you must include the LAN pin group in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server. All traffic from the vNIC travels through the I/O module to the specified uplink Ethernet port.

Note

If you do not assign a pin group to a server interface through a vNIC policy, Cisco UCS Manager chooses an uplink Ethernet port or port channel for traffic from that server interface dynamically. This choice is not permanent. A different uplink Ethernet port or port channel may be used for traffic from that server interface after an interface flap or a server reboot.

Creating a LAN Pin Group

In a system with two fabric interconnects, you can associate the pin group with only one fabric interconnect or with both fabric interconnects.

Before You Begin

Configure the ports and port channels with which you want to configure the pin group. You can only include ports and port channels configured as uplink ports in a LAN pin group.
Procedure

Step 1 In the **Navigation** pane, click the **LAN** tab.

Step 2 On the **LAN** tab, expand **LAN > LAN Cloud**.

Step 3 Right-click **LAN Pin Groups** and select **Create LAN Pin Group**.

Step 4 In the **Create LAN Pin Group** dialog box, enter a unique name and description for the pin group.

Step 5 To pin traffic for fabric interconnect A, do the following in the **Targets** area:
 a) Check the **Fabric Interconnect A** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select the port or port channel you want to associate with the pin group.

Step 6 To pin traffic for fabric interconnect B, do the following in the **Targets** area:
 a) Check the **Fabric Interconnect B** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select the port or port channel you want to associate with the pin group.

Step 7 Click **OK**.

What to Do Next

Include the pin group in a vNIC template.

Deleting a LAN Pin Group

Procedure

Step 1 In the **Navigation** pane, click the **LAN** tab.

Step 2 In the **LAN** tab, expand **LAN > LAN Cloud > LAN Pin Groups**.

Step 3 Right-click the LAN pin group you want to delete and select **Delete**.

Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Configuring MAC Pools

This chapter includes the following sections:

- MAC Pools, page 257
- Creating a MAC Pool, page 257
- Deleting a MAC Pool, page 258

MAC Pools

A MAC pool is a collection of network identities, or MAC addresses, that are unique in their layer 2 environment and are available to be assigned to vNICs on a server. If you use MAC pools in service profiles, you do not have to manually configure the MAC addresses to be used by the server associated with the service profile.

In a system that implements multi-tenancy, you can use the organizational hierarchy to ensure that MAC pools can only be used by specific applications or business services. Cisco UCS Manager uses the name resolution policy to assign MAC addresses from the pool.

To assign a MAC address to a server, you must include the MAC pool in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server.

You can specify your own MAC addresses or use a group of MAC addresses provided by Cisco.

Creating a MAC Pool

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 In the LAN tab, expand LAN > Pools.
Step 3 Expand the node for the organization where you want to create the pool. If the system does not include multi-tenancy, expand the root node.
Deleting a MAC Pool

Step 4 Right-click **MAC Pools** and select **Create MAC Pool**.

Step 5 In the first page of the **Create MAC Pool** wizard:
- a) Enter a unique name and description for the MAC Pool.
- b) Click **Next**.

Step 6 In the second page of the **Create MAC Pool** wizard:
- a) Click **Add**.
- b) In the **Create a Block of MAC Addresses** page, enter the first MAC address in the pool and the number of MAC addresses to include in the pool.
- c) Click **OK**.
- d) Click **Finish**.

What to Do Next

Include the MAC pool in a vNIC template.

Deleting a MAC Pool

Procedure

Step 1 In the **Navigation** pane, click the **LAN** tab.

Step 2 In the **LAN** tab, expand **LAN > Pools > Organization_Name**.

Step 3 Expand the **MAC Pools** node.

Step 4 Right-click the MAC pool you want to delete and select **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
CHAPTER 18

Configuring Quality of Service

This chapter includes the following sections:

- Quality of Service, page 259
- Configuring System Classes, page 259
- Configuring Quality of Service Policies, page 263
- Configuring Flow Control Policies, page 265

Quality of Service

Cisco UCS provides the following methods to implement quality of service:

- System classes that specify the global configuration for certain types of traffic across the entire system
- QoS policies that assign system classes for individual vNICs
- Flow control policies that determine how uplink Ethernet ports handle pause frames

Configuring System Classes

System Classes

Cisco UCS uses Data Center Ethernet (DCE) to handle all traffic inside a Cisco UCS instance. This industry standard enhancement to Ethernet divides the bandwidth of the Ethernet pipe into eight virtual lanes. Two virtual lanes are reserved for internal system and management traffic. You can configure quality of service for the other six virtual lanes. System classes determine how the DCE bandwidth in these six virtual lanes is allocated across the entire Cisco UCS instance.

Each system class reserves a specific segment of the bandwidth for a specific type of traffic. This provides a level of traffic management, even in an oversubscribed system. For example, you can configure the Fibre Channel Priority system class to determine the percentage of DCE bandwidth allocated to FCoE traffic.

The following table describes the system classes that you can configure:
Table 9: System Classes

<table>
<thead>
<tr>
<th>System Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>A configurable set of system classes that you can include in the QoS policy for a service profile. Each system class manages one lane of traffic. All properties of these system classes are available for you to assign custom settings and policies.</td>
</tr>
<tr>
<td>Gold</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Bronze</td>
<td></td>
</tr>
<tr>
<td>Best Effort</td>
<td>A system class that sets the quality of service for the lane reserved for Basic Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a drop policy that allows it to drop data packets if required. You cannot disable this system class.</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>A system class that sets the quality of service for the lane reserved for Fibre Channel over Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a no-drop policy that ensures it never drops data packets. You cannot disable this system class.</td>
</tr>
</tbody>
</table>

Configuring QoS System Classes

The type of adapter in a server may limit the maximum MTU supported. For example, network MTU above the maximums may cause the packet to be dropped for the following adapters:

- The Cisco UCS M71KR CNA adapter, which supports a maximum MTU of 9216.
- The Cisco UCS 82598KR-CI adapter, which supports a maximum MTU of 14000.

Procedure

1. **Step 1** In the Navigation pane, click the LAN tab.
2. **Step 2** In the LAN tab, expand LAN > LAN Cloud.
3. **Step 3** Select the QoS System Class node.
4. **Step 4** In the Work pane, click the General tab.
5. **Step 5** Update the following properties for the system class you want to configure to meet the traffic management needs of the system:
 - **Note** Some properties may not be configurable for all system classes.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled check box</td>
<td>If checked, the associated QoS class is configured on the fabric interconnect and can be assigned to a QoS policy. If unchecked, the class is not configured on the fabric interconnect and any QoS policies associated with this class default to Best Effort or, if a system class is configured with a Cos of 0, to the Cos 0 system class. Note This field is always checked for Best Effort and Fibre Channel.</td>
</tr>
<tr>
<td>Cos field</td>
<td>The class of service. You can enter an integer value between 0 and 6, with 0 being the lowest priority and 6 being the highest priority. We recommend that you do not set the value to 0, unless you want that system class to be the default system class for traffic if the QoS policy is deleted or the assigned system class is disabled. Note This field is set to 7 for internal traffic and to any for Best Effort. Both of these values are reserved and cannot be assigned to any other priority.</td>
</tr>
<tr>
<td>Packet Drop check box</td>
<td>If checked, packet drop is allowed for this class. If unchecked, packets cannot be dropped during transmission. This field is always unchecked for the Fibre Channel class, which never allows dropped packets, and always checked for Best Effort, which always allows dropped packets.</td>
</tr>
<tr>
<td>Weight drop-down list</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• An integer between 1 and 10. If you enter an integer, Cisco UCS determines the percentage of network bandwidth assigned to the priority level as described in the Weight (%) field.</td>
</tr>
<tr>
<td></td>
<td>• best-effort.</td>
</tr>
<tr>
<td></td>
<td>• none.</td>
</tr>
<tr>
<td>Weight (%) field</td>
<td>To determine the bandwidth allocated to a channel, Cisco UCS:</td>
</tr>
<tr>
<td></td>
<td>1 Adds the weights for all the channels</td>
</tr>
<tr>
<td></td>
<td>2 Divides the channel weight by the sum of all weights to get a percentage</td>
</tr>
<tr>
<td></td>
<td>3 Allocates that percentage of the bandwidth to the channel</td>
</tr>
</tbody>
</table>
Configuring System Classes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU drop-down list</td>
<td>The maximum transmission unit for the channel. This can be:</td>
</tr>
<tr>
<td></td>
<td>- An integer between 1500 and 9216. This value corresponds to the maximum packet size.</td>
</tr>
<tr>
<td></td>
<td>- fc—A predefined packet size of 2240.</td>
</tr>
<tr>
<td></td>
<td>- normal—A predefined packet size of 1500.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is always set to fc for Fibre Channel.</td>
</tr>
<tr>
<td>Multicast Optimized check box</td>
<td>If checked, the class is optimized to send packets to multiple destinations simultaneously.</td>
</tr>
<tr>
<td>Note</td>
<td>This option is not applicable to the Fibre Channel.</td>
</tr>
</tbody>
</table>

Step 6
Click Save Changes.

Enabling a QoS System Class

The Best Effort or Fibre Channel system classes are enabled by default.

Procedure

Step 1
In the Navigation pane, click the LAN tab.

Step 2
In the LAN tab, expand LAN > LAN Cloud.

Step 3
Select the QoS System Class node.

Step 4
In the Work pane, click the General tab.

Step 5
Check the Enabled check box for the QoS system that you want to enable.

Step 6
Click Save Changes.

Disabling a QoS System Class

You cannot disable the Best Effort or Fibre Channel system classes.

All QoS policies that are associated with a disabled system class default to Best Effort or, if the disabled system class is configured with a CoS of 0, to the CoS 0 system class.
Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the LAN tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the LAN tab, expand LAN > LAN Cloud.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Select the QoS System Class node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Uncheck the Enabled check box for the QoS system that you want to disable.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click Save Changes.</td>
</tr>
</tbody>
</table>

Configuring Quality of Service Policies

Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.

Creating a QoS Policy

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the LAN tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the LAN tab, expand LAN > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization where you want to create the pool.</td>
</tr>
<tr>
<td></td>
<td>If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click QoS Policy and select Create QoS Policy.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Create QoS Policy dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy.</td>
</tr>
<tr>
<td></td>
<td>This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority assigned to this QoS definition. This can be:</td>
</tr>
<tr>
<td>fc</td>
<td>Use this priority for QoS policies that control vHBA traffic only.</td>
</tr>
<tr>
<td>platinum</td>
<td>Use this priority for QoS policies that control vNIC traffic only.</td>
</tr>
<tr>
<td>gold</td>
<td>Use this priority for QoS policies that control vNIC traffic only.</td>
</tr>
<tr>
<td>silver</td>
<td>Use this priority for QoS policies that control vNIC traffic only.</td>
</tr>
<tr>
<td>bronze</td>
<td>Use this priority for QoS policies that control vNIC traffic only.</td>
</tr>
<tr>
<td>best-effort</td>
<td>Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic.</td>
</tr>
<tr>
<td>Burst</td>
<td>The normal burst size for servers which use this policy. This field determines how large traffic bursts can be before some traffic is considered to exceed the rate limit. The default is 10240. The minimum value is 0, and the maximum value is 65535. This setting is not applicable to all adapters.</td>
</tr>
<tr>
<td>Rate</td>
<td>The expected average rate of traffic. Traffic that falls under this rate will always conform. The default is line-rate, which equals a value of 0 and specifies no rate limiting. The minimum value is 0, and the maximum value is 10,000,000. The granularity for rate limiting on a Cisco UCS M81KR Virtual Interface Card adapter is 1Mbps. These adapters treat the requested rate as a "not-to-exceed" rate. Therefore, a value of 4.5Mbps is interpreted as 4Mbps. Any requested rate of more than 0 and less than 1Mbps is interpreted as 1Mbps, which is the lowest supported hardware rate limit. This setting is not applicable to all adapters.</td>
</tr>
</tbody>
</table>
Configuring Flow Control Policies

Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS instance send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Host Control field** | Whether Cisco UCS controls the class of service (CoS). This can be:
• **None**—Cisco UCS uses the CoS value associated with the priority selected in the *Priority* drop-down list regardless of the CoS value assigned by the host.
• **Full**—If the packet has a valid CoS value assigned by the host, Cisco UCS uses that value. Otherwise, Cisco UCS uses the CoS value associated with the priority selected in the *Priority* drop-down list.
This setting is not applicable to all adapters. |
For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.

When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Creating a Flow Control Policy

Before You Begin

Configure the network port with the corresponding setting for the flow control that you need. For example, if you enable the send setting for flow-control pause frames in the policy, make sure that the receive parameter in the network port is set to on or desired. If you want the Cisco UCS port to receive flow-control frames, make sure that the network port has a send parameter set to on or desired. If you do not want to use flow control, you can set the send and receive parameters on the network port to off.

Procedure

Step 1 In the Navigation pane, click the **LAN** tab.

Step 2 On the **LAN** tab, expand **LAN > Policies**.

Step 3 Expand the **root** node.

You can only create a flow control policy in the root organization. You cannot create a flow control policy in a sub-organization.

Step 4 Right-click the **Flow Control Policies** node and select **Create Flow Control Policy**.

Step 5 In the **Create Flow Control Policy** wizard, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
| Priority field| This can be:
 - **auto**—Cisco UCS and the network negotiate whether PPP is used on this fabric interconnect
 - **on**—PPP is enabled on this fabric interconnect |
Configuring Flow Control Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>- off — Pause requests from the network are ignored and traffic flow continues as normal</td>
</tr>
<tr>
<td></td>
<td>- on — Pause requests are honored and all traffic is halted on that uplink port until the network cancels the pause request</td>
</tr>
<tr>
<td>Send field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>- off — Traffic on the port flows normally regardless of the packet load.</td>
</tr>
<tr>
<td></td>
<td>- on — Cisco UCS sends a pause request to the network if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels.</td>
</tr>
</tbody>
</table>

Step 6 Click **OK**.

What to Do Next

Associate the flow control policy with an uplink Ethernet port or port channel.

Deleting a Flow Control Policy

Procedure

Step 1 In the **Navigation** pane, click the **LAN** tab.

Step 2 On the **LAN** tab, expand **LAN > Policies > Organization_Name**.

Step 3 Expand the **Flow Control Policies** node.

Step 4 Right-click the policy you want to delete and select **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Configuring Network-Related Policies

This chapter includes the following sections:

- Configuring vNIC Templates, page 269
- Configuring Ethernet Adapter Policies, page 274
- Configuring Network Control Policies, page 279

Configuring vNIC Templates

vNIC Template

This policy defines how a vNIC on a server connects to the LAN. This policy is also referred to as a vNIC LAN connectivity policy.

You need to include this policy in a service profile for it to take effect.

\[\text{Note}\]

If your server has two Emulex or QLogic NICs (Cisco UCS CNA M71KR-E or Cisco UCS CNA M71KR-Q), you must configure vNIC policies for both adapters in your service profile to get a user-defined MAC address for both NICs. If you do not configure policies for both NICs, Windows still detects both of them in the PCI bus. Then because the second eth is not part of your service profile, Windows assigns it a hardware MAC address. If you then move the service profile to a different server, Windows sees additional NICs because one NIC did not have a user-defined MAC address.

Creating a vNIC Template

Before You Begin

This policy requires that one or more of the following resources already exist in the system:

- Named VLAN
- MAC pool
• QoS policy
• LAN pin group
• Statistics threshold policy

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Policies.
Step 3 Expand the node for the organization where you want to create the policy.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the vNIC Templates node and choose Create vNIC Template.
Step 5 In the Create vNIC Template dialog box:
 a) In the General area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the vNIC template. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A user-defined description of the template. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fabric ID field</td>
<td>The fabric interconnect associated with the component. If you want vNICs created from this template to be able to access the second fabric interconnect if the default one is unavailable, check the Enable Failover check box. Note: Do not enable vNIC fabric failover under the following circumstances:</td>
</tr>
<tr>
<td></td>
<td>• If the Cisco UCS domain is running in Ethernet Switch Mode, vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.</td>
</tr>
<tr>
<td></td>
<td>• If you plan to associate one or more vNICs created from this template with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server.</td>
</tr>
<tr>
<td></td>
<td>• If the Cisco UCS domain is running in Ethernet Switch Mode, vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.</td>
</tr>
<tr>
<td></td>
<td>• If you plan to associate this vNIC configuration with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server.</td>
</tr>
<tr>
<td>Target list box</td>
<td>A list of the possible targets for vNICs created from this template. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Adapter—The vNICs apply to all adapters.</td>
</tr>
<tr>
<td></td>
<td>• VM—The vNICs apply to all virtual machines.</td>
</tr>
<tr>
<td>Template Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• Initial Template—vNICs created from this template are not updated if the template changes.</td>
</tr>
<tr>
<td></td>
<td>• Updating Template—vNICs created from this template are updated if the template changes.</td>
</tr>
</tbody>
</table>

b) In the VLANs area, use the table to select the VLAN to assign to vNICs created from this template. The table contains the following columns:
c) In the Policies area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU field</td>
<td>The maximum transmission unit, or packet size, that vNICs created from this vNIC template should use. Enter an integer between 1500 and 9216.</td>
</tr>
<tr>
<td>MAC Pool drop-down list</td>
<td>The MAC address pool that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>QoS Policy drop-down list</td>
<td>The quality of service policy that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>Network Control Policy drop-down list</td>
<td>The network control policy that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>Pin Group drop-down list</td>
<td>The LAN pin group that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>Stats Threshold Policy drop-down list</td>
<td>The statistics collection policy that vNICs created from this vNIC template should use.</td>
</tr>
</tbody>
</table>

Step 6 Click OK.

What to Do Next

Include the vNIC template in a service profile.
Deleting a vNIC Template

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the LAN tab, expand LAN > Policies > Organization_Name.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the vNIC Templates node.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click the policy you want to delete and choose Delete.</td>
</tr>
<tr>
<td>5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Binding a vNIC to a vNIC Template

You can bind a vNIC associated with a service profile to a vNIC template. When you bind the vNIC to a vNIC template, Cisco UCS Manager configures the vNIC with the values defined in the vNIC template. If the existing vNIC configuration does not match the vNIC template, Cisco UCS Manager reconfigures the vNIC. You can only change the configuration of a bound vNIC through the associated vNIC template. You cannot bind a vNIC to a vNIC template if the service profile that includes the vNIC is already bound to a service profile template.

Important

If the vNIC is reconfigured when you bind it to a template, Cisco UCS Manager reboots the server associated with the service profile.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>3</td>
<td>If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>4</td>
<td>Expand Service_Profile_Name > vNICs.</td>
</tr>
<tr>
<td>5</td>
<td>Click the vNIC you want to bind to a template.</td>
</tr>
<tr>
<td>6</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>7</td>
<td>In the Actions area, click Bind to a Template.</td>
</tr>
<tr>
<td>8</td>
<td>In the Bind to a vNIC Template dialog box, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) From the vNIC Template drop-down list, choose the template to which you want to bind the vNIC.</td>
</tr>
<tr>
<td></td>
<td>b) Click OK.</td>
</tr>
<tr>
<td>9</td>
<td>In the warning dialog box, click Yes to acknowledge that Cisco UCS Manager may need to reboot the server if the binding causes the vNIC to be reconfigured.</td>
</tr>
</tbody>
</table>
Unbinding a vNIC from a vNIC Template

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that includes the service profile with the vNIC you want to unbind. If the system does not include multi-tenancy, expand the root node.
Step 4 Expand Service_Profile_Name > vNICs.
Step 5 Click the vNIC you want to unbind from a template.
Step 6 In the Work pane, click the General tab.
Step 7 In the Actions area, click Unbind from a Template.
Step 8 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Ethernet Adapter Policies

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling
- Performance enhancement
- RSS hash
- Failover in an cluster configuration with two fabric interconnects
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- Max LUNs Per Target—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.
- Link Down Timeout—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5s in SANsurfer.
- Max Data Field Size—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

Important

We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

\[
\text{Completion Queues} = \text{Transmit Queues} + \text{Receive Queues} \\
\text{Interrupt Count} = (\text{Completion Queues} + 2) \text{ rounded up to nearest power of 2}
\]

For example, if Transmit Queues = 1 and Receive Queues = 8 then:

\[
\text{Completion Queues} = 1 + 8 = 9 \\
\text{Interrupt Count} = (9 + 2) \text{ rounded up to the nearest power of 2} = 16
\]

Creating an Ethernet Adapter Policy

Tip

If the fields in an area are not displayed, click the Expand icon to the right of the heading.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click Adapter Policies and choose Create Ethernet Adapter Policy.

Step 5 Enter a name and description for the policy in the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 6 (Optional) In the Resources area, adjust the following values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Queues</td>
<td>The number of transmit queue resources to allocate. Enter an integer between 1 and 256.</td>
</tr>
<tr>
<td>Ring Size</td>
<td>The number of descriptors in each transmit queue. Enter an integer between 64 and 4096.</td>
</tr>
<tr>
<td>Receive Queues</td>
<td>The number of receive queue resources to allocate. Enter an integer between 1 and 256.</td>
</tr>
<tr>
<td>Ring Size</td>
<td>The number of descriptors in each receive queue. Enter an integer between 64 and 4096.</td>
</tr>
<tr>
<td>Completion Queues</td>
<td>The number of completion queue resources to allocate. In general, the number of completion queue resources you should allocate is equal to the number of transmit queue resources plus the number of receive queue resources. Enter an integer between 1 and 512.</td>
</tr>
<tr>
<td>Interrupts</td>
<td>The number of interrupt resources to allocate. In general, this value should be equal to the number of completion queue resources. Enter an integer between 1 and 514.</td>
</tr>
</tbody>
</table>
Step 7
(Optional) In the **Options** area, adjust the following values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Checksum Offload field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The CPU calculates all packet checksums.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The CPU sends all packets to the hardware so that the checksum can be calculated. This option may reduce CPU overhead.</td>
</tr>
<tr>
<td>Receive Checksum Offload field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The CPU validates all packet checksums.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The CPU sends all packet checksums to the hardware for validation. This option may reduce CPU overhead.</td>
</tr>
<tr>
<td>TCP Segmentation Offload field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The CPU segments large TCP packets.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The CPU sends large TCP packets to the hardware to be segmented. This option may reduce CPU overhead and increase throughput rate.</td>
</tr>
<tr>
<td>TCP Large Receive Offload field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The CPU processes all large packets.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The hardware reassembles all segmented packets before sending them to the CPU. This option may reduce CPU utilization and increase inbound throughput.</td>
</tr>
<tr>
<td>Receive Side Scaling field</td>
<td>RSS distributes network receive processing across multiple CPUs in multiprocessor systems. This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled—Network receive processing is always handled by a single processor even if additional processors are available.</td>
</tr>
<tr>
<td></td>
<td>• enabled—Network receive processing is shared across processors whenever possible.</td>
</tr>
<tr>
<td>Failback Timeout field</td>
<td>After a vNIC has started using its secondary interface, this setting controls how long the primary interface must be available before the system resumes using the primary interface for the vNIC. Enter a number of seconds between 0 and 600.</td>
</tr>
</tbody>
</table>
Configuring Ethernet Adapter Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt Mode field</td>
<td>The preferred driver interrupt mode. This can be:</td>
</tr>
<tr>
<td></td>
<td>• MSI-X—Message Signaled Interrupts (MSI) with the optional extension. This is the recommended option.</td>
</tr>
<tr>
<td></td>
<td>• MSI—MSI only.</td>
</tr>
<tr>
<td></td>
<td>• INTx—PCI INTx interrupts.</td>
</tr>
<tr>
<td>Interrupt Coalescing Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• min—The system waits for the time specified in the Interrupt Timer field before sending another interrupt event.</td>
</tr>
<tr>
<td></td>
<td>• idle—The system does not send an interrupt until there is a period of no activity lasting as least as long as the time specified in the Interrupt Timer field.</td>
</tr>
<tr>
<td>Interrupt Timer field</td>
<td>The time to wait between interrupts or the idle period that must be encountered before an interrupt is sent. Enter a value between 1 and 65535. To turn off interrupt coalescing, enter 0 (zero) in this field.</td>
</tr>
</tbody>
</table>

Step 8 Click **OK**.

Step 9 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Deleting an Ethernet Adapter Policy

Procedure

Step 1 In the **Navigation** pane, click the **LAN** tab.

Step 2 On the **LAN** tab, expand **LAN > Policies > Organization_Name**.

Step 3 Expand the **Adapter Policies** node.

Step 4 Right-click the Ethernet adapter policy that you want to delete and choose **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Configuring Network Control Policies

Network Control Policy

This policy configures the network control settings for the Cisco UCS instance, including the following:

- Whether the Cisco Discovery Protocol (CDP) is enabled or disabled
- How the VIF behaves if no uplink port is available in end-host mode
- Whether the server can use different MAC addresses when sending packets to the fabric interconnect

The network control policy also determines the action that Cisco UCS Manager takes on the remote Ethernet interface, vEthernet interface, or vFibreChannel interface when the associated border port fails.

By default, the **Action on Uplink Fail** property in the network control policy is configured with a value of link-down. For adapters such as the Cisco UCS M81KR Virtual Interface Card, this default behavior directs Cisco UCS Manager to bring the vEthernet or vFibreChannel interface down if the associated border port fails. For Cisco UCS systems using a non-VM-FEX capable converged network adapter that supports both Ethernet and FCoE traffic, such as Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, this default behavior directs Cisco UCS Manager to bring the remote Ethernet interface down if the associated border port fails. In this scenario, any vFibreChannel interfaces that are bound to the remote Ethernet interface are brought down as well.

Note

Cisco UCS Manager, version 1.4(2) and earlier did not enforce the **Action on Uplink Fail** property for those types of non-VM-FEX capable converged network adapters mentioned above. If the **Action on Uplink Fail** property was set to link-down, Cisco UCS Manager would ignore this setting and instead issue a warning. Therefore, if your implementation includes one of those converged network adapters and the adapter is expected to handle both Ethernet and FCoE traffic, we recommend that you configure the **Action on Uplink Fail** property with a value of warning.

Please note that this configuration may result in an Ethernet teaming driver not being able to detect a link failure when the border port goes down.

Creating a Network Control Policy

Procedure

1. In the **Navigation** pane, click the **LAN** tab.
2. On the **LAN** tab, expand **LAN > Policies**.
3. Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the **root** node.
4. Right-click the **Network Control Policies** node and select **Create Network Control Policy**.
5. In the **Create Network Control Policy** dialog box, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy.</td>
</tr>
<tr>
<td></td>
<td>This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>CDP field</td>
<td>This option determines whether Cisco Discovery Protocol (CDP) is enabled on servers associated with a service profile that includes this policy. This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td>Action on Uplink Fail</td>
<td>This option determines how the VIF behaves if no uplink port is available when the fabric interconnect is in end-host mode. This can be:</td>
</tr>
<tr>
<td></td>
<td>• link-down — Changes the operational state of a vNIC to down when uplink connectivity is lost on the fabric interconnect, and enables fabric failover for vNICs.</td>
</tr>
<tr>
<td></td>
<td>• warning — Maintains server-to-server connectivity even when no uplink port is available, and disables fabric failover when uplink connectivity is lost on the fabric interconnect.</td>
</tr>
<tr>
<td></td>
<td>The default is link-down.</td>
</tr>
</tbody>
</table>

Note
Cisco UCS Manager, version 1.4(2) and earlier did not enforce the Action on Uplink Fail property for those types of non-VM-FEX capable converged network adapters mentioned above. If the Action on Uplink Fail property was set to link-down, Cisco UCS Manager would ignore this setting and instead issue a warning. Therefore, if your implementation includes one of those converged network adapters and the adapter is expected to handle both Ethernet and FCoE traffic, we recommend that you configure the Action on Uplink Fail property with a value of warning.
Please note that this configuration may result in an Ethernet teaming driver not being able to detect a link failure when the border port goes down.

Step 6
In the MAC Security area, do the following to determine whether the server can use different MAC addresses when sending packets to the fabric interconnect:
a) Click the Expand icon to expand the area and display the radio buttons.
b) Click one of the following radio buttons to determine whether forged MAC addresses are allowed or denied when packets are sent from the server to the fabric interconnect:
• **allow**— All server packets are accepted by the fabric interconnect, regardless of the MAC address associated with the packets.

• **deny**— After the first packet has been sent to the fabric interconnect, all other packets must use the same MAC address or they will be silently rejected by the fabric interconnect. In effect, this option enables port security for the associated vNIC.

If you plan to install VMware ESX on the associated server, you must configure the MAC Security to **allow** for the network control policy applied to the default vNIC. If you do not configure MAC Security for allow, the ESX installation may fail because the MAC security permits only one MAC address while the installation process requires more than one MAC address.

Step 7
Click **OK**.

Deleting a Network Control Policy

Procedure

Step 1
In the Navigation pane, click the **LAN** tab.

Step 2
On the **LAN** tab, expand **LAN > Policies > Organization_Name**.

Step 3
Expand the **Network Control Policies** node.

Step 4
Right-click the policy you want to delete and select **Delete**.

Step 5
If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Part IV

Storage Configuration

• Configuring Named VSANs, page 285
• Configuring SAN Pin Groups, page 293
• Configuring WWN Pools, page 295
• Configuring Storage-Related Policies, page 303
Configuring Named VSANs

This chapter includes the following sections:

- Named VSANs, page 285
- Fibre Channel Uplink Trunking for Named VSANs, page 286
- Guidelines and Recommendations for VSANs, page 286
- Creating a Named VSAN, page 287
- Creating a Storage VSAN, page 289
- Deleting a VSAN, page 290
- Changing the VLAN ID for the FCoE VLAN for a Storage VSAN, page 291
- Enabling Fibre Channel Uplink Trunking, page 291
- Disabling Fibre Channel Uplink Trunking, page 292

Named VSANs

A named VSAN creates a connection to a specific external SAN. The VSAN isolates traffic to that external SAN, including broadcast traffic. The traffic on one named VSAN knows that the traffic on another named VSAN exists, but cannot read or access that traffic.

Like a named VLAN, the name that you assign to a VSAN ID adds a layer of abstraction that allows you to globally update all servers associated with service profiles that use the named VSAN. You do not need to reconfigure the servers individually to maintain communication with the external SAN. You can create more than one named VSAN with the same VSAN ID.

Named VSANs in Cluster Configurations

In a cluster configuration, a named VSAN can be configured to be accessible only to the Fibre Channel uplink ports on one fabric interconnect or to the Fibre Channel uplink ports on both fabric interconnects.

Named VSANs and the FCoE VLAN ID

You must configure each named VSAN with an FCoE VLAN ID. This property determines which VLAN is used for transporting the VSAN and its Fibre Channel packets.
For FIP capable, converged network adapters, such as the Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, the named VSAN must be configured with a named VLAN that is not the native VLAN for the FCoE VLAN ID. This configuration ensures that FCoE traffic can pass through these adapters.

In the following sample configuration, a service profile with a vNIC and vHBA mapped to fabric A is associated with a server that has FIP capable, converged network adapters:

- The vNIC is configured to use VLAN 10.
- VLAN 10 is also designated as the native VLAN for the vNIC.
- The vHBA is configured to use VSAN 2.
- Therefore, VSAN 2 cannot be configured with VLAN 10 as the FCoE VLAN ID. VSAN 2 can be mapped to any other VLAN configured on fabric A.

Fibre Channel Uplink Trunking for Named VSANs

You can configure Fibre Channel uplink trunking for the named VSANs on each fabric interconnect. If you enable trunking on a fabric interconnect, all named VSANs in a Cisco UCS instance are allowed on all Fibre Channel uplink ports on that fabric interconnect.

Guidelines and Recommendations for VSANs

The following guidelines and recommendations apply to all named VSANs, including storage VSANs.

VSAN 4079 is a Reserved VSAN ID

Do not configure a VSAN as 4079. This VSAN is reserved and cannot be used in either FC switch mode or FC end-host mode.

If you create a named VSAN with ID 4079, Cisco UCS Manager marks that VSAN with an error and raises a fault.

Reserved VSAN Range for Named VSANs in FC Switch Mode

If you plan to use FC switch mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3040 to 4078.

VSANs in that range are not operational if the fabric interconnects are configured to operate in FC switch mode. Cisco UCS Manager marks that VSAN with an error and raises a fault.

Reserved VSAN Range for Named VSANs in FC End-Host Mode

If you plan to use FC end-host mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3840 to 4079.

VSANs in that range are not operational if the following conditions exist in a Cisco UCS domain:

- The fabric interconnects are configured to operate in FC end-host mode.
- The Cisco UCS domain is configured with Fibre Channel trunking or SAN port channels.

If these configurations exist, Cisco UCS Manager does the following:
Renders all VSANs with an ID in the range from 3840 to 4079 non-operational.

2 Raises a fault against the non-operational VSANs.

3 Transfers all non-operational VSANs to the default VSAN.

4 Transfers all vHBAs associated with the non-operational VSANs to the default VSAN.

If you disable Fibre Channel trunking and delete any existing SAN port channels, Cisco UCS Manager returns all VSANs in the range from 3840 to 4078 to an operational state and restores any associated vHBAs back to those VSANs.

Range Restrictions for Named VSAN IDs in FC Switch Mode

If you plan to use FC switch mode in a Cisco UCS domain, do not configure VSANs in the range from 3040 to 4078.

When a fabric interconnect operating in FC switch mode is connected to MDS as the upstream switch, VSANs configured in Cisco UCS Manager in the range from 3040 to 4078 and assigned as port VSANs cannot be created in MDS. This configuration results in a possible port VSAN mismatch.

Guidelines for FCoE VLAN IDs

Note
FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Creating a Named VSAN

You can create a named VSAN with IDs from 1 to 4093, except for those in the following reserved ranges:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the SAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the SAN tab, expand SAN > SAN Cloud.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the VSANs tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Create VSAN dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name assigned to the network. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
Creating a Named VSAN

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Default Zoning field** | Specifies whether the default zone in this VSAN permits or denies access among its members. The default zone includes all nodes not assigned to a specific zone. This can be:
 - **enabled**—all traffic is permitted among members of the default zone.
 - **disabled**—all traffic is denied among members of the default zone.
 You cannot change the zoning after the object has been saved. |
| **Type radio button** | Click the radio button to determine how the VSAN should be configured. You can choose:
 - **Common/Global**—The VSAN maps to the same VSAN ID in all available fabrics.
 - **Fabric A**—The VSAN maps to the a VSAN ID that exists only in fabric A.
 - **Fabric B**—The VSAN maps to the a VSAN ID that exists only in fabric B.
 - **Both Fabrics Configured Differently**—The VSAN maps to a different VSAN ID in each available fabric. If you choose this option, Cisco UCS Manager GUI displays a **VSAN ID** field and a **FCoE VLAN** field for each fabric. |
| **VSAN ID field** | The unique identifier assigned to the network. The ID can be between 1 and 4093. |
| **FCoE VLAN field** | The unique identifier assigned to the VLAN used for Fibre Channel connections. For FIP capable, converged network adapters, such as the Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, the named VSAN must be configured with a named VLAN that is not the native VLAN for the FCoE VLAN ID. This configuration ensures that FCoE traffic can pass through these adapters. |

Step 6
Click **OK**.
Cisco UCS Manager GUI adds the VSAN to one of the following **VSANs** nodes:
- The **SAN Cloud > VSANs** node for a storage VSAN accessible to both fabric interconnects.
- The **SAN Cloud > Fabric_Name > VSANs** node for a VSAN accessible to only one fabric interconnect.
Creating a Storage VSAN

You can create a named VSAN with IDs from 1 to 4093, except for those in the following reserved ranges:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the SAN tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the SAN tab, expand SAN > Storage Cloud.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the VSANs tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Create VSAN dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name assigned to the network. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Default Zoning field</td>
<td>Specifies whether the default zone in this VSAN permits or denies access among its members. The default zone includes all nodes not assigned to a specific zone. This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled—all traffic is permitted among members of the default zone.</td>
</tr>
<tr>
<td></td>
<td>• disabled—all traffic is denied among members of the default zone.</td>
</tr>
<tr>
<td>You cannot change the zoning after the object has been saved.</td>
<td></td>
</tr>
<tr>
<td>Type radio button</td>
<td>Click the radio button to determine how the VSAN should be configured. You can choose:</td>
</tr>
<tr>
<td></td>
<td>• Common/Global—The VSAN maps to the same VSAN ID in all available fabrics.</td>
</tr>
<tr>
<td></td>
<td>• Fabric A—The VSAN maps to the a VSAN ID that exists only in fabric A.</td>
</tr>
<tr>
<td></td>
<td>• Fabric B—The VSAN maps to the a VSAN ID that exists only in fabric B.</td>
</tr>
<tr>
<td></td>
<td>• Both Fabrics Configured Differently—The VSAN maps to a different VSAN ID in each available fabric. If you choose this option, Cisco UCS Manager GUI displays a VSAN ID field and a FCoE VLAN field for each fabric.</td>
</tr>
</tbody>
</table>
The unique identifier assigned to the network. The ID can be between 1 and 4093.

FCoE VLAN field

The unique identifier assigned to the VLAN used for Fibre Channel connections.

For FIP capable, converged network adapters, such as the Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, the named VSAN must be configured with a named VLAN that is not the native VLAN for the FCoE VLAN ID. This configuration ensures that FCoE traffic can pass through these adapters.

Deleting a VSAN

If Cisco UCS Manager includes a named VSAN with the same VSAN ID as the one you delete, the VSAN is not removed from the fabric interconnect configuration until all named VSANs with that ID are deleted.

Procedure

1. In the **Navigation** pane, click the **SAN** tab.
2. In the **SAN** tab, click the **SAN** node.
3. In the **Work** pane, click the **VSANs** tab.
4. Click one of the following subtabs, depending upon what type of VSAN you want to delete:

<table>
<thead>
<tr>
<th>Subtab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Displays all VSANs in the Cisco UCS instance.</td>
</tr>
<tr>
<td>Dual Mode</td>
<td>Displays the VSANs that are accessible to both fabric interconnects.</td>
</tr>
<tr>
<td>Switch A</td>
<td>Displays the VSANs that are accessible to only fabric interconnect A.</td>
</tr>
<tr>
<td>Switch B</td>
<td>Displays the VSANs that are accessible to only fabric interconnect B.</td>
</tr>
</tbody>
</table>

5. In the table, click the VSAN you want to delete.
You can use the Shift key or Ctrl key to select multiple entries.

Step 6 Right-click the highlighted VSAN or VSANs and choose **Delete**.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Changing the VLAN ID for the FCoE VLAN for a Storage VSAN

Note

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.

Step 2 On the **SAN** tab, expand **SAN > Storage Cloud > VSANs**.

Step 3 Choose the VSAN for which you want to modify the FCoE VLAN ID.

Step 4 In the **Work** pane, click the **General** tab.

Step 5 In the **FCoE VLAN** field, enter the desired VLAN ID.

Step 6 Click **Save Changes**.

Enabling Fibre Channel Uplink Trunking

Note

If the fabric interconnects are configured for Fibre Channel end-host mode, enabling Fibre Channel uplink trunking renders all VSANs with an ID in the range from 3840 to 4079 non-operational.

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.

Step 2 On the **SAN** tab, expand **SAN > SAN Cloud**.

Step 3 Click the node for the fabric where you want to enable FC uplink trunking.

Step 4 In the **Work** pane, click the **General** tab.

Step 5 In the **Actions** area, click **Enable FC Uplink Trunking**.

Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Disabling Fibre Channel Uplink Trunking

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 On the SAN tab, expand SAN > SAN Cloud.
Step 3 Click the node for the fabric where you want to disable Fibre Channel uplink trunking.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Disable FC Uplink Trunking.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring SAN Pin Groups

This chapter includes the following sections:

- SAN Pin Groups, page 293
- Creating a SAN Pin Group, page 293
- Deleting a SAN Pin Group, page 294

SAN Pin Groups

Cisco UCS uses SAN pin groups to pin Fibre Channel traffic from a vHBA on a server to an uplink Fibre Channel port on the fabric interconnect. You can use this pinning to manage the distribution of traffic from the servers.

Note

In Fibre Channel switch mode, SAN pin groups are irrelevant. Any existing SAN pin groups will be ignored.

To configure pinning for a server, you must include the SAN pin group in a vHBA policy. The vHBA policy is then included in the service profile assigned to that server. All traffic from the vHBA will travel through the I/O module to the specified uplink Fibre Channel port.

You can assign the same pin group to multiple vHBA policies. As a result, you do not need to manually pin the traffic for each vHBA.

Important

Changing the target interface for an existing SAN pin group disrupts traffic for all vHBAs which use that pin group. The fabric interconnect performs a log in and log out for the Fibre Channel protocols to re-pin the traffic.

Creating a SAN Pin Group

In a system with two fabric interconnects, you can associate the pin group with only one fabric interconnect or with both fabric interconnects.
Deleting a SAN Pin Group

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.
Step 2 In the **SAN** tab, expand **SAN > SAN Cloud**.
Step 3 Right-click **SAN Pin Groups** and select **Create SAN Pin Group**.
Step 4 Enter a unique name and description for the pin group.
Step 5 To pin traffic for fabric interconnect A, do the following in the **Targets** area:
 a) Check the **Fabric A** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select
 the uplink Fibre Channel port you want to associate with the pin group.
Step 6 To pin traffic for fabric interconnect B, do the following in the **Targets** area:
 a) Check the **Fabric B** check box.
 b) Click the drop-down arrow on the **Interface** field and navigate through the tree-style browser to select
 the uplink Fibre Channel port you want to associate with the pin group.
Step 7 Click **OK**.

What to Do Next
Include the pin group in a vHBA template.

Deleting a SAN Pin Group

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.
Step 2 In the **SAN** tab, expand **SAN > SAN Cloud > SAN Pin Groups**.
Step 3 Right-click the SAN pin group you want to delete and select **Delete**.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
CHAPTER 22

Configuring WWN Pools

This chapter includes the following sections:

- WWN Pools, page 295
- Configuring WWNN Pools, page 296
- Configuring WWPN Pools, page 299

WWN Pools

A WWN pool is a collection of WWNs for use by the Fibre Channel vHBAs in a Cisco UCS instance. You create separate pools for the following:

- WW node names assigned to the server
- WW port names assigned to the vHBA

Important

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool:

20:00:00:25:B5:XX:XX:XX

If you use WWN pools in service profiles, you do not have to manually configure the WWNs that will be used by the server associated with the service profile. In a system that implements multi-tenancy, you can use a WWN pool to control the WWNs used by each organization.

You assign WWNs to pools in blocks. For each block or individual WWN, you can assign a boot target.

WWNN Pools

A WWNN pool is a WWN pool that contains only WW node names. If you include a pool of WWNNs in a service profile, the associated server is assigned a WWNN from that pool.
WWPN Pools

A WWPN pool is a WSN pool that contains only WW port names. If you include a pool of WWPNs in a service profile, the port on each vHBA of the associated server is assigned a WWPN from that pool.

Configuring WWNN Pools

Creating a WWNN Pool

Important
A WWN pool can include only WWNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNs and WWPNs in the SAN fabric, we recommend that you use the following WWN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.
Step 2 In the **SAN** tab, expand **SAN > Pools**.
Step 3 Expand the node for the organization where you want to create the pool. If the system does not include multi-tenancy, expand the **root** node.
Step 4 Right-click **WWNN Pools** and select **Create WWNN Pool**.
Step 5 In the **Define Name and Description** page of the **Create WWNN Pool** wizard:
 a) Enter a unique name and description for the WWNN Pool. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
 b) Click **Next**.
Step 6 In the **Add WWN Blocks** page of the **Create WWNN Pool** wizard, click **Add**.
Step 7 In the **Create WWN Block** page, complete the following fields:
 a) In the **From** field, enter the first WWNN in the pool.
 b) In the **Size** field, enter the number of WWNNs to include in the pool.
 c) Click **OK**.
Step 8 Do one of the following:
 • Repeat Steps 6 through 7 to add another block to the pool.
 • Click **Next** to move to the next page.
Step 9 Click **Finish**.
Adding a WWN Block to a WWNN Pool

Important
A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX

Procedure

Step 1
In the Navigation pane, click the SAN tab.

Step 2
In the SAN tab, expand SAN > Pools > Organization_Name.

Step 3
Expand the WWNN Pools node.

Step 4
Right-click the WWNN pool to which you want to add a WWN block and select Create WWN Block.

Step 5
In the Create WWN Block page, complete the following fields:
 a) In the From field, enter the first WWNN in the pool.
 b) In the Size field, enter the number of WWNNs to include in the pool.
 c) Click OK.

Deleting a WWN Block from a WWNN Pool

Procedure

Step 1
In the Navigation pane, click the SAN tab.

Step 2
In the SAN tab, expand SAN > Pools > Organization_Name > WWNN Pools > WWNN_Pool_Name.

Step 3
Right-click the WWN block that you want to delete and select Delete.

Step 4
If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Adding a WWNN Initiator to a WWNN Pool

Important
A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX
Configuring WWNN Pools

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.

Step 2 In the **SAN** tab, expand **SAN > Pools > Organization_Name**.

Step 3 Expand the **WWNN Pools** node.

Step 4 Right-click the WWNN pool to which you want to add a WWNN initiator and select **Create WWNN Initiator**.

Step 5 In the **Create WWNN Initiator** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Wide Name field</td>
<td>The WWN.</td>
</tr>
<tr>
<td>Name field</td>
<td>The name of the WWNN initiator.</td>
</tr>
<tr>
<td></td>
<td>This name can be between 1 and 16 alphanumeric characters. You cannot use</td>
</tr>
<tr>
<td></td>
<td>spaces or any special characters, and you cannot change this name after</td>
</tr>
<tr>
<td></td>
<td>the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the WWNN initiator.</td>
</tr>
<tr>
<td></td>
<td>Enter up to 256 characters. You can use any characters or spaces except</td>
</tr>
<tr>
<td></td>
<td>` (carat), \ (backslash), > (greater than), < (less than), ' (single quote),</td>
</tr>
<tr>
<td></td>
<td>" (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 6 Click **OK**.

Deleting a WWNN Initiator from a WWNN Pool

Procedure

Step 1 In the **Navigation** pane, click the **SAN** tab.

Step 2 In the **SAN** tab, expand **SAN > Pools > Organization_Name**.

Step 3 Expand the **WWPN Pools** node.

Step 4 Choose the WWPN pool from which you want to delete a WWNN initiator.

Step 5 In the **Work** pane, click the **Initiators** tab.

Step 6 Right-click the initiator that you want to delete and choose **Delete**.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Deleting a WWNN Pool

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 In the SAN tab, expand SAN > Pools > Organization_Name.
Step 3 Expand the WWNN Pools node.
Step 4 Right-click the WWNN pool you want to delete and select Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring WWPN Pools

Creating a WWPN Pool

Important

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 In the SAN tab, expand SAN > Pools.
Step 3 Expand the node for the organization where you want to create the pool.
Step 4 Right-click WWPN Pools and select Create WWPN Pool.
Step 5 In the Define Name and Description page of the Create WWN Pool wizard:
 a) Enter a unique name and description for the WWPN Pool.
 This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
 b) Click Next.
Step 6 In the Add WWN Blocks page of the Create WWPN Pool wizard, click Add.
Step 7 In the Create WWN Block page, complete the following fields:
 a) In the From field, enter the first WWPN in the pool.
 b) In the Size field, enter the number of WWPNs to include in the pool.
c) Click OK.

Step 8
Click Finish.

What to Do Next

Include the WWPN pool in a vHBA template.

Adding a WWN Block to a WWPN Pool

Important

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WWN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX

Procedure

Step 1
In the Navigation pane, click the SAN tab.

Step 2
In the SAN tab, expand SAN > Pools > *Organization_Name*.

Step 3
Expand the WWPN Pools node.

Step 4
Right-click the WWPN pool to which you want to add a WWN block and select Create WWN Block.

Step 5
In the Create WWN Block page, complete the following fields:

a) In the From field, enter the first WWPN in the pool.

b) In the Size field, enter the number of WWPNs to include in the pool.

c) Click OK.

Deleting a WWN Block from a WWPN Pool

Procedure

Step 1
In the Navigation pane, click the SAN tab.

Step 2
In the SAN tab, expand SAN > Pools > *Organization_Name* > WWPN Pools > *WWPN_Pool_Name*.

Step 3
Right-click the WWN block that you want to delete and select Delete.

Step 4
If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Adding a WWPN Initiator to a WWPN Pool

Important
A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool:
20:00:00:25:B5:XX:XX:XX

Procedure

Step 1
In the Navigation pane, click the SAN tab.

Step 2
In the SAN tab, expand SAN > Pools > Organization_Name.

Step 3
Expand the WWPN Pools node.

Step 4
Right-click the WWPN pool to which you want to add a WWPN initiator and select Create WWPN Initiator.

Step 5
In the Create WWPN Initiator dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Wide Name field</td>
<td>The WWN.</td>
</tr>
</tbody>
</table>
| Name field | The name of the WWPN initiator.
| | This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved. |
| Description field | A user-defined description of the WWPN initiator. |

Step 6
If you want to add a SAN boot target, expand the Boot Target area and complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Target WWPN field</td>
<td>The WWPN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Boot Target LUN field</td>
<td>The LUN that corresponds to the location of the boot image.</td>
</tr>
</tbody>
</table>

Step 7
Click OK.
Deleting a WWPN Initiator from a WWPN Pool

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 In the SAN tab, expand SAN > Pools > Organization_Name.
Step 3 Expand the WWPN Pools node.
Step 4 Choose the WWPN pool from which you want to delete a WWPN initiator.
Step 5 In the Work pane, click the Initiators tab.
Step 6 Right-click the initiator that you want to delete and choose Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a WWPN Pool

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 In the SAN tab, expand SAN > Pools > Organization_Name.
Step 3 Expand the WWPN Pools node.
Step 4 Right-click the WWPN pool you want to delete and select Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Storage-Related Policies

This chapter includes the following sections:

- Configuring vHBA Templates, page 303
- Configuring Fibre Channel Adapter Policies, page 306

Configuring vHBA Templates

vHBA Template

This template is a policy that defines how a vHBA on a server connects to the SAN. It is also referred to as a vHBA SAN connectivity template.

You need to include this policy in a service profile for it to take effect.

Creating a vHBA Template

Before You Begin

This policy requires that one or more of the following resources already exist in the system:

- Named VSAN
- WWNN pool or WWPN pool
- SAN pin group
- Statistics threshold policy

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 On the SAN tab, expand SAN > Policies.
Step 3 Expand the node for the organization where you want to create the policy.
If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click the **vHBA Templates** node and choose **Create vHBA Template**.

Step 5 In the **Create vHBA Template** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the virtual HBA template.</td>
</tr>
<tr>
<td></td>
<td>This name can be between 1 and 16 alphanumeric characters. You cannot use</td>
</tr>
<tr>
<td></td>
<td>spaces or any special characters, and you cannot change this name after the</td>
</tr>
<tr>
<td></td>
<td>object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the template.</td>
</tr>
<tr>
<td></td>
<td>Enter up to 256 characters. You can use any characters or spaces except</td>
</tr>
<tr>
<td></td>
<td>^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote),</td>
</tr>
<tr>
<td></td>
<td>" (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Fabric ID field</td>
<td>The name of the fabric interconnect that vHBAs created with this template</td>
</tr>
<tr>
<td></td>
<td>are associated with.</td>
</tr>
<tr>
<td>Select VSAN</td>
<td>The VSAN to associate with vHBAs created from this template.</td>
</tr>
<tr>
<td>Create VSAN</td>
<td>Click this link if you want to create a VSAN.</td>
</tr>
<tr>
<td>Template Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• Initial Template—vHBAs created from this template are not updated if</td>
</tr>
<tr>
<td></td>
<td>the template changes.</td>
</tr>
<tr>
<td></td>
<td>• Updating Template—vHBAs created from this template are updated if the</td>
</tr>
<tr>
<td></td>
<td>template changes.</td>
</tr>
<tr>
<td>Max Data Field Size</td>
<td>The maximum size of the Fibre Channel frame payload bytes that the vHBA</td>
</tr>
<tr>
<td></td>
<td>supports.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer between 256 and 2112. The default is 2048.</td>
</tr>
<tr>
<td>WWN Pool</td>
<td>The WWN pool that a vHBA created from this template uses to derive its WWN</td>
</tr>
<tr>
<td></td>
<td>address.</td>
</tr>
<tr>
<td>QoS Policy</td>
<td>The QoS policy that is associated with vHBAs created from this template.</td>
</tr>
<tr>
<td>Pin Group</td>
<td>The LAN pin group that is associated with vHBAs created from this template.</td>
</tr>
<tr>
<td>Stats Threshold Policy</td>
<td>The statistics collection policy that is associated with vHBAs created from</td>
</tr>
<tr>
<td></td>
<td>this template.</td>
</tr>
</tbody>
</table>
Step 6 Click OK.

What to Do Next
Include the vHBA template in a service profile.

Deleting a vHBA Template

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 On the SAN tab, expand SAN > Policies > Organization_Name.
Step 3 Expand the vHBA Templates node.
Step 4 Right-click the vHBA template that you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Binding a vHBA to a vHBA Template

You can bind a vHBA associated with a service profile to a vHBA template. When you bind the vHBA to a vHBA template, Cisco UCS Manager configures the vHBA with the values defined in the vHBA template. If the existing vHBA configuration does not match the vHBA template, Cisco UCS Manager reconfigures the vHBA. You can only change the configuration of a bound vHBA through the associated vHBA template. You cannot bind a vHBA to a vHBA template if the service profile that includes the vHBA is already bound to a service profile template.

Important If the vHBA is reconfigured when you bind it to a template, Cisco UCS Manager reboots the server associated with the service profile.

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that includes the service profile with the vHBA you want to bind. If the system does not include multi-tenancy, expand the root node.
Step 4 Expand Service_Profile_Name > vHBAs.
Step 5 Click the vHBA you want to bind to a template.
Step 6 In the Work pane, click the General tab.
Step 7 In the Actions area, click Bind to a Template.
Step 8 In the Bind to a vHBA Template dialog box, do the following:
a) From the **vHBA Template** drop-down list, choose the template to which you want to bind the vHBA.
b) Click **OK**.

Step 9 In the warning dialog box, click **Yes** to acknowledge that Cisco UCS Manager may need to reboot the server if the binding causes the vHBA to be reconfigured.

Unbinding a vHBA from a vHBA Template

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Service Profiles**.

Step 3 Expand the node for the organization that includes the service profile with the vHBA you want to unbind. If the system does not include multi-tenancy, expand the **root** node.

Step 4 Expand **Service_Profile_Name > vHBAs**.

Step 5 Click the vHBA you want to unbind from a template.

Step 6 In the **Work** pane, click the **General** tab.

Step 7 In the **Actions** area, click **Unbind from a Template**.

Step 8 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Configuring Fibre Channel Adapter Policies

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling
- Performance enhancement
- RSS hash
- Failover in an cluster configuration with two fabric interconnects
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- **Max LUNs Per Target**—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.
- **Link Down Timeout**—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5s in SANsurfer.
- **Max Data Field Size**—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

Important

We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

\[
\text{Completion Queues} = \text{Transmit Queues} + \text{Receive Queues} \\
\text{Interrupt Count} = (\text{Completion Queues} + 2) \text{ rounded up to nearest power of 2}
\]

For example, if Transmit Queues = 1 and Receive Queues = 8 then:

\[
\text{Completion Queues} = 1 + 8 = 9 \\
\text{Interrupt Count} = (9 + 2) \text{ rounded up to the nearest power of 2} = 16
\]

Creating a Fibre Channel Adapter Policy

Tip

If the fields in an area are not displayed, click the **Expand** icon to the right of the heading.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click Fibre Channel Policies and choose Create Fibre Channel Adapter Policy.

Step 5 Enter a name and description for the policy in the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 6 (Optional) In the Resources area, adjust the following values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Queues</td>
<td>The number of transmit queue resources to allocate. This value cannot be changed.</td>
</tr>
<tr>
<td>Ring Size</td>
<td>The number of descriptors in each transmit queue. Enter an integer between 64 and 128.</td>
</tr>
<tr>
<td>Receive Queues</td>
<td>The number of receive queue resources to allocate. This value cannot be changed.</td>
</tr>
<tr>
<td>Ring Size</td>
<td>The number of descriptors in each receive queue. Enter an integer between 64 and 128.</td>
</tr>
<tr>
<td>SCSI I/O Queues</td>
<td>The number of SCSI I/O queue resources the system should allocate. Enter an integer between 1 and 8.</td>
</tr>
<tr>
<td>Note</td>
<td>At this time, the Cisco UCS M81KR Virtual Interface Card adapter only supports one SCSI I/O queue.</td>
</tr>
<tr>
<td>Ring Size</td>
<td>The number of descriptors in each SCSI I/O queue. Enter an integer between 64 and 512.</td>
</tr>
</tbody>
</table>
Step 7 (Optional) In the **Options** area, adjust the following values:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **FCP Error Recovery**| **field** Whether the system uses FCP Sequence Level Error Recovery protocol (FC-TAPE). This can be:
 • **disabled**
 • **enabled**
 Note This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows or Linux. |
| **Flogi Retries** | **field** The number of times that the system tries to log in to the fabric after the first failure.
 Enter any integer. To specify that the system continue to try indefinitely, enter infinite or -1 in this field.
 Note This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows. |
| **Flogi Timeout** | **field** The number of milliseconds that the system waits before it tries to log in again.
 Enter an integer between 1000 and 255000.
 Note This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows. |
| **Plogi Retries** | **field** The number of times that the system tries to log into a port after the first failure.
 Enter an integer between 0 and 255.
 Note This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows or Linux. |
| **Plogi Timeout** | **field** The number of milliseconds that the system waits before it tries to log in again.
 Enter an integer between 1000 and 255000.
 Note This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows. |
| **Error Detect Timeout**| **field** The number of milliseconds to wait before the system assumes that an error has occurred.
 This value cannot be changed. |
Configuring Fibre Channel Adapter Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Down Timeout field</td>
<td>The number of milliseconds a remote Fibre Channel port should be offline before informing the SCSI upper layer that the port is unavailable. Enter an integer between 0 and 240000.</td>
</tr>
<tr>
<td>Tip</td>
<td>For a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running the ESX host, the recommended value is 10000.</td>
</tr>
<tr>
<td>Port Down IO Retry field</td>
<td>The number of times an IO request to a port is returned because the port is busy before the system decides the port is unavailable. Enter an integer between 0 and 255.</td>
</tr>
<tr>
<td>Note</td>
<td>This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows.</td>
</tr>
<tr>
<td>Link Down Timeout field</td>
<td>The number of milliseconds the uplink port should be offline before it informs the system that the uplink port is down and fabric connectivity has been lost. Enter an integer between 0 and 240000.</td>
</tr>
<tr>
<td>Note</td>
<td>This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows.</td>
</tr>
<tr>
<td>Resource Allocation Timeout field</td>
<td>The number of milliseconds to wait before the system assumes that a resource cannot be properly allocated. This value cannot be changed.</td>
</tr>
<tr>
<td>IO Throttle Count field</td>
<td>The number of I/O operations that can be pending in the vHBA at one time. Enter an integer between 1 and 1024.</td>
</tr>
<tr>
<td>Note</td>
<td>This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Windows.</td>
</tr>
<tr>
<td>Max LUNs Per Target field</td>
<td>The maximum number of LUNs that the driver will export. This is usually an operating system platform limitation. Enter an integer between 1 and 1024. The recommended value is 1024.</td>
</tr>
<tr>
<td>Note</td>
<td>This option only applies to a server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, running Linux or ESX host.</td>
</tr>
</tbody>
</table>
Configuring Fibre Channel Adapter Policies

Interrupt Mode field

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt Mode field</td>
<td>The preferred driver interrupt mode. This can be:</td>
</tr>
<tr>
<td></td>
<td>• MSI-X—Message Signaled Interrupts (MSI) with the optional extension. This is the recommended option.</td>
</tr>
<tr>
<td></td>
<td>• MSI—MSI only.</td>
</tr>
<tr>
<td></td>
<td>• INTx—PCI INTx interrupts.</td>
</tr>
</tbody>
</table>

Note: This option is not used by a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card.

Step 8 Click OK.

Step 9 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Fibre Channel Adapter Policy

Procedure

1. **Step 1** In the Navigation pane, click the SAN tab.
2. **Step 2** On the SAN tab, expand SAN > Policies > *Organization_Name*.
3. **Step 3** Expand the Fibre Channel Policies node.
4. **Step 4** Right-click the policy you want to delete and choose **Delete**.
5. **Step 5** If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
PART V

Server Configuration

- Configuring Server-Related Pools, page 315
- Setting the Management IP Address, page 321
- Configuring Server-Related Policies, page 329
- Deferring Deployment of Service Profile Updates, page 385
- Configuring Service Profiles, page 403
- Managing Power in Cisco UCS, page 475
Configuring Server-Related Pools

This chapter includes the following sections:

- Configuring Server Pools, page 315
- Configuring UUID Suffix Pools, page 317

Configuring Server Pools

Server Pools

A server pool contains a set of servers. These servers typically share the same characteristics. Those characteristics can be their location in the chassis, or an attribute such as server type, amount of memory, local storage, type of CPU, or local drive configuration. You can manually assign a server to a server pool, or use server pool policies and server pool qualifications to automate the assignment.

If your system implements multi-tenancy through organizations, you can designate one or more server pools to be used by a specific organization. For example, a pool that includes all servers with two CPUs could be assigned to the Marketing organization, while all servers with 64 GB memory could be assigned to the Finance organization.

A server pool can include servers from any chassis in the system. A given server can belong to multiple server pools.

Creating a Server Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Pools.
Step 3 Expand the node for the organization where you want to create the pool. If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the Server Pools node and select Create Server Pool.

Step 5 On the Set Name and Description page of the Create Server Pool wizard, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the server pool. This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the server pool. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 6 Click Next.

Step 7 On the Add Servers page of the Create Server Pool wizard:

a) Select one or more servers from the Available Servers table.
b) Click the >> button to add the servers to the server pool.
c) When you have added all desired servers to the pool, click Finish.

Deleting a Server Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Pools > Organization_Name.
Step 3 Expand the Server Pools node.
Step 4 Right-click the pool you want to delete and select Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Adding Servers to a Server Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Pools > Organization_Name.
Step 3 Right-click the pool to which you want to add one or more servers and select Add Servers to Server Pool.
Step 4 In the Add Servers to Server Pool dialog box, do the following:
 a) In the Servers table, select the servers that you want to add to the server pool.
 You can use the Shift key or Ctrl key to select multiple entries.
 b) Click the >> button to move those servers to the Pooled Servers table and add them to the server pool.
 c) Click OK.

Removing Servers from a Server Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Pools > Organization_Name.
Step 3 Right-click the pool from which you want to remove one or more servers and select Add Servers to Server Pool.
Step 4 In the Add Servers to Server Pool dialog box, do the following:
 a) In the Pooled Servers table, select the servers that you want to remove from the server pool.
 You can use the Shift key or Ctrl key to select multiple entries.
 b) Click the << button to move those servers to the Servers table and remove them from the server pool.
 c) Click OK.

Configuring UUID Suffix Pools

UUID Suffix Pools

A UUID suffix pool is a collection of SMBIOS UUIDs that are available to be assigned to servers. The first number of digits that constitute the prefix of the UUID are fixed. The remaining digits, the UUID suffix, are variable. A UUID suffix pool ensures that these variable values are unique for each server associated with a service profile which uses that particular pool to avoid conflicts.

If you use UUID suffix pools in service profiles, you do not have to manually configure the UUID of the server associated with the service profile.
Creating a UUID Suffix Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Pools.
Step 3 Expand the node for the organization where you want to create the pool. If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click UUID Suffix Pools and select Create UUID Suffix Pool.
Step 5 In the Define Name and Description page of the Create UUID Suffix Pool wizard, fill in the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the UUID pool. This name can be between 1 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the pool. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ’ (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Prefix field</td>
<td>This can be: • derived—The system creates the suffix. • other—You specify the desired suffix. If you select this option, Cisco UCS Manager GUI displays a text field where you can enter the desired suffix, in the format XXXXXXXX-XXXX-XXXX.</td>
</tr>
</tbody>
</table>

Step 6 In the Add UUID Blocks page of the Create UUID Suffix Pool wizard:
 a) Click Add.
 b) In the Create a Block of UUID Suffixes page, enter the first UUID suffix in the pool and the number of UUID suffixes to include in the pool.
 c) Click OK.
 d) If you want to add another block to the pool, repeat steps a through c.
Step 7 Click Finish to complete the wizard.

What to Do Next
Include the UUID suffix pool in a service profile and/or template.
Deleting a UUID Suffix Pool

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Pools > Organization_Name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the UUID Suffix Pools node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the pool you want to delete and select Delete.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
Configuring UUID Suffix Pools
Setting the Management IP Address

This chapter includes the following sections:

- Management IP Address, page 321
- Configuring the Management IP Address on a Blade Server, page 322
- Configuring the Management IP Address on a Rack Server, page 323
- Setting the Management IP Address on a Service Profile, page 324
- Setting the Management IP Address on a Service Profile Template, page 325
- Configuring the Management IP Pool, page 325

Management IP Address

Each server in a Cisco UCS instance must have a management IP address assigned to its Cisco Integrated Management Controller (CIMC) or to the service profile associated with the server. Cisco UCS Manager uses this IP address for external access that terminates in the CIMC. This external access can be through one of the following:

- KVM console
- Serial over LAN
- An IPMI tool

The management IP address used to access the CIMC on a server can be one of the following:

- A static IPv4 address assigned directly to the server.
- A static IPv4 address assigned to a service profile. You cannot configure a service profile template with a static IP address.
- An IP address drawn from the management IP address pool and assigned to a service profile or service profile template.

You can assign a management IP address to each CIMC on the server and to the service profile associated with the server. If you do so, you must use different IP addresses for each of them.
You cannot assign a static IP address to a server or service profile if that IP address has already been assigned to a server or service profile in the Cisco UCS instance. If you attempt to do so, Cisco UCS Manager warns you that the IP address is already in use and rejects the configuration.

A management IP address that is assigned to a service profile moves with the service profile. If a KVM or Sol session is active when you migrate the service profile to another server, Cisco UCS Manager terminates that session and does not restart it after the migration is completed. You configure this IP address when you create or modify a service profile.

Configuring the Management IP Address on a Blade Server

Configuring a Blade Server to Use a Static IP Address

If this action is greyed out, the server has already been assigned a static IP address.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the server for which you want to configure an IP address.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Inventory tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the CIMC subtab.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Actions area, click Create/Modify Static Management IP.</td>
</tr>
<tr>
<td>Step 7</td>
<td>In the Create/Modify Static Management IP dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The static IPv4 address to be assigned to the server.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The subnet mask for the IP address.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The default gateway that the IP address should use.</td>
</tr>
</tbody>
</table>

| Step 8 | Click OK. |

Configuring a Blade Server to Use the Management IP Pool

If this action is greyed out, the server is already configured to use the management IP pool.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Click the server that you want to configure to use the management IP pool.
Step 4 In the Work pane, click the Inventory tab.
Step 5 Click the CIMC subtab.
Step 6 In the Actions area, click Use Pooled Management IP.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 8 Click OK.

Configuring the Management IP Address on a Rack Server

Configuring a Rack Server to Use a Static IP Address

If this action is greyed out, the server has already been assigned a static IP address.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Click the server for which you want to configure an IP address.
Step 4 In the Work pane, click the Inventory tab.
Step 5 Click the CIMC subtab.
Step 6 In the Actions area, click Create/Modify Static Management IP.
Step 7 In the Create/Modify Static Management IP dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The static IPv4 address to be assigned to the server.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The subnet mask for the IP address.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The default gateway that the IP address should use.</td>
</tr>
</tbody>
</table>

Step 8 Click OK.
Configuring a Rack Server to Use the Management IP Pool

If this action is greyed out, the server is already configured to use the management IP pool.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Equipment tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Rack Mounts > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the server that you want to configure to use the management IP pool.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Inventory tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the CIMC subtab.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Actions area, click Use Pooled Management IP.</td>
</tr>
<tr>
<td>Step 7</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>

Setting the Management IP Address on a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Servers tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization that contains the service profile for which you want to set the management IP address.</td>
</tr>
<tr>
<td></td>
<td>If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click the service profile for which you want to set the management IP address.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Expand the Management IP Address area.</td>
</tr>
<tr>
<td>Step 7</td>
<td>In the Management IP Address Policy field, click one of the following radio buttons:</td>
</tr>
<tr>
<td></td>
<td>- none—No management IP address is assigned to the service profile. The management IP address is set based on the CIMC management IP address settings on the server.</td>
</tr>
<tr>
<td></td>
<td>- static—A static management IP address is assigned to the service profile, based on the information entered in this area.</td>
</tr>
<tr>
<td></td>
<td>- pooled—A management IP address is assigned to the service profile from the management IP address pool.</td>
</tr>
<tr>
<td>Step 8</td>
<td>If you selected static, complete the following fields:</td>
</tr>
</tbody>
</table>
Setting the Management IP Address on a Service Profile Template

Procedure

1. In the **Navigation** pane, click the **Servers** tab.
2. On the **Servers** tab, expand **Servers > Service Profile Templates**.
3. Expand the node for the organization that contains the service profile template for which you want to set the management IP address. If the system does not include multi-tenancy, expand the **root** node.
4. Click the service profile template for which you want to set the management IP address.
5. In the **Work** pane, click the **General** tab.
6. Expand the **Management IP Address** area.
7. In the **Management IP Address Policy** field, click one of the following radio buttons:
 - **none**—No management IP address is assigned to the service profile. The management IP address is set based on the CIMC management IP address settings on the server.
 - **pooled**—A management IP address is assigned to the service profile from the management IP address pool.
8. Click **Save Changes**.

Configuring the Management IP Pool

Management IP Pool

The management IP pool is a collection of external IP addresses. Cisco UCS Manager reserves each block of IP addresses in the management IP pool for external access that terminates in the CIMC on a server.
You can configure service profiles and service profile templates to use IP addresses from the management IP pool. You cannot configure servers to use the management IP pool.

All IP addresses in the management IP pool must be in the same subnet as the IP address of the fabric interconnect.

Note
The management IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.

Creating an IP Address Block in the Management IP Pool

The management IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 In the Admin tab, expand All > Communication Services.

Step 3 Right-click Management IP Pool (ext-mgmt) and select Create Block of IP Addresses.

Step 4 In the Create a Block of IP Addresses dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From field</td>
<td>The first IP address in the block.</td>
</tr>
<tr>
<td>Size field</td>
<td>The number of IP addresses in the pool.</td>
</tr>
<tr>
<td>Subnet Mask field</td>
<td>The subnet mask associated with the IP addresses in the block.</td>
</tr>
<tr>
<td></td>
<td>All IP addresses in the management IP pool must be in the same subnet as</td>
</tr>
<tr>
<td></td>
<td>the IP address of the fabric interconnect.</td>
</tr>
<tr>
<td>Default Gateway field</td>
<td>The default gateway associated with the IP addresses in the block.</td>
</tr>
</tbody>
</table>

Step 5 Click OK.

What to Do Next

Configure one or more service profiles or service profile templates to obtain the CIMC IP address from the management IP pool.
Deleting an IP Address Block from the Management IP Pool

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Admin tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the Admin tab, expand All > Communication Services > Management IP Pool (ext-mgmt).</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click the IP address block that you want to delete and select Delete.</td>
</tr>
<tr>
<td>Step 4</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
Configuring Server-Related Policies

This chapter includes the following sections:

- Configuring BIOS Settings, page 329
- Configuring Boot Policies, page 350
- Configuring IPMI Access Profiles, page 354
- Configuring Local Disk Configuration Policies, page 356
- Configuring Scrub Policies, page 361
- Configuring Serial over LAN Policies, page 363
- Configuring Server Autoconfiguration Policies, page 365
- Configuring Server Discovery Policies, page 367
- Configuring Server Inheritance Policies, page 368
- Configuring Server Pool Policies, page 370
- Configuring Server Pool Policy Qualifications, page 371
- Configuring vNIC/vHBA Placement Policies, page 378

Configuring BIOS Settings

Server BIOS Settings

Cisco UCS provides two methods for making global modifications to the BIOS settings on servers in an instance. You can create one or more BIOS policies that include a specific grouping of BIOS settings that match the needs of a server or set of servers, or you can use the default BIOS settings for a specific server platform.

Both the BIOS policy and the default BIOS settings for a server platform enable you to fine tune the BIOS settings for a server managed by Cisco UCS Manager.

Depending upon the needs of the data center, you can configure BIOS policies for some service profiles and use the BIOS defaults in other service profiles in the same Cisco UCS instance, or you can use only one of
them. You can also use Cisco UCS Manager to view the actual BIOS settings on a server and determine whether they are meeting current needs.

Note

Cisco UCS Manager pushes BIOS configuration changes through a BIOS policy or default BIOS settings to the CIMC buffer. These changes remain in the buffer and do not take effect until the server is rebooted.

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.

Main BIOS Settings

The following table lists the main server BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboot on BIOS Settings Change</td>
<td>When the server is rebooted after you change one or more BIOS settings. If you enable this setting, the server is rebooted according to the maintenance policy in the server's service profile. For example, if the maintenance policy requires user acknowledgment, the server is not rebooted and the BIOS changes are not applied until a user acknowledges the pending activity. If you do not enable this setting, the BIOS changes are not applied until the next time the server is rebooted, whether as a result of another server configuration change or a manual reboot.</td>
</tr>
<tr>
<td>Quiet Boot</td>
<td>What the BIOS displays during Power On Self-Test (POST). This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The BIOS displays all messages and Option ROM information during boot.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The BIOS displays the logo screen, but does not display any messages or Option ROM information during boot.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Post Error Pause</td>
<td>What happens when the server encounters a critical error during POST. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The BIOS continues to attempt to boot the server.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The BIOS pauses the attempt to boot the server and opens the Error Manager when a critical error occurs during POST.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Resume Ac On Power Loss</td>
<td>How the server behaves when power is restored after an unexpected power loss. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• stay-off—The server remains off until manually powered on.</td>
</tr>
<tr>
<td></td>
<td>• last-state—The server is powered on and the system attempts to restore its last state.</td>
</tr>
<tr>
<td></td>
<td>• reset—The server is powered on and automatically reset.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Front Panel Lockout</td>
<td>Whether the power and reset buttons on the front panel are ignored by the server. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The power and reset buttons on the front panel are active and can be used to affect the server.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The power and reset buttons are locked out. The server can only be reset or powered on or off from the CIMC GUI.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
Whether the BIOS publishes the ACPI 1.0 version of FADT in the Root System Description table. This version may be required for compatibility with OS versions that only support ACPI 1.0. This can be one of the following:

- **disabled**—ACPI 1.0 version is not published.
- **enabled**—ACPI 1.0 version is published.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

Processor BIOS Settings

The following table lists the processor BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo Boost</td>
<td>Whether the processor uses Intel Turbo Boost Technology, which allows the processor to automatically increase its frequency if it is running below power, temperature, or voltage specifications. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- disabled—The processor does not increase its frequency automatically.</td>
</tr>
<tr>
<td></td>
<td>- enabled—The processor utilizes Turbo Boost Technology if required.</td>
</tr>
<tr>
<td></td>
<td>- platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Enhanced Intel Speedstep | Whether the processor uses Enhanced Intel SpeedStep Technology, which allows the system to dynamically adjust processor voltage and core frequency. This technology can result in decreased average power consumption and decreased average heat production. This can be one of the following:
 • **disabled**—The processor never dynamically adjusts its voltage or frequency.
 • **enabled**—The processor utilizes Enhanced Intel SpeedStep Technology and enables all supported processor sleep states to further conserve power.
 • **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

We recommend that you contact your operating system vendor to make sure the operating system supports this feature. |
| Hyper Threading | Whether the processor uses Intel Hyper-Threading Technology, which allows multithreaded software applications to execute threads in parallel within each processor. This can be one of the following:
 • **disabled**—The processor does not permit hyperthreading.
 • **enabled**—The processor allows for the parallel execution of multiple threads.
 • **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

We recommend that you contact your operating system vendor to make sure the operating system supports this feature. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Core Multi Processing | Sets the state of logical processor cores in a package. If you disable this setting, Hyper Threading is also disabled. This can be one of the following:
 • **all**—Enables multi processing on all logical processor cores.
 • **1 through 10**—Specifies the number of logical processor cores that can run on the server. To disable multi processing and have only one logical processor core running on the server, select 1.
 • **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

 We recommend that you contact your operating system vendor to make sure the operating system supports this feature. |
| Execute Disabled Bit | Classifies memory areas on the server to specify where where application code can execute. As a result of this classification, the processor disables code execution if a malicious worm attempts to insert code in the buffer. This setting helps to prevent damage, worm propagation, and certain classes of malicious buffer overflow attacks. This can be one of the following:
 • **disabled**—The processor does not classify memory areas.
 • **enabled**—The processor classifies memory areas.
 • **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

 We recommend that you contact your operating system vendor to make sure the operating system supports this feature. |
| Virtualization Technology (VT) | Whether the processor uses Intel Virtualization Technology, which allows a platform to run multiple operating systems and applications in independent partitions. This can be one of the following:
 • **disabled**—The processor does not permit virtualization.
 • **enabled**—The processor allows multiple operating systems in independent partitions.
 • **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

 Note If you change this option, you must power cycle the server before the setting takes effect. |
Direct Cache Access

Description: Allows processors to increase I/O performance by placing data from I/O devices directly into the processor cache. This setting helps to reduce cache misses. This can be one of the following:

- **disabled**: Data from I/O devices is not placed directly into the processor cache.
- **enabled**: Data from I/O devices is placed directly into the processor cache.
- **platform-default**: The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

Processor C State

Description: Significantly reduces the power of the processor during idle periods. This can be one of the following:

- **disabled**
- **enabled**
- **platform-default**

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.

Processor C1E

Description: Allows the processor to transition to its minimum frequency upon entering C1. This setting does not take effect until after you have rebooted the server. This can be one of the following:

- **disabled**
- **enabled**
- **platform-default**

Processor C3 Report

Description: Whether the processor sends the C3 report to the operating system. This can be one of the following:

- **disabled**: The processor does not send the C3 report.
- **acpi-c2**: The processor sends the C3 report using the ACPI C2 format.
- **acpi-c3**: The processor sends the C3 report using the ACPI C3 format.
- **platform-default**: The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

On the B440 server, the BIOS Setup menu uses enabled and disabled for these options. If you specify acpi-c2 or acpi-c3, the server sets the BIOS value for that option to enabled.
Intel Directed I/O BIOS Settings

The following table lists the Intel Directed I/O BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor C6 Report</td>
<td>Whether the processor sends the C6 report to the operating system. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not send the C6 report.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor sends the C6 report.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>CPU Performance</td>
<td>Sets the CPU performance profile for the server. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• enterprise—All prefetchers and data reuse are disabled.</td>
</tr>
<tr>
<td></td>
<td>• high-throughput—All prefetchers are enabled, and data reuse is disabled.</td>
</tr>
<tr>
<td></td>
<td>• hpc—All prefetchers and data reuse are enabled. This setting is also known as high performance computing.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Max Variable MTRR Setting</td>
<td>Allows you to select the number of MTRR variables. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• auto-max—The BIOS uses the default value for the processor.</td>
</tr>
<tr>
<td></td>
<td>• 8—The BIOS uses the number specified for the variable MTRR.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>VT for Directed IO</td>
<td>Whether the processor uses Intel Virtualization Technology for Directed I/O (VT-d). This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not use virtualization technology.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor uses virtualization technology.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Interrupt Remap</td>
<td>Whether the processor supports Intel VT-d Interrupt Remapping. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not support remapping.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor uses VT-d Interrupt Remapping as required.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Coherency Support</td>
<td>Whether the processor supports Intel VT-d Coherency. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not support coherency.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor uses VT-d Coherency as required.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>ATS Support</td>
<td>Whether the processor supports Intel VT-d Address Translation Services (ATS). This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not support ATS.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor uses VT-d ATS as required.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
Pass Through DMA Support

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass Through DMA Support</td>
<td>Whether the processor supports Intel VT-d Pass-through DMA. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The processor does not support pass-through DMA.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The processor uses VT-d Pass-through DMA as required.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

RAS Memory BIOS Settings

The following table lists the RAS memory BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory RAS Config</td>
<td>How the memory reliability, availability, and serviceability (RAS) is configured for the server. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• maximum performance—System performance is optimized.</td>
</tr>
<tr>
<td></td>
<td>• mirroring—System reliability is optimized by using half the system memory as backup.</td>
</tr>
<tr>
<td></td>
<td>• lockstep—If the DIMM pairs in the server have an identical type, size, and organization and are populated across the SMI channels, you can enable lockstep mode to minimize memory access latency and provide better performance. Lockstep is enabled by default for B440 servers.</td>
</tr>
<tr>
<td></td>
<td>• sparing—System reliability is enhanced with a degree of memory redundancy while making more memory available to the operating system than mirroring.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
Name | **Description**
--- | ---
NUMA | Whether the BIOS supports NUMA. This can be one of the following:
 - **disabled**—The BIOS does not support NUMA
 - **enabled**—The BIOS includes the ACPI tables that are required for NUMA-aware operating systems. If you enable this option, the system must disable Inter-Socket Memory interleaving on some platforms.
 - **platform-default**—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

Mirroring Mode | Memory mirroring enhances system reliability by keeping two identical data images in memory.
This option is only available if you choose the **mirroring** option for Memory RAS Config. It can be one of the following:
 - **inter-socket**—Memory is mirrored between two Integrated Memory Controllers (IMCs) across CPU sockets.
 - **intra-socket**—One IMC is mirrored with another IMC in the same socket.
 - **platform-default**—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

Sparing Mode | Sparing optimizes reliability by holding memory in reserve so that it can be used in case other DIMMs fail. This option provides some memory redundancy, but does not provide as much redundancy as mirroring. The available sparing modes depend on the current memory population.
This option is only available if you choose **sparing** option for Memory RAS Config. It can be one of the following:
 - **dimm-sparing**—One DIMM is held in reserve. If a DIMM fails, the contents of a failing DIMM are transferred to the spare DIMM.
 - **rank-sparing**—A spare rank of DIMMs is held in reserve. If a rank of DIMMs fails, the contents of the failing rank are transferred to the spare rank.
 - **platform-default**—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
Whether the system prioritizes low voltage or high frequency memory operations. This can be one of the following:

- **power-saving-mode** — The system prioritizes low voltage memory operations over high frequency memory operations. This mode may lower memory frequency in order to keep the voltage low.
- **performance-mode** — The system prioritizes high frequency operations over low voltage operations.
- **platform-default** — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

Serial Port BIOS Settings

The following table lists the serial port BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port A</td>
<td>Whether serial port A is enabled or disabled. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled — The serial port is disabled.</td>
</tr>
<tr>
<td></td>
<td>• enabled — The serial port is enabled.</td>
</tr>
<tr>
<td></td>
<td>• platform-default — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

USB BIOS Settings

The following table lists the USB BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

Whether the server can boot from a USB device. This can be one of the following:

- **disabled** — The server cannot boot from a USB device.
- **enabled** — The server can boot from a USB device.
- **platform-default** — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

PCI Configuration BIOS Settings

The following table lists the PCI configuration BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Memory Below 4G</td>
<td>Whether the BIOS maximizes memory usage below 4GB for an operating system without PAE support, depending on the system configuration. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled — Does not maximize memory usage. Choose this option for all operating systems with PAE support.</td>
</tr>
<tr>
<td></td>
<td>• enabled — Maximizes memory usage below 4GB for an operating system without PAE support.</td>
</tr>
<tr>
<td></td>
<td>• platform-default — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Memory Mapped IO Above 4Gb Config</td>
<td>Whether to enable or disable memory mapped I/O of 64-bit PCI devices to 4GB or greater address space. Legacy option ROMs are not able to access addresses above 4GB. PCI devices that are 64-bit compliant but use a legacy option ROM may not function correctly with this setting enabled. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled — Does not map I/O of 64-bit PCI devices to 4GB or greater address space.</td>
</tr>
<tr>
<td></td>
<td>• enabled — Maps I/O of 64-bit PCI devices to 4GB or greater address space.</td>
</tr>
<tr>
<td></td>
<td>• platform-default — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
Boot Options BIOS Settings

The following table lists the boot options BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Option Retry</td>
<td>Whether the BIOS retries NON-EFI based boot options without waiting for user input. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—Waits for user input before retrying NON-EFI based boot options.</td>
</tr>
<tr>
<td></td>
<td>• enabled—Continually retries NON-EFI based boot options without waiting for user input.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intel Entry SAS RAID</th>
<th>Whether the Intel SAS Entry RAID Module is enabled. This can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• disabled—The Intel SAS Entry RAID Module is disabled.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The Intel SAS Entry RAID Module is enabled.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intel Entry SAS RAID Module</th>
<th>How the Intel SAS Entry RAID Module is configured. This can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• it-ir-raid—Configures the RAID module to use Intel IT/IR RAID.</td>
</tr>
<tr>
<td></td>
<td>• intel-esrtii—Configures the RAID module to use Intel Embedded Server RAID Technology II.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

Server Management BIOS Settings

The following tables list the server management BIOS settings that you can configure through a BIOS policy or the default BIOS settings:
General Settings

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assert Nmi on Serr</td>
<td>Whether the BIOS generates a non-maskable interrupt (NMI) and logs an error when a system error (SERR) occurs. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The BIOS does not generate an NMI or log an error when a SERR occurs.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The BIOS generates an NMI and logs an error when a SERR occurs. You must enable this setting if you want to enable Assert Nmi on Perr.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Assert Nmi on Perr</td>
<td>Whether the BIOS generates a non-maskable interrupt (NMI) and logs an error when a processor bus parity error (PERR) occurs. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The BIOS does not generate an NMI or log an error when a PERR occurs.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The BIOS generates an NMI and logs an error when a PERR occurs. You must enable Assert Nmi on Serr to use this setting.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>OS Boot Watchdog Timer</td>
<td>Whether the BIOS programs the watchdog timer with a predefined timeout value. If the operating system does not complete booting before the timer expires, the CIMC resets the system and an error is logged. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled—The watchdog timer is not used to track how long the server takes to boot.</td>
</tr>
<tr>
<td></td>
<td>• enabled—The watchdog timer tracks how long the server takes to boot. If the server does not boot within the predefined length of time, the CIMC resets the system and logs an error.</td>
</tr>
<tr>
<td></td>
<td>• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td>This feature requires either operating system support or Intel Management software.</td>
</tr>
</tbody>
</table>
OS Boot Watchdog Timer Timeout Policy

What action the system takes if the watchdog timer expires. This can be one of the following:

- **power-off**—The server is powered off if the watchdog timer expires during OS boot.
- **reset**—The server is reset if the watchdog timer expires during OS boot.
- **platform-default**—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

This option is only available if you enable the OS Boot Watchdog Timer.

OS Boot Watchdog Timer Timeout

What timeout value the BIOS uses to configure the watchdog timer. This can be one of the following:

- **5-minutes**—The watchdog timer expires 5 minutes after the OS begins to boot.
- **10-minutes**—The watchdog timer expires 10 minutes after the OS begins to boot.
- **15-minutes**—The watchdog timer expires 15 minutes after the OS begins to boot.
- **20-minutes**—The watchdog timer expires 20 minutes after the OS begins to boot.
- **platform-default**—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

This option is only available if you enable the OS Boot Watchdog Timer.
Console Redirection Settings

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Console Redirection** | Allows a serial port to be used for console redirection during POST and BIOS booting. After the BIOS has booted and the operating system is responsible for the server, console redirection is irrelevant and has no effect. This can be one of the following:
 - **disabled** — No console redirection occurs during POST.
 - **serial-port-a** — Enables serial port A for console redirection during POST. This option is valid for blade servers and rack-mount servers.
 - **serial-port-b** — Enables serial port B for console redirection and allows it to perform server management tasks. This option is only valid for rack-mount servers.
 - **platform-default** — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
 Note If you enable this option, you also disable the display of the Quiet Boot logo screen during POST. |
| **Flow Control** | Whether a handshake protocol is used for flow control. Request to Send / Clear to Send (RTS/CTS) helps to reduce frame collisions that can be introduced by a hidden terminal problem. This can be one of the following:
 - **none** — No flow control is used.
 - **rts-cts** — RTS/CTS is used for flow control.
 - **platform-default** — The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
 Note This setting must match the setting on the remote terminal application. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| BAUD Rate | What BAUD rate is used for the serial port transmission speed. If you disable Console Redirection, this option is not available. This can be one of the following:
• 9600—A 9600 BAUD rate is used.
• 19200—A 19200 BAUD rate is used.
• 38400—A 38400 BAUD rate is used.
• 57600—A 57600 BAUD rate is used.
• 115200—A 115200 BAUD rate is used.
• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
Note This setting must match the setting on the remote terminal application. |
| Terminal Type | What type of character formatting is used for console redirection. This can be one of the following:
• pc-ansi—The PC-ANSI terminal font is used.
• vt100—A supported vt100 video terminal and its character set are used.
• vt100-plus—A supported vt100-plus video terminal and its character set are used.
• vt-utf8—A video terminal with the UTF-8 character set is used.
• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
Note This setting must match the setting on the remote terminal application. |
| Legacy OS Redirect | Whether redirection from a legacy operating system, such as DOS, is enabled on the serial port. This can be one of the following:
• disabled—The serial port enabled for console redirection is hidden from the legacy operating system.
• enabled—The serial port enabled for console redirection is visible to the legacy operating system.
• platform-default—The processor uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
BIOS Policy

The BIOS policy is a policy that automates the configuration of BIOS settings for a server or group of servers. You can create global BIOS policies available to all servers in the root organization, or you can create BIOS policies in sub-organizations that are only available to that hierarchy.

To use a BIOS policy, do the following:

1. Create the BIOS policy in Cisco UCS Manager.
2. Assign the BIOS policy to one or more service profiles.
3. Associate the service profile with a server.

During service profile association, Cisco UCS Manager modifies the BIOS settings on the server to match the configuration in the BIOS policy. If you do not create and assign a BIOS policy to a service profile, the server uses the default BIOS settings for that server platform.

Default BIOS Settings

Cisco UCS Manager includes a set of default BIOS settings for each type of server supported by Cisco UCS. The default BIOS settings are available only in the root organization and are global. Only one set of default BIOS settings can exist for each server platform supported by Cisco UCS. You can modify the default BIOS settings, but you cannot create an additional set of default BIOS settings.

Each set of default BIOS settings are designed for a particular type of supported server and are applied to all servers of that specific type which do not have a BIOS policy included in their service profiles.

Unless a Cisco UCS implementation has specific needs that are not met by the server-specific settings, we recommend that you use the default BIOS settings that are designed for each type of server in the instance.

Cisco UCS Manager applies these server platform-specific BIOS settings as follows:

- The service profile associated with a server does not include a BIOS policy.
- The BIOS policy is configured with the platform-default option for a specific setting.

You can modify the default BIOS settings provided by Cisco UCS Manager. However, any changes to the default BIOS settings apply to all servers of that particular type or platform. If you want to modify the BIOS settings for only certain servers, we recommend that you use a BIOS policy.

Creating a BIOS Policy

Note

Cisco UCS Manager pushes BIOS configuration changes through a BIOS policy or default BIOS settings to the CIMC buffer. These changes remain in the buffer and do not take effect until the server is rebooted.

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click BIOS Policies and select Create BIOS Policy.

Step 5 On the Main page of the Create BIOS Policy wizard, enter a name for the BIOS policy in the Name field. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Step 6 In the Create BIOS Policy wizard, do the following to configure the BIOS settings:
 a) If you want to change a BIOS setting, click the desired radio button or make the appropriate choice from the drop-down list.
 For descriptions and information about the options for each BIOS setting, see the following topics:

 • Main page: Main BIOS Settings, on page 330
 • Processor page: Processor BIOS Settings, on page 332
 • Intel Directed IO page: Intel Directed I/O BIOS Settings, on page 336
 • RAS Memory page: RAS Memory BIOS Settings, on page 338
 • Serial Port page: Serial Port BIOS Settings, on page 340
 • USB page: USB BIOS Settings, on page 340
 • PCI Configuration page: PCI Configuration BIOS Settings, on page 341
 • Boot Options page: Boot Options BIOS Settings, on page 342
 • Server Management page: Server Management BIOS Settings, on page 342

 b) Click Next after each page to move to the

Step 7 After you have configured all of the BIOS settings for the policy, click Finish.

Modifying the BIOS Defaults

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.

Unless a Cisco UCS implementation has specific needs that are not met by the server-specific settings, we recommend that you use the default BIOS settings that are designed for each type of server in the instance.
Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Policies.
Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.
Step 4 Expand BIOS Defaults and select the server model number for which you want to modify the default BIOS settings.
Step 5 In the Work pane, click the appropriate tab and then click the desired radio button or make a choice from the drop-down list to modify the default BIOS settings:
For descriptions and information about the options for each BIOS setting, see the following topics. Not all BIOS settings are available for each type of server.
 • Main tab: Main BIOS Settings, on page 330
 • Advanced tab:
 ◦ Processor subtab: Processor BIOS Settings, on page 332
 ◦ Intel Directed IO subtab: Intel Directed I/O BIOS Settings, on page 336
 ◦ RAS Memory subtab: RAS Memory BIOS Settings, on page 338
 ◦ Serial Port subtab: Serial Port BIOS Settings, on page 340
 ◦ USB subtab: USB BIOS Settings, on page 340
 ◦ PCI Configuration subtab: PCI Configuration BIOS Settings, on page 341
 • Boot Options tab: Boot Options BIOS Settings, on page 342
 • Server Management tab: Server Management BIOS Settings, on page 342
Step 6 Click Save Changes.

Viewing the Actual BIOS Settings for a Server

Follow this procedure to see the actual BIOS settings on a server.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server for which you want to view the actual BIOS settings.
Step 4 On the Work pane, click the Inventory tab.
Step 5 Click the Motherboard subtab.
Step 6 In the BIOS Settings area, click the Expand icon to the right of the heading to open that area.
Each tab in the BIOS Settings area displays the settings for that server platform. Some of the tabs contain subtabs with additional information.

Configuring Boot Policies

Boot Policy

The boot policy determines the following:

- Configuration of the boot device
- Location from which the server boots
- Order in which boot devices are invoked

For example, you can choose to have associated servers boot from a local device, such as a local disk or CD-ROM (VMedia), or you can select a SAN boot or a LAN (PXE) boot.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect. If you do not include a boot policy in a service profile, the server uses the default settings in the BIOS to determine the boot order.

Important

Changes to a boot policy may be propagated to all servers created with an updating service profile template that includes that boot policy. Reassociation of the service profile with the server to rewrite the boot order information in the BIOS is auto-triggered.

Guidelines

When you create a boot policy, you can add one or more of the following to the boot policy and specify their boot order:

<table>
<thead>
<tr>
<th>Boot type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN boot</td>
<td>Boots from an operating system image on the SAN. You can specify a primary and a secondary SAN boot. If the primary boot fails, the server attempts to boot from the secondary. We recommend that you use a SAN boot, because it offers the most service profile mobility within the system. If you boot from the SAN when you move a service profile from one server to another, the new server boots from the exact same operating system image. Therefore, the new server appears to be the exact same server to the network.</td>
</tr>
<tr>
<td>LAN boot</td>
<td>Boots from a centralized provisioning server. It is frequently used to install operating systems on a server from that server.</td>
</tr>
<tr>
<td>Boot type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Local disk boot</td>
<td>If the server has a local drive, boots from that drive.</td>
</tr>
<tr>
<td>Note</td>
<td>Cisco UCS Manager does not differentiate between the types of local drives. If an operating system has been installed on more than one local drive or on an internal USB drive (eUSB), you cannot specify which of these local drives the server should use as the boot drive.</td>
</tr>
<tr>
<td>Virtual media boot</td>
<td>Mimics the insertion of a physical CD-ROM disk (read-only) or floppy disk (read-write) into a server. It is typically used to manually install operating systems on a server.</td>
</tr>
</tbody>
</table>

The default boot order is as follows:

1. Local disk boot
2. LAN boot
3. Virtual media read-only boot
4. Virtual media read-write boot

Creating a Boot Policy

You can also create a local boot policy that is restricted to a service profile or service profile template. However, except for iSCSI boot, we recommend that you create a global boot policy that can be included in multiple service profiles or service profile templates.

We recommend that the boot order in a boot policy include either a local disk or a SAN LUN, but not both, to avoid the possibility of the server booting from the wrong storage type. If you configure a local disk and a SAN LUN for the boot order storage type and the operating system or logical volume manager (LVM) is configured incorrectly, the server might boot from the local disk rather than the SAN LUN.

For example, on a server with Red Hat Linux installed, where the LVM is configured with default LV names and the boot order is configured with a SAN LUN and a local disk, Linux reports that there are two LVs with the same name and boots from the LV with the lowest SCSI ID, which could be the local disk.

Before You Begin

If you are creating a boot policy that boots the server from a SAN LUN and you require reliable SAN boot operations, you must first remove all local disks from servers associated with a service profile that includes the boot policy.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy.
 If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click Boot Policies and select Create Boot Policy.
 The Create Boot Policy wizard displays.

Step 5 Enter a unique name and description for the policy.
 This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Step 6 (Optional) To reboot all servers that use this boot policy after you make changes to the boot order, check the Reboot on Boot Order Change check box.
 In the Cisco UCS Manager GUI, if the Reboot on Boot Order Change check box is checked for a boot policy, and if CD-ROM or Floppy is the last device in the boot order, deleting or adding the device does not directly affect the boot order and the server does not reboot.

Step 7 (Optional) To ensure that Cisco UCS Manager uses any vNICs or vHBAs in the order shown in the Boot Order table, check the Enforce vNIC/vHBA Name check box.
 If you do not check this check box, Cisco UCS Manager uses the priority specified in the vNIC or vHBA.

Step 8 To add a local disk, virtual CD-ROM, or virtual floppy to the boot order, do the following:
 a) Click the down arrows to expand the Local Devices area.
 b) Click one of the following links to add the device to the Boot Order table:
 - Add Local Disk
 - Add CD-ROM
 - Add Floppy
 c) Add another boot device to the Boot Order table, or click OK to finish.

Step 9 To add a LAN boot to the boot order, do the following:
 a) Click the down arrows to expand the vNICs area.
 b) Click the Add LAN Boot link.
 c) In the Add LAN Boot dialog box, enter the name of the vNIC that you want to use for the LAN boot in the vNIC field, then click OK.
 d) Add another device to the Boot Order table, or click OK to finish.

Step 10 To add a SAN boot to the boot order, do the following:
 a) Click the down arrows to expand the vHBAs area.
 b) Click the Add SAN Boot link.
 c) In the Add SAN Boot dialog box, complete the following fields, then click OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vHBA</td>
<td>Enter the name of the vHBA you want to use for the SAN boot.</td>
</tr>
</tbody>
</table>
This can be:

- **primary**—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.
- **secondary**—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.

The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.

d) If this vHBA points to a bootable SAN image, click the **Add SAN Boot Target** link and, in the **Add SAN Boot Target** dialog box, complete the following fields, then click **OK**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Target LUN field</td>
<td>The LUN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Boot Target WWPN field</td>
<td>The WWPN that corresponds to the location of the boot image.</td>
</tr>
</tbody>
</table>

This can be:

- **primary**—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.
- **secondary**—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.

The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.

e) Add another boot device to the **Boot Order** table, or click **OK** to finish.

What to Do Next

Include the boot policy in a service profile and/or template.
After a server is associated with a service profile that includes this boot policy, you can verify the actual boot order in the **Boot Order Details** area on the **General** tab for the server.

Deleting a Boot Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Policies > Organization_Name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the Boot Policies node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the policy you want to delete and select Delete.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Configuring IPMI Access Profiles

IPMI Access Profile

This policy allows you to determine whether IPMI commands can be sent directly to the server, using the IP address. For example, you can send commands to retrieve sensor data from the CIMC. This policy defines the IPMI access, including a username and password that can be authenticated locally on the server, and whether the access is read-only or read-write.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Creating an IPMI Access Profile

Before You Begin

An IPMI profile requires that one or more of the following resources already exist in the system:

- Username with appropriate permissions that can be authenticated by the operating system of the server
- Password for the username
- Permissions associated with the username

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
</tbody>
</table>
Step 4 Right-click IPMI Profiles and select Create IPMI Profiles.

Step 5 In the Create IPMI Profile dialog box:
 a) Enter a unique name and description for the profile.
 b) Click OK.

Step 6 In the IPMI Profile Users area of the navigator, click +.

Step 7 In the User Properties dialog box:
 a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The username to associate with this IPMI profile.</td>
</tr>
<tr>
<td>Password field</td>
<td>The password associated with this username.</td>
</tr>
<tr>
<td>Confirm Password field</td>
<td>The password a second time for confirmation purposes.</td>
</tr>
<tr>
<td>Role field</td>
<td>The user role. This can be:</td>
</tr>
<tr>
<td></td>
<td>• admin</td>
</tr>
<tr>
<td></td>
<td>• Read Only</td>
</tr>
</tbody>
</table>

 b) Click OK.

Step 8 Repeat Steps 6 and 7 to add another user.

Step 9 Click OK to return to the IPMI profiles in the Work pane.

What to Do Next
Include the IPMI profile in a service profile and/or template.

Deleting an IPMI Access Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 In the Servers tab, expand Servers > Policies > Organization_Name

Step 3 Expand the IPMI Profiles node.

Step 4 Right-click the profile you want to delete and select Delete.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Local Disk Configuration Policies

Local Disk Configuration Policy

This policy configures any optional SAS local drives that have been installed on a server through the onboard RAID controller of the local drive. This policy enables you to set a local disk mode for all servers that are associated with a service profile that includes the local disk configuration policy.

The local disk modes include the following:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.

- **RAID 0 Stripes**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.

- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.

- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.

- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.

- **RAID 6 Stripes Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.

- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.

- **RAID 10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

You must include this policy in a service profile, and that service profile must be associated with a server for the policy to take effect.

Guidelines for all Local Disk Configuration Policies

Before you create a local disk configuration policy, consider the following guidelines:

No Mixed HDDs and SSDs

Do not include HDDs and SSDs in a single server or RAID configuration.

Impact of Upgrade to Release 1.3(1i) or Higher

An upgrade from an earlier Cisco UCS firmware release to release 1.3(1i) or higher has the following impact on the Protect Configuration property of the local disk configuration policy the first time servers are associated with service profiles after the upgrade:
Unassociated Servers

After you upgrade the Cisco UCS instance, the initial server association proceeds without configuration errors whether or not the local disk configuration policy matches the server hardware. Even if you enable the Protect Configuration property, Cisco UCS does not protect the user data on the server if there are configuration mismatches between the local disk configuration policy on the previous service profile and the policy in the new service profile.

Note
If you enable the Protect Configuration property and the local disk configuration policy encounters mismatches between the previous service profile and the new service profile, all subsequent service profile associations with the server are blocked.

Associated Servers

Any servers that are already associated with service profiles do not reboot after the upgrade. Cisco UCS Manager does not report any configuration errors if there is a mismatch between the local disk configuration policy and the server hardware.

When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.

Guidelines for Local Disk Configuration Policies Configured for RAID

No Mixed HDDs and SSDs

Do not include HDDs and SSDs in a single RAID configuration.

Do Not Use the Any Configuration Mode on Servers with MegaRAID Storage Controllers

If a blade server or rack-mount server in a Cisco UCS instance includes a MegaRAID storage controller, do not configure the local disk configuration policy in the service profile for that server with the **Any Configuration** mode. If you use this mode for servers with a MegaRAID storage controller, the installer for the operating system cannot detect any local storage on the server.

If you want to install an operating system on local storage on a server with a MegaRAID storage controller, you must configure the local disk configuration policy with a mode that creates a RAID LUN (RAID volume) on the server.

Server May Not Boot After RAID1 Cluster Migration if Any Configuration Mode Specified in Service Profile

After RAID1 clusters are migrated, you need to associate a service profile with the server. If the local disk configuration policy in the service profile is configured with **Any Configuration** mode rather than **RAID1**, the RAID LUN remains in "inactive" state during and after association. As a result, the server cannot boot.

To avoid this issue, ensure that the service profile you associate with the server contains the identical local disk configuration policy as the original service profile before the migration and does not include the **Any Configuration** mode.
Configure RAID Settings in Local Disk Configuration Policy for Servers with MegaRAID Storage Controllers

If a blade server or integrated rack-mount server has a MegaRAID controller, you must configure RAID settings for the drives in the Local Disk Configuration policy included in the service profile for that server.

If you do not configure your RAID LUNs before installing the OS, disk discovery failures might occur during the installation and you might see error messages such as “No Device Found.”

Do Not Use JBOD Mode on Servers with MegaRAID Storage Controllers

Do not configure or use JBOD mode or JBOD operations on any blade server or integrated rack-mount server with a MegaRAID storage controllers. JBOD mode and operations are not intended for nor are they fully functional on these servers.

Maximum of One RAID Volume and One RAID Controller in Integrated Rack-Mount Servers

A rack-mount server that has been integrated with Cisco UCS Manager can have a maximum of one RAID volume irrespective of how many hard drives are present on the server.

All the local hard drives in an integrated rack-mount server must be connected to only one RAID Controller. Integration with Cisco UCS Manager does not support the connection of local hard drives to multiple RAID Controllers in a single rack-mount server. We therefore recommend that you request a single RAID Controller configuration when you order rack-mount servers to be integrated with Cisco UCS Manager.

In addition, do not use third party tools to create multiple RAID LUNs on rack-mount servers. Cisco UCS Manager does not support that configuration.

Creating a Local Disk Configuration Policy

Procedure

Step 1	In the Navigation pane, click the Servers tab.
Step 2	On the Servers tab, expand Servers > Policies.
Step 3	Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.
Step 4	Right-click Local Disk Config Policies and choose Create Local Disk Configuration Policy.
Step 5	In the Create Local Disk Configuration Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ’ (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
This can be one of the following local disk policy modes:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.

- **RAID 0 Stripes**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.

- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.

- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.

- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.

- **RAID 6 Stripes Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.

- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.

- **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

Note
If you choose No RAID and you apply this policy to a server that already has an operating system with RAID storage configured, the system does not remove the disk contents. Therefore, there may be no visible differences after you apply the No RAID mode.

To make sure that any previous RAID configuration information is removed from a disk, apply a scrub policy that removes all disk information after you apply the No RAID configuration mode.
Changing a Local Disk Configuration Policy

This procedure describes how to change a local disk configuration policy from an associated service profile. You can also change a local disk configuration policy from the Policies node of the Servers tab.

Procedure

1. **Step 1** In the Navigation pane, click the Servers tab.
2. **Step 2** On the Servers tab, expand Servers > Service Profiles.
3. **Step 3** Expand the organization that includes the service service profile with the local disk configuration policy you want to change.
 - If the system does not include multi-tenancy, expand the root node.
4. **Step 4** Click the service profile that contains the local disk configuration policy you want to change.
5. **Step 5** In the Work pane, click the Policies tab.
6. **Step 6** In the Actions area, click Change Local Disk Configuration Policy.
7. **Step 7** In the Change Local Disk Configuration Policy dialog box, choose one of the following options from the Select the Local Disk Configuration Policy drop-down list.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a Disk Policy</td>
<td>Select an existing local disk configuration policy from the list below this option. Cisco UCS Manager assigns this policy to the service profile.</td>
</tr>
<tr>
<td>Create a Local Disk Policy</td>
<td>Enables you to create a local disk configuration policy that can only be accessed by the selected service profile.</td>
</tr>
</tbody>
</table>
Deleting a Local Disk Configuration Policy

Procedure

1. In the Navigation pane, click the Servers tab.
2. On the Servers tab, expand Servers > Policies > Organization_Name.
3. Expand the Local Disk Config Policies node.
4. Right-click the policy you want to delete and select Delete.
5. If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Scrub Policies

Scrub Policy

This policy determines what happens to local data and to the BIOS settings on a server during the discovery process and when the server is disassociated from a service profile. Depending upon how you configure a scrub policy, the following can occur at those times:

Disk Scrub

One of the following occurs to the data on any local drives on disassociation:

- If enabled, destroys all data on any local drives
- If disabled, preserves all data on any local drives, including local storage configuration

BIOS Settings Scrub

One of the following occurs to the BIOS settings when a service profile containing the scrub policy is disassociated from a server:

- If enabled, erases all BIOS settings for the server and and resets them to the BIOS defaults for that server type and vendor
- If disabled, preserves the existing BIOS settings on the server
Creating a Scrub Policy

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Policies.

Step 3 Expand the node for the organization where you want to create the policy.
If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click Scrub Policies and select Create Scrub Policy.

Step 5 In the Create Scrub Policy wizard, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Disk Scrub field</td>
<td>If this field is set to yes, when a service profile containing this scrub policy is disassociated from a server, all data on the server local drives is completely erased. If this field is set to no, the data on the local drives is preserved, including all local storage configuration.</td>
</tr>
<tr>
<td>BIOS Settings Scrub field</td>
<td>If the field is set to yes, when a service profile containing this scrub policy is disassociated from a server, the BIOS settings for that server are erased and reset to the defaults for that server type and vendor. If this field is set to no, the BIOS settings are preserved.</td>
</tr>
</tbody>
</table>

Step 6 Click OK.
Deleting a Scrub Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Policies > Organization_Name.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the Scrub Policies node.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click the policy you want to delete and select Delete.</td>
</tr>
<tr>
<td>5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Configuring Serial over LAN Policies

Serial over LAN Policy

This policy sets the configuration for the serial over LAN connection for all servers associated with service profiles that use the policy. By default, the serial over LAN connection is disabled.

If you implement a serial over LAN policy, we recommend that you also create an IPMI profile.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Creating a Serial over LAN Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Policies.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click Serial over LAN Policies and select Create Serial over LAN Policy.</td>
</tr>
<tr>
<td>5</td>
<td>In the Create Serial over LAN Policy wizard, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
Configuring Serial over LAN Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
| **Serial over LAN State field** | This can be:
 • **disable**—Serial over LAN access is blocked.
 • **enable**—Serial over LAN access is permitted. |
| **Speed drop-down list** | This can be:
 • 9600
 • 19200
 • 38400
 • 57600
 • 115200 |

Step 6 Click **OK**.

Deleting a Serial over LAN Policy

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Policies > Organization_Name**.

Step 3 Expand the **Serial over LAN Policies** node.

Step 4 Right-click the policy you want to delete and select **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Configuring Server Autoconfiguration Policies

Server Autoconfiguration Policy
Cisco UCS Manager uses this policy to determine how to configure a new server. If you create a server autoconfiguration policy, the following occurs when a new server starts:

1. The qualification in the server autoconfiguration policy is executed against the server.
2. If the server meets the required qualifications, the server is associated with a service profile created from the service profile template configured in the server autoconfiguration policy. The name of that service profile is based on the name given to the server by Cisco UCS Manager.
3. The service profile is assigned to the organization configured in the server autoconfiguration policy.

Creating an Autoconfiguration Policy

Before You Begin
This policy requires that one or more of the following resources already exist in the system:

- Server pool policy qualifications
- Service profile template
- Organizations, if a system implements multi-tenancy

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the Autoconfig Policies subtab.
Step 5 On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.
Step 6 In the Create Autoconfiguration Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
Configuring Server Autoconfiguration Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Qualification drop-down list</td>
<td>The server pool policy qualification associated with this auto-configuration policy. If a new server is discovered that matches the criteria specified in the server pool policy qualification, Cisco UCS automatically creates a service profile based on the service profile template selected in the Service Profile Template Name drop-down list and associates the newly created service profile with the server.</td>
</tr>
<tr>
<td>Org drop-down list</td>
<td>The organization associated with this autoconfiguration policy. If Cisco UCS automatically creates a service profile to associate with a server, it places the service profile under the organization selected in this field.</td>
</tr>
<tr>
<td>Service Profile Template Name drop-down list</td>
<td>The service profile template associated with this policy.</td>
</tr>
</tbody>
</table>

Step 7 Click OK.

Deleting an Autoconfiguration Policy

Procedure

- **Step 1** In the Navigation pane, click the Equipment tab.
- **Step 2** On the Equipment tab, click the Equipment node.
- **Step 3** In the Work pane, click the Policies tab.
- **Step 4** Click the Autoconfig Policies subtab.
- **Step 5** Right-click the autoconfiguration policy that you want to delete and choose Delete.
- **Step 6** If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Server Discovery Policies

Server Discovery Policy

This discovery policy determines how the system reacts when you add a new server. If you create a server discovery policy, you can control whether the system conducts a deep discovery when a server is added to a chassis, or whether a user must first acknowledge the new server. By default, the system conducts a full discovery.

If you create a server discovery policy, the following occurs when a new server starts:

1. The qualification in the server discovery policy is executed against the server.
2. If the server meets the required qualifications, Cisco UCS Manager applies the following to the server:
 • Depending upon the option selected for the action, either discovers the new server immediately or waits for a user to acknowledge the new server
 • Applies the scrub policy to the server

Creating a Server Discovery Policy

Before You Begin

If you plan to associate this policy with a server pool, create server pool policy qualifications.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the Server Discovery Policies subtab.
Step 5 Click the + icon on the table icon bar to open the Create Server Discovery Policy dialog box.
Step 6 In the Description field, enter a description for the discovery policy.
Step 7 In the Action field, select one of the following options:
 • immediate—The system attempts to discover new servers automatically
 • user-acknowledged—The system waits until the user tells it to search for new servers

Step 8 (Optional) To associate this policy with a server pool, select server pool policy qualifications from the Qualification drop-down list.
Step 9 (Optional) To include a scrub policy, select a policy from the Scrub Policy drop-down list.
Step 10 Click OK.
What to Do Next
Include the server discovery policy in a service profile and/or template.

Deleting a Server Discovery Policy

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the Server Discovery Policies subtab.
Step 5 Right-click the server discover policy that you want to delete and choose Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Server Inheritance Policies

Server Inheritance Policy

This policy is invoked during the server discovery process to create a service profile for the server. All service profiles created from this policy use the values burned into the blade at manufacture. The policy performs the following:

• Analyzes the inventory of the server
• If configured, assigns the server to the selected organization
• Creates a service profile for the server with the identity burned into the server at manufacture

You cannot migrate a service profile created with this policy to another server.

Creating a Server Inheritance Policy

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the Server Inheritance Policies subtab.
Step 5 On the icon bar to the right of the table, click +.
 If the + icon is disabled, click an entry in the table to enable it.
Step 6 In the Create Server Inheritance Policy dialog box, complete the following fields:
Configuring Server Inheritance Policies

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Qualification drop-down list</td>
<td>If you want to associate this policy with one or more specific server pools, choose the server pool qualification policy that identifies these pools from the drop-down list.</td>
</tr>
<tr>
<td>Org drop-down list</td>
<td>If you want to associate an organization with this policy, or if you want to change the current association, choose the desired organization from the drop-down list.</td>
</tr>
</tbody>
</table>

Step 7 Click OK.

Deleting a Server Inheritance Policy

Procedure

1. **Step 1** In the Navigation pane, click the Equipment tab.
2. **Step 2** On the Equipment tab, click the Equipment node.
3. **Step 3** In the Work pane, click the Policies tab.
4. **Step 4** Click the Server Inheritance Policies subtab.
5. **Step 5** Right-click the server inheritance policy that you want to delete and choose Delete.
6. **Step 6** If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Server Pool Policies

Server Pool Policy

This policy is invoked during the server discovery process. It determines what happens if server pool policy qualifications match a server to the target pool specified in the policy.

If a server qualifies for more than one pool and those pools have server pool policies, the server is added to all those pools.

Creating a Server Pool Policy

Before You Begin

This policy requires that one or more of the following resources already exist in the system:

- A minimum of one server pool
- Server pool policy qualifications, if you choose to have servers automatically added to pools

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Servers tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click Server Pool Policies and select Create Server Pool Policy.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Create Server Pool Policy dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ’ (single quote), " (double quote), ‚ (accent mark).</td>
</tr>
<tr>
<td>Target Pool drop-down list</td>
<td>If you want to associate this policy with a server pool, select that pool from the drop-down list.</td>
</tr>
</tbody>
</table>
Configuring Server Pool Policy Qualifications

Server Pool Policy Qualifications

This policy qualifies servers based on the inventory of a server conducted during the discovery process. The qualifications are individual rules that you configure in the policy to determine whether a server meets the selection criteria. For example, you can create a rule that specifies the minimum memory capacity for servers in a data center pool.

Qualifications are used in other policies to place servers, not just by the server pool policies. For example, if a server meets the criteria in a qualification policy, it can be added to one or more server pools or have a service profile automatically associated with it.

You can use the server pool policy qualifications to qualify servers according to the following criteria:

- Adapter type
- Chassis location
- Memory type and configuration
- Power group
- CPU cores, type, and configuration
- Storage configuration and capacity

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification drop-down list</td>
<td>If you want to associate this policy with one or more specific server pools, choose the server pool qualification policy that identifies these pools from the drop-down list.</td>
</tr>
</tbody>
</table>

Step 6 Click OK.

Deleting a Server Pool Policy

Procedure

1. In the Navigation pane, click the Servers tab.
2. On the Servers tab, expand Servers > Policies > Organization_Name.
3. Expand the Server Pool Policies node.
4. Right-click the policy you want to delete and select Delete.
5. If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
• Server model

Depending upon the implementation, you may configure several policies with server pool policy qualifications including the following:

• Autoconfiguration policy
• Chassis discovery policy
• Server discovery policy
• Server inheritance policy
• Server pool policy

Creating Server Pool Policy Qualifications

Procedure

Step 1
In the Navigation pane, click the Servers tab.

Step 2
On the Servers tab, expand Servers > Policies.

Step 3
Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4
Right-click the Server Pool Policy Qualifications node and select Create Server Pool Policy Qualification.

Step 5
In the Create Server Pool Policy Qualification dialog box, enter a unique name and description for the policy.

Step 6
(Optional) To use this policy to qualify servers according to their adapter configuration, do the following:

a) Click Create Adapter Qualifications.
b) In the Create Adapter Qualifications dialog box, complete the following fields:
### Name	Description
Type drop-down list | The adapter type. This can be:
 - `fcoe` — Fibre Channel over Ethernet
 - `non-virtualized-eth-if`
 - `non-virtualized-fc-if`
 - `path-encap-consolidated`
 - `path-encap-virtual`
 - `protected-eth-if`
 - `protected-fc-if`
 - `protected-fcoe`
 - `virtualized-eth-if`
 - `virtualized-fc-if`
 - `virtualized-scsi-if`

Once you save the adapter qualification, this type cannot be changed.

Model field | A regular expression that the adapter model name must match.

Maximum Capacity field | The maximum capacity for the selected type. To specify a capacity, choose **select** and enter the desired maximum capacity.

c) Click **OK**.

Step 7 (Optional) To use this policy to qualify servers according to the chassis in which they physically reside, do the following:

a) Click **Create Chassis/Server Qualifications**.

b) In the **Chassis Qualifications** area of the **Create Chassis and Server Qualifications** dialog box, complete the following fields to specify the range of chassis you want to use:

 - **First Chassis ID** field — The first chassis ID from which server pools associated with this policy can draw.

 - **Number of Chassis** field — The total number of chassis to include in the pool, starting with the chassis identified in the **First Chassis ID** field.

Example:
For example, if you want to use chassis 5, 6, 7, and 8, enter 5 in the **First Chassis ID** field and 4 in the **Number of Chassis** field. If you want to use only chassis 3, enter 3 in the **First Chassis ID** field and 1 in the **Number of Chassis** field.

Tip If you want to use chassis 5, 6, and 9, create a chassis/server qualification for the range 5-6 and another qualification for chassis 9. You can add as many chassis/server qualifications as needed.
c) Click Finish.

Step 8 (Optional) To use this policy to qualify servers according to both the chassis and slot in which they physically reside, do the following:

a) Click Create Chassis/Server Qualifications.
b) In the Chassis Qualifications area of the Create Chassis and Server Qualifications dialog box, complete the following fields to specify the range of chassis you want to use:

• First Chassis ID field—The first chassis ID from which server pools associated with this policy can draw.

• Number of Chassis field—The total number of chassis to include in the pool, starting with the chassis identified in the First Chassis ID field.

c) In the Server Qualifications table, click Add.
d) In the Create Server Qualifications dialog box, complete the following fields to specify the range of server locations you want to use:

• First Slot ID field—The first slot ID from which server pools associated with this policy can draw.

• Number of Slots field—The total number of slots from which server pools associated with this policy can draw.

e) Click Finish Stage.
f) To add another range of slots, click Add and repeat steps d and e.
g) When you have finished specifying the slot ranges, click Finish.

Step 9 (Optional) To use this policy to qualify servers according to their memory configuration, do the following:

a) Click Create Memory Qualifications.
b) In the Create Memory Qualifications dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock field</td>
<td>The minimum clock speed required, in megahertz.</td>
</tr>
<tr>
<td>Latency field</td>
<td>The maximum latency allowed, in nanoseconds.</td>
</tr>
<tr>
<td>Min Cap field</td>
<td>The minimum memory capacity required, in megabytes.</td>
</tr>
<tr>
<td>Max Cap field</td>
<td>The maximum memory capacity allowed, in megabytes.</td>
</tr>
<tr>
<td>Width field</td>
<td>The minimum width of the data bus.</td>
</tr>
<tr>
<td>Units field</td>
<td>The unit of measure to associate with the value in the Width field.</td>
</tr>
</tbody>
</table>

c) Click OK.

Step 10 (Optional) To use this policy to qualify servers according to their CPU/Cores configuration, do the following:

a) Click Create CPU/Cores Qualifications.
b) In the Create CPU/Cores Qualifications dialog box, complete the following fields:
### Name	Description
Processor Architecture drop-down list | The CPU architecture to which this policy applies.
Model field | A regular expression that the processor model name must match.
Min Number of Cores field | The minimum number of CPU cores required.
To specify a capacity, choose select and enter the minimum number of cores.
Max Number of Cores field | The maximum number of CPU cores allowed.
To specify a capacity, choose select and enter the maximum number of cores.
Min Number of Threads field | The minimum number of CPU threads required.
To specify a capacity, choose select and enter the minimum number of threads.
Max Number of Threads field | The maximum number of CPU threads allowed.
To specify a capacity, choose select and enter the maximum number of threads.
CPU Speed field | The minimum CPU speed required.
To specify a capacity, choose select and enter the minimum CPU speed.
CPU Stepping field | The minimum CPU version required.
To specify a capacity, choose select and enter the maximum CPU speed.

c) Click **OK**.

Step 11 (Optional) To use this policy to qualify servers according to their storage configuration and capacity, do the following:

a) Click **Create Storage Qualifications**.
b) In the **Create Storage Qualifications** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Diskless** field | Whether the available storage must be diskless. This can be:
 * **unspecified**—Either storage type is acceptable.
 * **yes**—The storage must be diskless.
 * **no**—The storage cannot be diskless. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Blocks</td>
<td>The minimum number of blocks required. To specify a capacity, choose select and enter the number of blocks.</td>
</tr>
<tr>
<td>Block Size</td>
<td>The minimum block size required, in bytes. To specify a capacity, choose select and enter the block size.</td>
</tr>
<tr>
<td>Min Cap</td>
<td>The minimum storage capacity across all disks in the server, in megabytes. To specify a capacity, choose select and enter the minimum storage capacity.</td>
</tr>
<tr>
<td>Max Cap</td>
<td>The maximum storage capacity allowed, in megabytes. To specify a capacity, choose select and enter the maximum storage capacity.</td>
</tr>
<tr>
<td>Per Disk Cap</td>
<td>The minimum storage capacity per disk required, in gigabytes. To specify a capacity, choose select and enter the minimum capacity on each disk.</td>
</tr>
<tr>
<td>Units</td>
<td>The number of units. To specify a capacity, choose select and enter the desired units.</td>
</tr>
</tbody>
</table>

c) Click OK.

Step 12 (Optional) To use this policy to qualify servers according to the model of the server, do the following:
 a) Click Create Server Model Qualifications.
 b) In the Create Server Model Qualifications dialog box, enter a regular expression that the server model must match in the Model field.
 c) Click OK.

Step 13 (Optional) To use this policy to qualify servers according to power group, do the following:
 a) Click Create Power Group Qualifications.
 b) In the Create Power Group Qualifications dialog box, choose a power group from the Power Group drop-down list.
 c) Click OK.

Step 14 (Optional) To use this policy to qualify the rack-mount servers that can be added to the associated server pool, do the following:
 a) Click Create Rack Qualifications.
 b) In the Create Rack Qualifications dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Slot ID</td>
<td>The first rack-mount server slot ID from which server pools associated with this policy can draw.</td>
</tr>
</tbody>
</table>
Deleting Server Pool Policy Qualifications

Procedure

- **Step 1**: In the Navigation pane, click the Servers tab.
- **Step 2**: On the Servers tab, expand Servers > Policies > Organization_Name.
- **Step 3**: Expand the Server Pool Policy Qualifications node.
- **Step 4**: Right-click the policy qualifications you want to delete and select Delete.
- **Step 5**: If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting Qualifications from Server Pool Policy Qualifications

Use this procedure to modify Server Pool Policy Qualifications by deleting one or more sets of qualifications.

Procedure

- **Step 1**: In the Navigation pane, click the Servers tab.
- **Step 2**: On the Servers tab, expand Servers > Policies > Organization_Name.
- **Step 3**: Expand the Server Pool Policy Qualifications node.
- **Step 4**: Choose the policy you want to modify.
- **Step 5**: In the Work pane, choose the Qualifications tab.
- **Step 6**: To delete a set of qualifications:
 a) In the table, choose the row that represents the set of qualifications.
 b) Right-click the row and select Delete.
- **Step 7**: Click Save Changes.
Configuring vNIC/vHBA Placement Policies

vNIC/vHBA Placement Policies

vNIC/vHBA placement policies are used to determine what types of vNICs or vHBAs can be assigned to the physical adapters on a server. Each vNIC/vHBA placement policy contains four virtual network interface connections (vCons) that are virtual representations of the physical adapters. When a vNIC/vHBA placement policy is assigned to a service profile, and the service profile is associated with a server, the vCons in the vNIC/vHBA placement policy are assigned to the physical adapters.

If you do not include a vNIC/vHBA placement policy in the service profile or you use the default configuration for a server with two adapters, Cisco UCS Manager defaults to the All configuration and equally distributes the vNICs and vHBAs between the adapters.

You can use this policy to assign vNICs or vHBAs to either of the two vCons. Cisco UCS Manager uses the vCon assignment to determine how to assign the vNICs and vHBAs to the physical adapter during service profile association.

- **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
- **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.
- **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.
- **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

vCon to Adapter Placement

Cisco UCS Manager maps every vCon in a service profile to a physical adapter on the server. How that mapping occurs and how the vCons are assigned to a specific adapter in a server with two adapters depends upon the type of server. You must consider this placement when you configure the vNIC/vHBA placement policy to assign vNICs and vHBAs to vCons.

Note: vCon to adapter placement is not dependent upon the PCIE slot number of the adapter. The adapter numbers used for the purpose of vCon placement are not the PCIE slot numbers of the adapters, but the ID assigned to them during server discovery.

vCon to Adapter Placement for N20-B6620-2 and N20-B6625-2 Blade Servers

In these blade servers, the adapters are numbered left to right, but vCons are numbered right to left. If the server has a single adapter, all vCons are assigned to that adapter. However, if the server has two adapters, the vCons are assigned to the adapters in reverse order, as follows:

- Adapter1 is assigned vCon2 and vCon4
• Adapter2 is assigned vCon1 and vCon3

vCon to Adapter Placement for All Other Supported Servers

For all other servers supported by Cisco UCS, the vCon assignment depends upon the number of adapters in the server, as follows:

Table 10: vCon to Adapter Placement by Number of Adapters in Server

<table>
<thead>
<tr>
<th>Number of Adapters</th>
<th>vCon1 Assignment</th>
<th>vCon2 Assignment</th>
<th>vCon3 Assignment</th>
<th>vCon4 Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adapter1</td>
<td>Adapter1</td>
<td>Adapter1</td>
<td>Adapter1</td>
</tr>
<tr>
<td>2</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter1</td>
<td>Adapter2</td>
</tr>
<tr>
<td>3</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter3</td>
<td>Adapter2</td>
</tr>
<tr>
<td>4</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter3</td>
<td>Adapter4</td>
</tr>
</tbody>
</table>

vNIC/vHBA to vCon Assignment

Cisco UCS Manager provides two options for assigning vNICs and vHBAs to vCons through the vNIC/vHBA placement policy: explicit assignment and implicit assignment.

Explicit Assignment of vNICs and vHBAs

With explicit assignment, you specify the vCon and, therefore, the adapter to which a vNIC or vHBA is assigned. Use this assignment option when you need to determine how the vNICs and vHBAs are distributed between the adapters on a server.

To configure a vCon and the associated vNICs and vHBAs for explicit assignment, do the following:

• Set the vCon configuration to Assigned Only, Exclude Dynamic, or Exclude Unassigned. You can configure the vCons through a vNIC/vHBA placement policy or in the service profile associated with the server. If a vCon is configured for All, you can still explicitly assign a vNIC or vHBA to that vCon.

• Assign the vNICs and vHBAs to a vCon. You can make this assignment through the Virtual Host Interface Placement properties of the vNIC or vHBA or in the service profile associated with the server.

If you attempt to assign a vNIC or vHBA to a vCon that is not configured for that type of vNIC or vHBA, Cisco UCS Manager displays a message box to advise you of the configuration error.

During service profile association, Cisco UCS Manager validates the configured placement of the vNICs and vHBAs against the number and capabilities of the physical adapters in the server before assigning the vNICs and vHBAs according to the configuration in the policy. Load distribution is based upon the explicit assignments to the vCons and adapters configured in this policy.

If the adapters do not support the assignment of one or more vNICs or vHBAs, Cisco UCS Manager raises a fault against the service profile.
vCon to adapter assignment occurs in a round-robin order. This order means that vNICs are placed on the adapters in the following order: vnic-1, vnic-3, vnic-2, vnic-4. As a result, under the following circumstances, the PCIE order of vNICs can be different than the explicit assignment configured in Cisco UCS Manager:

- In a server with two adapters, vNICs are explicitly assigned to all four vCons.
- A service profile that includes explicit assignment is migrated from a server with a higher number of adapters to one with a lower number of adapters.

Implicit Assignment of vNICs and vHBAs

With implicit assignment, Cisco UCS Manager determines the vCon and, therefore, the adapter to which a vNIC or vHBA is assigned according to the capability of the adapter. Use this assignment option if the adapter to which a vNIC or vHBA is assigned is not important to your system configuration.

To configure a vCon for implicit assignment, do the following:

- Set the vCon configuration to All. You can configure the vCons through a vNIC/vHBA placement policy or in the service profile associated with the server.
- Do not assign any vNICs or vHBAs to a vCon.

During service profile association, Cisco UCS Manager verifies the number and capabilities of the physical adapters in the server and assigns the vNICs and vHBAs accordingly. Load distribution is based upon the capabilities of the adapters, and placement of the vNICs and vHBAs is performed according to the actual order determined by the system. For example, if one adapter can accommodate more vNICs than another, that adapter is assigned more vNICs.

If the adapters cannot support the number of vNICs and vHBAs configured for that server, Cisco UCS Manager raises a fault against the service profile.

Creating a vNIC/vHBA Placement Policy

Procedure

1. **Step 1** In the Navigation pane, click the Servers tab.
2. **Step 2** On the Servers tab, expand Servers > Policies.
3. **Step 3** Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.
4. **Step 4** Right-click vNIC/vHBA Placement Policies and choose Create Placement Policy.
5. **Step 5** In the Create Placement Policy dialog box, do the following:
 a) In the Name field, enter a unique name for the placement policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
 b) In the Selection Preference column for each Virtual Slot, choose one of the following from the drop-down list:
• **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.

• **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.

• **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.

• **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

c) Click **OK**.

Deleting a vNIC/vHBA Placement Policy

Procedure

- **Step 1** In the Navigation pane, click the **Servers** tab.
- **Step 2** On the **Servers** tab, expand **Servers > Policies > Organization_Name**.
- **Step 3** Expand the **vNIC/vHBA Placement Policies** node.
- **Step 4** Right-click the policy you want to delete and choose **Delete**.
- **Step 5** If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Explicitly Assigning a vNIC to a vCon

Before You Begin

Configure the vCons through a vNIC/vHBA placement policy or in the service profile with one of the following values:

- **Assigned Only**
- **Exclude Dynamic**
- **Exclude Unassigned**

If a vCon is configured for **All**, you can still explicitly assign a vNIC or vHBA to that vCon. However, you have less control with this configuration.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization which contains the service profile whose vNICs you want to explicitly assign to a vCon.

If the system does not include multi-tenancy, expand the root node.

Step 4 Expand Service_Profile_Name > vNICs.

Step 5 Click on the vNIC that you want to explicitly assign to a vCon.

Step 6 In the Work pane, click the General tab.

Step 7 In the Virtual Host Interface Placement section, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Placement drop-down list</td>
<td>The user-specified virtual network interface connection (vCon) placement for the vNIC. This can be:</td>
</tr>
<tr>
<td>Actual Assignment field</td>
<td>The actual vCon assignment of the vNIC on the server.</td>
</tr>
</tbody>
</table>

If you attempt to assign a vNIC to a vCon that is not configured for that type of vNIC, Cisco UCS Manager displays a message box to advise you of the configuration error. You must either assign the vNIC to another vCon or change the vCon configuration in the service profile.

Step 8 In the Order section, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Order field</td>
<td>The user-specified PCI order for the vNIC. Enter an integer between 0 and 128. You cannot create more than 128 vNICs for a server.</td>
</tr>
<tr>
<td>Actual Order field</td>
<td>The actual PCI order of the vNIC on the server.</td>
</tr>
</tbody>
</table>
Step 9 Click Save Changes.

Explicitly Assigning a vHBA to a vCon

Before You Begin
Configure the vCons through a vNIC/vHBA placement policy or in the service profile with one of the following values:

- Assigned Only
- Exclude Dynamic
- Exclude Unassigned

If a vCon is configured for All, you can still explicitly assign a vNIC or vHBA to that vCon. However, you have less control with this configuration.

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization which contains the service profile whose vHBAs you want to explicitly assign to a vCon.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Expand Service_Profile_Name > vHBAs.
Step 5 Click on the vHBA that you want to explicitly assign to a vCon.
Step 6 In the Work pane, click the General tab.
Step 7 In the Virtual Host Interface Placement section, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Placement field</td>
<td>The user-specified virtual network interface connection (vCon) placement for the vHBA. This can be:</td>
</tr>
<tr>
<td></td>
<td>• any—Allows Cisco UCS Manager to determine the vCon to which the vHBA is assigned.</td>
</tr>
<tr>
<td></td>
<td>• 1—Explicitly assigns the vHBA to vCon1.</td>
</tr>
<tr>
<td></td>
<td>• 2—Explicitly assigns the vHBA to vCon2.</td>
</tr>
<tr>
<td></td>
<td>• 3—Explicitly assigns the vHBA to vCon3.</td>
</tr>
<tr>
<td></td>
<td>• 4—Explicitly assigns the vHBA to vCon4.</td>
</tr>
<tr>
<td>Actual Assignment field</td>
<td>The actual vCon assignment of the vHBA on the server.</td>
</tr>
</tbody>
</table>
If you attempt to assign a vHBA to a vCon that is not configured for that type of vHBA, Cisco UCS Manager displays a message box to advise you of the configuration error. You must either assign the vHBA to another vCon or change the vCon configuration in the service profile.

Step 8 In the **Order** section, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Order field</td>
<td>The user-specified PCI order for the vHBA. Enter an integer between 0 and 128. You cannot create more than 128 vHBAs for a server.</td>
</tr>
<tr>
<td>Actual Order field</td>
<td>The actual PCI order of the vHBA on the server.</td>
</tr>
</tbody>
</table>

Step 9 Click **Save Changes**.
Deferring Deployment of Service Profile Updates

This chapter includes the following sections:

- Deferred Deployment of Service Profiles, page 385
- Configuring Schedules, page 388
- Configuring Maintenance Policies, page 398
- Managing Pending Activities, page 400

Deferred Deployment of Service Profiles

Some modifications to a service profile or to an updating service profile template can be disruptive and require a reboot of the server. You can, however, configure deferred deployment to control when those disruptive configuration changes are implemented. For example, you can choose to deploy the service profile changes immediately or have them deployed during a specified maintenance window. You can also choose whether or not a service profile deployment requires explicit user acknowledgement.

Deferred deployment is available for all configuration changes that occur through the association of a service profile with a server. These configuration changes can be prompted by a change to a service profile, to a policy that is included in a service profile, or to an updating service profile template. For example, you can defer the upgrade and activation of firmware through host firmware packages and management firmware packages, such as server BIOS, RAID controller, host HBA, and network adapters. However, you cannot defer the direct deployment of firmware images for components that do not use either of the firmware packages, such as Cisco UCS Manager, fabric interconnects, and I/O modules.

Deferred deployment is not available for the following actions which require the reboot of a server:

- Initial association of a service profile with a server
- Final disassociation of a service profile from a server, without associating the service profile with a different server
- Decommissioning a server
- Reacknowledging a server
- Resetting a server
If you want to defer the deployment of service profile changes, you must configure one or more maintenance policies and configure each service profile with a maintenance policy. If you want to define the time period when the deployment should occur, you also need to create at least one schedule with one or more recurring occurrences or one time occurrences, and include that schedule in a maintenance policy.

Deferred Deployment Schedules

A schedule contains a set of occurrences. These occurrences can be one time only or can recur at a specified time and day each week. The options defined in the occurrence, such as the duration of the occurrence or the maximum number of tasks to be run, determine whether a service profile change is deployed. For example, if a change cannot be deployed during a given maintenance window because the maximum duration or number of tasks has been reached, that deployment is carried over to the next maintenance window.

Each schedule checks periodically to see whether the Cisco UCS instance has entered one or more maintenance windows. If it has, the schedule executes the deployments that are eligible according to the constraints specified in the maintenance policy.

A schedule contains one or more occurrences, which determine the maintenance windows associated with that schedule. An occurrence can be one of the following:

One Time Occurrence

One time occurrences define a single maintenance window. These windows continue until the maximum duration of the window or the maximum number of tasks that can be run in the window has been reached.

Recurring Occurrence

Recurring occurrences define a series of maintenance windows. These windows continue until the maximum number of tasks or the end of the day specified in the occurrence has been reached.

Maintenance Policy

A maintenance policy determines how Cisco UCS Manager reacts when a change that requires a server reboot is made to a service profile associated with a server or to an updating service profile bound to one or more service profiles.

The maintenance policy specifies how Cisco UCS Manager deploys the service profile changes. The deployment can occur in one of the following ways:

- Immediately
- When acknowledged by a user with admin privileges
- Automatically at the time specified in the schedule

If the maintenance policy is configured to deploy the change during a scheduled maintenance window, the policy must include a valid schedule. The schedule deploys the changes in the first available maintenance window.
Pending Activities

If you configure deferred deployment in a Cisco UCS instance, Cisco UCS Manager enables you to view all pending activities. You can see activities that are waiting for user acknowledgement and those that have been scheduled.

If a Cisco UCS instance has pending activities, Cisco UCS Manager GUI notifies users with admin privileges when they log in.

Cisco UCS Manager displays information about all pending activities, including the following:

- Name of the service profile to be deployed and associated with a server
- Server affected by the deployment
- Disruption caused by the deployment
- Change performed by the deployment

Note

You cannot specify the maintenance window in which a specific pending activity is applied to the server. The maintenance window depends upon how many activities are pending and which maintenance policy is assigned to the service profile. However, any user with admin privileges can manually initiate a pending activity and reboot the server immediately, whether it is waiting for user acknowledgement or for a maintenance window.

Guidelines and Limitations for Deferred Deployment

Cannot Undo All Changes to Service Profiles or Service Profile Templates

If you cancel a pending change, Cisco UCS Manager attempts to roll back the change without rebooting the server. However, for complex changes, Cisco UCS Manager may have to reboot the server a second time to roll back the change. For example, if you delete a vNIC, Cisco UCS Manager reboots the server according to the maintenance policy included in the service profile. You cannot cancel this reboot and change, even if you restore the original vNIC in the service profile. Instead, Cisco UCS Manager schedules a second deployment and reboot of the server.

Association of Service Profile Can Exceed Boundaries of Maintenance Window

After Cisco UCS Manager begins the association of the service profile, the scheduler and maintenance policy do not have any control over the procedure. If the service profile association does not complete within the allotted maintenance window, the process continues until it is completed. For example, this can occur if the association does not complete in time because of retried stages or other issues.

Cannot Specify Order of Pending Activities

Scheduled deployments run in parallel and independently. You cannot specify the order in which the deployments occur. You also cannot make the deployment of one service profile change dependent upon the completion of another.
Cannot Perform Partial Deployment of Pending Activity

Cisco UCS Manager applies all changes made to a service profile in the scheduled maintenance window. You cannot make several changes to a service profile at the same time and then have those changes be spread across several maintenance windows. When Cisco UCS Manager deploys the service profile changes, it updates the service profile to match the most recent configuration in the database.

Configuring Schedules

Creating a Schedule

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, right-click Schedules and choose Create Schedule.
Step 3 In the Identify Schedule page of the Create Schedule wizard, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the schedule. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the schedule. We recommend including information about where and when the schedule should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 4 Click Next.
Step 5 On the One Time Occurrences page, click one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next</td>
<td>Moves to the next page. Choose this option if you do not want to create a one time occurrence for this schedule. If you choose this option, continue with Step 8.</td>
</tr>
<tr>
<td>Add</td>
<td>Opens the Create a One Time Occurrence dialog box, where you can specify a single time when this schedule should be run. If you choose this option, continue with Step 6.</td>
</tr>
</tbody>
</table>

Step 6 (Optional) In the Create a One Time Occurrence dialog box, do the following:

a) Complete the following fields:
Name field

The name of the one time occurrence of this schedule. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Start Time field

The date and time that the occurrence should run. Click the down arrow at the end of the field to select the date from a calendar.

b) Click the down arrows to expand the **Options** area.

c) In the **Options** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Duration field</td>
<td>The maximum length of time that this scheduled occurrence can run. This can be:</td>
</tr>
<tr>
<td></td>
<td>• none—The occurrence runs until all tasks are completed.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the dd:hh:mm:ss field allowing you to specify the maximum amount of time that the occurrence can run. Cisco UCS completes as many scheduled tasks as possible within the specified time.</td>
</tr>
</tbody>
</table>

By default, the maximum duration is set to **none**. If you do not change this setting and you do not set a maximum number of tasks, the maintenance window continues until all pending activities are completed.

<table>
<thead>
<tr>
<th>Max Number of Tasks field</th>
<th>The maximum number of scheduled tasks that can be run during this occurrence. This can be:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Unlimited—Cisco UCS runs all scheduled tasks unless those tasks exceed the maximum time specified in the Max Duration field. If Max Duration is set to none and you select this option, the maintenance window continues until all pending activities are completed.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of tasks that can be run during this occurrence. Enter an integer between 1 and 65535.</td>
</tr>
</tbody>
</table>
Configuring Schedules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Max Number of Concurrent Tasks** field | The maximum number of tasks that can run concurrently during this occurrence. This can be:
- **Unlimited**—Cisco UCS runs as many concurrent tasks as the system can handle.
- **other**—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of concurrent tasks that can be run during this occurrence. Enter an integer between 1 and 65535. |
| **Minimum Interval Between Tasks** field | The minimum length of time that the system should wait before starting a new task. This setting is meaningful only if the maximum number of concurrent tasks is set to a value other than none. This can be:
- **none**—Cisco UCS runs the next task as soon as possible.
- **other**—Cisco UCS Manager GUI displays the `dd:hh:mm:ss` field allowing you to specify the minimum amount of time that Cisco UCS will wait between tasks. |

d) Click **OK**.

Step 7 To add another one time occurrence, click **Add** and repeat step 6. Otherwise, click **Next**.

Step 8 (Optional) If you want to define a recurring occurrence for this schedule, on the **Recurring Occurrences** page, click **Add**.

a) In the **Create a Recurring Occurrence** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the recurring occurrence of this schedule. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
The day on which Cisco UCS runs an occurrence of this schedule. This can be:

- every day
- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday
- Sunday
- odd days
- even days

The hour of the specified day at which this occurrence of the schedule starts. This can be an integer between 0 and 24, where 0 and 24 are both equivalent to midnight.

The minute of the hour at which the schedule occurrence starts. This can be an integer between 0 and 60.

The maximum length of time that each occurrence of this schedule can run. This can be:

- **none**—The occurrence runs until all tasks are completed.
- **other**—Cisco UCS Manager GUI displays the `dd:hh:mm:ss` field allowing you to specify the maximum amount of time that the occurrence can run. Cisco UCS completes as many scheduled tasks as possible within the specified time.

b) Click the down arrows to expand the **Options** area.

c) In the **Options** area, complete the following fields:
Configuring Schedules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Number of Tasks field</td>
<td>The maximum number of scheduled tasks that can be run during each occurrence. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Unlimited—Cisco UCS runs all scheduled tasks unless those tasks exceed the maximum time specified in the Max Duration field. If Max Duration is set to none and you select this option, the maintenance window continues until all pending activities are completed.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of tasks that can be run during this occurrence. Enter an integer between 1 and 65535.</td>
</tr>
<tr>
<td>Max Number of Concurrent Tasks field</td>
<td>The maximum number of tasks that can run concurrently during each occurrence. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Unlimited—Cisco UCS runs as many concurrent tasks as the system can handle.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of concurrent tasks that can be run during this occurrence. Enter an integer between 1 and 65535.</td>
</tr>
<tr>
<td>Minimum Interval Between Tasks field</td>
<td>The minimum length of time that the system should wait before starting a new task. This setting is meaningful only if the maximum number of concurrent tasks is set to a value other than none. This can be:</td>
</tr>
<tr>
<td></td>
<td>• none—Cisco UCS runs the next task as soon as possible.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the dd:hh:mm:ss field allowing you to specify the minimum amount of time that Cisco UCS will wait between tasks.</td>
</tr>
</tbody>
</table>

- d) Click **OK**.
- e) To add another recurring occurrence, click **Add** and repeat this step.

Step 9 Click **Finish**.
Creating a One Time Occurrence for a Schedule

Note

By default, the maximum duration and the maximum number of tasks are set to *none*. If you do not change either of these defaults, Cisco UCS Manager does not impose any limit to the length of time that the maintenance window lasts. All pending activities are applied as soon as the scheduled maintenance window begins, and Cisco UCS Manager continues to reboot the servers impacted by the pending activities until all of those tasks are complete.

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Schedules**.

Step 3 Right-click the schedule to which you want to add an occurrence and choose **Create a One Time Occurrence**.

Step 4 In the **Create a One Time Occurrence** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the one time occurrence of this schedule. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Start Time field</td>
<td>The date and time that the occurrence should run. Click the down arrow at the end of the field to select the date from a calendar.</td>
</tr>
</tbody>
</table>

Step 5 Click the down arrows to expand the **Options** area.

Step 6 In the **Options** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Max Duration field | The maximum length of time that this scheduled occurrence can run. This can be:
 • *none*—The occurrence runs until all tasks are completed.
 • *other*—Cisco UCS Manager GUI displays the **dd:hh:mm:ss** field allowing you to specify the maximum amount of time that the occurrence can run. Cisco UCS completes as many scheduled tasks as possible within the specified time.

By default, the maximum duration is set to *none*. If you do not change this setting and you do not set a maximum number of tasks, the maintenance window continues until all pending activities are completed.
Description

The maximum number of scheduled tasks that can be run during this occurrence. This can be:

- **Unlimited**—Cisco UCS runs all scheduled tasks unless those tasks exceed the maximum time specified in the *Max Duration* field. If *Max Duration* is set to *none* and you select this option, the maintenance window continues until all pending activities are completed.

- **other**—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of tasks that can be run during this occurrence. Enter an integer between 1 and 65535.

Max Number of Concurrent Tasks field

The maximum number of tasks that can run concurrently during this occurrence. This can be:

- **Unlimited**—Cisco UCS runs as many concurrent tasks as the system can handle.

- **other**—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of concurrent tasks that can be run during this occurrence. Enter an integer between 1 and 65535.

Minimum Interval Between Tasks field

The minimum length of time that the system should wait before starting a new task. This setting is meaningful only if the maximum number of concurrent tasks is set to a value other than none. This can be:

- **none**—Cisco UCS runs the next task as soon as possible.

- **other**—Cisco UCS Manager GUI displays the `dd:hh:mm:ss` field allowing you to specify the minimum amount of time that Cisco UCS will wait between tasks.

Step 7

Click OK.
Creating a Recurring Occurrence for a Schedule

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Schedules.
Step 3 Right-click the schedule to which you want to add an occurrence and choose Create a Recurring Occurrence.
Step 4 In the Create a Recurring Occurrence dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the recurring occurrence of this schedule. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Day field</td>
<td>The day on which Cisco UCS runs an occurrence of this schedule. This can be:</td>
</tr>
<tr>
<td></td>
<td>• every day</td>
</tr>
<tr>
<td></td>
<td>• Monday</td>
</tr>
<tr>
<td></td>
<td>• Tuesday</td>
</tr>
<tr>
<td></td>
<td>• Wednesday</td>
</tr>
<tr>
<td></td>
<td>• Thursday</td>
</tr>
<tr>
<td></td>
<td>• Friday</td>
</tr>
<tr>
<td></td>
<td>• Saturday</td>
</tr>
<tr>
<td></td>
<td>• Sunday</td>
</tr>
<tr>
<td></td>
<td>• odd days</td>
</tr>
<tr>
<td></td>
<td>• even days</td>
</tr>
<tr>
<td>Hour field</td>
<td>The hour of the specified day at which this occurrence of the schedule starts. This can be an integer between 0 and 24, where 0 and 24 are both equivalent to midnight.</td>
</tr>
<tr>
<td>Minute field</td>
<td>The minute of the hour at which the schedule occurrence starts. This can be an integer between 0 and 60.</td>
</tr>
</tbody>
</table>

Step 5 Click the down arrows to expand the Options area.
Step 6 In the Options area, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Duration field</td>
<td>The maximum length of time that each occurrence of this schedule can run. This can be:</td>
</tr>
<tr>
<td></td>
<td>• none—The occurrence runs until all tasks are completed.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the <code>dd:hh:mm:ss</code> field allowing you to specify the maximum amount of time that the occurrence can run. Cisco UCS completes as many scheduled tasks as possible within the specified time.</td>
</tr>
<tr>
<td>Max Number of Tasks field</td>
<td>The maximum number of scheduled tasks that can be run during each occurrence. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Unlimited—Cisco UCS runs all scheduled tasks unless those tasks exceed the maximum time specified in the Max Duration field. If Max Duration is set to none and you select this option, the maintenance window continues until all pending activities are completed.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of tasks that can be run during this occurrence. Enter an integer between 1 and 65535.</td>
</tr>
<tr>
<td>Max Number of Concurrent Tasks field</td>
<td>The maximum number of tasks that can run concurrently during each occurrence. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Unlimited—Cisco UCS runs as many concurrent tasks as the system can handle.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays a text field allowing you to specify the maximum number of concurrent tasks that can be run during this occurrence. Enter an integer between 1 and 65535.</td>
</tr>
<tr>
<td>Minimum Interval Between Tasks field</td>
<td>The minimum length of time that the system should wait before starting a new task. This setting is meaningful only if the maximum number of concurrent tasks is set to a value other than none. This can be:</td>
</tr>
<tr>
<td></td>
<td>• none—Cisco UCS runs the next task as soon as possible.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the <code>dd:hh:mm:ss</code> field allowing you to specify the minimum amount of time that Cisco UCS will wait between tasks.</td>
</tr>
</tbody>
</table>

Step 7 Click **OK**.
Deleting a One Time Occurrence from a Schedule

If this is the only occurrence in a schedule, that schedule is reconfigured with no occurrences. If the schedule is included in a maintenance policy and that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a one time occurrence or a recurring occurrence to the schedule to deploy the pending activity.

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Schedules > Schedule_Name.
Step 3 Expand One Time Occurrences.
Step 4 Right-click the occurrence you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Recurring Occurrence from a Schedule

If this is the only occurrence in a schedule, that schedule is reconfigured with no occurrences. If the schedule is included in a maintenance policy and that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a one time occurrence or a recurring occurrence to the schedule to deploy the pending activity.

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Schedules > Schedule_Name.
Step 3 Expand Recurring Occurrences.
Step 4 Right-click the occurrence you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Schedule

If this schedule is included in a maintenance policy, the policy is reconfigured with no schedule. If that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a schedule to the maintenance policy to deploy the pending activity.
Configuring Maintenance Policies

Creating a Maintenance Policy

Before You Begin

If you plan to configure this maintenance policy for automatic deferred deployment, create a schedule.

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Schedules.
Step 3 Right-click the schedule you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
When a service profile is associated with a server, or when changes are made to a service profile that is already associated with a server, the server needs to be rebooted to complete the process. The **Reboot Policy** field determines when the reboot occurs for servers associated with any service profiles that include this maintenance policy. This can be:

- **immediate**—The server is rebooted automatically as soon as the service profile association is complete or service profile changes are saved by the user.
- **user-ack**—The user must reboot the server manually after the service profile association is complete or changes are made.
- **timer-automatic**—Cisco UCS defers all service profile associations and changes until the maintenance window defined by the schedule shown in the **Schedule** field.

If the **Reboot Policy** is set to **timer-automatic**, the schedule specifies when maintenance operations can be applied to the server. Cisco UCS reboots the server and completes the service profile changes at the scheduled time.

Deleting a Maintenance Policy

Procedure

1. In the **Navigation** pane, click the **Servers** tab.
2. On the **Servers** tab, expand **Servers > Policies > Organization_Name**.
3. Expand **Maintenance Policies**.
4. Right-click the maintenance policy you want to delete and choose **Delete**.
5. If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

What to Do Next

Include the policy in a service profile or service profile template.
Managing Pending Activities

Viewing Pending Activities

Procedure

Step 1 On the toolbar, click **Pending Activities**.

Step 2 Click one of the following tabs:

- **User Acknowledged Activities**—Displays the tasks that require user acknowledgement before they can complete.

- **Scheduled Activities**—Displays the tasks that will be performed based on the associated maintenance schedule.

Step 3 Click a row in the table to view the details of that pending activity.

If you click the link in the **Server** column, Cisco UCS Manager displays the properties of that server.

Deploying a Service Profile Change Waiting for User Acknowledgement

Important

You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.

Procedure

Step 1 On the toolbar, click **Pending Activities**.

Step 2 In the **Pending Activities** dialog box, click the **User Acknowledged Activities** tab.

Step 3 In the **Reboot Now** column of the table, check the **Acknowledge All** check box for the pending activity you want to deploy immediately.

Step 4 Click **OK**.

Cisco UCS Manager immediately reboots the server affected by the pending activity.

Deploying All Service Profile Changes Waiting for User Acknowledgement

Important You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.

Procedure

Step 1 On the toolbar, click **Pending Activities**.

Step 2 In the **Pending Activities** dialog box, click the **User Acknowledged Activities** tab.

Step 3 In the toolbar, check the **Acknowledge All** check box. Cisco UCS Manager GUI checks the **Reboot Now** check boxes for all pending activities listed in the table.

Step 4 Click **OK**. Cisco UCS Manager immediately reboots all servers affected by the pending activities listed in the table.

Deploying a Scheduled Service Profile Change Immediately

Important You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.

Procedure

Step 1 On the toolbar, click **Pending Activities**.

Step 2 In the **Pending Activities** dialog box, click the **Scheduled Activities** tab.

Step 3 In the **Reboot Now** column of the table, check the **Acknowledge All** check box for the pending activity you want to deploy immediately.

Step 4 Click **OK**. Cisco UCS Manager immediately reboots the server affected by the pending activity.

Deploying All Scheduled Service Profile Changes Immediately

Important You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.
Managing Pending Activities

Procedure

Step 1 On the toolbar, click Pending Activities.

Step 2 In the Pending Activities dialog box, click the Scheduled Activities tab.

Step 3 In the toolbar, check the Acknowledge All check box.
Cisco UCS Manager GUI checks the Reboot Now check boxes for all pending activities listed in the table.

Step 4 Click OK.
Cisco UCS Manager immediately reboots all servers affected by the pending activities listed in the table.
Configuring Service Profiles

This chapter includes the following sections:

- Service Profiles that Override Server Identity, page 403
- Service Profiles that Inherit Server Identity, page 404
- Service Profile Templates, page 404
- Guidelines and Recommendations for Service Profiles, page 405
- Creating Service Profiles, page 405
- Working with Service Profile Templates, page 432
- Managing Service Profiles, page 455

Service Profiles that Override Server Identity

This type of service profile provides the maximum amount of flexibility and control. This profile allows you to override the identity values that are on the server at the time of association and use the resource pools and policies set up in Cisco UCS Manager to automate some administration tasks.

You can disassociate this service profile from one server and then associate it with another server. This re-association can be done either manually or through an automated server pool policy. The burned-in settings, such as UUID and MAC address, on the new server are overwritten with the configuration in the service profile. As a result, the change in server is transparent to your network. You do not need to reconfigure any component or application on your network to begin using the new server.

This profile allows you to take advantage of and manage system resources through resource pools and policies, such as the following:

- Virtualized identity information, including pools of MAC addresses, WWN addresses, and UUIDs
- Ethernet and Fibre Channel adapter profile policies
- Firmware package policies
- Operating system boot order policies
Unless the service profile contains power management policies, a server pool qualification policy, or another policy that requires a specific hardware configuration, the profile can be used for any type of server in the Cisco UCS instance.

You can associate these service profiles with either a rack-mount server or a blade server. The ability to migrate the service profile depends upon whether you choose to restrict migration of the service profile.

Note

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association may fail.

Service Profiles that Inherit Server Identity

This hardware-based service profile is the simplest to use and create. This profile uses the default values in the server and mimics the management of a rack-mounted server. It is tied to a specific server and cannot be moved or migrated to another server.

You do not need to create pools or configuration policies to use this service profile.

This service profile inherits and applies the identity and configuration information that is present at the time of association, such as the following:

- MAC addresses for the two NICs
- For a converged network adapter or a virtual interface card, the WWN addresses for the two HBAs
- BIOS versions
- Server UUID

Important

The server identity and configuration information inherited through this service profile may not be the values burned into the server hardware at manufacture if those values were changed before this profile is associated with the server.

Service Profile Templates

With a service profile template, you can quickly create several service profiles with the same basic parameters, such as the number of vNICs and vHBAs, and with identity information drawn from the same pools.

Tip

If you need only one service profile with similar values to an existing service profile, you can clone a service profile in the Cisco UCS Manager GUI.

For example, if you need several service profiles with similar values to configure servers to host database software, you can create a service profile template, either manually or from an existing service profile. You then use the template to create the service profiles.

Cisco UCS supports the following types of service profile templates:
Initial template

Service profiles created from an initial template inherit all the properties of the template. However, after you create the profile, it is no longer connected to the template. If you need to make changes to one or more profiles created from this template, you must change each profile individually.

Updating template

Service profiles created from an updating template inherit all the properties of the template and remain connected to the template. Any changes to the template automatically update the service profiles created from the template.

Guidelines and Recommendations for Service Profiles

In addition to any guidelines or recommendations that are specific to policies and pools included in service profiles and service profile templates, such as the local disk configuration policy, you need to be aware of the following guidelines and recommendations that impact the ability to associate a service profile with a server:

Limit to the Number of vNICs that Can Be Configured on a Rack-Mount Server

You can configure up to 56 vNICs per supported adapter, such as the Cisco UCS P81E Virtual Interface Card (N2XX-ACPC101), on any rack-mount server that is integrated with Cisco UCS Manager.

No Power Capping Support for Rack-Mount Servers

Power capping is not supported for rack servers. If you include a power control policy in a service profile that is associated with a rack-mount server, the policy is not implemented.

Creating Service Profiles

Creating a Service Profile with the Expert Wizard

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the organization and select Create Service Profile (expert).
Step 5 In the Create Service Profile (expert) wizard, complete the following:
 • Page 1: Identifying the Service Profile, on page 406
 • Page 2: Configuring the Storage Options, on page 407
 • Page 3: Configuring the Networking Options, on page 412
 • Page 4: Setting the vNIC/vHBA Placement, on page 417
Page 1: Identifying the Service Profile

This procedure directly follows the steps in Creating a Service Profile with the Expert Wizard, on page 405. It describes how to set the identity of a service profile on the Identify Service Profile page of the Create Service Profile (expert) wizard.

Procedure

Step 1 In the Name field, enter a unique name that you can use to identify the service profile. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

This name must be unique within the organization or sub-organization in which you are creating the service profile.

Step 2 From the UUID Assignment drop-down list, do one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select (pool default used by default)</td>
<td>Assigns a UUID from the default UUID Suffix pool. Continue with Step 5.</td>
</tr>
<tr>
<td>Hardware Default</td>
<td>Uses the UUID assigned to the server by the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>If you choose this option, the UUID remains unassigned until the service profile is associated with a server. At that point, the UUID is set to the UUID value assigned to the server by the manufacturer. If the service profile is later moved to a different server, the UUID is changed to match the new server. Continue with Step 5.</td>
</tr>
<tr>
<td>XXXXXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXXXXXXX</td>
<td>Uses the UUID that you manually assign. Continue with Step 3.</td>
</tr>
</tbody>
</table>
Creating Service Profiles

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pools Pool_Name</td>
<td>Assigns a UUID from the UUID Suffix pool that you select from the list at the bottom of the drop-down list. Each pool name is followed by two numbers in parentheses that show the number of UUIDs still available in the pool and the total number of UUIDs in the pool. If you do not want use any of the existing pools, but instead want to create a pool that all service profiles can access, continue with Step 4. Otherwise, continue with Step 5.</td>
</tr>
</tbody>
</table>

Step 3 (Optional) If you selected the XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX option, do the following:

a) In the **UUID** field, enter the valid UUID that you want to assign to the server which uses this service profile.
b) To verify that the selected UUID is available, click the *here* link.

Step 4 (Optional) If you want to create a new UUID Suffix pool to use to use in this service profile, click **Create UUID Suffix Pool** and complete the fields in the **Create UUID Suffix Pool** wizard. For more information, see Creating a UUID Suffix Pool, on page 318.

Step 5 (Optional) In the text box, enter a description of this service profile. The user-defined description for this service profile. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).

Step 6 Click **Next**.

What to Do Next

Complete the steps in Page 2: Configuring the Storage Options, on page 407.

Page 2: Configuring the Storage Options

This procedure directly follows Page 1: Identifying the Service Profile, on page 406. It describes how to configure the storage options for a service profile on the **Storage** page of the Create Service Profile (expert) wizard.

Procedure

Step 1 From the **Local Storage** drop-down list, choose one of the following:
Option	**Description**
Select Local Storage Policy to use | Assigns the default local disk storage policy to this service profile. Continue with Step 4.
Create a Specific Storage Policy | Enables you to create a local disk policy that can only be accessed by this service profile. Continue with Step 2.
Storage Policies
Policy_Name | Select an existing local disk policy from the list at the bottom of the drop-down list. Cisco UCS Manager assigns this policy to the service profile.
If you do not want use any of the existing policies, but instead want to create a policy that all service profiles can access, continue with Step 3. Otherwise, continue with Step 4.

Step 2 (Optional) If you chose **Create a Specific Storage Policy** and want to create a new policy that can only be used by this service profile, do the following:

a) From the **Mode** drop-down list, choose one of the following:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.
- **RAID 0 Stripes**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.
- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.
- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.
- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.
- **RAID 6 Stripes Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.
- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.
- **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

Note If you choose **No RAID** and you apply this policy to a server that already has an operating system with RAID storage configured, the system does not remove the disk contents. Therefore, there may be no visible differences after you apply the **No RAID** mode.
To make sure that any previous RAID configuration information is removed from a disk, apply a scrub policy that removes all disk information after you apply the **No RAID** configuration mode.
b) If you want to ensure that the server retains the configuration in the local disk configuration policy even if the server is disassociated from the service profile, check the **Protect Configuration** check box. When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.

Note If you disassociate the server from a service profile with this option enabled and then associate it with a new service profile that includes a local disk configuration policy with different properties, the server returns a configuration mismatch error and the association fails.

c) Continue with Step 4.

Step 3 *(Optional)* To create a local disk configuration policy that will be available to all service profiles, do the following:

a) Click the **Create Local Disk Configuration Policy** link.

b) In the **Create Local Disk Configuration** dialog box, complete the fields. For more information, see Creating a Local Disk Configuration Policy, on page 358.

c) Click **OK**.

d) From the **Local Storage** drop-down list, choose the policy you created.

Step 4 In the **How would you like to configure SAN storage?** field, click one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Allows you to create a maximum of two vHBAs for this service profile.</td>
</tr>
<tr>
<td></td>
<td>Continue with Step 7.</td>
</tr>
<tr>
<td>Expert</td>
<td>Allows you to create an unlimited number of vHBAs for this service profile.</td>
</tr>
<tr>
<td></td>
<td>Continue with Step 8.</td>
</tr>
<tr>
<td>No vHBAs</td>
<td>Does not include any vHBAs for connections to a Fibre Channel SAN in the</td>
</tr>
<tr>
<td></td>
<td>service profile.</td>
</tr>
<tr>
<td></td>
<td>Continue with Step 9.</td>
</tr>
<tr>
<td>Hardware Inherited</td>
<td>Uses the vHBAs assigned to the Fibre Channel adapter profile associated with</td>
</tr>
<tr>
<td></td>
<td>the server.</td>
</tr>
<tr>
<td></td>
<td>Continue with Step 9.</td>
</tr>
</tbody>
</table>

Step 5 *(Optional)* If you chose the simple SAN storage option, do the following:

a) From the **WWNN Assignment** drop-down list, choose one of the following:

- Choose **Select (pool default used by default)** to use the default WWN pool.

- Choose one of the options listed under **Manual Using OUI** and then enter the WWN in the **World Wide Node Name** field.

You can specify a WWNN in the range from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. You can click the **here** link to verify that the WWNN you specified is available.
Choose a WWN pool name from the list to have a WWN assigned from the specified pool. Each pool name is followed by two numbers in parentheses that show the number of WWNs still available in the pool and the total number of WWNs in the pool.

b) In the **vHBA 0 (Fabric A)** area, complete the following fields:

- In the **Name** field, enter a unique name for the vHBA.
- From the **Select VSAN** drop-down list, choose the name of the VSAN with which this vHBA should be associated.

If the VSAN you need is not in the drop-down list, click the **Create VSAN** link. For more information, see Creating a Named VSAN, on page 287.

c) Repeat Step 7b in the **vHBA 1 (Fabric B)** area to create a VSAN for that vHBA.

d) Continue with Step 9.

Step 6 (Optional) If you chose the expert SAN storage option, do the following:

a) From the **WWNN Assignment** drop-down list, choose one of the following:

- Choose **Select (pool default used by default)** to use the default WWN pool.
- Choose one of the options listed under **Manual Using OUI** and then enter the WWN in the **World Wide Node Name** field.

You can specify a WWNN in the range from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. You can click the **here** link to verify that the WWNN you specified is available.

- Choose a WWN pool name from the list to have a WWN assigned from the specified pool. Each pool name is followed by two numbers in parentheses that show the number of WWNs still available in the pool and the total number of WWNs in the pool.

b) Click **Add** on the icon bar of the table to open the **Create vHBA** dialog box.

c) Complete the following fields to specify the identity information for the vHBA:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of this vHBA. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Use SAN Connectivity Template check box</td>
<td>Check this check box if you want to use a template to create the vHBA. Cisco UCS Manager GUI displays the vHBA Template drop-down list from which you can select the appropriate template, and the Adapter Performance Profile area from which you can select an adapter profile. Note You can only select this option if one or more SAN connectivity templates exist in the system.</td>
</tr>
<tr>
<td>Create vHBA Template link</td>
<td>Click this link if you want to create a vHBA template.</td>
</tr>
</tbody>
</table>
If you want to:

- Use the default WWPN, leave this field set to **Select (pool default used by default)**.
- Use the WWPN assigned to the server by the manufacturer, select **Hardware Default**.
- A specific WWPN, select `20:00:00:25:B5:00:00:00`, `20:XX:XX:XX:XX:XX:XX:XX` or `5X:XX:XX:XX:XX:XX:XX:XX` and enter the WWPN in the **WWPN** field. To verify that this WWPN is available, click the corresponding link.
- A WWPN from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available WWN addresses in the pool and the second is the total number of WWPN addresses in the pool.

 To create a new WWPN pool, click **WWPN Pool**.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWPN Assignment drop-down list</td>
<td>If you want to:</td>
</tr>
<tr>
<td></td>
<td>• Use the default WWPN pool, leave this field set to Select (pool default used by default).</td>
</tr>
<tr>
<td></td>
<td>• Use the WWPN assigned to the server by the manufacturer, select Hardware Default.</td>
</tr>
<tr>
<td></td>
<td>• A specific WWPN, select <code>20:00:00:25:B5:00:00:00</code>, <code>20:XX:XX:XX:XX:XX:XX:XX</code>, or <code>5X:XX:XX:XX:XX:XX:XX:XX</code> and enter the WWPN in the WWPN field. To verify that this WWPN is available, click the corresponding link.</td>
</tr>
<tr>
<td></td>
<td>• A WWPN from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available WWN addresses in the pool and the second is the total number of WWPN addresses in the pool.</td>
</tr>
<tr>
<td></td>
<td>To create a new WWPN pool, click WWPN Pool.</td>
</tr>
</tbody>
</table>

Creating Service Profiles

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D) In the VSAN area, complete the following fields:</td>
</tr>
<tr>
<td>Fabric ID field</td>
<td>The fabric interconnect associated with the component.</td>
</tr>
<tr>
<td>Select VSAN drop-down list box</td>
<td>The VSAN with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create VSAN link</td>
<td>Click this link if you want to create a VSAN.</td>
</tr>
<tr>
<td>Pin Group drop-down list box</td>
<td>The pin group with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create SAN Pin Group link</td>
<td>Click this link if you want to create a pin group.</td>
</tr>
<tr>
<td>Persistent Binding field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td>Max Data Field Size field</td>
<td>The maximum size of the Fibre Channel frame payload bytes that the vHBA supports.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer between 256 and 2112. The default is 2048.</td>
</tr>
<tr>
<td>Operational Parameters Section</td>
<td></td>
</tr>
</tbody>
</table>
e) In the **Adapter Performance Profile** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stats Threshold Policy</td>
<td>The threshold policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Adapter Policy</td>
<td>The Fibre Channel adapter policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>**Create Fibre Channel Adapter</td>
<td>Click this link if you want to create a Fibre Channel adapter policy.</td>
</tr>
<tr>
<td>Policy link</td>
<td></td>
</tr>
<tr>
<td>QoS</td>
<td>The quality of service policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a QoS policy.</td>
</tr>
</tbody>
</table>

f) Click **OK**.

Step 7 Click Next.

What to Do Next

Complete **Page 3: Configuring the Networking Options**, on page 412.

Page 3: Configuring the Networking Options

This procedure directly follows **Page 2: Configuring the Storage Options**, on page 407. It describes how to configure the networking options, including LAN connectivity, on the **Networking** page of the **Create Service Profile (expert)** wizard.

Procedure

Step 1

(Optional) If you plan to assign this service profile to a server with an adapter that supports dynamic vNICs, choose one of the following options from the **Dynamic vNIC Connection** drop-down list:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a Policy to use</td>
<td>Enables you to create a service profile without a dynamic vNIC connection policy for a server with an adapter that does not support dynamic vNICs. This option does not include a dynamic vNIC connection policy in the service profile. Continue with Step 4.</td>
</tr>
</tbody>
</table>
Creating Service Profiles

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Specific Dynamic vNIC Connection Policy</td>
<td>Enables you to create a dynamic vNIC connection policy that can only be accessed by this service profile. Continue with Step 2.</td>
</tr>
<tr>
<td>Dynamic vNIC Connection Policies Policy_Name</td>
<td>Select an existing dynamic vNIC connection policy from the list at the bottom of the drop-down list. Cisco UCS Manager assigns this policy to the service profile. If you do not want use any of the existing policies, but instead want to create a policy that all service profiles can access, continue with Step 3. Otherwise, continue with Step 4.</td>
</tr>
</tbody>
</table>

Step 2 (Optional) If you clicked Create a Specific Dynamic vNIC Connection Policy, do the following to create a new dynamic vNIC connection policy that can only be used by this service profile:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Dynamic vNICs field</td>
<td>The number of dynamic vNICs that this policy affects.</td>
</tr>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The adapter profile associated with this policy. The profile must already exist to be included in the drop-down list.</td>
</tr>
</tbody>
</table>

b) Continue with Step 4.

Step 3 (Optional) To create a dynamic vNIC connection policy that will be available to all service profiles, do the following:

a) Click Create Dynamic vNIC Connection Policy.

b) In the Create Dynamic vNIC Connect Policy dialog box, complete the fields. For more information, see Creating a Dynamic vNIC Connection Policy, on page 530.

c) Click OK.

d) From the Dynamic vNIC Connection drop-down list, choose the policy you created.

e) Continue with Step 4.

Step 4 In the How would you like to configure LAN connectivity? field, click one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Allows you to create a maximum of two vNICs, in dual fabric mode, for this service profile. Continue with Step 5.</td>
</tr>
<tr>
<td>Expert</td>
<td>Allows you to create an unlimited number of vNICs for this service profile. Continue with Step 6.</td>
</tr>
</tbody>
</table>
Option Description

No vNICs Does not include any vNICs for connections to a LAN in the service profile. Any server associated with this service profile cannot be able to communicate with a LAN unless you modify the service profile to add vNICs. Continue with Step 7.

Hardware Inherited Uses the vNICs assigned to the Ethernet adapter profile associated with the server. Continue with Step 7.

Step 5
(Optional) If you chose the simple LAN connectivity option, do the following:

a) In the **vNIC 0 (Fabric A)** area, complete the following fields:
 - In the Name field, enter a unique name for the vNIC.
 - From the Select Native VLAN drop-down list, choose the name of the VLAN with which this vNIC should communicate.

 If the VLAN you need is not in the drop-down list, click the Create VLAN link. For more information, see Creating a Named VLAN, on page 242.

b) Repeat Step 2a in the **vNIC 1 (Fabric B)** area to create a VLAN for that vNIC.

c) Continue with Step 4.

Step 6
If you chose the expert LAN connectivity option, do the following:

a) Click Add on the icon bar of the table to open the Create vNICs dialog box.

b) Complete the following fields to specify the identity information for the vNIC:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>Enter a name for this vNIC. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Use LAN Connectivity Template check box</td>
<td>Check this check box if you want to use a template to create the vNIC. Cisco UCS Manager GUI displays the vNIC Template drop-down list from which you can select the appropriate template, and the Adapter Performance Profile area from which you can select an adapter profile. Note You can only select this option if one or more LAN connectivity templates exist in the system.</td>
</tr>
<tr>
<td>Create vNIC Template link</td>
<td>Click this link if you want to create a vNIC template.</td>
</tr>
</tbody>
</table>
If you want to:

- Use the default MAC address pool, leave this field set to **Select (pool default used by default)**.
- Use the MAC address assigned to the server by the manufacturer, select **Hardware Default**.
- A specific MAC address, select **02:25:B5:XX:XX:XX** and enter the address in the **MAC Address** field. To verify that this address is available, click the corresponding link.
- A MAC address from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available MAC addresses in the pool and the second is the total number of MAC addresses in the pool.

Fabric Interconnect area

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Fabric ID field**| The fabric interconnect associated with the component. If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, check the **Enable Failover** check box. **Note** Do not enable fabric failover for the vNIC under the following circumstances:
- If the Cisco UCS domain is running in Ethernet Switch Mode. vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.
- if you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server. |
VLANs table

This table lists the VLANs that can be associated with this vNIC. The columns are:

- **Select**—Check the check box in this column for each VLAN you want to use.
- **Name**—The name of the VLAN.
- **Native VLAN**—To designate one of the VLANs as the native VLAN, click the radio button in this column.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create VLAN link</td>
<td>Click this link if you want to create a VLAN.</td>
</tr>
<tr>
<td>MTU field</td>
<td>The maximum transmission unit, or packet size, that this vNIC accepts.</td>
</tr>
<tr>
<td>Pin Group drop-down list</td>
<td>Choose the LAN pin group you want associated with this vNIC.</td>
</tr>
<tr>
<td>Create LAN Pin Group link</td>
<td>Click this link if you want to create a LAN pin group.</td>
</tr>
</tbody>
</table>

Operational Parameters Section

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stats Threshold Policy drop-down list</td>
<td>The statistics collection policy with which this vNIC is associated.</td>
</tr>
</tbody>
</table>

Adapter Performance Profile area

In the **Adapter Performance Profile** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The Ethernet adapter policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Ethernet Adapter Policy link</td>
<td>Click this link if you want to create an Ethernet adapter policy.</td>
</tr>
<tr>
<td>QoS drop-down list</td>
<td>The quality of service policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a quality of service policy.</td>
</tr>
<tr>
<td>Network Control Policy drop-down list</td>
<td>The network control policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Network Control Policy Policy link</td>
<td>Click this link if you want to create a network control policy.</td>
</tr>
</tbody>
</table>
e) Click OK.

Step 7

Click Next.

What to Do Next

Complete *Page 4: Setting the vNIC/vHBA Placement*, on page 417.

Page 4: Setting the vNIC/vHBA Placement

This procedure directly follows *Page 3: Configuring the Networking Options*, on page 412. It describes how to set the vNIC and vHBA placement options on the **vNIC/vHBA Placement** page of the **Create Service Profile (expert)** wizard.

Procedure

Step 1

From the Select Placement drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let System Perform Placement</td>
<td>Specifies that Cisco UCS Manager determines the vNIC/vHBA placement for the server associated with the service profile. The placement is determined by the order set in the PCI Order table. Continue with Step 2.</td>
</tr>
<tr>
<td>Specify Manually</td>
<td>Enables you to do the following:</td>
</tr>
<tr>
<td></td>
<td>• Explicitly assign the vNICs and vHBAs associated with this service profile to a virtual network interface connection (vCon).</td>
</tr>
<tr>
<td></td>
<td>• Configure the types of vNICs and vHBAs that can be assigned to a vCon, either manually or through a vNIC/vHBA placement policy.</td>
</tr>
<tr>
<td></td>
<td>Continue with Step 3.</td>
</tr>
<tr>
<td>vNIC/vHBA Placement Profiles</td>
<td>Assigns an existing vNIC/vHBA placement policy to the service profile. If you choose this option, Cisco UCS Manager displays the details of the policy.</td>
</tr>
<tr>
<td>Placement Profile Name</td>
<td>If you do not want use any of the existing policies, but instead want to create a policy that all service profiles can access, click Create Placement Policy and continue with Step 4. Otherwise, continue with Step 5.</td>
</tr>
</tbody>
</table>

Step 2 *(Optional)*

If you chose Let System Perform Placement, do the following:

a) Use one or more of the following buttons to adjust the order of the vNICs and vHBAs:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Up button</td>
<td>Moves the selected vNIC or VHBA to a higher priority in the list.</td>
</tr>
</tbody>
</table>
Name | Description
--- | ---
Move Down button | Moves the selected vNIC or vHBA to a lower priority in the list.
Delete button | Deletes the selected vNIC or vHBA.
Reorder button | Returns all vNICs and vHBAs to their original order.
Modify button | Enables you to modify the currently-selected vNIC or vHBA.

Note You can change any options for the vNIC or vHBA except its name.

b) Continue with Step 5.

Step 3 (Optional) If you chose **Specify Manually**, do the following:

a) On the appropriate tab in the **vNIC/vHBA** table, click a vNIC or vHBA.
b) In the **Virtual Host Interface** table, click a vCON row and if necessary, choose one of the following values from the **Selection Preference** column:

- **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
- **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.
- **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.
- **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

c) Click **Assign**.
 If you need to undo an assignment, click **Remove**.
d) Repeat Steps a through c until you have assigned all vNICs and vHBAs.
e) When you have specified all vNIC and vHBA placements, continue with Step 5.

Step 4 If you clicked **Create Placement Policy**, do the following in the **Create Placement Policy** dialog box:

a) In the **Name** field, enter a unique name for the placement policy.
 This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
b) In the **Selection Preference** column for each **Virtual Slot**, choose one of the following from the drop-down list:

- **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
• **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.

• **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.

• **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

c) Click **OK**.

d) After the dialog box closes, choose the policy you created from the **Select Placement** drop-down list.

Step 5
Click Next.

What to Do Next
Complete Page 5: Setting the Server Boot Order, on page 419.

Page 5: Setting the Server Boot Order
This procedure directly follows Page 4: Setting the vNIC/vHBA Placement, on page 417. It describes how to set the server boot order options on the **Server Boot Order** page of the **Create Service Profile (expert)** wizard.

Tip

We recommend that the boot order in a boot policy include either a local disk or a SAN LUN, but not both, to avoid the possibility of the server booting from the wrong storage type. If you configure a local disk and a SAN LUN for the boot order storage type and the operating system or logical volume manager (LVM) is configured incorrectly, the server might boot from the local disk rather than the SAN LUN.

For example, on a server with Red Hat Linux installed, where the LVM is configured with default LV names and the boot order is configured with a SAN LUN and a local disk, Linux reports that there are two LVs with the same name and boots from the LV with the lowest SCSI ID, which could be the local disk.

Procedure

Step 1
From the **Boot Policy** drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Boot Policy to use</td>
<td>Assigns the default boot policy to this service profile. Continue with Step 9.</td>
</tr>
<tr>
<td>Create a Specific Boot Policy</td>
<td>Enables you to create a local boot policy that can only be accessed by this service profile. Continue with Step 3.</td>
</tr>
</tbody>
</table>
Creating Service Profiles

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Policies Policy_Name</td>
<td>Assigns an existing boot policy to the service profile. If you choose this option, Cisco UCS Manager displays the details of the policy. If you do not want use any of the existing policies but instead want to create a policy that all service profiles can access, click Create Boot Policy and continue with Step 2. Otherwise, choose a policy from the list and continue with Step 9.</td>
</tr>
</tbody>
</table>

Step 2 If you clicked Create Boot Policy to create a boot policy that all service profiles and templates can use, do the following:

a) In the Create Boot Policy dialog box, enter a unique name and description for the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

b) Continue with Step 3.

Step 3 (Optional) To reboot all servers that use this boot policy after you make changes to the boot order, check the Reboot on Boot Order Change check box. In the Cisco UCS Manager GUI, if the Reboot on Boot Order Change check box is checked for a boot policy, and if CD-ROM or Floppy is the last device in the boot order, deleting or adding the device does not directly affect the boot order and the server does not reboot.

Step 4 (Optional) To ensure that Cisco UCS Manager uses any vNICs or vHBAs in the order shown in the Boot Order table, check the Enforce vNIC/vHBA Name check box. If you do not check this check box, Cisco UCS Manager uses the priority specified in the vNIC or vHBA.

Step 5 To add a local disk, virtual CD-ROM, or virtual floppy to the boot order, do the following:

a) Click the down arrows to expand the Local Devices area.

b) Click one of the following links to add the device to the Boot Order table:

 - Add Local Disk
 - Add CD-ROM
 - Add Floppy

c) Add another boot device to the Boot Order table, or click OK to finish.

Step 6 To add a LAN boot to the boot order, do the following:

a) Click the down arrows to expand the vNICs area.

b) Click the Add LAN Boot link.

c) In the Add LAN Boot dialog box, enter the name of the vNIC that you want to use for the LAN boot in the vNIC field, then click OK.

d) Add another device to the Boot Order table, or click OK to finish.

Step 7 To add a SAN boot to the boot order, do the following:

a) Click the down arrows to expand the vHBAs area.

b) Click the Add SAN Boot link.

c) In the Add SAN Boot dialog box, complete the following fields, then click OK:
vHBA field
Enter the name of the vHBA you want to use for the SAN boot.

Type field
This can be:

- **primary**—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.
- **secondary**—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.

The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.

d) If this vHBA points to a bootable SAN image, click the **Add SAN Boot Target** link and, in the **Add SAN Boot Target** dialog box, complete the following fields, then click **OK**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Target LUN field</td>
<td>The LUN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Boot Target WWPN field</td>
<td>The WWPN that corresponds to the location of the boot image.</td>
</tr>
</tbody>
</table>

Type field
This can be:

- **primary**—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.
- **secondary**—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.

The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.
e) Add another boot device to the Boot Order table, or click OK to finish.

Step 8
If you created a new boot policy accessible to all service profiles and template, select that policy from the Boot Policy drop-down list.

Step 9
Click Next.

What to Do Next
Complete Page 6: Adding the Maintenance Policy, on page 422.

Page 6: Adding the Maintenance Policy
This procedure directly follows Page 5: Setting the Server Boot Order, on page 419. It describes how to add a maintenance policy to the service profile on the Maintenance Policy page of the Create Service Profile (expert) wizard.

Procedure

Step 1
From the Maintenance Policy drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a Maintenance Policy to Use (default policy shown)</td>
<td>Assigns the default maintenance policy to this service profile. Continue with Step 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance Policies</th>
<th>Policy_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign an existing maintenance policy to the service profile. If you choose this option, Cisco UCS Manager displays the details of the policy. If you do not want use any of the existing policies but instead want to create a policy that all service profiles can access, click Create Maintenance Policy and continue with Step 2. Otherwise, choose a policy from the list and continue with Step 4.</td>
<td></td>
</tr>
</tbody>
</table>

Step 2
If you clicked Create Maintenance Policy to create a maintenance policy that all service profiles and templates can use, do the following:

a) In the Create Maintenance Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>

| Description field | A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ’ (single quote), " (double quote), ‘ (accent mark). |

When a service profile is associated with a server, or when changes are made to a service profile that is already associated with a server, the server needs to be rebooted to complete the process. The **Reboot Policy** field determines when the reboot occurs for servers associated with any service profiles that include this maintenance policy. This can be:

- **immediate**—The server is rebooted automatically as soon as the service profile association is complete or service profile changes are saved by the user.
- **user-ack**—The user must reboot the server manually after the service profile association is complete or changes are made.
- **timer-automatic**—Cisco UCS defers all service profile associations and changes until the maintenance window defined by the schedule shown in the **Schedule** field.

If the **Reboot Policy** is set to **timer-automatic**, the schedule specifies when maintenance operations can be applied to the server. Cisco UCS reboots the server and completes the service profile changes at the scheduled time.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Reboot Policy** field | When a service profile is associated with a server, or when changes are made to a service profile that is already associated with a server, the server needs to be rebooted to complete the process. The **Reboot Policy** field determines when the reboot occurs for servers associated with any service profiles that include this maintenance policy. This can be:
 - **immediate**—The server is rebooted automatically as soon as the service profile association is complete or service profile changes are saved by the user.
 - **user-ack**—The user must reboot the server manually after the service profile association is complete or changes are made.
 - **timer-automatic**—Cisco UCS defers all service profile associations and changes until the maintenance window defined by the schedule shown in the **Schedule** field. |
| **Schedule** drop-down list | If the **Reboot Policy** is set to **timer-automatic**, the schedule specifies when maintenance operations can be applied to the server. Cisco UCS reboots the server and completes the service profile changes at the scheduled time. |

b) Click **OK** and continue with Step 3.

Step 3 If you created a new boot policy accessible to all service profiles and template, select that policy from the **Maintenance Policy** drop-down list.

Step 4 Click **Next**.

What to Do Next

Complete **Page 7: Specifying the Server Assignment**, on page 423.

Page 7: Specifying the Server Assignment

This procedure directly follows **Page 6: Adding the Maintenance Policy**, on page 422. It describes how to specify the way a server is assigned and which firmware packages are associated with the service profile on the **Server Assignment** page of the **Create Service Profile (expert)** wizard.

Procedure

Step 1 From the **Server Assignment** drop-down list, choose one of the following:
### Option	Description
Assign Later | Allows you to assign a server after you have created and configured the service profile. Continue with Step 6.

Pre-provision a slot | Specifies the chassis and slot that contains the server which will be assigned to the service profile. If the server is not in the slot or is otherwise unavailable, the service profile will be associated with the server when it becomes available. Continue with Step 2.

Select existing Server | Displays a table of available, unassociated servers that you can use to select the server which will be assigned to the service profile. Continue with Step 3.

Select from a Pool | Select a server pool from the list at the bottom of the drop-down list. Cisco UCS Manager assigns a server from this pool to the service profile. Continue with Step 4.

Step 2 If you chose **Pre-provision a slot**, do the following:

a) In the **Chassis Id** field, enter the number of the chassis where the selected server is located.
b) In the **Slot Id** field, enter the number of the slot where the selected server is located.
c) Continue with Step 4.

Step 3 If you chose **Select existing Server**, do the following:

a) In the **Select** column of the table of available servers, click the radio button for the server that meets the needs of this service profile.
b) Continue with Step 4.

Step 4 In the **Power State** field, click one of the following radio buttons to set the power state that will be applied to the server when it is associated with this service profile:

- **Down** if you want the server to be powered down before the profile is associated with the server.
- **Up** if you want the server to be powered up before the profile is associated with the server

By default, the server is powered up.

Step 5 If you want to restrict the migration of the service profile after it has been associated with a server, check the **Restrict Migration** check box.

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association may fail.

Step 6 (Optional) In the **Firmware Management** area, do the following to use policies to update the firmware on the server associated with the service profile:

a) Click the down arrows on the **Firmware Management** bar to expand the area.
b) Complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Firmware drop-down list</td>
<td>To associate a host firmware package with this service profile, choose its name from the drop-down list.</td>
</tr>
<tr>
<td>Create Host Firmware Package link</td>
<td>Click this link if you want to create a host firmware package.</td>
</tr>
<tr>
<td>Management Firmware drop-down list</td>
<td>To associate a management firmware package with this service profile, choose its name from the drop-down list.</td>
</tr>
<tr>
<td>Create Management Firmware Package link</td>
<td>Click this link if you want to create a management firmware package.</td>
</tr>
</tbody>
</table>

Step 7 Click Next.

What to Do Next

Complete Page 8: Adding Operational Policies, on page 425.

Page 8: Adding Operational Policies

This procedure directly follows Page 7: Specifying the Server Assignment, on page 423. It describes how to add operational policies to the service profile on the Operational Policies page of the Create Service Profile (expert) wizard. These policies are optional.

Procedure

Step 1 To override the default BIOS settings and configure them through the service profile, click the down arrows to expand the BIOS Configuration bar and do one of the following:

- To add an existing policy, select the desired BIOS policy from the BIOS Policy drop-down list.
- To create a BIOS policy that is available to all service profiles, click Create BIOS Policy, complete the fields in the dialog box, and then select that policy from the BIOS Policy drop-down list.

For more information about how to create a BIOS policy, see Creating a BIOS Policy, on page 347.

Step 2 To provide external access to the CIMC on the server, click the down arrows to expand the External IPMI Management Configuration bar and add an IPMI profile and a serial over LAN policy. If you do not want to provide external access, continue with Step 4.

Step 3 To add an IPMI profile to the service profile, do one of the following:

- To add an existing policy, select the desired IPMI profile from the IPMI Access Profile drop-down list.
• If the IPMI Access Profile drop-down list does not include an IPMI profile with the desired user access, click the Create Access IPMI Profile link to create an IPMI profile that is available to all service profiles and then select that profile from the IPMI Access Profile drop-down list.

For more information about how to create an IPMI profile, see Creating an IPMI Access Profile, on page 354.

Step 4 To add a Serial over LAN policy to the service profile, do one of the following:

- To add an existing policy, select the desired Serial over LAN policy from the SoL Configuration Profile drop-down list.
- To create a Serial over LAN policy that is only available to service profile created from this template, select Create a Specific SoL Policy from the SoL Configuration Profile drop-down list and complete the Admin State field and the Speed drop-down list.
- To create a Serial over LAN policy that is available to all service profile templates, click the Create Serial over LAN Policy link, complete the fields in the dialog box, and then select that policy from the SoL Configuration Profile drop-down list.

For more information about how to create a serial over LAN policy, see Creating a Serial over LAN Policy, on page 363.

Step 5 To configure the management IP required for external access to the CIMC on the server, click the down arrows to expand the Management IP Address bar and do the following:

a) Click one of the following radio buttons:

 - **none**—No management IP address is assigned to the service profile. The management IP address is set based on the CIMC management IP address settings on the server.
 - **static**—A static management IP address is assigned to the service profile, based on the information entered in this area.
 - **pooled**—A management IP address is assigned to the service profile from the management IP address pool.

b) If you selected static, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The static IPv4 address to be assigned to the service profile</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The subnet mask for the IP address.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The default gateway that the IP address should use.</td>
</tr>
</tbody>
</table>

Step 6 To monitor thresholds and collect statistics for the associated server, click the down arrows to expand the Monitoring Configuration (Thresholds) bar and do one of the following:

- To add an existing policy, select the desired threshold policy from the Threshold Policy drop-down list.
To create a threshold policy that is available to all service profiles, click the Create Threshold Policy link, complete the fields in the dialog box, and then select that policy from the Threshold Policy drop-down list.

For more information about how to create a threshold policy, see Creating a Server and Server Component Threshold Policy, on page 624.

Step 7

To associate a power control policy with the service profile, click the down arrows to expand the Power Control Policy Configuration bar and do one of the following:

- To add an existing policy, select the desired power control policy from the Power Control Policy drop-down list.
- To create a power control policy that is available to all service profiles, click the Create Power Control Policy link, complete the fields in the dialog box, and then select that policy from the Power Control Policy drop-down list.

For more information about how to create a power control policy, see Creating a Power Control Policy, on page 481.

Step 8

To associate a scrub policy with the service profile, click the down arrows to expand the Scrub Policy bar and do one of the following:

- To add an existing policy, select the desired scrub policy from the Scrub Policy drop-down list.
- To create a scrub policy that is available to all service profiles, click the Create Scrub Policy link, complete the fields in the dialog box, and then select that policy from the Scrub Policy drop-down list.

For more information about how to create a scrub policy, see Creating a Scrub Policy, on page 362.

Step 9

Click **Finish**.

Creating a Service Profile that Inherits Server Identity

Procedure

Step 1
In the Navigation pane, click the Servers tab.

Step 2
On the Servers tab, expand Servers > Service Profiles.

Step 3
Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the root node.

Step 4
Right-click the organization and select Create Service Profile.

Step 5
In the Naming area of the Create Service Profile dialog box, complete the following fields:

a) In the Name field, enter a unique name that you can use to identify the service profile. This name can be between 2 and 32 alphanumerical characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
b) In the **Description** field, enter a description of this service profile.

Step 6

In the **vNICs** area of the **Create Service Profile** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary vNIC Section</td>
<td></td>
</tr>
<tr>
<td>Primary vNIC check box</td>
<td>Check this check box if you want to create a vNIC for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
<tr>
<td>Name field</td>
<td>The name of the vNIC.</td>
</tr>
<tr>
<td>Fabric field</td>
<td>The fabric interconnect that this vNIC is associated with.</td>
</tr>
<tr>
<td>Network drop-down list</td>
<td>The LAN that this vNIC is associated with.</td>
</tr>
</tbody>
</table>

Secondary vNIC Section	
Secondary vNIC check box	Check this check box if you want to create a second vNIC for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section.
Name field	The name of the vNIC.
Fabric field	The fabric interconnect that this vNIC is associated with.
Network drop-down list	The LAN that this vNIC is associated with.

Step 7

In the **vHBAs** area of the **Create Service Profile** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary vHBA Section</td>
<td></td>
</tr>
<tr>
<td>Primary vHBA check box</td>
<td>Check this check box if you want to create a vHBA for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
<tr>
<td>Name field</td>
<td>The name of the vHBA.</td>
</tr>
<tr>
<td>Fabric field</td>
<td>The fabric interconnect that this vHBA is associated with. Do not associate the primary vHBA with the same fabric as the secondary vHBA.</td>
</tr>
</tbody>
</table>

| **Secondary vHBA Section** | |
| **Secondary vHBA check box** | Check this check box if you want to create a second vHBA for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section. |
### Name	Description
Name field | The name of the vHBA.
Fabric field | The fabric interconnect that this vHBA is associated with. Do not associate the secondary vHBA with the same fabric as the primary vHBA.

Step 8
In the **Boot Order** area of the **Create Service Profile** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Boot Device Section</td>
<td></td>
</tr>
<tr>
<td>Primary Boot Device check box</td>
<td>Check this check box if you want to set a boot device for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
</tbody>
</table>
| Type field | This can be:
- **local-disk**—The server boots from its local disk.
 Note If you select this option, you cannot select **local-disk** or **san** as your secondary boot type.
- **san**—The server boots from an image stored in a SAN. If you select this option, Cisco UCS Manager GUI displays the **SAN** area.
- **lan**—The server boots from the LAN. If you select this option, Cisco UCS Manager GUI displays the **Network** area that lets you specify which vNIC the server should use for the PXE boot.
- **CD-ROM**—The server boots from a virtual CD-ROM.
- **Floppy**—The server boots from a virtual floppy. |
| **SAN** area | If **Type** is set to **san**, this area contains the following field:
- **vHBA**—The vHBA used to access the SAN boot image
- **LUN**—The LUN that corresponds to the location of the boot image
- **WWN**—The WWN that corresponds to the location of the boot image |
<p>| Network (PXE) area | If Type is set to lan, this area contains the vNIC drop-down list from which you can choose the vNIC from which the server should boot. |
| Secondary Boot Device Section | |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Boot Device check box</td>
<td>Check this check box if you want to set a second boot device for this service profile. If you check this box, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
</tbody>
</table>

Type field

This can be:

- **local-disk**—The server boots from its local disk.
- **san**—The server boots from an image stored in a SAN. If you select this option, Cisco UCS Manager GUI displays the **SAN area**.
- **lan**—The server boots from the LAN. If you select this option, Cisco UCS Manager GUI displays the **Network area** that lets you specify which vNIC the server should use for the PXE boot.
- **CD-ROM**—The server boots from a virtual CD-ROM.
- **Floppy**—The server boots from a virtual floppy.

SAN area

If **Type** is set to **san**, this area contains the following field:

- vHBA—The vHBA used to access the SAN boot image
- LUN—The LUN that corresponds to the location of the boot image
- WWN—The WWN that corresponds to the location of the boot image

Network (PXE) area

If **Type** is set to **lan**, this area contains the **vNIC** drop-down list from which you can choose the vNIC from which the server should boot.

Step 9 (Optional) In the **Select** column of the **Server Association (optional)** area, click the radio button for a server to associate this service profile with that server.

Step 10 Click **OK**.

Creating a Hardware Based Service Profile for a Blade Server

You cannot move a hardware based service profile to another server.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server for which you want to create a hardware based service profile.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Create Service Profile.
Step 6 In the Create Service Profile for Server dialog box, do the following:
 a) Click the Hardware Based Service Profile radio button.
 b) In the Name field, enter a unique name for the service profile.
 This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special
 characters, and you cannot change this name after the object has been saved.
 c) If you want Cisco UCS Manager to create vNICs for the service profile, check the Create Default vNICs
 check box.
 d) If you want Cisco UCS Manager to create vHBAs for the service profile, check the Create Default vHBAs
 check box.
 e) Click OK.

Cisco UCS Manager inherits and automatically applies the identity and configuration information in the server,
creates the service profile, and associates it with the server.

Creating a Hardware Based Service Profile for a Rack-Mount Server

You cannot move a hardware based service profile to another server.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server for which you want to create a hardware based service profile.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Create Service Profile.
Step 6 In the Create Service Profile for Server dialog box, do the following:
 a) Click the Hardware Based Service Profile radio button.
 b) In the Name field, enter a unique name for the service profile.
 This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special
 characters, and you cannot change this name after the object has been saved.
 c) If you want Cisco UCS Manager to create vNICs for the service profile, check the Create Default vNICs
 check box.
 d) If you want Cisco UCS Manager to create vHBAs for the service profile, check the Create Default vHBAs
 check box.
 e) Click OK.
Cisco UCS Manager inherits and automatically applies the identity and configuration information in the server, creates the service profile, and associates it with the server.

Working with Service Profile Templates

Creating a Service Profile Template

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profile Templates.
Step 3 Expand the node for the organization where you want to create the service profile template. If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the organization and select Create Service Profile Template.
Step 5 In the Create Service Profile Template wizard, complete the following:

- Page 1: Identifying the Service Profile Template, on page 432
- Page 2: Specifying the Storage Options, on page 433
- Page 3: Specifying the Networking Options, on page 438
- Page 4: Setting the vNIC/vHBA Placement, on page 443
- Page 5: Setting the Server Boot Order, on page 445
- Page 6: Adding the Maintenance Policy, on page 448
- Page 7: Specifying the Server Assignment Options, on page 449
- Page 8: Adding Operational Policies, on page 451

Page 1: Identifying the Service Profile Template

This procedure directly follows the steps in Creating a Service Profile Template, on page 432. It describes how to set the identity of a service profile template on the Identify Service Profile Template page of the Create Service Profile Template wizard.

Procedure

Step 1 In the Name field, enter a unique name that you can use to identify this service profile template. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
This name must be unique within the organization or sub-organization in which you are creating the service profile.

Step 2 In the Type field, click one of the following radio buttons:

- **Initial Template**—Any service profiles created from this template are not updated if the template changes
- **Updating Template**—Any service profiles created from this template are updated if the template changes

Step 3 From the UUID Assignment drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select (pool default used by default)</td>
<td>Assigns a UUID from the default UUID Suffix pool.</td>
</tr>
<tr>
<td>Hardware Default</td>
<td>Uses the UUID assigned to the server by the manufacturer. If you choose this option, the UUID remains unassigned until the service profile is associated with a server. At that point, the UUID is set to the UUID value assigned to the server by the manufacturer. If the service profile is later moved to a different server, the UUID is changed to match the new server.</td>
</tr>
<tr>
<td>Pools Pool_Name</td>
<td>Assigns a UUID from the UUID Suffix pool that you select from the list at the bottom of the drop-down list. Each pool name is followed by two numbers in parentheses that show the number of UUIDs still available in the pool and the total number of UUIDs in the pool.</td>
</tr>
</tbody>
</table>

Step 4 (Optional) In the text box, enter a description of this service profile template. A user-defined description of the service profile template.

Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).

Step 5 Click Next.

What to Do Next

Complete the steps in Page 2: Specifying the Storage Options, on page 433.

Page 2: Specifying the Storage Options

This procedure directly follows Page 1: Identifying the Service Profile Template, on page 432. It describes how to configure the storage options for a service profile template on the Storage page of the Create Service Profile Template wizard.

Procedure

Step 1 From the Local Storage drop-down list, choose one of the following:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Local Storage Policy to use</td>
<td>Assigns the default local disk storage policy to every service profile created from this template. Continue with Step 4.</td>
</tr>
<tr>
<td>Create a Specific Storage Policy</td>
<td>Enables you to create a local disk policy that can only be accessed by a service profile created from this template. Continue with Step 2.</td>
</tr>
<tr>
<td>Storage Policies Policy_Name</td>
<td>Select an existing local disk policy from the list at the bottom of the drop-down list. Cisco UCS Manager assigns this policy to every service profile created from this template. If you do not want use any of the existing policies but instead want to create a new policy that all service profiles and templates can access, continue with Step 3. Otherwise, continue with Step 4.</td>
</tr>
</tbody>
</table>

Step 2 (Optional) If you chose *Create a Specific Storage Policy* and want to create a new policy that can only be used by service profiles created from this service profile template, do the following:

a) From the **Mode** drop-down list, choose one of the following:

 - **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.

 - **RAID 0 Stripes**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.

 - **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.

 - **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.

 - **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.

 - **RAID 6 Stripes Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.

 - **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.

 - **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.
If you choose No RAID and you apply this policy to a server that already has an operating system with RAID storage configured, the system does not remove the disk contents. Therefore, there may be no visible differences after you apply the No RAID mode.

To make sure that any previous RAID configuration information is removed from a disk, apply a scrub policy that removes all disk information after you apply the No RAID mode.

b) If you want to ensure that the server retains the configuration in the local disk configuration policy even if the server is disassociated from the service profile, check the Protect Configuration check box. When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.

Note If you disassociate the server from a service profile with this option enabled and then associate it with a new service profile that includes a local disk configuration policy with different properties, the server returns a configuration mismatch error and the association fails.

c) Continue with Step 4.

Step 3 (Optional) To create a local disk configuration policy that will be available to all service profiles and templates, do the following:

a) Click the Create Local Disk Configuration Policy link.

b) In the Create Local Disk Configuration dialog box, complete the fields. For more information, see Creating a Local Disk Configuration Policy, on page 358.

c) Click OK.

d) From the Local Storage drop-down list, choose the policy you created.

Step 4 In the How would you like to configure SAN storage? field, click one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Allows you to create a maximum of two vHBAs for every service profile created from this template. Continue with Step 5.</td>
</tr>
<tr>
<td>Expert</td>
<td>Allows you to create an unlimited number of vHBAs for every service profile created from this template. Continue with Step 6.</td>
</tr>
<tr>
<td>No vHBAs</td>
<td>Does not include any vHBAs for connections to a Fibre Channel SAN in a service profile created from this template. Continue with Step 7.</td>
</tr>
</tbody>
</table>

Step 5 (Optional) If you chose the simple SAN storage option, do the following:

a) From the WWNN Assignment drop-down list, choose one of the following:

 - Choose Select (pool default used by default) to use the default WWN pool.
 - Choose one of the options listed under Manual Using OUI and then enter the WWN in the World Wide Node Name field.
You can specify a WWNN in the range from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. You can click the here link to verify that the WWNN you specified is available.

• Choose a WWN pool name from the list to have a WWN assigned from the specified pool. Each pool name is followed by two numbers in parentheses that show the number of WWNs still available in the pool and the total number of WWNs in the pool.

b) In the vHBA 0 (Fabric A) area, complete the following fields:

• In the Name field, enter a unique name for the vHBA.

• From the Select VSAN drop-down list, choose the name of the VSAN with which this vHBA should be associated.

If the VSAN you need is not in the drop-down list, click the Create VSAN link. For more information, see Creating a Named VSAN, on page 287.

c) Repeat Step 7b in the vHBA 1 (Fabric B) area to create a VSAN for that vHBA.

d) Continue with Step 9.

Step 6 (Optional) If you chose the expert SAN storage option, do the following:

a) From the WWNN Assignment drop-down list, choose one of the following:

• Choose Select (pool default used by default) to use the default WWN pool.

• Choose one of the options listed under Manual Using OUI and then enter the WWN in the World Wide Node Name field.

You can specify a WWNN in the range from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. You can click the here link to verify that the WWNN you specified is available.

• Choose a WWN pool name from the list to have a WWN assigned from the specified pool. Each pool name is followed by two numbers in parentheses that show the number of WWNs still available in the pool and the total number of WWNs in the pool.

b) Click Add on the icon bar of the table to open the Create vHBA dialog box.

c) Complete the following fields to specify the identity information for the vHBA:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of this vHBA. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Use SAN Connectivity Template check box</td>
<td>Check this box if you want to use a template to create the vHBA. Cisco UCS Manager GUI displays the vHBA Template drop-down list from which you can select the appropriate template, and the Adapter Performance Profile area from which you can select an adapter profile. Note You can only select this option if one or more SAN connectivity templates exist in the system.</td>
</tr>
</tbody>
</table>
Click this link if you want to create a vHBA template.

WWPN Assignment drop-down list

If you want to:
- Use the default WWPN pool, leave this field set to Select (pool default used by default).
- Use the WWPN assigned to the server by the manufacturer, select Hardware Default.
- A specific WWPN, select 20:00:00:25:B5:00:00:00, 20:XX:XX:XX:XX:XX:XX:XX, or 5X:XX:XX:XX:XX:XX:XX:XX and enter the WWPN in the WWPN field. To verify that this WWPN is available, click the corresponding link.
- A WWPN from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available WWN addresses in the pool and the second is the total number of WWPN addresses in the pool.

To create a new WWPN pool, click WWPN Pool.

d) In the VSAN area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID field</td>
<td>The fabric interconnect associated with the component.</td>
</tr>
<tr>
<td>Select VSAN drop-down list box</td>
<td>The VSAN with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create VSAN link</td>
<td>Click this link if you want to create a VSAN.</td>
</tr>
<tr>
<td>Pin Group drop-down list box</td>
<td>The pin group with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create SAN Pin Group link</td>
<td>Click this link if you want to create a pin group.</td>
</tr>
<tr>
<td>Persistent Binding field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>disabled</td>
</tr>
<tr>
<td></td>
<td>enabled</td>
</tr>
<tr>
<td>Max Data Field Size field</td>
<td>The maximum size of the Fibre Channel frame payload bytes that the vHBA supports. Enter an integer between 256 and 2112. The default is 2048.</td>
</tr>
</tbody>
</table>

Operational Parameters Section
e) In the **Adapter Performance Profile** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stats Threshold Policy drop-down list box</td>
<td>The threshold policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Adapter Policy drop-down list box</td>
<td>The Fibre Channel adapter policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create Fibre Channel Adapter Policy link</td>
<td>Click this link if you want to create a Fibre Channel adapter policy.</td>
</tr>
<tr>
<td>QoS drop-down list box</td>
<td>The quality of service policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a QoS policy.</td>
</tr>
</tbody>
</table>

f) Click **OK**.

Step 7

Click **Next**.

What to Do Next

Complete page 3: Specifying the Networking Options, on page 438.

Page 3: Specifying the Networking Options

This procedure directly follows page 2: Specifying the Storage Options, on page 433. It describes how to configure the networking options, including LAN connectivity, on the Networking page of the Create Service Profile Template wizard.

Procedure

Step 1 (Optional) If you plan to assign service profiles created from this template to a server with an adapter that supports dynamic vNICs, choose one of the following options from the **Dynamic vNIC Connection** drop-down list:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a Policy to use</td>
<td>Enables you to create a service profile template without a dynamic vNIC connection policy for a server with an adapter that does not support dynamic vNICs. This option does not include a dynamic vNIC connection policy in the template. Continue with Step 4.</td>
</tr>
</tbody>
</table>
Create a Specific Dynamic vNIC Connection Policy

Enables you to create a dynamic vNIC connection policy that can only be accessed by this service profile template. Continue with Step 2.

Dynamic vNIC Connection Policies Policy Name

Select an existing dynamic vNIC connection policy from the list at the bottom of the drop-down list. Cisco UCS Manager assigns this policy to the service profile template.

If you do not want use any of the existing policies, but instead want to create a policy that all service profiles and templates can access, continue with Step 3. Otherwise, continue with Step 4.

Step 2 (Optional) If you clicked Create a Specific Dynamic vNIC Connection Policy, do the following to create a new dynamic vNIC connection policy that can only be used by service profiles created from this template:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Dynamic vNICs field</td>
<td>The number of dynamic vNICs that this policy affects.</td>
</tr>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The adapter profile associated with this policy. The profile must already exist to be included in the drop-down list.</td>
</tr>
</tbody>
</table>

b) Continue with Step 4.

Step 3 (Optional) To create a dynamic vNIC connection policy that will be available to all service profiles and templates, do the following:

a) Click Create Dynamic vNIC Connection Policy.

b) In the Create Dynamic vNIC Connect Policy dialog box, complete the fields.

For more information, see Creating a Dynamic vNIC Connection Policy, on page 530.

c) Click OK.

d) From the Dynamic vNIC Connection drop-down list, choose the policy you created.

e) Continue with Step 4.

Step 4 In the How would you like to configure LAN connectivity? field, click one of the following options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>Allows you to create a maximum of two vNICs, in dual fabric mode, for every service profile created from this template. Continue with Step 5.</td>
</tr>
<tr>
<td>Expert</td>
<td>Allows you to create an unlimited number of vNICs for every service profile created from this template. Continue with Step 6.</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
No vNICs | Does not include any vNICs for connections to a LAN in a service profile created from this template. Any server associated with these service profiles cannot communicate with a LAN unless you modify the individual service profile later. Continue with Step 7.

Step 5 (Optional) If you chose the simple LAN connectivity option, do the following:

a) In the **vNIC 0 (Fabric A)** area:
 - In the **Name** field, enter a unique name for the vNIC.
 - From the **Select Native VLAN** drop-down list, choose the name of the VLAN with which this vNIC should communicate.

 If the VLAN you need is not in the drop-down list, click the **Create VLAN** link. For more information, see [Creating a Named VLAN](#), on page 242.

b) Repeat Step 2a in the **vNIC 1 (Fabric B)** area to create a VLAN for that vNIC.

c) Continue with Step 4.

Step 6 If you chose the expert LAN connectivity option, do the following:

a) Click **Add** on the icon bar of the table to open the **Create vNICs** dialog box.

b) Complete the following fields to specify the identity information for the vNIC:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>Enter a name for this vNIC. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Use LAN Connectivity Template check box</td>
<td>Check this check box if you want to use a template to create the vNIC. Cisco UCS Manager GUI displays the vNIC Template drop-down list from which you can select the appropriate template, and the Adapter Performance Profile area from which you can select an adapter profile. Note You can only select this option if one or more LAN connectivity templates exist in the system.</td>
</tr>
<tr>
<td>Create vNIC Template link</td>
<td>Click this link if you want to create a vNIC template.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MAC Address Assignment drop-down list</td>
<td>If you want to:</td>
</tr>
<tr>
<td></td>
<td>• Use the default MAC address pool, leave this field set to Select (pool default used by default).</td>
</tr>
<tr>
<td></td>
<td>• Use the MAC address assigned to the server by the manufacturer, select Hardware Default.</td>
</tr>
<tr>
<td></td>
<td>• A specific MAC address, select 02:25:B5:XX:XX:XX and enter the address in the MAC Address field. To verify that this address is available, click the corresponding link.</td>
</tr>
<tr>
<td></td>
<td>• A MAC address from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available MAC addresses in the pool and the second is the total number of MAC addresses in the pool.</td>
</tr>
</tbody>
</table>

c) In the Fabric Interconnect area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID field</td>
<td>The fabric interconnect associated with the component. If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, check the Enable Failover check box.</td>
</tr>
</tbody>
</table>

Note
Do not enable fabric failover for the vNIC under the following circumstances:

- If the Cisco UCS domain is running in Ethernet Switch Mode. vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.

- If you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server.
d) In the **Adapter Performance Profile** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The Ethernet adapter policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Ethernet Adapter Policy link</td>
<td>Click this link if you want to create an Ethernet adapter policy.</td>
</tr>
<tr>
<td>QoS drop-down list</td>
<td>The quality of service policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a quality of service policy.</td>
</tr>
<tr>
<td>Network Control Policy drop-down list</td>
<td>The network control policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Network Control Policy link</td>
<td>Click this link if you want to create a network control policy.</td>
</tr>
</tbody>
</table>
Step 7
Click Next.

What to Do Next
Complete Page 4: Setting the vNIC/vHBA Placement, on page 443.

Page 4: Setting the vNIC/vHBA Placement
This procedure directly follows Page 3: Specifying the Networking Options, on page 438. It describes how to set the vNIC and vHBA placement options on the vNIC/vHBA Placement page of the Create Service Profile Template wizard.

Procedure

Step 1
From the Select Placement drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let System Perform Placement</td>
<td>Specifies that Cisco UCS Manager determines the vNIC/vHBA placement for all servers associated with a service profile created from this template. The placement is determined by the order set in the PCI Order table. Continue with Step 2.</td>
</tr>
</tbody>
</table>
| Specify Manually | Enables you to do the following:
 - Explicitly assign the vNICs and vHBAs associated with this service profile template to a virtual network interface connection (vCon).
 - Configure the types of vNICs and vHBAs that can be assigned to a vCon, either manually or through a vNIC/vHBA placement policy.
 Continue with Step 3. |
| vNIC/vHBA Placement Profiles | Assigns an existing vNIC/vHBA placement policy to a service profile created from this template. If you choose this option, Cisco UCS Manager displays the details of the policy.
If a vNIC/vHBA placement policy has not been configured in Cisco UCS Manager, this option may not display in the drop-down list.
If you do not want use any of the existing policies, but instead want to create a policy that all service profiles and templates can access, click Create Placement Policy and continue with Step 4. Otherwise, continue with Step 5. |

Step 2 (Optional) If you chose Let System Perform Placement, do the following:

a) Use one or more of the following buttons to adjust the order of the vNICs and vHBAs:
Working with Service Profile Templates

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Up button</td>
<td>Moves the selected vNIC or VHBA to a higher priority in the list.</td>
</tr>
<tr>
<td>Move Down button</td>
<td>Moves the selected vNIC or VHBA to a lower priority in the list.</td>
</tr>
<tr>
<td>Delete button</td>
<td>Deletes the selected vNIC or VHBA.</td>
</tr>
<tr>
<td>Reorder button</td>
<td>Returns all vNICs and vHBAs to their original order.</td>
</tr>
<tr>
<td>Modify button</td>
<td>Enables you to modify the currently-selected vNIC or VHBA.</td>
</tr>
</tbody>
</table>

Note You can change any options for the vNIC or VHBA except its name.

b) Continue with Step 5.

Step 3 *(Optional)* If you chose **Specify Manually**, do the following:

a) On the appropriate tab in the **vNIC/vHBA** table, click a vNIC or VHBA.

b) In the **Virtual Host Interface** table, click a vCon row and if necessary, choose one of the following values from the **Selection Preference** column:

- **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.

- **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or VHBA.

- **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.

- **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

c) Click **Assign**.
 If you need to undo an assignment, click **Remove**.

d) Repeat Steps a through c until you have assigned all vNICs and vHBAs.

e) When you have specified all vNIC and vHBA placements, continue with Step 5.

Step 4 If you clicked **Create Placement Policy**, do the following in the **Create Placement Policy** dialog box:

a) In the **Name** field, enter a unique name for the placement policy.
 This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

b) In the **Selection Preference** column for each **Virtual Slot**, choose one of the following from the drop-down list:
• **all**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.

• **assigned-only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.

• **exclude-dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.

• **exclude-unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

c) Click **OK**.
d) After the dialog box closes, choose the policy you created from the **Select Placement** drop-down list.

Step 5
Click **Next**.

What to Do Next
Complete **Page 5: Setting the Server Boot Order**, on page 445

Page 5: Setting the Server Boot Order

This procedure directly follows **Page 4: Setting the vNIC/vHBA Placement**, on page 443. It describes how to set the server boot order options on the **Server Boot Order** page of the **Create Service Profile Template** wizard.

Procedure

Step 1
From the **Boot Policy** drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Boot Policy to use</td>
<td>Assigns the default boot policy to every service profile created from this template. Continue with Step 9.</td>
</tr>
</tbody>
</table>
Working with Service Profile Templates

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a Specific Boot Policy</td>
<td>Enables you to create a local boot policy that can only be accessed by a service profile created from this template. Continue with Step 3.</td>
</tr>
<tr>
<td>Boot Policies Policy_Name</td>
<td>Assigns an existing boot policy to every service profile created from this template. If you choose this option, Cisco UCS Manager displays the details of the policy. If you do not want use any of the existing policies, but instead want to create a policy that all service profiles and templates can access, continue with Step 2. Otherwise, choose a policy from the list and continue with Step 9.</td>
</tr>
</tbody>
</table>

Step 2 If you clicked **Create Boot Policy** to create a boot policy that all service profiles and templates can use, do the following:

a) In the **Create Boot Policy** dialog box, enter a unique name and description for the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

b) Continue with Step 3.

Step 3 (Optional) To reboot all servers that use this boot policy after you make changes to the boot order, check the **Reboot on Boot Order Change** check box.

In the Cisco UCS Manager GUI, if the **Reboot on Boot Order Change** check box is checked for a boot policy, and if CD-ROM or Floppy is the last device in the boot order, deleting or adding the device does not directly affect the boot order and the server does not reboot.

Step 4 (Optional) To ensure that Cisco UCS Manager uses any vNICs or vHBAs in the order shown in the **Boot Order** table, check the **Enforce vNIC/vHBA Name** check box.

If you do not check this check box, Cisco UCS Manager uses the priority specified in the vNIC or vHBA.

Step 5 To add a local disk, virtual CD-ROM, or virtual floppy to the boot order, do the following:

a) Click the down arrows to expand the **Local Devices** area.

b) Click one of the following links to add the device to the **Boot Order** table:

- Add Local Disk
- Add CD-ROM
- Add Floppy

c) Add another boot device to the **Boot Order** table, or click **OK** to finish.

Step 6 To add a LAN boot to the boot order, do the following:

a) Click the down arrows to expand the **vNICs** area.

b) Click the **Add LAN Boot** link.

c) In the **Add LAN Boot** dialog box, enter the name of the vNIC that you want to use for the LAN boot in the vNIC field, then click **OK**.

d) Add another device to the **Boot Order** table, or click **OK** to finish.

Step 7 To add a SAN boot to the boot order, do the following:

a) Click the down arrows to expand the **vHBAs** area.
b) Click the **Add SAN Boot** link.

c) In the **Add SAN Boot** dialog box, complete the following fields, then click **OK**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vHBA field</td>
<td>Enter the name of the vHBA you want to use for the SAN boot.</td>
</tr>
<tr>
<td>Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• primary—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>• secondary—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.</td>
</tr>
</tbody>
</table>

d) If this vHBA points to a bootable SAN image, click the **Add SAN Boot Target** link and, in the **Add SAN Boot Target** dialog box, complete the following fields, then click **OK**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Target LUN field</td>
<td>The LUN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Boot Target WWPN field</td>
<td>The WWPN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• primary—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>• secondary—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.</td>
</tr>
</tbody>
</table>
e) Add another boot device to the Boot Order table, or click OK to finish.

Step 8
If you created a new boot policy accessible to all service profiles and template, select that policy from the Boot Policy drop-down list.

Step 9
Click Next.

What to Do Next
Complete Page 6: Adding the Maintenance Policy, on page 448.

Page 6: Adding the Maintenance Policy

This procedure directly follows Page 5: Setting the Server Boot Order, on page 445. It describes how to add a maintenance policy to the service profile on the Maintenance Policy page of the Create Service Profile (expert) wizard.

Procedure

Step 1
From the Maintenance Policy drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a Maintenance Policy to Use (default policy shown)</td>
<td>Assigns the default maintenance policy to this service profile. Continue with Step 4.</td>
</tr>
<tr>
<td>Maintenance Policies Policy_Name</td>
<td>Assigns an existing maintenance policy to the service profile. If you choose this option, Cisco UCS Manager displays the details of the policy. If you do not want use any of the existing policies but instead want to create a policy that all service profiles can access, click Create Maintenance Policy and continue with Step 2. Otherwise, choose a policy from the list and continue with Step 4.</td>
</tr>
</tbody>
</table>

Step 2
If you clicked Create Maintenance Policy to create a maintenance policy that all service profiles and templates can use, do the following:

a) In the Create Maintenance Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
When a service profile is associated with a server, or when changes are made to a service profile that is already associated with a server, the server needs to be rebooted to complete the process. The **Reboot Policy** field determines when the reboot occurs for servers associated with any service profiles that include this maintenance policy. This can be:

- **immediate**—The server is rebooted automatically as soon as the service profile association is complete or service profile changes are saved by the user.
- **user-ack**—The user must reboot the server manually after the service profile association is complete or changes are made.
- **timer-automatic**—Cisco UCS defers all service profile associations and changes until the maintenance window defined by the schedule shown in the **Schedule** field.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboot Policy</td>
<td>When a service profile is associated with a server, or when changes are made to a service profile that is already associated with a server, the server needs to be rebooted to complete the process. The Reboot Policy field determines when the reboot occurs for servers associated with any service profiles that include this maintenance policy. This can be:</td>
</tr>
<tr>
<td>Schedule</td>
<td>If the Reboot Policy is set to timer-automatic, the schedule specifies when maintenance operations can be applied to the server. Cisco UCS reboots the server and completes the service profile changes at the scheduled time.</td>
</tr>
</tbody>
</table>

b) Click **OK** and continue with Step 3.

Step 3
If you created a new boot policy accessible to all service profiles and template, select that policy from the **Maintenance Policy** drop-down list.

Step 4
Click **Next**.

What to Do Next

Complete [Page 7: Specifying the Server Assignment](on page 423).

Page 7: Specifying the Server Assignment Options

This procedure directly follows [Page 6: Adding the Maintenance Policy](on page 448). It describes how to specify the way a server is assigned to a service profile created from this template on the **Server Assignment** page of the **Create Service Profile Template** wizard.

Procedure

Step 1
From the **Server Assignment** drop-down list, choose one of the following:
Option	Description
Assign Later | Allows you to assign a server after you have created and configured the service profile template. Continue with Step 2.
Select from a Pool Pool_Name | Select a server pool from the list at the bottom of the drop-down list. Cisco UCS Manager assigns a server from this pool to a service profile created from this template. Continue with Step 2.

Step 2 In the **Power State** field, click one of the following radio buttons to set the power state that will be applied to the server when it is associated with a service profile created from this template:

- **Down** if you want the server to be powered down before the profile is associated with the server
- **Up** if you want the server to be powered up before the profile is associated with the server

By default, the server is powered up.

Step 3 If you want to restrict the migration of the service profile after it has been associated with a server, check the **Restrict Migration** checkbox.

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association may fail.

Step 4 (Optional) In the **Firmware Management** area, do the following to use policies to update the firmware on the server associated with a service profile created from this template:

a) Click the down arrows on the **Firmware Management** bar.
b) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Firmware drop-down list</td>
<td>To associate a host firmware package with this service profile, choose its name from the drop-down list.</td>
</tr>
<tr>
<td>Create Host Firmware Package link</td>
<td>Click this link if you want to create a host firmware package.</td>
</tr>
<tr>
<td>Management Firmware drop-down list</td>
<td>To associate a management firmware package with this service profile, choose its name from the drop-down list.</td>
</tr>
<tr>
<td>Create Management Firmware Package link</td>
<td>Click this link if you want to create a management firmware package.</td>
</tr>
</tbody>
</table>

Step 5 Click **Next**.
What to Do Next

Page 8: Adding Operational Policies

This procedure directly follows Page 7: Specifying the Server Assignment Options, on page 449. It describes how to add operational policies to the service profile template on the Operational Policies page of the Create Service Profile Template wizard. These policies are optional.

Procedure

Step 1 To override the default BIOS settings and configure them through the service profile, click the down arrows to expand the BIOS Configuration bar and do one of the following:

• To add an existing policy, select the desired BIOS policy from the BIOS Policy drop-down list.

• To create a BIOS policy that is available to all service profiles, click Create BIOS Policy, complete the fields in the dialog box, and then select the desired BIOS policy from the BIOS Policy drop-down list.

For more information about how to create a BIOS policy, see Creating a BIOS Policy, on page 347.

Step 2 To provide external access to the CIMC on the server, click the down arrows to expand the External IPMI Management Configuration bar and add an IPMI profile and a serial over LAN policy. If you do not want to provide external access, continue with Step 4.

Step 3 To add an IPMI profile to service profiles created from this template, do one of the following:

• To add an existing policy, select the desired IPMI profile from the IPMI Access Profile drop-down list.

• If the IPMI Access Profile drop-down list does not include an IPMI profile with the desired user access, click the Create Access IPMI Profile link to create an IPMI profile that is available to all service profiles and then select that profile from the IPMI Access Profile drop-down list.

For more information about how to create an IPMI profile, see Creating an IPMIAccessProfile, on page 354.

Step 4 To add a Serial over LAN policy to service profiles created from this template, do one of the following:

• To add an existing policy, select the desired Serial over LAN policy from the SoL Configuration Profile drop-down list.

• To create a Serial over LAN policy that is only available to service profile created from this template, select Create a Specific SoL Policy from the SoL Configuration Profile drop-down list and complete the Admin State field and the Speed drop-down list.

• To create a Serial over LAN policy that is available to all service profile templates, click the Create Serial over LAN Policy link and complete the fields in the dialog box and then select that policy from the SoL Configuration Profile drop-down list.

For more information about how to create a serial over LAN policy, see Creating a Serial over LAN Policy, on page 363.
Step 5 To configure the management IP required for external access to the CIMC on the server, click the down arrows to expand the Management IP Address bar and click one of the following radio buttons:

- **none**—No management IP address is assigned to the service profile. The management IP address is set based on the CIMC management IP address settings on the server.
- **pooled**—A management IP address is assigned to the service profile from the management IP address pool.

Step 6 To monitor thresholds and collect statistics for the associated server, click the down arrows to expand the Monitoring Configuration bar and do one of the following:

- To add an existing policy, select the desired threshold policy from the Threshold Policy drop-down list.
- To create a threshold policy that is available to all service profiles, click the Create Threshold Policy link, complete the fields in the dialog box, and then select that policy from the Threshold Policy drop-down list.

For more information about how to create a threshold policy, see Creating a Server and Server Component Threshold Policy, on page 624.

Step 7 To associate a power control policy with the service profile template, click the down arrows to expand the Power Control Policy Configuration bar and do one of the following:

- To add an existing policy, select the desired power control policy from the Power Control Policy drop-down list.
- To create a power control policy that is available to all service profiles and templates, click the Create Power Control Policy link, complete the fields in the dialog box, and then select that policy from the Power Control Policy drop-down list.

For more information about how to create a power control policy, see Creating a Power Control Policy, on page 481.

Step 8 To associate a scrub policy with the service profile template, click the down arrows to expand the Scrub Policy bar and do one of the following:

- To add an existing policy, select the desired scrub policy from the Scrub Policy drop-down list.
- To create a scrub policy that is available to all service profiles and templates, click the Create Scrub Policy link, complete the fields in the dialog box, and then select that policy from the Scrub Policy drop-down list.

For more information about how to create a scrub policy, see Creating a Scrub Policy, on page 362.

Step 9 Click Finish.
Creating One or More Service Profiles from a Service Profile Template

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profile Templates.
Step 3 Expand the node for the organization that contains the service profile template that you want to use as the basis for your service profiles.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the service profile template from which you want to create the profiles and select Create Service Profiles From Template.
Step 5 In the Create Service Profiles From Template dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naming Prefix field</td>
<td>The prefix to use for the template name. When the system creates the service profile, it appends a unique numeric identifier to this prefix. For example, if you specify the prefix MyProfile and request two profiles, the first service profile would be called MyProfile1 and the second would be MyProfile2. If you return at a later date and create three more profiles with the same prefix, they would be named MyProfile3, MyProfile4, and MyProfile5.</td>
</tr>
<tr>
<td>Number field</td>
<td>The number of service profiles to create.</td>
</tr>
</tbody>
</table>

Step 6 Click OK.

Creating a Template Based Service Profile for a Blade Server

Before You Begin
A qualified service profile template with the desired values must exist in Cisco UCS Manager.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server for which you want to create a template based service profile.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Create Service Profile.
Step 6 In the Create Service Profile for Server dialog box, do the following:
a) Click the Template Based Service Profile radio button.
b) In the Name field, enter a unique name for the service profile.
 This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special
 characters, and you cannot change this name after the object has been saved.
c) From the Service Profile Template drop-down list, select the template from which you want to create
 the service profile associated with this server.
d) Click OK.

Creating a Template Based Service Profile for a Rack-Mount Server

Before You Begin

A qualified service profile template with the desired values must exist in Cisco UCS Manager.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server for which you want to create a template based service profile.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Create Service Profile.
Step 6 In the Create Service Profile for Server dialog box, do the following:
 a) Click the Template Based Service Profile radio button.
 b) In the Name field, enter a unique name for the service profile.
 This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special
 characters, and you cannot change this name after the object has been saved.
 c) From the Service Profile Template drop-down list, select the template from which you want to create
 the service profile associated with this server.
 d) Click OK.

Creating a Service Profile Template from a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile that you want to use as the basis for
 your template.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the service profile from which you want to create the template and select **Create a Service Profile Template**.

Step 5 In the **Create Template From Service Profile** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Profile Template Name</td>
<td>The name of the service profile template. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Org drop-down list</td>
<td>Select the organization that you want this template to be associated with.</td>
</tr>
<tr>
<td>Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• Initial Template—Any service profiles created from this template are not updated if the template changes</td>
</tr>
<tr>
<td></td>
<td>• Updating Template—Any service profiles created from this template are updated if the template changes</td>
</tr>
</tbody>
</table>

Step 6 Click **OK**.

Managing Service Profiles

Cloning a Service Profile

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Service Profiles**.

Step 3 Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the **root** node.

Step 4 Right-click the service profile you want to clone and select **Create a Clone**.

Step 5 In the **Create Clone From Service Profile** dialog box:

a) Enter the name you want to use for the new profile in the **Clone Name** field. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

 This name must be unique within the organization or sub-organization in which you are creating the service profile.
b) Click OK.

Step 6 Navigate to the service profile you just created and make sure that all options are correct.

Associating a Service Profile with a Server or Server Pool

Follow this procedure if you did not associate the service profile with a blade server or server pool when you created it, or to change the blade server or server pool with which a service profile is associated.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization that contains the service profile that you want to associate with a new server or server pool.</td>
</tr>
<tr>
<td></td>
<td>If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the service profile you want to associate with a server and select Change Service Profile Association.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Associate Service Profile dialog box, select one of the following options:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Pool</td>
<td>Select a server pool from the drop-down list. Cisco UCS Manager assigns a server from this pool to the service profile. Continue with Step 7.</td>
</tr>
<tr>
<td>Server</td>
<td>Navigate to the desired available server in the navigation tree and select the server which will be assigned to the service profile. Continue with Step 7.</td>
</tr>
<tr>
<td>Custom Server</td>
<td>Specifies the chassis and slot that contains the server that will be assigned to the service profile. If the server is not in the slot or is otherwise unavailable, the service profile will be associated with the server when it becomes available. Continue with Step 6.</td>
</tr>
</tbody>
</table>

Step 6 If you chose **Custom Server**, do the following:

a) In the **Chassis Id** field, enter the number of the chassis where the selected server is located.

b) In the **Server Id** field, enter the number of the slot where the selected server is located.

Step 7 If you want to restrict the migration of the service profile after it has been associated with a server, check the **Restrict Migration** check box.

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association may fail.
Disassociating a Service Profile from a Server or Server Pool

When you disassociate a service profile, Cisco UCS Manager attempts to shutdown the operating system on the server. If the operating system does not shutdown within a reasonable length of time, Cisco UCS Manager forces the server to shutdown.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the organization that contains the service profile that you want to disassociate from a server or server pool. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click the service profile you want to disassociate from a server and select Disassociate Service Profile.</td>
</tr>
<tr>
<td>5</td>
<td>In the Disassociate Service Profile dialog box, click Yes to confirm that you want to disassociate the service profile.</td>
</tr>
<tr>
<td>6</td>
<td>(Optional) Monitor the status and FSM for the server to confirm that the disassociation completed.</td>
</tr>
</tbody>
</table>

Associating a Service Profile Template with a Server Pool

Follow this procedure if you did not associate the service profile template with a server pool when you created it, or to change the server pool with which a service profile created from this template is associated.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Servers tab, expand Servers > Service Profile Templates.</td>
</tr>
<tr>
<td>3</td>
<td>Expand the node for the organization that contains the service profile that you want to associate with a server pool. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>4</td>
<td>Right-click the service profile template you want to associate with a server pool and select Associate with Server Pool. The Associate with Server Pool dialog box opens.</td>
</tr>
<tr>
<td>5</td>
<td>From the Server Pool section of the Pool Assignment drop-down list, select a server pool. If you select Assign Later, the service profile template is not associated with a server pool.</td>
</tr>
</tbody>
</table>
| 6 | Select one of the following radio buttons to determine the power state applied to a server which is associated with a service profile created from this template:
• Down
• Up

Step 7 From the Select Qualification drop-down list, select the server pool policy qualifications you want to apply to a server that is associated with a service profile created from this template.

Step 8 Click OK.

Disassociating a Service Profile Template from its Server Pool

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profile Templates.
Step 3 Expand the node for the organization that contains the service profile that you want to disassociate from its server pool.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Right-click the service profile template you want to disassociate from its server pool and select Disassociate Template.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Changing the UUID in a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile for which you want to change the UUID.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Choose the service profile that requires the UUID for the associated server to be changed.
Step 5 In the Work pane, click the General tab.
Step 6 In the Actions area, click Change UUID.
Step 7 From the UUID Assignment drop-down list, do one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select (pool default used by default)</td>
<td>Assigns a UUID from the default UUID Suffix pool. Continue with Step 9.</td>
</tr>
</tbody>
</table>
Changing the UUID in a Service Profile Template

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profile Templates.

Step 3 Expand the node for the organization that contains the service profile template for which you want to change the UUID.

If the system does not include multi-tenancy, expand the root node.
Choose the service profile template whose UUID assignment you want to change.

In the Work pane, click the General tab.

In the Actions area, click Change UUID.

From the UUID Assignment drop-down list, choose one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select (pool default used by default)</td>
<td>Assigns a UUID from the default UUID Suffix pool.</td>
</tr>
<tr>
<td>Hardware Default</td>
<td>Uses the UUID assigned to the server by the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>If you choose this option, the UUID remains unassigned until the service profile</td>
</tr>
<tr>
<td></td>
<td>is associated with a server. At that point, the UUID is set to the UUID value</td>
</tr>
<tr>
<td></td>
<td>assigned to the server by the manufacturer. If the service profile is later moved</td>
</tr>
<tr>
<td></td>
<td>to a different server, the UUID is changed to match the new server.</td>
</tr>
</tbody>
</table>

Assigns a UUID from the UUID Suffix pool that you select from the list at the bottom of the drop-down list.

Each pool name is followed by two numbers in parentheses that show the number of UUIDs still available in the pool and the total number of UUIDs in the pool.

Click OK.

Resetting the UUID Assigned to a Service Profile from a Pool in a Service Profile Template

If you change the UUID suffix pool assigned to an updating service profile template, Cisco UCS Manager does not change the UUID assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a UUID from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the UUID. You can only reset the UUID assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a UUID assigned from a UUID suffix pool.
- The UUID suffix pool name is specified in the service profile. For example, the pool name is not empty.
- The UUID value is not 0, and is therefore not derived from the server hardware.

Procedure

- In the Navigation pane, click the Servers tab.
- On the Servers tab, expand Servers > Service Profiles.
- Expand the node for the organization that contains the service profile for which you want to reset the UUID. If the system does not include multi-tenancy, expand the root node.
Step 4 Choose the service profile that requires the UUID for the associated server to be reset to a different UUID suffix pool.

Step 5 In the Work pane, click the General tab.

Step 6 In the Actions area, click Reset UUID.
If this action is not visible, then the UUID configuration in the service profile does not meet the requirements for resetting a UUID.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Step 8 Click OK

Modifying the Boot Order in a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization that includes the service profile for which you want to change the boot order.
If the system does not include multi-tenancy, expand the root node.

Step 4 Click the service profile for which you want to change the boot order.

Step 5 In the Work pane, click the Boot Order tab.

Step 6 Click Modify Boot Policy to change the existing boot policy.

Step 7 In the Modify Boot Policy dialog box, choose one of the following from the Boot Policy drop-down list:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Boot Policy to use</td>
<td>Assigns the default boot policy to this service profile. Continue with Step 14.</td>
</tr>
<tr>
<td>Create a Specific Boot Policy</td>
<td>Enables you to create a local boot policy that can only be accessed by this service profile. Continue with Step 8.</td>
</tr>
<tr>
<td>Boot Policies Policy_Name</td>
<td>Assigns an existing boot policy to the service profile. If you choose this option, Cisco UCS Manager displays the details of the policy.</td>
</tr>
<tr>
<td></td>
<td>If you do not want use any of the existing policies, but instead want to create a policy that all service profiles can access, click Create Boot Policy and continue with Step 2. Otherwise, continue with Step 14.</td>
</tr>
</tbody>
</table>

Step 8 If you chose to create a boot policy, in the Create Boot Policy dialog box, enter a unique name and description for the policy.
This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
Step 9 (Optional) To reboot all servers that use this boot policy after you make changes to the boot order, check the Reboot on Boot Order Change check box. In the Cisco UCS Manager GUI, if the Reboot on Boot Order Change check box is checked for a boot policy, and if CD-ROM or Floppy is the last device in the boot order, deleting or adding the device does not directly affect the boot order and the server does not reboot.

Step 10 (Optional) To ensure that Cisco UCS Manager uses any vNICs or vHBAs in the order shown in the Boot Order table, check the Enforce vNIC/vHBA Name check box. If you do not check this check box, Cisco UCS Manager uses the priority specified in the vNIC or vHBA.

Step 11 To add a local disk, virtual CD-ROM, or virtual floppy to the boot order, do the following:
 a) Click the down arrows to expand the Local Devices area.
 b) Click one of the following links to add the device to the Boot Order table:
 • Add Local Disk
 • Add CD-ROM
 • Add Floppy
 c) Add another boot device to the Boot Order table, or click OK to finish.

Step 12 To add a LAN boot to the boot order, do the following:
 a) Click the down arrows to expand the vNICs area.
 b) Click the Add LAN Boot link.
 c) In the Add LAN Boot dialog box, enter the name of the vNIC that you want to use for the LAN boot in the vNIC field, then click OK.
 d) Add another device to the Boot Order table, or click OK to finish.

Step 13 To add a SAN boot to the boot order, do the following:
 a) Click the down arrows to expand the vHBAs area.
 b) Click the Add SAN Boot link.
 c) In the Add SAN Boot dialog box, complete the following fields, then click OK:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vHBA field</td>
<td>Enter the name of the vHBA you want to use for the SAN boot.</td>
</tr>
<tr>
<td>Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• primary—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>• secondary—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.</td>
</tr>
</tbody>
</table>

The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.
d) If this vHBA points to a bootable SAN image, click the **Add SAN Boot Target** link and, in the **Add SAN Boot Target** dialog box, complete the following fields, then click **OK**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Target LUN field</td>
<td>The LUN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Boot Target WWPN field</td>
<td>The WWPN that corresponds to the location of the boot image.</td>
</tr>
<tr>
<td>Type field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• primary—If the server boots using a SAN WWN address, this is the first address it tries. Each boot policy can have only one primary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>• secondary—If the server cannot boot from the primary SAN location, it attempts to boot from this location. Each boot policy can have only one secondary SAN boot location.</td>
</tr>
<tr>
<td></td>
<td>The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.</td>
</tr>
</tbody>
</table>

e) Add another boot device to the **Boot Order** table, or click **OK** to finish.

Step 14 Click **OK**.

Creating a vNIC for a Service Profile

Procedure

1. **Step 1** In the **Navigation** pane, click the **Servers** tab.
2. **Step 2** On the **Servers** tab, expand **Servers > Service Profiles**.
3. **Step 3** Expand the node for the organization that contains the service profile for which you want to create a vNIC.
4. **Step 4** Expand the service profile for which you want to create a vNIC.
5. **Step 5** Right-click the **vNICs** node and choose **Create vNICs**.
6. **Step 6** In the **Create vNICs** dialog box, do the following:
 a) Complete the following fields to specify the identity information for the vNIC:
Name field

Enter a name for this vNIC.

This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.

Use LAN Connectivity Template check box

Check this check box if you want to use a template to create the vNIC. Cisco UCS Manager GUI displays the **vNIC Template** drop-down list from which you can select the appropriate template, and the **Adapter Performance Profile** area from which you can select an adapter profile.

Note You can only select this option if one or more LAN connectivity templates exist in the system.

Create vNIC Template link

Click this link if you want to create a vNIC template.

MAC Address Assignment drop-down list

If you want to:

- Use the default MAC address pool, leave this field set to **Select (pool default used by default)**.
- Use the MAC address assigned to the server by the manufacturer, select **Hardware Default**.
- A specific MAC address, select **02:25:B5:XX:XX:XX** and enter the address in the **MAC Address** field. To verify that this address is available, click the corresponding link.
- A MAC address from a pool, select the pool name from the list. Each pool name is followed by a pair of numbers in parentheses. The first number is the number of available MAC addresses in the pool and the second is the total number of MAC addresses in the pool.

b) Complete the following fields to specify the fabric connection information:
The fabric interconnect associated with the component. If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, check the **Enable Failover** check box.

Note Do not enable fabric failover for the vNIC under the following circumstances:

- If the Cisco UCS domain is running in Ethernet Switch Mode, vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.
- If you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Fabric ID** field | The fabric interconnect associated with the component. If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, check the **Enable Failover** check box. **Note** Do not enable fabric failover for the vNIC under the following circumstances:
- If the Cisco UCS domain is running in Ethernet Switch Mode, vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.
- If you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server. |
| **VLANs table** | This table lists the VLANs that can be associated with this vNIC. The columns are:
- **Select**—Check the box in this column for each VLAN you want to use.
- **Name**—The name of the VLAN.
- **Native VLAN**—To designate one of the VLANs as the native VLAN, click the radio button in this column. |
| **Create VLAN link** | Click this link if you want to create a VLAN. |
| **MTU field** | The maximum transmission unit, or packet size, that this vNIC accepts. Enter an integer between 1500 and 9216. |
| **Pin Group** drop-down list | Choose the LAN pin group you want associated with this vNIC. |
| **Create LAN Pin Group** link | Click this link if you want to create a LAN pin group. |
| **Operational Parameters** Section | |
| **Stats Threshold Policy** drop-down list | The statistics collection policy with which this vNIC is associated. |

c) In the **Adapter Performance Profile** area, complete the following fields:
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The Ethernet adapter policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Ethernet Adapter Policy</td>
<td>Click this link if you want to create an Ethernet adapter policy.</td>
</tr>
<tr>
<td>QoS drop-down list</td>
<td>The quality of service policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a quality of service policy.</td>
</tr>
<tr>
<td>Network Control Policy drop-down list</td>
<td>The network control policy with which this vNIC is associated.</td>
</tr>
<tr>
<td>Create Network Control Policy</td>
<td>Click this link if you want to create a network control policy.</td>
</tr>
</tbody>
</table>

d) Click **OK**.

Resetting the MAC Address Assigned to a vNIC from a Pool in a Service Profile Template

If you change the MAC pool assigned to an updating service profile template, Cisco UCS Manager does not change the MAC address assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a MAC address from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the MAC address. You can only reset the MAC address assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a MAC address assigned from a MAC pool.
- The MAC pool name is specified in the service profile. For example, the pool name is not empty.
- The MAC address value is not 0, and is therefore not derived from the server hardware.

Procedure

1. **Step 1** In the Navigation pane, click the **Servers** tab.
2. **Step 2** On the **Servers** tab, expand **Servers > Service Profiles**.
3. **Step 3** Expand the node for the organization that contains the service profile for which you want to reset the MAC address.
 - If the system does not include multi-tenancy, expand the **root** node.
Step 4 Expand *Service_Profile_Name* > vNICs.
Step 5 Click the vNIC for which you want to reset the MAC address.
Step 6 In the Work pane, click the General tab.
Step 7 In the Actions area, click Reset MAC Address.
Step 8 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 9 Click OK.

Deleting a vNIC from a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile from which you want to delete a vNIC.
Step 4 Expand the service profile from which you want to delete a vNIC.
Step 5 Expand the vNICs node.
Step 6 Right-click the vNIC you want to delete and choose Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Creating a vHBA for a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile for which you want to create a vHBA.
Step 4 Expand the service profile for which you want to create a vHBA.
Step 5 Right-click the vHBAs node and choose Create vHBAs.
Step 6 In the Create vHBAs dialog box, do the following:
 a) Complete the following fields to specify the identity information for the vHBA:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of this vHBA. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>field</td>
<td>Name field</td>
</tr>
</tbody>
</table>
b) In the VSAN area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric ID field</td>
<td>The fabric interconnect associated with the component.</td>
</tr>
<tr>
<td>Select VSAN drop-down list box</td>
<td>The VSAN with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create VSAN link</td>
<td>Click this link if you want to create a VSAN.</td>
</tr>
<tr>
<td>Pin Group drop-down list box</td>
<td>The pin group with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create SAN Pin Group link</td>
<td>Click this link if you want to create a pin group.</td>
</tr>
</tbody>
</table>
Managing Service Profiles

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent Binding field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td>Max Data Field Size field</td>
<td>The maximum size of the Fibre Channel frame payload bytes that the vHBA supports.</td>
</tr>
<tr>
<td></td>
<td>Enter an integer between 256 and 2112. The default is 2048.</td>
</tr>
</tbody>
</table>

Operational Parameters Section

Stats Threshold Policy drop-down list box The threshold policy with which this vHBA is associated.

c) In the *Adapter Performance Profile* area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Policy drop-down list box</td>
<td>The Fibre Channel adapter policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create Fibre Channel Adapter Policy link</td>
<td>Click this link if you want to create a Fibre Channel adapter policy.</td>
</tr>
<tr>
<td>QoS drop-down list box</td>
<td>The quality of service policy with which this vHBA is associated.</td>
</tr>
<tr>
<td>Create QoS Policy link</td>
<td>Click this link if you want to create a QoS policy.</td>
</tr>
</tbody>
</table>

d) Click **OK**.
Changing the WWPN for a vHBA

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization that contains the service profile for which you want to change the WWPN.

Step 4 Expand Service_Profile_Name > vHBAs.

Step 5 Click the vHBA for which you want to change the WWPN.

Step 6 In the Work pane, click the General tab.

Step 7 In the Actions area, click Change World Wide Name.

Step 8 In the Change World Wide Port Name dialog box, do the following:

a) From the WWPN Assignment drop-down list, do one of the following:
 - Use the default WWPN pool, choose Select (pool default used by default).
 - Use a WWPN derived from the manufacturers specifications, choose Hardware Default.
 - A specific WWPN, choose 20:00:00:25:B5:00:00:00 and enter the WWNN in the WWPN field.
 - A WWPN from a pool, select the pool name from the list. Each pool name is followed by number of available/total WWPNs in the pool.

b) Click OK.

Resetting the WWPN Assigned to a vHBA from a Pool in a Service Profile Template

If you change the WWPN pool assigned to an updating service profile template, Cisco UCS Manager does not change the WWPN assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a WWPN from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the WWPN. You can only reset the WWPN assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a WWPN assigned from a WWPN pool.
- The WWPN pool name is specified in the service profile. For example, the pool name is not empty.
- The WWPN value is not 0, and is therefore not derived from the server hardware.
Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile for which you want to reset the WWPN. If the system does not include multi-tenancy, expand the root node.
Step 4 Expand Service_Profile_Name > vHBAs.
Step 5 Click the vHBA for which you want to reset the WWPN.
Step 6 In the Work pane, click the General tab.
Step 7 In the Actions area, click Reset WWPN.
Step 8 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 9 Click OK.

Clearing Persistent Binding for a vHBA

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization that contains the service profile for which you want to modify the vHBA.
Step 4 Expand Service_Profile_Name > vHBAs.
Step 5 Click the vHBA for which you want to clear the persistent binding.
Step 6 In the Work pane, click the General tab.
Step 7 In the Actions area, click Clear Persistent Binding.
Step 8 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Deleting a vHBA from a Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization that contains the service profile from which you want to delete a vHBA.

Step 4 Expand the service profile from which you want to delete a vHBA.

Step 5 Expand the vHBAs node.

Step 6 Right-click the vHBA you want to delete and choose **Delete**.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Binding a Service Profile to a Service Profile Template

You can bind a service profile to a service profile template. When you bind the service profile to a template, Cisco UCS Manager configures the service profile with the values defined in the service profile template. If the existing service profile configuration does not match the template, Cisco UCS Manager reconfigures the service profile. You can only change the configuration of a bound service profile through the associated template.

Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization that includes the service profile you want to bind. If the system does not include multi-tenancy, expand the root node.

Step 4 Click the service profile you want to bind.

Step 5 In the Work pane, click the General tab.

Step 6 In the Actions area, click **Bind to a Template**.

Step 7 In the Bind to a Service Profile Template dialog box, do the following:

a) From the Service Profile Template drop-down list, choose the template to which you want to bind the service profile.

b) Click **OK**.
Unbinding a Service Profile from a Service Profile Template

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Service Profiles.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization that includes the service profile you want to unbind. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click the service profile you want to unbind.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Actions area, click Unbind from the Template.</td>
</tr>
<tr>
<td>Step 7</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Deleting a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In the Servers tab, expand Servers > Service Profiles > Organization_Name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click the service profile you want to delete and select Delete.</td>
</tr>
<tr>
<td>Step 4</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click OK.</td>
</tr>
</tbody>
</table>
Managing Power in Cisco UCS

This chapter includes the following sections:

- Power Management in Cisco UCS, page 475
- Rack Server Power Management, page 475
- Power Management Precautions, page 475
- Configuring the Power Policy, page 476
- Configuring the Global Cap Policy, page 476
- Configuring Policy-Driven Chassis Group Power Capping, page 477
- Configuring Manual Blade-Level Power Capping, page 482

Power Management in Cisco UCS

You can manage power through Cisco UCS Manager by configuring any of the following features:

- Power supply redundancy for all chassis in a Cisco UCS instance
- Policy-driven chassis-level power capping
- Manual blade-level power capping

Rack Server Power Management

Power capping is not supported for rack servers.

Power Management Precautions

If the CIMC is reset, the power monitoring functions of Cisco UCS become briefly unavailable for as long as it takes for the CIMC to reboot. While this usually only takes 20 seconds, there is a possibility that the peak power cap could be exceeded during that time. To avoid exceeding the configured power cap in a very low power-capped environment, consider staggering the rebooting or activation of CIMCs.
Configuring the Power Policy

Power Policy

The power policy is a global policy that specifies the redundancy for power supplies in all chassis in the Cisco UCS instance. This policy is also known as the PSU policy.

For more information about power supply redundancy, see *Cisco UCS 5108 Server Chassis Hardware Installation Guide*.

Configuring the Power Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>3</td>
<td>In the Work pane, click the Policies tab.</td>
</tr>
<tr>
<td>4</td>
<td>Click the Global Policies subtab.</td>
</tr>
<tr>
<td>5</td>
<td>In the Power Policy area, click one of the following radio buttons in the Redundancy field:</td>
</tr>
</tbody>
</table>

- **non-redundant**—All installed power supplies are turned on and the load is evenly balanced. Only smaller configurations (requiring less than 2500W) can be powered by a single power supply.

- **n+1**—The total number of power supplies to satisfy non-redundancy, plus one additional power supply for redundancy, are turned on and equally share the power load for the chassis. If any additional power supplies are installed, Cisco UCS Manager sets them to a "turned-off" state.

- **grid**—Two power sources are turned on, or the chassis requires greater than N+1 redundancy. If one source fails (which causes a loss of power to one or two power supplies), the surviving power supplies on the other power circuit continue to provide power to the chassis.

For more information about power supply redundancy, see *Cisco UCS 5108 Server Chassis Hardware Installation Guide*.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Click Save Changes.</td>
</tr>
</tbody>
</table>

Configuring the Global Cap Policy

Global Cap Policy

The global cap policy is a global policy that specifies whether policy-driven chassis group power capping or manual blade-level power capping will be applied to all servers in a chassis.

We recommend that you use the default power capping method: policy-driven chassis group power capping.
Configuring the Global Cap Policy

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the Global Policies subtab.
Step 5 In the Global Cap Policy area, click one of the following radio buttons in the Allocation Method field to determine the power cap management mode used in the Cisco UCS instance:

- **Manual Blade Level Cap**—Power allocation is configured on each individual blade server in all chassis. If you select this option, you cannot create power groups.

- **Policy Driven Chassis Group Cap**—Power allocation is configured at the chassis level through power control policies included in the associated service profiles. If you select this option, you can also create power groups that contain one or more chassis in the Cisco UCS instance.

By default, power allocation is done for each chassis through a power control policy.

Step 6 Click Save Changes.

Configuring Policy-Driven Chassis Group Power Capping

Policy-Driven Chassis Group Power Capping

When policy-driven power chassis group power capping is selected in the global cap policy, Cisco UCS can maintain the oversubscription of servers without risking costly power failures. This is achieved through a two-tier process. At the chassis level, Cisco UCS divides the amount of power available between members of the power group. At the blade level, the amount of power allotted to a chassis is divided between blades based on priority.

Each time a service profile is associated or disassociated, UCS Manager recalculates the power allotment for each blade server within the chassis. If necessary, power from lower-priority service profiles is redistributed to higher-priority service profiles.

UCS power groups cap power in less than one second in order to safely protect data center circuit breakers. A blade must stay at its cap for 20 seconds before the chassis power distribution is optimized. This is intentionally carried out over a slower timescale to prevent reacting to transient spikes in demand.
The system reserves enough power to boot a server in each slot, even if that slot is empty. This reserved power cannot be leveraged by servers requiring more power. Blades that fail to comply with the power cap are penalized or shut down.

Configuring Power Groups

Power Groups

A power group is a set of chassis that all draw power from the same power distribution unit (PDU). In Cisco UCS Manager, you can create power groups that include one or more chassis and then set a peak power cap in AC watts for that power grouping.

Instituting power capping at the chassis level requires the following:

- IOM, CIMC, and BIOS version 1.4 or higher
- 2 PSUs

The peak power cap is a static value that represents the maximum power available to all blade servers within a given power group. If you add or remove a blade from a power group, but do not manually modify the peak power value, the power group adjusts the peak power cap to accommodate the basic power-on requirements of all blades within that power group.

A minimum of 3788 AC watts should be set for each chassis. This converts to 3400 watts of DC power, which is the minimum amount of power required to power a fully-populated chassis.

If insufficient power is available, Cisco UCS Manager raises an alert.

Once a chassis is added to a power group, every service profile associated with that chassis also becomes part of that power group. Similarly, if you add a new blade to a chassis, that blade inherently becomes part of the chassis' power group.

Creating a Power Group

Before You Begin

Make sure the global power allocation policy is set to Policy Driven Chassis Group Cap on the Global Policies tab.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, click the Equipment node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the Policies tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click the Power Groups subtab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.</td>
</tr>
<tr>
<td>Step 6</td>
<td>On the first page of the Create Power Group wizard, complete the following fields:</td>
</tr>
<tr>
<td></td>
<td>a) Enter a unique name and description for the power group. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td></td>
<td>b) Click Next.</td>
</tr>
<tr>
<td>Step 7</td>
<td>On the Add Chassis Members page of the Create Power Group wizard, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) In the Chassis table, choose one or more chassis to include in the power group.</td>
</tr>
<tr>
<td></td>
<td>b) Click the >> button to add the chassis to the Selected Chassis table that displays all chassis included in the power group. You can use the << button to remove one or more chassis from the power group.</td>
</tr>
<tr>
<td></td>
<td>c) Click Next.</td>
</tr>
<tr>
<td>Step 8</td>
<td>On the Power Group Attributes page of the Create Power Group wizard, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) Complete the following fields:</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>AC Power Cap field</td>
</tr>
<tr>
<td></td>
<td>Enable Dynamic Reallocation</td>
</tr>
<tr>
<td></td>
<td>field</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| b) Click **Finish**. |
Adding a Chassis to a Power Group

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Power Groups tab.
Step 4 Right-click the power group to which you want to add a chassis and choose Add Chassis Members.
Step 5 In the Add Chassis Members dialog box, do the following:
 a) In the Chassis table, choose one or more chassis to include in the power group.
 b) Click the >> button to add the chassis to the Selected Chassis table that displays all chassis included in the power group.
 You can use the << button to remove one or more chassis from the power group.
 c) Click OK.

Removing a Chassis from a Power Group

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Power Groups tab.
Step 4 Expand the power group from which you want to remove a chassis.
Step 5 Right-click the chassis that you want to remove from the power group and choose Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Power Group

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Power Groups tab.
Step 4 Right-click the power group that you want to delete and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Power Control Policies

Power Control Policy

Cisco UCS uses the priority set in the power control policy, along with the blade type and configuration, to calculate the initial power allocation for each blade within a chassis. During normal operation, the active blades within a chassis can borrow power from idle blades within the same chassis. If all blades are active and reach the power cap, service profiles with higher priority power control policies take precedence over service profiles with lower priority power control policies.

Priority is ranked on a scale of 1-10, where 1 indicates the highest priority and 10 indicates lowest priority. The default priority is 5.

For mission-critical application a special priority called no-cap is also available. Setting the priority to no-cap prevents Cisco UCS from leveraging unused power from that particular blade server. The server is allocated the maximum amount of power that that blade can reach.

Note: You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Creating a Power Control Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Servers tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Servers tab, expand Servers > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click Power Control Policies and choose Create Power Control Policy.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Create Power Control Policy dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
What happens to a server when the demand for power within a power group exceeds the power supply. This can be:

- **no-cap**—The server runs at full capacity regardless of the power requirements of the other servers in its power group.
- **cap**—The server is allocated a minimum amount of power capacity based on the server's priority relative to the other servers in its server group. If more power becomes available, Cisco UCS allows the capped servers to exceed their original allocations. It only lowers the allocations if there is a drop in the total power available to the power group.

Power Capping field

The priority the server has within its power group when power capping is in effect.

Enter an integer between 1 and 10, where 1 is the highest priority.

What to Do Next

Include the policy in a service profile or service profile template.

Deleting a Power Control Policy

Procedure

1. In the Navigation pane, click the Servers tab.
2. On the Servers tab, expand Servers > Policies > Organization_Name.
3. Expand the Power Control Policies node.
4. Right-click the policy you want to delete and select Delete.
5. If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Configuring Manual Blade-Level Power Capping

Manual Blade-Level Power Capping

When manual blade-level power capping is configured in the global cap policy, you can set a power cap for each blade server in a Cisco UCS instance.
The following configuration options are available:

Enabled

You can specify the maximum amount of power that the server can consume at one time. This maximum can be any amount between 0 watts and 1100 watts.

Disabled

No power usage limitations are imposed upon the server. The server can use as much power as it requires.

If the server encounters a spike in power usage that meets or exceeds the maximum configured for the server, Cisco UCS Manager does not disconnect or shut down the server. Instead, Cisco UCS Manager reduces the power that is made available to the server. This reduction can slow down the server, including a reduction in CPU speed.

Setting the Blade-Level Power Cap for a Server

Before You Begin

Make sure the global power allocation policy is set to **Manual Blade Level Cap** on the **Global Policies** tab.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server for which you want to set the power budget.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Power Budget area, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) Click the Expand icon to the right of the heading to display the fields.</td>
</tr>
<tr>
<td></td>
<td>b) Complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Global Policies</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Status field</td>
<td>Whether this server is power capped. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Unbounded—The server is not power capped under any circumstances.</td>
</tr>
<tr>
<td></td>
<td>• Enabled—Cisco UCS Manager GUI displays the Watts field.</td>
</tr>
<tr>
<td>Note</td>
<td>Power capping only goes into effect if there is insufficient power available to the chassis to meet the demand. If there is sufficient power, the server can use as many watts as it requires.</td>
</tr>
<tr>
<td>Watts field</td>
<td>The maximum number of watts the server can use if there is not enough power to the chassis to meet the demand. Enter an integer between 0 and 10000000.</td>
</tr>
</tbody>
</table>
Step 6 Click Save Changes.

Viewing the Blade-Level Power Cap

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis.
Step 3 Choose the chassis for which you want to view the server power usage.
Step 4 Do one of the following:
 • To view the power usage for all servers in the chassis, click the Power tab in the Work pane.
 • To view the power usage for one server in the chassis, expand the chassis and click the server. Then
 click the Power tab in the Work pane.
Step 5 If necessary, expand the Motherboards node to view the power counters.
PART VI

VN-Link Configuration

• Overview of VN-Link in Cisco UCS, page 487
• Configuring VN-Link Components and Connectivity, page 493
• Using the Configure VMware Integration Wizard, page 501
• Configuring Distributed Virtual Switches in Cisco UCS, page 509
• Configuring Port Profiles, page 521
• Configuring VN-Link Related Policies, page 529
• Managing Pending Deletions, page 535
Overview of VN-Link in Cisco UCS

This chapter includes the following sections:

• Virtualization with a Virtual Interface Card Adapter, page 487
• Configuring Cisco UCS for VN-Link in Hardware, page 490

Virtualization with a Virtual Interface Card Adapter

Virtual interface card (VIC) adapters support virtualized environments with VMware. These environments support the standard VMware integration with ESX installed on the server and all virtual machine management performed through the VMware vCenter.

This virtualized adapter supports the following:

• Dynamic vNICs in a virtualized environment with VM software, such as vSphere. This solution enables you to divide a single physical blade server into multiple logical PCIE instances.

• Static vNICs in a single operating system installed on a server.

With a VIC adapter, the solution you choose determines how communication works. This type of adapter supports the following communication solutions:

• Cisco VN-Link in hardware, which is a hardware-based method of handling traffic to and from a virtual machine. Details of how to configure this solution are available in this document.

• Cisco VN-Link in software, which is a software-based method of handling traffic to and from a virtual machine and uses the Nexus 1000v virtual switch. Details of how to configure this solution are available in the Nexus 1000v documentation.

• Single operating system installed on the server without virtualization, which uses the same methods of handling traffic as the other Cisco UCS adapters.

Cisco VN-Link

Cisco Virtual Network Link (VN-Link) is a set of features and capabilities that enable you to individually identify, configure, monitor, migrate, and diagnose virtual machine interfaces in a way that is consistent with the current network operation models for physical servers. VN-Link literally indicates the creation of a logical
link between a vNIC on a virtual machine and a Cisco UCS fabric interconnect. This mapping is the logical equivalent of using a cable to connect a NIC with a network port on an access-layer switch.

VN-Link in Hardware

Cisco VN-Link in hardware is a hardware-based method of handling traffic to and from a virtual machine on a server with a VIC adapter. This method is sometimes referred to as pass-through switching. This solution replaces software-based switching with ASIC-based hardware switching and improves performance.

The distributed virtual switch (DVS) framework delivers VN-Link in hardware features and capabilities for virtual machines on Cisco UCS servers with VIC adapters. This approach provides an end-to-end network solution to meet the new requirements created by server virtualization.

With VN-Link in hardware, all traffic to and from a virtual machine passes through the DVS and the hypervisor and then returns to the virtual machine on the server. Switching occurs in the fabric interconnect (hardware). As a result, network policies can be applied to traffic between virtual machines. This capability provides consistency between physical and virtual servers.

The following figure shows the traffic paths taken by VM traffic on a Cisco UCS server with a VIC adapter:

![Figure 2: Traffic Paths for VM traffic with VN-Link in Hardware](image)

Extension File for Communication with VMware vCenter

For Cisco UCS instances that use VIC adapters to implement VN-Link in hardware, you must create and install an extension file to establish the relationship and communications between Cisco UCS Manager and the VMware vCenter. This extension file is an XML file that contains vital information, including the following:

- Extension key
- Public SSL certificate

If you need to have two Cisco UCS instances share the same set of distributed virtual switches in a vCenter, you can create a custom extension key and import the same SSL certificate in the Cisco UCS Manager for each Cisco UCS instance.
Extension Key

The extension key includes the identity of the Cisco UCS instance. By default, this key has the value Cisco UCS GUID, as this value is identical across both fabric interconnects in a cluster configuration.

When you install the extension, vCenter uses the extension key to create a distributed virtual switch (DVS).

Public SSL Certificate

Cisco UCS Manager generates a default, self-signed SSL certificate to support communication with vCenter. You can also provide your own custom certificate.

Custom Extension Files

You can create a custom extension file for a Cisco UCS instance that does not use either or both of the default extension key or SSL certificate. For example, you can create the same custom key in two different Cisco UCS instances when they are managed by the same VMware vCenter instance.

Important

You cannot change an extension key that is being used by a DVS or vCenter. If you want to use a custom extension key, we recommend that you create and register the custom key before you create the DVS in Cisco UCS Manager to avoid any possibility of having to delete and recreate the associated DVS.

Distributed Virtual Switches

Each VMware ESX host has its own software-based virtual switch (vSwitch) in its hypervisor that performs the switching operations between its virtual machines (VMs). The Cisco UCS distributed virtual switch (DVS) is a software-based virtual switch that runs alongside the vSwitch in the ESX hypervisor, and can be distributed across multiple ESX hosts. Unlike vSwitch, which uses its own local port configuration, a DVS associated with multiple ESX hosts uses the same port configuration across all ESX hosts.

After associating an ESX host to a DVS, you can migrate existing VMs from the vSwitch to the DVS, and you can create VMs to use the DVS instead of the vSwitch. With the hardware-based VN-Link implementation, when a VM uses the DVS, all VM traffic passes through the DVS and ASIC-based switching is performed by the fabric interconnect.

In Cisco UCS Manager, DVSes are organized in the following hierarchy:

vCenter
 Folder (optional)
 Datacenter
 Folder (required)
 DVS

At the top of the hierarchy is the vCenter, which represents a VMware vCenter instance. Each vCenter contains one or more datacenters, and optionally vCenter folders with which you can organize the datacenters. Each datacenter contains one or more required datacenter folders. Datacenter folders contain the DVSes.

Port Profiles

Port profiles contain the properties and settings used to configure virtual interfaces in Cisco UCS for VN-Link in hardware. The port profiles are created and administered in Cisco UCS Manager. There is no clear visibility into the properties of a port profile from VMware vCenter.
In VMware vCenter, a port profile is represented as a port group. Cisco UCS Manager pushes the port profile names to vCenter, which displays the names as port groups. None of the specific networking properties or settings in the port profile are visible in VMware vCenter.

After a port profile is created, assigned to, and actively used by one or more DVSes, any changes made to the networking properties of the port profile in Cisco UCS Manager are immediately applied to those DVSes.

You must configure at least one port profile client for a port profile, if you want Cisco UCS Manager to push the port profile to VMware vCenter.

Port Profile Clients

The port profile client determines the DVSes to which a port profile is applied. By default, the port profile client specifies that the associated port profile applies to all DVSes in the vCenter. However, you can configure the client to apply the port profile to all DVSes in a specific datacenter or datacenter folder, or only to one DVS.

VN-Link in Hardware Considerations

How you configure a Cisco UCS instance for VN-Link in hardware has several dependencies. The information you need to consider before you configure VN-Link in hardware includes the following:

- A Cisco UCS instance can have a maximum of 4 vCenters
- Each vCenter can have a maximum of 8 distributed virtual switches
- Each distributed virtual switch can have a maximum of 4096 ports
- Each port profile can have a maximum of 4096 ports
- Each Cisco UCS instance can have a maximum of 256 port profiles

Note

The VMware DVS implementation requires that you configure and connect a maximum of two uplinks. To fulfill this configuration requirement, you must create a maximum of two static vNICs in Cisco UCS Manager. These static vNICs only exist to fulfill the VMware vCenter uplinks requirement and do not forward any data traffic.

VMware vCenter cannot support more than two uplinks. If you attempt to create and configure a third static vNIC for VMware vCenter, a configuration error is reported.

Configuring Cisco UCS for VN-Link in Hardware

You must perform some of the following high-level steps in the VMware Virtual Center (vCenter). For more information about those steps, see the VMware documentation.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure the VN-Link components and connectivity.</td>
<td>For more information, see the following chapter: Configuring VN-Link Components and Connectivity, on page 493.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In VMware vCenter, create a vCenter and datacenter.</td>
<td>For more information, see the VMware documentation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In Cisco UCS Manager create distributed virtual switches.</td>
<td>To create a distributed virtual switch (DVS), you must first create a vCenter, a datacenter under the vCenter, and a datacenter folder under the datacenter. You can then create a DVS in the datacenter folder. The vCenter name you specify in Cisco UCS Manager does not need to match the vCenter name specified in VMware vCenter; however, the datacenter name you specify in Cisco UCS Manager must match the datacenter name specified in VMware vCenter. The datacenter folder and DVS you create in Cisco UCS Manager are pushed to VMware vCenter. For more information, see the following chapter: Configuring Distributed Virtual Switches in Cisco UCS, on page 509.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In Cisco UCS Manager, create the port profile and profile clients.</td>
<td>The port profiles are pushed to their clients in VMware vCenter. They appear in VMware vCenter as port groups, not port profiles. For more information, see the following chapter: Configuring Port Profiles, on page 521.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In VMware vCenter, add an ESX host to the DVS.</td>
<td>Configure the ESX host with the option to migrate to PTS/DVS.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In vCenter, create the virtual machines required for the VMs on the server.</td>
<td>As part of this configuration, ensure you select the port profiles (port groups) configured in Cisco UCS Manager.</td>
</tr>
</tbody>
</table>
Configuring VN-Link Components and Connectivity

This chapter includes the following sections:

- Components of VN-Link in Hardware, page 493
- Configuring a VMware ESX Host for VN-Link, page 494
- Configuring a VMware vCenter Instance for VN-Link, page 495
- Configuring a Certificate for VN-Link in Hardware, page 496
- Connecting Cisco UCS Manager to VMware vCenter Using the Extension Key, page 498

Components of VN-Link in Hardware

The following three main components must be connected for VN-Link in hardware to work:

VMware ESX Host

A server with the VMware ESX installed. It contains a datastore and the virtual machines.

The ESX host must have a Cisco UCS M81KR Virtual Interface Card installed, and it must have uplink data connectivity to the network for communication with VMware vCenter.

VMware vCenter

Windows-based software used to manage one or more ESX hosts.

VMware vCenter must have connectivity to the UCS management port for management plane integration, and uplink data connectivity to the network for communication with the ESX Host. A vCenter extension key provided by Cisco UCS Manager must be registered with VMware vCenter before the Cisco UCS instance can be acknowledged.
Cisco UCS Manager

The Cisco UCS management software that integrates with VMware vCenter to handle some of the network-based management tasks.

Cisco UCS Manager must have management port connectivity to VMware vCenter for management plane integration. It also provides a vCenter extension key that represents the Cisco UCS identity. The extension key must be registered with VMware vCenter before the Cisco UCS instance can be acknowledged.

The following figure shows the three main components of VN-Link in hardware and the methods by which they are connected:

Figure 3: Component Connectivity for VN-Link in Hardware

Configuring a VMware ESX Host for VN-Link

Before You Begin

Ensure that Virtualization Technology is enabled in BIOS of the UCS server if you intend to run 64-bit VMs on the ESX host. An ESX host will not run 64-bit VMs unless Virtualization Technology is enabled.
Procedure

Step 1 If not already present, install a Cisco UCS M81KR Virtual Interface Card in the server you intend to use as the VMware ESX host. For more information about installing a Cisco UCS M81KR Virtual Interface Card, see the Cisco UCS 5108 Server Chassis Hardware Installation Guide.

Step 2 Configure and associate a service profile to the server. The service profile configuration must include the following:

• A Dynamic vNIC Connection policy that determines how the VN-link connectivity between VMs and dynamic vNICs is configured.

• Two static vNICs for each adapter on the ESX host. For ESX hosts with multiple adapters, your service profile must use either vCons or have an associated vNIC/vHBA placement profile that ensures the static vNICs are assigned to the appropriate adapters.

For more information, see the following chapter: Configuring Service Profiles.

Step 3 Install VMware ESX 4.0 or later on the blade server. No additional drivers are required during the installation.

Configuring a VMware vCenter Instance for VN-Link

Procedure

Step 1 Configure a Window-based machine to use a static IP address. Take note of the IP address. You will use it to connect to vCenter Server. The Windows-based machine must have network connectivity to the the Cisco UCS management port and to the uplink Ethernet port(s) being used by the ESX host. The management port connectivity is used for management plane integration between VMware vCenter and Cisco UCS Manager; the uplink Ethernet port connectivity is used for communication between VMware vCenter and the ESX host.

Step 2 Install VMware vCenter (vCenter Server and vSphere Client 4.0 or later) on the Windows-based machine.

Step 3 Launch vSphere Client.

Step 4 On the vSphere Client launch page, enter the following information to connect to vCenter Server:

a) Static IP address of the Windows-based machine.

b) Username and password specified while installing vCenter Server. If, during the vCenter Server installation, you chose to use the Windows login credentials, you can check the Use Windows session credentials check box.

Step 5 If a Security Warning dialog box appears, click Ignore.

What to Do Next

Do one of the following:

• (Optional) If you plan to use a custom certificate for VN-Link in hardware, configure the certificate for VN-Link in hardware.
• Connect Cisco UCS Manager to VMware vCenter using the extension key.

Configuring a Certificate for VN-Link in Hardware

Certificate for VN-Link in Hardware

Cisco UCS Manager generates a default, self-signed SSL certificate to support communication with vCenter. You can also create your own custom certificate to communicate with multiple vCenter instances. When you create a custom certificate, Cisco UCS Manager recreates the extension files to include the new certificate. If you subsequently delete the custom certificate, Cisco UCS Manager recreates the extension files to include the default, self-signed SSL certificate.

To create a custom certificate, you must obtain and copy an external certificate into Cisco UCS, and then create a certificate for VN-Link in hardware that uses the certificate you copied into Cisco UCS.

Copying a Certificate to the Fabric Interconnect

Before You Begin

Obtain a certificate.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# connect local-mgmt</td>
<td>Enters local management mode.</td>
</tr>
</tbody>
</table>
| Step 2 | UCS-A(local-mgmt)# copy from-filesystem: [from-path] filename to-filesystem: [to-path] filename | Copies the certificate from its source location to its destination location. For the from-filesystem: argument, use one of the following syntax:
 • ftp://server-ip-addr
 • scp://username@server-ip-addr
 • sftp://username@server-ip-addr
 • tftp://server-ip-addr:port-num
 For the to-filesystem: argument, use one of the following syntax:
 • Volatile:
 • Workspace: |

The following example uses FTP to copy a certificate (certificate.txt) to the temp folder in the workspace:

UCS-A # connect local-mgmt
Cisco UCS 6100 Series Fabric Interconnect
Creating a Certificate for VN-Link in Hardware

Before You Begin
Copy a certificate to the fabric interconnect.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the Certificates tab.
Step 5 On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.
Step 6 In the Create Key Ring dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the key ring. Enter up to 510 characters.</td>
</tr>
<tr>
<td>Protocol field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• workspace</td>
</tr>
<tr>
<td></td>
<td>• volatile</td>
</tr>
<tr>
<td>Certificate File field</td>
<td>The name of the certificate file associated with this key ring.</td>
</tr>
<tr>
<td>Path field</td>
<td>The path to the certificate file on the server.</td>
</tr>
</tbody>
</table>
Deleting a Certificate for VN-Link in Hardware

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the Certificates tab.
Step 5 In the Key Rings table, click the certificate you want to delete.
Step 6 Right-click the certificate you want to delete and select Delete.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Connecting Cisco UCS Manager to VMware vCenter Using the Extension Key

(Optional) Modifying the vCenter Extension Key

You can modify the vCenter extension key for the following reasons:

• To provide better system identification, you can name the vCenter extension key something more meaningful than the default ID string.

• If two Cisco UCS instances want to connect to the same VMware vCenter instance, they must use the same extension key and certificate.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Modify Extension Key.
Step 6 In the Modify Extension Key dialog box, do the following:
 a) In the Key field, modify the key as needed.
 A vCenter extension key can have a maximum length of 33 characters. These characters can be letters, numbers, or hyphens. No other characters or spaces are permitted in the extension key.
b) Click **OK**.

What to Do Next

Export the vCenter extension file or files from Cisco UCS Manager.

Exporting a vCenter Extension File from Cisco UCS Manager

Depending on the version of VMware vCenter you are using, you can either generate one extension file or a set of nine extension files.

Procedure

Step 1
In the **Navigation** pane, click the **VM** tab.

Step 2
On the **VM** tab, expand the **All** node.

Step 3
On the **VM** tab, click **VMWare**.

Step 4
In the **Work** pane, click the **General** tab.

Step 5
In the **Actions** area, click one of the following links:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export vCenter Extension</td>
<td>For vCenter version 4.0 update 1 and later.</td>
</tr>
<tr>
<td>Export Multiple vCenter Extensions</td>
<td>For vCenter version 4.0.</td>
</tr>
</tbody>
</table>

Step 6
In the **Export vCenter Extension** dialog box, do the following:

a) In the **Save Location** field, enter the path to the directory where you want to save the extension file or files.

 If you do not know the path, click the ... button and browse to the location.

b) Click **OK**.

Cisco UCS Manager generates the extension file(s) and saves them to the specified location.

What to Do Next

Register the vCenter extension file or files in VMware vCenter.

Registering a vCenter Extension File in VMware vCenter

In VMware vCenter, the vCenter extension files are called plug-ins.

Before You Begin

Export the vCenter extension file(s) from Cisco UCS Manager. Ensure that the exported vCenter extension files are saved to a location that can be reached by VMware vCenter.
Procedure

Step 1 In VMware vCenter, choose **Plug-ins > Manage Plug-ins**.

Step 2 Right-click any empty space below the Available Plug-ins section of the **Plug-in Manager** dialog box and click **New Plug-in**.

Step 3 Click **Browse** and navigate to the location where the vCenter extension file(s) are saved.

Step 4 Choose a vCenter extension file and click **Open**.

Step 5 Click **Register Plug-in**.

Step 6 If the **Security Warning** dialog box appears, click **Ignore**.

Step 7 Click **OK**.

The vCenter extension file registers as an available VMware vCenter plug-in. You do not need to install the plug-in, leave it in the available state. If you are registering multiple vCenter extension files, repeat this procedure until all files are registered.
CHAPTER 32

Using the Configure VMware Integration Wizard

This chapter includes the following sections:

- Configure VMware Integration Wizard, page 501
- Configuring the VMware Integration with the Wizard, page 501

Configure VMware Integration Wizard

The Configure VMware Integration wizard provides a single access to perform the configuration steps that are specific to Cisco UCS Manager. You cannot use this wizard to complete the configuration steps that must be performed in VMware vCenter to complete the integration.

Through the Configure VMware Integration wizard, you can perform the following configuration steps:

1. Export the vCenter extension files to establish a connection to VMware vCenter.
 - You must register the vCenter extension key as a plug-in in VMware vCenter. You cannot perform that step in the Configure VMware Integration wizard.

2. Define the structure for a VMware vCenter Distributed Virtual Switch (DVS), including the vCenter server, datacenter, DVS folder, and DVS.
 - A DVS structure created with this wizard does not include a vCenter server folder that contains the datacenter. If you want a folder between the vCenter server and the datacenter, do not use this wizard to configure the integration with VMware vCenter.

3. Define the port profile and profile client.

4. Apply the configuration to VMware vCenter.

When you have completed the integration steps through the wizard, you must log in to VMware vCenter and associate the VMs and port profiles with the DVS. The port profiles are shown as port groups in VMware vCenter.

Configuring the VMware Integration with the Wizard

If you prefer not to use this wizard, you can perform each of these steps individually.
Before You Begin

Before you use the **Configure VMware Integration** wizard, complete the following:

- Configure the VMware ESX host for VN-Link.
- Configure a VMware vCenter Instance for VN-Link
- Configure a certificate for VN-Link in Hardware

Procedure

Step 1
In the **Navigation** pane, click the **VM** tab.

Step 2
On the **VM** tab, expand the **All** node.

Step 3
In the **Work** pane, click the **General** tab.

Step 4
In the **Actions** area, click **Configure VMware Integration**.

Step 5
In the **Configure VMware Integration** wizard, complete the following:

- **Page 1**: Establishing the Connection to vCenter Server, on page 502
- **Page 2**: Defining a VMware vCenter Distributed Virtual Switch, on page 503
- **Page 3**: Defining a Port Profile, on page 505
- **Page 4**: Applying Port Profiles and Configuration to vCenter Server, on page 507

Page 1: Establishing the Connection to vCenter Server

This procedure directly follows the steps in **Configuring the VMware Integration with the Wizard**, on page 501. It describes how to establish a connection to VMware vCenter through the **Configure VMware Integration** wizard.

You can skip this page and move onto the next page if you have already exported and registered the vCenter extension key files.

Before You Begin

If you want to use a custom extension key, you must modify the extension key before performing this step as described in **(Optional) Modifying the vCenter Extension Key**, on page 498.

Procedure

Step 1
To export the vCenter extension files, click one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export</td>
<td>For VMware vCenter version 4.0 update 1 and later.</td>
</tr>
<tr>
<td></td>
<td>Exports a single vCenter Extension Key file.</td>
</tr>
</tbody>
</table>
For VMware vCenterversion 4.0.
Exports ninenvCenter Extension Key files.

Step 2
In the **Export vCenter Extension** dialog box, do the following:
a) In the **Save Location** field, enter the path to the directory where you want to save the extension file or files.
 If you do not know the path, click the ... button and browse to the location.
b) Click **OK**.
Cisco UCS Manager generates the extension file(s) and saves them to the specified location.

Step 3
Copy the downloaded file to a location on the VMware vCenter.

Step 4
Register the vCenter extension file(s) in VMware vCenter.
For more information, see Registering a vCenter Extension File in VMware vCenter, on page 499, and the instructions on this page in the **Configure VMware Integration** wizard.

Step 5
Click **Next**.

What to Do Next
Complete the steps in Page 2: Defining a VMware vCenter Distributed Virtual Switch, on page 503.

Page 2: Defining a VMware vCenter Distributed Virtual Switch

This procedure directly follows the steps in Page 1: Establishing the Connection to vCenter Server, on page 502. It describes how to define the components of a distributed virtual switch in VMware vCenter through the **Configure VMware Integration** wizard.

Procedure

Step 1
In the **vCenter Server** area, complete the following fields to define the connection to VMware vCenter:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
</tbody>
</table>
| **vCenter Server Name field** | The user-defined name for the vCenter server.
This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved. |
| **Description field** | The description of the vCenter server.
Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark). |
Step 2
In the **Datacenter** area, complete the following fields to create the datacenter in VMware vCenter:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Datacenter Name field</td>
<td>The name of the vCenter Datacenter. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the Datacenter. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 3
In the **DVS Folder** area, complete the following fields to create a folder to contain the distributed virtual switch in VMware vCenter:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folder Name field</td>
<td>The name of the folder that contains the distributed virtual switch (DVS). This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 4
In the **DVS** area, complete the following fields to create the distributed virtual switch in VMware vCenter:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVS Name field</td>
<td>The name of the DVS. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>
Description field
The user-defined description of the DVS.
Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).

DVS field
This can be:
- disable
- enable

If you disable the DVS, Cisco UCS Manager does not push any configuration changes related to the DVS to VMware vCenter.

What to Do Next
Complete the steps in Page 3: Defining a Port Profile, on page 505.

Page 3: Defining a Port Profile
This procedure directly follows the steps in Page 2: Defining a VMware vCenter Distributed Virtual Switch, on page 503. It describes how to define the components of a distributed virtual switch in VMware vCenter through the Configure VMware Integration wizard.

Procedure

Step 1
In the Port Profile area, complete the following fields to define the port profile:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The user-defined name for the port profile. This name can be between 1 and 31 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description for the port profile. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>QoS Policy drop-down list</td>
<td>The quality of service policy associated with this port profile.</td>
</tr>
</tbody>
</table>
Network Control Policy drop-down list
The network control policy associated with this port profile.

Max Ports field
The maximum number of ports that can be associated with this port profile. The default is 64 ports.

The maximum number of ports that can be associated with a single distributed virtual switch (DVS) is 4096. If the DVS has only one associated port profile, that port profile can be configured with up to 4096 ports. However, if the DVS has more than one associated port profile, the total number of ports associated with all of those port profiles combined cannot exceed 4096.

Host Network IO Performance field
This can be:
- None
- High Performance

Pin Group drop-down list
The pin group associated with this port profile.

Step 2
In the **VLANs** area, do the following to assign one or more VLANs to the port profile:

- **a)** In the **Select** column, check the check box in the appropriate row for each VLAN you want to use in the port profile.
- **b)** In the **Native VLAN** column, click the radio button in the appropriate row for the VLAN you want to designate as the native VLAN.

Step 3
In the **Client Profile** area, do the following to create a profile client for the port profile:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The user-defined name for the profile client. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>The user-defined description of the client. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Datacenter drop-down list</td>
<td>Select a Datacenter from the drop-down list or select All if this profile client applies to all Datacenters.</td>
</tr>
<tr>
<td>Folder drop-down list</td>
<td>Select a folder from the drop-down list or select All if this profile client applies to all folders.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Distributed Virtual Switch</td>
<td>Select a virtual switch from the drop-down list or select All if this profile client applies to all virtual switches.</td>
</tr>
</tbody>
</table>

Step 4
Click **Next**.

What to Do Next

Complete the configuration of the virtual machines in VMware vCenter.

Page 4: Applying Port Profiles and Configuration to vCenter Server

This procedure directly follows the steps in **Page 3: Defining a Port Profile**, on page 505. It describes how to apply the port profiles to vCenter Server through the **Configure VMware Integration** wizard.

Procedure

Step 1
Review the text on the page in the **Configure VMware Integration** wizard.

Step 2
Click **Finish**.
Cisco UCS Manager connects to the vCenter Server, creates the specified DVS, and applies the port profiles.

What to Do Next

In VMware vCenter, associate the VMs and port profiles with the DVS. The port profiles are shown as port groups in VMware vCenter.
Configuring Distributed Virtual Switches in Cisco UCS

This chapter includes the following sections:

- Distributed Virtual Switches, page 509
- Configuring a Distributed Virtual Switch, page 510
- Managing Distributed Virtual Switches, page 513

Distributed Virtual Switches

Each VMware ESX host has its own software-based virtual switch (vSwitch) in its hypervisor that performs the switching operations between its virtual machines (VMs). The Cisco UCS distributed virtual switch (DVS) is a software-based virtual switch that runs alongside the vSwitch in the ESX hypervisor, and can be distributed across multiple ESX hosts. Unlike vSwitch, which uses its own local port configuration, a DVS associated with multiple ESX hosts uses the same port configuration across all ESX hosts.

After associating an ESX host to a DVS, you can migrate existing VMs from the vSwitch to the DVS, and you can create VMs to use the DVS instead of the vSwitch. With the hardware-based VN-Link implementation, when a VM uses the DVS, all VM traffic passes through the DVS and ASIC-based switching is performed by the fabric interconnect.

In Cisco UCS Manager, DVSes are organized in the following hierarchy:

```
vCenter
    Folder (optional)
    Datacenter (required)
        Folder (required)
            DVS
```

At the top of the hierarchy is the vCenter, which represents a VMware vCenter instance. Each vCenter contains one or more datacenters, and optionally vCenter folders with which you can organize the datacenters. Each datacenter contains one or more required datacenter folders. Datacenter folders contain the DVSes.
Configuring a Distributed Virtual Switch

Before You Begin

You must first create a datacenter in VMware vCenter. Do not create the folder inside the datacenter or the DVS in VMware vCenter.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 Right-click the VMWare node and choose Configure vCenter.
Step 4 On the Configure vCenter page, do the following:
 a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The user-defined name for the VMware Virtual Center (vCenter). This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>The user-defined description of VMware vCenter. Enter up to 256 characters. You can use any characters or spaces except <code>^</code> (carat), <code>\</code> (backslash), <code>></code> (greater than), <code><</code> (less than), <code>'</code> (single quote), <code>"</code> (double quote), <code>´</code> (accent mark).</td>
</tr>
<tr>
<td>Hostname</td>
<td>The hostname or IP address of the machine that hosts VMware vCenter. Note: If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
</tbody>
</table>

 b) Click Next.

Step 5 On the Create Folder page, click one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next</td>
<td>Moves to the next page. Choose this option if the vCenter structure does not require you to include the datacenter in a high-level folder. If you choose this option, continue with Step 7.</td>
</tr>
</tbody>
</table>
Add | Opens the Create Folder dialog box, where you can add a high-level folder above the datacenter.

If you choose this option, continue with Step 6.

Step 6 (Optional) In the Create Folder dialog box, do the following:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>A user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

b) Click Next.

Step 7 On the Create Datacenter page, do the following:

a) Click Add.

b) In the Create Datacenter dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the Datacenter. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved. The datacenter name that you specify in Cisco UCS Manager must match the name of the datacenter previously created in VMware vCenter.</td>
</tr>
<tr>
<td>Description</td>
<td>The user-defined description of the Datacenter. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

c) Click Next.

Step 8 In the Create Folder page, do the following to create a folder in the datacenter:

a) Click Add.
b) In the **Create Folder** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

Step 9 On the **Create Distributed Virtual Switches** page, do the following to create a distributed virtual switch in the folder:

a) Click **Add** to add a distributed virtual switch to the folder.

b) In the **Create Distributed Virtual Switches** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the distributed virtual switch. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The user-defined description of the distributed virtual switch. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admin State field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This can be:</td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
</tbody>
</table>

If you disable the DVS, Cisco UCS Manager does not push any configuration changes related to the DVS to VMware vCenter.

c) Click **OK**

Step 10 Click **Finish** if you have finished adding all datacenters, folders, and DVSes to the vCenter. You may need to click **Finish** more than once to exit the wizard. You can stop at any page to add another datacenter, folder, or DVS.
Managing Distributed Virtual Switches

Adding a Folder to a vCenter

You can add a folder inside a vCenter and place your datacenters inside the folder. However, this folder is optional.

Procedure

Step 1	In the Navigation pane, click the VM tab.
Step 2	On the VM tab, expand the VMWare node.
Step 3	Right-click the vCenter to which you want to add a datacenter and choose Create Folder.
Step 4	(Optional) In the Create Folder dialog box, do the following:
a)	Complete the following fields:
Name field	The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
Description field	A user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).
b)	Click Next.
Step 5	On the Create Datacenter page, do the following:
a)	Click Add.
b)	In the Create Datacenter dialog box, complete the following fields:
Name field	The name of the Datacenter. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved. The datacenter name that you specify in Cisco UCS Manager must match the name of the datacenter previously created in VMware vCenter.
Step 6 In the Create Folder page, do the following to create a folder in the datacenter:

a) Click Add.

b) In the Create Folder dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description field</td>
<td>The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

c) Click Next.

Step 7 On the Create Distributed Virtual Switches page, do the following to create a distributed virtual switch in the folder:

a) Click Add to add a distributed virtual switch to the folder.

b) In the Create Distributed Virtual Switches dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the distributed virtual switch. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the distributed virtual switch. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
c) Click **OK**

Step 8
Click **Finish** if you have finished adding all datacenters, folders, and DVSes to the folder.
You may need to click **Finish** more than once to exit the wizard. You can stop at any page to add another datacenter, folder, or DVS.

Adding a Datacenter to a vCenter

Before You Begin

You must first create a datacenter in VMware vCenter. Do not create the folder inside the datacenter or the DVS in VMware vCenter.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the VM tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the VM tab, expand the VMware node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click the vCenter to which you want to add a datacenter and choose Create Datacenter.</td>
</tr>
<tr>
<td>Step 4</td>
<td>On the Create Datacenter page, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) Click Add.</td>
</tr>
<tr>
<td></td>
<td>b) In the Create Datacenter dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Name** field | The name of the Datacenter.
This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.
The datacenter name that you specify in Cisco UCS Manager must match the name of the datacenter previously created in VMware vCenter. |
Step 5 In the **Create Folder** page, do the following to create a folder in the datacenter:

a) Click **Add**.

b) In the **Create Folder** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the folder. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

c) Click **Next**.

Step 6 On the **Create Distributed Virtual Switches** page, do the following to create a distributed virtual switch in the folder:

a) Click **Add** to add a distributed virtual switch to the folder.

b) In the **Create Distributed Virtual Switches** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the distributed virtual switch. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the distributed virtual switch. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
This can be:

- enabled
- disabled

If you disable the DVS, Cisco UCS Manager does not push any configuration changes related to the DVS to VMware vCenter.

c) Click OK

Step 7 Click **Finish** if you have finished adding all folders and distributed virtual switches to the Datacenter. You may need to click **Finish** more than once to exit the wizard. You can stop at any page to add another folder or DVS to the datacenter.

Adding a Folder to a Datacenter

Procedure

Step 1 In the **Navigation** pane, click the **VM** tab.

Step 2 On the **VM** tab, expand the **VMWare** node.

Step 3 Expand the vCenter that includes the datacenter to which you want to add a folder.

Step 4 Right-click the datacenter to which you want to add a folder and choose **Create Folder**.

Step 5 On the **Create Folder** page, do the following to add a folder to the datacenter:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the vCenter folder. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
</tbody>
</table>

b) • Click **Next** and continue with Step 6 to create a DVS in the folder.

• Continue with Step 7 if you do not want to create a DVS in the folder.
Step 6 On the **Create Distributed Virtual Switches** page, do the following to create a distributed virtual switch in the folder:

a) Click **Add** to add a distributed virtual switch to the folder.

b) In the **Create Distributed Virtual Switches** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the distributed virtual switch. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description</td>
<td>The user-defined description of the distributed virtual switch. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Admin State</td>
<td>This can be: enabled disabled</td>
</tr>
</tbody>
</table>

If you disable the DVS, Cisco UCS Manager does not push any configuration changes related to the DVS to VMware vCenter.

c) Click **OK**

Step 7 Click **Finish** if you have finished adding all folders and DVSes to the datacenter. You may need to click **Finish** more than once to exit the wizard. You can stop at any page to add another folder or DVS.

Deleting a Folder from a vCenter

If the folder contains a datacenter, Cisco UCS Manager also deletes that datacenter and any folders and DVSes it contains.

Procedure

Step 1 In the **Navigation** pane, click the **VM** tab.

Step 2 On the **VM** tab, expand **All > VMWare**.

Step 3 Expand the node for the vcenter that contains the folder you want to delete.

Step 4 Right-click the folder and choose **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Deleting a Datacenter

If the datacenter contains a folder, Cisco UCS Manager also deletes that folder and any DVS it contains.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare.
Step 3 If the datacenter that you want to delete is contained in a higher level folder, expand the node for that folder.
Step 4 Right-click the datacenter and choose Delete.
Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Folder from a Datacenter

If the folder contains a DVS, Cisco UCS Manager also deletes that DVS.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare.
Step 3 If the datacenter that you want to modify is contained in a higher level folder, expand the node for that folder.
Step 4 Expand the node for the datacenter which contains the folder you want to delete.
Step 5 Right-click the folder and choose Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Deleting a Distributed Virtual Switch from a Folder

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare.
Step 3 If the datacenter that you want to modify is contained in a higher level folder, expand the node for that folder.
Step 4 Expand the node for the datacenter and the folder which contains the DVS you want to delete.
Step 5 Right-click the DVS and choose Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Configuring Port Profiles

This chapter includes the following sections:

- Port Profiles, page 521
- Port Profile Clients, page 522
- Creating a Port Profile, page 522
- Modifying the VLANs in a Port Profile, page 523
- Changing the Native VLAN for a Port Profile, page 524
- Adding a VLAN to a Port Profile, page 524
- Removing a VLAN from a Port Profile, page 524
- Deleting a Port Profile, page 525
- Creating a Profile Client, page 525
- Modifying a Profile Client, page 526
- Deleting a Profile Client, page 527

Port Profiles

Port profiles contain the properties and settings used to configure virtual interfaces in Cisco UCS for VN-Link in hardware. The port profiles are created and administered in Cisco UCS Manager. There is no clear visibility into the properties of a port profile from VMware vCenter.

In VMware vCenter, a port profile is represented as a port group. Cisco UCS Manager pushes the port profile names to vCenter, which displays the names as port groups. None of the specific networking properties or settings in the port profile are visible in VMware vCenter.

After a port profile is created, assigned to, and actively used by one or more DVSes, any changes made to the networking properties of the port profile in Cisco UCS Manager are immediately applied to those DVSes. You must configure at least one port profile client for a port profile, if you want Cisco UCS Manager to push the port profile to VMware vCenter.
Port Profile Clients

The port profile client determines the DVSes to which a port profile is applied. By default, the port profile client specifies that the associated port profile applies to all DVSes in the vCenter. However, you can configure the client to apply the port profile to all DVSes in a specific datacenter or datacenter folder, or only to one DVS.

Creating a Port Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the VM tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the VM tab, expand All > VMWare.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right-click the Port Profiles node and choose Create Port Profile.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Create Port Profile dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The user-defined name for the port profile. This name can be between 1 and 31 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description for the port profile. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ’ (single quote), “ (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>QoS Policy drop-down list</td>
<td>The quality of service policy associated with this port profile.</td>
</tr>
<tr>
<td>Network Control Policy drop-down list</td>
<td>The network control policy associated with this port profile.</td>
</tr>
<tr>
<td>Max Ports field</td>
<td>The maximum number of ports that can be associated with this port profile. The default is 64 ports. The maximum number of ports that can be associated with a single distributed virtual switch (DVS) is 4096. If the DVS has only one associated port profile, that port profile can be configured with up to 4096 ports. However, if the DVS has more than one associated port profile, the total number of ports associated with all of those port profiles combined cannot exceed 4096.</td>
</tr>
</tbody>
</table>
| Host Network IO Performance field | This can be:
 • None
 • High Performance |
Step 5 In the **VLANs** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Check the check box in this column for each VLAN you want to use.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the VLAN.</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>To designate one of the VLANs as the native VLAN, click the radio button in this column.</td>
</tr>
</tbody>
</table>

Step 6 Click **Finish**.

Modifying the VLANs in a Port Profile

Procedure

Step 1 In the **Navigation** pane, click the **VM** tab.

Step 2 On the **VM** tab, expand **All > VMWare > Port Profiles**.

Step 3 Right-click the port profile for which you want to modify the VLANs and choose **Modify VLANs**.

Step 4 In the **Modify VLANs** dialog box, change one or more of the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>Check the check box in this column for each VLAN you want to use.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the VLAN.</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>To designate one of the VLANs as the native VLAN, click the radio button in this column.</td>
</tr>
<tr>
<td>Create VLAN</td>
<td>Click this link if you want to create a VLAN.</td>
</tr>
</tbody>
</table>

Step 5 Click **OK**.
Changing the Native VLAN for a Port Profile

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Right-click the port profile for which you want to change the native VLAN and choose Modify VLANs.
Step 4 In the Modify VLANs dialog box, do the following:
 a) In the Native VLAN column, click the radio button in the row for the VLAN that you want to become the native VLAN.
 b) Click OK.

Adding a VLAN to a Port Profile

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Right-click the port profile to which you want to add a VLAN and choose Modify VLANs.
Step 4 In the Modify VLANs dialog box, do the following:
 a) In the Select column, check the check box in the row for the VLAN that you want to add to the port profile.
 b) (Optional) If you want this VLAN to be the native VLAN, click the radio button in the Native VLAN column.
 c) Click OK.

Removing a VLAN from a Port Profile

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Right-click the port profile from which you want to remove a VLAN and choose Modify VLANs.
Step 4 In the Modify VLANs dialog box, do the following:
 a) In the Select column, uncheck the check box in the row for the VLAN that you want to remove from the port profile.
b) (Optional) If the VLAN was the native VLAN, click the radio button in the Native VLAN column for a different VLAN associated with the port profile to make that the native VLAN.

c) Click OK.

Deleting a Port Profile

You cannot delete a port profile if a VM is actively using that port profile.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Right-click the port profile you want to delete and choose Delete.
Step 4 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 5 Click OK.
Cisco UCS Manager deletes the port profile and all associated port profile clients.

Creating a Profile Client

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Right-click the port profile for which you want to create a profile client and choose Create Profile Client.
Step 4 In the Create Profile Client dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The user-defined name for the profile client. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the client. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>
Modifying a Profile Client

Procedure

Step 1 In the **Navigation** pane, click the **VM** tab.

Step 2 On the **VM** tab, expand **All > VMWare > Port Profiles**.

Step 3 Click the port profile for which you want to modify the profile client.

Step 4 In the **Work** pane, click the **Profile Clients** tab.

Step 5 Right-click the profile client you want to modify and choose **Show Navigator**.

Step 6 In the **Navigator** for the profile client, change the values for one or more of the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The user-defined name for the profile client.</td>
</tr>
<tr>
<td>Description field</td>
<td>The user-defined description of the client.</td>
</tr>
<tr>
<td>Datacenter field</td>
<td>A regular expression used to select the appropriate Datacenter.</td>
</tr>
<tr>
<td>Folder field</td>
<td>A regular expression used to select the appropriate Datacenter folder.</td>
</tr>
<tr>
<td>Distributed Virtual Switch field</td>
<td>A regular expression used to select the appropriate virtual switch.</td>
</tr>
</tbody>
</table>

Step 7 Click **OK**.

What to Do Next

Complete the configuration of the virtual machines in VMware vCenter.
Deleting a Profile Client

You cannot delete a port profile client if a VM is actively using the port profile with which the client is associated.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand All > VMWare > Port Profiles.
Step 3 Click the port profile from which you want to delete a profile client.
Step 4 In the Work pane, click the Profile Clients tab.
Step 5 Right-click the profile client you want to delete and choose Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 7 Click Save Changes.
Deleting a Profile Client
Configuring VN-Link Related Policies

This chapter includes the following sections:

- Configuring Dynamic vNIC Connection Policies, page 529
- Configuring the VM Lifecycle Policy, page 532
- Viewing Dynamic vNIC Properties in a VM, page 533

Configuring Dynamic vNIC Connection Policies

Dynamic vNIC Connection Policy

This policy determines how the VN-link connectivity between VMs and dynamic vNICs is configured. This policy is required for Cisco UCS instances that include servers with virtual interface card adapters on which you have installed VMs and configured dynamic vNICs.

Note

If you Vmotion a server that is configured with dynamic vNICs, the dynamic interface used by the vNICs fails and Cisco UCS Manager raises a fault to notify you of that failure.

When the server comes back up, Cisco UCS Manager assigns new dynamic vNICs to the server. If you are monitoring traffic on the dynamic vNIC, you must reconfigure the monitoring source.

Each Dynamic vNIC connection policy must include an adapter policy and designate the number of vNICs that can be configured for any server associated with a service profile that includes the policy.
Creating a Dynamic vNIC Connection Policy

Procedure

Step 1 In the Navigation pane, click the LAN tab.

Step 2 On the LAN tab, expand LAN > Policies.

Step 3 Expand the node for the organization where you want to create the policy. If the system does not include multi-tenancy, expand the root node.

Step 4 Right-click the Dynamic vNIC Connection Policies node and select Create Dynamic vNIC Connection Policy.

Step 5 In the Create Dynamic vNIC Connection Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
<tr>
<td>Number of Dynamic vNICs field</td>
<td>The number of dynamic vNICs that this policy affects.</td>
</tr>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The adapter profile associated with this policy. The profile must already exist to be included in the drop-down list.</td>
</tr>
<tr>
<td>Protection field</td>
<td>vNICs are always protected in Cisco UCS, but this field allows you to select a preferred fabric, if any. You can choose:</td>
</tr>
<tr>
<td></td>
<td>• protected-pref-a—Cisco UCS attempts to use fabric A, but will fail over to fabric B if necessary</td>
</tr>
<tr>
<td></td>
<td>• protected-pref-b—Cisco UCS attempts to use fabric B, but will fail over to fabric A if necessary</td>
</tr>
<tr>
<td></td>
<td>• protected—Cisco UCS uses whichever fabric is available</td>
</tr>
</tbody>
</table>

Step 6 Click OK.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Changing a Dynamic vNIC Connection Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the LAN tab, expand LAN > Policies.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the node for the organization that contains the policy you want to change. If the system does not include multi-tenancy, expand the root node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Expand the Dynamic vNIC Connection Policies node and click the policy that you want to change.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Change one or more of the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used.</td>
</tr>
<tr>
<td>Number of Dynamic vNICs field</td>
<td>The number of dynamic vNICs that this policy affects.</td>
</tr>
<tr>
<td>Adapter Policy drop-down list</td>
<td>The adapter profile associated with this policy. The profile must already exist to be included in the drop-down list.</td>
</tr>
</tbody>
</table>

You cannot change the other properties of the policy, such as the Name field.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Click Save Changes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Deleting a Dynamic vNIC Connection Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the LAN tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the LAN tab, expand LAN > Policies > Organization_Name.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand the Dynamic vNIC Connection Policies node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the policy you want to delete and select Delete.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
Configuring the VM Lifecycle Policy

VM Lifecycle Policy

The VM lifecycle policy determines how long Cisco UCS Manager retains offline VMs and offline dynamic vNICs in its database. If a VM or dynamic vNIC remains offline after that period, Cisco UCS Manager deletes the object from its database.

All virtual machines (VMs) on Cisco UCS servers are managed by vCenter. Cisco UCS Manager cannot determine whether an inactive VM is temporarily shutdown, has been deleted, or is in some other state that renders it inaccessible. Therefore, Cisco UCS Manager considers all inactive VMs to be in an offline state.

Cisco UCS Manager considers a dynamic vNIC to be offline when the associated VM is shutdown, or the link between the fabric interconnect and the I/O module fails. On rare occasions, an internal error can also cause Cisco UCS Manager to consider a dynamic vNIC to be offline.

The default VM and dynamic vNIC retention period is 15 minutes. You can set that for any period of time between 1 minute and 7200 minutes (or 5 days).

Note

The VMs that Cisco UCS Manager displays are for information and monitoring only. You cannot manage VMs through Cisco UCS Manager. Therefore, when you delete a VM from the Cisco UCS Manager database, you do not delete the VM from the server or from vCenter.

Configuring the VM Lifecycle Policy

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the General tab.
Step 5 In the Lifecycle Policy area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM Retention field</td>
<td>The period of time, in minutes, that Cisco UCS Manager retains an offline VM in its database. If a VM remains offline after that period, Cisco UCS Manager deletes the VM from its database. The default VM retention period is 15 minutes. You can configure this for any period of time between 1 minute and 7200 minutes (or 5 days).</td>
</tr>
</tbody>
</table>

Cisco UCS Manager GUI Configuration Guide, Release 1.4
The period of time, in minutes, that Cisco UCS Manager retains an offline dynamic vNIC in its database. If a dynamic vNIC remains offline after that period, Cisco UCS Manager deletes the dynamic vNIC from its database.

The default vNIC retention period is 15 minutes. You can configure this for any period of time between 1 minute and 7200 minutes (or 5 days).

Viewing Dynamic vNIC Properties in a VM

Before You Begin
The VM must be running.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the VM tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the VM tab, expand All > VMWare.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Expand Virtual Machines.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Expand the virtual machine that contains the dynamic vNIC.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Choose the dynamic vNIC.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Work pane, click the General tab. In the Properties area, the vNIC properties appear.</td>
</tr>
</tbody>
</table>
Managing Pending Deletions

This chapter includes the following sections:

- Pending Deletions for VN-Link Tasks, page 535
- Viewing Pending Deletions, page 536
- Changing the Properties of a Pending Deletion, page 536
- Deleting a Pending Deletion, page 537

Pending Deletions for VN-Link Tasks

When you delete a DVS from Cisco UCS Manager, either explicitly or by deleting any parent object in the hierarchy, Cisco UCS Manager initiates a connection with VMware vCenter to start the process of deleting the DVS. Until the DVS is successfully deleted from VMware vCenter, Cisco UCS Manager places the DVS in a pending deletion list.

However, Cisco UCS Manager cannot successfully delete a DVS from VMware vCenter if certain situations occur, including the following:

- VMware vCenter database was corrupted
- VMware vCenter was uninstalled
- The IP address for VMware vCenter was changed

If the DVS cannot be successfully deleted from VMware vCenter, the DVS remains in the pending deletion list until the pending deletion is deleted in Cisco UCS Manager or the properties for that pending deletion are changed in a way that allows the DVS to be successfully deleted from VMware vCenter. When you delete a pending deletion, the DVS is deleted from Cisco UCS Manager but is not deleted from VMware vCenter. If the DVS remains in VMware vCenter, you must delete the DVS manually.

You can view the pending deletion list, delete a pending deletion, or change the properties for a pending deletion in Cisco UCS Manager. For example, you can correct the VMware vCenter IP address for a pending deletion so that Cisco UCS Manager can successfully initiate a connection and delete the DVS from VMware vCenter. You cannot cancel the deletion of a DVS from Cisco UCS Manager.
Viewing Pending Deletions

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the Deletion Tasks tab.

Changing the Properties of a Pending Deletion

You can change the properties of a pending deletion, if necessary, to ensure that Cisco UCS Manager can successfully initiate a connection and delete the DVS from VMware vCenter.

Procedure

Step 1 In the Navigation pane, click the VM tab.
Step 2 On the VM tab, expand the All node.
Step 3 On the VM tab, click VMWare.
Step 4 In the Work pane, click the Deletion Tasks tab.
Step 5 Click the pending deletion for which you want to change the properties.
Step 6 Right-click the pending deletion and choose Show Navigator.
Step 7 In the Properties dialog box, change one or more of the following properties to ensure that Cisco UCS Manager can connect to VMware vCenter:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname field</td>
<td>The host on which the Datacenter resides.</td>
</tr>
<tr>
<td>Datacenter field</td>
<td>The name of the Datacenter.</td>
</tr>
<tr>
<td>Protocol field</td>
<td>The Datacenter protocol.</td>
</tr>
<tr>
<td>Folder field</td>
<td>The folder that is to be deleted.</td>
</tr>
</tbody>
</table>

Step 8 Click OK.
Cisco UCS Manager attempts to connect with VMware vCenter and delete the DVS.
Deleting a Pending Deletion

When you delete a pending deletion, the DVS is deleted from Cisco UCS Manager but is not deleted from VMware vCenter. If the DVS remains in VMware vCenter, you must delete the DVS manually.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the VM tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the VM tab, expand the All node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>On the VM tab, click VMWare.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the Deletion Tasks tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the pending deletion that you want to delete.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Right-click the pending deletion and select Delete.</td>
</tr>
<tr>
<td>Step 7</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>
PART VII

System Management

• Managing Time Zones, page 541
• Managing the Chassis, page 543
• Managing Blade Servers, page 551
• Managing Rack-Mount Servers, page 563
• Starting the KVM Console, page 573
• Managing the I/O Modules, page 579
• Backing Up and Restoring the Configuration, page 581
• Recovering a Lost Password, page 595
Managing Time Zones

This chapter includes the following sections:

- Time Zones, page 541
- Setting the Time Zone, page 541
- Adding an NTP Server, page 542
- Deleting an NTP Server, page 542

Time Zones

Cisco UCS requires an instance-specific time zone setting and an NTP server to ensure the correct time display in Cisco UCS Manager. If you do not configure both of these settings in a Cisco UCS instance, the time does not display correctly.

Setting the Time Zone

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In the Admin tab, expand All.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Timezone Management.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>From the Timezone drop-down list, select the time zone you want to use for the Cisco UCS instance.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click Save Changes.</td>
</tr>
</tbody>
</table>
Adding an NTP Server

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 In the Admin tab, expand All.
Step 3 Click Timezone Management.
Step 4 In the Work pane, click the General tab.
Step 5 In the NTP Servers area, click the + button on the table icon bar.
Step 6 In the Add NTP Server dialog box, do the following:
 a) In the NTP Server field, enter the IP address or hostname of the NTP server you want to use for this Cisco UCS instance.
 b) Click OK.

Deleting an NTP Server

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 In the Admin tab, expand All.
Step 3 Click Timezone Management.
Step 4 In the Work pane, click the General tab.
Step 5 In the NTP Servers area, right-click the server you want to delete and select Delete.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 7 Click Save Changes.
Managing the Chassis

This chapter includes the following sections:

- Chassis Management in Cisco UCS Manager GUI, page 543
- Guidelines for Removing and Decommissioning Chassis, page 543
- Acknowledging a Chassis, page 544
- Decommissioning a Chassis, page 545
- Removing a Chassis, page 545
- Decommissioning a Single Chassis, page 545
- Recommissioning Multiple Chassis, page 546
- Renumbering a Chassis, page 547
- Toggling the Locator LED, page 548
- Viewing the POST Results for a Chassis, page 548

Chassis Management in Cisco UCS Manager GUI

You can manage and monitor all chassis in a Cisco UCS instance through Cisco UCS Manager GUI.

Guidelines for Removing and Decommissioning Chassis

Consider the following guidelines when deciding whether to remove or decommission a chassis using Cisco UCS Manager:

Decommissioning a Chassis

Decommissioning is performed when a chassis is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned chassis will be eventually recommissioned, a portion of the chassis’ information is retained by Cisco UCS Manager for future use.
Removing a Chassis

Removing is performed when you physically remove a chassis from the system. Once the physical removal of the chassis is completed, the configuration for that chassis can be removed in Cisco UCS Manager.

Note

You cannot remove a chassis from Cisco UCS Manager if it is physically present and connected.

If you need to add a removed chassis back to the configuration, it must be reconnected and then rediscovered. During rediscovery Cisco UCS Manager will assign the chassis a new ID that may be different from ID that it held before.

Acknowledging a Chassis

Perform the following procedure if you increase or decrease the number of links that connect the chassis to the fabric interconnect. Acknowledging the chassis ensures that Cisco UCS Manager is aware of the change in the number of links and that traffic flows along all available links.

After you enable or disable a port on a fabric interconnect, wait for at least 1 minute before you reacknowledge the chassis. If you reacknowledge the chassis too soon, the pinning of server traffic from the chassis may not be updated with the changes to the port that you enabled or disabled.

Procedure

1. In the Navigation pane, click the Equipment tab.
2. On the Equipment tab, expand Equipment > Chassis.
3. Choose the chassis that you want to acknowledge.
4. In the Work pane, click the General tab.
5. In the Actions area, click Acknowledge Chassis.
6. If Cisco UCS Manager displays a confirmation dialog box, click Yes.

Cisco UCS Manager disconnects the chassis and then rebuilds the connections between the chassis and the fabric interconnect or fabric interconnects in the system.
Decommissioning a Chassis

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the chassis that you want to decommission.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Decommission Chassis.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes. The decommission may take several minutes to complete. After the chassis has been removed from the configuration, Cisco UCS Manager adds the chassis to the Decommissioned tab.</td>
</tr>
</tbody>
</table>

Removing a Chassis

Before You Begin

Physically remove the chassis before performing the following procedure.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the chassis that you want to remove.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Remove Chassis.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If Cisco UCS Manager displays a confirmation dialog box, click Yes. The removal may take several minutes to complete.</td>
</tr>
</tbody>
</table>

Recommissioning a Single Chassis

This procedure returns the chassis to the configuration and applies the chassis discovery policy to the chassis. After this procedure, you can access the chassis and any servers in it.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 In the Equipment tab, expand the Equipment node.
Step 3 Click the Chassis node.
Step 4 In the Work pane, click the Decommissioned tab.
Step 5 For the chassis that you want to recommission, do the following:
 a) Right-click the chassis and choose Re-commission Chassis.
 b) In the Chassis ID field of the Re-commission Chassis dialog box, type or use the arrows to choose the ID that you want to assign to the chassis
 c) Click OK.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
This procedure may take several minutes to complete. After the chassis has been recommissioned, Cisco UCS Manager runs the chassis discovery policy and adds the chassis to the list in the Navigation pane.

Recommissioning Multiple Chassis

This procedure returns the chassis to the configuration and applies the chassis discovery policy to the chassis. After this procedure, you can access the chassis and any servers in it.

Note You cannot renumber the chassis when you recommission multiple chassis at the same time. Cisco UCS Manager assigns the same ID that the chassis had previously.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 In the Equipment tab, expand the Equipment node.
Step 3 Click the Chassis node.
Step 4 In the Work pane, click the Decommissioned tab.
Step 5 In the row for each chassis that you want to recommission, check the Re-commission check box.
Step 6 Click Save Changes.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
This procedure may take several minutes to complete. After the chassis has been recommissioned, Cisco UCS Manager runs the chassis discovery policy and adds the chassis to the list in the Navigation pane.
Renumbering a Chassis

Note
Chassis renumbering is supported in Cisco UCS Manager 1.4(2) and later releases. You cannot renumber a chassis in a prior release.

Before You Begin
If you are swapping IDs between chassis, you must first decommission both chassis and then wait for the chassis decommission FSM to complete before proceeding with the renumbering steps.

Procedure

Step 1
In the Navigation pane, click the Equipment tab.

Step 2
On the Equipment tab, expand Equipment > Chassis.

Step 3
Verify that the Chassis node does not include the following:
- The chassis you want to renumber
- A chassis with the number you want to use

If either of these chassis are listed in the Chassis node, decommission those chassis. You must wait until the decommission FSM is complete and the chassis are not listed in the Chassis node before continuing. This might take several minutes.

Step 4
On the Equipment tab, click the Chassis node.

Step 5
In the Work pane, click the Decommissioned tab.

Step 6
For the chassis that you want to renumber, do the following:
- Right-click the chassis and choose Re-commission Chassis.
- In the Chassis ID field of the Re-commission Chassis dialog box, type or use the arrows to choose the ID that you want to assign to the chassis
- Click OK

Step 7
If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Toggling the Locator LED

Turning on the Locator LED for a Chassis

Procedure

1. **Step 1** In the Navigation pane, click the Equipment tab.
2. **Step 2** On the Equipment tab, expand Equipment > Chassis.
3. **Step 3** Click the chassis that you need to locate.
4. **Step 4** In the Work pane, click the General tab.
5. **Step 5** In the Actions area, click Turn on Locator LED.
 - This action is not available if the locator LED is already turned on.
 - The LED on the chassis starts flashing.

Turning off the Locator LED for a Chassis

Procedure

1. **Step 1** In the Navigation pane, click the Equipment tab.
2. **Step 2** On the Equipment tab, expand Equipment > Chassis.
3. **Step 3** Choose the chassis for which you want to turn off the locator LED.
4. **Step 4** In the Work pane, click the General tab.
5. **Step 5** In the Actions area, click Turn off Locator LED.
 - This action is not available if the locator LED is already turned off.
 - The LED on the chassis stops flashing.

Viewing the POST Results for a Chassis

You can view any errors collected during the Power On Self-Test process for all servers and adapters in a chassis.
Viewing the POST Results for a Chassis

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the chassis for which you want to view the POST results.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click View POST Results. The POST Results dialog box lists the POST results for each server in the chassis and its adapters.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Click the link in the Affected Object column to view the properties of that adapter.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click OK to close the POST Results dialog box.</td>
</tr>
</tbody>
</table>
Managing Blade Servers

This chapter includes the following sections:

- Blade Server Management, page 551
- Guidelines for Removing and Decommissioning Blade Servers, page 552
- Booting Blade Servers, page 552
- Shutting Down Blade Servers, page 554
- Resetting a Blade Server, page 555
- Reacknowledging a Blade Server, page 556
- Removing a Server from a Chassis, page 556
- Decommissioning a Blade Server, page 557
- Reacknowledging a Server Slot in a Chassis, page 557
- Removing a Non-Existent Blade Server from the Configuration Database, page 558
- Turning the Locator LED for a Blade Server On and Off, page 558
- Resetting the CMOS for a Blade Server, page 559
- Resetting the CIMC for a Blade Server, page 559
- Recovering the Corrupt BIOS on a Blade Server, page 560
- Viewing the POST Results for a Blade Server, page 561

Blade Server Management

You can manage and monitor all blade servers in a Cisco UCS instance through Cisco UCS Manager. Some blade server management tasks, such as changes to the power state, can be performed from the server and service profile.

The remaining management tasks can only be performed on the server.
If a blade server slot in a chassis is empty, Cisco UCS Manager provides information, errors, and faults for that slot. You can also reacknowledge the slot to resolve server mismatch errors and to have Cisco UCS Manager rediscover the blade server in the slot.

Guidelines for Removing and Decommissioning Blade Servers

Consider the following guidelines when deciding whether to remove or decommission a blade server using Cisco UCS Manager:

Decommissioning a Blade Server

Decommissioning is performed when a blade server is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned blade server will be eventually recommissioned, a portion of the server's information is retained by Cisco UCS Manager for future use.

Removing a Blade Server

Removing is performed when you physically remove a blade server from the server by disconnecting it from the chassis. You cannot remove a blade server from Cisco UCS Manager if it is physically present and connected to a chassis. Once the physical removal of the blade server is completed, the configuration for that blade server can be removed in Cisco UCS Manager.

During removal, active links to the blade server are disabled, all entries from databases are removed, and the server is automatically removed from any server pools that it was assigned to during discovery.

Note

Only those servers added to a server pool automatically during discovery will be removed automatically. Servers that have been manually added to a server pool have to be removed manually.

If you need to add a removed blade server back to the configuration, it must be reconnected and then rediscovered. When a server is reintroduced to Cisco UCS Manager it is treated like a new server and is subject to the deep discovery process. For this reason, it's possible that Cisco UCS Manager will assign the server a new ID that may be different from the ID that it held before.

Booting Blade Servers

Booting a Blade Server

If the **Boot Server** link is dimmed in the **Actions** area, you must shut down the server first.
Booting Blade Servers

Procedure

Step 1 In the Navigation pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, expand **Equipment > Chassis > Chassis Number > Servers**.

Step 3 Choose the server that you want to boot.

Step 4 In the **Work** pane, click the **General** tab.

Step 5 In the **Actions** area, click **Boot Server**.

Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

After the server has booted, the **Overall Status** field on the **General** tab displays an **OK** status.

Booting a Server from the Service Profile

Procedure

Step 1 In the Navigation pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Service Profiles**.

Step 3 Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the **root** node.

Step 4 Choose the service profile that requires the associated server to be booted.

Step 5 In the **Work** pane, click the **General** tab.

Step 6 In the **Actions** area, click **Boot Server**.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Step 8 Click **OK** in the **Boot Server** dialog box.

After the server has booted, the **Overall Status** field on the **General** tab displays an **OK** status or an **UP** status.

Determining the Boot Order of a Blade Server

Tip You can also view the boot order tabs from the **General** tab of the service profile associated with a server.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Click the server for which you want to determine the boot order.
Step 4 In the Work pane, click the General tab.
Step 5 If the Boot Order Details area is not expanded, click the Expand icon to the right of the heading.
Step 6 To view the boot order assigned to the server, click the Configured Boot Order tab.
Step 7 To view what will boot from the various devices in the physical server configuration, click the Actual Boot Order tab.

Note The Actual Boot Order tab always shows "Internal EFI Shell" at the bottom of the boot order list.

Shutting Down Blade Servers

Shutting Down a Blade Server

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

If the Shutdown Server link is dimmed in the Actions area, the server is not running.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server that you want to shut down.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Shutdown Server.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

After the server has been successfully shut down, the Overall Status field on the General tab displays a power-off status.

Shutting Down a Server from the Service Profile

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

If the Shutdown Server link is dimmed in the Actions area, the server is not running.
Procedure

Step 1 In the Navigation pane, click the Servers tab.

Step 2 On the Servers tab, expand Servers > Service Profiles.

Step 3 Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the root node.

Step 4 Choose the service profile that requires the associated server to be shut down.

Step 5 In the Work pane, click the General tab.

Step 6 In the Actions area, click Shutdown Server.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

After the server has been successfully shut down, the Overall Status field on the General tab displays a down status or a power-off status.

Resetting a Blade Server

When you reset a server, Cisco UCS Manager sends a pulse on the reset line. You can choose to gracefully shut down the operating system. If the operating system does not support a graceful shut down, the server is power cycled. The option to have Cisco UCS Manager complete all management operations before it resets the server does not guarantee that these operations will be completed before the server is reset.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3 Choose the server that you want to reset.

Step 4 In the Work pane, click the General tab.

Step 5 In the Actions area, click Reset.

Step 6 In the Reset Server dialog box, do the following:

a) Click the Power Cycle option.

b) (Optional) Check the check box if you want Cisco UCS Manager to complete all management operations that are pending on this server.

c) Click OK.

The reset may take several minutes to complete. After the server has been reset, the Overall Status field on the General tab displays an ok status.
Reacknowledging a Blade Server

Perform the following procedure if you need to have Cisco UCS Manager rediscover the server and all endpoints in the server. For example, you can use this procedure if a server is stuck in an unexpected state, such as the discovery state.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server that you want to acknowledge.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Server Maintenance.</td>
</tr>
</tbody>
</table>
| Step 6 | In the Maintenance dialog box, do the following:
 a) Click Re-acknowledge.
 b) Click OK.
Cisco UCS Manager disconnects the server and then builds the connections between the server and the fabric interconnect or fabric interconnects in the system. The acknowledgment may take several minutes to complete. After the server has been acknowledged, the Overall Status field on the General tab displays an OK status. |

Removing a Server from a Chassis

Before You Begin

Physically remove the server from its chassis before performing the following procedure.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server that you want to remove from the chassis.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Server Maintenance.</td>
</tr>
</tbody>
</table>
| Step 6 | In the Maintenance dialog box, do the following:
 a) Click Decommission.
 b) Click OK.
The server is removed from the Cisco UCS configuration. |
| Step 7 | Go to the physical location of the chassis and remove the server hardware from the slot.
For instructions on how to remove the server hardware, see the Cisco UCS Hardware Installation Guide for your chassis. |
What to Do Next
If you physically re-install the blade server, you must re-acknowledge the slot to have Cisco UCS Manager rediscover the server.
For more information, see Reacknowledging a Server Slot in a Chassis, on page 557.

Decommissioning a Blade Server

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server that you want to decommission.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Server Maintenance.
Step 6 In the Maintenance dialog box, do the following:
 a) Click Decommission.
 b) Click OK.

The server is removed from the Cisco UCS configuration.

What to Do Next
If you physically re-install the blade server, you must re-acknowledge the slot to have Cisco UCS Manager rediscover the server.
For more information, see Reacknowledging a Server Slot in a Chassis, on page 557.

Reacknowledging a Server Slot in a Chassis

Perform the following procedure if you decommissioned a blade server without removing the physical hardware from the chassis and you want Cisco UCS Manager to rediscover and recommission the server.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server whose slot you want to reacknowledge.
Step 4 If Cisco UCS Manager displays a Resolve Slot Issue dialog box, do one of the following:
Removing a Non-Existent Blade Server from the Configuration Database

Perform the following procedure if you physically removed the server hardware without first decommissioning the server. You cannot perform this procedure if the server is physically present.

If you want to physically remove a server, see Removing a Server from a Chassis, on page 556.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server that you want to remove from the configuration database.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Server Maintenance.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Maintenance dialog box, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) Click Remove.</td>
</tr>
<tr>
<td></td>
<td>b) Click OK.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager removes all data about the server from its configuration database. The server slot is now available for you to insert new server hardware.

Turning the Locator LED for a Blade Server On and Off

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server for which you want to turn the locator LED on or off.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click one of the following:</td>
</tr>
</tbody>
</table>
• Turn on Locator LED
• Turn off Locator LED

Reseting the CMOS for a Blade Server

On rare occasions, troubleshooting a server may require you to reset the CMOS. This procedure is not part of the normal maintenance of a server.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server for which you want to reset the CMOS.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Recover Server.
Step 6 In the Recover Server dialog box, do the following:
 a) Click Reset CMOS.
 b) Click OK.

Reseting the CIMC for a Blade Server

On rare occasions, such as an issue with the current running firmware, troubleshooting a server may require you to reset the CIMC. This procedure is not part of the normal maintenance of a server. After you reset the CIMC, the server boots with the running version of the firmware for that server.

If the CIMC is reset, the power monitoring functions of Cisco UCS become briefly unavailable for as long as it takes for the CIMC to reboot. While this usually only takes 20 seconds, there is a possibility that the peak power cap could be exceeded during that time. To avoid exceeding the configured power cap in a very low power-capped environment, consider staggering the rebooting or activation of CIMCs.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server for which you want to reset the CIMC.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Recover Server.
Step 6 In the Recover Server dialog box, do the following:
Recovering the Corrupt BIOS on a Blade Server

On rare occasions, an issue with a server may require you to recover the corrupted BIOS. This procedure is not part of the normal maintenance of a server. After you recover the BIOS, the server boots with the running version of the firmware for that server. This radio button may be dimmed if the BIOS does not require recovery or the option is not available for a particular server.

Before You Begin

Important

Remove all attached or mapped USB storage from a server before you attempt to recover the corrupt BIOS on that server. If an external USB drive is attached or mapped from vMedia to the server, BIOS recovery fails.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.

Step 3 Choose the server for which you want to recover the BIOS.

Step 4 In the Work pane, click the General tab.

Step 5 In the Actions area, click Recover Server.

Step 6 In the Recover Server dialog box, do the following:

a) Click Recover Corrupt BIOS.

b) Click OK.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Step 8 In the Recover Corrupt BIOS dialog box, do the following:

a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version To Be Activated drop-down list</td>
<td>Choose the firmware version that you want to activate from the drop-down list.</td>
</tr>
<tr>
<td>Ignore Compatibility Check check box</td>
<td>By default, Cisco UCS makes sure that the firmware version is compatible with everything running on the server before it activates that version. Check this check box if you want Cisco UCS to activate the firmware without making sure that it is compatible first.</td>
</tr>
</tbody>
</table>

Note We recommend that you use this option only when explicitly directed to do so by a technical support representative.
b) Click **OK**.

Viewing the POST Results for a Blade Server

You can view any errors collected during the Power On Self-Test process for a server and its adapters.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>3</td>
<td>Choose the server for which you want to view the POST results.</td>
</tr>
<tr>
<td>4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>5</td>
<td>In the Actions area, click View POST Results. The POST Results dialog box lists the POST results for the server and its adapters.</td>
</tr>
<tr>
<td>6</td>
<td>(Optional) Click the link in the Affected Object column to view the properties of that adapter.</td>
</tr>
<tr>
<td>7</td>
<td>Click OK to close the POST Results dialog box.</td>
</tr>
</tbody>
</table>
Viewing the POST Results for a Blade Server
CHAPTER 40

Managing Rack-Mount Servers

This chapter includes the following sections:

- Rack-Mount Server Management, page 563
- Guidelines for Removing and Decommissioning Rack-Mount Servers, page 564
- Booting Rack-Mount Servers, page 564
- Shutting Down Rack-Mount Servers, page 566
- Resetting a Rack-Mount Server, page 567
- Reacknowledging a Rack-Mount Server, page 568
- Decommissioning a Rack-Mount Server, page 568
- Removing a Non-Existent Rack-Mount Server from the Configuration Database, page 569
- Turning the Locator LED for a Rack-Mount Server On and Off, page 569
- Resetting the CMOS for a Rack-Mount Server, page 569
- Resetting the CIMC for a Rack-Mount Server, page 570
- Recovering the Corrupt BIOS on a Rack-Mount Server, page 570
- Viewing the POST Results for a Rack-Mount Server, page 571

Rack-Mount Server Management

You can manage and monitor all rack-mount servers that have been integrated with a Cisco UCS instance through Cisco UCS Manager. All management and monitoring features are supported for rack-mount servers except power capping. Some rack-mount server management tasks, such as changes to the power state, can be performed from both the server and service profile. The remaining management tasks can only be performed on the server.

Cisco UCS Manager provides information, errors, and faults for each rack-mount server that it has discovered.
For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

Guidelines for Removing and Decommissioning Rack-Mount Servers

Consider the following guidelines when deciding whether to remove or decommission a rack-mount server using Cisco UCS Manager:

Decommissioning a Rack-Mount server

Decommissioning is performed when a rack-mount server is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned rack-mount server will be eventually recommissioned, a portion of the server's information is retained by Cisco UCS Manager for future use.

Removing a Rack-Mount server

Removing is performed when you physically remove the server from the system by disconnecting the rack-mount server from the fabric extender. You cannot remove a rack-mount server from Cisco UCS Manager if it is physically present and connected to the fabric extender. Once the rack-mount server is disconnected, the configuration for that rack-mount server can be removed in Cisco UCS Manager.

During removal, management interfaces are disconnected, all entries from databases are removed, and the server is automatically removed from any server pools that it was assigned to during discovery.

Note

Only those servers added to a server pool automatically during discovery will be removed automatically. Servers that have been manually added to a server pool have to be removed manually.

If you need to add a removed rack-mount server back to the configuration, it must be reconnected and then rediscovered. When a server is reintroduced to Cisco UCS Manager it is treated like a new server and is subject to the deep discovery process. For this reason, it's possible that Cisco UCS Manager will assign the server a new ID that may be different from the ID that it held before.

Booting Rack-Mount Servers

Booting a Rack-Mount Server

If the **Boot Server** link is dimmed in the **Actions** area, you must shut down the server first.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server that you want to boot.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Boot Server.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

After the server has booted, the Overall Status field on the General tab displays an OK status.

Booting a Server from the Service Profile

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization where you want to create the service profile.
 If the system does not include multi-tenancy, expand the root node.
Step 4 Choose the service profile that requires the associated server to be booted.
Step 5 In the Work pane, click the General tab.
Step 6 In the Actions area, click Boot Server.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Step 8 Click OK in the Boot Server dialog box.
 After the server has booted, the Overall Status field on the General tab displays an ok status or an up status.

Determining the Boot Order of a Rack-Mount Server

Tip You can also view the boot order tabs from the General tab of the service profile associated with a server.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Click the server for which you want to determine the boot order.
Step 4 In the Work pane, click the General tab.
Step 5 If the Boot Order Details area is not expanded, click the Expand icon to the right of the heading.
Step 6 To view the boot order assigned to the server, click the Configured Boot Order tab.
Step 7 To view what will boot from the various devices in the physical server configuration, click the Actual Boot Order tab.

Note The Actual Boot Order tab always shows "Internal EFI Shell" at the bottom of the boot order list.

Shutting Down Rack-Mount Servers

Shutting Down a Rack-Mount Server

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

If the Shutdown server link is dimmed in the Actions area, the server is not running.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server that you want to shut down.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Shutdown Server.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

After the server has been successfully shut down, the Overall Status field on the General tab displays a power-off status.

Shutting Down a Server from the Service Profile

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

If the Shutdown Server link is dimmed in the Actions area, the server is not running.
Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization where you want to create the service profile. If the system does not include multi-tenancy, expand the root node.
Step 4 Choose the service profile that requires the associated server to be shut down.
Step 5 In the Work pane, click the General tab.
Step 6 In the Actions area, click Shutdown Server.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

After the server has been successfully shut down, the Overall Status field on the General tab displays a down status or a power-off status.

Resetting a Rack-Mount Server

When you reset a server, Cisco UCS Manager sends a pulse on the reset line. You can choose to gracefully shut down the operating system. If the operating system does not support a graceful shut down, the server is power cycled. The option to have Cisco UCS Manager complete all management operations before it resets the server does not guarantee that these operations will be completed before the server is reset.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server that you want to reset.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Reset.
Step 6 In the Reset Server dialog box, do the following:
 a) Click the Power Cycle option.
 b) (Optional) Check the check box if you want Cisco UCS Manager to complete all management operations that are pending on this server.
 c) Click OK.

The reset may take several minutes to complete. After the server has been reset, the Overall Status field on the General tab displays an ok status.
Reacknowledging a Rack-Mount Server

Perform the following procedure if you need to have Cisco UCS Manager rediscover the server and all endpoints in the server. For example, you can use this procedure if a server is stuck in an unexpected state, such as the discovery state.

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.
Step 2 On the **Equipment** tab, expand **Equipment > Rack Mounts > Servers**.
Step 3 Choose the server that you want to acknowledge.
Step 4 In the **Work** pane, click the **General** tab.
Step 5 In the **Actions** area, click **Server Maintenance**.
Step 6 In the **Maintenance** dialog box, do the following:
 a) Click **Re-acknowledge**.
 b) Click **OK**.

Cisco UCS Manager disconnects the server and then builds the connections between the server and the fabric interconnect or fabric interconnects in the system. The acknowledgment may take several minutes to complete. After the server has been acknowledged, the **Overall Status** field on the **General** tab displays an OK status.

Decommissioning a Rack-Mount Server

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.
Step 2 On the **Equipment** tab, expand **Equipment > Rack Mounts > Servers**.
Step 3 Choose the server that you want to decommission.
Step 4 In the **Work** pane, click the **General** tab.
Step 5 In the **Actions** area, click **Server Maintenance**.
Step 6 In the **Maintenance** dialog box, do the following:
 a) Click **Decommission**.
 b) Click **OK**.

The server is removed from the Cisco UCS configuration.
Removing a Non-Existent Rack-Mount Server from the Configuration Database

Perform the following procedure if you physically removed the server hardware without first decommissioning the server. You cannot perform this procedure if the server is physically present.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server that you want to remove from the configuration database.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click Server Maintenance.
Step 6 In the Maintenance dialog box, do the following:
 a) Click Remove.
 b) Click OK.

Cisco UCS Manager removes all data about the server from its configuration database. The server slot is now available for you to insert new server hardware.

Turning the Locator LED for a Rack-Mount Server On and Off

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Rack Mounts > Servers.
Step 3 Choose the server for which you want to turn the locator LED on or off.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click one of the following:
 • Turn on Locator LED
 • Turn off Locator LED

Resetting the CMOS for a Rack-Mount Server

On rare occasions, troubleshooting a server may require you to reset the CMOS. This procedure is not part of the normal maintenance of a server.
Resetting the CIMC for a Rack-Mount Server

On rare occasions, such as an issue with the current running firmware, troubleshooting a server may require you to reset the CIMC. This procedure is not part of the normal maintenance of a server. After you reset the CIMC, the server boots with the running version of the firmware for that server.

Procedure

1. In the Navigation pane, click the Equipment tab.
2. On the Equipment tab, expand Equipment > Rack Mounts > Servers.
3. Choose the server for which you want to reset the CMOS.
4. In the Work pane, click the General tab.
5. In the Actions area, click Recover Server.
6. In the Recover Server dialog box, do the following:
 a) Click Reset CMOS.
 b) Click OK.

Recovering the Corrupt BIOS on a Rack-Mount Server

On rare occasions, an issue with a server may require you to recover the corrupted BIOS. This procedure is not part of the normal maintenance of a server. After you recover the BIOS, the server boots with the running version of the firmware for that server. This radio button may be dimmed if the BIOS does not require recovery or the option is not available for a particular server.

Procedure

1. In the Navigation pane, click the Equipment tab.
2. On the Equipment tab, expand Equipment > Rack Mounts > Servers.
3. Choose the server for which you want to reset the CIMC.
4. In the Work pane, click the General tab.
5. In the Actions area, click Recover Server.
6. In the Recover Server dialog box, do the following:
 a) Click Reset CIMC (Server Controller).
 b) Click OK.
Before You Begin

Important
Remove all attached or mapped USB storage from a server before you attempt to recover the corrupt BIOS on that server. If an external USB drive is attached or mapped from vMedia to the server, BIOS recovery fails.

Procedure

Step 1
In the Navigation pane, click the Equipment tab.

Step 2
On the Equipment tab, expand Equipment > Rack Mounts > Servers.

Step 3
Choose the server for which you want to recover the BIOS.

Step 4
In the Work pane, click the General tab.

Step 5
In the Actions area, click Recover Server.

Step 6
In the Recover Server dialog box, do the following:
 a) Click Recover Corrupt BIOS.
 b) Click OK.

Step 7
If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.

Step 8
In the Recover Corrupt BIOS dialog box, do the following:
 a) Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version To Be Activated drop-down list</td>
<td>Choose the firmware version that you want to activate from the drop-down list.</td>
</tr>
<tr>
<td>Ignore Compatibility Check check box</td>
<td>By default, Cisco UCS makes sure that the firmware version is compatible with everything running on the server before it activates that version. Check this check box if you want Cisco UCS to activate the firmware without making sure that it is compatible first.</td>
</tr>
</tbody>
</table>

 Note
 We recommend that you use this option only when explicitly directed to do so by a technical support representative.

 b) Click OK.

Viewing the POST Results for a Rack-Mount Server

You can view any errors collected during the Power On Self-Test process for a server and its adapters.
Viewing the POST Results for a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Equipment tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Rack Mounts > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the server for which you want to view the POST results.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click View POST Results. The POST Results dialog box lists the POST results for the server and its adapters.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Click the link in the Affected Object column to view the properties of that adapter.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click OK to close the POST Results dialog box.</td>
</tr>
</tbody>
</table>
Starting the KVM Console

This chapter includes the following sections:

- KVM Console, page 573
- Starting the KVM Console from a Server, page 577
- Starting the KVM Console from a Service Profiles, page 577
- Starting the KVM Console from the KVM Launch Manager, page 577

KVM Console

The KVM console is an interface accessible from the Cisco UCS Manager GUI or the KVM Launch Manager that emulates a direct KVM connection. Unlike the KVM dongle, which requires you to be physically connected to the server, the KVM console allows you to connect to the server from a remote location across the network.

You must ensure that either the server or the service profile associated with the server is configured with a CIMC IP address if you want to use the KVM console to access the server. The KVM console uses the CIMC IP address assigned to a server or a service profile to identify and connect with the correct server in a Cisco UCS.

Instead of using CD/DVD or floppy drives directly connected to the server, the KVM console uses virtual media, which are actual disk drives or disk image files that are mapped to virtual CD/DVD or floppy drives. You can map any of the following to virtual drives:

- CD/DVD or floppy drives on your computer
- Disk image files on your computer
- CD/DVD or floppy drives on the network
- Disk image files on the network

Recommendations for Using the KVM Console to Install a Server OS

To install an OS from a virtual CD/DVD or floppy drive, you must ensure that the virtual CD/DVD or floppy drive is set as the first boot device in the service profile.

Installing an OS using the KVM console may be slower than using the KVM dongle because the installation files must be downloaded across the network to the server. If you map a disk drive or disk image file from a
network share to a virtual drive, the installation may be even slower because the installation files must be downloaded from the network to the KVM console (your computer) and then from the KVM console to the server. When using this installation method, we recommend that you have the installation media as close as possible to the system with the KVM console.

Virtual KVM Console

The KVM console is an interface accessible from CIMC that emulates a direct keyboard, video, and mouse (KVM) connection to the server. It allows you to connect to and control the server from a remote location, and to map physical locations to virtual drives that can by accessed by the server during this KVM session.

> The KVM console requires JRE (Java Runtime Environment) version 1.5.0 or higher.

KVM Tab

This tab provides command line access to the server. The menu options available in this tab are described below.

VM Tab

Instead of using CD/DVD or floppy drives physically connected to the server, the KVM console uses virtual media, which are actual disk drives or disk image files that are mapped to virtual CD/DVD or floppy drives on the server. The Client View table displays the floppy images, floppy drives, CD/DVD drives, and ISO images that are available to the server.

Important

In order to use virtual media, the Enabled check box must be checked on the Virtual Media tab.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Mapped** column | If the check box in this column is checked, the associated disk drive or image file can be accessed by the server. Clear the check box to disconnect the server from the drive or image file. Each drive or image file can exist either on the users local computer or on the network, and each falls into one of three categories:
 - Virtual CD/DVD
 - Removable Media
 - Floppy—This category includes USB keys or flash drives.
You can enable Virtual Media for one drive or image in each of the three categories, but you cannot virtualize multiple drives or images in the same category. |
<p>| Read Only column | If checked, the server cannot write to the Virtual Media device even if the device has write capability. |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive column</td>
<td>Displays the path to the device used by the server.</td>
</tr>
<tr>
<td>Exit button</td>
<td>Returns to the KVM tab.</td>
</tr>
<tr>
<td>Create Image button</td>
<td>Opens the Open dialog box that lets you navigate to the local folder that you want to map on the server. After the system has created the image, it saves the IMG file on your desktop and adds it to the Client View table. Check the check box in the Mapped column to complete the mapping process.</td>
</tr>
<tr>
<td>Add Image button</td>
<td>Opens the Open dialog box that lets you navigate to the ISO or IMG file you want to the server to access. After you select the file, the system adds it to the Client View table. Check the check box in the Mapped column to complete the mapping process.</td>
</tr>
<tr>
<td>Remove Image button</td>
<td>Removes the selected image from the Client View table.</td>
</tr>
<tr>
<td>Details button</td>
<td>Toggles the display of the Details area. This area contains a table showing the three device categories, their mapped status, read and write statistics, and the length of time that the device has been mapped.</td>
</tr>
<tr>
<td>USB Reset button</td>
<td>Resets all USB devices connected to the server.</td>
</tr>
</tbody>
</table>

Note The Details area must be visible in order to use this button.

File Menu

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture to File</td>
<td>Opens the Save dialog box that lets you save the current screen as a JPG image.</td>
</tr>
<tr>
<td>Exit</td>
<td>Closes the KVM console.</td>
</tr>
</tbody>
</table>

View Menu on the KVM Tab

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Updates the console display with the server's current video output.</td>
</tr>
<tr>
<td>Full Screen</td>
<td>Expands the KVM console so that it fills the entire screen.</td>
</tr>
</tbody>
</table>
KVM Console

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windowed</td>
<td>Returns the KVM console to Windowed mode where it can be resized.</td>
</tr>
<tr>
<td>Fit</td>
<td>Resizes the console window to the minimum size needed to display the video image from the server. This option is only available if the console is in Windowed mode.</td>
</tr>
</tbody>
</table>

Macros Menu on the KVM Tab

Select the keyboard shortcut you want to execute on the remote system.

Tools Menu on the KVM Tab

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| Session Options | Opens the **Session Options** dialog box that lets you specify:
 - Whether all keystrokes are passed to the target system when the console is in Windowed mode. The default is no.
 - The termination key when in single cursor mode. The default is **F12**.
 - The mouse acceleration to use on the target system. The default is **Windows**. |
| Single Cursor | Turns on the single cursor feature, which offsets mouse alignment issues encountered on some remote operating systems. When you turn this feature on, the mouse pointer is trapped within the viewer window. To turn the feature off, press the termination key specified in the **Session Options** dialog box. |
| Stats | Opens the **Stats** dialog box, which displays the:
 - Frame rate measured in number of frames per second
 - Bandwidth measured in number of KBs per second
 - Compression measured in the percentage of compression being used
 - Packet rate measured in number of packets per second |
| Session User List | Opens the **Session User List** dialog box that shows all the user IDs that have an active KVM session. |
Starting the KVM Console from a Server

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Choose the server that you want to access through the KVM console.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click KVM Console.
The KVM console opens in a separate window.

Tip If the Caps Lock key on your keyboard is on when you open a KVM session, and you subsequently turn off your Caps Lock key, the KVM console may continue to act as if Caps Lock is turned on. To synchronize the KVM console and your keyboard, press Caps Lock once without the KVM console in focus and then press Caps Lock again with the KVM console in focus.

Starting the KVM Console from a Service Profiles

Procedure

Step 1 In the Navigation pane, click the Servers tab.
Step 2 On the Servers tab, expand Servers > Service Profiles.
Step 3 Expand the node for the organization which contains the service profile for which you want to launch the KVM console.
If the system does not include multi-tenancy, expand the root node.
Step 4 Choose the service profile for which you need KVM access to the associated server.
Step 5 In the Work pane, click the General tab.
Step 6 In the Actions area, click KVM Console.
The KVM console opens in a separate window.

Tip If the Caps Lock key on your keyboard is on when you open a KVM session, and you subsequently turn off your Caps Lock key, the KVM console may continue to act as if Caps Lock is turned on. To synchronize the KVM console and your keyboard, press Caps Lock once without the KVM console in focus and then press Caps Lock again with the KVM console in focus.

Starting the KVM Console from the KVM Launch Manager

The KVM Launch Manager enables you to access a server through the KVM console without logging in to Cisco UCS Manager.
Before You Begin

To access the KVM console for a server through the KVM Launch Manager, you need the following:

- Cisco UCS username and password.
- Name of the service profile associated with the server for which you want KVM access.

Procedure

Step 1 In your web browser, type or select the web link for Cisco UCS Manager GUI.

Example:
The default web link is http://UCSManager_IP or https://UCSManager_IP. In a standalone configuration, UCSManager_IP is the IP address for the management port on the fabric interconnect. In a cluster configuration, UCSManager_IP is the IP address assigned to Cisco UCS Manager.

Step 2 On the Cisco UCS Manager page, click KVM Launch Manager.

Step 3 On the UCS - KVM Launch Manager Login page, do the following:

a) Enter your Cisco UCS username and password.
b) Click OK.

Step 4 In the Service Profiles table of the KVM Launch Manager, do the following:

a) Choose the service profile for which you need KVM access to the associated server.
b) In the Launch KVM row for that service profile, click Launch.

 Tip If the Caps Lock key on your keyboard is on when you open a KVM session, and you subsequently turn off your Caps Lock key, the KVM console may continue to act as if Caps Lock is turned on. To synchronize the KVM console and your keyboard, press Caps Lock once without the KVM console in focus and then press Caps Lock again with the KVM console in focus.
Managing the I/O Modules

This chapter includes the following sections:

• I/O Module Management in Cisco UCS Manager GUI, page 579
• Resetting an I/O Module, page 579
• Viewing the POST Results for an I/O Module, page 579

I/O Module Management in Cisco UCS Manager GUI

You can manage and monitor all I/O modules in a Cisco UCS instance through Cisco UCS Manager GUI.

Resetting an I/O Module

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In the Navigation pane, click the Equipment tab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > IO Modules.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Choose the I/O module that you want to reset.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Actions area, click Reset IO Module.</td>
</tr>
<tr>
<td>Step 6</td>
<td>If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.</td>
</tr>
</tbody>
</table>

Viewing the POST Results for an I/O Module

You can view any errors collected during the Power On Self-Test process for an I/O module.
Procedure

Step 1 In the Navigation pane, click the Equipment tab.

Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > IO Modules.

Step 3 Choose the I/O module for which you want to view the POST results.

Step 4 In the Work pane, click the General tab.

Step 5 In the Actions area, click View POST Results.

The POST Results dialog box lists the POST results for the I/O module.

Step 6 Click OK to close the POST Results dialog box.
CHAPTER 43

Backing Up and Restoring the Configuration

This chapter includes the following sections:

• Backup and Export Configuration, page 581
• Backup Types, page 581
• Considerations and Recommendations for Backup Operations, page 582
• Import Configuration, page 583
• Import Methods, page 583
• System Restore, page 583
• Required User Role for Backup and Import Operations, page 583
• Backup Operations, page 584
• Import Operations, page 588
• Restoring the Configuration for a Fabric Interconnect, page 593

Backup and Export Configuration

When you perform a backup through Cisco UCS Manager, you take a snapshot of all or part of the system configuration and export the file to a location on your network. You cannot use Cisco UCS Manager to back up data on the servers.

You can perform a backup while the system is up and running. The backup operation only saves information from the management plane. It does not have any impact on the server or network traffic.

Backup Types

You can perform one or more of the following types of backups through Cisco UCS Manager:

• Full state—A binary file that includes a snapshot of the entire system. You can use the file generated from this backup to restore the system during disaster recovery. This file can restore or rebuild the configuration on the original fabric interconnect, or recreate the configuration on a different fabric interconnect. You cannot use this file for an import.
Considerations and Recommendations for Backup Operations

Before you create a backup operation, consider the following:

Backup Locations
The backup location is the destination or folder on the network where you want Cisco UCS Manager to export the backup file. You can maintain only one backup operation for each location where you plan to save a backup file.

Potential to Overwrite Backup Files
If you rerun a backup operation without changing the filename, Cisco UCS Manager overwrites the existing file on the server. To avoid overwriting existing backup files, change the filename in the backup operation or copy the existing file to another location.

Multiple Types of Backups
You can run and export more than one type of backup to the same location. You need to change the backup type before you rerun the backup operation. We recommend that you change the filename for easier identification of the backup type and to avoid overwriting the existing backup file.

Scheduled Backups
You cannot schedule a backup operation. You can, however, create a backup operation in advance and leave the admin state disabled until you are ready to run the backup. Cisco UCS Manager does not run the backup operation, save, or export the configuration file until you set the admin state of the backup operation to enabled.

Incremental Backups
You cannot perform incremental backups of the Cisco UCS Manager system configuration.

Backwards Compatibility
Starting with Release 1.1(1) of the Cisco UCS Manager, full state backups are encrypted so that passwords and other sensitive information are not exported as clear text. As a result, full state backups made from Release 1.1(1) or later cannot be restored to a Cisco UCS instance running an earlier software release.
Import Configuration

You can import any configuration file that was exported from Cisco UCS Manager. The file does not need to have been exported from the same Cisco UCS Manager.

The import function is available for all configuration, system configuration, and logical configuration files. You can perform an import while the system is up and running. An import operation modifies information on the management plane only. Some modifications caused by an import operation, such as a change to a vNIC assigned to a server, can cause a server reboot or other operations that disrupt traffic.

You cannot schedule an import operation. You can, however, create an import operation in advance and leave the admin state disabled until you are ready to run the import. Cisco UCS Manager will not run the import operation on the configuration file until you set the admin state to enabled.

You can maintain only one import operation for each location where you saved a configuration backup file.

Import Methods

You can use one of the following methods to import and update a system configuration through Cisco UCS Manager:

- **Merge**—The information in the imported configuration file is compared with the existing configuration information. If there are conflicts, the import operation overwrites the information on the Cisco UCS instance with the information in the import configuration file.

- **Replace**—The current configuration information is replaced with the information in the imported configuration file one object at a time.

System Restore

You can restore a system configuration from any full state backup file that was exported from Cisco UCS Manager. The file does not need to have been exported from the Cisco UCS Manager on the system that you are restoring.

The restore function is only available for a full state backup file. You cannot import a full state backup file. You perform a restore through the initial system setup.

You can use the restore function for disaster recovery.

Required User Role for Backup and Import Operations

You must have a user account that includes the admin role to create and run backup and import operations.
Backup Operations

Creating a Backup Operation

Before You Begin
Obtain the backup server IP address and authentication credentials.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the All node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Actions area, click Backup.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Backup Configuration dialog box, click Create Backup Operation.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Create Backup Operation dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled—Cisco UCS Manager runs the backup operation as soon as you click OK.</td>
</tr>
<tr>
<td></td>
<td>• disabled—Cisco UCS Manager does not run the backup operation when you click OK. If you select this option, all fields in the dialog box remain visible. However, you must manually run the backup from the Backup Configuration dialog box.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Type field</td>
<td>The information saved in the backup configuration file. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Full state—A binary file that includes a snapshot of the entire system. You can use the file generated from this backup to restore the system during disaster recovery. This file can restore or rebuild the configuration on the original fabric interconnect, or recreate the configuration on a different fabric interconnect. You cannot use this file for an import.</td>
</tr>
<tr>
<td></td>
<td>• All configuration—An XML file that includes all system and logical configuration settings. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore.</td>
</tr>
<tr>
<td></td>
<td>• System configuration—An XML file that includes all system configuration settings such as usernames, roles, and locales. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore.</td>
</tr>
<tr>
<td></td>
<td>• Logical configuration—An XML file that includes all logical configuration settings such as service profiles, VLANs, VSANs, pools, and policies. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore.</td>
</tr>
<tr>
<td>Preserve Identities check box</td>
<td>If this check box is checked, the backup file preserves all identities derived from pools, including the MAC addresses, WWPN, WWNN, and UUIDs.</td>
</tr>
<tr>
<td>Location of the Backup File field</td>
<td>Where the backup file should be saved. This can be:</td>
</tr>
<tr>
<td></td>
<td>• Remote File System—The backup XML file is saved to a remote server. Cisco UCS Manager GUI displays the fields described below that allow you to specify the protocol, host, filename, username, and password for the remote system.</td>
</tr>
<tr>
<td></td>
<td>• Local File System—The backup XML file is saved locally. Cisco UCS Manager GUI displays the Filename field with an associated Browse button that let you specify the name and location for the backup file.</td>
</tr>
</tbody>
</table>

Note Once you click **OK**, the location cannot be changed.
Backup Operations

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Protocol field** | The protocol to use when communicating with the remote server. This can be:
• FTP
• TFTP
• SCP
• SFTP |
| **Hostname field** | The hostname or IP address of the location where the backup file is stored. This can be a server, storage array, local drive, or any read/write media that the fabric interconnect can access through the network.
Note If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager. |
| **Remote File field** | The full path to the backup configuration file. This field can contain the filename as well as the path. If you omit the filename, the backup procedure assigns a name to the file. |
| **User field** | The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP. |
| **Password field** | The password for the remote server username. This field does not apply if the protocol is TFTP.
Cisco UCS Manager does not store this password. Therefore, you do not need to enter this password unless you intend to enable and run the backup operation immediately. |

Step 7 Click OK.

Step 8 If Cisco UCS Manager displays a confirmation dialog box, click OK.
If you set the **Admin State** field to enabled, Cisco UCS Manager takes a snapshot of the configuration type that you selected and exports the file to the network location. The backup operation displays in the **Backup Operations** table in the **Backup Configuration** dialog box.

Step 9 (Optional) To view the progress of the backup operation, do the following:
a) If the operation does not display in the **Properties** area, click the operation in the **Backup Operations** table.
b) In the **Properties** area, click the down arrows on the **FSM Details** bar.
The **FSM Details** area expands and displays the operation status.

Step 10 Click OK to close the **Backup Configuration** dialog box.
The backup operation continues to run until it is completed. To view the progress, re-open the **Backup Configuration** dialog box.
Running a Backup Operation

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.
Step 2 Click the **All** node.
Step 3 In the **Work** pane, click the **General** tab.
Step 4 In the **Actions** area, click **Backup**.
Step 5 In the **Backup Operations** table of the **Backup Configuration** dialog box, click the backup operation that you want to run.

The details of the selected backup operation display in the **Properties** area.

Step 6 In the **Properties** area, complete the following fields:

a) In the **Admin State** field, click the **Enabled** radio button.

b) For all protocols except TFTP, enter the password for the username in the **Password** field.

c) (Optional) Change the content of the other available fields.

Step 7 Click **Apply**.
Cisco UCS Manager takes a snapshot of the configuration type that you selected and exports the file to the network location. The backup operation displays in the **Backup Operations** table in the **Backup Configuration** dialog box.

Step 8 (Optional) To view the progress of the backup operation, click the down arrows on the **FSM Details** bar. The **FSM Details** area expands and displays the operation status.

Step 9 Click **OK** to close the **Backup Configuration** dialog box.
The backup operation continues to run until it is completed. To view the progress, re-open the **Backup Configuration** dialog box.

Modifying a Backup Operation

You can modify a backup operation to save a file of another backup type to that location or to change the filename and avoid overwriting previous backup files.

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.
Step 2 Click the **All** node.
Step 3 In the **Work** pane, click the **General** tab.
Step 4 In the **Actions** area, click **Backup**.
Step 5 In the **Backup Operations** area of the **Backup Configuration** dialog box, click the backup operation that you want to modify.
The details of the selected backup operation display in the **Properties** area. If the backup operation is in a disabled state, the fields are dimmed.

Step 6 In the **Admin State** field, click the **enabled** radio button.

Step 7 Modify the appropriate fields.
You do not have to enter the password unless you want to run the backup operation immediately.

Step 8 (Optional) If you do not want to run the backup operation immediately, click the **disabled** radio button in the **Admin State** field.

Step 9 Click **OK**.

Deleting One or More Backup Operations

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 Click the **All** node.

Step 3 In the **Work** pane, click the **General** tab.

Step 4 In the **Actions** area, click **Backup**.

Step 5 In the **Backup Operations** table of the **Backup Configuration** dialog box, click the backup operations that you want to delete.

Tip You cannot click a backup operation in the table if the admin state of the operation is set to **Enabled**.

Step 6 Click the **Delete** icon in the icon bar of the **Backup Operations** table.

Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.

Step 8 In the **Backup Configuration** dialog box, click one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Deletes the selected backup operations without closing the dialog box.</td>
</tr>
<tr>
<td>OK</td>
<td>Deletes the selected backup operations and closes the dialog box.</td>
</tr>
</tbody>
</table>

Import Operations

Creating an Import Operation

You cannot import a Full State configuration file. You can import any of the following configuration files:

- All configuration
- System configuration
• Logical configuration

Before You Begin

Collect the following information that you will need to import a configuration file:

• Backup server IP address and authentication credentials
• Fully qualified name of a backup file

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the All node.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Actions area, click Import Configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Import Configuration dialog box, click Create Import Operation.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In the Create Import Operation dialog box, complete the following fields:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled—Cisco UCS runs the import operation as soon as you click OK.</td>
</tr>
<tr>
<td></td>
<td>• disabled—Cisco UCS does not run the import operation when you click OK. If you select this option, all fields in the dialog box remain visible. However, you must manually run the import from the Import Configuration dialog box.</td>
</tr>
<tr>
<td>Action field</td>
<td>You can select:</td>
</tr>
<tr>
<td></td>
<td>• Merge—The configuration information is merged with the existing information. If there are conflicts, the system replaces the information on the current system with the information in the import configuration file.</td>
</tr>
<tr>
<td></td>
<td>• Replace—The system takes each object in the import configuration file and overwrites the corresponding object in the current configuration.</td>
</tr>
</tbody>
</table>
The backup file that you want to import is located. This can be:

- **Remote File System**—The backup XML file is stored on a remote server. Cisco UCS Manager GUI displays the fields described below that allow you to specify the protocol, host, filename, username, and password for the remote system.

- **Local File System**—The backup XML file is stored locally. Cisco UCS Manager GUI displays the **Filename** field with an associated **Browse** button that let you specify the name and location for the backup file to be imported.

The protocol to use when communicating with the remote server. This can be:

- **FTP**
- **TFTP**
- **SCP**
- **SFTP**

The hostname or IP address from which the configuration file should be imported.

Note If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.

The name of the XML configuration file.

The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP.

The password for the remote server username. This field does not apply if the protocol is TFTP.

Cisco UCS Manager does not store this password. Therefore, you do not need to enter this password unless you intend to enable and run the import operation immediately.

Step 7 Click OK.

Step 8 In the confirmation dialog box, click OK.

If you set the **Admin State** to enabled, Cisco UCS Manager imports the configuration file from the network location. Depending upon which action you selected, the information in the file is either merged with the existing configuration or replaces the existing configuration. The import operation displays in the **Import Operations** table of the **Import Configuration** dialog box.

Step 9 (Optional) To view the progress of the import operation, do the following:
a) If the operation does not automatically display in the Properties area, click the operation in the Import Operations table.
b) In the Properties area, click the down arrows on the FSM Details bar. The FSM Details area expands and displays the operation status.

Step 10
Click OK to close the Import Configuration dialog box. The import operation continues to run until it is completed. To view the progress, re-open the Import Configuration dialog box.

Running an Import Operation

You cannot import a Full State configuration file. You can import any of the following configuration files:

- All configuration
- System configuration
- Logical configuration

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 Click the All node.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area, click Import Configuration.
Step 5 In the Import Operations table of the Import Configuration dialog box, click the operation that you want to run. The details of the selected import operation display in the Properties area.

Step 6 In the Properties area, complete the following fields:

a) In the Admin State field, click the Enabled radio button.
b) For all protocols except TFTP, enter the password for the username in the Password field.
c) (Optional) Change the content of the other available fields.

Step 7 Click Apply. Cisco UCS Manager imports the configuration file from the network location. Depending upon which action you selected, the information in the file is either merged with the existing configuration or replaces the existing configuration. The import operation displays in the Import Operations table of the Import Configuration dialog box.

Step 8 (Optional) To view the progress of the import operation, click the down arrows on the FSM Details bar. The FSM Details area expands and displays the operation status.

Step 9 Click OK to close the Import Configuration dialog box. The import operation continues to run until it is completed. To view the progress, re-open the Import Configuration dialog box.
Modifying an Import Operation

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.
Step 2 Click the **All** node.
Step 3 In the **Work** pane, click the **General** tab.
Step 4 In the **Actions** area, click **Import Configuration**.
Step 5 In the **Import Operations** area of the **Import Configuration** dialog box, click the import operation that you want to modify. The details of the selected import operation display in the **Properties** area. If the import operation is in a disabled state, the fields are dimmed.
Step 6 In the **Admin State** field, click the **enabled** radio button.
Step 7 Modify the appropriate fields.
You do not have to enter the password unless you want to run the import operation immediately.
Step 8 (Optional) If you do not want to run the import operation immediately, click the **disabled** radio button in the **Admin State** field.
Step 9 Click **OK**.

Deleting One or More Import Operations

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.
Step 2 Click the **All** node.
Step 3 In the **Work** pane, click the **General** tab.
Step 4 In the **Actions** area, click **Import Configuration**.
Step 5 In the **Import Operations** table of the **Backup Configuration** dialog box, click the import operations that you want to delete.
Tip You cannot click an import operation in the table if the admin state of the operation is set to **Enabled**.
Step 6 Click the **Delete** icon in the icon bar of the **Import Operations** table.
Step 7 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Step 8 In the **Import Configuration** dialog box, click one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Deletes the selected import operations without closing the dialog box.</td>
</tr>
</tbody>
</table>
Restoring the Configuration for a Fabric Interconnect

Before You Begin
Collect the following information that you will need to restore the system configuration:

- Fabric interconnect management port IP address and subnet mask
- Default gateway IP address
- Backup server IP address and authentication credentials
- Fully qualified name of a Full State backup file

You must have access to a Full State configuration file to perform a system restore. You cannot perform a system restore with any other type of configuration or backup file.

Procedure

Step 1 Connect to the console port.

Step 2 If the fabric interconnect is off, power on the fabric interconnect.
You will see the power on self-test message as the fabric interconnect boots.

Step 3 At the installation method prompt, enter gui.

Step 4 If the system cannot access a DHCP server, you may be prompted to enter the following information:

- IP address for the management port on the fabric interconnect
- Subnet mask for the management port on the fabric interconnect
- IP address for the default gateway assigned to the fabric interconnect

Step 5 Copy the web link from the prompt into a web browser and go to the Cisco UCS Manager GUI launch page.

Step 6 On the launch page, select **Express Setup**.

Step 7 On the **Express Setup** page, select **Restore From Backup** and click **Submit**.

Step 8 In the **Protocol** area of the **Cisco UCS Manager Initial Setup** page, select the protocol you want to use to upload the full state backup file:

- SCP
- TFTP

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Deletes the selected import operations and closes the dialog box.</td>
</tr>
</tbody>
</table>
Step 9 In the **Server Information** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server IP</td>
<td>The IP address of the computer where the full state backup file is located. This can be a server, storage array, local drive, or any read/write media that the fabric interconnect can access through the network.</td>
</tr>
<tr>
<td>Backup File Path</td>
<td>The file path where the full state backup file is located, including the folder names and filename.</td>
</tr>
<tr>
<td>User ID</td>
<td>The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP.</td>
</tr>
<tr>
<td>Password</td>
<td>The password for the remote server username. This field does not apply if the protocol is TFTP.</td>
</tr>
</tbody>
</table>

Step 10 Click **Submit**.
You can return to the console to watch the progress of the system restore.

The fabric interconnect logs in to the backup server, retrieves a copy of the specified full-state backup file, and restores the system configuration.

For a cluster configuration, you do not need to restore the secondary fabric interconnect. As soon as the secondary fabric interconnect reboots, Cisco UCS Manager synchronizes the configuration with the primary fabric interconnect.
Recovering a Lost Password

This chapter includes the following sections:

- Recovering a Lost Password, page 595

Recovering a Lost Password

Password Recovery for the Admin Account

The admin account is the system administrator or superuser account. If an administrator loses the password to this account, you can have a serious security issue. As a result, the procedure to recover the password for the admin account requires you to power cycle all fabric interconnects in a Cisco UCS instance.

When you recover the password for the admin account, you actually change the password for that account. You cannot retrieve the original password for that account.

You can reset the password for all other local accounts through Cisco UCS Manager. However, you must log in to Cisco UCS Manager with an account that includes aaa or admin privileges.

Caution

This procedure requires you to power down all fabric interconnects in a Cisco UCS instance. As a result, all data transmission in the instance is stopped until you restart the fabric interconnects.
Determining the Leadership Role of a Fabric Interconnect

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 In the Equipment tab, expand Equipment > Fabric Interconnects.
Step 3 Click the fabric interconnect for which you want to identify the role.
Step 4 In the Work pane, click the General tab.
Step 5 In the General tab, click the down arrows on the High Availability Details bar to expand that area.
Step 6 View the Leadership field to determine whether the fabric interconnect is the primary or subordinate.

Verifying the Firmware Versions on a Fabric Interconnect

You can use the following procedure to verify the firmware versions on all fabric interconnects in a Cisco UCS instance. You can verify the firmware for a single fabric interconnect through the Installed Firmware tab for that fabric interconnect.

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 In the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Firmware Management tab.
Step 4 In the Installed Firmware tab, verify that the following firmware versions for each fabric interconnect match the version to which you updated the firmware:

- Kernel version
- System version

Recovering the Admin Account Password in a Standalone Configuration

This procedure will help you to recover the password that you set for the admin account when you performed an initial system setup on the fabric interconnect. The admin account is the system administrator or superuser account.

Before You Begin

1. Physically connect the console port on the fabric interconnect to a computer terminal or console server
2. Determine the running versions of the following firmware:
 - The firmware kernel version on the fabric interconnect
• The firmware system version

Tip
To find this information, you can log in with any user account on the Cisco UCS instance.

Procedure

Step 1 Connect to the console port.
Step 2 Power cycle the fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.
Step 3 In the console, press one of the following key combinations as it boots to get the loader prompt:
 • Ctrl+l
 • Ctrl+Shift+r

You may need to press the selected key combination multiple times before your screen displays the loader prompt.
Step 4 Boot the kernel firmware version on the fabric interconnect.
 loader >
 boot /installables/switch/
 kernel_firmware_version

 Example:
 loader >
 boot /installables/switch/ucs-6100-k9-kickstart.4.1.3.N2.1.0.11.gbin

Step 5 Enter config terminal mode.
 Fabric(boot)#
 config terminal

Step 6 Reset the admin password.
 Fabric(boot)(config)#
 admin-password
 password

 Choose a strong password that includes at least one capital letter and one number. The password cannot be blank.

 The new password displays in clear text mode.

Step 7 Exit config terminal mode and return to the boot prompt.
Step 8 Boot the system firmware version on the fabric interconnect.
 Fabric(boot)#
 load /installables/switch/
 system_firmware_version
Recovering the Admin Account Password in a Cluster Configuration

This procedure will help you to recover the password that you set for the admin account when you performed an initial system setup on the fabric interconnects. The admin account is the system administrator or superuser account.

Before You Begin

1. Physically connect a console port on one of the fabric interconnects to a computer terminal or console server.
2. Obtain the following information:
 - The firmware kernel version on the fabric interconnect
 - The firmware system version
 - Which fabric interconnect has the primary leadership role and which is the subordinate

Tip
To find this information, you can log in with any user account on the Cisco UCS instance.

Procedure

Step 1
Connect to the console port.

Step 2
For the subordinate fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.
 c) In the console, press one of the following key combinations as it boots to get the loader prompt:
 - Ctrl+l
 - Ctrl+Shift+r

You may need to press the selected key combination multiple times before your screen displays the loader prompt.

Step 3
Power cycle the primary fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.

Step 4
In the console, press one of the following key combinations as it boots to get the loader prompt:
• Ctrl+l
• Ctrl+Shift+r

You may need to press the selected key combination multiple times before your screen displays the loader prompt.

Step 5
Boot the kernel firmware version on the primary fabric interconnect.
```
loader > boot /installables/switch/
kernel_firmware_version
```

Example:
```
loader > boot /installables/switch/ucs-6100-k9-kickstart.4.1.3.N2.1.0.11.gbin
```

Step 6
Enter config terminal mode.
```
Fabric(boot)# config terminal
```

Step 7
Reset the admin password.
```
Fabric(boot)(config)# admin-password password
```
Choose a strong password that includes at least one capital letter and one number. The password cannot be blank.

The new password displays in clear text mode.

Step 8
Exit config terminal mode and return to the boot prompt.

Step 9
Boot the system firmware version on the primary fabric interconnect.
```
Fabric(boot)# load /installables/switch/
```
```
system_firmware_version
```

Example:
```
Fabric(boot)# load /installables/switch/ucs-6100-k9-system.4.1.3.N2.1.0.211.bin
```

Step 10
After the system image loads, log in to Cisco UCS Manager.

Step 11
In the console for the subordinate fabric interconnect, do the following to bring it up:
a)
Boot the kernel firmware version on the subordinate fabric interconnect.
```
loader > boot /installables/switch/
```
```
kernel_firmware_version
```

b)
Boot the system firmware version on the subordinate fabric interconnect.
```
Fabric(boot)# load /installables/switch/
```
```
system_firmware_version
```
PART VIII

System Monitoring

- Monitoring Traffic, page 603
- Monitoring Hardware, page 609
- Configuring Statistics-Related Policies, page 621
- Configuring Call Home, page 633
- Managing the System Event Log, page 655
- Configuring Settings for Faults, Events, and Logs, page 661
CHAPTER 45

Monitoring Traffic

This chapter includes the following sections:

• Traffic Monitoring, page 603
• Guidelines and Recommendations for Traffic Monitoring, page 604
• Creating a Traffic Monitoring Session, page 605
• Adding Sources for Traffic Monitoring, page 606
• Activating a Traffic Monitoring Session, page 606
• Deleting a Traffic Monitoring Session, page 607

Traffic Monitoring

Traffic monitoring copies traffic from one or more sources and sends the copied traffic to a dedicated destination port for analysis by a network analyzer. This feature is also known as Switched Port Analyzer (SPAN).

Type of Session

When you create a traffic monitoring session, you can choose either an Ethernet or Fibre Channel destination port to receive the traffic. The type of destination port determines the type of session, which in turn determines the types of available traffic sources. For an Ethernet traffic monitoring session, the destination port must be an unconfigured physical port. For a Fibre Channel traffic monitoring session, the destination port must be a Fibre Channel uplink port.

Traffic Sources

An Ethernet traffic monitoring session can monitor any of the following traffic sources:

• Uplink Ethernet port
• Ethernet port channel
• VLAN
• Service profile vNIC
• Service profile vHBA
• FCoE port
• Port channels
• Server port

A Fibre Channel traffic monitoring session can monitor any of the following traffic sources:

• Uplink Fibre Channel port
• SAN port channel
• VSAN
• Service profile vHBA
• Fibre Channel storage port

Guidelines and Recommendations for Traffic Monitoring

When configuring or activating traffic monitoring, consider the following guidelines:

• You can create and store up to 16 traffic monitoring sessions, but only two can be active at the same time.
• A traffic monitoring session is disabled by default when created. To begin monitoring traffic, you must activate the session.
• To monitor traffic from a server, add all vNICs from the service profile corresponding to the server.
• To monitor traffic from a VM, you must first determine the identity of the dynamic vNIC assigned to the VM. Follow the procedure in to find the vNIC and view its identity properties, then add the vNIC as a source for the monitoring session. If you later move the VM using VMotion, a new dynamic vNIC is assigned and you must reconfigure the monitoring source.

 Viewing Dynamic vNIC Properties in a VM, on page 533

• You can monitor Fibre Channel traffic using either a Fibre Channel traffic analyzer or an Ethernet traffic analyzer. When Fibre Channel traffic is monitored using an Ethernet traffic monitoring session, with an Ethernet destination port, the destination traffic will be FCoE.
• Because a traffic monitoring destination is a single physical port, a traffic monitoring session can monitor only a single fabric. To monitor uninterrupted vNIC traffic across a fabric failover, you must create two sessions—one per fabric—and connect two analyzers. Add the vNIC as the traffic source for both sessions.
• All traffic sources must be located within the same switch as the destination port.
• A port configured as a destination port cannot also be configured as a source port.
• A member port of a port channel cannot be configured individually as a source. If the port channel is configured as a source, all member ports are source ports.
• A vHBA can be a source for either an Ethernet or Fibre Channel monitoring session, but it cannot be a source for both simultaneously.
• A server port can be a source only if it is a non-virtualized rack server adapter-facing port.
Traffic monitoring can impose a significant load on your system resources. To minimize the load, select sources that carry as little unwanted traffic as possible and disable traffic monitoring when it is not needed.

Creating a Traffic Monitoring Session

Note

This procedure describes how to create an Ethernet traffic monitoring session. To create a Fibre Channel monitoring session, select the **SAN** tab instead of the **LAN** tab in Step 2.

Procedure

Step 1

In the **Navigation** pane, click the **LAN** tab.

Step 2

On the **LAN** tab, expand **LAN > Traffic Monitoring Sessions > Fabric_Interconnect_Name**.

Step 3

Right-click **Fabric_Interconnect_Name** and choose **Create Traffic Monitoring Session**.

Step 4

In the **Create Traffic Monitoring Session** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the traffic monitoring session.</td>
</tr>
<tr>
<td></td>
<td>This name can be between 1 and 16 alphanumeric characters. You cannot use</td>
</tr>
<tr>
<td></td>
<td>spaces or any special characters, and you cannot change this name after the</td>
</tr>
<tr>
<td></td>
<td>object has been saved.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Whether traffic will be monitored for the physical port selected in the</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination field. This can be:</td>
</tr>
<tr>
<td>drop-down list</td>
<td>• enabled—Cisco UCS begins monitoring the port activity as soon as some</td>
</tr>
<tr>
<td></td>
<td>• disabled—Cisco UCS does not monitor the port activity.</td>
</tr>
<tr>
<td>Destination</td>
<td>Select the physical port whose communication traffic you want to monitor</td>
</tr>
<tr>
<td>drop-down list</td>
<td>from the navigation tree.</td>
</tr>
</tbody>
</table>

Step 5

Click **OK**.

What to Do Next

- Add traffic sources to the traffic monitoring session.
- Activate the traffic monitoring session.
Adding Sources for Traffic Monitoring

You can choose multiple sources from more than one source type to be monitored by a traffic monitoring session. The available sources depend on the components configured in the Cisco UCS instance.

Note
This procedure describes how to add sources for Ethernet traffic monitoring sessions. To add sources for a Fibre Channel monitoring session, select the SAN tab instead of the LAN tab in Step 2.

Before You Begin
A traffic monitoring session must be created.

Procedure

Step 1
In the Navigation pane, click the LAN tab.

Step 2
On the LAN tab, expand LAN > Traffic Monitoring Sessions > Fabric_Interconnect_Name.

Step 3
Expand Fabric_Interconnect_Name and click the monitor session that you want to configure.

Step 4
In the Work pane, click the General tab.

Step 5
In the Sources area, expand the section for the type of traffic source that you want to add.

Step 6
To see the components that are available for monitoring, click the + button in the right-hand edge of the table to open the Create Monitoring Session Source dialog box.

Step 7
Select a source component and click OK.
You can repeat the preceding three steps as needed to add multiple sources from multiple source types.

Step 8
Click Save Changes.

What to Do Next
Activate the traffic monitoring session. If the session is already activated, traffic will be forwarded to the monitoring destination when you add a source.

Activating a Traffic Monitoring Session

Note
This procedure describes how to activate an Ethernet traffic monitoring session. To activate a Fibre Channel monitoring session, select the SAN tab instead of the LAN tab in Step 2.

Before You Begin
A traffic monitoring session must be created.
Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Traffic Monitoring Sessions > Fabric_Interconnect_Name.
Step 3 Expand Fabric_Interconnect_Name and click the monitor session that you want to activate.
Step 4 In the Work pane, click the General tab.
Step 5 In the Properties area, click the enabled radio button for Admin State.
Step 6 Click Save Changes.

If a traffic monitoring source is configured, traffic begins to flow to the traffic monitoring destination port.

Deleting a Traffic Monitoring Session

Note This procedure describes how to delete an Ethernet traffic monitoring session. To delete a Fibre Channel monitoring session, select the SAN tab instead of the LAN tab in Step 2.

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 On the LAN tab, expand LAN > Traffic Monitoring Sessions > Fabric_Interconnect_Name.
Step 3 Expand Fabric_Interconnect_Name and click the monitor session that you want to delete.
Step 4 In the Work pane, click the General tab.
Step 5 In the Actions area, click the Delete icon.
Step 6 If Cisco UCS Manager GUI displays a confirmation dialog box, click Yes.
Deleting a Traffic Monitoring Session
CHAPTER 46

Monitoring Hardware

This chapter includes the following sections:

- Monitoring a Fabric Interconnect, page 609
- Monitoring a Chassis, page 610
- Monitoring a Blade Server, page 612
- Monitoring a Rack-Mount Server, page 614
- Monitoring an I/O Module, page 616
- Monitoring Management Interfaces, page 617

Monitoring a Fabric Interconnect

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Fabric Interconnects.
Step 3 Click the node for the fabric interconnect that you want to monitor.
Step 4 In the Work pane, click one of the following tabs to view the status of the fabric interconnect:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General tab</td>
<td>Provides an overview of the status of the fabric interconnect, including a summary of any faults, a summary of the fabric interconnect properties, and a physical display of the fabric interconnect and its components.</td>
</tr>
</tbody>
</table>
Monitoring a Chassis

Tip
To monitor an individual component in a chassis, expand the node for that component.

Procedure

Step 1
In the **Navigation** pane, click the **Equipment** tab.

Step 2
On the **Equipment** tab, expand **Equipment > Chassis**.

Step 3
Click the chassis that you want to monitor.

Step 4
Click one of the following tabs to view the status of the chassis:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General tab</td>
<td>Provides an overview of the status of the chassis, including a summary of any faults, a summary of the chassis properties, and a physical display of the chassis and its components.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Servers tab</td>
<td>Displays the status and selected properties of all servers in the chassis.</td>
</tr>
<tr>
<td>Service Profiles tab</td>
<td>Displays the status of the service profiles associated with servers in the chassis.</td>
</tr>
<tr>
<td>IO Modules tab</td>
<td>Displays the status and selected properties of all IO modules in the chassis.</td>
</tr>
<tr>
<td>Fans tab</td>
<td>Displays the status of all fan modules in the chassis.</td>
</tr>
<tr>
<td>PSUs</td>
<td>Displays the status of all power supply units in the chassis.</td>
</tr>
<tr>
<td>Hybrid Display tab</td>
<td>Displays detailed information about the connections between the chassis and the fabric interconnects. The display has an icon for the following:</td>
</tr>
<tr>
<td></td>
<td>• Each fabric interconnect in the system</td>
</tr>
<tr>
<td></td>
<td>• The I/O module (IOM) in the selected component, which is shown as an independent unit to make the connection paths easier to see</td>
</tr>
<tr>
<td></td>
<td>• The selected chassis showing the servers and PSUs</td>
</tr>
<tr>
<td>Slots tab</td>
<td>Displays the status of all slots in the chassis.</td>
</tr>
<tr>
<td>Installed Firmware tab</td>
<td>Displays the current firmware versions on the IO modules and servers in the chassis. You can also use this tab to update and activate the firmware on those components.</td>
</tr>
<tr>
<td>SEL Logs tab</td>
<td>Displays and provides access to the system event logs for the servers in the chassis.</td>
</tr>
<tr>
<td>Faults tab</td>
<td>Provides details of faults generated by the chassis.</td>
</tr>
<tr>
<td>Events tab</td>
<td>Provides details of events generated by the chassis.</td>
</tr>
<tr>
<td>FSM tab</td>
<td>Provides details about and the status of FSM tasks related to the chassis. You can use this information to diagnose errors with those tasks.</td>
</tr>
<tr>
<td>Statistics tab</td>
<td>Provides statistics about the chassis and its components. You can view these statistics in tabular or chart format.</td>
</tr>
<tr>
<td>Temperatures tab</td>
<td>Provides temperature statistics for the components of the chassis. You can view these statistics in tabular or chart format.</td>
</tr>
<tr>
<td>Power tab</td>
<td>Provides power statistics for the components of the chassis. You can view these statistics in tabular or chart format.</td>
</tr>
</tbody>
</table>
Monitoring a Blade Server

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Equipment tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the server that you want to monitor.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Work pane, click one of the following tabs to view the status of the server:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Provides an overview of the status of the server, including a summary of any faults, a summary of the server properties, and a physical display of the server and its components.</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
Inventory tab | Provides details about the properties and status of the components of the server on the following subtabs:
 - **Motherboard**—Information about the motherboard and information about the server BIOS settings. You can also recover corrupt BIOS firmware from this subtab.
 - **CIMC**—Information about the CIMC and its firmware, and provides access to the SEL for the server. You can also assign a static or pooled management IP address, and update and activate the CIMC firmware from this subtab.
 - **CPUs**—Information about each CPU in the server.
 - **Memory**—Information about each memory slot in the server and the DIMM in that slot.
 - **Adapters**—Information about each adapter installed in the server.
 - **HBAs**—Properties of each HBA and the configuration of that HBA in the service profile associated with the server.
 - **NICs**—Properties of each NIC and the configuration of that NIC in the service profile associated with the server. You can expand each row to view information about the associated VIFs and vNICs.
 - **iSCSI vNICs**—Properties of each iSCSI vNIC and the configuration of that vNIC in the service profile associated with the server.
 - **Storage**—Properties of the storage controller, the local disk configuration policy in the service profile associated with the server, and for each hard disk in the server.

Tip If the server contains one or more SATA devices, such as a hard disk drive or solid state drive, Cisco UCS Manager GUI displays the vendor name for the SATA device in the Vendor field.

However, Cisco UCS Manager CLI displays ATA in the Vendor field and includes the vendor information, such as the vendor name, in a Vendor Description field. This second field does not exist in Cisco UCS Manager GUI.

Virtual Machines tab | Displays details about any virtual machines hosted on the server.

Installed Firmware tab | Displays the firmware versions on the CIMC, adapters, and other server components. You can also use this tab to update and activate the firmware on those components.

SEL Logs tab | Displays the system event log for the server.

VIF Paths tab | Displays the VIF paths for the adapters on the server.

Faults tab | Displays an overview of the faults generated by the server. You can click any fault to view additional information.
### Option	Description
Events tab | Displays an overview of the events generated by the server. You can click any event to view additional information.
FSM tab | Provides details about the current FSM task running on the server, including the status of that task. You can use this information to diagnose errors with those tasks.
Statistics tab | Displays statistics about the server and its components. You can view these statistics in tabular or chart format.
Temperatures tab | Displays temperature statistics for the components of the server. You can view these statistics in tabular or chart format.
Power tab | Displays power statistics for the components of the server. You can view these statistics in tabular or chart format.

Step 5 In the **Navigation** pane, expand **Server_ID > Adapters > Adapter_ID**.

Step 6 In the **Work** pane, right-click one or more of the following components of the adapter to open the navigator and view the status of the component:

- Adapters
- DCE interfaces
- HBAs
- NICs

Tip Expand the nodes in the table to view the child nodes. For example, if you expand a NIC node, you can view each VIF created on that NIC.

Monitoring a Rack-Mount Server

Procedure

Step 1 In the **Navigation** pane, click the **Equipment** tab.

Step 2 On the **Equipment** tab, expand **Equipment > Rack Mounts > Servers**.

Step 3 Click the server that you want to monitor.

Step 4 In the **Work** pane, click one of the following tabs to view the status of the server:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General tab</td>
<td>Provides an overview of the status of the server, including a summary of any faults, a summary of the server properties, and a physical display of the server and its components.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Inventory tab</td>
<td>Provides details about the properties and status of the components of the server on the following subtabs:</td>
</tr>
<tr>
<td></td>
<td>• Motherboard—Information about the motherboard and information about the server BIOS settings. You can also recover corrupt BIOS firmware from this subtab.</td>
</tr>
<tr>
<td></td>
<td>• CIMC—Information about the CIMC and its firmware, and provides access to the SEL for the server. You can also assign a static or pooled management IP address, and update and activate the CIMC firmware from this subtab.</td>
</tr>
<tr>
<td></td>
<td>• CPU—Information about each CPU in the server.</td>
</tr>
<tr>
<td></td>
<td>• Memory—Information about each memory slot in the server and the DIMM in that slot.</td>
</tr>
<tr>
<td></td>
<td>• Adapters—Information about each adapter installed in the server.</td>
</tr>
<tr>
<td></td>
<td>• HBAs—Properties of each HBA and the configuration of that HBA in the service profile associated with the server.</td>
</tr>
<tr>
<td></td>
<td>• NICs—Properties of each NIC and the configuration of that NIC in the service profile associated with the server. You can expand each row to view information about the associated VIFs and vNICs.</td>
</tr>
<tr>
<td></td>
<td>• iSCSI vNICs—Properties of each iSCSI vNIC and the configuration of that vNIC in the service profile associated with the server.</td>
</tr>
<tr>
<td></td>
<td>• Storage—Properties of the storage controller, the local disk configuration policy in the service profile associated with the server, and for each hard disk in the server.</td>
</tr>
<tr>
<td>Tip</td>
<td>If the server contains one or more SATA devices, such as a hard disk drive or solid state drive, Cisco UCS Manager GUI displays the vendor name for the SATA device in the Vendor field.</td>
</tr>
<tr>
<td></td>
<td>However, Cisco UCS Manager CLI displays ATA in the Vendor field and includes the vendor information, such as the vendor name, in a Vendor Description field. This second field does not exist in Cisco UCS Manager GUI.</td>
</tr>
<tr>
<td>Virtual Machines tab</td>
<td>Displays details about any virtual machines hosted on the server.</td>
</tr>
<tr>
<td>Installed Firmware tab</td>
<td>Displays the firmware versions on the CIMC, adapters, and other server components. You can also use this tab to update and activate the firmware on those components.</td>
</tr>
<tr>
<td>SEL Logs tab</td>
<td>Displays the system event log for the server.</td>
</tr>
<tr>
<td>VIF Paths tab</td>
<td>Displays the VIF paths for the adapters on the server.</td>
</tr>
<tr>
<td>Faults tab</td>
<td>Displays an overview of the faults generated by the server. You can click any fault to view additional information.</td>
</tr>
</tbody>
</table>
Monitoring an I/O Module

Procedure

Step 1	In the Navigation pane, click the Equipment tab.
Step 2	On the Equipment tab, expand Equipment > Chassis > Chassis Number > IO Modules.
Step 3	Click the I/O module that you want to monitor.
Step 4	Click one of the following tabs to view the status of the I/O module:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General tab</td>
<td>Provides an overview of the status of the I/O module, including a summary</td>
</tr>
<tr>
<td></td>
<td>of any faults, a summary of the module properties, and a physical display</td>
</tr>
<tr>
<td></td>
<td>of the module and its components.</td>
</tr>
</tbody>
</table>
Monitoring Management Interfaces

Management Interfaces Monitoring Policy

This policy defines how the mgmt0 Ethernet interface on the fabric interconnect should be monitored. If Cisco UCS detects a management interface failure, a failure report is generated. If the configured number of failure reports is reached, the system assumes that the management interface is unavailable and generates a fault. By default, the management interfaces monitoring policy is disabled.

If the affected management interface belongs to a fabric interconnect which is the managing instance, Cisco UCS confirms that the subordinate fabric interconnect's status is up, that there are no current failure reports logged against it, and then modifies the managing instance for the end-points.

If the affected fabric interconnect is currently the primary inside of a high availability setup, a failover of the management plane is triggered. The data plane is not affected by this failover.

You can set the following properties related to monitoring the management interface:

- Type of mechanism used to monitor the management interface.
- Interval at which the management interface's status is monitored.
- Maximum number of monitoring attempts that can fail before the system assumes that the management is unavailable and generates a fault message.
In the event of a management interface failure on a fabric interconnect, the managing instance may not change if one of the following occurs:

- A path to the end-point through the subordinate fabric interconnect does not exist.
- The management interface for the subordinate fabric interconnect has failed.
- The path to the end-point through the subordinate fabric interconnect has failed.

Configuring the Management Interfaces Monitoring Policy

Procedure

Step 1
In the **Navigation** pane, click the **Admin** tab.

Step 2
In the **Admin** tab, expand **All > Communication Management**.

Step 3
Click **Management Interfaces**.

Step 4
In the **Work** pane, click the **Management Interfaces Monitoring Policy** tab.

Step 5
Complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Status field</td>
<td>Whether the monitoring policy is enabled or disabled for the management interfaces.</td>
</tr>
<tr>
<td>Poll Interval field</td>
<td>The number of seconds the system should wait between data recordings. Enter an integer between 90 and 300.</td>
</tr>
<tr>
<td>Max Fail Report Count field</td>
<td>The maximum number of monitoring attempts that can fail before the system assumes that the management interface is unavailable and generates a fault message.</td>
</tr>
<tr>
<td>Monitoring Mechanism field</td>
<td>The type of monitoring you want the system to use. You can select:</td>
</tr>
<tr>
<td></td>
<td>• MII Status—The system monitors the availability of the Media Independent Interface (MII). If you select this option, Cisco UCS Manager GUI displays the Media Independent Interface Monitoring area.</td>
</tr>
<tr>
<td></td>
<td>• Ping ARP Targets—The system pings designated targets using the Address Resolution Protocol (ARP). If you select this option, Cisco UCS Manager GUI displays the ARP Target Monitoring area.</td>
</tr>
<tr>
<td></td>
<td>• Ping Gateway—The system pings the default gateway address specified for this Cisco UCS instance on the Management Interfaces tab. If you select this option, Cisco UCS Manager GUI displays the Gateway Ping Monitoring area.</td>
</tr>
</tbody>
</table>
Step 6 If you chose **MII Status** for the monitoring mechanism, complete the following fields in the **Media Independent Interface Monitoring** area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retry Interval field</td>
<td>The number of seconds the system should wait before requesting another response from the MII if a previous attempt fails. Enter an integer between 3 and 10.</td>
</tr>
<tr>
<td>Max Retry Count field</td>
<td>The number of times the system polls the MII until the system assumes the interface is unavailable. Enter an integer between 1 and 3.</td>
</tr>
</tbody>
</table>

Step 7 If you chose **Ping ARP Targets** for the monitoring mechanism, complete the following fields in the **ARP Target Monitoring** area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target IP 1 field</td>
<td>The first IP address the system pings.</td>
</tr>
<tr>
<td>Target IP 2 field</td>
<td>The second IP address the system pings.</td>
</tr>
<tr>
<td>Target IP 3 field</td>
<td>The third IP address the system pings.</td>
</tr>
<tr>
<td>Number of ARP Requests field</td>
<td>The number of ARP requests to send to the target IP addresses. Enter an integer between 1 and 5.</td>
</tr>
<tr>
<td>Max Deadline Timeout field</td>
<td>The number of seconds to wait for responses from the ARP targets until the system assumes they are unavailable. Enter an integer between 5 and 15.</td>
</tr>
</tbody>
</table>

Type 0.0.0.0 to remove the ARP target.

Step 8 If you chose **Ping Gateway** for the monitoring mechanism, complete the following fields in the **Gateway Ping Monitoring** area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Ping Requests field</td>
<td>The number of times the system should ping the gateway. Enter an integer between 1 and 5.</td>
</tr>
<tr>
<td>Max Deadline Timeout field</td>
<td>The number of seconds to wait for a response from the gateway until the system assumes the address is unavailable. Enter an integer between 5 and 15.</td>
</tr>
</tbody>
</table>
Step 9 Click Save Changes.
Configuring Statistics-Related Policies

This chapter includes the following sections:

- Configuring Statistics Collection Policies, page 621
- Configuring Statistics Threshold Policies, page 624

Configuring Statistics Collection Policies

Statistics Collection Policy

A statistics collection policy defines how frequently statistics are to be collected (collection interval) and how frequently the statistics are to be reported (reporting interval). Reporting intervals are longer than collection intervals so that multiple statistical data points can be collected during the reporting interval, which provides Cisco UCS Manager with sufficient data to calculate and report minimum, maximum, and average values.

For NIC statistics, Cisco UCS Manager displays the average, minimum, and maximum of the change since the last collection of statistics. If the values are 0, there has been no change since the last collection.

Statistics can be collected and reported for the following five functional areas of the Cisco UCS system:

- Adapter—statistics related to the adapters
- Chassis—statistics related to the blade chassis
- Host—this policy is a placeholder for future support
- Port—statistics related to the ports, including server ports, uplink Ethernet ports, and uplink Fibre Channel ports
- Server—statistics related to servers

Note

Cisco UCS Manager has one default statistics collection policy for each of the five functional areas. You cannot create additional statistics collection policies and you cannot delete the existing default policies. You can only modify the default policies.
Modifying a Statistics Collection Policy

Note
Cisco UCS Manager has one default statistics collection policy for each of the five functional areas. You cannot create additional statistics collection policies and you cannot delete the existing default policies. You can only modify the default policies.

Procedure

Step 1
In the Navigation pane, click the Admin tab.

Step 2
In the Admin tab, expand All > Stats Management > Stats.

Step 3
Right-click the policy that you want to modify and select Modify Collection Policy.

Step 4
In the Modify Collection Policy dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the collection policy. This name is assigned by Cisco UCS and cannot be changed.</td>
</tr>
<tr>
<td>Collection Interval field</td>
<td>The length of time the fabric interconnect should wait between data recordings. This can be:</td>
</tr>
<tr>
<td></td>
<td>• 30 Seconds</td>
</tr>
<tr>
<td></td>
<td>• 1 Minute</td>
</tr>
<tr>
<td></td>
<td>• 2 Minutes</td>
</tr>
<tr>
<td></td>
<td>• 5 Minutes</td>
</tr>
</tbody>
</table>
The length of time the fabric interconnect should wait before sending any data collected for the counter to Cisco UCS Manager GUI. This can be:

- 2 Minutes
- 15 Minutes
- 30 Minutes
- 60 Minutes
- 2 Hours
- 4 Hours
- 8 Hours

When this time has elapsed, the fabric interconnect groups all data collected since the last time it sent information to Cisco UCS Manager GUI, and it extracts four pieces of information from that group and sends them to Cisco UCS Manager GUI:

- The most recent statistic collected
- The average of this group of statistics
- The maximum value within this group
- The minimum value within this group

For example, if the collection interval is set to 1 minute and the reporting interval is 15 minutes, the fabric interconnect collects 15 samples in that 15 minute reporting interval. Instead of sending 15 statistics to Cisco UCS Manager GUI, it sends only the most recent recording along with the average, minimum, and maximum values for the entire group.

<table>
<thead>
<tr>
<th>States Section</th>
</tr>
</thead>
</table>

Current Task field

This field shows the task that is executing on behalf of this component. For details, see the associated FSM tab.

Note

If there is no current task, this field is not displayed.

Step 5 Click **OK**.
Configuring Statistics Threshold Policies

Statistics Threshold Policy

A statistics threshold policy monitors statistics about certain aspects of the system and generates an event if the threshold is crossed. You can set both minimum and maximum thresholds. For example, you can configure the policy to raise an alarm if the CPU temperature exceeds a certain value, or if a server is overutilized or underutilized.

These threshold policies do not control the hardware or device-level thresholds enforced by endpoints, such as the CIMC. Those thresholds are burned into the hardware components at manufacture.

Cisco UCS enables you to configure statistics threshold policies for the following components:

- Servers and server components
- Uplink Ethernet ports
- Ethernet server ports, chassis, and fabric interconnects
- Fibre Channel port

Note

You cannot create or delete a statistics threshold policy for Ethernet server ports, uplink Ethernet ports, or uplink Fibre Channel ports. You can only configure the existing default policy.

Creating a Server and Server Component Threshold Policy

Tip

This procedure documents how to create a server and server component threshold policy on the Server tab. You can also create and configure these threshold policies within the appropriate organization in the Policies node on the LAN tab, SAN tab, and under the Stats Management node of the Admin tab.

Procedure

Step 1
In the Navigation pane, click the Servers tab.

Step 2
On the Servers tab, expand Servers > Policies.

Step 3
Expand the node for the organization where you want to create the policy.
If the system does not include multi-tenancy, expand the root node.

Step 4
Right-click Threshold Policies and choose Create Threshold Policy.

Step 5
In the Define Name and Description page of the Create Threshold Policy wizard, do the following:
 a) Complete the following fields:
Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name field</td>
<td>The name of the policy. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Description field</td>
<td>A description of the policy. We recommend including information about where and when the policy should be used. Enter up to 256 characters. You can use any characters or spaces except ^ (carat), \ (backslash), > (greater than), < (less than), ' (single quote), " (double quote), ` (accent mark).</td>
</tr>
</tbody>
</table>

b) Click Next.

Step 6 In the Threshold Classes page of the Create Threshold Policy wizard, do the following:

a) Click Add.

b) In the Choose Statistics Class dialog box, choose the statistics class for which you want to configure a custom threshold from the Stat Class drop-down list.

c) Click Next.

Step 7 In the Threshold Definitions page, do the following:

a) Click Add.

The Create Threshold Definition dialog box opens.

b) From the Property Type field, choose the threshold property that you want to define for the class.

c) In the Normal Value field, enter the desired value for the property type.

d) In the Alarm Triggers (Above Normal Value) fields, check one or more of the following check boxes:

- Critical
- Major
- Minor
- Warning
- Condition
- Info

e) In the Up and Down fields, enter the range of values that should trigger the alarm.

f) In the Alarm Triggers (Below Normal Value) fields, check one or more of the following check boxes:

- Info
- Condition
- Warning
- Minor
- Major
• Critical

g) In the **Up** and **Down** fields, enter the range of values that should trigger the alarm.
h) Click **Finish Stage**.
i) Do one of the following:
 • To define another threshold property for the class, repeat Step 7.
 • If you have defined all required properties for the class, click **Finish Stage**.

Step 8 In the **Threshold Classes** page of the Create **Threshold Policy** wizard, do one the following:
 • To configure another threshold class for the policy, repeat Steps 6 and 7.
 • If you have configured all required threshold classes for the policy, click **Finish**.

Step 9 Click **OK**.

Adding a Threshold Class to an Existing Server and Server Component Threshold Policy

Tip This procedure documents how to add a threshold class to a server and server component threshold policy in the **Server** tab. You can also create and configure these threshold policies within the appropriate organization in the **Policies** node on the **LAN** tab, **SAN** tab, and under the **Stats Management** node of the **Admin** tab.

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Policies > Organization_Name**.

Step 3 Expand the **Threshold Policies** node.

Step 4 Right-click the policy to which you want to add a threshold class and choose **Create Threshold Class**.

Step 5 In the **Choose Statistics Class** page of the Create **Threshold Class** wizard, do the following:
 a) From the **Stat Class** drop-down list, choose the statistics class for which you want to configure a custom threshold.
 b) Click **Next**.

Step 6 In the **Threshold Definitions** page, do the following:
 a) Click **Add**.
 The **Create Threshold Definition** dialog box opens.
 b) From the **Property Type** field, choose the threshold property that you want to define for the class.
 c) In the **Normal Value** field, enter the desired value for the property type.
 d) In the **Alarm Triggers (Above Normal Value)** field, check one or more of the following check boxes:
 • Critical
e) In the **Up** and **Down** fields, enter the range of values that should trigger the alarm.
f) In the **Alarm Triggers (Below Normal Value)** field, check one or more of the following check boxes:

- Info
- Condition
- Warning
- Minor
- Major
- Critical
g) In the **Up** and **Down** fields, enter the range of values that should trigger the alarm.
h) Click **Finish Stage**.
i) Do one of the following:
 - To define another threshold property for the class, repeat Step 6.
 - If you have defined all required properties for the class, click **Finish Stage**.

Step 7 In the **Choose Statistics Class** page of the **Create Threshold Class** wizard, do one the following:

- To configure another threshold class for the policy, repeat Steps 5 and 6.
- If you have configured all required threshold classes for the policy, click **Finish**.

Step 8 Click **OK**.

Deleting a Server and Server Component Threshold Policy

Procedure

Step 1 In the **Navigation** pane, click the **Servers** tab.

Step 2 On the **Servers** tab, expand **Servers > Policies > Organization_Name**.

Step 3 Expand the **Threshold Policies** node.

Step 4 Right-click the policy you want to delete and select **Delete**.

Step 5 If Cisco UCS Manager GUI displays a confirmation dialog box, click **Yes**.
Adding a Threshold Class to the Uplink Ethernet Port Threshold Policy

Tip
You cannot create an uplink Ethernet port threshold policy. You can only modify or delete the default policy.

Procedure

Step 1
In the Navigation pane, click the LAN tab.

Step 2
On the LAN tab, expand LAN > LAN Cloud.

Step 3
Expand the Threshold Policies node.

Step 4
Right-click Thr-policy-default and choose the Create Threshold Class.

Step 5
In the Choose Statistics Class page of the Create Threshold Class wizard, do the following:

a) From the Stat Class drop-down list, choose the statistics class for which you want to configure a custom threshold.

b) Click Next.

Step 6
In the Threshold Definitions page, do the following:

a) Click Add.

The Create Threshold Definition dialog box opens.

b) From the Property Type field, choose the threshold property that you want to define for the class.

c) In the Normal Value field, enter the desired value for the property type.

d) In the Alarm Triggers (Above Normal Value) field, check one or more of the following check boxes:

 • Critical
 • Major
 • Minor
 • Warning
 • Condition
 • Info

e) In the Up and Down fields, enter the range of values that should trigger the alarm.

f) In the Alarm Triggers (Below Normal Value) field, check one or more of the following check boxes:

 • Info
 • Condition
 • Warning
 • Minor
 • Major
• Critical

g) In the Up and Down fields, enter the range of values that should trigger the alarm.
h) Click Finish Stage.
i) Do one of the following:
• To define another threshold property for the class, repeat Step 6.
• If you have defined all required properties for the class, click Finish Stage.

Step 7 In the Create Threshold Class page of the Create Threshold Policy wizard, do one the following:
• To configure another threshold class for the policy, repeat Steps 5 and 6.
• If you have configured all required threshold classes for the policy, click Finish.

Adding a Threshold Class to the Ethernet Server Port, Chassis, and Fabric Interconnect Threshold Policy

Tip You cannot create an Ethernet server port, chassis, and fabric interconnect threshold policy. You can only modify or delete the default policy.

Procedure

Step 1 In the Navigation pane, click the LAN tab.
Step 2 In the LAN tab, expand LAN > Internal LAN.
Step 3 Expand the Threshold Policies node.
Step 4 Right-click Thr-policy-default and choose the Create Threshold Class.
Step 5 In the Choose Statistics Class page of the Create Threshold Class wizard, do the following:
a) From the Stat Class drop-down list, choose the statistics class for which you want to configure a custom threshold.
b) Click Next.
Step 6 In the Threshold Definitions page, do the following:
a) Click Add.
The Create Threshold Definition dialog box opens.
b) From the Property Type field, choose the threshold property that you want to define for the class.
c) In the Normal Value field, enter the desired value for the property type.
d) In the Alarm Triggers (Above Normal Value) field, check one or more of the following check boxes:
• Critical
• Major
e) In the Up and Down fields, enter the range of values that should trigger the alarm.

f) In the Alarm Triggers (Below Normal Value) field, check one or more of the following check boxes:
 - Info
 - Condition
 - Warning
 - Minor
 - Major
 - Critical

g) In the Up and Down fields, enter the range of values that should trigger the alarm.

h) Click Finish Stage.

i) Do one of the following:
 - To define another threshold property for the class, repeat Step 6.
 - If you have defined all required properties for the class, click Finish Stage.

Step 7 In the Create Threshold Class page of the Create Threshold Policy wizard, do one the following:
 - To configure another threshold class for the policy, repeat Steps 5 and 6.
 - If you have configured all required threshold classes for the policy, click Finish.

Adding a Threshold Class to the Fibre Channel Port Threshold Policy

You cannot create a Fibre Channel port threshold policy. You can only modify or delete the default policy.

Procedure

Step 1 In the Navigation pane, click the SAN tab.
Step 2 On the SAN tab, expand SAN > SAN Cloud.
Step 3 Expand the Threshold Policies node.
Step 4 Right-click Thr-policy-default and choose the Create Threshold Class.
Step 5 In the Choose Statistics Class page of the Create Threshold Class wizard, do the following:
 a) From the Stat Class drop-down list, choose the statistics class for which you want to configure a custom threshold.
b) Click Next.

Step 6 In the **Threshold Definitions** page, do the following:

a) Click **Add**.

The **Create Threshold Definition** dialog box opens.

b) From the **Property Type** field, choose the threshold property that you want to define for the class.

c) In the **Normal Value** field, enter the desired value for the property type.

d) In the **Alarm Triggers (Above Normal Value)** field, check one or more of the following check boxes:

- Critical
- Major
- Minor
- Warning
- Condition
- Info

e) In the **Up** and **Down** fields, enter the range of values that should trigger the alarm.

f) In the **Alarm Triggers (Below Normal Value)** field, check one or more of the following check boxes:

- Info
- Condition
- Warning
- Minor
- Major
- Critical

g) In the **Up** and **Down** fields, enter the range of values that should trigger the alarm.

h) Click **Finish Stage**.

i) Do one of the following:

- To define another threshold property for the class, repeat Step 6.
- If you have defined all required properties for the class, click **Finish Stage**.

Step 7 In the **Create Threshold Class** page of the **Create Threshold Policy** wizard, do one of the following:

- To configure another threshold class for the policy, repeat Steps 5 and 6.
- If you have configured all required threshold classes for the policy, click **Finish**.
CHAPTER 48

Configuring Call Home

This chapter includes the following sections:

- Call Home, page 633
- Call Home Considerations and Guidelines, page 635
- Cisco UCS Faults and Call Home Severity Levels, page 636
- Cisco Smart Call Home, page 637
- Configuring Call Home, page 638
- Disabling Call Home, page 641
- Enabling Call Home, page 641
- Configuring System Inventory Messages, page 642
- Configuring Call Home Profiles, page 643
- Configuring Call Home Policies, page 646
- Example: Configuring Call Home for Smart Call Home, page 650

Call Home

Call Home provides an email-based notification for critical system policies. A range of message formats are available for compatibility with pager services or XML-based automated parsing applications. You can use this feature to page a network support engineer, email a Network Operations Center, or use Cisco Smart Call Home services to generate a case with the Technical Assistance Center.

The Call Home feature can deliver alert messages containing information about diagnostics and environmental faults and events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles. Each profile includes configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco TAC, but you also can define your own destination profiles.

When you configure Call Home to send messages, Cisco UCS Manager executes the appropriate CLI `show` command and attaches the command output to the message.

Cisco UCS delivers Call Home messages in the following formats:
• Short text format which provides a one or two line description of the fault that is suitable for pagers or printed reports.

• Full text format which provides fully formatted message with detailed information that is suitable for human reading.

• XML machine readable format that uses Extensible Markup Language (XML) and Adaptive Messaging Language (AML) XML schema definition (XSD). The AML XSD is published on the Cisco.com website. The XML format enables communication with the Cisco Systems Technical Assistance Center.

For information about the faults that can trigger Call Home email alerts, see the Cisco UCS Faults and Error Messages Reference.
The following figure shows the flow of events after a Cisco UCS is triggered in a system with Call Home configured:

Figure 4: Flow of Events after a Fault is Triggered

Call Home Considerations and Guidelines

How you configure Call Home depends on how you intend to use the feature. The information you need to consider before you configure Call Home includes the following:
Destination Profile

You must configure at least one destination profile. The destination profile or profiles that you use depend upon whether the receiving entity is a pager, email, or automated service such as Cisco Smart Call Home. If the destination profile uses email message delivery, you must specify a Simple Mail Transfer Protocol (SMTP) server when you configure Call Home.

Contact Information

The contact email, phone, and street address information should be configured so that the receiver can determine the origin of messages received from the Cisco UCS instance.

Cisco Smart Call Home sends the registration email to this email address after you send a system inventory to begin the registration process.

IP Connectivity to Email Server or HTTP Server

The fabric interconnect must have IP connectivity to an email server or the destination HTTP server. In a cluster configuration, both fabric interconnects must have IP connectivity. This connectivity ensures that the current, active fabric interconnect can send Call Home email messages. The source of these email messages is always the IP address of a fabric interconnect. The virtual IP address assigned Cisco UCS Manager in a cluster configuration is never the source of the email.

Smart Call Home

If Cisco Smart Call Home is used, the following are required:

- An active service contract must cover the device being configured
- The customer ID associated with the Smart Call Home configuration in Cisco UCS must be the CCO (Cisco.com) account name associated with a support contract that includes Smart Call Home

Cisco UCS Faults and Call Home Severity Levels

Because Call Home is present across several Cisco product lines, Call Home has developed its own standardized severity levels. The following table describes how the underlying Cisco UCS fault levels map to the Call Home severity levels. You need to understand this mapping when you configure the Level setting for Call Home profiles.

<table>
<thead>
<tr>
<th>Call Home Severity</th>
<th>Cisco UCS Fault</th>
<th>Call Home Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9) Catastrophic</td>
<td>N/A</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>(8) Disaster</td>
<td>N/A</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>(7) Fatal</td>
<td>N/A</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>(6) Critical</td>
<td>Critical</td>
<td>Critical conditions, immediate attention needed.</td>
</tr>
<tr>
<td>Call Home Severity</td>
<td>Cisco UCS Fault</td>
<td>Call Home Meaning</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(5) Major</td>
<td>Major</td>
<td>Major conditions.</td>
</tr>
<tr>
<td>(4) Minor</td>
<td>Minor</td>
<td>Minor conditions.</td>
</tr>
<tr>
<td>(3) Warning</td>
<td>Warning</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>(2) Notification</td>
<td>Info</td>
<td>Basic notifications and informational messages. Possibly independently insignificant.</td>
</tr>
<tr>
<td>(1) Normal</td>
<td>Clear</td>
<td>Normal event, signifying a return to normal state.</td>
</tr>
<tr>
<td>(0) debug</td>
<td>N/A</td>
<td>Debugging messages.</td>
</tr>
</tbody>
</table>

Cisco Smart Call Home

Cisco Smart Call Home is a web application which leverages the Call Home feature of Cisco UCS. Smart Call Home offers proactive diagnostics and real-time email alerts of critical system events, which results in higher network availability and increased operational efficiency. Smart Call Home is a secure connected service offered by Cisco Unified Computing Support Service and Cisco Unified Computing Mission Critical Support Service for Cisco UCS.

Note

Using Smart Call Home requires the following:

- Cisco Unified Computing Support Service or Cisco Unified Computing Mission Critical Support Service for the device to be registered.

You can configure and register Cisco UCS Manager to send Smart Call Home email alerts to either the Smart Call Home System or the secure Transport Gateway. Email alerts sent to the secure Transport Gateway are forwarded to the Smart Call Home System using HTTPS.

Note

For security reasons, we recommend using the Transport Gateway option. The Transport Gateway can be downloaded from Cisco.

To configure Smart Call Home, you must do the following:

- Enable the Smart Call Home feature.
- Configure the contact information.
- Configure the email information.
• Configure the SMTP server information.
• Configure the default CiscoTAC-1 profile.
• Send a Smart Call Home inventory message to start the registration process.
• Ensure that the CCO ID you plan to use as the Call Home Customer ID for the Cisco UCS instance has the contract numbers from the registration added to its entitlements. You can update the ID in the account properties under Additional Access in the Profile Manager on CCO.

Configuring Call Home

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>Step 2</td>
<td>On the Admin tab, expand All > Communication Management > Call Home.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Admin area, complete the following fields to enable Call Home:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State field</td>
<td>This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Off—Call Home is not used for this Cisco UCS instance.</td>
</tr>
<tr>
<td></td>
<td>• On—Cisco UCS generates Call Home alerts based on the Call Home policies and profiles defined in the system.</td>
</tr>
<tr>
<td>Switch Priority</td>
<td>This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Alerts</td>
</tr>
<tr>
<td></td>
<td>• Critical</td>
</tr>
<tr>
<td></td>
<td>• Debugging</td>
</tr>
<tr>
<td></td>
<td>• Emergencies</td>
</tr>
<tr>
<td></td>
<td>• Errors</td>
</tr>
<tr>
<td></td>
<td>• Information</td>
</tr>
<tr>
<td></td>
<td>• Notifications</td>
</tr>
<tr>
<td></td>
<td>• Warnings</td>
</tr>
<tr>
<td>Note</td>
<td>If this field is set to On, Cisco UCS Manager GUI displays the rest of the fields on this tab.</td>
</tr>
</tbody>
</table>
Whether the system limits the number of duplicate messages received for the same event. This can be one of the following:

- **On**—If the number of duplicate messages sent exceeds 30 messages within a 2-hour time frame, then the system discards further messages for that alert type.
- **Off**—The system sends all duplicate messages, regardless of how many are encountered.

a) In the **State** field, click **on**.

Note If this field is set to **On**, Cisco UCS Manager GUI displays the rest of the fields on this tab.

b) From the **Switch Priority** drop-down list, select one of the following levels:

- Alerts
- Critical
- Debugging
- Emergencies
- Errors
- Information
- Notifications
- Warnings

For a large Cisco UCS deployment with several pairs of fabric interconnects, this field enables you to attach significance to messages from one particular Cisco UCS instance, so that message recipients can gauge the priority of the message. This field may not be as useful for a small Cisco UCS deployment, such as a single Cisco UCS instance.

Step 5 In the **Contact Information** area, complete the following fields with the required contact information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact field</td>
<td>The main Call Home contact person. Enter up to 255 ASCII characters.</td>
</tr>
<tr>
<td>Phone field</td>
<td>The telephone number for the main contact. Enter the number in international format, starting with a + (plus sign) and a country code. You can use hyphens but not parentheses.</td>
</tr>
<tr>
<td>Email field</td>
<td>The email address for the main contact. Cisco Smart Call Home sends the registration email to this email address.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Address field</td>
<td>The mailing address for the main contact. Enter up to 255 ASCII characters.</td>
</tr>
</tbody>
</table>

Step 6

In the **Ids** area, complete the following fields with the identification information that Call Home should use:

Tip If you are not configuring Smart Call Home, this step is optional.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Id field</td>
<td>The CCO ID that includes the contract numbers for the support contract in its entitlements. Enter up to 510 ASCII characters.</td>
</tr>
<tr>
<td>Contract Id field</td>
<td>The Call Home contract number for the customer. Enter up to 510 ASCII characters.</td>
</tr>
<tr>
<td>Site Id field</td>
<td>The unique Call Home identification number for the customer site. Enter up to 510 ASCII characters.</td>
</tr>
</tbody>
</table>

Step 7

In the **Email Addresses** area, complete the following fields with email information for Call Home alert messages:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From field</td>
<td>The email address that should appear in the From field on Call Home alert messages sent by the system.</td>
</tr>
<tr>
<td>Reply To field</td>
<td>The return email address that should appear in the From field on Call Home alert messages sent by the system.</td>
</tr>
</tbody>
</table>

Step 8

In the **SMTP Server** area, complete the following fields with information about the SMTP server where Call Home should send email messages:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host field</td>
<td>The IP address or hostname of the SMTP server.</td>
</tr>
<tr>
<td>Note</td>
<td>If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Port field</td>
<td>The port number the system should use to talk to the SMTP server. Enter an integer between 1 and 65535. The default is 25.</td>
</tr>
</tbody>
</table>
Step 9 Click Save Changes.

Disabling Call Home

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the General tab.
Step 4 In the Admin area, click off in the State field.
 Note If this field is set to off, Cisco UCS Manager hides the rest of the fields on this tab.
Step 5 Click Save Changes.

Enabling Call Home

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the General tab.
Step 4 In the Admin area, click on in the State field.
 Note If this field is set to On, Cisco UCS Manager GUI displays the rest of the fields on this tab.
Step 5 Click Save Changes.

What to Do Next

Ensure that Call Home is fully configured.
Configuring System Inventory Messages

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the System Inventory tab.
Step 4 In the Properties area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Periodically</td>
<td>If this field is set to on, Cisco UCS sends the system inventory to the Call Home database. When the information is sent depends on the other fields in this area.</td>
</tr>
<tr>
<td>Send Interval</td>
<td>The number of days that should pass between automatic system inventory data collection.</td>
</tr>
<tr>
<td>Hour of Day to Send</td>
<td>The hour that the data should be sent using the 24-hour clock format.</td>
</tr>
<tr>
<td>Minute of Hour</td>
<td>The number of minutes after the hour that the data should be sent.</td>
</tr>
<tr>
<td>Time Last Sent</td>
<td>The date and time the information was last sent.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is displayed after the first inventory has been sent.</td>
</tr>
<tr>
<td>Next Scheduled</td>
<td>The date and time for the upcoming data collection.</td>
</tr>
<tr>
<td>Note</td>
<td>This field is displayed after the first inventory has been sent.</td>
</tr>
</tbody>
</table>

Step 5 Click Save Changes.

Sending a System Inventory Message

Use this procedure if you need to manually send a system inventory message outside of the scheduled messages.

Note The system inventory message is sent only to those recipients defined in CiscoTAC-1 profile.
Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the System Inventory tab.
Step 4 In the Actions area, click Send System Inventory Now.
Cisco UCS Manager immediately sends a system inventory message to the recipient configured for Call Home.

Configuring Call Home Profiles

Call Home Profiles

Call Home profiles determine which alerts are sent to designated recipients. You can configure the profiles to send email alerts for events and faults at a desired severity level and for specific alert groups that represent categories of alerts. You can also use these profiles to specify the format of the alert for a specific set of recipients and alert groups.

Each alert that Cisco UCS generates fits into a category represented by an alert group, such as the following:

- Environmental alerts, including fans and power supplies
- Diagnostic alerts, such as POST completion failure on a server

Alert groups and Call Home profiles enable you to filter the alerts and ensure that a specific profile only receives certain categories of alerts. For example, a data center may have a hardware team that handles issues with fans and power supplies. This hardware team does not care about server POST failures or licensing issues. To ensure that the hardware team only receives relevant alerts, create a Call Home profile for the hardware team and check only the "environmental" alert group.

By default, you must configure the Cisco TAC-1 profile. However, you can also create additional profiles to send email alerts to one or more alert groups when events occur at the level that you specify and provide the recipients with the appropriate amount of information about those alerts.

For example, you may want to configure two profiles for faults with a major severity:

- A profile that sends an alert to the Supervisor alert group in the short text format. Members of this group receive a one- or two-line description of the fault that they can use to track the issue.
- A profile that sends an alert to the CiscoTAC alert group in the XML format. Members of this group receive a detailed message in the machine readable format preferred by the Cisco Systems Technical Assistance Center.

Creating a Call Home Profile

By default, you must configure the Cisco TAC-1 profile. However, you can also create additional profiles to send email alerts to one or more specified groups when events occur at the level that you specify.
Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > Communication Management > Call Home**.

Step 3 In the **Work** pane, click the **Profiles** tab.

Step 4 On the icon bar to the right of the table, click +.
If the + icon is disabled, click an entry in the table to enable it.

Step 5 In the **Create Call Home Profile** dialog box, complete the following information fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A user-defined name for this profile. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters, and you cannot change this name after the object has been saved.</td>
</tr>
<tr>
<td>Level</td>
<td>Cisco UCS faults that are greater than or equal to this level trigger the profile. This can be:</td>
</tr>
<tr>
<td></td>
<td>• critical</td>
</tr>
<tr>
<td></td>
<td>• debug</td>
</tr>
<tr>
<td></td>
<td>• disaster</td>
</tr>
<tr>
<td></td>
<td>• fatal</td>
</tr>
<tr>
<td></td>
<td>• major</td>
</tr>
<tr>
<td></td>
<td>• minor</td>
</tr>
<tr>
<td></td>
<td>• normal</td>
</tr>
<tr>
<td></td>
<td>• notification</td>
</tr>
<tr>
<td></td>
<td>• warning</td>
</tr>
</tbody>
</table>
Step 6

In the **Email Configuration** area, complete the following fields to configure the email alerts:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• xml—A machine readable format that uses Extensible Markup Language (XML) and Adaptive Messaging Language (AML) XML schema definition (XSD). This format enables communication with the Cisco Systems Technical Assistance Center.</td>
</tr>
<tr>
<td></td>
<td>• fullTxt—A fully formatted message with detailed information that is suitable for human reading.</td>
</tr>
<tr>
<td></td>
<td>• shortTxt—A one or two line description of the fault that is suitable for pagers or printed reports.</td>
</tr>
</tbody>
</table>

| **Max Message Size** field | The maximum message size that is sent to the designated Call Home recipients. The default is 1000000. For full-txt and xml messages, the maximum recommended size is 5000000. For short-txt messages, the maximum recommended size is 100000. For the CiscoTAC-1, the maximum message size must be 5000000. |

Step 7

In the **Recipients** area, do the following to add one or more email recipients for the email alerts:
a) On the icon bar to the right of the table, click +.
b) In the Add Email Recipients dialog box, enter the email address to which Call Home alerts should be sent in the Email field. After you save this email address, it can be deleted but it cannot be changed.
c) Click OK.

Configuring Call Home Policies

Call Home Policies

Call Home policies determine whether or not Call Home alerts are sent for a specific type of fault or system event. By default, Call Home is enabled to send alerts for certain types of faults and system events. However, you can configure Cisco UCS not to process certain types.

To disable alerts for a type of fault or events, you must create a Call Home policy for that type, and you must first create a policy for that type and then disable the policy.

By default, Cisco UCS sends Call Home alerts for each of the following types of faults and system events:

- association-failed
- configuration-failure
- connectivity-problem
- election-failure
- equipment-inaccessible
- equipment-inoperable
- equipment-problem
- fru-problem
• identity-unestablishable
• link-down
• management-services-failure
• management-services-unresponsive
• power-problem
• thermal-problem
• unspecified
• version-incompatible
• voltage-problem

Configuring a Call Home Policy

Tip
By default, all Call Home policies are enabled to ensure that email alerts are sent for all critical system events.

Procedure

Step 1 In the **Navigation** pane, click the **Admin** tab.

Step 2 On the **Admin** tab, expand **All > Communication Management > Call Home**.

Step 3 In the **Work** pane, click the **Policies** tab.

Step 4 On the icon bar to the right of the table, click +. If the + icon is disabled, click an entry in the table to enable it.

Step 5 In the **Create Call Home Policy** dialog box, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State field</td>
<td>If this field is enabled, the system uses this policy when an error matching the associated cause is encountered. Otherwise, the system ignores this policy even if a matching error occurs. By default, all policies are enabled.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Cause field</td>
<td>The event that triggers the alert. Each policy defines whether an alert is sent for one type of event. This can be:</td>
</tr>
<tr>
<td></td>
<td>• association-failed
• configuration-failure
• connectivity-problem
• election-failure
• equipment-inaccessible
• equipment-inoperable
• equipment-problem
• fru-problem
• identity-unestablishable
• link-down
• management-services-failure
• management-services-unresponsive
• power-problem
• thermal-problem
• unspecified
• version-incompatible
• voltage-problem</td>
</tr>
</tbody>
</table>

Step 6 Click OK.

Step 7 Repeat Steps 6 and 7 if you want to configure a Call Home policy for a different type of fault or event.
Disabling a Call Home Policy

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the policy that you want to disable and choose Show Navigator.
Step 5 In the State field, click Disabled.
Step 6 Click OK.

Enabling a Call Home Policy

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the policy that you want to enable and choose Show Navigator.
Step 5 In the State field, click Enabled.
Step 6 Click OK.

Deleting a Call Home Policy

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the Policies tab.
Step 4 Right-click the policy that you want to disable and choose Delete.
Step 5 Click Save Changes.
Example: Configuring Call Home for Smart Call Home

Configuring Smart Call Home

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > Communication Management > Call Home.

Step 3 In the Work pane, click the General tab.

Step 4 In the Admin area, do the following to enable Call Home:

 a) In the State field, click on.

 Note If this field is set to On, Cisco UCS Manager GUI displays the rest of the fields on this tab.

 b) From the Switch Priority drop-down list, select one of the following urgency levels:

 • Alerts
 • Critical
 • Debugging
 • Emergencies
 • Errors
 • Information
 • Notifications
 • Warnings

Step 5 In the Contact Information area, complete the following fields with the required contact information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact field</td>
<td>The main Call Home contact person.</td>
</tr>
<tr>
<td></td>
<td>Enter up to 255 ASCII characters.</td>
</tr>
<tr>
<td>Phone field</td>
<td>The telephone number for the main contact.</td>
</tr>
<tr>
<td></td>
<td>Enter the number in international format, starting with a + (plus sign) and</td>
</tr>
<tr>
<td></td>
<td>a country code. You can use hyphens but not parentheses.</td>
</tr>
<tr>
<td>Email field</td>
<td>The email address for the main contact.</td>
</tr>
<tr>
<td></td>
<td>Cisco Smart Call Home sends the registration email to this email address.</td>
</tr>
<tr>
<td>Address field</td>
<td>The mailing address for the main contact.</td>
</tr>
<tr>
<td></td>
<td>Enter up to 255 ASCII characters.</td>
</tr>
</tbody>
</table>
Step 6 In the **Ids** area, complete the following fields with the Smart Call Home identification information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Id field</td>
<td>The CCO ID that includes the contract numbers for the support contract in its entitlements. Enter up to 510 ASCII characters.</td>
</tr>
<tr>
<td>Contract Id field</td>
<td>The Call Home contract number for the customer. Enter up to 510 ASCII characters.</td>
</tr>
<tr>
<td>Site Id field</td>
<td>The unique Call Home identification number for the customer site. Enter up to 510 ASCII characters.</td>
</tr>
</tbody>
</table>

Step 7 In the **Email Addresses** area, complete the following fields with the email information for Smart Call Home alert messages:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From field</td>
<td>The email address that should appear in the From field on Call Home alert messages sent by the system.</td>
</tr>
<tr>
<td>Reply To field</td>
<td>The return email address that should appear in the From field on Call Home alert messages sent by the system.</td>
</tr>
</tbody>
</table>

Step 8 In the **SMTP Server** area, complete the following fields with information about the SMTP server that Call Home should use to send email messages:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host field</td>
<td>The IP address or hostname of the SMTP server. Note: If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Port field</td>
<td>The port number the system should use to talk to the SMTP server. Enter an integer between 1 and 65535. The default is 25.</td>
</tr>
</tbody>
</table>

Step 9 Click **Save Changes**.

Configuring the Default Cisco TAC-1 Profile

The following are the default settings for the CiscoTAC-1 profile:

- Level is normal
• Only the CiscoTAC alert group is selected
• Format is xml
• Maximum message size is 5000000

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the Profiles tab.
Step 4 Right-click the Cisco TAC-1 profile and choose Recipient.
Step 5 In the Add Email Recipients dialog box, do the following:
 a) In the Email field, enter the email address to which Call Home alerts should be sent.
 For example, enter callhome@cisco.com.
 After you save this email address, it can be deleted but it cannot be changed.
 b) Click OK.

Configuring System Inventory Messages for Smart Call Home

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Communication Management > Call Home.
Step 3 In the Work pane, click the System Inventory tab.
Step 4 In the Properties area, complete the following fields to specify how system inventory messages will be sent
to Smart Call Home:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Periodically field</td>
<td>If this field is set to on, Cisco UCS sends the system inventory to the</td>
</tr>
<tr>
<td></td>
<td>Call Home database. When the information is sent depends on the other</td>
</tr>
<tr>
<td></td>
<td>fields in this area.</td>
</tr>
<tr>
<td>Send Interval field</td>
<td>The number of days that should pass between automatic system inventory data</td>
</tr>
<tr>
<td></td>
<td>collection.</td>
</tr>
<tr>
<td>Hour of Day to Send</td>
<td>The hour that the data should be sent using the 24-hour clock format.</td>
</tr>
<tr>
<td>Minute of Hour field</td>
<td>The number of minutes after the hour that the data should be sent.</td>
</tr>
<tr>
<td>Time Last Sent field</td>
<td>The date and time the information was last sent.</td>
</tr>
<tr>
<td></td>
<td>Note This field is displayed after the first inventory has been</td>
</tr>
<tr>
<td></td>
<td>sent.</td>
</tr>
</tbody>
</table>
Registering Smart Call Home

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > Communication Management > Call Home.

Step 3 In the Work pane, click the System Inventory tab.

Step 4 In the Actions area, click Send System Inventory Now to start the registration process.

When Cisco receives the system inventory, a Smart Call Home registration email is sent to the email address that you configured in the Contact Information area on the General tab.

Step 5 When you receive the registration email from Cisco, do the following to complete registration for Smart Call Home:

a) Click the link in the email.

 The link opens the Cisco Smart Call Home portal in your web browser.

b) Log into the Cisco Smart Call Home portal.

c) Follow the steps provided by Cisco Smart Call Home.

After you agree to the terms and conditions, the Cisco Smart Call Home registration for the Cisco UCS instance is complete.
Managing the System Event Log

This chapter includes the following sections:

- System Event Log, page 655
- Viewing the System Event Log for an Individual Server, page 656
- Viewing the System Event Log for the Servers in a Chassis, page 656
- Configuring the SEL Policy, page 656
- Managing the System Event Log for a Server, page 658

System Event Log

The system event log (SEL) resides on the CIMC in NVRAM. It records most server-related events, such as over and under voltage, temperature events, fan events, and events from BIOS. The SEL is mainly used for troubleshooting purposes.

SEL file is approximately 40KB in size, and no further events can be recorded when it is full. It must be cleared before additional events can be recorded.

You can use the SEL policy to backup the SEL to a remote server, and optionally clear the SEL after a backup operation occurs. Backup operations can be triggered based on specific actions, or they can occur at regular intervals. You can also manually backup or clear the SEL.

The backup file is automatically generated. The filename format is sel-SystemName-ChassisID-ServerID-ServerSerialNumber-Timestamp; for example, sel-UCS-A-ch01-serv01-QCI12522939-20091121160736.
Viewing the System Event Log for an Individual Server

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis Number > Servers.
Step 3 Click the server for which you want to view the system event log.
Step 4 In the Work pane, click the Management Logs tab.
 Cisco UCS Manager retrieves the system event log for the server and displays the list of events.

Viewing the System Event Log for the Servers in a Chassis

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, expand Equipment > Chassis > Chassis_Name.
Step 3 In the Work pane, click the Management Logs tab.
 Cisco UCS Manager retrieves the system event log for the server and displays the list of events.
Step 4 In the Server table, click the server for which you want to view the system event log.
 Cisco UCS Manager retrieves the system event log for the server and displays the list of events.

Configuring the SEL Policy

Procedure

Step 1 In the Navigation pane, click the Equipment tab.
Step 2 On the Equipment tab, click the Equipment node.
Step 3 In the Work pane, click the Policies tab.
Step 4 Click the SEL Policy subtab.
Step 5 (Optional) In the General area, type a description of the policy in the Description field.
 The other fields in this area are read-only.
Step 6 In the Backup Configuration area, complete the following fields:
Configuring the SEL Policy

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol field</td>
<td>The protocol to use when communicating with the remote server. This can be:</td>
</tr>
<tr>
<td></td>
<td>• FTP</td>
</tr>
<tr>
<td></td>
<td>• TFTP</td>
</tr>
<tr>
<td></td>
<td>• SCP</td>
</tr>
<tr>
<td></td>
<td>• SFTP</td>
</tr>
<tr>
<td>Hostname field</td>
<td>The hostname or IP address of the server on which the backup configuration resides. If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td></td>
<td>Note The name of the backup file is generated by Cisco UCS. The name is in the following format:</td>
</tr>
<tr>
<td></td>
<td><code>sel-system-name-ch-chassis-id-</code></td>
</tr>
<tr>
<td></td>
<td><code>serv-blade-id-blade-serial</code></td>
</tr>
<tr>
<td></td>
<td><code>timestamp</code></td>
</tr>
<tr>
<td>Remote Path field</td>
<td>The absolute path to the file on the remote server, if required. If you use SCP, the absolute path is always required. If you use any other protocol, you may not need to specify a remote path if the file resides in the default download folder. For details about how your file server is configured, contact your system administrator.</td>
</tr>
<tr>
<td>Backup Interval drop-down list</td>
<td>The time to wait between automatic backups. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Never—Do not perform any automatic SEL data backups.</td>
</tr>
<tr>
<td></td>
<td>• 1 Hour</td>
</tr>
<tr>
<td></td>
<td>• 2 Hours</td>
</tr>
<tr>
<td></td>
<td>• 4 Hours</td>
</tr>
<tr>
<td></td>
<td>• 8 Hours</td>
</tr>
<tr>
<td></td>
<td>• 24 Hours</td>
</tr>
<tr>
<td></td>
<td>Note If you want the system to create automatic backups, make sure you check the Timer check box in the Action option box.</td>
</tr>
<tr>
<td>Format field</td>
<td>The format to use for the backup file. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Ascii</td>
</tr>
<tr>
<td></td>
<td>• Binary</td>
</tr>
<tr>
<td>Clear on Backup check box</td>
<td>If checked, Cisco UCS clears all system event logs after the backup.</td>
</tr>
</tbody>
</table>
Name | Description
--- | ---
User field | The username the system should use to log in to the remote server. This field does not apply if the protocol is TFTP.
Password field | The password for the remote server username. This field does not apply if the protocol is TFTP.
Action option box | For each box that is checked, then the system creates a SEL backup when that event is encountered:
 - Log Full — The log reaches the maximum size allowed.
 - On Change of Association — The association between a server and its service profile changes.
 - On Clear — The user manually clears a system event log.
 - Timer — The time interval specified in the Backup Interval drop-down list is reached.
Reset Configuration button | Click this button to reset the background configuration information.

Step 7
Click **Save Changes**.

Managing the System Event Log for a Server

Copying One or More Entries in the System Event Log

This task assumes that you are viewing the system event log for a server from the **SEL Logs** tab for a server or a chassis.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>After Cisco UCS Manager GUI displays the system event log in the SEL Logs tab, use your mouse to highlight the entry or entries that you want to copy from the system event log.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click Copy to copy the highlighted text to the clipboard.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Paste the highlighted text into a text editor or other document.</td>
</tr>
</tbody>
</table>
Printing the System Event Log

This task assumes that you are viewing the system event log for a server from the SEL Logs tab for a server or a chassis.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>After Cisco UCS Manager GUI displays the system event log in the SEL Logs tab, click Print.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the Print dialog box, do the following:</td>
</tr>
<tr>
<td></td>
<td>a) (Optional) Modify the default printer or any other fields or options.</td>
</tr>
<tr>
<td></td>
<td>b) Click Print.</td>
</tr>
</tbody>
</table>

Refreshing the System Event Log

This task assumes that you are viewing the system event log for a server from the SEL Logs tab for a server or a chassis.

Procedure

After Cisco UCS Manager GUI displays the system event log in the SEL Logs tab, click Refresh. Cisco UCS Manager retrieves the system event log for the server and displays the updated list of events.

Manually Backing Up the System Event Log

This task assumes that you are viewing the system event log for a server from the SEL Logs tab for a server or a chassis.

Before You Begin

Configure the system event log policy. The manual backup operation uses the remote destination configured in the system event log policy.

Procedure

After Cisco UCS Manager GUI displays the system event log in the SEL Logs tab, click Backup. Cisco UCS Manager backs up the system event log to the location specified in the SEL policy.

Manually Clearing the System Event Log

This task assumes that you are viewing the system event log for a server from the SEL Logs tab for a server or a chassis.
Procedure

After Cisco UCS Manager GUI displays the system event log in the SEL Logs tab, click Clear.

Note This action triggers an automatic backup if Clear is enabled in the SEL policy Action option box.
Configuring Settings for Faults, Events, and Logs

This chapter includes the following sections:

- Configuring Settings for the Fault Collection Policy, page 661
- Configuring Settings for the Core File Exporter, page 663
- Configuring the Syslog, page 664

Configuring Settings for the Fault Collection Policy

Fault Collection Policy

The fault collection policy controls the lifecycle of a fault in a Cisco UCS instance, including when faults are cleared, the flapping interval (the length of time between the fault being raised and the condition being cleared), and the retention interval (the length of time a fault is retained in the system).

A fault in Cisco UCS has the following lifecycle:

1. A condition occurs in the system and Cisco UCS Manager raises a fault. This is the active state.
2. When the fault is alleviated, it is cleared if the time between the fault being raised and the condition being cleared is greater than the flapping interval, otherwise, the fault remains raised but its status changes to soaking-clear. Flapping occurs when a fault is raised and cleared several times in rapid succession. During the flapping interval the fault retains its severity for the length of time specified in the fault collection policy.
3. If the condition reoccurs during the flapping interval, the fault remains raised and its status changes to flapping. If the condition does not reoccur during the flapping interval, the fault is cleared.
4. When a fault is cleared, it is deleted if the clear action is set to delete, or if the fault was previously acknowledged; otherwise, it is retained until either the retention interval expires, or if the fault is acknowledged.
5. If the condition reoccurs during the retention interval, the fault returns to the active state. If the condition does not reoccur, the fault is deleted.
Configuring the Fault Collection Policy

Procedure

Step 1 In the Navigation pane, click the Admin tab.

Step 2 On the Admin tab, expand All > Faults, Events, and Audit Log.

Step 3 Click Settings.

Step 4 In the Work pane, complete the following fields in the Fault Collection Policy area:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flapping Interval field</td>
<td>Flapping occurs when a fault is raised and cleared several times in rapid succession. To prevent this, the system does not allow a fault to change its state until this amount of time has elapsed since the last state change. If the condition reoccurs during the flapping interval, the fault returns to the active state. If the condition does not reoccur during the flapping interval, the fault is cleared. What happens at that point depends on the setting in the Clear Action field. Enter an integer between 5 and 3,600. The default is 10.</td>
</tr>
<tr>
<td>Clear Action field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• retain—Cisco UCS Manager GUI displays the Length of time to retain cleared faults section.</td>
</tr>
<tr>
<td></td>
<td>• delete—The system immediately deletes all fault messages as soon as they are marked as cleared.</td>
</tr>
<tr>
<td>Length of Time to Retain Cleared Faults Section</td>
<td></td>
</tr>
<tr>
<td>Retention Interval field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• forever—The system leaves all cleared fault messages on the fabric interconnect regardless of how long they have been in the system.</td>
</tr>
<tr>
<td></td>
<td>• other—Cisco UCS Manager GUI displays the dd:hh:mm:ss field.</td>
</tr>
<tr>
<td>dd:hh:mm:ss field</td>
<td>The number of days, hours, minutes, and seconds that should pass before the system deletes a cleared fault message.</td>
</tr>
</tbody>
</table>

Step 5 Click Save Changes.
Configuring Settings for the Core File Exporter

Core File Exporter

Cisco UCS Manager uses the Core File Exporter to export core files as soon as they occur to a specified location on the network through TFTP. This functionality allows you to export the tar file with the contents of the core file.

Configuring the Core File Exporter

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the Navigation pane, click the Admin tab.</td>
</tr>
<tr>
<td>2</td>
<td>On the Admin tab, expand All > Faults, Events, and Audit Log.</td>
</tr>
<tr>
<td>3</td>
<td>Click Settings.</td>
</tr>
<tr>
<td>4</td>
<td>In the Work pane, complete the following fields in the TFTP Core Exporter area:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled—If an error causes the server to perform a core dump, the system sends the core dump file via FTP to a given location. When this option is selected, Cisco UCS Manager GUI displays the other fields in this area that enable you to specify the FTP export options.</td>
</tr>
<tr>
<td></td>
<td>• disabled—Core dump files are not automatically exported.</td>
</tr>
<tr>
<td>Description field</td>
<td>A user-defined description of the core file.</td>
</tr>
<tr>
<td>Port field</td>
<td>The port number to use when exporting the core dump file via TFTP.</td>
</tr>
<tr>
<td>Hostname field</td>
<td>The hostname or IP address to connect with via TFTP.</td>
</tr>
<tr>
<td></td>
<td>Note If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Path field</td>
<td>The path to use when storing the core dump file on the remote system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Click Save Changes.</td>
</tr>
</tbody>
</table>
Disabling the Core File Exporter

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Faults, Events, and Audit Log.
Step 3 Click Settings.
Step 4 In the Work pane, click the Settings tab.
Step 5 In the TFTP Core Exporter area, click the disabled radio button in the Admin State field.
Step 6 Click Save Changes.

Configuring the Syslog

Procedure

Step 1 In the Navigation pane, click the Admin tab.
Step 2 On the Admin tab, expand All > Faults, Events, and Audit Log.
Step 3 Click Syslog.
Step 4 In the Work pane, click the Syslog tab.
Step 5 In the Local Destinations area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console Section</td>
<td></td>
</tr>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td>Level field</td>
<td>If the Admin State field is enabled, select the lowest message level that you want displayed. The system displays that level and above on the console.</td>
</tr>
<tr>
<td></td>
<td>• emergencies</td>
</tr>
<tr>
<td></td>
<td>• alerts</td>
</tr>
<tr>
<td></td>
<td>• critical</td>
</tr>
</tbody>
</table>

Monitor Section
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>If Admin State is enabled, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
<tr>
<td>Level drop-down list</td>
<td>If the Admin State field is enabled, select the lowest message level that you want displayed. The system displays that level and above on the monitor.</td>
</tr>
<tr>
<td></td>
<td>• emergencies</td>
</tr>
<tr>
<td></td>
<td>• alerts</td>
</tr>
<tr>
<td></td>
<td>• critical</td>
</tr>
<tr>
<td></td>
<td>• errors</td>
</tr>
<tr>
<td></td>
<td>• warnings</td>
</tr>
<tr>
<td></td>
<td>• notifications</td>
</tr>
<tr>
<td></td>
<td>• information</td>
</tr>
<tr>
<td></td>
<td>• debugging</td>
</tr>
</tbody>
</table>

File Section

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin State field</td>
<td>This can be:</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>If Admin State is enabled, Cisco UCS Manager GUI displays the rest of the fields in this section.</td>
</tr>
</tbody>
</table>
Select the lowest message level that you want the system to store. The system stores that level and above in a file on the fabric interconnect.

- emergencies
- alerts
- critical
- errors
- warnings
- notifications
- information
- debugging

The name of the file in which the messages are logged. This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or special characters.

The maximum size, in bytes, the file can be before Cisco UCS Manager GUI begins to write over the oldest messages with the newest ones. Enter an integer between 4096 and 4194304.

In the Remote Destinations area, complete the following fields to configure up to three external logs that can store messages generated by the Cisco UCS components:

This can be:

- enabled
- disabled

If Admin State is enabled, Cisco UCS Manager GUI displays the rest of the fields in this section.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level drop-down list</td>
<td>Select the lowest message level that you want the system to store. The system stores that level and above in the remote file.</td>
</tr>
<tr>
<td></td>
<td>• emergencies</td>
</tr>
<tr>
<td></td>
<td>• alerts</td>
</tr>
<tr>
<td></td>
<td>• critical</td>
</tr>
<tr>
<td></td>
<td>• errors</td>
</tr>
<tr>
<td></td>
<td>• warnings</td>
</tr>
<tr>
<td></td>
<td>• notifications</td>
</tr>
<tr>
<td></td>
<td>• information</td>
</tr>
<tr>
<td></td>
<td>• debugging</td>
</tr>
</tbody>
</table>

| Hostname field | The hostname or IP address on which the remote log file resides. Note: If you use a hostname rather than an IP address, you must configure a DNS server in Cisco UCS Manager. |

<table>
<thead>
<tr>
<th>Facility drop-down list</th>
<th>This can be:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• local0</td>
</tr>
<tr>
<td></td>
<td>• local1</td>
</tr>
<tr>
<td></td>
<td>• local2</td>
</tr>
<tr>
<td></td>
<td>• local3</td>
</tr>
<tr>
<td></td>
<td>• local4</td>
</tr>
<tr>
<td></td>
<td>• local5</td>
</tr>
<tr>
<td></td>
<td>• local6</td>
</tr>
<tr>
<td></td>
<td>• local7</td>
</tr>
</tbody>
</table>

Step 7 Click Save Changes.
Configuring the Syslog
A

accounts 139, 140, 142, 150, 155, 156
 admin 140
 creating user 150
 deleting local 156
 disabling 156
 enabling 155
 expiration 140
 user 139, 142
 username guidelines 140
acknowledging 54, 55, 64
 blade servers 55
 chassis 54
 rack-mount servers 64
activate firmware 162
activating 187, 188, 190, 191, 192, 193, 201, 205
 adapter firmware 187
 board controller firmware 190
 capability catalog 201
 CIMC firmware 188
 IOM firmware 190
 management extensions 205
 primary fabric interconnects 192
 standalone fabric interconnects 193
 subordinate fabric interconnects 191
activating user accounts 155
activities 387, 400, 401
 pending 387, 400, 401
adapters 33, 34, 178, 186, 187, 378, 487
 activating firmware 187
 NIC 33
 updating firmware 186
 vCon placement 378
 verifying status 178
 VIC 34, 487
 virtualization 33
adding 231, 542
 NTP servers 542
 ports to a port channel 231
administration 39

aging time 212
 MAC address table 212
alert groups 643
 profiles 643
all configuration 581
API, copying XML 53
appliance port channels 84, 86, 87, 88
 adding ports 87
 creating 84
 deleting 88
 disabling 87
 enabling 86
 removing ports 87
appliance ports 74, 76
 configuring 74
 modifying 76
architectural simplification 3
area, Fault Summary 43
associating servers 456
authentication 111
 primary 111
 remote 111
authentication domains 129, 130
 about 129
 creating 130
authentication service 131, 132
 console 131
 default 132
authentication services 111
 about 111
autoconfiguration policy 18, 365, 366
 about 18, 365
 creating 365
 deleting 366
Automatically Reconnect 51
blade servers (continued)
 managing 551, 552
 monitoring 612
 POST results 561
 power cycling 555
 reacknowledging 556
 recovering BIOS 560
 removing 558
 from database 558
 resetting 559
 CIMC 559
 CMOS 559
 shutting down 554
 template based service profiles 453
 blade-level power cap 483
 setting for server 483
 board controllers, activating firmware 190
 boot options, BIOS settings 342
 boot order 553, 565
 blade servers 553
 rack-mount servers 565
 boot order, modifying 461
 boot policies 9, 350, 351, 354
 about 9, 350
 creating 351
 deleting 354
 bootflash, available space 183
 booting 552, 553, 564, 565
 blade servers 552
 determining boot order 553, 565
 rack-mount servers 564
 servers from service profile 553, 565
 bronze system class 29, 260
 bundles, firmware 160
 burned in values 8, 404

C

Call Home 633, 635, 636, 637, 638, 641, 642, 643, 646, 647, 649, 651, 653
 about 633
 Cisco TAC-1 profile 651
 configuring 638
 configuring policies 647
 considerations 635
 creating profiles 643
 deleting policies 649
 deleting profiles 646
 disabling 641
 disabling policies 649
 enabling 641
 enabling policies 649
 policies 646
Configure VMware Integration 501
 wizard 501
configuring 70, 92, 96, 97, 98, 99, 100, 101, 109, 226
CIM-XML 96
 communication services 109
HTTP 97
HTTPS 98, 99, 100, 101
 ports 92, 226
 server ports 70
considerations 37, 490, 582, 635
 backup operations 582
 Call Home 635
 VN-Link in hardware 37, 490
console authentication service 131
 console, KVM 573, 577
 converged network adapters 33
 virtualization 33
 copying system event log 658
 copying XML 53
Core File Exporter 663, 664
 about 663
 configuring 663
 disabling 664
 corrupt BIOS 560, 570
 creating 453, 454
 service profile templates 454
 service profiles 453
 custom roles 144
 reserved words 144
database 581, 583
 backing up 581
 restoring 583
datacenters 515, 519
 adding to vCenters 515
 deleting 519
 deleting folders 519
deactivating user accounts 156
decommissioning 545, 557, 568
 blade servers 557
 chassis 545
 rack-mount servers 568
decommissioning chassis, guidelines 543
decommissioning rack-mount servers 564
decommissioning servers 552
default authentication service 132
default service profiles 8, 404, 430, 431
default zoning 79, 80
 about 79
 disabling 80
default zoning (continued)
 enabling 80
deferring deployment 22, 385, 386, 387, 388, 393, 395, 397, 398, 400, 401
 guidelines 387
 maintenance policies 22, 386, 398
 one time occurrences 393, 397
 pending activities 387, 400, 401
 deploying 400, 401
 viewing 400
 recurring occurrences 395, 397
 schedules 386, 388, 397
 service profiles 385
deleting 473
 service profiles 473
deletion tasks 535, 536, 537
 about 535
 changing properties 536
deleting 537
 viewing 536
determining acceptable range 52
disabling 74, 83, 93, 109, 228, 229, 231, 641, 664
 Call Home 641
 communication services 109
 Core File Exporter 664
 port channels 231
 ports 74, 93
 server ports 228
 uplink Ethernet port channels 83
 uplinkEthernet ports 229
disassociating servers 457
disaster recovery 581, 583
discovery policy 11, 18, 209, 210, 211, 367, 368
 chassis 11, 209, 210
 rack server 18, 211
 server 18, 367, 368
DNS servers 207, 208
 about 207
 adding 207
deleting 208
downgrading 173
 firmware 173
 prerequisites 173
download firmware 162
downloading 180, 181, 182, 216, 217
 canceling 182
 images 180, 181
 licenses 216, 217
DVS 510, 519
 configuring 510
deleting 519
dynamic vNIC 533
 viewing properties 533
dynamic vNIC connection policy 12, 529, 530, 531
about 12, 529
changing 531
creating 530
deleting 531

E

enabling 73, 93, 105, 109, 227, 228, 230, 545, 546, 638, 641, 650, 663
 Call Home 638, 641
 Core File Exporter 663
 decommissioned chassis 545, 546
 port channels 230
 ports 73, 93
 server ports 227
 Smart Call Home 650
 SNMP 105
 Telnet 109
 uplinkEthernet ports 228
end-host mode 65, 66, 226
 Ethernet 65
 Fibre Channel 66
endpoints 168, 170, 171
 direct firmware upgrade 168, 170
 service profile upgrade 171
enforcing password strength 153
Ethernet 5, 21, 30, 65, 69, 70, 71, 72, 74, 76, 81, 82, 83, 84, 86, 87, 88, 226, 229, 265
 appliance port channels 84, 86, 87, 88
 appliance ports 74, 76
 changing uplink ports 71
 FCoE storage ports 72
 Fibre Channel over 5
 flow control policies 21, 30, 265
 server ports 70
 switching mode 65, 226
 uplink port channels 81, 82, 83, 84, 229
 adding ports 83
 deleting 84
 disabling 83
 removing ports 83
 uplink ports 69, 71
Ethernet adapter policies 12, 274, 275, 278, 306
 about 12, 274, 306
 creating 275
 deleting 278
Ethernet switching mode 64
 about 64
 events 656, 658, 659
 SEL policy 656
 system event log 656, 658, 659
 backing up 659

events (continued)
system event log (continued)
 clearing 659
 copying 658
 printing 659
 refreshing 659
 viewing 656
exiting 50
expiration, accounts 140
explicit assignment 379, 381, 383
exporting 499, 581, 583, 584
 backup 584
 backup types 581
 configuration 581
 extension files 499
 user role 583
extension files 35, 488, 498, 499
 about 35, 488
 exporting 499
 modifying key 498

F

fabric failover 279
 admin password recover 596, 598
 admin password recovery 595
 available space 183
 changing 67
 subnets 67
 virtual IP address 67
 changing ports 73
 determining leadership role 68, 596
 disabling ports 74
 enabling ports 73
 enabling standalone for cluster 64
 Ethernet switching mode 64
 failover 58
 FC uplink trunking 286, 291, 292
 Fibre Channel switching mode 66
 high availability 42
 high availability status 176
 host ID 214
 impact of firmware upgrade 170
 initial setup 57, 58, 59, 61, 63
 about 57
 first 61
 management port 58
 second 63
 setup mode 58
fabric interconnects (continued)
initial setup (continued)
standalone 59
licenses 213, 215, 218, 219, 220
clearing 220
expiry date 220
grace period 215
installing 218
viewing 219
mode 65, 66
monitoring 609
overall status 176
ports 215
grace period 215
restoring configuration 593
system configuration type 58
unconfiguring ports 74
upgrading firmware 191, 192, 193
verifying firmware 596

fault collection policy 21, 661, 662
about 21, 661
configuring 662

Fault Summary area 43
faults 21, 636, 661, 662, 663, 664
Call Home severity levels 636
collection policy 21, 661, 662
Core File Exporter 663, 664
lifecycle 21, 661

FC end-host mode 286
VSAN ID restrictions 286

FC switch mode 286
VSAN ID restrictions 286

FC uplinks 286, 291, 292
trunking 286, 291, 292
about 286
disabling 292

FCoE 5
FCoE storage ports, configuring 72
FCoE VLAN ID 291
changing 291

feature 213
licenses 213

features 30, 31
opt-in 30

stateless computing 31

Fibre Channel 5, 66, 69, 78, 79, 88, 90, 91
link-level flow control 5
over Ethernet 5
port channels 88, 89, 90, 91
adding ports 90
deleting 91
disabling 89

Fibre Channel (continued)
port channels (continued)
modifying 90
removing ports 90
priority flow control 5
storage ports 78, 79
switching mode 66
uplink ports 69

Fibre Channel adapter policies 12, 274, 306, 307, 311
about 12, 274, 306
creating 307
deleting 311

Fibre Channel switching 79
default zoning 79

Fibre Channel switching mode 66
about 66

Fibre Channel system class 30, 260
fields, acceptable range 52
filtering tables 47
finding acceptable range 52

about 159
activating adapters 187
activating board controller 190
activating CIMC 188
activating IOM 190
bundles 160
canceling image download 182
deleting images 184
deleting packages 183
direct upgrade 168
downgrades 173
downloading packages 180, 181
fabric interconnect 596
guidelines 163
host package 14, 171, 194, 196
host packages 195
image contents 183
image headers 161
images 161
management 162
management extensions 204
management package 15, 172, 197, 198
management packages 197

obtaining packages 178
outage impacts 170
prerequisites 173
service profiles 171

updating 184
updating adapters 186
updating CIMC 187
updating IOM 189
firmware (continued)
 updating UCS Manager 191
 upgrade order 166, 168
 upgrade stages 169, 172
 upgrades 163
 upgrading fabric interconnects 191, 192, 193
 verifying 199
flexibility 4
flow control 5
 link-level 5
 priority 5
flow control policy 21, 30, 265, 266, 267
 about 21, 30, 265
 creating 266
 deleting 267
 uplink Ethernet ports 71
folders 513, 517, 518, 519
 adding to datacenters 517
 adding to vCenter 513
 deleting 518, 519
 deleting DVS 519
full state 581

g
global cap policy 13, 476, 477
 configuring 477
gold system class 29, 260
graceful shutdown 555, 567
group maps 120, 121
 LDAP 120, 121
 creating 120
 deleting 121
GUI 43, 44, 46, 47, 48, 49, 50, 51, 53
 about 43
 copying XML 53
 customizing tables 47
 Fault Summary area 47
 hybrid display 48
 logging in, HTTP 50
 logging in, HTTPS 49
 logging out 50
 Navigation pane 44
 session properties 51
 status bar 46
 toolbar 46
 Work pane 46
GUI Inactivity Timeout 51

guidelines (continued)
 named VSANs 286
 oversubscription 27
 passwords 142
 pinning 29
 service profiles 405
 traffic monitoring 604
 usernames 140

H
hard reset 555, 567
 blade servers 555
 rack-mount servers 567
hardware based service profiles 430, 431
hardware-based service profiles 8, 404
hardware, stateless 31
headers, images 161
high availability 4, 42, 61, 63, 176
 about 42
 fabric interconnect failover 58
 initial setup 61, 63
 verifying status 176
high availability configuration 42
 about 42
host firmware package 14, 171, 194
 about 14, 171, 194
host firmware packages 195, 196, 198
 adding to service profile 198
 creating 195
 updating 196
host ID, obtaining 214
HTTP 49, 50, 97, 154
 configuring 97
 logging in 50
 web session limits 49, 154
HTTPS 49, 98, 99, 100, 101, 154
 certificate request 99
 configuring 101
 creating key ring 98
 importing certificate 100
 logging in 49
 trusted point 99
 web session limits 49, 154
hybrid display 48

I
I/O module 579
 management 579
I/O modules 177, 189, 190, 579, 616
 activating firmware 190
 monitoring 616
 POST results 579
 resetting 579
 updating firmware 189
 verifying status 177
IEEE 802.3x link-level flow control 5
images 159, 160, 161, 178, 180, 181, 183, 184
 bundle 160
 contents 161, 183
 deleting 184
 downloading 180, 181
 headers 161
 obtaining 178
 packages, deleting with 183
implicit assignment 379
import operations 588, 591, 592
 creating 588
 deleting 592
 modifying 592
 running 591
importing 583, 588, 592
 about 583
 creating operations 588
 deleting operation 592
 modifying operations 592
 restore methods 583
 user role 583
informs 103
 about 103
inheritance, servers 18, 368
inherited values 8, 404
initial setup 57, 58, 59, 61, 63
 about 57
 cluster configuration 61, 63
 management port IP address 58
 setup mode 58
 standalone configuration 59
initial templates 9, 404
initiators 297, 298, 301, 302
 WWNN 297, 298
 WWPN 301, 302
Intel Directed I/O, BIOS settings 336
interface cards, See adapters
Internal Fabric Manager 48, 91, 92, 93
 about 48, 91
 configuring ports 92
 disabling ports 93
 enabling ports 93
 launching 92
 unconfiguring ports 92
IOM 177, 189, 190, 579, 616
 activating firmware 190
 monitoring 616
 POST results 579
 updating firmware 189
 verifying status 177
IP 327
 pools 327
IP addresses 25, 58, 321, 325
 CIMC 321
 management IP pool 25, 325
 management port 58
IP pools 25, 325, 326
 creating IP address block 326
 management 25, 325
IPMI access profiles 14, 354, 355
 about 14, 354
 creating 354
 deleting 355
isolated VLAN 250
K
key ring 97, 98, 99, 100, 101
 about 97
 certificate request 99
 creating 98
 deleting 101
 importing certificate 100
 trusted point 99
KVM console 573, 577
 about 573
 Launch Manager 577
 starting from server 577
 starting from service profile 577
KVM Console 321
 IP address 321
KVM Launch Manager 573, 577
L
 MAC pools 257, 258
 named VLANs 233, 236, 242, 245
 creating 233, 242
 deleting 236, 245
 pin groups 232, 233, 255, 256
 creating 232, 255
 deleting 233, 256
PVLANs 240
 uplinks manager 48, 225
VLANs 239
logical configuration 581
logs 656
 system event 656

M
MAC address table 212
 aging time, about 212
 configuring aging time 212
MAC addresses 24, 257, 258
 creating pools 257
 deleting pools 258
 pools 24, 257
MAC pools 257, 258
 creating 257
 deleting 258
MAC sync 58
main, BIOS settings 330
maintenance policies 22, 386, 388, 397, 398, 399
 about 22, 386
 creating 398
 deleting 399
 schedules 388, 397
management 543, 551, 563, 579
 blade servers 551
 chassis 543
 I/O modules 579
 rack-mount servers 563
management extensions 204, 205
 about 204
 activating 205
management firmware pack 198
 updating 198
management firmware package 15, 172, 197
 about 15, 172, 197
management firmware packages 197, 198
 adding to service profile 198
 creating 197
management interfaces monitoring policy 16, 617, 618
 about 16, 617
 configuring 618
management IP addresses 321
management IP pool 322, 324
 blade servers 322
 rack servers 324
management IP pools 25, 325, 326, 327
 about 25, 325
 creating IP address block 326
 deleting IP address block 327
management port IP address 58
manual blade-level power capping 482
merging configuration 583
messages, system inventory 642, 652
mobility 31
mode 58, 64, 65, 66, 226
 end-host 64, 65, 66, 226
 Ethernet switching 64
 Fibre Channel switching 66
 setup 58
 switching 65, 66, 226
modifying extension key 498
monitoring 156, 609, 610, 612, 614, 616
 blade servers 612
 chassis 610
 fabric interconnects 609
 I/O modules 616
 rack-mount servers 614
 user sessions 156
multi-tenancy 32, 135, 136, 137, 138
 about 32
 name resolution 136
 opt-in 32
 opt-out 32
 organizations 135, 137, 138
 creating 137, 138
 deleting 138
multiple authentication systems 126

N
name resolution 136, 207
named VLANs 233, 236, 239, 242, 245
 about 239
 creating 233, 242
 deleting 236, 245
named VSANs 80, 285, 286, 287, 290, 291, 292
 about 285
 creating 287
 deleting 290
 disabling default zoning 80
 enabling default zoning 80
 FC uplink trunking 286, 291, 292
 ID range restrictions 286
named VSANS 291
 FCoE VLAN ID 291
NAS ports, configuring 78
NAS ports, See appliance ports 76
Navigation pane 44
network 6, 80, 233, 236, 239, 240, 242, 245, 285, 287, 289, 290
 connectivity 6
 creating 287, 289
 named VLANs 233, 236, 239, 242, 245
 creating 233, 236, 239, 242, 245
 deleting 236, 245
network (continued)
 named VSANs 80, 285, 287, 289, 290
 deleting 290
 disabling default zoning 80
 enabling default zoning 80
private VLANs 240

network control policy 16, 279, 281
 creating 279
 deleting 281

NIC adapters 33
 virtualization 33

noAuthNoPriv 103

NTP servers 541, 542
 about 541
 adding 542
 deleting 542

O

obtaining 178, 202
 capability catalog updates 202
 firmware image bundles 178
occurrences 386, 393, 395, 397
 one time 386, 393, 397
 about 386
 creating 393
 deleting 397
 recurring 386, 395, 397
 about 386
 creating 395
 deleting 397
 one time occurrences 386, 393, 397
 about 386
 creating 393
 deleting 397
operating system installation 573
 KVM console 573
operations 51, 584, 587, 588, 592
 backup 584, 587, 588
 confirming 51
 import 588, 592
opt-in 30, 31, 32
 about 30
 multi-tenancy 32
 stateless computing 31
opt-out 30, 31, 32
 multi-tenancy 32
 stateless computing 31
organizations (continued)
 creating locales 149
 deleting 138
 deleting from the locales 150
 deleting locales 150
 locales 146
 multi-tenancy 32
 name resolution 136
OS installation 573
 KVM console 573
outage impacts 170
 firmware upgrade 170
 Cisco UCS Manager 170
 fabric interconnects 170
overriding 405
 server identity 405
overriding server identity 7, 403, 406
oversubscription 26, 27
 about 26
 considerations 26
 guidelines 27
overview 3

P

packages 178, 180, 181, 195, 196, 197, 198
 adding to service profiles 198
 downloading 180, 181
 host firmware 195, 196
 management firmware 197
 obtaining 178
packs 14, 15, 171, 172, 194, 197, 198
 host firmware 14, 171, 194
 management firmware 15, 172, 197, 198
Palo adapter 498, 499
 extension files 498, 499
 exporting 499
 modifying key 498
pane 44, 46
 Navigation 44
 Work 46
pass-through switching 34, 488
passwords 153
 strength check 153
passwords, guidelines 142
passwords, recovering admin 595, 596, 598
PCI configuration, BIOS settings 341
pending activities 387, 400, 401
 about 387
 deploying 400, 401
 viewing 400
pending deletions 535, 536, 537
about 535
changing properties 536
deleting 537
viewing 536
persistent binding, clearing 471
PFC 5
pin groups 28, 232, 233, 255, 256, 293, 294
about 28
LAN 232, 233, 255, 256
SAN 293, 294
pinning 28, 29
about 28
guidelines 29
servers to server ports 28
PKI 97
platinum system class 29, 260
about 9
autoconfiguration 18, 365, 366
BIOS 347
boot 9, 350, 351, 354
Call Home 646, 647, 649
chassis discovery 11, 209, 210
dynamic vNIC connection 12, 529, 530, 531
about 12, 529
changing 531
creating 530
deleting 531
Ethernet 12, 274, 306
fault collection 21, 661, 662
Fibre Channel adapter 12, 274, 306
flow control 21, 30, 265, 266, 267
global cap 477
global cap policy 13, 476
host firmware 14, 171, 194, 195, 196
IPMI access 14, 354, 355
local disk configuration 15, 356, 358, 360, 361
maintenance 22, 386, 398
management firmware 15, 172, 197, 198
management interfaces monitoring 16, 617, 618
network control 16, 279, 281
power 17, 476
power control 17, 481, 482
PSU 17, 476
QoS 17, 30, 263, 265
rack server discovery 18, 211
role for remote users 132, 133
scrub 22, 361, 362, 363
policies (continued)
SEL 656
serial over LAN 23, 363, 364
about 23, 363
creating 363
deleting 364
server discovery 18, 367, 368
server inheritance 18, 368, 369
about 18, 368
creating 368
deleting 369
server pool 19, 370, 371
server pool qualification 19, 371
server pool qualifications 372, 377
statistics collection 23, 621, 622
threshold 23, 624, 626, 627
vHBA 19, 303
VM lifecycle 20, 532
vNIC 20, 269
vNIC/vHBA placement 20, 378
policy-driven chassis group power capping 477
pools 24, 25, 257, 258, 259, 260, 293, 315, 316, 317, 318, 319, 325, 326, 327
about 24
MAC 24, 257, 258
management IP 25, 325, 326, 327
servers 24, 315, 316, 317
UUID suffixes 25, 317, 318, 319
WWN 25, 295
WWNN 296
WWPN 299
port channels 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 229, 230, 231, 232
adding ports 231
appliance 84, 86, 87, 88
adding ports 87
creating 84
deleting 88
disabling 87
enabling 86
removing ports 87
creating 229
deleting 232
disabling 231
enabling 230
Ethernet 83, 84
adding ports 83
deleting 84
disabling 83
removing ports 83
creating 229
adding ports 90
creating 88, 89
deleting 91
disabling 89
modifying 90
port channels (continued)
Fibre Channel (continued)
removing ports 90
removing ports 232
uplink Ethernet 81, 82
creating 81
enabling 82
port profiles 36, 489, 521, 522, 523, 524, 525, 526, 527
about 36, 489, 521
adding VLANs 524
changing native VLAN 524
creating 522
creating profile clients 525
deleting 525
deleting profile clients 527
modifying profile clients 526
modifying VLANs 523
ports 28, 58, 69, 70, 71, 72, 73, 74, 76, 78, 79, 81, 88, 92, 93, 213, 226, 227, 228, 229, 232, 233, 253, 255, 256, 279, 293, 294, 628, 629, 630
appliance ports 74, 76
appliance, NAS 69
changing 73
changing uplink Ethernet 71
disabling 74, 228, 229
enabling 73, 227, 228
Ethernet server port 629
fabric interconnect 69
FCoE storage ports 72
Fibre Channel port 630
Fibre Channel storage ports 78, 79
licenses 213
MAC security 279
management 58
pin groups 232, 233, 255, 256, 293, 294
pinning server traffic 28
port channels 81, 88
Fibre Channel 88
server 69, 70, 92, 93, 226
unconfiguring 74, 228, 229
uplink 69
uplink Ethernet 71, 226, 628
VLAN, count 253
POST 548, 561, 571, 579
blade servers 561
rack-mount servers 571
viewing for chassis 548
viewing for I/O modules 579
power cap 484
viewing 484
power capping 477, 482
manual blade-level 482
policy-driven chassis group 477
power control policy (continued)
deleting 482
power groups 478, 480
adding chassis 480
creating 478
deleting 480
removing chassis 480
power management 17, 475, 478, 480, 481, 482
policies 17, 481
power control 17, 481
power control policy 481, 482
creating 481
deleting 482
power groups 478, 480
adding chassis 480
creating 478
deleting 480
removing chassis 480
rack server 475
Power on Self-Test 548, 561, 571, 579
blade servers 561
rack-mount servers 571
viewing for chassis 548
viewing for I/O modules 579
power policy 17, 476
about 17, 476
configuring 476
powercycling 555, 567
rack-mount servers 555, 567
primary authentication 111, 115, 120, 122, 124, 126, 131, 132
LDAP provider 115, 120
RADIUS provider 122, 124
remote 111
selecting console 131
selecting default 132
TACACS provider 126
TACACS+ provider 124
primary VLAN 246
printing system event log 659
priority flow control 5
private VLANs 240, 246, 250
about 240
creating primary 246
creating secondary 250
privileges 144, 148
about 144
adding 148
removing 148
processor, BIOS settings 332
profile clients 525, 526, 527
creating 525
deleting 527
modifying 526

Cisco UCS Manager GUI Configuration Guide, Release 1.4
OL-24087-03
IN-13
profiles 6, 36, 489, 521, 643
 Call Home alert groups 643
 port 36, 489, 521
properties 51, 67
 fabric interconnects 67
 session 51
provider 115, 120, 122, 124, 126
 LDAP 115, 120
 creating 115
 RADIUS 122, 124
 TACACS 126
 TACACS+ 124
provider groups 126, 127, 128, 129, 130
 authentication domains 129, 130
 LDAP 126, 127
 creating 126
 deleting 127
 RADIUS 127, 128
 creating 127
 deleting 128
 TACACS+ 128, 129
 creating 128
 deleting 129
provider, capability catalog 199, 202
PSU policy 17, 476
PVLANs 240, 246, 250
 about 240
 creating primary 246
 creating secondary 250

Q
QoS policies 17, 30, 263, 265
 about 17, 30, 263
 creating 263
 deleting 265
quality of service 17, 21, 29, 30, 236, 259, 260, 262, 263, 265
 about 29, 259
 flow control policies 21, 30, 265
 policies 17, 30, 263, 265
 system classes 29, 236, 259, 260, 262
 configuring 260
 disabling 262
 enabling 262
 LAN Uplinks Manager 236

R
rack server discovery policy 18, 211
 about 18, 211
 configuring 211
rack server power management 475
rack-mount servers 18, 168, 211, 405, 431, 454, 456, 563, 564, 565, 566, 567, 568, 569, 570, 571, 614
 booting 564
 decommissioning 568
 determining boot order 565
 discovery policy 18, 211
 guidelines for service profiles 405
 hardware based service profiles 431
 integrating 168
 locator LED 569
 managing 563
 monitoring 614
 POST results 571
 power cycling 567
 reacknowledging 568
 recovering BIOS 570
 removing 569
 from database 569
 resetting 569, 570
 CMC 570
 CMOS 569
 shutting down 566
 template based service profiles 454
 RADIUS 127, 128
 provider groups 127, 128
 creating 127
 deleting 128
 RADIUS provider 111, 112, 121, 122, 124, 127, 128
 about 111
 configuring properties 121
 creating 122
 deleting 124
 groups 127, 128
 creating 127
 deleting 128
 user attribute 112
 RAID configurations, local disk configuration policies 357
 range restrictions, VSAN IDs 286
 range, acceptable 52
 RAS memory, BIOS settings 338
 reacknowledging 556, 557, 568
 blade servers 556
 rack-mount servers 568
 server slots 557
 rebooting 555, 557
 blade servers 555
 rack-mount servers 557
 recommendations 582
 backup operations 582
 recommissioning, chassis 545, 546
 Reconnection Interval 51
 recovering admin password 595, 596, 598
recurring occurrences 386, 395, 397
about 386
creating 395
deleting 397

refreshing system event log 659
registration, Smart Call Home 653
remote authentication 112
user accounts 112
user roles 112
removing 232, 545, 556, 558, 569
blade server from configuration 558
chassis 545
ports from port channel 232
rack-mount server from configuration 569
server from chassis 556
removing chassis, guidelines 543
removing rack-mount servers 564
removing servers 552
renumbering, chassis 547
replacing configuration 583
reserved words 141, 144
custom roles 144
local user accounts 141
resetting 555, 559, 567, 570, 579
blade servers 555
CIMC 559, 570
blade servers 559
rack-mount servers 570
CMOS 559, 569
IOM 579
rack-mount servers 567
resolution, name 207
restoring 583, 587, 593
about 583
configuration 583
import operations 588
user role 583
role policy for remote users 132, 133
about 132
configuring 133
role-based access control 139
roles 142, 143, 144, 147, 148, 155, 583
about 142
adding privileges 148
backing up 583
changing for users 155
creating 147
default 143
deleting 148
privileges 144
removing privileges 148
root organization 137
RSA 97
running 587, 591
backup operation 587
import operation 591
S
SAN 19, 80, 285, 287, 289, 290, 293, 294, 303
named VSANs 80, 287, 290
creating 287
deleting 290
disabling default zoning 80
enabling default zoning 80
pin groups 293, 294
storage VSANs 289
creating 289
vHBA policy 19, 303
VSANs 285
SAN pin groups 293, 294
creating 293
deleting 294
scalability 4
schedules 386, 388, 393, 395, 397
about 386
creating 388
deleting 397
one time occurrences 393, 397
creating 393
deleting 397
recurring occurrences 395, 397
creating 395
deleting 397
scrub policy 22, 361, 362, 363
about 22, 361
creating 362
deleting 363
secondary VLAN 250
SEL 655
about 655
SEL policy 656
configuring 656
selecting 131, 132
console authentication service 131
default authentication service 132
serial number, obtaining 214
serial over LAN policy 23, 363, 364
about 23, 363
creating 363
deleting 364
serial port, BIOS settings 340
Index

server 483
 setting power blade-level power cap 483
server autoconfiguration policy 18, 365, 366
 about 18, 365
 creating 365
 deleting 366
server discovery policy 18, 367, 368
 about 18, 367
 creating 367
 deleting 368
server inheritance policy 18, 368, 369
 about 18, 368
 creating 368
 deleting 369
server management 551, 563
server management, BIOS settings 342
server pool policy 19, 370, 371
 about 19, 370
 creating 370
 deleting 371
server pool policy qualification 19, 371
 about 19, 371
server pool policy qualifications 372, 377
 creating 372
 deleting 377
 deleting qualifications 377
server pools 315, 316, 317, 456, 457, 458
 adding servers 317
 associating service profile 456
 associating service profile templates 457
 creating 315
 deleting 316
 disassociating service profile 457
 disassociating service profile templates 458
 removing servers 317
server ports 48, 69, 70, 91, 92, 93, 226, 227, 228
 about 69
 configuring 70, 92, 226
 Equipment tab 70
 Internal Fabric Manager 92
 LAN Uplink Manager 226
 disabling 93, 228
 enabling 93, 227
 Internal Fabric Manager 93
server virtualization 4
 actual BIOS settings 349
 adding previously unsupported 168
 adding to pools 317
 associating with service profiles 456
 BIOS defaults 347, 348
 BIOS policies 347
 BIOS policy 347
 BIOS settings 329, 330, 332, 336, 338, 340, 341, 342
 blade 322, 551, 552
 booting 552
 management IP pool 322
 static Management IP 322
 boot order 553, 565
 boot policies 9, 350, 351, 354
 booting 553, 565
 changing UUID 458
 cloning service profiles 455
 configuration 6
 creating service profile templates 432
 creating service profiles 405, 406, 427
 decommissioning 557, 568
 disassociating from service profiles 457
 discovery policy 18, 367, 368
 DNS 207, 208
 hard reset 555, 567
 hardware based service profiles 430, 431
 inheritance policy 18, 368
 IPMI access 14, 354, 355
 KVM console 577
 local disk configuration 15, 356, 358, 360, 361
 locator LED 558, 569
 monitoring 612, 614
 multi-tenancy 32
 pinning 28
 pool policy 19, 370, 371
 pool qualifications 19, 371, 372, 377
 pools 24, 315, 316
 POST results 561, 571
 rack 323, 324
 management IP pool 324
 static Management IP 323
 rack-mount 563, 564
 booting 564
 reacknowledging 556, 568
 reacknowledging slots 557
 recovering BIOS 570
 removing 556, 558, 569
 from chassis 556
 from database 558, 569
 removing from pools 317
 (continued)
servers (continued)
resetting 559, 569, 570
CIMC 559, 570
CMOS 559, 569
resetting UUID 460
SEL policy 656
service profiles 6, 7, 385, 403, 473
service profiles from templates 453
shutting down 554, 566
stateless 31
statistics threshold policies 624, 626, 627
system event log 656
template based service profiles 453, 454
template from service profiles 454
verifying status 177
service profile template wizard 432, 433, 438, 443, 445, 448, 449, 451
opening 432
page 1, identity 432
page 2, storage 433
page 3, networking 438
page 4, vNIC/vHBA placement 443
page 5, server boot order 445
page 6, maintenance policy 448
page 7, server assignment 449
page 8, policies 451
service profile templates 325, 432, 433, 438, 443, 445, 448, 449, 451,
457, 458, 459, 472, 473
associating with server pool 457
binding service profiles 472
changing UUID 459
creating 432, 433, 438, 443, 445, 449, 451
identity 432
networking 438
policies 451
server assignment 449
server boot order 445
vNIC/vHBA placement 443
creating with wizard 448
maintenance policy 448
disassociating from server pool 458
setting Management IP 325
unbinding service profiles 473
service profile wizard 405, 406, 407, 412, 417, 419, 422, 423, 425
opening 405
page 1, identity 406
page 2, storage 407
page 3, networking 412
page 4, vNIC/vHBA placement 417
page 5, server boot order 419
page 6, maintenance policy 422
page 7, server assignment 423
page 8, policies 425
service profiles 6, 7, 8, 9, 171, 198, 324, 385, 403, 404, 405, 406, 407, 412,
417, 419, 422, 423, 425, 427, 430, 431, 433, 453, 454, 455, 456, 457, 458,
460, 461, 463, 466, 467, 470, 471, 472, 473, 553, 554, 565, 566, 577
about 6
adding firmware packages 198
associating 456
binding to template 472
changing UUID 458
cloning 455
creation 6
creating from template 453
creating hardware based 430, 431
blade servers 430
creating template based 453, 454
blade servers 453
creating template from 454
creating with inherited values 427
creating with wizard 405, 406, 407, 412, 417, 419, 422, 423, 425
defining deployment 385
disassociating 457
firmware upgrades 171
guidelines 405
inherited values 8, 404
modifying boot order 461
network connectivity 6
override identity 7, 403
resetting MAC address 466
resetting UUID 460
resetting WWPN 470
servers 553, 554, 565, 566, 577
booting 553, 556
KVM console 577
shutting down 554, 566
setting Management IP 324
templates 9, 404
unbinding from template 473
vHBAs 467, 470, 471, 472
vNICs 463, 467
session properties 52
sessions, users 156
setting 51, 65, 66, 226
session properties 51
switching mode 65, 66, 226

Cisco UCS Manager GUI Configuration Guide, Release 1.4
OL-24087-03
setting up 61, 63
 primary fabric interconnect 61
 subordinate fabric interconnect 63
setup mode 58
severity levels, Call Home 636
shutdown, graceful 555, 567
shutting down 554, 566
 blade servers 554
 rack-mount servers 566
shutting down servers 554, 566
silver system class 29, 260
Smart Call Home 635, 636, 637, 650, 651, 652, 653
 about 637
 Cisco TAC-1 profile 651
 configuring 650
 considerations 635
 registering 653
 severity levels 636
 system inventory messages 652
SNMP 102, 103, 104, 105, 106, 108, 109
 about 102
 community 105
 enabling 105
 notifications 103
 privileges 103
 security levels 103
 SNMPv3 users 108, 109
 support 102, 105
 traps 106, 108
 creating 106
 deleting 108
 users 108, 109
 creating 108
 deleting 109
 Version 3 security features 104
SNMPv3 104
 security features 104
software 159
SPAN, See traffic monitoring
SSH, configuring 51
stages, firmware upgrades 169, 172
standalone configuration 59
starting 49, 50, 92, 226, 577
 GUI 49, 50
 Internal Fabric Manager 92
 KVM console from server 577
 KVM console from service profile 577
 KVM Launch Manager 577
 LAN Uplinks Manager 226
starting servers 552, 553, 564, 565
stateless computing 31
 about 31
 opt-in 31
 opt-out 31
statelessness 31
statistics 23, 624, 626, 627, 628, 629, 630
 threshold policies 23, 624, 626, 627, 628, 629, 630
 Ethernet server port 629
 Fibre Channel port 630
 server and server component 624, 626, 627
 uplink Ethernet port 628
statistics collection policies 23, 621, 622
 about 23, 621
 modifying 622
status 176, 177, 178
 adapters 178
 fabric interconnects 176
 I/O modules 177
 servers 177
status bar 46
stopping servers 554, 566
storage VSANs 289, 290
 creating 289
 deleting 290
storage VSANS 291
 FCoE VLAN ID 291
subnets, changing 67
subordinate fabric interconnect 63
 initial setup 63
suborganization 138
supported tasks 40
switching mode 65, 66, 226
 Ethernet 65
 Fibre Channel 66
syslog 664
system classes 29, 30, 259, 260, 262
 best effort 30, 260
 bronze 29, 260
 configuring 260
 disabling 262
 enabling 262
 Fibre Channel 30, 260
 gold 29, 260
 platinum 29, 260
 silver 29, 260
system configuration 581
system event log 655
 about 655
system inventory messages 642, 652
 configuring 642
 sending 642
system management 543, 551, 563, 579
 blade servers 551
 chassis 543
 I/O module 579
 rack-mount servers 563
tables 47
 customizing 47
 customizing tables 47
 filtering 47
TACACS provider 124, 126
 configuring properties 124
 deleting 126
TACACS+ 128, 129
 provider groups 128, 129
 creating 128
 deleting 129
TACACS+ provider 111, 112, 124, 128, 129
 about 111
 creating 124
 groups 128, 129
 creating 128
 deleting 129
 user attribute 112
tasks 40, 42
 supported 40
 unsupported 42
Telnet, enabling 109
template based service profiles 453, 454
templates 9, 404, 453, 454
 creating from service profile 454
 creating service profiles 453
 service profiles 9, 404
TFTP Core Exporter 663, 664
threshold policies 23, 624, 626, 627, 628, 629, 630
 about 23, 624
 Ethernet server port 629
 adding threshold class 629
 Fibre Channel port 630
 adding threshold class 630
 server and server component 624, 626, 627
 adding threshold class 626
 creating 624
 deleting 627
 uplink Ethernet port 628
 adding threshold class 628
time zones 541
 about 541
 setting 541
toolbar 46
traffic management 26, 27, 29, 259
 oversubscription 26, 27
 quality of service 29, 259
 system classes 29, 259
 virtual lanes 29, 259
traffic monitoring (continued)
 adding sources 606
 creating a session 605
 deleting a session 607
 guidelines 604
traps 103, 106, 108
 about 103
 creating 106
 deleting 108
trunking 286, 291, 292
 Fibre Channel 286, 291, 292
 uplink 286, 291, 292
trunking, named VSANs 286, 291, 292
trusted points 97, 99, 101
 about 97
 creating 99
 deleting 101
turning off 548
 chassis locator LED 548
turning on 548
 chassis locator LED 548

U

UCS Manager 43
 GUI 43
unbinding 274, 306, 473
 service profiles 473
vHBA 306
vNICs 274
unconfiguring 92
 ports 92
unconfiguring ports 74, 228, 229
unified fabric 4, 5
 about 4
 Fibre Channel 5
unsupported tasks 42
upgrading 163, 168, 199, 200
 capability catalog 199, 200
 firmware order 166, 168
 host firmware package 196
 management firmware policy 198
 service profiles 385
updating 166, 168, 196, 198, 202, 203, 204, 385
 capability catalog 202, 203, 204
 firmware order 166, 168
 host firmware package 196
 management firmware policy 198
 service profiles 385
upgrading firmware 184, 186, 187, 189, 191
updating templates 9, 404
unconfiguring firmware 184, 186, 187, 189, 191
prerequisites

upgrading firmware 178, 180, 181, 183, 184, 186, 187, 189, 191, 192, 193
adapters 186
CIMC 187
downloading images 180, 181, 183
fabric interconnects 191, 192, 193
IOM 189
obtaining packages 178
UCS Manager 191
updating 184

uplink Ethernet ports 71, 72, 78, 226, 228, 229
configuring 71, 72, 78, 226
 Equipment tab 71
 FCoE storage 72
 LAN Uplink Manager 226
 NAS 78
 disabling 229
 enabling 228
 flow control policy 71
 speed 71
 unconfiguring 229

uplink Fibre Channel ports 79
restoring 79

uplink port channels 81, 82, 83, 84, 229, 230, 231, 232
adding ports 231
creating 229
deleting 232
disabling 231
enabling 230
Ethernet 81, 82, 83, 84
 creating 81
 deleting 84
 disabling 83
 enabling 82
removing ports 232

uplink ports 21, 30, 69, 71, 81, 232, 233, 255, 256, 265, 293, 294
about 69
Ethernet 71
flow control policies 21, 30, 265
pin groups 232, 233, 255, 256, 293, 294
 creating 232, 255
 deleting 233, 256
port channels 81
uplink Ethernet 81
uplink trunking 286, 291, 292
Fibre Channel 286, 291, 292
about 286
 disabling 292
 enabling 291
uplinks, Manager for LAN 48, 225
USB, BIOS settings 340

user accounts (continued)
 deleting 156
 disabling 156
 enabling 155
 username guidelines 140
 web session limits 142

user attributes 112
 LDAP 112
 RADIUS 112
 TACACS+ 112

user roles 142, 143, 144, 147, 148
about 142
 adding privileges 148
 creating 147
 default 143
 deleting 148
 privileges 144
 removing privileges 148

usernames, guidelines 140
users 49, 108, 109, 111, 112, 123, 133, 139, 140, 142, 143, 144, 146, 147, 148, 149, 150, 153, 154, 155, 156, 158, 595, 596, 598
 access control 139
 accounts 139, 142
 adding privileges 148
 authentication 111
 creating accounts 150
 creating roles 147
 default roles 143
 deleting local accounts 156
 deleting roles 148
 disabling accounts 156
 enabling accounts 155
 guidelines 140
 locales 146, 149, 150, 154
 about 146
 adding organizations 149
 changing 154
 creating 149
 deleting 150
 deleting organizations 150
 monitoring sessions 156
 password strength check 153
 privileges 144
 recovering admin password 595, 596, 598
 remote authentication 112
 remote, role policy 132, 133
 removing privileges 148
 roles 142, 155
 changing 155
 SNMPv3 108, 109
 web session limits 49, 142, 154

UUID 458, 459, 460
 changing 458
 changing in service profile template 459
UUID (continued)
 resetting 460
UUID suffix pools 25, 317, 318, 319
 about 25, 317
 creating 318
 deleting 319

V
values, range 52
vCenters 513, 515, 517, 518
 adding datacenters 515
 adding folders 513, 517
 deleting folders 518
vCons 20, 378, 379, 381, 383
 about 20, 378
 adapter placement 378
 vNIC/vHBA assignment 379, 381, 383
verifying firmware 199
vHBA SAN Connectivity policies 19, 303, 305, 306
 about 19, 303
 binding vHBAs 305
 creating 303
 deleting 305
 unbinding vHBAs 306
vHBA templates 19, 303, 305, 306
 about 19, 303
 binding vHBAs 305
 creating 303
 deleting 305
 unbinding vHBAs 306
vHBAs 305, 306, 379, 383, 467, 470, 471, 472
 assignment to vCon 379, 383
 binding to vHBA template 305
 changing WWPN 470
 clearing persistent binding 471
 creating for service profiles 467
 deleting from service profiles 472
 resetting WWPN 470
 unbinding from vHBA template 306
VIC adapters 34, 487
 virtualization 34, 487
viewing 484, 656
 blade-level power cap 484
 system event log 656
VIF status 614, 616
virtual IP address, changing 67
Virtual KVM console 574
virtual lanes 29, 259
virtual switch 519
 deleting 519
 virtualization 20, 33, 34, 37, 487, 488, 490, 493, 496, 497, 498, 499, 532, 535, 536
 about 33
 converged network adapters 33
 NIC adapters 33
 Palo adapter 498, 499
 extension file 499
 extension key 498
 support 33
 VIC adapter 34, 487
 VM lifecycle policy 20, 532
 VN-Link 34, 487, 488
 about 34, 487
 in hardware 34, 488
 VN-Link in hardware 37, 490, 493, 496, 497, 535, 536
 certificate 496, 497
 components 493
 considerations 37, 490
 copying certificate 496
 deletion tasks 536
 pending deletions 535
 VLAN port limitations 241
 VLANs 76, 233, 236, 239, 240, 242, 245, 246, 250, 253
 appliance ports 76
 named 233, 236, 239, 242, 245
 about 239
 creating 233, 242
 deleting 236, 245
 port count 253
 private 240, 246, 250
 about 240
 creating primary 246
 creating secondary 250
 VM lifecycle policy 20, 532
 about 20, 532
 configuring 532
 VMware 33, 498, 499
 extension files 499
 extension key 498
 VMware, configuring integration 501
 VN-Link 34, 35, 36, 487, 488, 489, 521
 about 34, 487
 extension file 35, 488
 port profiles 36, 489, 521
 VN-Link in hardware 34, 37, 488, 490, 493, 496, 497, 535, 536
 about 34, 488
 certificate 496, 497
 components 493
 considerations 37, 490
 copying certificate 496
 pending deletions 535, 536
 VN-Link in hardware 501
 configuring with wizard 501
vNIC 20, 269
 policy 20, 269
vNIC LAN Connectivity policies 20, 269, 273, 274
 about 20, 269
 binding vNICs 273
 creating 269
 deleting 273
 unbinding vNICs 274
vNIC templates 20, 269, 273, 274
 about 20, 269
 binding vNICs 273
 creating 269
 deleting 273
 unbinding vNICs 274
vNIC/vHBA placement policies 20, 378, 379, 380, 381
 about 20, 378
 creating 380
 deleting 381
 vCons 20, 378
 vNIC/vHBA assignment 379
vNICs 12, 273, 274, 378, 381, 463, 466, 467, 529, 533
 assignment to vCon 379, 381
 binding to vNIC template 273
 creating for service profiles 463
 deleting from service profiles 467
 dynamic vNIC connection policy 12, 529
 resetting MAC address 466
 unbinding from vNIC template 274
 viewing dynamic vNIC properties 533
VSANs 80, 285, 286, 287, 289, 290
 creating 287, 289
 named 287
 deleting 290
 disabling default zoning 80
 enabling default zoning 80
 named 285, 286
 storage 289

W

web session limits 49, 142, 154
Work pane 46
WVN 296, 299, 302
 creating 296, 299
 WWNN pools 296
 WWPN pools 299

WWW (continued)
 deleting 299, 302
 WWNN pools 299
 WWPN pools 302
WWW block 297, 300
 adding to WWNN pool 297
 adding to WWPN pool 300
 deleting from WWNN pool 297
 deleting from WWPN pool 300
WWW pools 25, 295
 about 25, 295
WWWN initiators 297, 298
 adding to WWNN pool 297
 deleting 298
WWNN pools 25, 295, 296, 297, 298, 299
 about 25, 295
 adding WWN block 297
 adding WWNN initiator 297
 creating 296
 deleting 299
 deleting WWN block 297
 deleting WWNN initiator 298
WWPNN initiators 301, 302
 adding to WWPN pool 301
 deleting 302
WWPN pools 25, 296, 299, 300, 301, 302
 about 25, 296
 adding WWN block 300
 adding WWPN initiator 301
 creating 299
 deleting 302
 deleting WWN block 300
 deleting WWPN initiator 302

X

XML, copying 53

Z

zoning 80
 disabling, default 80
 enabling, default 80