

Monitoring Traffic

This chapter includes the following sections:

- Traffic Monitoring, page 1
- Guidelines and Recommendations for Traffic Monitoring, page 2
- Creating an Ethernet Traffic Monitoring Session, page 3
- Creating a Fibre Channel Traffic Monitoring Session, page 5
- Adding Traffic Sources to a Monitoring Session, page 6
- Activating a Traffic Monitoring Session, page 11
- Deleting a Traffic Monitoring Session, page 12

Traffic Monitoring

Traffic monitoring copies traffic from one or more sources and sends the copied traffic to a dedicated destination port for analysis by a network analyzer. This feature is also known as Switched Port Analyzer (SPAN).

Important

You can monitor or use SPAN on port channels only for ingress traffic.

Type of Session

When you create a traffic monitoring session, you can choose either an Ethernet or Fibre Channel destination port to receive the traffic. The type of destination port determines the type of session, which in turn determines the types of available traffic sources. For an Ethernet traffic monitoring session, the destination port must be an unconfigured physical port. For a Fibre Channel traffic monitoring session, the destination port must be a Fibre Channel uplink port.

Traffic Sources

An Ethernet traffic monitoring session can monitor any of the following traffic sources:

• Uplink Ethernet port

- Ethernet port channel
- VLAN
- Service profile vNIC
- Service profile vHBA
- FCoE port
- · Port channels
- Unified uplink port

A Fibre Channel traffic monitoring session can monitor any of the following traffic sources:

- Uplink Fibre Channel port
- SAN port channel
- VSAN
- Service profile vHBA
- Fibre Channel storage port

C)

Important

Fibre Channel, Fibre Channel over Ethernet, vHBA, VSAN, and SAN are not supported in Cisco UCS Release 2.5

Guidelines and Recommendations for Traffic Monitoring

When configuring or activating traffic monitoring, consider the following guidelines:

- You can create and store up to 16 traffic monitoring sessions, but only two can be active at the same time.
- A traffic monitoring session is disabled by default when created. To begin monitoring traffic, you must activate the session.
- A traffic monitoring session must be unique on any fabric interconnect within the Cisco UCS pod. Therefore, you must create each monitoring session with a unique name and unique VLAN source.
- To monitor traffic from a server, add all vNICs from the service profile corresponding to the server.
- You can monitor Fibre Channel traffic using either a Fibre Channel traffic analyzer or an Ethernet traffic analyzer. When Fibre Channel traffic is monitored using an Ethernet traffic monitoring session, with an Ethernet destination port, the destination traffic will be FCoE.

Important Fibre Channel and Fibre Channel over Ethernet are not supported in Cisco UCS Manager Release 2.5.

 Because a traffic monitoring destination is a single physical port, a traffic monitoring session can monitor only a single fabric. To monitor uninterrupted vNIC traffic across a fabric failover, you must create two sessions—one per fabric—and connect two analyzers. Add the vNIC as the traffic source for both sessions.

- All traffic sources must be located within the same switch as the destination port.
- A port configured as a destination port cannot also be configured as a source port.
- A member port of a port channel cannot be configured individually as a source. If the port channel is configured as a source, all member ports are source ports.
- A Fibre Channel port on a Cisco UCS 6248 fabric interconnect cannot be configured as a source port.
- If you change the port profile of a virtual machine, any associated vNICs being used as source ports are removed from monitoring, and you must reconfigure the monitoring session.
- If a traffic monitoring session was configured on a dynamic vNIC under a release earlier than Cisco UCS Manager Release 2.0, you must reconfigure the traffic monitoring session after upgrading.
- SPAN traffic is rate-limited to 1 Gbps on Cisco UCS 6200 Series fabric interconnects.

Note

Traffic monitoring can impose a significant load on your system resources. To minimize the load, select sources that carry as little unwanted traffic as possible and disable traffic monitoring when it is not needed.

Creating an Ethernet Traffic Monitoring Session

Note

This procedure describes creating an Ethernet traffic monitoring session. To create a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the **scope fc-traffic-mon** command instead of the **scope eth-traffic-mon** command in Step 1.
- Enter the **create fc-mon-session** command instead of the **create eth-mon-session** command in Step 3.

SUMMARY STEPS

- 1. UCS-A# scope eth-traffic-mon
- **2.** UCS-A /eth-traffic-mon # scope fabric {a | b}
- 3. UCS-A /eth-traffic-mon/fabric # create eth-mon-session session-name
- 4. UCS-A /eth-traffic-mon/fabric/eth-mon-session # create dest-interface slot-num port-num
- 5. UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface # set speedadmin-speed
- 6. UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope eth-traffic-mon	Enters Ethernet traffic monitoring command mode.
Step 2	UCS-A /eth-traffic-mon # scope fabric {a b}	Enters traffic monitoring command mode for the specified fabric.
Step 3	UCS-A /eth-traffic-mon/fabric # create eth-mon-session session-name	Creates a traffic monitoring session with the specified name.
Step 4	UCS-A /eth-traffic-mon/fabric/eth-mon-session # create dest-interface <i>slot-num port-num</i>	Configures the interface at the specified slot and port number to be the destination for the traffic monitoring session. Enters the command mode for the interface.
Step 5	UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface # set speedadmin-speed	Sets the data transfer rate of the port channel to be monitored. This can be: • 1gbps—1 Gbps • 10gbps—10 Gbps • 20gbps—20 Gbps • 40gbps—40 Gbps
Step 6	UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface # commit-buffer	Commits the transaction to the system configuration.

The following example creates an Ethernet traffic monitoring session to copy and forward traffic to the destination port at slot 2, port 12, sets the admin speed to 20 Gbps, and commits the transaction:

```
UCS-A# scope eth-traffic-mon
UCS-A /eth-traffic-mon # scope fabric a
UCS-A /eth-traffic-mon/fabric # create eth-mon-session EthMonitor33
UCS-A /eth-traffic-mon/fabric/eth-mon-session/ # create dest-interface 2 12
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface* # set speed 20gbps
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface* # commit-buffer
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface #
```

What to Do Next

- Add traffic sources to the traffic monitoring session.
- Activate the traffic monitoring session.

Creating a Fibre Channel Traffic Monitoring Session

SUMMARY STEPS

- 1. UCS-A# scope fc-traffic-mon
- **2.** UCS-A /fc-traffic-mon # scope fabric {a | b}
- 3. UCS-A /fc-traffic-mon/fabric # create fc-mon-session session-name
- 4. UCS-A /fc-traffic-mon/fabric/fc-mon-session # create dest-interface slot-num port-num
- 5. UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface # set speedadmin-speed
- 6. UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope fc-traffic-mon	Enters Fibre Channel traffic monitoring command mode.
Step 2	UCS-A /fc-traffic-mon # scope fabric {a b}	Enters Fibre Channel traffic monitoring command mode for the specified fabric.
Step 3	UCS-A /fc-traffic-mon/fabric # create fc-mon-session session-name	Creates a Fibre Channel traffic monitoring session with the specified name.
Step 4	UCS-A /fc-traffic-mon/fabric/fc-mon-session # create dest-interface <i>slot-num port-num</i>	Creates and enters the command mode of the destination slot and port for the Fibre Channel traffic monitoring session.
Step 5	UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface # set speed admin-speed	Sets the data transfer rate of the port channel to be monitored. This can be: • 1gbps—1 Gbps • 2gbps—2 Gbps • 4gbps—4 Gbps • 8gbps—8 Gbps • auto—Cisco UCS determines the data transfer rate.
Step 6	UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface # commit-buffer	Commits the transaction to the system configuration.

The following example creates a Fibre channel traffic monitoring session to copy and forward traffic to the destination port at slot 1, port 10, sets the admin speed to 8 Gbps, and commits the transaction:

```
UCS-A# scope fc-traffic-mon
UCS-A /fc-traffic-mon # scope fabric a
UCS-A /fc-traffic-mon/fabric # create fc-mon-session FCMonitor
UCS-A /fc-traffic-mon/fabric/fc-mon-session* # create dest-interface 1 10
```

```
UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface* # set speed 8gbps
UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface* # commit-buffer
UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface #
```

What to Do Next

- Add traffic sources to the traffic monitoring session.
- Activate the traffic monitoring session.

Adding Traffic Sources to a Monitoring Session

Adding an Uplink Source Port to a Monitoring Session

This procedure describes adding an Ethernet uplink port as a source for a traffic monitoring session. To add a Fibre Channel uplink port as a source, enter the **scope fc-uplink** command instead of the **scope eth-uplink** command in Step 1.

Before You Begin

A traffic monitoring session must be created.

SUMMARY STEPS

- 1. UCS-A# scope eth-uplink
- **2.** UCS-A /eth-uplink # scope fabric {a | b}
- 3. UCS-A /eth-uplink/fabric # scope interface slot-num port-num
- 4. UCS-A /eth-uplink/fabric/interface # create mon-src session-name
- 5. (Optional) UCS-A /eth-uplink/fabric/interface/mon-src # set direction {both | receive | transmit}
- 6. UCS-A /eth-uplink/fabric/interface/mon-src # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink command mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b}	Enters uplink fabric mode for the specified fabric.
Step 3	UCS-A /eth-uplink/fabric # scope interface <i>slot-num port-num</i>	Enters the interface command mode for the specified uplink port.
Step 4	UCS-A /eth-uplink/fabric/interface # create mon-src session-name	Adds the uplink port as a source to the specified monitoring session.
Step 5	UCS-A /eth-uplink/fabric/interface/mon-src # set direction {both receive transmit}	(Optional) Specifies the traffic direction to be monitored.

	Command or Action	Purpose
		Note If you do not select any direction, the default direction is Rx.
Step 6	UCS-A /eth-uplink/fabric/interface/mon-src # commit-buffer	Commits the transaction to the system configuration.

The following example adds the ingress traffic on Ethernet uplink port 3 on slot 2 of fabric A as a source for a monitoring session and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope interface 2 3
UCS-A /eth-uplink/fabric/interface # create mon-src Monitor23
UCS-A /eth-uplink/fabric/interface/mon-src* # set direction receive
UCS-A /eth-uplink/fabric/interface/mon-src* # commit-buffer
UCS-A /eth-uplink/fabric/interface/mon-src #
```

What to Do Next

You can add additional sources to the traffic monitoring session.

Adding a vNIC or vHBA Source to a Monitoring Session

This procedure describes adding a vNIC as a source for a traffic monitoring session. To add a vHBA as a source, enter the **scope vhba** command instead of the **scope vnic** command in Step 2.

Before You Begin

A traffic monitoring session must be created.

SUMMARY STEPS

- 1. Switch-A# scope system
- 2. Switch-A /system # scope vm-mgmt
- 3. (Optional) Switch-A /system/vm-mgmt # show virtual-machine
- 4. Switch-A /system/vm-mgmt # scope virtual-machine uuid
- 5. (Optional) Switch-A /system/vm-mgmt/virtual-machine # show expand
- 6. Switch-A /system/vm-mgmt/virtual-machine # scope vnic mac-address
- 7. Switch-A /system/vm-mgmt/virtual-machine/vnic # create mon-src session-name
- 8. (Optional) Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # set direction {both | receive | transmit}
- 9. Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	Switch-A# scope system	Enters system mode.
Step 2	Switch-A /system # scope vm-mgmt	Enters VM management mode.
Step 3	Switch-A /system/vm-mgmt # show virtual-machine	(Optional) Displays the running virtual machines.
Step 4	Switch-A /system/vm-mgmt # scope virtual-machine uuid	Enters command mode for the virtual machine that contains the dynamic vNIC.
Step 5	Switch-A /system/vm-mgmt/virtual-machine # show expand	(Optional) Displays the virtual machine details, including the vNIC MAC address.
Step 6	Switch-A /system/vm-mgmt/virtual-machine# scope vnic mac-address	Enters the command mode for the vNIC at the specified MAC address.
Step 7	Switch-A /system/vm-mgmt/virtual-machine/vnic # create mon-src session-name	Adds the vNIC as a source to the specified monitoring session.
Step 8	Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # set direction {both receive transmit}	(Optional) Specifies the traffic direction to be monitored.
Step 9	Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # commit-buffer	Commits the transaction to the system configuration.

The following example adds the ingress traffic on a dynamic vNIC as a source for a monitoring session and commits the transaction:

```
Switch-A# scope system
Switch-A /system # scope vm-mgmt
Switch-A /system/vm-mgmt # show virtual-machine
Virtual Machine:
   UUID: 42327c42-e00c-886f-e3f7-e615906f51e9
    Service Profile: org-root/ls-dsw-bld1-esx
   Server: sys/chassis-1/blade-1
   Status: Online
Switch-A /system/vm-mgmt # scope virtual-machine 42327c42-e00c-886f-e3f7-e615906f51e9
Switch-A /system/vm-mgmt/virtual-machine # show expand
Virtual Machine:
   UUID: 42327c42-e00c-886f-e3f7-e615906f51e9
   Service Profile: org-root/ls-dsw-bld1-esx
    Server: sys/chassis-1/blade-1
   Status: Online
    vNIC:
        Name:
        Status: Online
        MAC Address: 00:50:56:B2:00:00
        VIF:
            Vif Id: 32772
```

```
Status: Online

Phys Fabric ID: B

Virtual Fabric:

Switch-A /system/vm-mgmt/virtual-machine # scope vnic 00:50:56:B2:00:00

Switch-A /system/vm-mgmt/virtual-machine/vnic # create mon-src Monitor23

Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src* # set direction receive

Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src* # commit-buffer

Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src #
```

What to Do Next

You can add additional sources to the traffic monitoring session.

Adding a VLAN or VSAN Source to a Monitoring Session

Note This procedure describes adding a VLAN as a source for a traffic monitoring session. To add a VSAN as a source, the following changes are required:

- Enter the scope fc-uplink command instead of the scope eth-uplink command in Step 1.
- Enter the create vsan command instead of the create vlan command in Step 3.

Before You Begin

A traffic monitoring session must be created.

SUMMARY STEPS

- 1. UCS-A# scope eth-uplink
- **2.** UCS-A /eth-uplink # scope fabric $\{a \mid b\}$
- 3. UCS-A /eth-uplink/fabric # create vlan vlan-name vlan-id
- 4. UCS-A /eth-uplink/fabric/vlan # create mon-src session-name
- 5. UCS-A /eth-uplink/fabric/vlan/mon-src # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope eth-uplink	Enters Ethernet uplink command mode.
Step 2	UCS-A /eth-uplink # scope fabric {a b}	Enters uplink fabric mode for the specified fabric.
		Note This step is required when adding a local VLAN as a source. To add a global VLAN as a source, omit this step.
Step 3	UCS-A /eth-uplink/fabric # create vlan vlan-name vlan-id	Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters uplink VLAN mode.
Step 4	UCS-A /eth-uplink/fabric/vlan # create mon-src session-name	Adds the VLAN as a source to the specified monitoring session.

	Command or Action	Purpose
Step 5	UCS-A /eth-uplink/fabric/vlan/mon-src # commit-buffer	Commits the transaction to the system configuration.

The following example adds a local VLAN as a source for an Ethernet monitoring session and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # create vlan vlan23 23
UCS-A /eth-uplink/fabric/vlan # create mon-src Monitor23
UCS-A /eth-uplink/fabric/vlan/mon-src* # commit-buffer
UCS-A /eth-uplink/fabric/vlan/mon-src #
```

What to Do Next

You can add additional sources to the traffic monitoring session.

Adding a Storage Port Source to a Monitoring Session

This procedure describes adding a Fibre Channel storage port as a source for a Fibre Channel traffic monitoring session. To add an FCoE storage port as a source for an Ethernet traffic monitoring session, enter the **create interface fcoe** command instead of the **create interface fc** command in Step 3.

Before You Begin

A traffic monitoring session must be created.

SUMMARY STEPS

- 1. UCS-A# scope fc-storage
- 2. UCS-A /fc-storage # scope fabric {a | b}
- 3. UCS-A /fc-storage/fabric # create interface fc slot-num port-num
- 4. UCS-A /fc-storage/fabric/fc # create mon-src session-name
- 5. UCS-A /fc-storage/fabric/fc/mon-src # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope fc-storage	Enters Fibre Channel storage port command mode.
Step 2	UCS-A /fc-storage # scope fabric {a b}	Enters Fibre Channel storage port fabric mode for the specified fabric.

	Command or Action	Purpose
Step 3	UCS-A /fc-storage/fabric # create interface fc slot-num port-num	Creates a Fibre Channel storage port interface and enters the interface command mode.
Step 4	UCS-A /fc-storage/fabric/fc # create mon-src session-name	Adds the storage port as a source to the specified monitoring session.
Step 5	UCS-A /fc-storage/fabric/fc/mon-src # commit-buffer	Commits the transaction to the system configuration.

The following example adds a Fibre Channel storage port on port 3 of slot 2 as a source for a Fibre Channel monitoring session and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
UCS-A /fc-storage/fabric # create interface fc 2 3
UCS-A /fc-storage/fabric/fc* # create mon-src Monitor23
UCS-A /fc-storage/fabric/fc/mon-src* # commit-buffer
UCS-A /fc-storage/fabric/fc/mon-src #
```

What to Do Next

You can add additional sources to the traffic monitoring session.

Activating a Traffic Monitoring Session

This procedure describes activating an Ethernet traffic monitoring session. To activate a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the scope fc-traffic-mon command instead of the scope eth-traffic-mon command in Step 1.
- Enter the scope fc-mon-session command instead of the scope eth-mon-session command in Step 3.

Before You Begin

Configure a traffic monitoring session.

SUMMARY STEPS

- 1. UCS-A# scope eth-traffic-mon
- 2. UCS-A /eth-traffic-mon # scope fabric {a | b}
- 3. UCS-A /eth-traffic-mon/fabric # scope eth-mon-session session-name
- 4. UCS-A /eth-traffic-mon/fabric/eth-mon-session # disable | enable
- 5. UCS-A /eth-traffic-mon/fabric/eth-mon-session # commit-buffer

DETAILED STEPS

	Command or Action	Purpose
Step 1	UCS-A# scope eth-traffic-mon	Enters Ethernet traffic monitoring command mode.
Step 2	UCS-A /eth-traffic-mon # scope fabric {a b}	Enters traffic monitoring command mode for the specified fabric.
Step 3	UCS-A /eth-traffic-mon/fabric # scope eth-mon-session session-name	Enters the command mode of the traffic monitoring session with the specified name.
Step 4	UCS-A /eth-traffic-mon/fabric/eth-mon-session # disable enable	Disables or enables the traffic monitoring session.
Step 5	UCS-A /eth-traffic-mon/fabric/eth-mon-session # commit-buffer	Commits the transaction to the system configuration.

When activated, the traffic monitoring session begins forwarding traffic to the destination as soon as a traffic source is configured.

The following example activates an Ethernet traffic monitoring session and commits the transaction:

UCS-A /eth-traffic-mon/fabric/eth-mon-session #

Deleting a Traffic Monitoring Session

Note

This procedure describes deleting an Ethernet traffic monitoring session. To delete a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the scope fc-traffic-mon command instead of the scope eth-traffic-mon command in Step 1.
- Enter the **delete fc-mon-session** command instead of the **delete eth-mon-session** command in Step 3.

SUMMARY STEPS

- **1.** UCS-A# scope eth-traffic-mon
- **2.** UCS-A /eth-traffic-mon # scope fabric {a | b}
- 3. UCS-A /eth-traffic-mon/fabric # delete eth-mon-session session-name
- 4. UCS-A /eth-traffic-mon/fabric # commit-buffer

DETAILED STEPS

I

	Command or Action	Purpose
Step 1	UCS-A# scope eth-traffic-mon	Enters Ethernet traffic monitoring command mode.
Step 2	UCS-A /eth-traffic-mon # scope fabric {a b}	Enters traffic monitoring command mode for the specified fabric.
Step 3	UCS-A /eth-traffic-mon/fabric # delete eth-mon-session session-name	Deletes the traffic monitoring session with the specified name.
Step 4	UCS-A /eth-traffic-mon/fabric # commit-buffer	Commits the transaction to the system configuration.

The following example deletes an Ethernet traffic monitoring session and commits the transaction:

```
UCS-A# scope eth-traffic-mon
UCS-A /eth-traffic-mon # scope fabric a
UCS-A /eth-traffic-mon/fabric # delete eth-mon-session Monitor33
UCS-A /eth-traffic-mon/fabric* # commit-buffer
UCS-A /eth-traffic-mon/fabric #
```

٦