THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2011-2012 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface xxxi

Audience xxxi

Conventions xxxi

Related Cisco UCS Documentation xxxiii

Documentation Feedback xxxiii

Obtaining Documentation and Submitting a Service Request xxxiii

PART I

Introduction 1

CHAPTER 1

New and Changed Information 3

New and Changed Information for this Release 3

CHAPTER 2

Overview of Cisco Unified Computing System 9

About Cisco Unified Computing System 9

Unified Fabric 10

Fibre Channel over Ethernet 11

Link-Level Flow Control 11

Priority Flow Control 11

Server Architecture and Connectivity 12

Overview of Service Profiles 12

Network Connectivity through Service Profiles 12

Configuration through Service Profiles 12

Service Profiles that Override Server Identity 13

Service Profiles that Inherit Server Identity 14

Service Profile Templates 15

Policies 15

Configuration Policies 15
Boot Policy 15
Chassis Discovery Policy 16
Dynamic vNIC Connection Policy 19
Ethernet and Fibre Channel Adapter Policies 19
Global Cap Policy 20
Host Firmware Package 21
IPMI Access Profile 21
Local Disk Configuration Policy 22
Management Firmware Package 22
Management Interfaces Monitoring Policy 23
Network Control Policy 23
Power Control Policy 24
Power Policy 24
Quality of Service Policy 25
Rack Server Discovery Policy 25
Server Autoconfiguration Policy 25
Server Discovery Policy 25
Server Inheritance Policy 26
Server Pool Policy 26
Server Pool Policy Qualifications 26
vHBA Template 27
VM Lifecycle Policy 27
vNIC Template 27
vNIC/vHBA Placement Policies 28
Operational Policies 28
Fault Collection Policy 28
Flow Control Policy 29
Maintenance Policy 29
Scrub Policy 29
Serial over LAN Policy 30
Statistics Collection Policy 30
Statistics Threshold Policy 30
Pools 31
Server Pools 31
MAC Pools 31
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUID Suffix Pools</td>
<td>32</td>
</tr>
<tr>
<td>WWN Pools</td>
<td>32</td>
</tr>
<tr>
<td>Management IP Pool</td>
<td>33</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>33</td>
</tr>
<tr>
<td>Oversubscription</td>
<td>33</td>
</tr>
<tr>
<td>Oversubscription Considerations</td>
<td>33</td>
</tr>
<tr>
<td>Guidelines for Estimating Oversubscription</td>
<td>34</td>
</tr>
<tr>
<td>Pinning</td>
<td>35</td>
</tr>
<tr>
<td>Pinning Server Traffic to Server Ports</td>
<td>35</td>
</tr>
<tr>
<td>Guidelines for Pinning</td>
<td>36</td>
</tr>
<tr>
<td>Quality of Service</td>
<td>37</td>
</tr>
<tr>
<td>System Classes</td>
<td>37</td>
</tr>
<tr>
<td>Quality of Service Policy</td>
<td>38</td>
</tr>
<tr>
<td>Flow Control Policy</td>
<td>38</td>
</tr>
<tr>
<td>Opt-In Features</td>
<td>38</td>
</tr>
<tr>
<td>Stateless Computing</td>
<td>38</td>
</tr>
<tr>
<td>Multi-Tenancy</td>
<td>39</td>
</tr>
<tr>
<td>Virtualization in Cisco UCS</td>
<td>40</td>
</tr>
<tr>
<td>Overview of Virtualization</td>
<td>40</td>
</tr>
<tr>
<td>Overview of Cisco Virtual Machine Fabric Extender</td>
<td>41</td>
</tr>
<tr>
<td>Virtualization with Network Interface Cards and Converged Network Adapters</td>
<td>41</td>
</tr>
<tr>
<td>Virtualization with a Virtual Interface Card Adapter</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER 3

Overview of Cisco UCS Manager | 43
About Cisco UCS Manager | 43
Tasks You Can Perform in Cisco UCS Manager | 44
Tasks You Cannot Perform in Cisco UCS Manager | 46
Cisco UCS Manager in a High Availability Environment | 46

CHAPTER 4

Overview of Cisco UCS Manager CLI | 47
Managed Objects | 47
Command Modes | 47
Object Commands | 49
Complete a Command | 50
Command History | 50
Committing, Discarding, and Viewing Pending Commands 50
Online Help for the CLI 51
CLI Session Limits 51
Web Session Limits 51
 Setting the Web Session Limit for Cisco UCS Manager from the CLI 51
Pre-Login Banner 52
 Creating the Pre-Login Banner 52
 Modifying the Pre-Login Banner 53
 Deleting the Pre-Login Banner 54

PART II
System Configuration 55

CHAPTER 5
Configuring the Fabric Interconnects 57
 Initial System Setup 57
 Setup Mode 58
 System Configuration Type 58
 Management Port IP Address 58
 Performing an Initial System Setup for a Standalone Configuration 59
 Initial System Setup for a Cluster Configuration 61
 Performing an Initial System Setup for the First Fabric Interconnect 61
 Performing an Initial System Setup for the Second Fabric Interconnect 63
 Enabling a Standalone Fabric Interconnect for Cluster Configuration 64
 Changing the System Name 65
 Changing the Management Subnet of a Cluster 65
 Ethernet Switching Mode 66
 Configuring Ethernet Switching Mode 67
 Fibre Channel Switching Mode 68
 Configuring Fibre Channel Switching Mode 68

CHAPTER 6
Configuring Ports and Port Channels 71
 Server and Uplink Ports on the 6100 Series Fabric Interconnect 71
 Unified Ports on the 6200 Series Fabric Interconnect 72
 Port Modes 72
 Port Types 73
 Beacon LEDs for Unified Ports 74
Enabling or Disabling a Fibre Channel Port Channel 96
Adding a Member Port to a Fibre Channel Port Channel 97
Deleting a Member Port from a Fibre Channel Port Channel 97

Adapter Port Channels 98
Viewing Adapter Port Channels 98

Fabric Port Channels 99
Cabling Considerations for Fabric Port Channels 99
Configuring a Fabric Port Channel 100
Viewing Fabric Port Channels 100
Enabling or Disabling a Fabric Port Channel Member Port 101

CHAPTER 7 Configuring Communication Services 103
Communication Services 103
Configuring CIM XML 104
Configuring HTTP 105
Unconfiguring HTTP 106
Configuring HTTPS 106
Certificates, Key Rings, and Trusted Points 106
Creating a Key Ring 107
Regenerating the Default Key Ring 107
Creating a Certificate Request for a Key Ring 108
Creating a Certificate Request for a Key Ring with Basic Options 108
Creating a Certificate Request for a Key Ring with Advanced Options 109
Creating a Trusted Point 111
Importing a Certificate into a Key Ring 112
Configuring HTTPS 113
Deleting a Key Ring 114
Deleting a Trusted Point 115
Unconfiguring HTTPS 115
Enabling HTTP Redirection 116
Configuring SNMP 116
Information about SNMP 116
SNMP Functional Overview 116
SNMP Notifications 117
SNMP Security Levels and Privileges 117
CHAPTER 8

Configuring Authentication 125

Authentication Services 125
Guidelines and Recommendations for Remote Authentication Providers 125
User Attributes in Remote Authentication Providers 126
LDAP Group Rule 128
Configuring LDAP Providers 128
 Configuring Properties for LDAP Providers 128
 Creating an LDAP Provider 129
 Changing the LDAP Group Rule for an LDAP Provider 132
 Deleting an LDAP Provider 133
 LDAP Group Mapping 133
 Creating an LDAP Group Map 134
 Deleting an LDAP Group Map 135
Configuring RADIUS Providers 135
 Configuring Properties for RADIUS Providers 135
 Creating a RADIUS Provider 136
 Deleting a RADIUS Provider 138
Configuring TACACS+ Providers 138
 Configuring Properties for TACACS+ Providers 138
 Creating a TACACS+ Provider 139
 Deleting a TACACS+ Provider 140
Configuring Multiple Authentication Systems 141
 Multiple Authentication Systems 141
 Provider Groups 141
Creating an LDAP Provider Group 141
Deleting an LDAP Provider Group 142
Creating a RADIUS Provider Group 143
Deleting a RADIUS Provider Group 144
Creating a TACACS Provider Group 145
Deleting a TACACS Provider Group 146
Authentication Domains 146
Creating an Authentication Domain 147
Selecting a Primary Authentication Service 148
Selecting the Console Authentication Service 148
Selecting the Default Authentication Service 149
Role Policy for Remote Users 150
Configuring the Role Policy for Remote Users 151

CHAPTER 9
Configuring Organizations 153
Organizations in a Multi-Tenancy Environment 153
Hierarchical Name Resolution in a Multi-Tenancy Environment 154
Configuring an Organization Under the Root Organization 156
Configuring an Organization Under an Organization that is not Root 156
Deleting an Organization 157

CHAPTER 10
Configuring Role-Based Access Control 159
Role-Based Access Control 159
User Accounts for Cisco UCS Manager 159
Guidelines for Cisco UCS Manager Usernames 160
Reserved Words: Locally Authenticated User Accounts 161
Guidelines for Cisco UCS Manager Passwords 162
Web Session Limits for User Accounts 162
User Roles 162
Default User Roles 163
Reserved Words: User Roles 164
Privileges 164
User Locales 166
Configuring User Roles 167
Creating a User Role 167
Adding Privileges to a User Role 167
Removing Privileges from a User Role 168
Deleting a User Role 169

Configuring Locales 169
Creating a Locale 169
Assigning an Organization to a Locale 170
Deleting an Organization from a Locale 170
Deleting a Locale 171

Configuring Locally Authenticated User Accounts 171
Creating a User Account 171
Enabling the Password Strength Check for Locally Authenticated Users 173
Setting Web Session Limits for User Accounts 174
Assigning a Role to a User Account 174
Assigning a Locale to a User Account 175
Removing a Role from a User Account 176
Removing a Locale from a User Account 176
Enabling or Disabling a User Account 177
Clearing the Password History for a Locally Authenticated User 178
Deleting a User Account 178

Password Profile for Locally Authenticated Users 179
Configuring the Maximum Number of Password Changes for a Change Interval 180
Configuring a No Change Interval for Passwords 181
Configuring the Password History Count 181

Monitoring User Sessions 182

Managing Firmware 185
Overview of Firmware 185
Firmware Image Management 186
Firmware Image Headers 187
Firmware Image Catalog 187
Firmware Versions 188
Firmware Upgrades 189
Cautions, Guidelines, and Best Practices for Firmware Upgrades 189
Configuration Changes and Settings that Can Impact Upgrades 190
Hardware-Related Guidelines and Best Practices for Firmware Upgrades 191
Activating the Board Controller Firmware on a Server 222
Activating the Cisco UCS Manager Software 223
Activating the Firmware on a Fabric Interconnect 224
Upgrading Firmware through Service Profiles 225
Host Firmware Package 225
Management Firmware Package 226
Effect of Updates to Host Firmware Packages and Management Firmware Packages 226
Creating or Updating a Host Firmware Package 229
Creating or Updating a Management Firmware Package 230
Managing the Capability Catalog 232
Capability Catalog 232
Contents of the Capability Catalog 232
Updates to the Capability Catalog 233
Activating a Capability Catalog Update 233
Verifying that the Capability Catalog is Current 234
Restarting a Capability Catalog Update 234
Viewing a Capability Catalog Provider 235
Downloading Individual Capability Catalog Updates 237
Obtaining Capability Catalog Updates from Cisco 237
Updating the Capability Catalog from a Remote Location 237
Upgrading Management Extensions 238
Management Extensions 238
Activating a Management Extension 239

CHAPTER 12 Configuring DNS Servers 241
DNS Servers in Cisco UCS 241
Configuring a DNS Server 241
Deleting a DNS Server 242

CHAPTER 13 Configuring System-Related Policies 243
Configuring the Chassis Discovery Policy 243
Chassis Discovery Policy 243
Configuring the Chassis Discovery Policy 246
Configuring the Chassis Connectivity Policy 247
Chassis Connectivity Policy 247
Configuring a Chassis Connectivity Policy 248
Configuring the Rack Server Discovery Policy 248
 Rack Server Discovery Policy 248
 Configuring the Rack Server Discovery Policy 249
Configuring the Aging Time for the MAC Address Table 250
 Aging Time for the MAC Address Table 250
 Configuring the Aging Time for the MAC Address Table 250

CHAPTER 14
Managing Licenses 251
 Licenses 251
 Obtaining the Host ID for a Fabric Interconnect 252
 Obtaining a License 253
 Installing a License 254
 Viewing the Licenses Installed on a Fabric Interconnect 254
 Viewing License Usage for a Fabric Interconnect 255
 Uninstalling a License 257

CHAPTER 15
Managing Virtual Interfaces 259
 Virtual Interfaces 259
 Virtual Interface Subscription Management and Error Handling 259

PART III
Network Configuration 261

CHAPTER 16
Configuring VLANs 263
 Named VLANs 263
 Private VLANs 264
 VLAN Port Limitations 265
 Configuring Named VLANs 266
 Creating a Named VLAN Accessible to Both Fabric Interconnects (Uplink Ethernet Mode) 266
 Creating a Named VLAN Accessible to Both Fabric Interconnects (Ethernet Storage Mode) 267
 Creating a Named VLAN Accessible to One Fabric Interconnect (Uplink Ethernet Mode) 268
Creating a Named VLAN Accessible to One Fabric Interconnect (Ethernet Storage Mode) 269
Deleting a Named VLAN 270
Configuring Private VLANs 271
Creating a Primary VLAN for a Private VLAN (Accessible to Both Fabric Interconnects) 271
Creating a Primary VLAN for a Private VLAN (Accessible to One Fabric Interconnect) 272
Creating a Secondary VLAN for a Private VLAN (Accessible to Both Fabric Interconnects) 272
Creating a Secondary VLAN for a Private VLAN (Accessible to One Fabric Interconnect) 273
Viewing the VLAN Port Count 274

CHAPTER 17 Configuring LAN Pin Groups 275
LAN Pin Groups 275
Configuring a LAN Pin Group 275

CHAPTER 18 Configuring MAC Pools 277
MAC Pools 277
Creating a MAC Pool 277
Deleting a MAC Pool 278

CHAPTER 19 Configuring Quality of Service 281
Quality of Service 281
Configuring System Classes 281
System Classes 281
Configuring a System Class 282
Disabling a System Class 283
Configuring Quality of Service Policies 284
Quality of Service Policy 284
Configuring a QoS Policy 284
Deleting a QoS Policy 286
Configuring Flow Control Policies 287
Flow Control Policy 287
CHAPTER 20
Configuring Network-Related Policies 291
Configuring vNIC Templates 291
vNIC Template 291
Configuring a vNIC Template 292
Deleting a vNIC Template 294
Configuring Ethernet Adapter Policies 294
Ethernet and Fibre Channel Adapter Policies 294
Configuring an Ethernet Adapter Policy 295
Deleting an Ethernet Adapter Policy 297
Configuring Network Control Policies 297
Network Control Policy 297
Configuring a Network Control Policy 298
Deleting a Network Control Policy 299

CHAPTER 21
Configuring Upstream Disjoint Layer-2 Networks 301
Upstream Disjoint Layer-2 Networks 301
Guidelines for Configuring Upstream Disjoint L2 Networks 302
Pinning Considerations for Upstream Disjoint L2 Networks 303
Configuring Cisco UCS for Upstream Disjoint L2 Networks 304
Assigning Ports and Port Channels to VLANs 305
Removing Ports and Port Channels from VLANs 306
Viewing Ports and Port Channels Assigned to VLANs 307

PART IV
Storage Configuration 309

CHAPTER 22
Configuring Named VSANs 311
Named VSANs 311
Fibre Channel Uplink Trunking for Named VSANs 312
Guidelines and Recommendations for VSANs 312
Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Uplink Mode) 314
Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Storage Mode) 315
Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Uplink Mode) 316
Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Storage Mode) 317
Deleting a Named VSAN 318
Changing the VLAN ID for the FCoE Native VLAN for a Named VSAN 318
Changing the VLAN ID for the FCoE Native VLAN for a Storage VSAN 319
Enabling or Disabling Fibre Channel Uplink Trunking 319

CHAPTER 23
Configuring SAN Pin Groups 321
SAN Pin Groups 321
Configuring a SAN Pin Group 321

CHAPTER 24
Configuring WWN Pools 323
WWN Pools 323
Creating a WWN Pool 324
Deleting a WWN Pool 325

CHAPTER 25
Configuring Storage-Related Policies 327
Configuring vHBA Templates 327
vHBA Template 327
Configuring a vHBA Template 327
Deleting a vHBA Template 329
Configuring Fibre Channel Adapter Policies 329
Ethernet and Fibre Channel Adapter Policies 329
Configuring a Fibre Channel Adapter Policy 330
Deleting a Fibre Channel Adapter Policy 332

PART V
Server Configuration 333

CHAPTER 26
Configuring Server-Related Pools 335
Server Pool Configuration 335
Server Pools 335
CHAPTER 27

Setting the Management IP Address 339

Management IP Address 339
Configuring the Management IP Address on a Blade Server 340
Configuring a Blade Server to Use a Static IP Address 340
Configuring a Blade Server to Use the Management IP Pool 341
Configuring the Management IP Address on a Rack Server 341
Configuring a Rack Server to Use a Static IP Address 341
Configuring a Rack Server to Use the Management IP Pool 342

Setting the Management IP Address on a Service Profile or Service Profile Template 343
Configuring the Management IP Pool 344
Management IP Pool 344
Configuring an IP Address Block for the Management IP Pool 344
Deleting an IP Address Block from the Management IP Pool 345

CHAPTER 28

Configuring Server-Related Policies 347

Configuring BIOS Settings 347
Server BIOS Settings 347
Main BIOS Settings 348
Processor BIOS Settings 350
Intel Directed I/O BIOS Settings 356
RAS Memory BIOS Settings 358
Serial Port BIOS Settings 360
USB BIOS Settings 360
PCI Configuration BIOS Settings 361
Boot Options BIOS Settings 362
Server Management BIOS Settings 363
BIOS Policy 368
Default BIOS Settings 368
Creating a BIOS Policy 369
Modifying BIOS Defaults 370
Viewing the Actual BIOS Settings for a Server 371
Configuring IPMI Access Profiles 372
IPMI Access Profile 372
Configuring an IPMI Access Profile 372
Deleting an IPMI Access Profile 374
Adding an Endpoint User to an IPMI Access Profile 374
Deleting an Endpoint User from an IPMI Access Profile 375
Configuring Local Disk Configuration Policies 376
Local Disk Configuration Policy 376
Guidelines for all Local Disk Configuration Policies 376
Guidelines for Local Disk Configuration Policies Configured for RAID 377
Creating a Local Disk Configuration Policy 379
Viewing a Local Disk Configuration Policy 380
Deleting a Local Disk Configuration Policy 380
Configuring Scrub Policies 381
Scrub Policy 381
Creating a Scrub Policy 381
Deleting a Scrub Policy 382
Configuring Serial over LAN Policies 383
Serial over LAN Policy 383
Configuring a Serial over LAN Policy 383
Viewing a Serial over LAN Policy 384
Deleting a Serial over LAN Policy 385
Configuring Server Autoconfiguration Policies 385
Server Autoconfiguration Policy 385
Configuring a Server Autoconfiguration Policy 385
Deleting a Server Autoconfiguration Policy 387
Configuring Server Discovery Policies 387
Server Discovery Policy 387
Configuring a Server Discovery Policy 387
Deleting a Server Discovery Policy 389
Configuring Server Inheritance Policies 389
Server Inheritance Policy 389
Configuring a Server Inheritance Policy 389
Deleting a Server Inheritance Policy 391

Configuring Server Pool Policies 391
Server Pool Policy 391
Configuring a Server Pool Policy 391
Deleting a Server Pool Policy 392

Configuring Server Pool Policy Qualifications 393
Server Pool Policy Qualifications 393
Creating a Server Pool Policy Qualification 393
Deleting a Server Pool Policy Qualification 394
Creating an Adapter Qualification 395
Deleting an Adapter Qualification 396
Configuring a Chassis Qualification 396
Deleting a Chassis Qualification 397
Creating a CPU Qualification 398
Deleting a CPU Qualification 399
Creating a Power Group Qualification 400
Deleting a Power Group Qualification 400
Creating a Memory Qualification 401
Deleting a Memory Qualification 402
Creating a Physical Qualification 402
Deleting a Physical Qualification 403
Creating a Storage Qualification 403
Deleting a Storage Qualification 405

Configuring vNIC/vHBA Placement Policies 405
vNIC/vHBA Placement Policies 405
vCon to Adapter Placement 406
vNIC/vHBA to vCon Assignment 407
Configuring a vNIC/vHBA Placement Policy 409
Deleting a vNIC/vHBA Placement Policy 410
Explicitly Assigning a vNIC to a vCon 410
Explicitly Assigning a vHBA to a vCon 411

CHAPTER 29 Configuring Server Boot 413
Boot Policy 413
Creating a Boot Policy 414

SAN Boot 415

Configuring a SAN Boot for a Boot Policy 416

iSCSI Boot 418

iSCSI Boot Process 418

iSCSI Boot Guidelines and Prerequisites 418

Enabling MPIO on Windows 420

Configuring iSCSI Boot 420

Creating an iSCSI Adapter Policy 422

Deleting an iSCSI Adapter Policy 424

Creating an Authentication Profile 424

Deleting an Authentication Profile 425

Adding a Block of IP Addresses to the Initiator Pool 425

Deleting a Block of IP Addresses from the Initiator Pool 426

Creating an iSCSI Boot Policy 427

Deleting iSCSI Devices from a Boot Policy 429

Creating an iSCSI vNIC in a Service Profile 429

Deleting an iSCSI vNIC from a Service Profile 431

Creating an iSCSI Initiator that Boots Using a Static IP Address 432

Deleting the Static IP Address Boot Parameters from an iSCSI Initiator 433

Creating an iSCSI Initiator that Boots Using an IP Address from an IP Pool 434

Deleting the IP Pool Boot Parameter from an iSCSI Initiator 435

Creating an iSCSI Initiator that Boots Using DHCP 436

Deleting the DHCP Boot Parameter from an iSCSI Initiator 437

IQN Pools 438

Creating an IQN Pool 438

Adding a Block to an IQN Pool 440

Deleting a Block from an IQN Pool 440

Deleting an IQN Pool 441

Viewing IQN Pool Usage 442

Creating an iSCSI Static Target 442

Deleting an iSCSI Static Target 445

Creating an iSCSI Auto Target 445

Deleting an iSCSI Auto Target 447

Verifying iSCSI Boot 447
Creating a Service Profile Instance from a Service Profile Template 470
Creating a Hardware-Based Service Profile 471
Configuring a vNIC for a Service Profile 474
Configuring a vHBA for a Service Profile 476
Configuring a Local Disk for a Service Profile 478
Configuring Serial over LAN for a Service Profile 479
Service Profile Boot Definition Configuration 480
 Configuring a Boot Definition for a Service Profile 480
 Configuring a LAN Boot for a Service Profile Boot Definition 481
 Configuring a Storage Boot for a Service Profile Boot Definition 482
 Configuring a Virtual Media Boot for a Service Profile Boot Definition 483
Deleting a Boot Definition for a Service Profile 484
Service Profiles and Service Profile Template Management 485
 Associating a Service Profile with a Blade Server or Server Pool 485
 Associating a Service Profile with a Rack Server 486
 Disassociating a Service Profile from a Server or Server Pool 486
 Resetting the UUID Assigned to a Service Profile from a Pool in a Service Profile
 Template 487
 Resetting the MAC Address Assigned to a vNIC from a Pool in a Service Profile
 Template 488
 Resetting the WWPN Assigned to a vHBA from a Pool in a Service Profile Template 489

CHAPTER 32 Managing Power in Cisco UCS 491
 Power Management in Cisco UCS 491
 Rack Server Power Management 491
 Power Management Precautions 491
 Configuring the Power Policy 492
 Power Policy 492
 Configuring the Power Policy 492
 Configuring the Global Cap Policy 493
 Global Cap Policy 493
 Configuring the Global Cap Policy 493
 Configuring Policy-Driven Chassis Group Power Capping 493
 Policy-Driven Chassis Group Power Capping 493
 Power Groups 494
Creating a Power Group 494
Deleting a Power Group 495
Power Control Policy 496
Creating a Power Control Policy 496
Deleting a Power Control Policy 497
Configuring Manual Blade-Level Power Capping 497
Manual Blade-Level Power Capping 497
Setting the Blade-Level Power Cap for a Server 498
Viewing the Blade-Level Power Cap 498

PART VI System Management 501

CHAPTER 33 Managing Time Zones 503
Time Zones 503
Setting the Time Zone 503
Adding an NTP Server 505
Deleting an NTP Server 506
Setting the System Clock Manually 506

CHAPTER 34 Managing the Chassis 507
Guidelines for Removing and Decommissioning Chassis 507
Acknowledging a Chassis 508
Decommissioning a Chassis 508
Removing a Chassis 509
Recommissioning a Chassis 509
Renumbering a Chassis 510
Toggling the Locator LED 512
 Turning On the Locator LED for a Chassis 512
 Turning Off the Locator LED for a Chassis 512

CHAPTER 35 Managing Blade Servers 513
Blade Server Management 513
Guidelines for Removing and Decommissioning Blade Servers 514
Booting a Blade Server 514
Shutting Down a Blade Server 515
Power Cycling a Blade Server 516
Performing a Hard Reset on a Blade Server 516
Avoiding Unexpected Server Power Changes 517
Acknowledging a Blade Server 518
Removing a Blade Server from a Chassis 519
Decommissioning a Blade Server 519
Turning On the Locator LED for a Blade Server 520
Turning Off the Locator LED for a Blade Server 520
Resetting the CMOS for a Blade Server 520
Resetting the CIMC for a Blade Server 521
Recovering the Corrupt BIOS on a Blade Server 522
Issuing an NMI from a Blade Server 522

CHAPTER 36
Managing Rack-Mount Servers 525
Rack-Mount Server Management 525
Guidelines for Removing and Decommissioning Rack-Mount Servers 526
Booting a Rack-Mount Server 526
Shutting Down a Rack-Mount Server 527
Power Cycling a Rack-Mount Server 528
Performing a Hard Reset on a Rack-Mount Server 528
Avoiding Unexpected Server Power Changes 529
Acknowledging a Rack-Mount Server 530
Decommissioning a Rack-Mount Server 531
Renumbering a Rack-Mount Server 531
Removing a Rack-Mount Server 532
Turning On the Locator LED for a Rack-Mount Server 533
Turning Off the Locator LED for a Rack-Mount Server 534
Resetting the CMOS for a Rack-Mount Server 534
Resetting the CIMC for a Rack-Mount Server 535
Recovering the Corrupt BIOS on a Rack-Mount Server 535
Showing the Status for a Rack-Mount Server 536
Issuing an NMI from a Rack-Mount Server 536

CHAPTER 37
Managing the I/O Modules 539
I/O Module Management in Cisco UCS Manager GUI 539
CHAPTER 38 Backing Up and Restoring the Configuration 541

Backup and Export Configuration 541
Backup Types 541
Considerations and Recommendations for Backup Operations 542
Import Configuration 543
Import Methods 543
System Restore 543
Required User Role for Backup and Import Operations 544
Backup Operations 544
 Creating a Backup Operation 544
 Running a Backup Operation 545
 Modifying a Backup Operation 545
 Deleting a Backup Operation 547
Import Operations 548
 Creating an Import Operation 548
 Running an Import Operation 549
 Modifying an Import Operation 550
 Deleting an Import Operation 551
Restoring the Configuration for a Fabric Interconnect 552
Erasing the Configuration 553

CHAPTER 39 Recovering a Lost Password 555

Password Recovery for the Admin Account 555
Determining the Leadership Role of a Fabric Interconnect 556
Recovering the Admin Account Password in a Standalone Configuration 556
Recovering the Admin Account Password in a Cluster Configuration 557

PART VII System Monitoring 561

CHAPTER 40 Monitoring Traffic 563

Traffic Monitoring 563
Guidelines and Recommendations for Traffic Monitoring 564
Creating an Ethernet Traffic Monitoring Session 565
Creating a Fibre Channel Traffic Monitoring Session 566
Adding Traffic Sources to a Monitoring Session 567
 Adding an Uplink Source Port to a Monitoring Session 567
 Adding a vNIC or vHBA Source to a Monitoring Session 568
 Adding a VLAN or VSAN Source to a Monitoring Session 570
 Adding a Storage Port Source to a Monitoring Session 571
Activating a Traffic Monitoring Session 572
Deleting a Traffic Monitoring Session 573

CHAPTER 41

Monitoring Hardware 575
 Monitoring Fan Modules 575
 Monitoring Management Interfaces 577
 Management Interfaces Monitoring Policy 577
 Configuring the Management Interfaces Monitoring Policy 578
 Server Disk Drive Monitoring 579
 Support for Disk Drive Monitoring 580
 Prerequisites for Disk Drive Monitoring 580
 Viewing the Status of a Disk Drive 580
 Interpreting the Status of a Monitored Disk Drive 582

CHAPTER 42

Configuring Statistics-Related Policies 585
 Configuring Statistics Collection Policies 585
 Statistics Collection Policy 585
 Configuring a Statistics Collection Policy 586
 Configuring Statistics Threshold Policies 586
 Statistics Threshold Policy 586
 Server and Server Component Statistics Threshold Policy Configuration 587
 Configuring a Server and Server Component Statistics Threshold Policy 587
 Deleting a Server and Server Component Statistics Threshold Policy 588
 Configuring a Server and Server Component Statistics Threshold Policy Class 588
 Deleting a Server and Server Component Statistics Threshold Policy Class 590
 Uplink Ethernet Port Statistics Threshold Policy Configuration 590
 Configuring an Uplink Ethernet Port Statistics Threshold Policy 590
 Configuring an Uplink Ethernet Port Statistics Threshold Policy Class 591
 Deleting an Uplink Ethernet Port Statistics Threshold Policy Class 593
CHAPTER 43 Configuring Call Home 601

Call Home 601
Call Home Considerations and Guidelines 603
Cisco UCS Faults and Call Home Severity Levels 604
Cisco Smart Call Home 605
Configuring Call Home 606
Disabling Call Home 608
Enabling Call Home 608
Configuring System Inventory Messages 609
 Configuring System Inventory Messages 609
 Sending a System Inventory Message 609
Configuring Call Home Profiles 610
 Call Home Profiles 610
 Configuring a Call Home Profile 611
 Deleting a Call Home Profile 612
Sending a Test Call Home Alert 613
Configuring Call Home Policies 614
 Call Home Policies 614
 Configuring a Call Home Policy 614
 Disabling a Call Home Policy 615
 Enabling a Call Home Policy 615
 Deleting a Call Home Policy 616

Fibre Channel Port Statistics Threshold Policy Configuration 596
Configuring a Fibre Channel Port Statistics Threshold Policy 596
Configuring a Fibre Channel Port Statistics Threshold Policy Class 597
Deleting an Uplink Fibre Channel Port Statistics Threshold Policy Class 599
Example: Configuring Call Home for Smart Call Home 616
 Configuring Smart Call Home 616
 Configuring the Default Cisco TAC-1 Profile 618
 Configuring a System Inventory Message for Smart Call Home 619
 Registering Smart Call Home 620

CHAPTER 44

Managing the System Event Log 623
 System Event Log 623
 Viewing the System Event Log for a Server 624
 Viewing the System Event Log for an Individual Server 624
 Viewing the System Event Log for All of the Servers in a Chassis 624
 Configuring the SEL Policy 625
 Backing Up the System Event Log for a Server 627
 Backing Up the System Event Log for an Individual Server 627
 Backing Up the System Event Log for All of the Servers in a Chassis 627
 Clearing the System Event Log for a Server 628
 Clearing the System Event Log for an Individual Server 628
 Clearing the System Event Log for All of the Servers in a Chassis 628

CHAPTER 45

Configuring Settings for Faults, Events, and Logs 631
 Configuring Settings for the Fault Collection Policy 631
 Fault Collection Policy 631
 Configuring the Fault Collection Policy 632
 Configuring Settings for the Core File Exporter 632
 Core File Exporter 632
 Configuring the Core File Exporter 633
 Disabling the Core File Exporter 634
 Configuring the Syslog 634
Preface

This preface includes the following sections:

- Audience, page xxxi
- Conventions, page xxxi
- Related Cisco UCS Documentation, page xxxiii
- Documentation Feedback, page xxxiii
- Obtaining Documentation and Submitting a Service Request, page xxxiii

Audience

This guide is intended primarily for data center administrators with responsibilities and expertise in one or more of the following:

- Server administration
- Storage administration
- Network administration
- Network security

Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold font</td>
<td>Commands, keywords, GUI elements, and user-entered text appear in bold font.</td>
</tr>
<tr>
<td>italic font</td>
<td>Document titles, new or emphasized terms, and arguments for which you supply values are in italic font.</td>
</tr>
</tbody>
</table>
Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>courierfont</td>
<td>Terminal sessions and information that the system displays appear in courier font.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Note

Means *reader take note.*

Tip

Means *the following information will help you solve a problem.*

Caution

Means *reader be careful.* In this situation, you might perform an action that could result in equipment damage or loss of data.

Timesaver

Means *the described action saves time.* You can save time by performing the action described in the paragraph.

Warning

Means *reader be warned.* In this situation, you might perform an action that could result in bodily injury.
Related Cisco UCS Documentation

Documentation Roadmaps

For a complete list of all B-Series documentation, see the Cisco UCS B-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

For a complete list of all C-Series documentation, see the Cisco UCS C-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc.

Other Documentation Resources

An ISO file containing all B and C-Series documents is available at the following URL: http://www.cisco.com/cisco/software/type.html?mdfId=283853163&flowId=25821. From this page, click Unified Computing System (UCS) Documentation Roadmap Bundle.

The ISO file is updated after every major documentation release.

Follow Cisco UCS Docs on Twitter to receive document update notifications.

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to ucs-docfeedback@external.cisco.com. We appreciate your feedback.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation.

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.

Follow Cisco UCS Docs on Twitter to receive document update notifications.
PART I

Introduction

- New and Changed Information, page 3
- Overview of Cisco Unified Computing System, page 9
- Overview of Cisco UCS Manager, page 43
- Overview of Cisco UCS Manager CLI, page 47
New and Changed Information

This chapter includes the following sections:

- New and Changed Information for this Release, page 3

New and Changed Information for this Release

The following table provides an overview of the significant changes to this guide for this current release. The table does not provide an exhaustive list of all changes made to the configuration guides or of the new features in this release. For information about new supported hardware in this release, see the Cisco UCS B-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Suite</td>
<td>Adds support for Cipher Suite in HTTPS configuration.</td>
<td>Configuring Communication Services, on page 103</td>
</tr>
<tr>
<td>Web Session Refresh</td>
<td>Enables you to configure the web session refresh period and timeout for authentication domains.</td>
<td>Configuring Authentication, on page 125</td>
</tr>
<tr>
<td>BIOS Settings</td>
<td>Adds support for new BIOS settings that can be included in BIOS policies and configured from Cisco UCS Manager.</td>
<td>Configuring Server-Related Policies, on page 347</td>
</tr>
<tr>
<td>Overview of enabling MPIO</td>
<td>High level information added for how to enable MPIO with iSCSI boot.</td>
<td>Enabling MPIO on Windows, on page 420</td>
</tr>
</tbody>
</table>
Table 2: New Features and Significant Behavioral Changes in Cisco UCS, Release 2.0(2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQN Pools</td>
<td>Adds support for IQN pools in Cisco UCS domains configured for iSCSI boot.</td>
<td>iSCSI Boot, on page 418</td>
</tr>
<tr>
<td>Adapter Port Channels</td>
<td>Enables you to group all the physical links from a Cisco UCS Virtual Interface Card (VIC) to an I/O Module into one logical link. (Requires supported hardware.)</td>
<td>Configuring Ports and Port Channels, on page 71</td>
</tr>
<tr>
<td>Unified Port Support for 6296 Fabric Interconnect</td>
<td>Enables you to use the Configure Unified Ports wizard to configure ports on a 6296 fabric interconnect.</td>
<td>Unified Ports on the 6200 Series Fabric Interconnect, on page 72</td>
</tr>
<tr>
<td>Renumbering for Rack-Mount Servers</td>
<td>Enables you to renumber an integrated rack-mount server.</td>
<td>Managing Rack-Mount Servers, on page 525</td>
</tr>
<tr>
<td>Changes to Behavior for Power State Synchronization</td>
<td>Adds information and a caution about power state synchronization, including use of the physical power button or the reset feature on a blade server or an integrated rack-mount server.</td>
<td>Managing Blade Servers, on page 513; Managing Rack-Mount Servers, on page 525</td>
</tr>
<tr>
<td>BIOS Settings</td>
<td>Adds support for new BIOS settings that can be included in BIOS policies and configured from Cisco UCS Manager.</td>
<td>Configuring Server-Related Policies, on page 347</td>
</tr>
</tbody>
</table>

Table 3: New Features in Cisco UCS, Release 2.0(1)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive Monitoring Support</td>
<td>Support for disk drive monitoring on certain blade servers and a specific LSI storage controller firmware level.</td>
<td>Monitoring Hardware, on page 575</td>
</tr>
<tr>
<td>Fabric Port Channels</td>
<td>Enables you to group several of the physical links from a IOM to a fabric interconnect into one logical link for redundancy and bandwidth sharing. (Requires supported hardware.)</td>
<td>Configuring Ports and Port Channels, on page 71</td>
</tr>
<tr>
<td>Firmware Bundle Option</td>
<td>Enables you to select a bundle instead of a version when updating firmware using the Cisco UCS Manager GUI.</td>
<td>Managing Firmware, on page 185</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>iSCSI Boot</td>
<td>iSCSI boot enables a server to boot its operating system from an iSCSI target machine located remotely over a network.</td>
<td>iSCSI Boot, on page 418</td>
</tr>
<tr>
<td>Licensing</td>
<td>Updated information for new UCS hardware.</td>
<td>Licenses, on page 251</td>
</tr>
<tr>
<td>Pre-login Banner</td>
<td>Displays user-defined banner text prior to login when a user logs into Cisco UCS Manager using the GUI or CLI.</td>
<td>Pre-Login Banner, on page 52</td>
</tr>
<tr>
<td>Unified Ports</td>
<td>Unified ports are ports on the 6200 series fabric interconnect that can be configured to carry either Ethernet or Fibre Channel traffic.</td>
<td>Unified Ports on the 6200 Series Fabric Interconnect, on page 72</td>
</tr>
<tr>
<td>Upstream Disjoint Layer-2 Networks</td>
<td>Enables you to configure Cisco UCS to communicate with upstream disjoint layer-2 networks.</td>
<td>Configuring Upstream Disjoint Layer-2 Networks, on page 301</td>
</tr>
<tr>
<td>Virtual Interfaces</td>
<td>The number of vNICs and vHBAs configurable for a service profile is determined by adapter capability and the amount of virtual interface (VIF) namespace available on the adapter.</td>
<td>Managing Virtual Interfaces, on page 259</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Virtual Interface Card Drivers</td>
<td>Cisco UCS Virtual Interface Card (VIC) drivers facilitate communication between supported operating systems and Cisco UCS Virtual Interface Cards (VICs).</td>
<td>This feature is now documented in the following installation guides:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco UCS Manager Interface Card Drivers for ESX Installation Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco UCS Manager Interface Card Drivers for Linux Installation Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco UCS Manager Interface Card Drivers for Windows Installation Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The VIC driver installation guides can be found here: http://www.cisco.com/en/US/products/ps10281/prod_installation_guides_list.html</td>
</tr>
<tr>
<td>VM-FEX Integration for VMware</td>
<td>Cisco Virtual Machine Fabric Extender (VM-FEX) for VMware provides management integration and network communication between Cisco UCS Manager and VMware vCenter.</td>
<td>This feature is now documented in the following configuration guides:</td>
</tr>
<tr>
<td></td>
<td>In previous releases, this functionality was known as VN-Link in Hardware.</td>
<td>• Cisco UCS Manager VM-FEX for VMware GUI Configuration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco UCS Manager VM-FEX for VMware CLI Configuration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The VM-FEX configuration guides can be found here: http://www.cisco.com/en/US/products/ps10281/products_installation_and_configuration_guides_list.html</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>VM-FEX Integration for KVM (Red Hat Linux)</td>
<td>Cisco Virtual Machine Fabric Extender (VM-FEX) for VMware provides external switching for virtual machines running on a KVM Linux-based hypervisor in a Cisco UCS domain.</td>
<td>This feature is documented in the following configuration guides:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cisco UCS Manager VM-FEX for KVM GUI Configuration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cisco UCS Manager VM-FEX for KVM CLI Configuration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The VM-FEX configuration guides can be found here: http://www.cisco.com/en/US/products/ps10281/products_installation_and_configuration_guides_list.html</td>
</tr>
</tbody>
</table>
Overview of Cisco Unified Computing System

This chapter includes the following sections:

- About Cisco Unified Computing System, page 9
- Unified Fabric, page 10
- Server Architecture and Connectivity, page 12
- Traffic Management, page 33
- Opt-In Features, page 38
- Virtualization in Cisco UCS, page 40

About Cisco Unified Computing System

Cisco Unified Computing System (Cisco UCS) fuses access layer networking and servers. This high-performance, next-generation server system provides a data center with a high degree of workload agility and scalability.

The hardware and software components support Cisco's unified fabric, which runs multiple types of data center traffic over a single converged network adapter.

Architectural Simplification

The simplified architecture of Cisco UCS reduces the number of required devices and centralizes switching resources. By eliminating switching inside a chassis, network access-layer fragmentation is significantly reduced.

Cisco UCS implements Cisco unified fabric within racks and groups of racks, supporting Ethernet and Fibre Channel protocols over 10 Gigabit Cisco Data Center Ethernet and Fibre Channel over Ethernet (FCoE) links.

This radical simplification reduces the number of switches, cables, adapters, and management points by up to two-thirds. All devices in a Cisco UCS domain remain under a single management domain, which remains highly available through the use of redundant components.
High Availability
The management and data plane of Cisco UCS is designed for high availability and redundant access layer fabric interconnects. In addition, Cisco UCS supports existing high availability and disaster recovery solutions for the data center, such as data replication and application-level clustering technologies.

Scalability
A single Cisco UCS domain supports multiple chassis and their servers, all of which are administered through one Cisco UCS Manager. For more detailed information about the scalability, speak to your Cisco representative.

Flexibility
A Cisco UCS domain allows you to quickly align computing resources in the data center with rapidly changing business requirements. This built-in flexibility is determined by whether you choose to fully implement the stateless computing feature.

Pools of servers and other system resources can be applied as necessary to respond to workload fluctuations, support new applications, scale existing software and business services, and accommodate both scheduled and unscheduled downtime. Server identity can be abstracted into a mobile service profile that can be moved from server to server with minimal downtime and no need for additional network configuration.

With this level of flexibility, you can quickly and easily scale server capacity without having to change the server identity or reconfigure the server, LAN, or SAN. During a maintenance window, you can quickly do the following:

- Deploy new servers to meet unexpected workload demand and rebalance resources and traffic.
- Shut down an application, such as a database management system, on one server and then boot it up again on another server with increased I/O capacity and memory resources.

Optimized for Server Virtualization
Cisco UCS has been optimized to implement VM-FEX technology. This technology provides improved support for server virtualization, including better policy-based configuration and security, conformance with a company's operational model, and accommodation for VMware's VMotion.

Unified Fabric
With unified fabric, multiple types of data center traffic can run over a single Data Center Ethernet (DCE) network. Instead of having a series of different host bus adapters (HBAs) and network interface cards (NICs) present in a server, unified fabric uses a single converged network adapter. This type of adapter can carry LAN and SAN traffic on the same cable.

Cisco UCS uses Fibre Channel over Ethernet (FCoE) to carry Fibre Channel and Ethernet traffic on the same physical Ethernet connection between the fabric interconnect and the server. This connection terminates at a converged network adapter on the server, and the unified fabric terminates on the uplink ports of the fabric interconnect. On the core network, the LAN and SAN traffic remains separated. Cisco UCS does not require that you implement unified fabric across the data center.

The converged network adapter presents an Ethernet interface and Fibre Channel interface to the operating system. At the server, the operating system is not aware of the FCoE encapsulation because it sees a standard Fibre Channel HBA.
At the fabric interconnect, the server-facing Ethernet port receives the Ethernet and Fibre Channel traffic. The fabric interconnect (using Ethertype to differentiate the frames) separates the two traffic types. Ethernet frames and Fibre Channel frames are switched to their respective uplink interfaces.

Fibre Channel over Ethernet

Cisco UCS leverages Fibre Channel over Ethernet (FCoE) standard protocol to deliver Fibre Channel. The upper Fibre Channel layers are unchanged, so the Fibre Channel operational model is maintained. FCoE network management and configuration is similar to a native Fibre Channel network.

FCoE encapsulates Fibre Channel traffic over a physical Ethernet link. FCoE is encapsulated over Ethernet with the use of a dedicated Ethertype, 0x8906, so that FCoE traffic and standard Ethernet traffic can be carried on the same link. FCoE has been standardized by the ANSI T11 Standards Committee.

Fibre Channel traffic requires a lossless transport layer. Instead of the buffer-to-buffer credit system used by native Fibre Channel, FCoE depends upon the Ethernet link to implement lossless service.

Ethernet links on the fabric interconnect provide two mechanisms to ensure lossless transport for FCoE traffic:

- Link-level flow control
- Priority flow control

Link-Level Flow Control

IEEE 802.3x link-level flow control allows a congested receiver to signal the endpoint to pause data transmission for a short time. This link-level flow control pauses all traffic on the link.

The transmit and receive directions are separately configurable. By default, link-level flow control is disabled for both directions.

On each Ethernet interface, the fabric interconnect can enable either priority flow control or link-level flow control (but not both).

Priority Flow Control

The priority flow control (PFC) feature applies pause functionality to specific classes of traffic on the Ethernet link. For example, PFC can provide lossless service for the FCoE traffic, and best-effort service for the standard Ethernet traffic. PFC can provide different levels of service to specific classes of Ethernet traffic (using IEEE 802.1p traffic classes).

PFC decides whether to apply pause based on the IEEE 802.1p CoS value. When the fabric interconnect enables PFC, it configures the connected adapter to apply the pause functionality to packets with specific CoS values.

By default, the fabric interconnect negotiates to enable the PFC capability. If the negotiation succeeds, PFC is enabled and link-level flow control remains disabled (regardless of its configuration settings). If the PFC negotiation fails, you can either force PFC to be enabled on the interface or you can enable IEEE 802.x link-level flow control.
Server Architecture and Connectivity

Overview of Service Profiles

Service profiles are the central concept of Cisco UCS. Each service profile serves a specific purpose: ensuring that the associated server hardware has the configuration required to support the applications it will host.

The service profile maintains configuration information about the server hardware, interfaces, fabric connectivity, and server and network identity. This information is stored in a format that you can manage through Cisco UCS Manager. All service profiles are centrally managed and stored in a database on the fabric interconnect.

Every server must be associated with a service profile.

Important

At any given time, each server can be associated with only one service profile. Similarly, each service profile can be associated with only one server at a time.

After you associate a service profile with a server, the server is ready to have an operating system and applications installed, and you can use the service profile to review the configuration of the server. If the server associated with a service profile fails, the service profile does not automatically fail over to another server.

When a service profile is disassociated from a server, the identity and connectivity information for the server is reset to factory defaults.

Network Connectivity through Service Profiles

Each service profile specifies the LAN and SAN network connections for the server through the Cisco UCS infrastructure and out to the external network. You do not need to manually configure the network connections for Cisco UCS servers and other components. All network configuration is performed through the service profile.

When you associate a service profile with a server, the Cisco UCS internal fabric is configured with the information in the service profile. If the profile was previously associated with a different server, the network infrastructure reconfigures to support identical network connectivity to the new server.

Configuration through Service Profiles

A service profile can take advantage of resource pools and policies to handle server and connectivity configuration.

Hardware Components Configured by Service Profiles

When a service profile is associated with a server, the following components are configured according to the data in the profile:

- Server, including BIOS and CIMC
- Adapters
- Fabric interconnects
You do not need to configure these hardware components directly.

Server Identity Management through Service Profiles

You can use the network and device identities burned into the server hardware at manufacture or you can use identities that you specify in the associated service profile either directly or through identity pools, such as MAC, WWN, and UUID.

The following are examples of configuration information that you can include in a service profile:

- Profile name and description
- Unique server identity (UUID)
- LAN connectivity attributes, such as the MAC address
- SAN connectivity attributes, such as the WWN

Operational Aspects configured by Service Profiles

You can configure some of the operational functions for a server in a service profile, such as the following:

- Firmware packages and versions
- Operating system boot order and configuration
- IPMI and KVM access

vNIC Configuration by Service Profiles

A vNIC is a virtualized network interface that is configured on a physical network adapter and appears to be a physical NIC to the operating system of the server. The type of adapter in the system determines how many vNICs you can create. For example, a converged network adapter has two NICs, which means you can create a maximum of two vNICs for each adapter.

A vNIC communicates over Ethernet and handles LAN traffic. At a minimum, each vNIC must be configured with a name and with fabric and network connectivity.

vHBA Configuration by Service Profiles

A vHBA is a virtualized host bus adapter that is configured on a physical network adapter and appears to be a physical HBA to the operating system of the server. The type of adapter in the system determines how many vHBAs you can create. For example, a converged network adapter has two HBAs, which means you can create a maximum of two vHBAs for each of those adapters. In contrast, a network interface card does not have any HBAs, which means you cannot create any vHBAs for those adapters.

A vHBA communicates over FCoE and handles SAN traffic. At a minimum, each vHBA must be configured with a name and fabric connectivity.

Service Profiles that Override Server Identity

This type of service profile provides the maximum amount of flexibility and control. This profile allows you to override the identity values that are on the server at the time of association and use the resource pools and policies set up in Cisco UCS Manager to automate some administration tasks.

You can disassociate this service profile from one server and then associate it with another server. This re-association can be done either manually or through an automated server pool policy. The burned-in settings,
such as UUID and MAC address, on the new server are overwritten with the configuration in the service profile. As a result, the change in server is transparent to your network. You do not need to reconfigure any component or application on your network to begin using the new server.

This profile allows you to take advantage of and manage system resources through resource pools and policies, such as the following:

- Virtualized identity information, including pools of MAC addresses, WWN addresses, and UUIDs
- Ethernet and Fibre Channel adapter profile policies
- Firmware package policies
- Operating system boot order policies

Unless the service profile contains power management policies, a server pool qualification policy, or another policy that requires a specific hardware configuration, the profile can be used for any type of server in the Cisco UCS domain.

You can associate these service profiles with either a rack-mount server or a blade server. The ability to migrate the service profile depends upon whether you choose to restrict migration of the service profile.

Note

If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association might fail.

Service Profiles that Inherit Server Identity

This hardware-based service profile is the simplest to use and create. This profile uses the default values in the server and mimics the management of a rack-mounted server. It is tied to a specific server and cannot be moved or migrated to another server.

You do not need to create pools or configuration policies to use this service profile.

This service profile inherits and applies the identity and configuration information that is present at the time of association, such as the following:

- MAC addresses for the two NICs
- For a converged network adapter or a virtual interface card, the WWN addresses for the two HBAs
- BIOS versions
- Server UUID

Important

The server identity and configuration information inherited through this service profile may not be the values burned into the server hardware at manufacture if those values were changed before this profile is associated with the server.
Service Profile Templates

With a service profile template, you can quickly create several service profiles with the same basic parameters, such as the number of vNICs and vHBAs, and with identity information drawn from the same pools.

Tip

If you need only one service profile with similar values to an existing service profile, you can clone a service profile in the Cisco UCS Manager GUI.

For example, if you need several service profiles with similar values to configure servers to host database software, you can create a service profile template, either manually or from an existing service profile. You then use the template to create the service profiles.

Cisco UCS supports the following types of service profile templates:

Initial template

Service profiles created from an initial template inherit all the properties of the template. However, after you create the profile, it is no longer connected to the template. If you need to make changes to one or more profiles created from this template, you must change each profile individually.

Updating template

Service profiles created from an updating template inherit all the properties of the template and remain connected to the template. Any changes to the template automatically update the service profiles created from the template.

Policies

Policies determine how Cisco UCS components will act in specific circumstances. You can create multiple instances of most policies. For example, you might want different boot policies, so that some servers can PXE boot, some can SAN boot, and others can boot from local storage.

Policies allow separation of functions within the system. A subject matter expert can define policies that are used in a service profile, which is created by someone without that subject matter expertise. For example, a LAN administrator can create adapter policies and quality of service policies for the system. These policies can then be used in a service profile that is created by someone who has limited or no subject matter expertise with LAN administration.

You can create and use two types of policies in Cisco UCS Manager:

• Configuration policies that configure the servers and other components
• Operational policies that control certain management, monitoring, and access control functions

Configuration Policies

Boot Policy

The boot policy determines the following:

• Configuration of the boot device
• Location from which the server boots
• Order in which boot devices are invoked

For example, you can choose to have associated servers boot from a local device, such as a local disk or CD-ROM (VMedia), or you can select a SAN boot or a LAN (PXE) boot.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect. If you do not include a boot policy in a service profile, the server uses the default settings in the BIOS to determine the boot order.

Important

Changes to a boot policy may be propagated to all servers created with an updating service profile template that includes that boot policy. Reassociation of the service profile with the server to rewrite the boot order information in the BIOS is auto-triggered.

Chassis Discovery Policy

The chassis discovery policy determines how the system reacts when you add a new chassis. Cisco UCS Manager uses the settings in the chassis discovery policy to determine the minimum threshold for the number of links between the chassis and the fabric interconnect and whether to group links from the IOM to the fabric interconnect in a fabric port channel.

Chassis Links

If you have a Cisco UCS domain that has some chassis wired with 1 link, some with 2 links, some with 4 links, and some with 8 links we recommend that you configure the chassis discovery policy for the minimum number links in the domain so that Cisco UCS Manager can discover all chassis.

Tip

For Cisco UCS implementations that mix IOMs with different numbers of links, we recommend using the platform max value. Using platform max insures that Cisco UCS Manager uses the maximum number of IOM uplinks available.

After the initial discovery, you must reacknowledge the chassis that are wired for a greater number of links and Cisco UCS Manager configures the chassis to use all available links.

Cisco UCS Manager cannot discover any chassis that is wired for fewer links than are configured in the chassis discovery policy. For example, if the chassis discovery policy is configured for 4 links, Cisco UCS Manager cannot discover any chassis that is wired for 1 link or 2 links. Reacknowledgement of the chassis does not resolve this issue.

The following table provides an overview of how the chassis discovery policy works in a multi-chassis Cisco UCS domain:
Table 4: Chassis Discovery Policy and Chassis Links

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
<th>8-Link Chassis Discovery Policy</th>
<th>Platform-Max Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link.</td>
</tr>
<tr>
<td>2 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
</tr>
<tr>
<td>Number of Links Wired for the Chassis</td>
<td>1-Link Chassis Discovery Policy</td>
<td>2-Link Chassis Discovery Policy</td>
<td>4-Link Chassis Discovery Policy</td>
<td>8-Link Chassis Discovery Policy</td>
<td>Platform-Max Discovery Policy</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 4 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>If the IOM has 4 links, the chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired 4 with links. If the IOM has 8 links, the chassis is not fully discovered by Cisco UCS Manager.</td>
</tr>
<tr>
<td>8 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 4 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 8 links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 8 links.</td>
</tr>
</tbody>
</table>

Link Grouping

For hardware configurations that support fabric port channels, link grouping determines whether all of the links from the IOM to the fabric interconnect are grouped into a fabric port channel during chassis discovery. If the link grouping preference is set to port channel, all of the links from the IOM to the fabric interconnect...
are grouped in a fabric port channel. If set to no group, links from the IOM to the fabric interconnect are not grouped in a fabric port channel.

Once a fabric port channel is created, links can be added or removed by changing the link group preference and reacknowledging the chassis, or by enabling or disabling the chassis from the port channel.

Note
The link grouping preference only takes effect if both sides of the links between an IOM or FEX and the fabric interconnect support fabric port channels. If one side of the links does not support fabric port channels, this preference is ignored and the links are not grouped in a port channel.

Dynamic vNIC Connection Policy

The dynamic vNIC connection policy determines how the connectivity between VMs and dynamic vNICs is configured. This policy is required for Cisco UCS domains that include servers with VIC adapters on which you have installed VMs and configured dynamic vNICs.

Each dynamic vNIC connection policy includes an Ethernet adapter policy and designates the number of vNICs that can be configured for any server associated with a service profile that includes the policy.

Note
If you migrate a server that is configured with dynamic vNICs, the dynamic interface used by the vNICs fails and Cisco UCS Manager notifies you of that failure.

When the server comes back up, Cisco UCS Manager assigns new dynamic vNICs to the server. If you are monitoring traffic on the dynamic vNIC, you must reconfigure the monitoring source.

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling
- Performance enhancement
- RSS hash
- Failover in an cluster configuration with two fabric interconnects
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- **Max LUNs Per Target**—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.
- **Link Down Timeout**—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5s in SANsurfer.
- **Max Data Field Size**—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

Important
We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

\[
\text{Completion Queues} = \text{Transmit Queues} + \text{Receive Queues} \\
\text{Interrupt Count} = (\text{Completion Queues} + 2) \text{ rounded up to nearest power of 2}
\]

For example, if Transmit Queues = 1 and Receive Queues = 8 then:

\[
\text{Completion Queues} = 1 + 8 = 9 \\
\text{Interrupt Count} = (9 + 2) \text{ rounded up to the nearest power of 2} = 16
\]

Global Cap Policy

The global cap policy is a global policy that specifies whether policy-driven chassis group power capping or manual blade-level power capping will be applied to all servers in a chassis.

We recommend that you use the default power capping method: policy-driven chassis group power capping.

Important
Any change to the manual blade-level power cap configuration will result in the loss of any groups or configuration options set for policy-driven chassis group power capping.
Host Firmware Package

This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

- Adapter
- BIOS
- Board Controller
- FC Adapters
- HBA Option ROM
- Storage Controller

Tip

You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

Prerequisites

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

IPMI Access Profile

This policy allows you to determine whether IPMI commands can be sent directly to the server, using the IP address. For example, you can send commands to retrieve sensor data from the CIMC. This policy defines the IPMI access, including a username and password that can be authenticated locally on the server, and whether the access is read-only or read-write.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.
Local Disk Configuration Policy

This policy configures any optional SAS local drives that have been installed on a server through the onboard RAID controller of the local drive. This policy enables you to set a local disk mode for all servers that are associated with a service profile that includes the local disk configuration policy.

The local disk modes include the following:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.

- **RAID 0 Striped**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.

- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.

- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.

- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.

- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.

- **RAID 6 Striped Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.

- **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

You must include this policy in a service profile, and that service profile must be associated with a server for the policy to take effect.

Management Firmware Package

This policy enables you to specify a set of firmware versions that make up the management firmware package (also known as a management firmware pack). The management firmware package includes the Cisco Integrated Management Controller (CIMC) on the server. You do not need to use this package if you upgrade the CIMC directly.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the CIMC firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect.
Management Interfaces Monitoring Policy

This policy defines how the mgmt0 Ethernet interface on the fabric interconnect should be monitored. If Cisco UCS detects a management interface failure, a failure report is generated. If the configured number of failure reports is reached, the system assumes that the management interface is unavailable and generates a fault. By default, the management interfaces monitoring policy is disabled.

If the affected management interface belongs to a fabric interconnect which is the managing instance, Cisco UCS confirms that the subordinate fabric interconnect's status is up, that there are no current failure reports logged against it, and then modifies the managing instance for the end-points.

If the affected fabric interconnect is currently the primary inside of a high availability setup, a failover of the management plane is triggered. The data plane is not affected by this failover.

You can set the following properties related to monitoring the management interface:

• Type of mechanism used to monitor the management interface.
• Interval at which the management interface's status is monitored.
• Maximum number of monitoring attempts that can fail before the system assumes that the management is unavailable and generates a fault message.

Important

In the event of a management interface failure on a fabric interconnect, the managing instance may not change if one of the following occurs:

• A path to the end-point through the subordinate fabric interconnect does not exist.
• The management interface for the subordinate fabric interconnect has failed.
• The path to the end-point through the subordinate fabric interconnect has failed.

Network Control Policy

This policy configures the network control settings for the Cisco UCS domain, including the following:

• Whether the Cisco Discovery Protocol (CDP) is enabled or disabled
• How the VIF behaves if no uplink port is available in end-host mode
• The action that Cisco UCS Manager takes on the remote Ethernet interface, vEthernet interface, or vFibreChannel interface when the associated border port fails
• Whether the server can use different MAC addresses when sending packets to the fabric interconnect
• Whether MAC registration occurs on a per-VNIC basis or for all VLANs.

Action on Uplink Fail

By default, the Action on Uplink Fail property in the network control policy is configured with a value of link-down. For adapters such as the Cisco UCS M81KR Virtual Interface Card, this default behavior directs Cisco UCS Manager to bring the vEthernet or vFibreChannel interface down if the associated border port fails. For Cisco UCS systems using a non-VM-FEX capable converged network adapter that supports both Ethernet and FCoE traffic, such as Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, this
default behavior directs Cisco UCS Manager to bring the remote Ethernet interface down if the associated border port fails. In this scenario, any vFibreChannel interfaces that are bound to the remote Ethernet interface are brought down as well.

Note
Cisco UCS Manager, release 1.4(2) and earlier did not enforce the **Action on Uplink Fail** property for those types of non-VM-FEX capable converged network adapters mentioned above. If the **Action on Uplink Fail** property was set to link-down, Cisco UCS Manager would ignore this setting and instead issue a warning. In the current version of Cisco UCS Manager this setting is enforced. Therefore, if your implementation includes one of those converged network adapters and the adapter is expected to handle both Ethernet and FCoE traffic, we recommend that you configure the **Action on Uplink Fail** property with a value of warning.

Please note that this configuration may result in an Ethernet teaming driver not being able to detect a link failure when the border port goes down.

MAC Registration Mode
In Cisco UCS Manager, releases 1.4 and earlier, MAC addresses were installed on all of the VLANs belonging to an interface. Starting in release 2.0, MAC addresses are installed only on the native VLAN by default. In most implementations this maximizes the VLAN port count.

Note
If a trunking driver is being run on the host and the interface is in promiscuous mode, we recommend that you set the Mac Registration Mode to All VLANs.

Power Control Policy
Cisco UCS uses the priority set in the power control policy, along with the blade type and configuration, to calculate the initial power allocation for each blade within a chassis. During normal operation, the active blades within a chassis can borrow power from idle blades within the same chassis. If all blades are active and reach the power cap, service profiles with higher priority power control policies take precedence over service profiles with lower priority power control policies.

Priority is ranked on a scale of 1-10, where 1 indicates the highest priority and 10 indicates lowest priority. The default priority is 5.

For mission-critical application a special priority called no-cap is also available. Setting the priority to no-cap prevents Cisco UCS from leveraging unused power from that particular blade server. The server is allocated the maximum amount of power that that blade can reach.

Note
You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Power Policy
The power policy is a global policy that specifies the redundancy for power supplies in all chassis in the Cisco UCS domain. This policy is also known as the PSU policy.
For more information about power supply redundancy, see *Cisco UCS 5108 Server Chassis Hardware Installation Guide*.

Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.

Rack Server Discovery Policy

The rack server discovery policy determines how the system reacts when you add a new rack-mount server. Cisco UCS Manager uses the settings in the rack server discovery policy to determine whether any data on the hard disks are scrubbed and whether server discovery occurs immediately or needs to wait for explicit user acknowledgement.

Cisco UCS Manager cannot discover any rack-mount server that has not been correctly cabled and connected to the fabric interconnects. For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

Server Autoconfiguration Policy

Cisco UCS Manager uses this policy to determine how to configure a new server. If you create a server autoconfiguration policy, the following occurs when a new server starts:

1. The qualification in the server autoconfiguration policy is executed against the server.
2. If the server meets the required qualifications, the server is associated with a service profile created from the service profile template configured in the server autoconfiguration policy. The name of that service profile is based on the name given to the server by Cisco UCS Manager.
3. The service profile is assigned to the organization configured in the server autoconfiguration policy.

Server Discovery Policy

This discovery policy determines how the system reacts when you add a new server. If you create a server discovery policy, you can control whether the system conducts a deep discovery when a server is added to a chassis, or whether a user must first acknowledge the new server. By default, the system conducts a full discovery.

If you create a server discovery policy, the following occurs when a new server starts:

1. The qualification in the server discovery policy is executed against the server.
2. If the server meets the required qualifications, Cisco UCS Manager applies the following to the server:
 - Depending upon the option selected for the action, either discovers the new server immediately or waits for a user to acknowledge the new server
 - Applies the scrub policy to the server
Server Inheritance Policy

This policy is invoked during the server discovery process to create a service profile for the server. All service profiles created from this policy use the values burned into the blade at manufacture. The policy performs the following:

- Analyzes the inventory of the server
- If configured, assigns the server to the selected organization
- Creates a service profile for the server with the identity burned into the server at manufacture

You cannot migrate a service profile created with this policy to another server.

Server Pool Policy

This policy is invoked during the server discovery process. It determines what happens if server pool policy qualifications match a server to the target pool specified in the policy.

If a server qualifies for more than one pool and those pools have server pool policies, the server is added to all those pools.

Server Pool Policy Qualifications

This policy qualifies servers based on the inventory of a server conducted during the discovery process. The qualifications are individual rules that you configure in the policy to determine whether a server meets the selection criteria. For example, you can create a rule that specifies the minimum memory capacity for servers in a data center pool.

Qualifications are used in other policies to place servers, not just by the server pool policies. For example, if a server meets the criteria in a qualification policy, it can be added to one or more server pools or have a service profile automatically associated with it.

You can use the server pool policy qualifications to qualify servers according to the following criteria:

- Adapter type
- Chassis location
- Memory type and configuration
- Power group
- CPU cores, type, and configuration
- Storage configuration and capacity
- Server model

Depending upon the implementation, you may configure several policies with server pool policy qualifications including the following:

- Autoconfiguration policy
- Chassis discovery policy
- Server discovery policy
• Server inheritance policy
• Server pool policy

vHBA Template

This template is a policy that defines how a vHBA on a server connects to the SAN. It is also referred to as a vHBA SAN connectivity template.

You need to include this policy in a service profile for it to take effect.

VM Lifecycle Policy

The VM lifecycle policy determines how long Cisco UCS Manager retains offline VMs and offline dynamic vNICs in its database. If a VM or dynamic vNIC remains offline after that period, Cisco UCS Manager deletes the object from its database.

All virtual machines (VMs) on Cisco UCS servers are managed by vCenter. Cisco UCS Manager cannot determine whether an inactive VM is temporarily shutdown, has been deleted, or is in some other state that renders it inaccessible. Therefore, Cisco UCS Manager considers all inactive VMs to be in an offline state.

Cisco UCS Manager considers a dynamic vNIC to be offline when the associated VM is shutdown, or the link between the fabric interconnect and the I/O module fails. On rare occasions, an internal error can also cause Cisco UCS Manager to consider a dynamic vNIC to be offline.

The default VM and dynamic vNIC retention period is 15 minutes. You can set that for any period of time between 1 minute and 7200 minutes (or 5 days).

Note

The VMs that Cisco UCS Manager displays are for information and monitoring only. You cannot manage VMs through Cisco UCS Manager. Therefore, when you delete a VM from the Cisco UCS Manager database, you do not delete the VM from the server or from vCenter.

vNIC Template

This policy defines how a vNIC on a server connects to the LAN. This policy is also referred to as a vNIC LAN connectivity policy.

Beginning in Cisco UCS, Release 2.0(2), Cisco UCS Manager does not automatically create a VM-FEX port profile with the correct settings when you create a vNIC template. If you want to create a VM-FEX port profile, you must configure the target of the vNIC template as a VM.

You need to include this policy in a service profile for it to take effect.

Note

If your server has two Emulex or QLogic NICs (Cisco UCS CNA M71KR-E or Cisco UCS CNA M71KR-Q), you must configure vNIC policies for both adapters in your service profile to get a user-defined MAC address for both NICs. If you do not configure policies for both NICs, Windows still detects both of them in the PCI bus. Then because the second eth is not part of your service profile, Windows assigns it a hardware MAC address. If you then move the service profile to a different server, Windows sees additional NICs because one NIC did not have a user-defined MAC address.
vNIC/vHBA Placement Policies

vNIC/vHBA placement policies are used to determine what types of vNICs or vHBAs can be assigned to the physical adapters on a server. Each vNIC/vHBA placement policy contains four virtual network interface connections (vCons) that are virtual representations of the physical adapters. When a vNIC/vHBA placement policy is assigned to a service profile, and the service profile is associated with a server, the vCons in the vNIC/vHBA placement policy are assigned to the physical adapters.

If you do not include a vNIC/vHBA placement policy in the service profile or you use the default configuration for a server with two adapters, Cisco UCS Manager defaults to the All configuration and equally distributes the vNICs and vHBAs between the adapters.

You can use this policy to assign vNICs or vHBAs to either of the two vCons. Cisco UCS Manager uses the vCon assignment to determine how to assign the vNICs and vHBAs to the physical adapter during service profile association.

- **All**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
- **Assigned Only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.
- **Exclude Dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.
- **Exclude Unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

Operational Policies

Fault Collection Policy

The fault collection policy controls the lifecycle of a fault in a Cisco UCS domain, including when faults are cleared, the flapping interval (the length of time between the fault being raised and the condition being cleared), and the retention interval (the length of time a fault is retained in the system).

A fault in Cisco UCS has the following lifecycle:

1. A condition occurs in the system and Cisco UCS Manager raises a fault. This is the active state.
2. When the fault is alleviated, it enters a flapping or soaking interval that is designed to prevent flapping. Flapping occurs when a fault is raised and cleared several times in rapid succession. During the flapping interval, the fault retains its severity for the length of time specified in the fault collection policy.
3. If the condition reoccurs during the flapping interval, the fault returns to the active state. If the condition does not reoccur during the flapping interval, the fault is cleared.
4. The cleared fault enters the retention interval. This interval ensures that the fault reaches the attention of an administrator even if the condition that caused the fault has been alleviated and the fault has not been deleted prematurely. The retention interval retains the cleared fault for the length of time specified in the fault collection policy.
5. If the condition reoccurs during the retention interval, the fault returns to the active state. If the condition does not reoccur, the fault is deleted.
Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS domain send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.

When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Maintenance Policy

A maintenance policy determines how Cisco UCS Manager reacts when a change that requires a server reboot is made to a service profile associated with a server or to an updating service profile bound to one or more service profiles.

The maintenance policy specifies how Cisco UCS Manager deploys the service profile changes. The deployment can occur in one of the following ways:

- Immediately
- When acknowledged by a user with admin privileges
- Automatically at the time specified in the schedule

If the maintenance policy is configured to deploy the change during a scheduled maintenance window, the policy must include a valid schedule. The schedule deploys the changes in the first available maintenance window.

Scrub Policy

This policy determines what happens to local data and to the BIOS settings on a server during the discovery process and when the server is disassociated from a service profile. Depending upon how you configure a scrub policy, the following can occur at those times:

Disk Scrub

One of the following occurs to the data on any local drives on disassociation:

- If enabled, destroys all data on any local drives
- If disabled, preserves all data on any local drives, including local storage configuration
BIOS Settings Scrub

One of the following occurs to the BIOS settings when a service profile containing the scrub policy is disassociated from a server:

- If enabled, erases all BIOS settings for the server and resets them to the BIOS defaults for that server type and vendor
- If disabled, preserves the existing BIOS settings on the server

Serial over LAN Policy

This policy sets the configuration for the serial over LAN connection for all servers associated with service profiles that use the policy. By default, the serial over LAN connection is disabled.

If you implement a serial over LAN policy, we recommend that you also create an IPMI profile.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Statistics Collection Policy

A statistics collection policy defines how frequently statistics are to be collected (collection interval) and how frequently the statistics are to be reported (reporting interval). Reporting intervals are longer than collection intervals so that multiple statistical data points can be collected during the reporting interval, which provides Cisco UCS Manager with sufficient data to calculate and report minimum, maximum, and average values.

For NIC statistics, Cisco UCS Manager displays the average, minimum, and maximum of the change since the last collection of statistics. If the values are 0, there has been no change since the last collection.

Statistics can be collected and reported for the following five functional areas of the Cisco UCS system:

- Adapter—statistics related to the adapters
- Chassis—statistics related to the blade chassis
- Host—this policy is a placeholder for future support
- Port—statistics related to the ports, including server ports, uplink Ethernet ports, and uplink Fibre Channel ports
- Server—statistics related to servers

Statistics Threshold Policy

A statistics threshold policy monitors statistics about certain aspects of the system and generates an event if the threshold is crossed. You can set both minimum and maximum thresholds. For example, you can configure

Note
Cisco UCS Manager has one default statistics collection policy for each of the five functional areas. You cannot create additional statistics collection policies and you cannot delete the existing default policies. You can only modify the default policies.
the policy to raise an alarm if the CPU temperature exceeds a certain value, or if a server is overutilized or underutilized.

These threshold policies do not control the hardware or device-level thresholds enforced by endpoints, such as the CIMC. Those thresholds are burned into the hardware components at manufacture.

Cisco UCS enables you to configure statistics threshold policies for the following components:

- Servers and server components
- Uplink Ethernet ports
- Ethernet server ports, chassis, and fabric interconnects
- Fibre Channel port

Note

You cannot create or delete a statistics threshold policy for Ethernet server ports, uplink Ethernet ports, or uplink Fibre Channel ports. You can only configure the existing default policy.

Pools

Pools are collections of identities, or physical or logical resources, that are available in the system. All pools increase the flexibility of service profiles and allow you to centrally manage your system resources.

You can use pools to segment unconfigured servers or available ranges of server identity information into groupings that make sense for the data center. For example, if you create a pool of unconfigured servers with similar characteristics and include that pool in a service profile, you can use a policy to associate that service profile with an available, unconfigured server.

If you pool identifying information, such as MAC addresses, you can pre-assign ranges for servers that will host specific applications. For example, all database servers could be configured within the same range of MAC addresses, UUIDs, and WWNs.

Server Pools

A server pool contains a set of servers. These servers typically share the same characteristics. Those characteristics can be their location in the chassis, or an attribute such as server type, amount of memory, local storage, type of CPU, or local drive configuration. You can manually assign a server to a server pool, or use server pool policies and server pool policy qualifications to automate the assignment.

If your system implements multi-tenancy through organizations, you can designate one or more server pools to be used by a specific organization. For example, a pool that includes all servers with two CPUs could be assigned to the Marketing organization, while all servers with 64 GB memory could be assigned to the Finance organization.

A server pool can include servers from any chassis in the system. A given server can belong to multiple server pools.

MAC Pools

A MAC pool is a collection of network identities, or MAC addresses, that are unique in their layer 2 environment and are available to be assigned to vNICs on a server. If you use MAC pools in service profiles,
you do not have to manually configure the MAC addresses to be used by the server associated with the service profile.

In a system that implements multi-tenancy, you can use the organizational hierarchy to ensure that MAC pools can only be used by specific applications or business services. Cisco UCS Manager uses the name resolution policy to assign MAC addresses from the pool.

To assign a MAC address to a server, you must include the MAC pool in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server.

You can specify your own MAC addresses or use a group of MAC addresses provided by Cisco.

UUID Suffix Pools

A UUID suffix pool is a collection of SMBIOS UUIDs that are available to be assigned to servers. The first number of digits that constitute the prefix of the UUID are fixed. The remaining digits, the UUID suffix, are variable. A UUID suffix pool ensures that these variable values are unique for each server associated with a service profile which uses that particular pool to avoid conflicts.

If you use UUID suffix pools in service profiles, you do not have to manually configure the UUID of the server associated with the service profile.

WWN Pools

A WWN pool is a collection of WWNs for use by the Fibre Channel vHBAs in a Cisco UCS domain. You create separate pools for the following:

- WW node names assigned to the server
- WW port names assigned to the vHBA

Important

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WWN prefix for all blocks in a pool:

20:00:00:25:B5:XX:XX:XX

If you use WWN pools in service profiles, you do not have to manually configure the WWNs that will be used by the server associated with the service profile. In a system that implements multi-tenancy, you can use a WWN pool to control the WWNs used by each organization.

You assign WWNs to pools in blocks. For each block or individual WWN, you can assign a boot target.

WWNN Pools

A WWNN pool is a WWN pool that contains only WW node names. If you include a pool of WWNNs in a service profile, the associated server is assigned a WWNN from that pool.

WWPN Pools

A WWPN pool is a WWN pool that contains only WW port names. If you include a pool of WWPNs in a service profile, the port on each vHBA of the associated server is assigned a WWPN from that pool.
Management IP Pool

The management IP pool is a collection of external IP addresses. Cisco UCS Manager reserves each block of IP addresses in the management IP pool for external access that terminates in the CIMC on a server.

You can configure service profiles and service profile templates to use IP addresses from the management IP pool. You cannot configure servers to use the management IP pool.

All IP addresses in the management IP pool must be in the same subnet as the IP address of the fabric interconnect.

Note

The management IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.

Traffic Management

Oversubscription

Oversubscription occurs when multiple network devices are connected to the same fabric interconnect port. This practice optimizes fabric interconnect use, since ports rarely run at maximum speed for any length of time. As a result, when configured correctly, oversubscription allows you to take advantage of unused bandwidth. However, incorrectly configured oversubscription can result in contention for bandwidth and a lower quality of service to all services that use the oversubscribed port.

For example, oversubscription can occur if four servers share a single uplink port, and all four servers attempt to send data at a cumulative rate higher than available bandwidth of uplink port.

Oversubscription Considerations

The following elements can impact how you configure oversubscription in a Cisco UCS domain:

Ratio of Server-Facing Ports to Uplink Ports

You need to know what how many server-facing ports and uplink ports are in the system, because that ratio can impact performance. For example, if your system has twenty ports that can communicate down to the servers and only two ports that can communicate up to the network, your uplink ports will be oversubscribed. In this situation, the amount of traffic created by the servers can also affect performance.

Number of Uplink Ports from Fabric Interconnect to Network

You can choose to add more uplink ports between the Cisco UCS fabric interconnect and the upper layers of the LAN to increase bandwidth. In Cisco UCS, you must have at least one uplink port per fabric interconnect to ensure that all servers and NICs to have access to the LAN. The number of LAN uplinks should be determined by the aggregate bandwidth needed by all Cisco UCS servers.

For the 6100 series fabric interconnects, Fibre Channel uplink ports are available on the expansion slots only. You must add more expansion slots to increase number of available Fibre Channel uplinks. Ethernet uplink ports can exist on the fixed slot and on expansion slots.
For the 6200 series fabric interconnects running Cisco UCS Manager, version 2.0 and higher, Ethernet uplink ports and Fibre Channel uplink ports are both configurable on the base module, as well as on the expansion module.

For example, if you have two Cisco UCS 5100 series chassis that are fully populated with half width Cisco UCS B200-M1 servers, you have 16 servers. In a cluster configuration, with one LAN uplink per fabric interconnect, these 16 servers share 20GbE of LAN bandwidth. If more capacity is needed, more uplinks from the fabric interconnect should be added. We recommend that you have symmetric configuration of the uplink in cluster configurations. In the same example, if 4 uplinks are used in each fabric interconnect, the 16 servers are sharing 80 GB of bandwidth, so each has approximately 5 GB of capacity. When multiple uplinks are used on a Cisco UCS fabric interconnect the network design team should consider using a port channel to make best use of the capacity.

Number of Uplink Ports from I/O Module to Fabric Interconnect

You can choose to add more bandwidth between I/O module and fabric interconnect by using more uplink ports and increasing the number of cables. In Cisco UCS, you can have one, two, or four cables connecting an I/O module to a Cisco UCS 6100 series fabric interconnect. You can have up to eight cables if you’re connecting a 2208 I/O module and a 6248 fabric interconnect. The number of cables determines the number of active uplink ports and the oversubscription ratio.

Number of Active Links from Server to Fabric Interconnect

The amount of non-oversubscribed bandwidth available to each server depends on the number of I/O modules used and the number of cables used to connect those I/O modules to the fabric interconnects. Having a second I/O module in place provides additional bandwidth and redundancy to the servers. This level of flexibility in design ensures that you can provide anywhere from 80 Gbps (two I/O modules with four links each) to 10 Gbps (one I/O module with one link) to the chassis.

With 80 Gbps to the chassis, each half-width server in the Cisco UCS domain can get up to 10 Gbps in a non-oversubscribed configuration, with an ability to use up to 20 Gbps with 2:1 oversubscription.

Guidelines for Estimating Oversubscription

When you estimate the optimal oversubscription ratio for a fabric interconnect port, consider the following guidelines:

Cost/Performance Slider

The prioritization of cost and performance is different for each data center and has a direct impact on the configuration of oversubscription. When you plan hardware usage for oversubscription, you need to know where the data center is located on this slider. For example, oversubscription can be minimized if the data center is more concerned with performance than cost. However, cost is a significant factor in most data centers, and oversubscription requires careful planning.

Bandwidth Usage

The estimated bandwidth that you expect each server to actually use is important when you determine the assignment of each server to a fabric interconnect port and, as a result, the oversubscription ratio of the ports. For oversubscription, you must consider how many GBs of traffic the server will consume on average, the ratio of configured bandwidth to used bandwidth, and the times when high bandwidth use will occur.
Network Type

The network type is only relevant to traffic on uplink ports, because FCoE does not exist outside Cisco UCS. The rest of the data center network only differentiates between LAN and SAN traffic. Therefore, you do not need to take the network type into consideration when you estimate oversubscription of a fabric interconnect port.

Pinning

Pinning in Cisco UCS is only relevant to uplink ports. You can pin Ethernet or FCoE traffic from a given server to a specific uplink Ethernet port or uplink FC port.

When you pin the NIC and HBA of both physical and virtual servers to uplink ports, you give the fabric interconnect greater control over the unified fabric. This control ensures more optimal utilization of uplink port bandwidth.

Cisco UCS uses pin groups to manage which NICs, vNICs, HBAs, and vHBAs are pinned to an uplink port. To configure pinning for a server, you can either assign a pin group directly, or include a pin group in a vNIC policy, and then add that vNIC policy to the service profile assigned to that server. All traffic from the vNIC or vHBA on the server travels through the I/O module to the same uplink port.

Pinning Server Traffic to Server Ports

All server traffic travels through the I/O module to server ports on the fabric interconnect. The number of links for which the chassis is configured determines how this traffic is pinned.

The pinning determines which server traffic goes to which server port on the fabric interconnect. This pinning is fixed. You cannot modify it. As a result, you must consider the server location when you determine the appropriate allocation of bandwidth for a chassis.

Note

You must review the allocation of ports to links before you allocate servers to slots. The cabled ports are not necessarily port 1 and port 2 on the I/O module. If you change the number of links between the fabric interconnect and the I/O module, you must reacknowledge the chassis to have the traffic rerouted.

All port numbers refer to the fabric interconnect-side ports on the I/O module.

Chassis with One I/O Module (Not Configured for Fabric Port Channels)

Note

If the adapter in a server supports and is configured for adapter port channels, those port channels are pinned to the same link as described in the following table. If the I/O module in the chassis supports and is configured for fabric port channels, the server slots are pinned to a fabric port channel rather than to an individual link.

<table>
<thead>
<tr>
<th>Links on Chassis</th>
<th>Link 1 / Fabric Port Channel</th>
<th>Link 2</th>
<th>Link 3</th>
<th>Link 4</th>
<th>Link 5</th>
<th>Link 6</th>
<th>Link 7</th>
<th>Link 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link</td>
<td>All server slots</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Traffic Management

<table>
<thead>
<tr>
<th>Links on Chassis</th>
<th>Link 1 / Fabric Port Channel</th>
<th>Link 2</th>
<th>Link 3</th>
<th>Link 4</th>
<th>Link 5</th>
<th>Link 6</th>
<th>Link 7</th>
<th>Link 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 links</td>
<td>Server slots 1, 3, 5, and 7</td>
<td>Server slots 2, 4, 6, and 8</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4 links</td>
<td>Server slots 1 and 5</td>
<td>Server slots 2 and 6</td>
<td>Server slots 3 and 7</td>
<td>Server slots 4 and 8</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>8 links</td>
<td>Server slot 1</td>
<td>Server slot 2</td>
<td>Server slot 3</td>
<td>Server slot 4</td>
<td>Server slot 5</td>
<td>Server slot 6</td>
<td>Server slot 7</td>
<td>Server slot 8</td>
</tr>
<tr>
<td>Fabric Port Channel</td>
<td>All server slots</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Chassis with Two I/O Modules

If a chassis has two I/O modules, traffic from one I/O module goes to one of the fabric interconnects and traffic from the other I/O module goes to the second fabric interconnect. You cannot connect two I/O modules to a single fabric interconnect.

<table>
<thead>
<tr>
<th>Fabric Interconnect Configured in vNIC</th>
<th>Server Traffic Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Server traffic goes to fabric interconnect A. If A fails, the server traffic does not fail over to B.</td>
</tr>
<tr>
<td>B</td>
<td>All server traffic goes to fabric interconnect B. If B fails, the server traffic does not fail over to A.</td>
</tr>
<tr>
<td>A-B</td>
<td>All server traffic goes to fabric interconnect A. If A fails, the server traffic fails over to B.</td>
</tr>
<tr>
<td>B-A</td>
<td>All server traffic goes to fabric interconnect B. If B fails, the server traffic fails over to A.</td>
</tr>
</tbody>
</table>

Guidelines for Pinning

When you determine the optimal configuration for pin groups and pinning for an uplink port, consider the estimated bandwidth usage for the servers. If you know that some servers in the system will use a lot of bandwidth, ensure that you pin these servers to different uplink ports.
Quality of Service

Cisco UCS provides the following methods to implement quality of service:

- System classes that specify the global configuration for certain types of traffic across the entire system
- QoS policies that assign system classes for individual vNICs
- Flow control policies that determine how uplink Ethernet ports handle pause frames

System Classes

Cisco UCS uses Data Center Ethernet (DCE) to handle all traffic inside a Cisco UCS domain. This industry standard enhancement to Ethernet divides the bandwidth of the Ethernet pipe into eight virtual lanes. Two virtual lanes are reserved for internal system and management traffic. You can configure quality of service for the other six virtual lanes. System classes determine how the DCE bandwidth in these six virtual lanes is allocated across the entire Cisco UCS domain.

Each system class reserves a specific segment of the bandwidth for a specific type of traffic. This provides a level of traffic management, even in an oversubscribed system. For example, you can configure the Fibre Channel Priority system class to determine the percentage of DCE bandwidth allocated to FCoE traffic.

The following table describes the system classes that you can configure:

<table>
<thead>
<tr>
<th>System Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum Gold Silver Bronze</td>
<td>A configurable set of system classes that you can include in the QoS policy for a service profile. Each system class manages one lane of traffic. All properties of these system classes are available for you to assign custom settings and policies.</td>
</tr>
<tr>
<td>Best Effort</td>
<td>A system class that sets the quality of service for the lane reserved for Basic Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a drop policy that allows it to drop data packets if required. You cannot disable this system class.</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>A system class that sets the quality of service for the lane reserved for Fibre Channel over Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a no-drop policy that ensures it never drops data packets. You cannot disable this system class.</td>
</tr>
</tbody>
</table>
Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.

Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS domain send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.

When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Opt-In Features

Each Cisco UCS domain is licensed for all functionality. Depending upon how the system is configured, you can decide to opt in to some features or opt out of them for easier integration into existing environment. If a process change happens, you can change your system configuration and include one or both of the opt-in features.

The opt-in features are as follows:

- Stateless computing, which takes advantage of mobile service profiles with pools and policies where each component, such as a server or an adapter, is stateless.
- Multi-tenancy, which uses organizations and role-based access control to divide the system into smaller logical segments.

Stateless Computing

Stateless computing allows you to use a service profile to apply the personality of one server to a different server in the same Cisco UCS domain. The personality of the server includes the elements that identify that server and make it unique in the Cisco UCS domain. If you change any of these elements, the server could lose its ability to access, use, or even achieve booted status.

The elements that make up a server's personality include the following:

- Firmware versions
- UUID (used for server identification)
Stateless computing creates a dynamic server environment with highly flexible servers. Every physical server in a Cisco UCS domain remains anonymous until you associate a service profile with it, then the server gets the identity configured in the service profile. If you no longer need a business service on that server, you can shut it down, disassociate the service profile, and then associate another service profile to create a different identity for the same physical server. The "new" server can then host another business service.

To take full advantage of the flexibility of statelessness, the optional local disks on the servers should only be used for swap or temp space and not to store operating system or application data.

You can choose to fully implement stateless computing for all physical servers in a Cisco UCS domain, to not have any stateless servers, or to have a mix of the two types.

If You Opt In to Stateless Computing

Each physical server in the Cisco UCS domain is defined through a service profile. Any server can be used to host one set of applications, then reassigned to another set of applications or business services, if required by the needs of the data center.

You create service profiles that point to policies and pools of resources that are defined in the Cisco UCS domain. The server pools, WWN pools, and MAC pools ensure that all unassigned resources are available on an as-needed basis. For example, if a physical server fails, you can immediately assign the service profile to another server. Because the service profile provides the new server with the same identity as the original server, including WWN and MAC address, the rest of the data center infrastructure sees it as the same server and you do not need to make any configuration changes in the LAN or SAN.

If You Opt Out of Stateless Computing

Each server in the Cisco UCS domain is treated as a traditional rack mount server.

You create service profiles that inherit the identify information burned into the hardware and use these profiles to configure LAN or SAN connectivity for the server. However, if the server hardware fails, you cannot reassign the service profile to a new server.

Multi-Tenancy

Multi-tenancy allows you to divide up the large physical infrastructure of an Cisco UCS domain into logical entities known as organizations. As a result, you can achieve a logical isolation between organizations without providing a dedicated physical infrastructure for each organization.

You can assign unique resources to each tenant through the related organization, in the multi-tenant environment. These resources can include different policies, pools, and quality of service definitions. You can also implement locales to assign or restrict user privileges and roles by organization, if you do not want all users to have access to all organizations.

If you set up a multi-tenant environment, all organizations are hierarchical. The top-level organization is always root. The policies and pools that you create in root are system-wide and are available to all organizations in the system. However, any policies and pools created in other organizations are only available to organizations that are above it in the same hierarchy. For example, if a system has organizations named Finance and HR that are not in the same hierarchy, Finance cannot use any policies in the HR organization, and HR cannot
access any policies in the Finance organization. However, both Finance and HR can use policies and pools in the root organization.

If you create organizations in a multi-tenant environment, you can also set up one or more of the following for each organization or for a sub-organization in the same hierarchy:

- Resource pools
- Policies
- Service profiles
- Service profile templates

If You Opt In to Multi-Tenancy

Each Cisco UCS domain is divided into several distinct organizations. The types of organizations you create in a multi-tenancy implementation depends upon the business needs of the company. Examples include organizations that represent the following:

- Enterprise groups or divisions within a company, such as marketing, finance, engineering, or human resources
- Different customers or name service domains, for service providers

You can create locales to ensure that users have access only to those organizations that they are authorized to administer.

If You Opt Out of Multi-Tenancy

The Cisco UCS domain remains a single logical entity with everything in the root organization. All policies and resource pools can be assigned to any server in the Cisco UCS domain.

Virtualization in Cisco UCS

Overview of Virtualization

Virtualization allows the creation of multiple virtual machines (VMs) to run in isolation, side by side on the same physical machine.

Each virtual machine has its own set of virtual hardware (RAM, CPU, NIC) upon which an operating system and fully configured applications are loaded. The operating system sees a consistent, normalized set of hardware regardless of the actual physical hardware components.

In a virtual machine, both hardware and software are encapsulated in a single file for rapid copying, provisioning, and moving between physical servers. You can move a virtual machine, within seconds, from one physical server to another for zero-downtime maintenance and continuous workload consolidation.

The virtual hardware makes it possible for many servers, each running in an independent virtual machine, to run on a single physical server. The advantages of virtualization include better use of computing resources, greater server density, and seamless server migration.
Overview of Cisco Virtual Machine Fabric Extender

A virtualized server implementation consists of one or more VMs running as 'guests' on a single physical server. The guest VMs are hosted and managed by a software layer called the hypervisor or virtual machine manager (VMM). The hypervisor typically presents a virtual network interface to each VM and performs Layer 2 switching of traffic from a VM to other local VMs or to a physical interface to the external network.

Working with a Cisco virtual interface card (VIC) adapter, Cisco Virtual Machine Fabric Extender (VM-FEX) bypasses software-based switching of VM traffic by the hypervisor in favor of external hardware-based switching in the fabric interconnect. This method results in a reduced load on the server CPU, faster switching, and the ability to apply a rich set of network management features to local and remote traffic.

VM-FEX extends the (prestandard) IEEE 802.1Qbh port extender architecture to the VMs, providing each VM interface with a virtual Peripheral Component Interconnect Express (PCIe) device and a virtual port on a switch. This solution allows precise rate limiting and quality of service (QoS) guarantees on the VM interface.

Virtualization with Network Interface Cards and Converged Network Adapters

Network interface card (NIC) and converged network adapters support virtualized environments with the standard VMware integration with ESX installed on the server and all virtual machine management performed through the VC.

Portability of Virtual Machines

If you implement service profiles, you retain the ability to easily move a server identity from one server to another. After you image the new server, the ESX treats that server as if it were the original.

Communication between Virtual Machines on the Same Server

These adapters implement the standard communications between virtual machines on the same server. If an ESX host includes multiple virtual machines, all communications must go through the virtual switch on the server.

If the system uses the native VMware drivers, the virtual switch is out of the network administrator's domain and is not subject to any network policies. As a result, for example, QoS policies on the network are not applied to any data packets traveling from VM1 to VM2 through the virtual switch.

If the system includes another virtual switch, such as the Nexus 1000, that virtual switch is subject to the network policies configured on that switch by the network administrator.

Virtualization with a Virtual Interface Card Adapter

A Cisco VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, is a converged network adapter (CNA) designed for both single-OS and VM-based deployments. The VIC adapter supports static or dynamic virtualized interfaces, including up to 128 virtual network interface cards (vNICS).

VIC adapters support VM-FEX to provide hardware-based switching of traffic to and from virtual machine interfaces.
Overview of Cisco UCS Manager

This chapter includes the following sections:

- About Cisco UCS Manager, page 43
- Tasks You Can Perform in Cisco UCS Manager, page 44
- Tasks You Cannot Perform in Cisco UCS Manager, page 46
- Cisco UCS Manager in a High Availability Environment, page 46

About Cisco UCS Manager

Cisco UCS Manager is the management system for all components in a UCS Manager. Cisco UCS Manager runs within the fabric interconnect. You can use any of the interfaces available with this management service to access, configure, administer, and monitor the network and server resources for all chassis connected to the fabric interconnect.

Multiple Management Interfaces

Cisco UCS Manager includes the following interfaces you can use to manage a Cisco UCS domain:

- Cisco UCS Manager GUI
- Cisco UCS Manager CLI
- XML API
- KVM
- IPMI

Almost all tasks can be performed in any of the interfaces, and the results of tasks performed in one interface are automatically displayed in another.

However, you cannot do the following:

- Use Cisco UCS Manager GUI to invoke Cisco UCS Manager CLI.
- View the results of a command invoked through Cisco UCS Manager CLI in Cisco UCS Manager GUI.
- Generate CLI output from Cisco UCS Manager GUI.
Centralized Management
Cisco UCS Manager centralizes the management of resources and devices, rather than using multiple management points. This centralized management includes management of the following devices in a Cisco UCS domain:

- Fabric interconnects.
- Software switches for virtual servers.
- Power and environmental management for chassis and servers.
- Configuration and firmware updates for server network interfaces (Ethernet NICs and converged network adapters).
- Firmware and BIOS settings for servers.

Support for Virtual and Physical Servers
Cisco UCS Manager abstracts server state information—including server identity, I/O configuration, MAC addresses and World Wide Names, firmware revision, and network profiles—into a service profile. You can apply the service profile to any server resource in the system, providing the same flexibility and support to physical servers, virtual servers, and virtual machines connected to a virtual device provided by a VIC adapter.

Role-Based Administration and Multi-Tenancy Support
Cisco UCS Manager supports flexibly defined roles so that data centers can use the same best practices with which they manage discrete servers, storage, and networks to operate a Cisco UCS domain. You can create user roles with privileges that reflect user responsibilities in the data center. For example, you can create the following:

- Server administrator roles with control over server-related configurations.
- Storage administrator roles with control over tasks related to the SAN.
- Network administrator roles with control over tasks related to the LAN.

Cisco UCS is multi-tenancy ready, exposing primitives that allow systems management software using the API to get controlled access to Cisco UCS resources. In a multi-tenancy environment, Cisco UCS Manager enables you to create locales for user roles that can limit the scope of a user to a particular organization.

Tasks You Can Perform in Cisco UCS Manager
You can use Cisco UCS Manager to perform management tasks for all physical and virtual devices within a Cisco UCS domain.

Cisco UCS Hardware Management
You can use Cisco UCS Manager to manage all hardware within a Cisco UCS domain, including the following:

- Chassis
- Servers
- Fabric interconnects
- Fans
- Ports
- Interface cards
- I/O modules

Cisco UCS Resource Management

You can use Cisco UCS Manager to create and manage all resources within a Cisco UCS domain, including the following:

- Servers
- WWN addresses
- MAC addresses
- UUIDs
- Bandwidth

Server Administration

A server administrator can use Cisco UCS Manager to perform server management tasks within a Cisco UCS domain, including the following:

- Create server pools and policies related to those pools, such as qualification policies
- Create policies for the servers, such as discovery policies, scrub policies, and IPMI policies
- Create service profiles and, if desired, service profile templates
- Apply service profiles to servers
- Monitor faults, alarms, and the status of equipment

Network Administration

A network administrator can use Cisco UCS Manager to perform tasks required to create LAN configuration for a Cisco UCS domain, including the following:

- Configure uplink ports, port channels, and LAN PIN groups
- Create VLANs
- Configure the quality of service classes and definitions
- Create the pools and policies related to network configuration, such as MAC address pools and Ethernet adapter profiles

Storage Administration

A storage administrator can use Cisco UCS Manager to perform tasks required to create SAN configuration for a Cisco UCS domain, including the following:

- Configure ports, port channels, and SAN PIN groups
- Create VSANs
- Configure the quality of service classes and definitions
• Create the pools and policies related to the network configuration, such as WWN pools and Fibre Channel adapter profiles

Tasks You Cannot Perform in Cisco UCS Manager

You cannot use Cisco UCS Manager to perform certain system management tasks that are not specifically related to device management within a Cisco UCS domain.

No Cross-System Management

You cannot use Cisco UCS Manager to manage systems or devices that are outside the Cisco UCS domain where Cisco UCS Manager is located. For example, you cannot manage heterogeneous environments, such as non-Cisco UCS x86 systems, SPARC systems, or PowerPC systems.

No Operating System or Application Provisioning or Management

Cisco UCS Manager provisions servers and, as a result, exists below the operating system on a server. Therefore, you cannot use it to provision or manage operating systems or applications on servers. For example, you cannot do the following:

• Deploy an OS, such as Windows or Linux
• Deploy patches for software, such as an OS or an application
• Install base software components, such as anti-virus software, monitoring agents, or backup clients
• Install software applications, such as databases, application server software, or web servers
• Perform operator actions, including restarting an Oracle database, restarting printer queues, or handling non-Cisco UCS user accounts
• Configure or manage external storage on the SAN or NAS storage

Cisco UCS Manager in a High Availability Environment

In a high availability environment with two fabric interconnects, you can run a separate instance of Cisco UCS Manager on each fabric interconnect. The Cisco UCS Manager on the primary fabric interconnect acts as the primary management instance, and the Cisco UCS Manager on the other fabric interconnect is the subordinate management instance.

The two instances of Cisco UCS Manager communicate across a private network between the L1 and L2 Ethernet ports on the fabric interconnects. Configuration and status information is communicated across this private network to ensure that all management information is replicated. This ongoing communication ensures that the management information for Cisco UCS persists even if the primary fabric interconnect fails. In addition, the "floating" management IP address that runs on the primary Cisco UCS Manager ensures a smooth transition in the event of a failover to the subordinate fabric interconnect.
Overview of Cisco UCS Manager CLI

This chapter includes the following sections:

- Managed Objects, page 47
- Command Modes, page 47
- Object Commands, page 49
- Complete a Command, page 50
- Command History, page 50
- Committing, Discarding, and Viewing Pending Commands, page 50
- Online Help for the CLI, page 51
- CLI Session Limits, page 51
- Web Session Limits, page 51
- Pre-Login Banner, page 52

Managed Objects

Cisco UCS uses a managed object model, where managed objects are abstract representations of physical or logical entities that can be managed. For example, servers, chassis, I/O cards, and processors are physical entities represented as managed objects, and resource pools, user roles, service profiles, and policies are logical entities represented as managed objects.

Managed objects may have one or more associated properties that can be configured.

Command Modes

The CLI is organized into a hierarchy of command modes, with the EXEC mode being the highest-level mode of the hierarchy. Higher-level modes branch into lower-level modes. You use create, enter, and scope commands to move from higher-level modes to modes in the next lower level, and you use the exit command to move up one level in the mode hierarchy.
Most command modes are associated with managed objects, so you must create an object before you can access the mode associated with that object. You use `create` and `enter` commands to create managed objects for the modes being accessed. The `scope` commands do not create managed objects and can only access modes for which managed objects already exist.

Each mode contains a set of commands that can be entered in that mode. Most of the commands available in each mode pertain to the associated managed object. Depending on your assigned role and locale, you may have access to only a subset of the commands available in a mode; commands to which you do not have access are hidden.

The CLI prompt for each mode shows the full path down the mode hierarchy to the current mode. This helps you to determine where you are in the command mode hierarchy, and it can be an invaluable tool when you need to navigate through the hierarchy.

The following table lists the main command modes, the commands used to access each mode, and the CLI prompt associated with each mode.

Table 6: Main Command Modes and Prompts

<table>
<thead>
<tr>
<th>Mode Name</th>
<th>Commands Used to Access</th>
<th>Mode Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC</td>
<td><code>top</code> command from any mode</td>
<td>#</td>
</tr>
<tr>
<td>adapter</td>
<td><code>scope adapter</code> command from EXEC mode</td>
<td>/adapter #</td>
</tr>
<tr>
<td>chassis</td>
<td><code>scope chassis</code> command from EXEC mode</td>
<td>/chassis #</td>
</tr>
<tr>
<td>Ethernet server</td>
<td><code>scope eth-server</code> command from EXEC mode</td>
<td>/eth-server #</td>
</tr>
<tr>
<td>Ethernet uplink</td>
<td><code>scope eth-uplink</code> command from EXEC mode</td>
<td>/eth-uplink #</td>
</tr>
<tr>
<td>fabric-interconnect</td>
<td><code>scope fabric-interconnect</code> command from EXEC mode</td>
<td>/fabric-interconnect #</td>
</tr>
<tr>
<td>Fibre Channel uplink</td>
<td><code>scope fc-uplink</code> command from EXEC mode</td>
<td>/fc-uplink #</td>
</tr>
<tr>
<td>firmware</td>
<td><code>scope firmware</code> command from EXEC mode</td>
<td>/firmware #</td>
</tr>
<tr>
<td>Host Ethernet interface</td>
<td><code>scope host-eth-if</code> command from EXEC mode</td>
<td>/host-eth-if #</td>
</tr>
<tr>
<td>Host Fibre Channel interface</td>
<td><code>scope host-fc-if</code> command from EXEC mode</td>
<td>/host-fc-if #</td>
</tr>
</tbody>
</table>
Object Commands

Four general commands are available for object management:

- **create object**
- **delete object**
- **enter object**
- **scope object**

You can use the **scope** command with any managed object, whether a permanent object or a user-instantiated object. The other commands allow you to create and manage user-instantiated objects. For every **create object** command, a corresponding **delete object** and **enter object** command exists.

In the management of user-instantiated objects, the behavior of these commands depends on whether the object exists, as described in the following tables:

Table 7: Command behavior if the object does not exist

<table>
<thead>
<tr>
<th>Command</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>create object</td>
<td>The object is created and its configuration mode, if applicable, is entered.</td>
</tr>
</tbody>
</table>
Complete a Command

You can use the Tab key in any mode to complete a command. Partially typing a command name and pressing Tab causes the command to be displayed in full or to the point where another keyword must be chosen or an argument value must be entered.

Command History

The CLI stores all commands used in the current session. You can step through the previously used commands by using the Up Arrow or Down Arrow keys. The Up Arrow key steps to the previous command in the history, and the Down Arrow key steps to the next command in the history. If you get to the end of the history, pressing the Down Arrow key does nothing.

All commands in the history can be entered again by simply stepping through the history to recall the desired command and pressing Enter. The command is entered as if you had manually typed it. You can also recall a command and change it before you enter it.

Committing, Discarding, and Viewing Pending Commands

When you enter a configuration command in the CLI, the command is not applied until you enter the `commit-buffer` command. Until committed, a configuration command is pending and can be discarded by entering a `discard-buffer` command.

Table 8: Command behavior if the object exists

<table>
<thead>
<tr>
<th>Command</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create object</code></td>
<td>An error message is generated.</td>
</tr>
<tr>
<td><code>delete object</code></td>
<td>The object is deleted.</td>
</tr>
<tr>
<td><code>enter object</code></td>
<td>The configuration mode, if applicable, of the object is entered.</td>
</tr>
<tr>
<td><code>scope object</code></td>
<td>The configuration mode of the object is entered.</td>
</tr>
</tbody>
</table>

Table 8: Command behavior if the object exists

<table>
<thead>
<tr>
<th>Command</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create object</code></td>
<td>An error message is generated.</td>
</tr>
<tr>
<td><code>delete object</code></td>
<td>The object is deleted.</td>
</tr>
<tr>
<td><code>enter object</code></td>
<td>The configuration mode, if applicable, of the object is entered.</td>
</tr>
<tr>
<td><code>scope object</code></td>
<td>The configuration mode of the object is entered.</td>
</tr>
</tbody>
</table>
You can accumulate pending changes in multiple command modes and apply them together with a single `commit-buffer` command. You can view the pending commands by entering the `show configuration pending` command in any command mode.

Note
Committing multiple commands together is not an atomic operation. If any command fails, the successful commands are applied despite the failure. Failed commands are reported in an error message.

While any commands are pending, an asterisk (*) appears before the command prompt. The asterisk disappears when you enter the `commit-buffer` command, as shown in this example:

```
switch-1# scope chassis 1
switch-1 /chassis # enable locator-led
switch-1 /chassis* # show configuration pending
  scope chassis 1
  + enable locator-led
  exit
switch-1 /chassis* # commit-buffer
switch-1 /chassis #
```

Online Help for the CLI
At any time, you can type the ? character to display the options available at the current state of the command syntax. If you have not typed anything at the prompt, typing ? lists all available commands for the mode you are in. If you have partially typed a command, typing ? lists all available keywords and arguments available at your current position in the command syntax.

CLI Session Limits
Cisco UCS Manager limits the number of CLI sessions that can be active at one time to 32 total sessions. This value is not configurable.

Web Session Limits
Web session limits are used by Cisco UCS Manager to restrict the number of web sessions (both GUI and XML) permitted access to the system at any one time.

By default, the number of concurrent web sessions allowed by Cisco UCS Manager is set to the maximum value: 256.

Setting the Web Session Limit for Cisco UCS Manager from the CLI

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
</tbody>
</table>
Pre-Login Banner

With a pre-login banner, when a user logs into Cisco UCS Manager GUI, Cisco UCS Manager displays the banner text in the **Create Pre-Login Banner** dialog box and waits until the user dismisses that dialog box before it prompts for the username and password. When a user logs into Cisco UCS Manager CLI, Cisco UCS Manager displays the banner text in a dialog box and waits for the user to dismiss that dialog box before it prompts for the password. It then repeats the banner text above the copyright block that it displays to the user.

Creating the Pre-Login Banner

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope banner</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/banner # create pre-login-banner</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/banner/pre-login-banner # set message</td>
</tr>
</tbody>
</table>
Purpose

Launches a dialog for entering the pre-login banner message text.

Step 5

At the prompt, type a pre-login banner message and press **Enter**.

On the line following your input, type **ENDOFBUF** to finish.

Press **Ctrl and C** to cancel out of the set message dialog.

Step 6

UCS-A

```
/ security / banner / pre-login-banner #
commit-buffer
```

Commits the transaction to the system configuration.

The following example creates the pre-login banner:

```plaintext
UCS-A# scope security
UCS-A /security # scope banner
UCS-A /security/banner # create pre-login-banner
UCS-A /security/banner/pre-login-banner* # set message
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
Enter prelogin banner:
> Welcome to UCS System 1
> ENDOFBUF
UCS-A /security/banner/pre-login-banner* # commit-buffer
UCS-A /security/banner/pre-login-banner #
```

Modifying the Pre-Login Banner

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope banner</td>
<td>Enters banner security mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/banner # scope pre-login-banner</td>
<td>Enters pre-login-banner banner security mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 UCS-A /security/banner/pre-login-banner # set message</td>
<td>Specifies the message that Cisco UCS Manager displays to the user before it displays the login prompt for the Cisco UCS Manager GUI or CLI. You can enter any standard ASCII character in this field. Launches a dialog for entering the pre-login banner message text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 At the prompt, modify the pre-login banner message and press Enter.</td>
<td>On the line following your input, type ENDOFBUF to finish. Press Ctrl and C to cancel out of the set message dialog.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Commit the transaction to the system configuration.

Step 6

UCS-A /security/banner/pre-login-banner # commit-buffer

The following example modifies the pre-login banner:

UCS-A# scope security
UCS-A /security # scope banner
UCS-A /security/banner # create pre-login-banner
UCS-A /security/banner/pre-login-banner* # set message
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
Enter prelogin banner:
Welcome to UCS System 1
ENDOFBUF
UCS-A /security/banner/pre-login-banner* # commit-buffer
UCS-A /security/banner/pre-login-banner #

Deleting the Pre-Login Banner

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope banner</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/banner # delete pre-login-banner</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/banner # commit-buffer</td>
</tr>
</tbody>
</table>

The following example deletes the pre-login banner:

UCS-A# scope security
UCS-A /security # scope banner
UCS-A /security/banner # delete pre-login-banner
UCS-A /security/banner* # commit-buffer
UCS-A /security/banner #
PART II

System Configuration

- Configuring the Fabric Interconnects, page 57
- Configuring Ports and Port Channels, page 71
- Configuring Communication Services, page 103
- Configuring Authentication, page 125
- Configuring Organizations, page 153
- Configuring Role-Based Access Control, page 159
- Managing Firmware, page 185
- Configuring DNS Servers, page 241
- Configuring System-Related Policies, page 243
- Managing Licenses, page 251
- Managing Virtual Interfaces, page 259
CHAPTER 5

Configuring the Fabric Interconnects

This chapter includes the following sections:

- Initial System Setup, page 57
- Performing an Initial System Setup for a Standalone Configuration, page 59
- Initial System Setup for a Cluster Configuration, page 61
- Enabling a Standalone Fabric Interconnect for Cluster Configuration, page 64
- Changing the System Name, page 65
- Changing the Management Subnet of a Cluster, page 65
- Ethernet Switching Mode, page 66
- Configuring Ethernet Switching Mode, page 67
- Fibre Channel Switching Mode, page 68
- Configuring Fibre Channel Switching Mode, page 68

Initial System Setup

The first time that you access a fabric interconnect in a Cisco UCS domain, a setup wizard prompts you for the following information required to configure the system:

- Installation method (GUI or CLI)
- Setup mode (restore from full system backup or initial setup)
- System configuration type (standalone or cluster configuration)
- System name
- Admin password
- Management port IP address and subnet mask
- Default gateway IP address
- DNS Server IP address
• Default domain name

Setup Mode

You can choose to either restore the system configuration from an existing backup file, or manually set up the system by going through the Setup wizard. If you choose to restore the system, the backup file must be reachable from the management network.

System Configuration Type

You can configure a Cisco UCS domain to use a single fabric interconnect in a standalone configuration or to use a redundant pair of fabric interconnects in a cluster configuration.

A cluster configuration provides high availability. If one fabric interconnect becomes unavailable, the other takes over. Only one management port (Mgmt0) connection is required to support a cluster configuration; however, both Mgmt0 ports should be connected to provide link-level redundancy.

In addition, a cluster configuration actively enhances failover recovery time for redundant virtual interface (VIF) connections. When an adapter has an active VIF connection to one fabric interconnect and a standby VIF connection to the second, the learned MAC addresses of the active VIF are replicated but not installed on the second fabric interconnect. If the active VIF fails, the second fabric interconnect installs the replicated MAC addresses and broadcasts them to the network through gratuitous ARP messages, shortening the switchover time.

Note

The cluster configuration provides redundancy only for the management plane. Data redundancy is dependent on the user configuration and may require a third-party tool to support data redundancy.

To use the cluster configuration, the two fabric interconnects must be directly connected together using Ethernet cables between the L1 (L1-to-L1) and L2 (L2-to-L2) high availability ports, with no other fabric interconnects in between. This allows the two fabric interconnects to continuously monitor the status of each other and quickly know when one has failed.

Both fabric interconnects in a cluster configuration must go through the initial setup process. The first fabric interconnect to be set up must be enabled for a cluster configuration. Then, when the second fabric interconnect is set up, it detects the first fabric interconnect as a peer fabric interconnect in the cluster.

For more information, refer to the *Cisco UCS 6100 Series Fabric Interconnect Hardware Installation Guide*.

Management Port IP Address

In a standalone configuration, you must specify only one IP address and the subnet mask for the single management port on the fabric interconnect.

In a cluster configuration, you must specify the following three IP addresses in the same subnet:

- Management port IP address for fabric interconnect A
- Management port IP address for fabric interconnect B
- Cluster IP address
Performing an Initial System Setup for a Standalone Configuration

Before You Begin

1 Verify the following physical connections on the fabric interconnect:
 • The console port is physically connected to a computer terminal or console server
 • The management Ethernet port (mgmt0) is connected to an external hub, switch, or router

For more information, refer to the *Cisco UCS Hardware Installation Guide* for your fabric interconnect.

2 Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 • 9600 baud
 • 8 data bits
 • No parity
 • 1 stop bit

3 Collect the following information that you will need to supply during the initial setup:
 • System name.
 • Password for the admin account. Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.
 • Management port IP address and subnet mask.
 • Default gateway IP address.
 • DNS server IP address (optional).
 • Domain name for the system (optional).

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Connect to the console port.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Power on the fabric interconnect.</td>
</tr>
</tbody>
</table>
You will see the power on self-test messages as the fabric interconnect boots.

Step 3 When the unconfigured system boots, it prompts you for the setup method to be used. Enter `console` to continue the initial setup using the console CLI.

Step 4 Enter `setup` to continue as an initial system setup.

Step 5 Enter `y` to confirm that you want to continue the initial setup.

Step 6 Enter the password for the admin account.

Step 7 To confirm, re-enter the password for the admin account.

Step 8 Enter `no` to continue the initial setup for a standalone configuration.

Step 9 Enter the system name.

Step 10 Enter the IP address for the management port on the fabric interconnect.

Step 11 Enter the subnet mask for the management port on the fabric interconnect.

Step 12 Enter the IP address for the default gateway.

Step 13 Enter `yes` if you want to specify the IP address for the DNS server, or `no` if you do not.

Step 14 (Optional) Enter the IP address for the DNS server.

Step 15 Enter `yes` if you want to specify the default domain name, or `no` if you do not.

Step 16 (Optional) Enter the default domain name.

Step 17 Review the setup summary and enter `yes` to save and apply the settings, or enter `no` to go through the Setup wizard again to change some of the settings. If you choose to go through the Setup wizard again, it provides the values you previously entered, and the values appear in brackets. To accept previously entered values, press Enter.

The following example sets up a standalone configuration using the console:

```
Enter the installation method (console/gui)? *console
Enter the setup mode (restore from backup or initial setup) [restore/setup]? *setup
You have chosen to setup a new switch. Continue? (y/n): *y
Enter the password for "admin": *adminpassword%958
Confirm the password for "admin": *adminpassword%958
Do you want to create a new cluster on this switch (select 'no' for standalone setup or if you want this switch to be added to an existing cluster)? (yes/no) [n]: *no
Enter the system name: *foo
Mgmt0 IPv4 address: *192.168.10.10
Mgmt0 IPv4 netmask: *255.255.255.0
IPv4 address of the default gateway: *192.168.10.1
Configure the DNS Server IPv4 address? (yes/no) [n]: *yes
DNS IPv4 address: *20.10.20.10
Configure the default domain name? (yes/no) [n]: *yes
Default domain name: *domainname.com
Following configurations will be applied:
  Switch Fabric=A
  System Name=foo
  Management IP Address=192.168.10.10
  Management IP Netmask=255.255.255.0
  Default Gateway=192.168.10.1
  DNS Server=20.10.20.10
  Domain Name=domainname.com
Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): *yes
```
Initial System Setup for a Cluster Configuration

Performing an Initial System Setup for the First Fabric Interconnect

Before You Begin

1. Verify the following physical connections on the fabric interconnect:
 - A console port on the first fabric interconnect is physically connected to a computer terminal or console server
 - The management Ethernet port (mgmt0) is connected to an external hub, switch, or router
 - The L1 ports on both fabric interconnects are directly connected to each other
 - The L2 ports on both fabric interconnects are directly connected to each other

 For more information, refer to the Cisco UCS Hardware Installation Guide for your fabric interconnect.

2. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit

3. Collect the following information that you will need to supply during the initial setup:
 - System name.
 - Password for the admin account. Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.
 - Three static IP addresses: two for the management port on both fabric interconnects (one per fabric interconnect) and one for the cluster IP address used by Cisco UCS Manager.
 - Subnet mask for the three static IP addresses.
 - Default gateway IP address.
 - DNS server IP address (optional).
 - Domain name for the system (optional).

Procedure

Step 1 Connect to the console port.
Step 2 Power on the fabric interconnect.
You will see the power on self-test messages as the fabric interconnect boots.

Step 3 When the unconfigured system boots, it prompts you for the setup method to be used. Enter `console` to continue the initial setup using the console CLI.

Step 4 Enter `setup` to continue as an initial system setup.

Step 5 Enter `y` to confirm that you want to continue the initial setup.

Step 6 Enter the password for the admin account.

Step 7 To confirm, re-enter the password for the admin account.

Step 8 Enter `yes` to continue the initial setup for a cluster configuration.

Step 9 Enter the fabric interconnect fabric (either A or B).

Step 10 Enter the system name.

Step 11 Enter the IP address for the management port on the fabric interconnect.

Step 12 Enter the subnet mask for the management port on the fabric interconnect.

Step 13 Enter the IP address for the default gateway.

Step 14 Enter the virtual IP address.

Step 15 Enter `yes` if you want to specify the IP address for the DNS server, or `no` if you do not.

Step 16 (Optional) Enter the IP address for the DNS server.

Step 17 Enter `yes` if you want to specify the default domain name, or `no` if you do not.

Step 18 (Optional) Enter the default domain name.

Step 19 Review the setup summary and enter `yes` to save and apply the settings, or enter `no` to go through the Setup wizard again to change some of the settings.

If you choose to go through the Setup wizard again, it provides the values you previously entered, and the values appear in brackets. To accept previously entered values, press `Enter`.

The following example sets up the first fabric interconnect for a cluster configuration using the console:

```
Enter the installation method (console/gui)? console
Enter the setup mode (restore from backup or initial setup)? [restore/setup]? setup
You have chosen to setup a new switch. Continue? (y/n): y
Enter the password for "admin": adminpassword%958
Confirm the password for "admin": adminpassword%958
Do you want to create a new cluster on this switch (select 'no' for standalone setup or if you want this switch to be added to an existing cluster)? (yes/no) [n]: yes
Enter the switch fabric (A/B): A
Enter the system name: foo
Mgmt0 IPv4 address: 192.168.10.10
Mgmt0 IPv4 netmask: 255.255.255.0
IPv4 address of the default gateway: 192.168.10.1
Virtual IPv4 address: 192.168.10.12
Configure the DNS Server IPv4 address? (yes/no) [n]: yes
  DNS IPv4 address: 20.10.20.10
Configure the default domain name? (yes/no) [n]: yes
  Default domain name: domainname.com
Following configurations will be applied:
  Switch Fabric=A
  System Name=foo
  Management IP Address=192.168.10.10
  Management IP Netmask=255.255.255.0
  Default Gateway=192.168.10.1
  Cluster Enabled=yes
  Virtual Ip Address=192.168.10.12
  DNS Server=20.10.20.10
  Domain Name=domainname.com
Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): yes
```
Performing an Initial System Setup for the Second Fabric Interconnect

Before You Begin

1. Verify the following physical connections on the fabric interconnect:
 - A console port on the second fabric interconnect is physically connected to a computer terminal or console server
 - The management Ethernet port (mgmt0) is connected to an external hub, switch, or router
 - The L1 ports on both fabric interconnects are directly connected to each other
 - The L2 ports on both fabric interconnects are directly connected to each other

 For more information, refer to the Cisco UCS Hardware Installation Guide for your fabric interconnect.

2. Verify that the console port parameters on the computer terminal (or console server) attached to the console port are as follows:
 - 9600 baud
 - 8 data bits
 - No parity
 - 1 stop bit

3. Collect the following information that you will need to supply during the initial setup:
 - Password for the admin account of the peer fabric interconnect. Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.
 - Management port IP address in the same subnet as the peer fabric interconnect.

Procedure

Step 1 Connect to the console port.
Step 2 Power on the fabric interconnect.
You will see the power on self-test messages as the fabric interconnect boots.

Step 3 When the unconfigured system boots, it prompts you for the setup method to be used. Enter console to continue the initial setup using the console CLI.

 Note: The fabric interconnect should detect the peer fabric interconnect in the cluster. If it does not, check the physical connections between the L1 and L2 ports, and verify that the peer fabric interconnect has been enabled for a cluster configuration.

Step 4 Enter y to add the subordinate fabric interconnect to the cluster.
Step 5 Enter the admin password of the peer fabric interconnect.
Step 6 Enter the IP address for the management port on the subordinate fabric interconnect.
Step 7 Review the setup summary and enter yes to save and apply the settings, or enter no to go through the Setup wizard again to change some of the settings.
If you choose to go through the Setup wizard again, it provides the values you previously entered, and the values appear in brackets. To accept previously entered values, press Enter.

The following example sets up the second fabric interconnect for a cluster configuration using the console:

Enter the installation method (console/gui)? console
Installer has detected the presence of a peer switch. This switch will be added to the cluster. Continue?[y/n] y
Enter the admin password of the peer switch: adminpassword%958
Mgmt0 IPv4 address: 192.168.10.11
Management Ip Address=192.168.10.11
Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): yes

Enabling a Standalone Fabric Interconnect for Cluster Configuration

You can add a second fabric interconnect to an existing Cisco UCS domain that uses a single standalone fabric interconnect. To do this, you must enable the standalone fabric interconnect for cluster operation by configuring it with the virtual IP address of the cluster, and then add the second fabric interconnect to the cluster.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# connect local-mgmt</td>
<td>Enters local management mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A(local-mgmt)# enable cluster virtual-ip-addr</td>
<td>Enables cluster operation on the standalone fabric interconnect with the specified IP address. When you enter this command, you are prompted to confirm that you want to enable cluster operation. Type yes to confirm. The IP address must be the virtual IP address for the cluster configuration, not the IP address assigned to the fabric interconnect that you are adding to the cluster.</td>
</tr>
</tbody>
</table>

The following example enables a standalone fabric interconnect with a virtual IP address of 192.168.1.101 for cluster operation:

UCS-A# connect local-mgmt
UCS-A(local-mgmt)# enable cluster 192.168.1.101
This command will enable cluster mode on this setup. You cannot change it back to stand-alone. Are you sure you want to continue? (yes/no): yes
UCS-A(local-mgmt)#

What to Do Next

Add the second fabric interconnect to the cluster.
Changing the System Name

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # set name name</td>
<td>Sets the system name.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The name is updated on both fabric interconnects within about 30 seconds after the transaction is committed.

The following example changes the system name and commits the transaction:

```
UCS-A# scope system
UCS-A/system # set name SanJose5
UCS-A/system # commit-buffer
```

Changing the Management Subnet of a Cluster

When changing the management subnet in a cluster configuration, you must change the following three IP addresses simultaneously and you must configure all three in the same subnet:

- Management port IP address for fabric interconnect A
- Management port IP address for fabric interconnect B
- Cluster IP (virtual IP) address

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fabric-interconnect a</td>
<td>Enters fabric interconnect mode for fabric A.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fabric-interconnect # set out-of-band ip ip-address netmask netmask gw gateway-ip-address</td>
<td>Sets the IP address, netmask, and gateway IP address of the fabric interconnect.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fabric-interconnect # set out-of-band ip ip-address netmask netmask gw gateway-ip-address</td>
<td>Sets the IP address, netmask, and gateway IP address of the fabric interconnect.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /fabric-interconnect # scope system</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /system # set virtual-ip vip-address</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /system # commit-buffer</td>
</tr>
</tbody>
</table>

When you commit the transaction, you are disconnected from the management session. Reconnect at the new management IP address.

This example changes both fabric-interconnect IP addresses, changes the virtual IP address, and commits the transaction, disconnecting the session:

```
UCS-A# scope fabric-interconnect a
UCS-A /fabric-interconnect# set out-of-band ip 192.0.2.111 netmask 255.255.255.0 gw 192.0.2.1
UCS-A /fabric-interconnect* # scope fabric-interconnect b
UCS-A /fabric-interconnect* # set out-of-band ip 192.0.2.112 netmask 255.255.255.0 gw 192.0.2.1
UCS-A /fabric-interconnect* # scope system
UCS-A /system* # set virtual-ip 192.0.2.113
UCS-A /system* # commit-buffer
```

Ethernet Switching Mode

The Ethernet switching mode determines how the fabric interconnect behaves as a switching device between the servers and the network. The fabric interconnect operates in either of the following Ethernet switching modes:

End-Host Mode

End-host mode allows the fabric interconnect to act as an end host to the network, representing all server (hosts) connected to it through vNICs. This is achieved by pinning (either dynamically pinned or hard pinned) vNICs to uplink ports, which provides redundancy toward the network, and makes the uplink ports appear as server ports to the rest of the fabric. When in end-host mode, the fabric interconnect does not run the Spanning Tree Protocol (STP) and avoids loops by denying uplink ports from forwarding traffic to each other, and by denying egress server traffic on more than one uplink port at a time. End-host mode is the default Ethernet switching mode and should be used if either of the following are used upstream:

- Layer 2 switching for L2 aggregation
- Virtual Switching System (VSS) aggregation layer

Note

When end-host mode is enabled, if a vNIC is hard pinned to an uplink port and this uplink port goes down, the system cannot re-pin the vNIC, and the vNIC remains down.

Switch Mode

Switch mode is the traditional Ethernet switching mode. The fabric interconnect runs STP to avoid loops, and broadcast and multicast packets are handled in the traditional way. Switch mode is not the default Ethernet
switching mode, and should be used only if the fabric interconnect is directly connected to a router, or if either of the following are used upstream:

- Layer 3 aggregation
- VLAN in a box

Note

For both Ethernet switching modes, even when vNICs are hard pinned to uplink ports, all server-to-server unicast traffic in the server array is sent only through the fabric interconnect and is never sent through uplink ports. Server-to-server multicast and broadcast traffic is sent through all uplink ports in the same VLAN.

Configuring Ethernet Switching Mode

Important

When you change the Ethernet switching mode, Cisco UCS Manager logs you out and restarts the fabric interconnect. For a cluster configuration, Cisco UCS Manager restarts both fabric interconnects sequentially. The second fabric interconnect can take several minutes to complete the change in Ethernet switching mode and become system ready. The configuration is retained.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope eth-uplink</code></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-uplink# `set mode {end-host</td>
<td>switch}`</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink# <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration. Cisco UCS Manager restarts the fabric interconnect, logs you out, and disconnects Cisco UCS Manager CLI.</td>
</tr>
</tbody>
</table>

The following example sets the fabric interconnect to end-host mode and commits the transaction:

```
UCS-A# `scope eth-uplink`
UCS-A /eth-uplink# `set mode end-host`
Warning: When committed, this change will cause the switch to reboot
UCS-A /eth-uplink*# `commit-buffer`
UCS-A /eth-uplink #
```
Fibre Channel Switching Mode

The Fibre Channel switching mode determines how the fabric interconnect behaves as a switching device between the servers and storage devices. The fabric interconnect operates in either of the following Fibre Channel switching modes:

End-Host Mode

End-host mode allows the fabric interconnect to act as an end host to the connected fibre channel networks, representing all server (hosts) connected to it through vHBAs. This is achieved by pinning (either dynamically pinned or hard pinned) vHBAs to Fibre Channel uplink ports, which makes the Fibre Channel ports appear as server ports (N-ports) to the rest of the fabric. When in end-host mode, the fabric interconnect avoids loops by denying uplink ports from receiving traffic from one another.

End-host mode is synonymous with NPV mode. This is the default Fibre Channel Switching mode.

Note

When end-host mode is enabled, if a vHBA is hard pinned to a uplink Fibre Channel port and this uplink port goes down, the system cannot re-pin the vHBA, and the vHBA remains down.

Switch Mode

Switch mode is the traditional Fibre Channel switching mode. Switch mode allows the fabric interconnect to connect directly to a storage device. Enabling Fibre Channel switch mode is useful in POD models where there is no SAN (for example, a single Cisco UCS system connected directly to storage), or where a SAN exists (with an upstream MDS).

Note

In Fibre Channel switch mode, SAN pin groups are irrelevant. Any existing SAN pin groups will be ignored.

Switch mode is not the default Fibre Channel switching mode.

Configuring Fibre Channel Switching Mode

Important

When you change the Fibre Channel switching mode, Cisco UCS Manager logs you out and restarts the fabric interconnect. For a cluster configuration, Cisco UCS Manager restarts both fabric interconnects sequentially. The second fabric interconnect can take several minutes to complete the change in Fibre Channel switching mode and become system ready.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 2 | UCS-A /fc-uplink # set mode {end-host | switch}
Sets the fabric interconnect to the specified switching mode.
Step 3 | UCS-A /fc-uplink # commit-buffer
Commits the transaction to the system configuration. Cisco UCS Manager restarts the fabric interconnect, logs you out, and disconnects Cisco UCS Manager CLI.

The following example sets the fabric interconnect to end-host mode and commits the transaction:

```plaintext
UCS-A # scope fc-uplink
UCS-A /fc-uplink # set mode end-host
UCS-A /fc-uplink* # commit-buffer
UCS-A /fc-uplink #
```
CHAPTER 6

Configuring Ports and Port Channels

This chapter includes the following sections:

- Server and Uplink Ports on the 6100 Series Fabric Interconnect, page 71
- Unified Ports on the 6200 Series Fabric Interconnect, page 72
- Server Ports, page 79
- Uplink Ethernet Ports, page 80
- Appliance Ports, page 81
- FCoE and Fibre Channel Storage Ports, page 84
- Uplink Ethernet Port Channels, page 87
- Appliance Port Channels, page 90
- Fibre Channel Port Channels, page 94
- Adapter Port Channels, page 98
- Fabric Port Channels, page 99

Server and Uplink Ports on the 6100 Series Fabric Interconnect

Each 6100 series fabric interconnect has a set of ports in a fixed port module that you can configure as either server ports or uplink Ethernet ports. These ports are not reserved. They cannot be used by a Cisco UCS domain until you configure them. You can add expansion modules to increase the number of uplink ports on the fabric interconnect or to add uplink Fibre Channel ports to the fabric interconnect.

You need to create LAN pin groups and SAN pin groups to pin traffic from servers to an uplink port.

Note

Ports on the 6100 series fabric interconnect are not unified. For more information on Unified Ports, see Unified Ports on the 6200 Series Fabric Interconnect.

Each fabric interconnect can include the following port types:
Server Ports

Server ports handle data traffic between the fabric interconnect and the adapter cards on the servers. You can only configure server ports on the fixed port module. Expansion modules do not include server ports.

Uplink Ethernet Ports

Uplink Ethernet ports handle Ethernet traffic between the fabric interconnect and the next layer of the network. All network-bound Ethernet traffic is pinned to one of these ports. By default, Ethernet ports are unconfigured. However, you can configure them to function in the following ways:

- Uplink
- FCoE
- Appliance

You can configure uplink Ethernet ports on either the fixed module or an expansion module.

Uplink Fibre Channel Ports

Uplink Fibre Channel ports handle FCoE traffic between the fabric interconnect and the next layer of the storage area network. All network-bound FCoE traffic is pinned to one of these ports. By default, Fibre Channel ports are uplink. However, you can configure them to function as Fibre Channel storage ports. This is useful in cases where Cisco UCS requires a connection to a Direct-Attached Storage (DAS) device.

You can only configure uplink Fibre Channel ports on an expansion module. The fixed module does not include uplink Fibre Channel ports.

Unified Ports on the 6200 Series Fabric Interconnect

Unified ports are ports on the 6200 series fabric interconnect that can be configured to carry either Ethernet or Fibre Channel traffic. These ports are not reserved. They cannot be used by a Cisco UCS domain until you configure them.

Configurable beacon LEDs indicate which unified ports are configured for the selected port mode.

Port Modes

The port mode determines whether a unified port on the fabric interconnect is configured to carry Ethernet or Fibre Channel traffic. The port mode is not automatically discovered by the fabric interconnect; it is configured in Cisco UCS Manager.

Changing the port mode results in the existing port configuration being deleted and replaced by a new logical port. Any objects associated with that port configuration, such as VLANs and VSANS, are removed. There is no restriction on the number of times the port mode can be changed for a unified port.
Port Types

The port type defines the type of traffic carried over a unified port connection.

All of the port types listed are configurable on both the fixed and expansion module, including server ports, which are not configurable on the 6100 series fabric interconnect expansion module, but are configurable on the 6200 series fabric interconnect expansion module.

By default, unified ports changed to Ethernet port mode are set to uplink Ethernet port type. unified ports changed to Fibre Channel port mode are set to the Fibre Channel uplink port type. Fibre Channel ports cannot be unconfigured.

Changing the port type does not require a reboot.

When the port mode is set to Ethernet, you can configure the following port types:

- Server ports
- Ethernet uplink ports
- Ethernet port channel members
- FCoE ports
- Appliance ports
- Appliance port channel members
- SPAN destination ports
- SPAN source ports

Note: For SPAN source ports, configure one of the port types and then configure the port as SPAN source.

When the port mode is set to Fibre Channel, you can configure the following port types:

- Fibre Channel uplink ports
- Fibre Channel port channel members
- Fibre Channel storage ports
- SPAN destination ports
- SPAN source ports

Note: For SPAN source ports, configure one of the port types and then configure the port as SPAN source.
Beacon LEDs for Unified Ports

Each port on the 6200 series fabric interconnect has a corresponding beacon LED. When the Beacon LED property is configured, the beacon LEDs illuminate, showing you which ports are configured in a given port mode.

The Beacon LED property can be configured to show you which ports are grouped in one port mode: either Ethernet or Fibre Channel. By default, the Beacon LED property is set to Off.

Note
For unified ports on the expansion module, the Beacon LED property may be reset to the default value of Off during expansion module reboot.

Guidelines for Configuring Unified Ports

Consider the following guidelines and restrictions when configuring unified ports:

Hardware and Software Requirements

Unified ports are supported on the 6200 series fabric interconnect with Cisco UCS Manager, version 2.0.

Unified ports are not supported on 6100 series fabric interconnects, even if they are running Cisco UCS Manager, version 2.0.

Port Mode Placement

Because the Cisco UCS Manager GUI interface uses a slider to configure the port mode for unified ports on a fixed or expansion module, it automatically enforces the following restrictions which limits how port modes can be assigned to unified ports. When using the Cisco UCS Manager CLI interface, these restrictions are enforced when you commit the transaction to the system configuration. If the port mode configuration violates any of the following restrictions, the Cisco UCS Manager CLI displays an error:

- Ethernet ports must be grouped together in a block. For each module (fixed or expansion), the Ethernet port block must start with the first port and end with an even numbered port.
- Fibre Channel ports must be grouped together in a block. For each module (fixed or expansion), the first port in the Fibre Channel port block must follow the last Ethernet port and extend to include the rest of the ports in the module. For configurations that include only Fibre Channel ports, the Fibre Channel block must start with the first port on the fixed or expansion module.
- Alternating Ethernet and Fibre Channel ports is not supported on a single module.

Example of a valid configuration— Might include unified ports 1–16 on the fixed module configured in Ethernet port mode and ports 17–32 in Fibre Channel port mode. On the expansion module you could configure ports 1–4 in Ethernet port mode and then configure ports 5–16 in Fibre Channel mode. The rule about alternating Ethernet and Fibre Channel port types is not violated because this port arrangement complies with the rules on each individual module.

Example of an invalid configuration— Might include a block of Fibre Channel ports starting with port 16. Because each block of ports has to start with an odd-numbered port, you would have to start the block with port 17.
The total number of uplink Ethernet ports and uplink Ethernet port channel members that can be configured on each fabric interconnect is limited to 31. This limitation includes uplink Ethernet ports and uplink Ethernet port channel members configured on the expansion module.

Special Considerations for UCS Manager CLI Users

Because the Cisco UCS Manager CLI does not validate port mode changes until you commit the buffer to the system configuration, it is easy to violate the grouping restrictions if you attempt to commit the buffer before creating at least two new interfaces. To prevent errors, we recommend that you wait to commit your changes to the system configuration until you have created new interfaces for all of the unified ports changing from one port mode to another.

Commiting the buffer before configuring multiple interfaces will result in an error, but you do not need to start over. You can continue to configure unified ports until the configuration satisfies the aforementioned requirements.

Effect of Port Mode Changes on Data Traffic

Port mode changes can cause an interruption to the data traffic for the Cisco UCS domain. The length of the interruption and the traffic that is affected depend upon the configuration of the Cisco UCS domain and the module on which you made the port mode changes.

Tip

To minimize the traffic disruption during system changes, form a Fibre Channel uplink port-channel across the fixed and expansion modules.

Impact of Port Mode Changes on an Expansion Module

After you make port mode changes on an expansion module, the module reboots. All traffic through ports on the expansion module is interrupted for approximately one minute while the module reboots.

Impact of Port Mode Changes on the Fixed Module in a Cluster Configuration

A cluster configuration has two fabric interconnects. After you make port changes to the fixed module, the fabric interconnect reboots. The impact on the data traffic depends upon whether or not you have configured the server vNICs to failover to the other fabric interconnect when one fails.

If you change the port modes on the expansion module of one fabric interconnect and then wait for that to reboot before changing the port modes on the second fabric interconnect, the following occurs:

- With server vNIC failover, traffic fails over to the other fabric interconnect and no interruption occurs.
- Without server vNIC failover, all data traffic through the fabric interconnect on which you changed the port modes is interrupted for approximately eight minutes while the fabric interconnect reboots.

However, if you change the port modes on the fixed modules of both fabric interconnects simultaneously, all data traffic through the fabric interconnects are interrupted for approximately eight minutes while the fabric interconnects reboot.
Impact of Port Mode Changes on the Fixed Module in a Standalone Configuration

A standalone configuration has only one fabric interconnect. After you make port changes to the fixed module, the fabric interconnect reboots. All data traffic through the fabric interconnect is interrupted for approximately eight minutes while the fabric interconnect reboots.

Configuring the Port Mode

Caution

Changing the port mode on either module can cause an interruption in data traffic because changes to the fixed module require a reboot of the fabric interconnect and changes on an expansion module require a reboot of that module.

If the Cisco UCS domain has a cluster configuration that is set up for high availability and servers with service profiles that are configured for failover, traffic fails over to the other fabric interconnect and data traffic is not interrupted when the port mode is changed on the fixed module.

In the Cisco UCS Manager CLI, there are no new commands to support Unified Ports. Instead, you change the port mode by scoping to the mode for the desired port type and then creating a new interface. When you create a new interface for an already configured slot ID and port ID, UCS Manager deletes the previously configured interface and creates a new one. If a port mode change is required because you configure a port that previously operated in Ethernet port mode to a port type in Fibre Channel port mode, UCS Manager notes the change.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters the specified port type mode for one of the following port types:</td>
</tr>
<tr>
<td>UCS-A# scope port-type-mode</td>
<td>eth-server</td>
</tr>
<tr>
<td></td>
<td>For configuring server ports.</td>
</tr>
<tr>
<td>eth-storage</td>
<td>For configuring Ethernet storage ports and Ethernet storage port channels.</td>
</tr>
<tr>
<td>eth-traffic-mon</td>
<td>For configuring Ethernet SPAN ports.</td>
</tr>
<tr>
<td>eth-uplink</td>
<td>For configuring Ethernet uplink ports.</td>
</tr>
<tr>
<td>fc-storage</td>
<td>For configuring Fibre Channel storage ports.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>fc-traffic-mon</td>
<td>For configuring Fibre Channel SPAN ports.</td>
</tr>
<tr>
<td>fc-uplink</td>
<td>For configuring Fibre Channel uplink ports and Fibre Channel uplink port channels.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /port-type-mode `# scope fabric {a</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /port-type-mode/fabric # create interface slot-id port-id Creates an interface for the specified port type.</td>
</tr>
<tr>
<td></td>
<td>If you are changing the port type from Ethernet port mode to Fibre Channel port mode, or vice-versa, the following warning appears:</td>
</tr>
<tr>
<td></td>
<td>Warning: This operation will change the port mode (from Ethernet to FC or vice-versa). When committed, this change will require the module to restart.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Create new interfaces for other ports belonging to the Ethernet or Fibre Channel port block.</td>
</tr>
<tr>
<td></td>
<td>There are several restrictions that govern how Ethernet and Fibre Channel ports can be arranged on a fixed or expansion module.</td>
</tr>
<tr>
<td></td>
<td>Among other restrictions, it is required that you change ports in groups of two. Violating any of the restrictions outlined in the Guidelines for Configuring Unified Ports section will result in an error.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /port-type-mode/fabric/interface # commit-buffer Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

Depending upon the module for which you configured the port modes, data traffic for the Cisco UCS domain is interrupted as follows:

- **Fixed module**—The fabric interconnect reboots. All data traffic through that fabric interconnect is interrupted. In a cluster configuration that provides high availability and includes servers with vNICs that are configured for failover, traffic fails over to the other fabric interconnect and no interruption occurs. Changing the port mode for both sides at once results in both fabric interconnects rebooting simultaneously and a complete loss of traffic until both fabric interconnects are brought back up.

 It takes about 8 minutes for the fixed module to reboot.

- **Expansion module**—The module reboots. All data traffic through ports in that module is interrupted.

 It takes about 1 minute for the expansion module to reboot.

The following example changes ports 9 and 10 on slot 1 from Ethernet uplink ports in Ethernet port mode to uplink Fibre Channel ports in Fibre Channel port mode:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create interface 1 9
```
Configuring the Beacon LEDs for Unified Ports

Complete the following task for each module for which you want to configure beacon LEDs.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code><UCS-A#></code> `scope fabric-interconnect {a</td>
</tr>
<tr>
<td>Step 2</td>
<td><code><UCS-A/fabric #></code> <code>scope card slot-id</code> Enters card mode for the specified fixed or expansion module.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code><UCS-A/fabric/card #></code> <code>scope beacon-led</code> Enters beacon LED mode.</td>
</tr>
</tbody>
</table>
| **Step 4** | `<UCS-A/fabric/card/beacon-led #>` `set admin-state {eth | fc | off}` Specifies which port mode is represented by illuminated beacon LED lights.
eth
All of the Unified Ports configured in Ethernet mode illuminate.
fc
All of the Unified Ports configured in Fibre Channel mode illuminate.
off
Beacon LED lights for all ports on the module are turned off. |
| **Step 5** | `<UCS-A/fabric/card/beacon-led #>` `commit-buffer` Commits the transaction to the system configuration. |

The following example illuminates all of the beacon lights for Unified Ports in Ethernet port mode and commits the transaction:

```plaintext
UCS-A# `scope fabric-interconnect a`  
UCS-A `/fabric #` `scope card 1`  
UCS-A `/fabric/card #` `scope beacon-led`  
UCS-A `/fabric/card/beacon-led #` `set admin-state eth`  
UCS-A `/fabric/card/beacon-led* #` `commit-buffer`  
UCS-A `/fabric/card/beacon-led #`  
```
Server Ports

Configuring a Server Port

You can only configure server ports on the fixed port module. Expansion modules do not include server ports.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A/eth-server/fabric # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates an interface for Ethernet server port 12 on slot 1 of fabric B and commits the transaction:

UCS-A# scope eth-server
UCS-A /eth-server # scope fabric b
UCS-A /eth-server/fabric # create interface 1 12
UCS-A /eth-server/fabric # commit-buffer

Unconfiguring a Server Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-server/fabric # delete interface slot-num port-num</td>
<td>Deletes the interface for the specified Ethernet server port.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-server/fabric # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
Uplink Ethernet Ports

Configuring an Uplink Ethernet Port

You can configure uplink Ethernet ports on either the fixed module or an expansion module.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command or Action</td>
</tr>
<tr>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters Ethernet uplink fabric mode for the specified fabric.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink # scope fabric {a</td>
<td></td>
</tr>
<tr>
<td>b}</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates an interface for the specified Ethernet uplink port.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink/fabric # create</td>
<td></td>
</tr>
<tr>
<td>interface slot-num port-num</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Sets the speed for the specified Ethernet uplink port.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink/fabric # set speed {10gbps</td>
<td>1gbps}</td>
</tr>
<tr>
<td>Step 5</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink/fabric # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example creates an interface for Ethernet uplink port 3 on slot 2 of fabric B, sets the speed to 10 gbps, and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric b
UCS-A /eth-uplink/fabric # create interface 2 3
UCS-A /eth-uplink/fabric # set speed 10gbps
UCS-A /eth-uplink/fabric* # commit-buffer
UCS-A /eth-uplink/fabric #
Unconfiguring an Uplink Ethernet Port

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope eth-uplink</code></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink/fabric # <code>delete interface slot-num port-num</code></td>
<td>Deletes the interface for the specified Ethernet uplink port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-uplink/fabric # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example unconfigures Ethernet uplink port 3 on slot 2 of fabric B and commits the transaction:

```
UCS-A# `scope eth-uplink
UCS-A /eth-uplink # `scope fabric b
UCS-A /eth-uplink/fabric # `delete interface 2 3
UCS-A /eth-uplink/fabric* # `commit-buffer
UCS-A /eth-uplink/fabric #
```

Appliance Ports

Appliance ports are only used to connect fabric interconnects to directly attached NFS storage.

Configuring an Appliance Port

You can configure Appliance ports on either the fixed module or an expansion module.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope eth-storage</code></td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-storage # `scope fabric {a</td>
<td>b}`</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-storage/fabric # <code>create interface slot-num port-num</code></td>
<td>Creates an interface for the specified appliance port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-storage/fabric/interface # `set portmode {access</td>
<td>trunk}`</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-storage/fabric/interface # set pingroupname pin-group name</td>
<td>(Optional) Specifies the appliance pin target to the specified fabric and port, or fabric and port channel.</td>
</tr>
</tbody>
</table>
| Step 6 | UCS-A /eth-storage/fabric/interface # set prio sys-class-name | (Optional) Specifies the QoS class for the appliance port. By default, the priority is set to best-effort. The sys-class-name argument can be one of the following class keywords:

 - **Fc**—Use this priority for QoS policies that control vHBA traffic only.
 - **Platinum**—Use this priority for QoS policies that control vNIC traffic only.
 - **Gold**—Use this priority for QoS policies that control vNIC traffic only.
 - **Silver**—Use this priority for QoS policies that control vNIC traffic only.
 - **Bronze**—Use this priority for QoS policies that control vNIC traffic only.
 - **Best Effort**—Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic. |
| Step 7 | UCS-A /eth-storage/fabric/interface # set adminspeed {10gbps | 1 gbps} | (Optional) Specifies the admin speed for the interface. By default, the admin speed is set to 10gbps. |
| Step 8 | UCS-A /eth-storage/fabric/interface # commit buffer | Commits the transaction to the system configuration. |

The following example creates an interface for an appliance port 2 on slot 3 of fabric B, sets the port mode to access, pins the appliance port to a pin group called pingroup1, sets the QoS class to fc, sets the admin speed to 10 gbps, and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric b
UCS-A /eth-storage/fabric # create interface 3 2
UCS-A /eth-storage/fabric* # set portmode access
UCS-A /eth-storage/fabric* # set pingroupname pingroup1
UCS-A /eth-storage/fabric* # set prio fc
UCS-A /eth-storage/fabric* # set adminspeed 10gbps
UCS-A /eth-storage/fabric* # commit-buffer
UCS-A /eth-storage/fabric #
```
What to Do Next
Assign a VLAN or target MAC address for the appliance port.

Assigning a Target MAC Address to an Appliance Port or Appliance Port Channel
The following procedure assigns a target MAC address to an appliance port. To assign a target MAC address to an appliance port channel, scope to the port channel instead of the interface.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-storage # scope fabric{a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-storage/fabric # scope interface slot-id port-id</td>
<td>Enters Ethernet interface mode for the specified interface. Note To assign a target MAC address to an appliance port channel, use the scope port-channel command instead of scope interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-storage/fabric/interface # create eth-target eth-target name</td>
<td>Specifies the name for the specified MAC address target.</td>
</tr>
</tbody>
</table>

The following example assigns a target MAC address for an appliance device on port 3, slot 2 of fabric B and commits the transaction:

UCS-A# scope eth-storage
UCS-A /eth-storage* # scope fabric b
UCS-A /eth-storage/fabric* # scope interface 2 3
UCS-A /eth-storage/fabric/interface* # create eth-target macname
UCS-A /eth-storage/fabric/interface* # set mac-address 01:23:45:67:89:ab
UCS-A /eth-storage/fabric/interface* # commit-buffer
UCS-A /eth-storage/fabric #

The following example assigns a target MAC address for appliance devices on port channel 13 of fabric B and commits the transaction:

UCS-A# scope eth-storage
UCS-A /eth-storage* # scope fabric b
UCS-A /eth-storage/fabric* # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel* # create eth-target macname
UCS-A /eth-storage/fabric/port-channel* # set mac-address 01:23:45:67:89:ab
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric #
Unconfiguring an Appliance Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-storage/fabric # delete eth-interface slot-num port-num</td>
<td>Deletes the interface for the specified appliance port.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-storage/fabric # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example unconfigures appliance port 3 on slot 2 of fabric B and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric b
UCS-A /eth-storage/fabric # delete eth-interface 2 3
UCS-A /eth-storage/fabric # commit-buffer
```

FCoE and Fibre Channel Storage Ports

Configuring a Fibre Channel Storage or FCoE Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-storage</td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-storage/fabric # create interface {fc</td>
<td>fcoe} slot-num port-num</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-storage/fabric # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example creates an interface for Fibre Channel storage port 10 on slot 2 of fabric A and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
```
Unconfiguring a Fibre Channel Storage or FCoE Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-storage</td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-storage/fabric # delete interface {fc</td>
<td>fcoe} slot-num port-num</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-storage/fabric # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example unconfigures Fibre Channel storage port 10 on slot 2 of fabric A and commits the transaction:

UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
UCS-A /fc-storage/fabric* # delete interface fc 2 10
UCS-A /fc-storage/fabric # commit-buffer

Restoring a Fibre Channel Storage Port Back to an Uplink Fibre Channel Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-uplink # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-uplink/fabric # create interface slot-num port-num</td>
<td>Creates an interface for the specified Fibre Channel uplink port.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-uplink/fabric # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>
The following example creates an interface for Fibre Channel uplink port 10 on slot 2 of fabric A and commits the transaction:

```plaintext
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric* # create interface 2 10
UCS-A /fc-uplink/fabric # commit-buffer
```

Default Zoning

Zoning allows you to set up access control between hosts and storage devices. When a zone is configured or the configuration is updated, this information is propagated to all the other switches in the fabric.

In Cisco UCS, the zoning configuration is inherited from an upstream switch. You cannot configure zoning or view information about your zoning configuration through Cisco UCS Manager. The only configurable zoning option in Cisco UCS Manager is whether the default zone in a VSAN (nodes not assigned to any zone) permits or denies access among its members.

When default zoning is **enabled**, all traffic is permitted among members of the default zone.

When default zoning is **disabled**, all traffic is denied among members of the default zone.

Default zoning is applied on a per-VSAN basis. You cannot enable default zoning at the fabric level.

Note

Default zoned configurations are not recommended for production deployments, which must always use direct connect Fibre Channel topologies with upstream MDS or Nexus 5000 switches.

Enabling Default Zoning

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-storage</td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-storage # scope vsan vsan-name vsan-id fcoe-id</td>
<td>Enters Fibre Channel storage VSAN mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-storage/vsan # set default-zoning enabled</td>
<td>Enables default zoning. When default zoning is enabled, all traffic is permitted among members of the default zone.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-storage/vsan # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example enables default zoning for a VSAN called accounting with VSAN ID 2112 and FCoE VSAN ID 4021 and commits the transaction:

```plaintext
UCS-A# scope fc-storage
UCS-A /fc-storage # scope vsan accounting 2112 4021
UCS-A /fc-storage/vsan # set default-zoning enabled
UCS-A /fc-storage/vsan* # commit-buffer
```
Disabling Default Zoning

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-storage</td>
</tr>
<tr>
<td></td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-storage # scope vsan vsan-name vsan-id fcoe-id</td>
</tr>
<tr>
<td></td>
<td>Enters Fibre Channel storage VSAN mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-storage/vsan # set default-zoning disabled</td>
</tr>
<tr>
<td></td>
<td>Disables default zoning. When default zoning is disabled, all traffic is denied among members of the default zone.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-storage/vsan # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example disables default zoning for a VSAN called accounting with VSAN ID 2112 and FCoE VSAN ID 4021 and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # scope vsan accounting 2112 4021
UCS-A /fc-storage # set default-zoning disabled
UCS-A /fc-storage* # commit-buffer
UCS-A /fc-storage #
```

Uplink Ethernet Port Channels

An uplink Ethernet port channel allows you to group several physical uplink Ethernet ports (link aggregation) to create one logical Ethernet link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add uplink Ethernet ports to the port channel. You can add up to eight uplink Ethernet ports to a port channel.

Note
Cisco UCS uses Link Aggregation Control Protocol (LACP), not Port Aggregation Protocol (PAgP), to group the uplink Ethernet ports into a port channel. If the ports on the upstream switch are not configured for LACP, the fabric interconnects treat all ports in an uplink Ethernet port channel as individual ports and therefore forward packets.

Configuring an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-uplink</td>
</tr>
<tr>
<td></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
</tbody>
</table>
Purpose Command or Action Purpose

Step 2
UCS-A /eth-uplink # scope fabric {a | b}
Enters Ethernet uplink fabric mode for the specified fabric.

Step 3
UCS-A /eth-uplink/fabric # create port-channel port-num
Creates a port channel on the specified Ethernet uplink port, and enters Ethernet uplink fabric port channel mode.

Step 4
UCS-A /eth-uplink/fabric/port-channel # {enable | disable}
(Optional) Enables or disables the administrative state of the port channel. The port channel is disabled by default.

Step 5
UCS-A /eth-uplink/fabric/port-channel # set name port-chan-name
(Optional) Specifies the name for the port channel.

Step 6
UCS-A /eth-uplink/fabric/port-channel # set flow-control-policy policy-name
(Optional) Assigns the specified flow control policy to the port channel.

Step 7
UCS-A /eth-uplink/fabric/port-channel # commit-buffer
Commits the transaction to the system configuration.

The following example creates a port channel on port 13 of fabric A, sets the name to portchan13a, enables the administrative state, assigns the flow control policy named flow-con-pol432 to the port channel, and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # create port-channel 13
UCS-A /eth-uplink/fabric/port-channel* # enable
UCS-A /eth-uplink/fabric/port-channel* # set name portchan13a
UCS-A /eth-uplink/fabric/port-channel* # set flow-control-policy flow-con-pol432
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer

Unconfiguring an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-uplink</td>
</tr>
<tr>
<td></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-uplink # scope fabric {a</td>
</tr>
<tr>
<td></td>
<td>Enters Ethernet uplink fabric mode for the specified fabric.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink/fabric # delete port-channel port-num</td>
</tr>
<tr>
<td></td>
<td>Deletes the port channel on the specified Ethernet uplink port.</td>
</tr>
</tbody>
</table>
Adding a Member Port to an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-uplink # scope fabric {a</td>
<td>b }</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-uplink/fabric # scope port-channel port-num</td>
<td>Enters Ethernet uplink fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-uplink/fabric/port-channel # create member-port slot-num port-num</td>
<td>Creates the specified member port from the port channel and enters Ethernet uplink fabric port channel member port mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /eth-uplink/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds the member port on slot 1, port 7 to the port channel on port 13 of fabric A and commits the transaction.

UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope port-channel 13
UCS-A /eth-uplink/fabric/port-channel # create member-port 1 7
UCS-A /eth-uplink/fabric/port-channel* # commit-buffer
UCS-A /eth-uplink/fabric/port-channel #
Deleting a Member Port from an Uplink Ethernet Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink/fabric # scope port-channel port-num</td>
<td>Enters Ethernet uplink fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-uplink/fabric/port-channel # delete member-port slot-num port-num</td>
<td>Deletes the specified member port from the port channel.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-uplink/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a member port from the port channel on port 13 of fabric A and commits the transaction:

```plaintext
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope port-channel 13
UCS-A /eth-uplink/fabric/port-channel # delete member-port 1 7
UCS-A /eth-uplink/fabric/port-channel# # commit-buffer
UCS-A /eth-uplink/fabric/port-channel #
```

Appliance Port Channels

An appliance port channel allows you to group several physical appliance ports to create one logical Ethernet storage link for the purpose of providing fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add appliance ports to the port channel. You can add up to eight appliance ports to a port channel.

Configuring an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-storage/fabric # create port-channel port-num</td>
<td>Creates a port channel on the specified Ethernet storage port, and enters Ethernet storage fabric port channel mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-storage/fabric/port-channel # {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-storage/fabric/port-channel # set name port-chan-name</td>
<td>(Optional) Specifies the name for the port channel.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /eth-storage/fabric/port-channel # set pingroupname pin-group name</td>
<td>(Optional) Specifies the appliance pin target to the specified fabric and port, or fabric and port channel.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /eth-storage/fabric/port-channel # set portmode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /eth-storage/fabric/port-channel # set prio sys-class-name</td>
<td>(Optional) Specifies the QoS class for the appliance port. By default, the priority is set to best-effort. The sys-class-name argument can be one of the following class keywords:</td>
</tr>
<tr>
<td> • Fc—Use this priority for QoS policies that control vHBA traffic only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td> • Platinum—Use this priority for QoS policies that control vNIC traffic only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td> • Gold—Use this priority for QoS policies that control vNIC traffic only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td> • Silver—Use this priority for QoS policies that control vNIC traffic only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td> • Bronze—Use this priority for QoS policies that control vNIC traffic only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td> • Best Effort—Do not use this priority. It is reserved for the Basic Ethernet traffic lane. If you assign this priority to a QoS policy and configure another system class as CoS 0, Cisco UCS Manager does not default to this system class. It defaults to the priority with CoS 0 for that traffic.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /eth-storage/fabric/port-channel # set speed {1gbps</td>
<td>2gbps</td>
</tr>
</tbody>
</table>
Appliance Port Channels

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10 UCS-A /eth-storage/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # create port-channel 13
UCS-A /eth-storage/fabric/port-channel* # enable
UCS-A /eth-storage/fabric/port-channel* # set name portchan13a
UCS-A /eth-storage/fabric/port-channel* # set pingroupname pingroup1
UCS-A /eth-storage/fabric/port-channel* # set portmode access
UCS-A /eth-storage/fabric/port-channel* # set prio fc
UCS-A /eth-storage/fabric/port-channel* # set speed 2gbps
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Unconfiguring an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-storage/fabric # delete port-channel port-num</td>
<td>Deletes the port channel from the specified Ethernet storage port.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-storage/fabric # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example unconfigures the port channel on port 13 of fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # delete port-channel 13
UCS-A /eth-storage/fabric* # commit-buffer
UCS-A /eth-storage/fabric #
```
Enabling or Disabling an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A/eth-storage/fabric # scope port-channel port-chan-name</td>
<td>Enters Ethernet storage port channel mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A/eth-storage/fabric/port-channel # {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>Step 5 UCS-A/eth-storage/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel # enable
UCS-A /eth-storage/fabric/port-channel * # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Adding a Member Port to an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-storage/fabric # scope port-channel port-num</td>
<td>Enters Ethernet storage fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-storage/fabric/port-channel # create member-port slot-num port-num</td>
<td>Creates the specified member port from the port channel and enters Ethernet storage fabric port channel member port mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /eth-storage/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example adds the member port on slot 1, port 7 to the port channel on port 13 of fabric A and commits the transaction.

```plaintext
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel # create member-port 1 7
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Deleting a Member Port from an Appliance Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-storage/fabric # scope port-channel port-num</td>
<td>Enters Ethernet storage fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-storage/fabric/port-channel # delete member-port slot-num port-num</td>
<td>Deletes the specified member port from the port channel.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-storage/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a member port from the port channel on port 13 of fabric A and commits the transaction:

```plaintext
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # scope port-channel 13
UCS-A /eth-storage/fabric/port-channel # delete member-port 1 7
UCS-A /eth-storage/fabric/port-channel* # commit-buffer
UCS-A /eth-storage/fabric/port-channel #
```

Fibre Channel Port Channels

A Fibre Channel port channel allows you to group several physical Fibre Channel ports (link aggregation) to create one logical Fibre Channel link to provide fault-tolerance and high-speed connectivity. In Cisco UCS Manager, you create a port channel first and then add Fibre Channel ports to the port channel.

You can create up to four Fibre Channel port channels in each Cisco UCS domain. Each Fibre Channel port channel can include a maximum of 16 uplink Fibre Channel ports.
Configuring a Fibre Channel Port Channel

Note
If you are connecting two Fibre Channel port channels, the admin speed for both port channels must match for the link to operate. If the admin speed for one or both of the Fibre Channel port channels is set to auto, Cisco UCS adjusts the admin speed automatically.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink/fabric # create port-channel port-num</td>
<td>Creates a port channel on the specified Fibre Channel uplink port, and enters Fibre Channel uplink fabric port channel mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-uplink/fabric/port-channel # {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /fc-uplink/fabric/port-channel # set name port-chan-name</td>
<td>(Optional) Specifies the name for the port channel.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /fc-uplink/fabric/port-channel # set speed {1gbps</td>
<td>2gbps</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /fc-uplink/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates port channel 13 on fabric A, sets the name to portchan13a, enables the administrative state, sets the speed to 2 Gbps, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create port-channel 13
UCS-A /fc-uplink/fabric/port-channel* # enable
UCS-A /fc-uplink/fabric/port-channel* # set name portchan13a
UCS-A /fc-uplink/fabric/port-channel* # set speed 2gbps
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```
Unconfiguring a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink/fabric # delete port-channel port-num</td>
<td>Deletes the port channel on the specified Fibre Channel uplink port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-uplink/fabric # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example unconfigures port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # delete port-channel 13
UCS-A /fc-uplink/fabric # commit-buffer
UCS-A /fc-uplink/fabric #
```

Enabling or Disabling a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-uplink # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink/fabric # scope port-channel port-chan-name</td>
<td>Enters Fibre Channel uplink port channel mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-uplink/fabric/port-channel # {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

The following example enables port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric/port-channel# # enable
UCS-A /fc-uplink/fabric/port-channel# # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```
Adding a Member Port to a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-uplink/fabric # scope port-channel port-num</td>
<td>Enters Fibre Channel uplink fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-uplink/fabric/port-channel # create member-port slot-num port-num</td>
<td>Creates the specified member port from the port channel and enters Fibre Channel uplink fabric port channel member port mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /fc-uplink/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds the member port on slot 1, port 7 to port channel 13 on fabric A and commits the transaction.

UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric # create member-port 1 7
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #

Deleting a Member Port from a Fibre Channel Port Channel

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-uplink/fabric # scope port-channel port-num</td>
<td>Enters Fibre Channel uplink fabric port channel mode for the specified port channel.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-uplink/fabric/port-channel # delete member-port slot-num port-num</td>
<td>Deletes the specified member port from the port channel.</td>
</tr>
<tr>
<td>Step 5 UCS-A /fc-uplink/fabric/port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example deletes a member port from port channel 13 on fabric A and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # scope port-channel 13
UCS-A /fc-uplink/fabric # delete member-port 1 7
UCS-A /fc-uplink/fabric/port-channel* # commit-buffer
UCS-A /fc-uplink/fabric/port-channel #
```

Adapter Port Channels

An adapter port channel groups all the physical links from a Cisco UCS Virtual Interface Card (VIC) to an IOM into one logical link.

Adapter port channels are created and managed internally by Cisco UCS Manager when it detects that the correct hardware is present. Adapter port channels cannot be configured manually. Adapter port channels are viewable using the Cisco UCS Manager GUI or Cisco UCS Manager CLI.

Viewing Adapter Port Channels

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-server</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-server # scope fabric {a</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-server/fabric # show host-port-channel [detail</td>
</tr>
</tbody>
</table>

This following example shows how to display information on host port channels within a fabric in the Ethernet server mode:

```
UCS-A # scope eth-server
UCS-A /eth-server # scope fabric a
UCS-A /eth-server/fabric # show host-port-channel

Host Port channel:

<table>
<thead>
<tr>
<th>Port Channel ID</th>
<th>Chassis ID</th>
<th>Admin State</th>
<th>Oper State</th>
<th>State Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1125</td>
<td>2</td>
<td>Enabled</td>
<td>Up</td>
<td></td>
</tr>
</tbody>
</table>
```

```
UCS-A /eth-server/fabric #
```
Fabric Port Channels

Fabric port channels allow you to group several of the physical links from an IOM to a fabric interconnect into one logical link for redundancy and bandwidth sharing. As long as one link in the fabric port channel remains active, the fabric port channel continues to operate.

If the correct hardware is connected, fabric port channels are created by Cisco UCS Manager in the following ways:

• During chassis discovery according to the settings configured in the chassis discovery policy.
• After chassis discovery according to the settings configured in the chassis connectivity policy for a specific chassis.

For each IOM there is a single fabric port channel. Each uplink connecting an IOM to a fabric interconnect can be configured as a discrete link or included in the port channel, but an uplink cannot belong to more than one fabric port channel. For example, if a chassis with two IOMs is discovered and the chassis discovery policy is configured to create fabric port channels, Cisco UCS Manager creates two separate fabric port channels: one for the uplinks connecting IOM-1 and another for the uplinks connecting IOM-2. No other chassis can join these fabric port channels. Similarly, uplinks belonging to the fabric port channel for IOM-1 cannot join the fabric port channel for IOM-2.

Cabling Considerations for Fabric Port Channels

When you configure the links between the Cisco UCS 2200 Series IOM and a Cisco UCS 6200 series fabric interconnect in fabric port channel mode, the available VIF namespace on the adapter varies depending on where the IOM uplinks are connected to the fabric interconnect ports.

Inside the 6248 fabric interconnect there are six sets of eight contiguous ports, with each set of ports managed by a single chip. When uplinks are connected such that all of the uplinks from an IOM are connected to a set of ports managed by a single chip, Cisco UCS Manager maximizes the number of VIFs used in service profiles deployed on the blades in the chassis. If uplink connections from an IOM are distributed across ports managed by separate chips, the VIF count is decreased.

Caution
Adding or removing links from a fabric port channel is disruptive and may affect the available amount of VIF namespace.
For high availability cluster mode applications, symmetric cabling configurations are strongly recommended. If the cabling is asymmetric, the maximum number of VIFs available is the smaller of the two cabling configurations.

For more information on the maximum number of VIFs for your Cisco UCS environment, see the configuration limits document for your hardware and software configuration.

Configuring a Fabric Port Channel

Procedure

Step 1 To include all links from the IOM to the fabric interconnect in a fabric port channel during chassis discovery, set the link grouping preference in the chassis discovery policy to port channel.
Configuring the Chassis Discovery Policy

Step 2 To include links from individual chassis in a fabric port channel during chassis discovery, set the link grouping preference in the chassis connectivity policy to port channel.
Configuring a Chassis Connectivity Policy

Step 3 After chassis discovery, enable or disable additional fabric port channel member ports.
Enabling or Disabling a Fabric Port Channel Member Port

What to Do Next

To add or remove chassis links from a fabric port channel after making a change to the chassis discovery policy or the chassis connectivity policy, reacknowledge the chassis. Chassis reacknowledgement is not required to enable or disable chassis member ports from a fabric port channel.

Viewing Fabric Port Channels

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-server</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-server # scope fabric {a \ b}</td>
</tr>
</tbody>
</table>

The following example displays information about configured fabric port channels on fabric interconnect A:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope fabric a
UCS-A /eth-server/fabric # show fabric-port-channel
Fabric Port Channel:  
  Port Channel Id Chassis Id Admin State Oper State State Reason
```
Enabling or Disabling a Fabric Port Channel Member Port

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UC-S-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 2 UC-S-A /eth-server # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 5 UC-S-A /eth-server/fabric/fabric-port-channel # {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>Step 6 UC-S-A /eth-server/fabric/fabric-port-channel # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables fabric channel member port 1 31 on fabric port channel 1025 and commits the transaction:

UC-S-A# scope eth-server
UC-S-A /eth-server # scope fabric a
UC-S-A /eth-server/fabric # scope fabric-port-channel 1025
UC-S-A /eth-server/fabric/fabric-port-channel # scope member-port 1 31
UC-S-A /eth-server/fabric/fabric-port-channel/member-port # disable
UC-S-A /eth-server/fabric/fabric-port-channel/member-port* # commit-buffer
UC-S-A /eth-server/fabric/fabric-port-channel/member-port #
CHAPTER 7

Configuring Communication Services

This chapter includes the following sections:

- Communication Services, page 103
- Configuring CIM XML, page 104
- Configuring HTTP, page 105
- Unconfiguring HTTP, page 106
- Configuring HTTPS, page 106
- Enabling HTTP Redirection, page 116
- Configuring SNMP, page 116
- Enabling Telnet, page 123
- Disabling Communication Services, page 124

Communication Services

You can use the following communication services to interface third-party applications with Cisco UCS:

<table>
<thead>
<tr>
<th>Communication Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM XML</td>
<td>This service is disabled by default and is only available in read-only mode. The default port is 5988. This common information model is one of the standards defined by the Distributed Management Task Force.</td>
</tr>
<tr>
<td>Communication Service</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HTTP</td>
<td>This service is enabled on port 80 by default. You must enable either HTTP or HTTPS to run Cisco UCS Manager GUI. If you select HTTP, all data is exchanged in clear text mode. For security purposes, we recommend that you enable HTTPS and disable HTTP. By default, Cisco UCS redirects any attempt to communicate via HTTP to the HTTPS equivalent. We recommend that you do not change this behavior. Note If you are upgrading to Cisco UCS, version 1.4(1), this does not happen by default. If you want to redirect any attempt to communicate via HTTP to an HTTPS equivalent, you should enable Redirect HTTP to HTTPS in Cisco UCS Manager.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>This service is enabled on port 443 by default. With HTTPS, all data is exchanged in encrypted mode through a secure server. For security purposes, we recommend that you only use HTTPS and either disable or redirect HTTP communications.</td>
</tr>
<tr>
<td>SMASH CLP</td>
<td>This service is enabled for read-only access and supports a limited subset of the protocols, such as the show command. You cannot disable it. This shell service is one of the standards defined by the Distributed Management Task Force.</td>
</tr>
<tr>
<td>SNMP</td>
<td>This service is disabled by default. If enabled, the default port is 161. You must configure the community and at least one SNMP trap. Enable this service only if your system includes integration with an SNMP server.</td>
</tr>
<tr>
<td>SSH</td>
<td>This service is enabled on port 22. You cannot disable it, nor can you change the default port. This service provides access to the Cisco UCS Manager CLI.</td>
</tr>
<tr>
<td>Telnet</td>
<td>This service is disabled by default. This service provides access to the Cisco UCS Manager CLI.</td>
</tr>
</tbody>
</table>

Configuring CIM XML

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
</tbody>
</table>
Configuring HTTP

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /system/services # enable http</td>
<td>Enables the HTTP service.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /system/services # set http port port-num</td>
<td>Specifies the port to be used for the HTTP connection.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables HTTP, sets the port number to 80, and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # enable http
UCS-A /system/services* # set http port 80
Warning: When committed, this closes all the web sessions.
UCS-A /system/services* # commit-buffer
UCS-A /system/services #
```
Unconfiguring HTTP

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # disable http</td>
<td>Disables the HTTP service.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables HTTP and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # disable http
UCS-A /system/services* # commit-buffer

Configuring HTTPS

Certificates, Key Rings, and Trusted Points

HTTPS uses components of the Public Key Infrastructure (PKI) to establish secure communications between two devices, such as a client's browser and Cisco UCS Manager.

Encryption Keys and Key Rings

Each PKI device holds a pair of asymmetric Rivest-Shamir-Adleman (RSA) encryption keys, one kept private and one made public, stored in an internal key ring. A message encrypted with either key can be decrypted with the other key. To send an encrypted message, the sender encrypts the message with the receiver's public key, and the receiver decrypts the message using its own private key. A sender can also prove its ownership of a public key by encrypting (also called 'signing') a known message with its own private key. If a receiver can successfully decrypt the message using the public key in question, the sender's possession of the corresponding private key is proven. Encryption keys can vary in length, with typical lengths from 512 bits to 2048 bits. In general, a longer key is more secure than a shorter key. Cisco UCS Manager provides a default key ring with an initial 1024-bit key pair, and allows you to create additional key rings.

The default key ring certificate must be manually regenerated if the cluster name changes or the certificate expires.

This operation is only available in the UCS Manager CLI.

Certificates

To prepare for secure communications, two devices first exchange their digital certificates. A certificate is a file containing a device's public key along with signed information about the device's identity. To merely
support encrypted communications, a device can generate its own key pair and its own self-signed certificate. When a remote user connects to a device that presents a self-signed certificate, the user has no easy method to verify the identity of the device, and the user's browser will initially display an authentication warning. By default, Cisco UCS Manager contains a built-in self-signed certificate containing the public key from the default key ring.

Trusted Points

To provide stronger authentication for Cisco UCS Manager, you can obtain and install a third-party certificate from a trusted source, or trusted point, that affirms the identity of your device. The third-party certificate is signed by the issuing trusted point, which can be a root certificate authority (CA) or an intermediate CA or trust anchor that is part of a trust chain that leads to a root CA. To obtain a new certificate, you must generate a certificate request through Cisco UCS Manager and submit the request to a trusted point.

Creating a Key Ring

Cisco UCS Manager supports a maximum of 8 key rings, including the default key ring.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # create keyring keyring-name</td>
<td>Creates and names the key ring.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/keyring # set modulus {mod1024</td>
<td>mod1536</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/keyring # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example creates a keyring with a key size of 1024 bits:

```
UCS-A# scope security
UCS-A /security # create keyring kr220
UCS-A /security/keyring* # set modulus mod1024
UCS-A /security/keyring* # commit-buffer
UCS-A /security/keyring #
```

What to Do Next

Create a certificate request for this key ring.

Regenerating the Default Key Ring

The default key ring certificate must be manually regenerated if the cluster name changes or the certificate expires.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>UCS-A# scope security</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters key ring security mode for the default key ring.</td>
</tr>
<tr>
<td>UCS-A /security # scope keyring default</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Regenerates the default key ring.</td>
</tr>
<tr>
<td>UCS-A /security/keyring # set regenerate yes</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Commits the transaction.</td>
</tr>
<tr>
<td>UCS-A /security/keyring # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example regenerates the default key ring:

```
UCS-A# scope security
UCS-A /security # scope keyring default
UCS-A /security/keyring* # set regenerate yes
UCS-A /security/keyring* # commit-buffer
UCS-A /security/keyring #
```

Creating a Certificate Request for a Key Ring

Creating a Certificate Request for a Key Ring with Basic Options

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>UCS-A# scope security</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters configuration mode for the key ring.</td>
</tr>
<tr>
<td>UCS-A /security # scope keyring keyring-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a certificate request using the IP address or name of the fabric interconnect. You are prompted to enter a password for the certificate request.</td>
</tr>
<tr>
<td>UCS-A /security/keyring# create certreq {ip ip-address</td>
<td>subject-name name}</td>
</tr>
<tr>
<td>Step 4</td>
<td>Commits the transaction.</td>
</tr>
<tr>
<td>UCS-A /security/keyring/certreq* # commit-buffer</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Displays the certificate request, which you can copy and send to a trust anchor or certificate authority.</td>
</tr>
<tr>
<td>UCS-A /security/keyring # show certreq</td>
<td></td>
</tr>
</tbody>
</table>

The following example creates and displays a certificate request for a key ring with basic options:

```
UCS-A# scope security
UCS-A /security # scope keyring kr220
UCS-A /security/keyring # create certreq ip 192.168.200.123 subject-name sjc04
Certificate request password:
```
Confirm certificate request password:
UCS-A /security/keyring* # commit-buffer
UCS-A /security/keyring* # show certreq
Certificate request subject name: sjc04
Certificate request ip address: 192.168.200.123
Certificate request e-mail name:
Certificate request country name:
State, province or county (full name):
Locality (eg, city):
Organization name (eg, company):
Organization Unit name (eg, section):
Request:
-----BEGIN CERTIFICATE REQUEST-----
MIIBfTCB5wIBADARMQ8wDQYDVQQDEwZzYW1jMDQwgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBALpKn1t8qMZO4UGqILKFXQqc2c8b/vW2rnRF80PhKhghLA1YX1F
JqcYEG5SY11+vghhLBTd45s0GC8m4RTLJWHo4SwccAUXXQSZnf45YtX1myslW0WV4
0re/zy/TK/Wcd55k0Rw2Rdtzttu2pGA14ad761zLxt29K78mzj6CAUVAgNBAAGq
LTArBkgkQhiG9w0BCQ4xHjAcMBoGAIUDtE/QEB/wOQMA6CB0hWWN1ECeEiXJAN
BgkqhkiG9w0BAQQFAOAGQGhkuG0GOCscxN0gH4HYGFrQwQ6RwRueLTFnTHnq5LuwZHU603Tg
nhsy4satpypqV9v1KZ+spvce6x5FIWCThqNhH8BiMoB/00kug8kWfIGsEdiAv
TTyUf+BB0F1pBR1718S+V8ndXrlHejiQGxl1DNqoN+oDCXa5kjoXD012TL09R
BA==
-----END CERTIFICATE REQUEST-----

Creating a Certificate Request for a Key Ring with Advanced Options

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope keyring keyring-name</td>
<td>Enters configuration mode for the key ring.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/keyring # create certreq</td>
<td>Creates a certificate request.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/keyring/certreq* # set country country name</td>
<td>Specifies the country code of the country in which the company resides.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/keyring/certreq* # set dns DNS Name</td>
<td>Specifies the Domain Name Server (DNS) address associated with the request.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /security/keyring/certreq* # set e-mail E-mail name</td>
<td>Specifies the email address associated with the certificate request.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /security/keyring/certreq* # set ip certificate request ip address</td>
<td>Specifies the IP address of the Fabric Interconnect.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /security/keyring/certreq* # set locality locality name (eg, city)</td>
<td>Specifies the city or town in which the company requesting the certificate is headquartered.</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /security/keyring/certreq* # set org-name organization name</td>
<td>Specifies the organization requesting the certificate.</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /security/keyring/certreq* # set org-unit-name organizational unit name</td>
<td>Specifies the organizational unit.</td>
</tr>
</tbody>
</table>
Configuring HTTPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11 UCS-A /security/keyring/certreq* # set password certificate request password</td>
<td>Specifies an optional password for the certificate request.</td>
</tr>
<tr>
<td>Step 12 UCS-A /security/keyring/certreq* # set state state, province or county</td>
<td>Specifies the state or province in which the company requesting the certificate is headquartered.</td>
</tr>
<tr>
<td>Step 13 UCS-A /security/keyring/certreq* # set subject-name certificate request name</td>
<td>Specifies the fully qualified domain name of the Fabric Interconnect.</td>
</tr>
<tr>
<td>Step 14 UCS-A /security/keyring/certreq* # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
<tr>
<td>Step 15 UCS-A /security/keyring # show certreq</td>
<td>Displays the certificate request, which you can copy and send to a trust anchor or certificate authority.</td>
</tr>
</tbody>
</table>

The following example creates and displays a certificate request for a key ring with advanced options:

```
UCS-A# scope security
UCS-A /security # scope keyring kr220
UCS-A /security/keyring # create certreq
UCS-A /security/keyring/certreq* # set ip 192.168.200.123
UCS-A /security/keyring/certreq* # set subject-name sjc04
UCS-A /security/keyring/certreq* # set country US
UCS-A /security/keyring/certreq* # set dns bg1-samc-15A
UCS-A /security/keyring/certreq* # set email test@cisco.com
UCS-A /security/keyring/certreq* # set locality new york city
UCS-A /security/keyring/certreq* # set org-name "Cisco Systems"
UCS-A /security/keyring/certreq* # set org-unit-name Testing
UCS-A /security/keyring/certreq* # set state new york
UCS-A /security/keyring/certreq* # commit-buffer
UCS-A /security/keyring/certreq# show certreq
Certificate request subject name: sjc04
Certificate request ip address: 192.168.200.123
Certificate request e-mail name: test@cisco.com
Certificate request country name: US
State, province or county (full name): New York
Locality name (eg, city): new york city
Organization name (eg, company): Cisco
Organization Unit name (eg, section): Testing
Request:
-----BEGIN CERTIFICATE REQUEST-----
MIIBfTCB5WIBADARMQ8wDQYDVQQDEwZzYW1jMDQwgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBALpKn1t8qMZO4UGqILKFXQc2c8b/vW2rnRF80PHbghgLAI1Y1FT
JqcYE5G5y11+vgohLBTD4s8UC684RTLJWhO4SWccAUXQ52ngf45YT1XwaylWUW4
Ore/zgTk/WDc6R9ODBzWzzi5zu2PgiA14sdJ61lLxt29K7R8mzj6CAUVagMBAAAg
LTAzBkgW9Ki9O9U8QDDQxJAhAcMB9o2AIUdEQEB/wQMA6CBBnLbRWBWNIoECsSiX3J
BkgWkic9wOBAAQgFQgCqexN0qUHYFGOQw56KwQuLEfLTPnrndRng8uWzZUOG3Teg
nhyu4asatpIjFv9yIYKZ+spvc6x5PWCtTwghHH8B1mOb/00ku6BkwfI6G6IEdAv
TTYvOP+BZ90PlbRnTA178S+V8ndXr1HejiQXa1DNqoNmodCXPc5kJoXD01ZTL09H
BA==
-----END CERTIFICATE REQUEST-----
```
What to Do Next

- Copy the text of the certificate request, including the BEGIN and END lines, and save it in a file. Send the file with the certificate request to a trust anchor or certificate authority to obtain a certificate for the key ring.

- Create a trusted point and set the certificate chain for the certificate of trust received from the trust anchor.

Creating a Trusted Point

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # create trustpoint name</td>
<td>Creates and names a trusted point.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/trustpoint # set certchain [certchain]</td>
<td>Specifies certificate information for this trusted point. If you do not specify certificate information in the command, you are prompted to enter a certificate or a list of trustpoints defining a certification path to the root certificate authority (CA). On the next line following your input, type END OF BUF to finish. Important The certificate must be in Base64 encoded X.509 (CER) format.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/trustpoint # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example creates a trusted point and provides a certificate for the trusted point:

```
UCS-A# scope security
UCS-A /security # create trustpoint tPoint10
UCS-A /security/trustpoint* # set certchain
Enter lines one at a time. Enter END OF BUF to finish. Press ^C to abort.
Trustpoint Certificate Chain:
> -----BEGIN CERTIFICATE-----
> MIIDMDCCApmgAwIBAgIBADANBgkqhkiG9w0BAQQFADB0MQswCQYDVQQGEwJVUzEL
> BxMM2FuIEpvc2ZUaIENBMRUwEwYDVQQKEwxFeGFtcGxlIEluYy4xH<snip>
> hkgIw9wOBCzxFhMUQSQ8ja4GzavBzuUq9fCzc3dcmWQYJKoZIhvcNAQEFBQAD
> gYEAG61CaJoJaVMHzCL903O6Mg51Z+Vb5fH9asckCId3mkOVX5qgJU
> Pt5tCQVpNlNdVoDPSwKxetysoHk+9Clv8Fduy1CDYfuaLtv1wvfhEvsX0vJ6
> jtcEMy5f+7y3h421id3N04IMGeBqNVHSMegY2wzOAFLNjtcoEMy5f+7y3h42
> liid3N04idk63B0wCqQ7VQQxgw2bJv5aGqAbCqZvswCqQ7VQQxgw2bJv5aGqAbC
> ClRlbhZENaYkJrMwRwQlVy5qQ7VQQxgw2bJv5aGqAbCqZvswCqQ7VQQxgw2bJv5aGqAbC
> BAEC0CVu21LzWWyaw5n9QwQDyDVQDQEdwZ0XNQQ0QCAAwDAYR0TBUAwAaEB
> /2ANBgkqhkiG9w0BAAQFAAOCAQABgQAhWxRmXNQR6B4gl6lnr+fptHx+WVh5bKqQxKc
> wR4PyY04Zz/j9Ijenh75tC65w51az8copFlEBmOcyuhf5C6varen1lkkYt4
```
What to Do Next
Obtain a key ring certificate from the trust anchor or certificate authority and import it into the key ring.

Importing a Certificate into a Key Ring

Before You Begin
- Configure a trusted point that contains the certificate chain for the key ring certificate.
- Obtain a key ring certificate from a trust anchor or certificate authority.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td></td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope keyring keyring-name</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode for the key ring that will receive the certificate.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/keyring # set trustpoint name</td>
</tr>
<tr>
<td></td>
<td>Specifies the trusted point for the trust anchor or certificate authority from which the key ring certificate was obtained.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/keyring # set cert</td>
</tr>
<tr>
<td></td>
<td>Launches a dialog for entering and uploading the key ring certificate.</td>
</tr>
<tr>
<td></td>
<td>At the prompt, paste the certificate text that you received from the trust anchor or certificate authority. On the next line following the certificate, type ENDOFBUF to complete the certificate input.</td>
</tr>
<tr>
<td></td>
<td>Important The certificate must be in Base64 encoded X.509 (CER) format.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/keyring # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example specifies the trust point and imports a certificate into a key ring:

```
UCS-A# scope security
UCS-A /security # scope keyring kr220
UCS-A /security/keyring # set trustpoint tPoint10
UCS-A /security/keyring* # set cert
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
Keyring certificate:
> -----BEGIN CERTIFICATE-----
> MIIB/zCCAwgCAQAwgZkxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTEVMBMGA1UE
> BxMMU2FuIEpvc2UsIENBMRUwEwYDVQQKEwxFeGFtcGxlIEluYy4xEzARBgNVBAsT
> ClRlc3QgR3JvdXAxGTAXBgNVBAMTEHRlc3QuZXhhbXBsZS5jb20xHzAdBgkqhkiG
> 9w0BCQWEHvzXJAXhjbXBsZS5zb20wZ8QYJKoZIhvEcNAQEBBQADgY0AMIGJ
```
What to Do Next

Configure your HTTPS service with the key ring.

Configuring HTTPS

Caution

After you complete the HTTPS configuration, including changing the port and key ring to be used by HTTPS, all current HTTP and HTTPS sessions are closed without warning as soon as you save or commit the transaction.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/services # enable https</td>
<td>Enables the HTTPS service.</td>
</tr>
<tr>
<td>Step 4 UCS-A /system/services # set https port port-num</td>
<td>(Optional) Specifies the port to be used for the HTTPS connection.</td>
</tr>
<tr>
<td>Step 5 UCS-A /system/services # set https keyring keyring-name</td>
<td>(Optional) Specifies the name of the key ring you created for HTTPS.</td>
</tr>
</tbody>
</table>
| **Step 6** UCS-A /system/services # set https cipher-suite-mode cipher-suite-mode | (Optional) The level of Cipher Suite security used by the Cisco UCS domain. `cipher-suite-mode` can be one of the following keywords:
 - **high-strength**
 - **medium-strength**
 - **low-strength**
 - **custom**—Allows you to specify a user-defined Cipher Suite specification string. |
Configuring HTTPS

Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Specifies a custom level of Cipher Suite security for this Cisco UCS domain if <code>cipher-suite-mode</code> is set to <code>custom</code>. <code>cipher-suite-spec-string</code> can contain up to 256 characters and must conform to the OpenSSL Cipher Suite specifications. You cannot use any spaces or special characters except ! (exclamation point), + (plus sign), - (hyphen), and : (colon). For details, see http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslciphersuite. For example, the medium strength specification string Cisco UCS Manager uses as the default is: ALL:!ADH:!EXPORT56:!LOW:RC4+RSA:+HIGH:+MEDIUM:+EXP:+eNULL. Note This option is ignored if <code>cipher-suite-mode</code> is set to anything other than <code>custom</code>.</td>
<td></td>
</tr>
<tr>
<td>Step 7 UCS-A /system/services # set https cipher-suite cipher-suite-spec-string</td>
<td></td>
</tr>
<tr>
<td>Commits the transaction to the system configuration.</td>
<td></td>
</tr>
<tr>
<td>Step 8 UCS-A /system/services # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example enables HTTPS, sets the port number to 443, sets the key ring name to kring7984, sets the Cipher Suite security level to high, and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # enable https
UCS-A /system/services* # set https port 443
UCS-A /system/services* # set https keyring kring7984
UCS-A /system/services* # set https cipher-suite-mode high
UCS-A /system/services* # commit-buffer
```

Deleting a Key Ring

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters security mode.</td>
<td></td>
</tr>
<tr>
<td>Deletes the named key ring.</td>
<td></td>
</tr>
<tr>
<td>Commits the transaction.</td>
<td></td>
</tr>
</tbody>
</table>

The following example deletes a key ring:

```
UCS-A# scope security
UCS-A /security # delete keyring key10
UCS-A /security* # commit-buffer
UCS-A /security #
```
Deleting a Trusted Point

Before You Begin
Ensure that the trusted point is not used by a key ring.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # delete trustpoint name</td>
<td>Deletes the named trusted point.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example deletes a trusted point:

UCS-A# scope security
UCS-A /security # delete trustpoint tPoint10
UCS-A /security* # commit-buffer
UCS-A /security #

Unconfiguring HTTPS

Before You Begin
Disable HTTP to HTTPS redirection.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # disable https</td>
<td>Disables the HTTPS service.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables HTTPS and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # disable https
UCS-A /system/services* # commit-buffer
UCS-A /system/services #
Enabling HTTP Redirection

Before You Begin
Enable both HTTP and HTTPS.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # enable http-redirect</td>
<td>Enables the HTTP redirect service. If enabled, all attempts to communicate via HTTP are redirected to the equivalent HTTPS address. This option effectively disables HTTP access to this Cisco UCS domain.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables HTTP to HTTPS redirection and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # enable http-redirect
Warning: When committed, this closes all the web sessions.
UCS-A /system/services* # commit-buffer
UCS-A /system/services #

Configuring SNMP

Information about SNMP
The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

SNMP Functional Overview
The SNMP framework consists of three parts:

- An SNMP manager—The system used to control and monitor the activities of network devices using SNMP.
- An SNMP agent—The software component within Cisco UCS, the managed device, that maintains the data for Cisco UCS and reports the data, as needed, to the SNMP manager. Cisco UCS includes the
agent and a collection of MIBs. To enable the SNMP agent and create the relationship between the manager and agent, enable and configure SNMP in Cisco UCS Manager.

- A managed information base (MIB)—The collection of managed objects on the SNMP agent. Cisco UCS release 1.4(1) and higher support a larger number of MIBs than earlier releases.

Cisco UCS supports SNMPv1, SNMPv2c and SNMPv3. Both SNMPv1 and SNMPv2c use a community-based form of security. SNMP is defined in the following:

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Cisco UCS Manager generates SNMP notifications as either traps or informs. Traps are less reliable than informs because the SNMP manager does not send any acknowledgment when it receives a trap, and Cisco UCS Manager cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the Cisco UCS Manager does not receive the PDU, it can send the inform request again.

SNMP Security Levels and Privileges

SNMPv1, SNMPv2c, and SNMPv3 each represent a different security model. The security model combines with the selected security level to determine the security mechanism applied when the SNMP message is processed.

The security level determines the privileges required to view the message associated with an SNMP trap. The privilege level determines whether the message needs to be protected from disclosure or authenticated. The supported security level depends upon which security model is implemented. SNMP security levels support one or more of the following privileges:

- noAuthNoPriv—No authentication or encryption
- authNoPriv—Authentication but no encryption
- authPriv—Authentication and encryption
SNMPv3 provides for both security models and security levels. A security model is an authentication strategy that is set up for a user and the role in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security mechanism is employed when handling an SNMP packet.

Supported Combinations of SNMP Security Models and Levels

The following table identifies what the combinations of security models and levels mean.

Table 9: SNMP Security Models and Levels

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the Hash-Based Message Authentication Code (HMAC) Message Digest 5 (MD5) algorithm or the HMAC Secure Hash Algorithm (SHA).</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides Data Encryption Standard (DES) 56-bit encryption in addition to authentication based on the Cipher Block Chaining (CBC) DES (DES-56) standard.</td>
</tr>
</tbody>
</table>
SNMPv3 Security Features

SNMPv3 provides secure access to devices by a combination of authenticating and encrypting frames over the network. SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages. The SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- Message integrity—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur non-maliciously.
- Message origin authentication—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.
- Message confidentiality and encryption—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.

SNMP Support in Cisco UCS

Cisco UCS provides the following support for SNMP:

Support for MIBs

Cisco UCS supports read-only access to MIBs.

For information about the specific MIBs available for Cisco UCS and where you can obtain them, see the MIB Quick Reference for Cisco UCS.

Authentication Protocols for SNMPv3 Users

Cisco UCS supports the following authentication protocols for SNMPv3 users:

- HMAC-MD5-96 (MD5)
- HMAC-SHA-96 (SHA)

AES Privacy Protocol for SNMPv3 Users

Cisco UCS uses Advanced Encryption Standard (AES) as one of the privacy protocols for SNMPv3 message encryption and conforms with RFC 3826.

The privacy password, or priv option, offers a choice of DES or 128-bit AES encryption for SNMP security encryption. If you enable AES-128 configuration and include a privacy password for an SNMPv3 user, Cisco UCS Manager uses the privacy password to generate a 128-bit AES key. The AES privacy password can have a minimum of eight characters. If the passphrases are specified in clear text, you can specify a maximum of 64 characters.

Enabling SNMP and Configuring SNMP Properties

SNMP messages from a Cisco UCS domain display the fabric interconnect name rather than the system name.
Configuring SNMP

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /monitoring # enable snmp</td>
<td>Enables SNMP.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /monitoring # set snmp community community-name</td>
<td>Specifies SNMP community. The community name can be any alphanumeric string up to 32 characters.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /monitoring # set snmp syscontact system-contact-name</td>
<td>Specifies the system contact person responsible for the SNMP. The system contact name can be any alphanumeric string up to 255 characters, such as an email address or name and telephone number.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /monitoring # set snmp syslog location system-location-name</td>
<td>Specifies the location of the host on which the SNMP agent (server) runs. The system location name can be any alphanumeric string up to 512 characters.</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /monitoring # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables SNMP, configures an SNMP community named SnmpCommSystem2, configures a system contact named contactperson, configures a contact location named systemlocation, and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # enable snmp
UCS-A /monitoring* # set snmp community SnmpCommSystem2
UCS-A /monitoring* # set snmp syscontact contactperson1
UCS-A /monitoring* # set snmp syslog location systemlocation
UCS-A /monitoring # commit-buffer
```

What to Do Next

Create SNMP traps and users.

Creating an SNMP Trap

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /monitoring # enable snmp</td>
<td>Enables SNMP.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /monitoring # create snmp-trap {hostname</td>
<td>ip-addr}</td>
</tr>
</tbody>
</table>
Configuring SNMP

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/snmp-trap # set community community-name</td>
<td>Specifies the SNMP community name to be used for the SNMP trap.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/snmp-trap # set port port-num</td>
<td>Specifies the port to be used for the SNMP trap.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /monitoring/snmp-trap # set version {v1</td>
<td>v2c</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /monitoring/snmp-trap # set notification type {traps</td>
<td>informs}</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /monitoring/snmp-trap # set v3 privilege {auth</td>
<td>noauth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• auth—Authentication but no encryption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• noauth—No authentication or encryption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• priv—Authentication and encryption</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /monitoring/snmp-trap # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables SNMP, creates an SNMP trap, specifies that the trap will use the SnmpCommSystem2 community on port 2, sets the version to v3, sets the notification type to traps, sets the v3 privilege to priv, and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # enable snmp
UCS-A /monitoring* # create snmp-trap 192.168.100.112
UCS-A /monitoring/snmp-trap* # set community SnmpCommSystem2
UCS-A /monitoring/snmp-trap* # set port 2
UCS-A /monitoring/snmp-trap* # set version v3
UCS-A /monitoring/snmp-trap* # set notificationtype traps
UCS-A /monitoring/snmp-trap* # set v3 privilege priv
UCS-A /monitoring/snmp-trap* # commit-buffer
UCS-A /monitoring/snmp-trap #
```

Deleting an SNMP Trap

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
</tbody>
</table>
Configuring SNMP

Creating an SNMPv3 User

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # enable snmp</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring # create snmp-user user-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/snmp-user # set aes-128 {no</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/snmp-user # set auth {md5</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /monitoring/snmp-user # set password</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /monitoring/snmp-user # set priv-password</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /monitoring/snmp-user # commit-buffer</td>
</tr>
</tbody>
</table>
The following example enables SNMP, creates an SNMPv3 user named snmp-user14, disables AES-128 encryption, specifies the use of MD5 authentication, sets the password and privacy password, and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # enable snmp
UCS-A /monitoring* # create snmp-user snmp-user14
UCS-A /monitoring/snmp-user* # set aes-128 no
UCS-A /monitoring/snmp-user* # set auth md5
UCS-A /monitoring/snmp-user* # set password
Enter a password: 
Confirm the password: 
UCS-A /monitoring/snmp-user* # set priv-password
Enter a password: 
Confirm the password: 
UCS-A /monitoring/snmp-user* # commit-buffer
UCS-A /monitoring/snmp-user *
```

Deleting an SNMPv3 User

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # delete snmp-user user-name</td>
<td>Deletes the specified SNMPv3 user.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the SNMPv3 user named snmp-user14 and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # delete snmp-user snmp-user14
UCS-A /monitoring* # commit-buffer
UCS-A /monitoring *
```

Enabling Telnet

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /services # enable telnet-server</td>
<td>Enables the Telnet service.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example enables Telnet and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /services # enable telnet-server
UCS-A /services* # commit-buffer
UCS-A /services

Disabling Communication Services

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
</tbody>
</table>
| Step 3 | UCS-A /system/services # disable service-name | Disables the specified service, where the service-name argument is one of the following keywords:
 - cimxml — Disables CIM XML service
 - http — Disables HTTP service
 - https — Disables HTTPS service
 - telnet-server — Disables Telnet service |
| Step 4 | UCS-A /system/services # commit-buffer | Commits the transaction to the system configuration. |

The following example disables CIM XML and commits the transaction:

UCS-A# scope system
UCS-A# scope services
UCS-A /system/services # disable cimxml
UCS-A /system/services* # commit-buffer
UCS-A /system/services

Cisco UCS Manager CLI Configuration Guide, Release 2.0
CHAPTER 8

Configuring Authentication

This chapter includes the following sections:

• Authentication Services, page 125
• Guidelines and Recommendations for Remote Authentication Providers, page 125
• User Attributes in Remote Authentication Providers, page 126
• LDAP Group Rule, page 128
• Configuring LDAP Providers, page 128
• Configuring RADIUS Providers, page 135
• Configuring TACACS+ Providers, page 138
• Configuring Multiple Authentication Systems, page 141
• Selecting a Primary Authentication Service, page 148

Authentication Services

Cisco UCS supports two methods to authenticate user logins:

• Through user accounts local to Cisco UCS Manager
• Remotely through one of the following protocols:
 ◦ LDAP
 ◦ RADIUS
 ◦ TACACS+

Guidelines and Recommendations for Remote Authentication Providers

If a system is configured for one of the supported remote authentication services, you must create a provider for that service to ensure that Cisco UCS Manager can communicate with it. In addition, you need to be aware of the following guidelines that impact user authorization:
User Accounts in Remote Authentication Services

User accounts can exist locally in Cisco UCS Manager or in the remote authentication server. The temporary sessions for users who log in through remote authentication services can be viewed through Cisco UCS Manager GUI or Cisco UCS Manager CLI.

User Roles in Remote Authentication Services

If you create user accounts in the remote authentication server, you must ensure that the accounts include the roles those users require for working in Cisco UCS Manager and that the names of those roles match the names used in Cisco UCS Manager. Depending on the role policy, a user may not be allowed to log in or will be granted only read-only privileges.

User Attributes in Remote Authentication Providers

For RADIUS and TACACS+ configurations, you must configure a user attribute for Cisco UCS in each remote authentication provider through which users log in to Cisco UCS Manager. This user attribute holds the roles and locales assigned to each user.

Note

This step is not required for LDAP configurations that use LDAP Group Mapping to assign roles and locales.

When a user logs in, Cisco UCS Manager does the following:

1. Queries the remote authentication service.
2. Validates the user.
3. If the user is validated, checks for the roles and locales assigned to that user.

The following table contains a comparison of the user attribute requirements for the remote authentication providers supported by Cisco UCS.

Table 10: Comparison of User Attributes by Remote Authentication Provider

<table>
<thead>
<tr>
<th>Authentication Provider</th>
<th>Custom Attribute</th>
<th>Schema Extension</th>
<th>Attribute ID Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP</td>
<td>Not required if group mapping is used</td>
<td>Optional. You can choose to do either of the following: • Do not extend the LDAP schema and configure an existing, unused attribute that meets the requirements. • Extend the LDAP schema and create a custom attribute with a unique name, such as CiscoAVPair.</td>
<td>The Cisco LDAP implementation requires a unicode type attribute. If you choose to create the CiscoAVPair custom attribute, use the following attribute ID: 1.3.6.1.4.1.9.287247.1 A sample OID is provided in the following section.</td>
</tr>
<tr>
<td>Authentication Provider</td>
<td>Custom Attribute</td>
<td>Schema Extension</td>
<td>Attribute ID Requirements</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| RADIUS | Optional | Optional. You can choose to do either of the following:
- Do not extend the RADIUS schema and use an existing, unused attribute that meets the requirements.
- Extend the RADIUS schema and create a custom attribute with a unique name, such as cisco-avpair. | The vendor ID for the Cisco RADIUS implementation is 009 and the vendor ID for the attribute is 001.
The following syntax example shows how to specify multiples user roles and locales if you choose to create the cisco-avpair attribute:
shell:roles="admin,aaa"
shell:locales="l1,abc". Use a comma "," as the delimiter to separate multiple values. |
| TACACS+ | Required | Required. You must extend the schema and create a custom attribute with the name cisco-av-pair. | The cisco-av-pair name is the string that provides the attribute ID for the TACACS+ provider.
The following syntax example shows how to specify multiples user roles and locales when you create the cisco-av-pair attribute:
cisco-av-pair=shell:roles="admin aaa" shell:locales="l1 abc". Using an asterisk (*) in the cisco-av-pair attribute syntax flags the locale as optional, preventing authentication failures for other Cisco devices that use the same authorization profile. Use a space as the delimiter to separate multiple values. |

Sample OID for LDAP User Attribute

The following is a sample OID for a custom CiscoAVPair attribute:

```
CN=CiscoAVPair, CN=Schema,  
CN=Configuration, CN=X  
objectClass: top  
objectClass: attributeSchema  
cn: CiscoAVPair  
distinguishedName: CN=CiscoAVPair,CN=Schema,CN=Configuration,CN=X  
instanceType: 0x4  
uSNCreated: 26318654  
attributeID: 1.3.6.1.4.1.9.287247.1  
attributeSyntax: 2.5.5.12  
isSingleValued: TRUE  
showInAdvancedViewOnly: TRUE  
adminDisplayName: CiscoAVPair  
adminDescription: UCS User Authorization Field  
msSyntax: 64
```
LDAP Group Rule

The LDAP group rule is used to determine whether Cisco UCS should use LDAP groups when assigning user roles and locales to a remote user.

Configuring Properties for LDAP Providers

The properties that you configure in this task are the default settings for all provider connections of this type defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.

If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with Cisco UCS. This account should be given a non-expiring password.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/ldap # set attribute attribute</td>
<td>Restricts database searches to records that contain the specified attribute.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/ldap # set basedn distinguished-name</td>
<td>Restricts database searches to records that contain the specified distinguished name.</td>
</tr>
<tr>
<td>Step 5 UCS-A /security/ldap # set filter filter</td>
<td>Restricts database searches to records that contain the specified filter.</td>
</tr>
<tr>
<td>Step 6 UCS-A /security/ldap # set timeout seconds</td>
<td>(Optional) Sets the time interval the system waits for a response from the LDAP server before noting the server as down.</td>
</tr>
<tr>
<td>Step 7 UCS-A /security/ldap # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the LDAP attribute to CiscoAvPair, the base distinguished name to "DC=cisco-ucsm-aaa3,DC=qalab,DC=com", the filter to sAMAccountName=$userid, and the timeout interval to 5 seconds, and commits the transaction:

UCS-A# scope security
UCS-A /security # scope ldap

UCS-A# set attribute attribute CiscoAvPair
UCS-A# set basedn distinguished-name "DC=cisco-ucsm-aaa3,DC=qalab,DC=com"
UCS-A# set filter filter sAMAccountName=$userid
UCS-A# set timeout seconds 5
UCS-A# commit-buffer
What to Do Next
Create an LDAP provider.

Creating an LDAP Provider
Cisco UCS Manager supports a maximum of 16 LDAP providers.

Before You Begin
If you are using Active Directory as your LDAP server, create a user account in the Active Directory server to bind with Cisco UCS. This account should be given a non-expiring password.

- In the LDAP server, perform one of the following configurations:
 - Configure LDAP groups. LDAP groups contain user role and locale information.
 - Configure users with the attribute that holds the user role and locale information for Cisco UCS Manager. You can choose whether to extend the LDAP schema for this attribute. If you do not want to extend the schema, use an existing LDAP attribute to hold the Cisco UCS user roles and locales. If you prefer to extend the schema, create a custom attribute, such as the CiscoAVPair attribute.

 The Cisco LDAP implementation requires a unicode type attribute.
 If you choose to create the CiscoAVPair custom attribute, use the following attribute ID: 1.3.6.1.4.1.9.287247.1
 - For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.

 - If you want to use secure communications, create a trusted point containing the certificate of the root certificate authority (CA) of the LDAP server in Cisco UCS Manager.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A # scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/ldap # create server server-name</td>
<td>Creates an LDAP server instance and enters security LDAP server mode. If SSL is enabled, the server-name, typically an IP address or FQDN, must exactly match a Common Name (CN) in the LDAP server's security certificate. Unless an IP address is specified, a DNS server must be configured in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 4 UCS-A/security/ldap/server # set attribute attr-name</td>
<td>(Optional) An LDAP attribute that stores the values for the user roles and locales. This property is always a name-value pair. The system queries the user record for the value that matches this attribute name. If you do not want to extend your LDAP schema, you can configure an existing, unused LDAP attribute with the Cisco UCS roles and locales. Alternatively, you can create an attribute named CiscoAVPair in the remote authentication service with the following attribute ID: 1.3.6.1.4.1.9.287247.1 This value is required unless a default attribute has been set on the LDAP General tab.</td>
<td></td>
</tr>
<tr>
<td>Step 5 UCS-A/security/ldap/server # set basedn basedn-name</td>
<td>(Optional) The specific distinguished name in the LDAP hierarchy where the server should begin a search when a remote user logs in and the system attempts to get the user’s DN based on their username. The maximum supported string length is 127 characters. This value is required unless a default base DN has been set on the LDAP General tab.</td>
<td></td>
</tr>
<tr>
<td>Step 6 UCS-A/security/ldap/server # set binddn binddn-name</td>
<td>(Optional) The distinguished name (DN) for an LDAP database account that has read and search permissions for all objects under the base DN. The maximum supported string length is 127 ASCII characters.</td>
<td></td>
</tr>
<tr>
<td>Step 7 UCS-A/security/ldap/server # set filter filter-value</td>
<td>(Optional) The LDAP search is restricted to those usernames that match the defined filter. This value is required unless a default filter has been set on the LDAP General tab.</td>
<td></td>
</tr>
<tr>
<td>Step 8 UCS-A/security/ldap/server # set password</td>
<td>The password for the LDAP database account specified in the Bind DN field. You can enter any standard ASCII characters except for space, § (section sign), ? (question mark), or = (equal sign). To set the password, press Enter after typing the set password command and enter the key value at the prompt.</td>
<td></td>
</tr>
<tr>
<td>Step 9 UCS-A/security/ldap/server # set order order-num</td>
<td>(Optional) The order in which Cisco UCS uses this provider to authenticate users.</td>
<td></td>
</tr>
<tr>
<td>Step 10 UCS-A/security/ldap/server # set port port-num</td>
<td>(Optional) The port through which Cisco UCS communicates with the LDAP database. The standard port number is 389.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 11** UCS-A /security/ldap/server# set ssl {yes | no} | Enables or disables the use of encryption when communicating with the LDAP server. The options are as follows:
 - **yes** — Encryption is required. If encryption cannot be negotiated, the connection fails.
 - **no** — Encryption is disabled. Authentication information is sent as clear text.
 LDAP uses STARTTLS. This allows encrypted communication using port 389. |
| **Step 12** UCS-A /security/ldap/server# set timeout timeout-num | The length of time in seconds the system should spend trying to contact the LDAP database before it times out. Enter an integer from 1 to 60 seconds, or enter 0 (zero) to use the global timeout value specified on the LDAP General tab. The default is 30 seconds. |
| **Step 13** UCS-A /security/ldap/server# commit-buffer | Commits the transaction to the system configuration. |

The following example creates an LDAP server instance named 10.193.169.246, configures the binddn, password, order, port, and SSL settings, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap* # create server 10.193.169.246
UCS-A /security/ldap/server* # set binddn
"cn=Administrator,cn=Users,DC=cisco-ucsm-aaa3,DC=qalab,DC=com"
UCS-A /security/ldap/server* # set password
Enter the password: Confirm the password:
UCS-A /security/ldap/server* # set order 2
UCS-A /security/ldap/server* # set port 389
UCS-A /security/ldap/server* # set ssl yes
UCS-A /security/ldap/server* # set timeout 30
UCS-A /security/ldap/server* # commit-buffer
```

What to Do Next

For implementations involving a single LDAP database, select LDAP as the authentication service.

For implementations involving multiple LDAP databases, configure an LDAP provider group.
Changing the LDAP Group Rule for an LDAP Provider

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/ldap # scope server ldap-provider</td>
<td>Enters security LDAP provider mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/ldap/server # scope ldap-group-rule</td>
<td>Enters LDAP group rule mode.</td>
</tr>
</tbody>
</table>
| Step 5 | UCS-A /security/ldap/server/ldap-group-rule # set authorization {enable | disable} | Specifies whether Cisco UCS searches LDAP groups when assigning user roles and locales to a remote user.
 - **enable**—Cisco UCS searches the LDAP provider groups mapped in this Cisco UCS domain. If the remote user is found, Cisco UCS assigns the user roles and locales defined for that LDAP group in the associated LDAP group map.
 - **disable**—Cisco UCS does not access any LDAP groups.

Note Role and locale assignment is cumulative. If a user is included in multiple groups, or has a role or locale specified in the LDAP attribute, Cisco UCS assigns that user all the roles and locales mapped to any of those groups or attributes. |
| Step 6 | UCS-A /security/ldap/server/ldap-group-rule # set member-of-attribute attr-name | The attribute Cisco UCS uses to determine group membership in the LDAP database.
 The supported string length is 63 characters. The default string is memberOf. |
| Step 7 | UCS-A /security/ldap/server/ldap-group-rule # set traversal {non-recursive | recursive} | Specifies whether Cisco UCS takes the settings for a group member's parent group, if necessary. This can be:
 - **non-recursive**—Cisco UCS only searches those groups that the user belongs to.
 - **recursive**—Cisco UCS searches all the ancestor groups belonging to the user. |
| Step 8 | UCS-A /security/ldap/server/ldap-group-rule # commit-buffer | Commits the transaction to the system configuration. |
The following example sets the LDAP group rule to enable authorization, sets the member of attribute to memberOf, sets the traversal to non-recursive, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # scope server ldapprovider
UCS-A /security/ldap/server # scope ldap-group-rule
UCS-A /security/ldap/server/ldap-group-rule # set authorization enable
UCS-A /security/ldap/server/ldap-group-rule* # set member-of-attribute memberOf
UCS-A /security/ldap/server/ldap-group-rule* # set traversal non-recursive
UCS-A /security/ldap/server/ldap-group-rule #
```

Deleting an LDAP Provider

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/ldap # delete server serv-name</td>
<td>Deletes the specified server.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/ldap # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the LDAP server called ldap1 and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # delete server ldap1
UCS-A /security/ldap* # commit-buffer
UCS-A /security/ldap #
```

LDAP Group Mapping

For organizations that already use LDAP groups to restrict access to LDAP databases, group membership information can be used by UCSM to assign a role or locale to an LDAP user during login. This eliminates the need to define role or locale information in the LDAP user object when Cisco UCS Manager is deployed.

When a user logs in to Cisco UCS Manager, information about the user's role and locale are pulled from the LDAP group map. If the role and locale criteria match the information in the policy, access is granted.

Role and locale definitions are configured locally in Cisco UCS Manager and do not update automatically based on changes to an LDAP directory. When deleting or renaming LDAP groups in an LDAP directory, it is important that you update Cisco UCS Manager with the change.

An LDAP group map can be configured to include any of the following combinations of roles and locales:

- Roles only
- Locales only
- Both roles and locales
For example, consider an LDAP group representing a group of server administrators at a specific location. The LDAP group map might be configured to include user roles like server-profile and server-equipment. To restrict access to server administrators at a specific location, the locale could be set to a particular site name.

Note
Cisco UCS Manager includes many out-of-the-box user roles but does not include any locales. Mapping an LDAP provider group to a locale requires that you create a custom locale.

Creating an LDAP Group Map

Before You Begin

- Create an LDAP group in the LDAP server.
- Configure the distinguished name for the LDAP group in the LDAP server.
- Create locales in Cisco UCS Manager (optional).
- Create custom roles in Cisco UCS Manager (optional).

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/ldap # create ldap-group</td>
<td>Creates an LDAP group map for the specified DN.</td>
</tr>
<tr>
<td></td>
<td>group-dn</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/ldap/ldap-group # create</td>
<td>Maps the LDAP group to the specified locale.</td>
</tr>
<tr>
<td></td>
<td>locale locale-name</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/ldap/ldap-group # create</td>
<td>Maps the LDAP group to the specified role.</td>
</tr>
<tr>
<td></td>
<td>role-name</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /security/ldap/ldap-group # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example maps the LDAP group mapped to a DN, sets the locale to pacific, sets the role to admin, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # create ldap-group cn=security,cn=users,dc=lab,dc=com
UCS-A /security/ldap/ldap-group* # create locale pacific
UCS-A /security/ldap/ldap-group* # create role admin
UCS-A /security/ldap/ldap-group* # commit-buffer
```

What to Do Next

Set the LDAP group rule.
Deleting an LDAP Group Map

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/ldap # delete ldap-group group-dn</td>
<td>Deletes the LDAP group map for the specified DN.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/ldap # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes an LDAP group map and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # delete ldap-group cn=security,cn=users,dc=lab,dc=com
UCS-A /security/ldap* # commit-buffer
UCS-A /security/ldap #
```

Configuring RADIUS Providers

Configuring Properties for RADIUS Providers

The properties that you configure in this task are the default settings for all provider connections of this type defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope radius</td>
<td>Enters security RADIUS mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/radius # set retries retry-num</td>
<td>(Optional) Sets the number of times to retry communicating with the RADIUS server before noting the server as down.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/radius # set timeout seconds</td>
<td>(Optional) Sets the time interval that the system waits for a response from the RADIUS server before noting the server as down.</td>
</tr>
</tbody>
</table>
Configuring RADIUS Providers

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /security/radius # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the RADIUS retries to 4, sets the timeout interval to 30 seconds, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope radius
UCS-A /security/radius # set retries 4
UCS-A /security/radius* # set timeout 30
UCS-A /security/radius* # commit-buffer
UCS-A /security/radius #
```

What to Do Next
Create a RADIUS provider.

Creating a RADIUS Provider

Cisco UCS Manager supports a maximum of 16 RADIUS providers.

Before You Begin
Perform the following configuration in the RADIUS server:

- Configure users with the attribute that holds the user role and locale information for Cisco UCS Manager. You can choose whether to extend the RADIUS schema for this attribute. If you do not want to extend the schema, use an existing RADIUS attribute to hold the Cisco UCS user roles and locales. If you prefer to extend the schema, create a custom attribute, such as the cisco-avpair attribute.

 The vendor ID for the Cisco RADIUS implementation is 009 and the vendor ID for the attribute is 001. The following syntax example shows how to specify multiples user roles and locales if you choose to create the cisco-avpair attribute: `shell:roles="admin,aaa" shell:locales="L1,abc"`. Use a comma `""` as the delimiter to separate multiple values.

- For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope radius</td>
<td>Enters security RADIUS mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/radius # create server server-name</td>
<td>Creates a RADIUS server instance and enters security RADIUS server mode</td>
</tr>
</tbody>
</table>
Configuring RADIUS Providers

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>UCS-A /security/radius/server # set authport authport-num</td>
<td>(Optional) Specifies the port used to communicate with the RADIUS server.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/radius/server # set key</td>
<td>Sets the RADIUS server key. To set the key value, press Enter after typing the set key command and enter the key value at the prompt.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /security/radius/server # set order order-num</td>
<td>(Optional) Specifies when in the order this server will be tried.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /security/radius # set retries retry-num</td>
<td>(Optional) Sets the number of times to retry communicating with the RADIUS server before noting the server as down.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /security/radius # set timeout seconds</td>
<td>(Optional) Sets the time interval that the system waits for a response from the RADIUS server before noting the server as down.</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /security/radius/server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a server instance named radiusserv7, sets the authentication port to 5858, sets the key to radiuskey321, sets the order to 2, sets the retries to 4, sets the timeout to 30, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope radius
UCS-A /security/radius # create server radiusserv7
UCS-A /security/radius/server* # set authport 5858
Enter the key: radiuskey321
Confirm the key: radiuskey321
UCS-A /security/radius/server* # set order 2
UCS-A /security/radius/server* # set retries 4
UCS-A /security/radius/server* # set timeout 30
UCS-A /security/radius/server* # commit-buffer
```

What to Do Next

For implementations involving a single RADIUS database, select RADIUS as the primary authentication service.

For implementations involving multiple RADIUS databases, configure a RADIUS provider group.
Deleting a RADIUS Provider

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/security # scope RADIUS</td>
<td>Enters security RADIUS mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/security/radius # delete server serv-name</td>
<td>Deletes the specified server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/security/radius # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the RADIUS server called radius1 and commits the transaction:

```
UCS-A# scope security
UCS-A/security # scope radius
UCS-A/security/radius # delete server radius1
UCS-A/security/radius* # commit-buffer
UCS-A/security/radius #
```

Configuring TACACS+ Providers

Configuring Properties for TACACS+ Providers

The properties that you configure in this task are the default settings for all provider connections of this type defined in Cisco UCS Manager. If an individual provider includes a setting for any of these properties, Cisco UCS uses that setting and ignores the default setting.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/security # scope tacacs</td>
<td>Enters security TACACS+ mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/security/tacacs # set timeout seconds</td>
<td>(Optional) Sets the time interval that the system waits for a response from the TACACS+ server before noting the server as down.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/security/tacacs # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example sets the TACACS+ timeout interval to 45 seconds and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope tacacs
UCS-A /security/tacacs # set timeout 45
UCS-A /security/tacacs* # commit-buffer
UCS-A /security/tacacs #
```

What to Do Next
Create a TACACS+ provider.

Creating a TACACS+ Provider

Cisco UCS Manager supports a maximum of 16 TACACS+ providers.

Before You Begin

Perform the following configuration in the TACACS+ server:

- Create the cisco-av-pair attribute. You cannot use an existing TACACS+ attribute. The cisco-av-pair name is the string that provides the attribute ID for the TACACS+ provider.

 The following syntax example shows how to specify multiples user roles and locales when you create the cisco-av-pair attribute: `cisco-av-pair=shell:roles="admin aaa" shell:locales="L1 abc"`. Using an asterisk (*) in the cisco-av-pair attribute syntax flags the locale as optional, preventing authentication failures for other Cisco devices that use the same authorization profile. Use a space as the delimiter to separate multiple values.

- For a cluster configuration, add the management port IP addresses for both fabric interconnects. This configuration ensures that remote users can continue to log in if the first fabric interconnect fails and the system fails over to the second fabric interconnect. All login requests are sourced from these IP addresses, not the virtual IP address used by Cisco UCS Manager.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope tacacs</td>
<td>Enters security TACACS+ mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/tacacs # create server server-name</td>
<td>Creates an TACACS+ server instance and enters security TACACS+ server mode</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/tacacs/server # set key</td>
<td>(Optional) Sets the TACACS+ server key. To set the key value, press Enter after typing the set key command and enter the key value at the prompt.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/tacacs/server # set order order-num</td>
<td>(Optional) Specifies when in the order this server will be tried.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /security/tacacs/server # set port port-num</td>
<td>Specifies the port used to communicate with the TACACS+ server.</td>
</tr>
</tbody>
</table>
Deleting a TACACS+ Provider

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/security # scope tacacs</td>
<td>Enters security TACACS mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/security/tacacs # delete server serv-name</td>
<td>Deletes the specified server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/security/tacacs # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the TACACS server called tacacs1 and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope tacacs
UCS-A /security/tacacs # delete server TACACS1
UCS-A /security/tacacs* # commit-buffer
UCS-A /security/tacacs #
```

The following example creates a server instance named tacacsserv680, sets the key to tacacskey321, sets the order to 4, sets the authentication port to 5859, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope tacacs
UCS-A /security/tacacs # create server tacacsserv680
UCS-A /security/tacacs/server* # set key
Enter the key: tacacskey321
UCS-A /security/tacacs/server* # set order 4
UCS-A /security/tacacs/server* # set port 5859
UCS-A /security/tacacs/server* # commit-buffer
```
Configuring Multiple Authentication Systems

Multiple Authentication Systems

You can configure Cisco UCS to use multiple authentication systems by configuring the following features:

- Provider groups
- Authentication domains

Once provider groups and authentication domains have been configured in Cisco UCS Manager, the following syntax can be used to log in to the system using Cisco UCS Manager CLI: `ucs: auth-domain \ username`

When multiple authentication domains and native authentication are configured with a remote authentication service, use one of the following syntax examples to log in with SSH or Putty:

From a Linux terminal:

- `ssh ucs-auth-domain\username@UCSM-ip-address`
- `ssh -l ucs-auth-domain\username {UCSM-ip-address | UCSM-host-name}
- `ssh 192.0.20.11 -l ucs-example\jsmith`

From a Putty client:

- `Login as: ucs-auth-domain\username`
- `Login as: ucs-example\jsmith`

Provider Groups

A provider group is a set of providers that will be used by Cisco UCS during the authentication process. Cisco UCS Manager allows you to create a maximum of 16 provider groups, with a maximum of eight providers allowed per group.

During authentication, all the providers within a provider group are tried in order. If all of the configured servers are unavailable or unreachable, Cisco UCS Manager automatically falls back to the local authentication method using the local username and password.

Creating an LDAP Provider Group

Creating an LDAP provider group allows you to authenticate using multiple LDAP databases.

Note

Authenticating with a single LDAP database does not require you to set up an LDAP provider group.
Before You Begin
Create one or more LDAP providers.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/ldap # create auth-server-group auth-server-group-name</td>
<td>Creates an LDAP provider group and enters authentication server group security LDAP mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/ldap/auth-server-group # create server-ref ldap-provider-name</td>
<td>Adds the specified LDAP provider to the LDAP provider group and enters server reference authentication server group security LDAP mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /security/ldap/auth-server-group/server-ref # set order order-num</td>
<td>Specifies the order in which Cisco UCS uses this provider to authenticate users. Valid values include no-value and 0-16, with the lowest value indicating the highest priority. Setting the order to no-value is equivalent to giving that server reference the highest priority.</td>
</tr>
<tr>
<td>Step 6 UCS-A /security/ldap/auth-server-group/server-ref # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates an LDAP provider group called ldapgroup, adds two previously configured providers called ldap1 and ldap2 to the provider group, sets the order, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # create auth-server-group ldapgroup
UCS-A /security/ldap/auth-server-group* # create server-ref ldap1
UCS-A /security/ldap/auth-server-group/server-ref* # set order 1
UCS-A /security/ldap/auth-server-group/server-ref* # set order 1
UCS-A /security/ldap/auth-server-group/server-ref* # create server-ref ldap2
UCS-A /security/ldap/auth-server-group/server-ref* # set order 2
UCS-A /security/ldap/auth-server-group/server-ref* # commit-buffer
UCS-A /security/ldap/auth-server-group/server-ref #
```

What to Do Next
Configure an authentication domain or select a default authentication service.

Deleting an LDAP Provider Group

Before You Begin
Remove the provider group from an authentication configuration.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope ldap</td>
<td>Enters security LDAP mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/ldap # delete auth-server-group auth-server-group-name</td>
<td>Deletes the LDAP provider group.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/ldap # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes an LDAP provider group called ldapgroup and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope ldap
UCS-A /security/ldap # delete auth-server-group ldapgroup
UCS-A /security/ldap* # commit-buffer
UCS-A /security/ldap #
```

Creating a RADIUS Provider Group

Creating a RADIUS provider group allows you to authenticate using multiple RADIUS databases.

Note

Authenticating with a single RADIUS database does not require you to set up a RADIUS provider group.

Before You Begin

Create one or more RADIUS providers.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope radius</td>
<td>Enters security RADIUS mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/radius # create auth-server-group auth-server-group-name</td>
<td>Creates a RADIUS provider group and enters authentication server group security RADIUS mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A/security/RADIUS/auth-server-group # create server-ref radius-provider-name</td>
<td>Adds the specified RADIUS provider to the RADIUS provider group and enters server reference authentication server group security RADIUS mode.</td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose
--- | ---
Step 5 | UCS-A /security/radius/auth-server-group/server-ref # set order order-num
Specifies the order in which Cisco UCS uses this provider to authenticate users. Valid values include no-value and 0-16, with the lowest value indicating the highest priority. Setting the order to no-value is equivalent to giving that server reference the highest priority.

Step 6 | UCS-A /security/radius/auth-server-group/server-ref # commit-buffer
Commits the transaction to the system configuration.

The following example creates a RADIUS provider group called radiusgroup, adds two previously configured providers called radius1 and radius2 to the provider group, sets the order, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope radius
UCS-A /security/radius/auth-server-group radiusgroup
UCS-A /security/radius/auth-server-group/server-ref* # create server-ref radius1
UCS-A /security/radius/auth-server-group/server-ref* # set order 1
UCS-A /security/radius/auth-server-group/server-ref* # up
UCS-A /security/radius/auth-server-group/server-ref* # create server-ref radius2
UCS-A /security/radius/auth-server-group/server-ref* # set order 2
UCS-A /security/radius/auth-server-group/server-ref* # commit-buffer
```

What to Do Next
Configure an authentication domain or select a default authentication service.

Deleting a RADIUS Provider Group
Remove the provider group from an authentication configuration.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td></td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope radius</td>
</tr>
<tr>
<td></td>
<td>Enters security RADIUS mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/radius # delete auth-server-group auth-server-group-name</td>
</tr>
<tr>
<td></td>
<td>Deletes the RADIUS provider group.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/radius # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a RADIUS provider group called radiusgroup and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope radius
```
Creating a TACACS Provider Group

Creating a TACACS+ provider group allows you to authenticate using multiple TACACS+ databases.

Note

Authenticating with a single TACACS+ database does not require you to set up a TACACS+ provider group.

Before You Begin

Create a TACACS provider.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope tacacs</td>
<td>Enters security TACACS mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/tacacs # create auth-server-group auth-server-group-name</td>
<td>Creates a TACACS provider group and enters authentication server group security TACACS mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/tacacs/auth-server-group # create server-ref tacacs-provider-name</td>
<td>Adds the specified TACACS provider to the TACACS provider group and enters server reference authentication server group security TACACS mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /security/tacacs/auth-server-group/server-ref # set order order-num</td>
<td>Specifies the order in which Cisco UCS uses this provider to authenticate users. Valid values include no-value and 0-16, with the lowest value indicating the highest priority. Setting the order to no-value is equivalent to giving that server reference the highest priority.</td>
</tr>
<tr>
<td>Step 6 UCS-A /security/tacacs/auth-server-group/server-ref # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a TACACS provider group called tacacsgroup, adds two previously configured providers called tacacs1 and tacacs2 to the provider group, sets the order, and commits the transaction:

UCS-A # scope security
UCS-A /security/tacacs # create auth-server-group tacacsgroup
UCS-A /security/tacacs/auth-server-group# create server-ref tacacs1
UCS-A /security/tacacs/auth-server-group/server-ref# set order 1
UCS-A /security/tacacs/auth-server-group/server-ref # up
Deleting a TACACS Provider Group

Remove the provider group from an authentication configuration.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope tacacs</td>
<td>Enters security TACACS mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/tacacs # delete auth-server-group auth-server-group-name</td>
<td>Deletes the TACACS provider group.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/tacacs # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a TACACS provider group called tacacsgroup and commits the transaction:

UCS-A# scope security
UCS-A /security # scope tacacs
UCS-A /security/tacacs # delete auth-server-group tacacsgroup
UCS-A /security/tacacs* # commit-buffer

Authentication Domains

Authentication domains are used by Cisco UCS Manager to leverage multiple authentication systems. Each authentication domain is specified and configured during login. If no authentication domain is specified, the default authentication service configuration is used.

You can create up to eight authentication domains. Each authentication domain is associated with a provider group and realm in Cisco UCS Manager. If no provider group is specified, all servers within the realm are used.
Creating an Authentication Domain

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # create auth-domain domain-name</td>
<td>Creates an authentication domain and enters authentication domain mode. Note For systems using RADIUS as their preferred authentication protocol, the authentication domain name is considered part of the user name and counts toward the 32 character limit for locally created user names. Because Cisco UCS inserts 5 characters for formatting, authentication will fail if the combined total of the domain name plus the user name is more than 27 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/auth-domain # set refresh-period seconds</td>
<td>(Optional) When a web client connects to Cisco UCS Manager, the client needs to send refresh requests to Cisco UCS Manager to keep the web session active. This option specifies the maximum amount of time allowed between refresh requests for a user in this domain. If this time limit is exceeded, Cisco UCS Manager considers the web session to be inactive, but it does not terminate the session. Specify an integer between 60 and 172800. The default is 600 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/auth-domain # set session-timeout seconds</td>
<td>(Optional) The maximum amount of time that can elapse after the last refresh request before Cisco UCS Manager considers a web session to have ended. If this time limit is exceeded, Cisco UCS Manager automatically terminates the web session. Specify an integer between 60 and 172800. The default is 7200 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /security/auth-domain # create default-auth</td>
<td>(Optional) Creates a default authentication for the specified authentication domain.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /security/auth-domain/default-auth # set auth-server-group auth-serv-group-name</td>
<td>(Optional) Specifies the provider group for the specified authentication domain.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /security/auth-domain/default-auth</td>
<td>Specifies the realm for the specified authentication domain.</td>
</tr>
</tbody>
</table>
The following example creates an authentication domain called domain1 with a web refresh period of 3600 seconds (1 hour) and a session timeout period of 14400 seconds (4 hours). It then configures domain1 to use the providers in ldapgroup1, sets the realm type to ldap, and commits the transaction.

```
UCS-A# scope security
UCS-A /security # create auth-domain domain1
UCS-A /security/auth-domain* # set refresh-period 3600
UCS-A /security/auth-domain* # set session-timeout 14400
UCS-A /security/auth-domain* # create default-auth
UCS-A /security/auth-domain/auth-domain* # set auth-server-group ldapgroup1
UCS-A /security/auth-domain/auth-domain* # set realm ldap
UCS-A /security/auth-domain/auth-domain* # commit-buffer
```

Selecting a Primary Authentication Service

Selecting the Console Authentication Service

Before You Begin

If the system uses a remote authentication service, create a provider for that authentication service. If the system uses only local authentication through Cisco UCS, you do not need to create a provider first.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope console-auth</td>
<td>Enters console authorization security mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/console-auth # set realm auth-type</td>
<td>Specifies the console authentication, where the auth-type argument is one of the following keywords:</td>
</tr>
<tr>
<td></td>
<td>- ldap—Specifies LDAP authentication</td>
</tr>
<tr>
<td></td>
<td>- local—Specifies local authentication</td>
</tr>
<tr>
<td></td>
<td>- none—Allows local users to log on without specifying a password</td>
</tr>
<tr>
<td></td>
<td>- radius—Specifies RADIUS authentication</td>
</tr>
<tr>
<td></td>
<td>- tacacs—Specifies TACACS+ authentication</td>
</tr>
</tbody>
</table>
Selecting the Default Authentication Service

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope security</code></td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # <code>scope console-auth</code></td>
<td>Enters default authorization security mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/default-auth # <code>set realm auth-type</code></td>
<td>Specifies the default authentication, where <code>auth-type</code> is one of the following keywords:</td>
</tr>
<tr>
<td></td>
<td>• <code>ldap</code>—Specifies LDAP authentication</td>
</tr>
<tr>
<td></td>
<td>• <code>local</code>—Specifies local authentication</td>
</tr>
<tr>
<td></td>
<td>• <code>none</code>—Allows local users to log on without specifying a password</td>
</tr>
<tr>
<td></td>
<td>• <code>radius</code>—Specifies RADIUS authentication</td>
</tr>
<tr>
<td></td>
<td>• <code>tacacs</code>—Specifies TACACS+ authentication</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/default-auth # <code>set auth-server-group auth-server-group-name</code></td>
<td>(Optional) The associated provider group, if any.</td>
</tr>
<tr>
<td>Step 5 UCS-A /security/default-auth # <code>set refresh-period seconds</code></td>
<td>(Optional) When a web client connects to Cisco UCS Manager, the client needs to send refresh requests to Cisco UCS Manager to keep the web session active. This option specifies the maximum amount of time allowed between refresh requests for a user in this domain.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
If this time limit is exceeded, Cisco UCS Manager considers the web session to be inactive, but it does not terminate the session. Specify an integer between 60 and 172800. The default is 600 seconds.

Step 6 | UCS-A /security/default-auth # set session-timeout seconds
(Optional) The maximum amount of time that can elapse after the last refresh request before Cisco UCS Manager considers a web session to have ended. If this time limit is exceeded, Cisco UCS Manager automatically terminates the web session. Specify an integer between 60 and 172800. The default is 7200 seconds.

Step 7 | UCS-A /security/default-auth # commit-buffer
Commits the transaction to the system configuration.

The following example sets the default authentication to LDAP, the default authentication provider group to provider1, the refresh period to 7200 seconds (2 hours), and the session timeout period to 28800 seconds (8 hours). It then commits the transaction.

UCS-A# scope security
UCS-A /security # scope default-auth
UCS-A /security/default-auth # set realm ldap
UCS-A /security/default-auth* # set auth-server-group provider1
UCS-A /security/default-auth* # set refresh-period 7200
UCS-A /security/default-auth* # set session-timeout 28800
UCS-A /security/default-auth* # commit-buffer

Role Policy for Remote Users

By default, if user roles are not configured in Cisco UCS Manager read-only access is granted to all users logging in to Cisco UCS Manager from a remote server using the LDAP, RADIUS, or TACACS protocols. For security reasons, it might be desirable to restrict access to those users matching an established user role in Cisco UCS Manager.

You can configure the role policy for remote users in the following ways:

assign-default-role

Does not restrict user access to Cisco UCS Manager based on user roles. Read-only access is granted to all users unless other user roles have been defined in Cisco UCS Manager.

This is the default behavior.

no-login

Restricts user access to Cisco UCS Manager based on user roles. If user roles have not been assigned for the remote authentication system, access is denied.
Configuring the Role Policy for Remote Users

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # set remote-user default-role {assign-default-role</td>
<td>Specifies whether user access to Cisco UCS Manager is restricted based on user roles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no-login}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the role policy for remote users and commits the transaction:

```
UCS-A# scope security
UCS-A /security # set remote-user default-role assign-default-role
UCS-A /security* # commit-buffer
UCS-A /security #
```
Configuring Organizations

This chapter includes the following sections:

- Organizations in a Multi-Tenancy Environment, page 153
- Hierarchical Name Resolution in a Multi-Tenancy Environment, page 154
- Configuring an Organization Under the Root Organization, page 156
- Configuring an Organization Under an Organization that is not Root, page 156
- Deleting an Organization, page 157

Organizations in a Multi-Tenancy Environment

Multi-tenancy allows you to divide up the large physical infrastructure of an Cisco UCS domain into logical entities known as organizations. As a result, you can achieve a logical isolation between organizations without providing a dedicated physical infrastructure for each organization.

You can assign unique resources to each tenant through the related organization, in the multi-tenant environment. These resources can include different policies, pools, and quality of service definitions. You can also implement locales to assign or restrict user privileges and roles by organization, if you do not want all users to have access to all organizations.

If you set up a multi-tenant environment, all organizations are hierarchical. The top-level organization is always root. The policies and pools that you create in root are system-wide and are available to all organizations in the system. However, any policies and pools created in other organizations are only available to organizations that are above it in the same hierarchy. For example, if a system has organizations named Finance and HR that are not in the same hierarchy, Finance cannot use any policies in the HR organization, and HR cannot access any policies in the Finance organization. However, both Finance and HR can use policies and pools in the root organization.

If you create organizations in a multi-tenant environment, you can also set up one or more of the following for each organization or for a sub-organization in the same hierarchy:

- Resource pools
- Policies
- Service profiles
Hierarchical Name Resolution in a Multi-Tenancy Environment

In a multi-tenant environment, Cisco UCS uses the hierarchy of an organization to resolve the names of policies and resource pools. When Cisco UCS Manager searches for details of a policy or a resource assigned to a pool, the following occurs:

1. Cisco UCS Manager checks for policies and pools with the specified name within the organization assigned to the service profile or policy.

2. If a policy is found or an available resource is inside a pool, Cisco UCS Manager uses that policy or resource. If the pool does not have any available resources at the local level, Cisco UCS Manager moves up in the hierarchy to the parent organization and searches for a pool with the same name. Cisco UCS Manager repeats this step until the search reaches the root organization.

3. If the search reaches the root organization and has not found an available resource or policy, Cisco UCS Manager returns to the local organization and begins to search for a default policy or available resource in the default pool.

4. If an applicable default policy or available resource in a default pool is found, Cisco UCS Manager uses that policy or resource. If the pool does not have any available resources, Cisco UCS Manager moves up in the hierarchy to the parent organization and searches for a default pool. Cisco UCS Manager repeats this step until the search reaches the root organization.

5. If Cisco UCS Manager cannot find an applicable policy or available resource in the hierarchy, it returns an allocation error.

Example: Server Pool Name Resolution in a Single-Level Hierarchy

In this example, all organizations are at the same level below the root organization. For example, a service provider creates separate organizations for each customer. In this configuration, organizations only have access to the policies and resource pools assigned to that organization and to the root organization.

In this example, a service profile in the XYZ customer organization is configured to use servers from the XYZ customer server pool. When resource pools and policies are assigned to the service profile, the following occurs:

1. Cisco UCS Manager checks for an available server in the XYZ customer server pool.

2. If the XYZ customer server pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager checks the root organization for a server pool with the same name.

3. If the root organization includes an XYZ customer server pool and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager returns to the XYZ customer organization to check the default server pool.

4. If the default pool in the XYZ customer organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager checks the default server pool in the root organization.
5 If the default server pool in the root organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager returns an allocation error.

Example: Server Pool Name Resolution in a Multi-Level Hierarchy

In this example, each organization includes at least one suborganization. For example, a company could create organizations for each major division in the company and for subdivisions of those divisions. In this configuration, each organization has access to its local policies and resource pools and to the resource pools in the parent hierarchy.

In this example, the Finance organization includes two sub-organizations, AccountsPayable and AccountsReceivable. A service profile in the AccountsPayable organization is configured to use servers from the AP server pool. When resource pools and policies are assigned to the service profile, the following occurs:

1 Cisco UCS Manager checks for an available server in the AP server pool defined in the service profile.

2 If the AP server pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager moves one level up the hierarchy and checks the Finance organization for a pool with the same name.

3 If the Finance organization includes a pool with the same name and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the root organization for a pool with the same name.

4 If the root organization includes a pool with the same name and that pool has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the pool does not have an available server, Cisco UCS Manager returns to the AccountsPayable organization to check the default server pool.

5 If the default pool in the AccountsPayable organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the default server pool in the Finance organization.

6 If the default pool in the Finance organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager moves one level up in the hierarchy and checks the default server pool in the root organization.

7 If the default server pool in the root organization has an available server, Cisco UCS Manager associates that server with the service profile and discontinues the search. If the default pool does not have an available server, Cisco UCS Manager returns an allocation error.
Configuring an Organization Under the Root Organization

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org /</td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create org org-name</td>
<td>Creates the specified organization under the root organization and enters organization mode for the specified organization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates an organization named Finance under the root organization and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org# create org Finance
UCS-A /org*# commit-buffer
```

Configuring an Organization Under an Organization that is not Root

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org /</td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope org org-name</td>
<td>Enters organization mode for the specified organization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # create org org-name</td>
<td>Creates the specified organization under the previously configured non-root organization and enters organization mode for the specified organization.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates an organization named Finance under the NorthAmerica organization and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org# scope org NorthAmerica
UCS-A /org# create org Finance
```
Deleting an Organization

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org /</td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete org org-name</td>
<td>Deletes the specified organization.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the organization under the root organization named Finance and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # delete org Finance
UCS-A /org* # commit-buffer
UCS-A /org #
```
Deleting an Organization
CHAPTER 10

Configuring Role-Based Access Control

This chapter includes the following sections:

- Role-Based Access Control, page 159
- User Accounts for Cisco UCS Manager, page 159
- User Roles, page 162
- User Locales, page 166
- Configuring User Roles, page 167
- Configuring Locales, page 169
- Configuring Locally Authenticated User Accounts, page 171
- Password Profile for Locally Authenticated Users, page 179
- Monitoring User Sessions, page 182

Role-Based Access Control

Role-Based Access Control (RBAC) is a method of restricting or authorizing system access for users based on user roles and locales. A role defines the privileges of a user in the system and the locale defines the organizations (domains) that a user is allowed access. Because users are not directly assigned privileges, management of individual user privileges is simply a matter of assigning the appropriate roles and locales.

A user is granted write access to desired system resources only if the assigned role grants the access privileges and the assigned locale allows access. For example, a user with the Server Administrator role in the Engineering organization could update server configurations in the Engineering organization but could not update server configurations in the Finance organization unless the locales assigned to the user include the Finance organization.

User Accounts for Cisco UCS Manager

User accounts are used to access the system. Up to 48 user accounts can be configured in each Cisco UCS domain. Each user account must have a unique username and password.
A user account can be set with a SSH public key. The public key can be set in either of the two formats: OpenSSH and SECSH.

Admin Account

Each Cisco UCS domain has an admin account. The admin account is a default user account and cannot be modified or deleted. This account is the system administrator or superuser account and has full privileges. There is no default password assigned to the admin account; you must choose the password during the initial system setup.

The admin account is always active and does not expire. You cannot configure the admin account as inactive.

Locally Authenticated User Accounts

A locally authenticated user account is authenticated directly through the fabric interconnect and can be enabled or disabled by anyone with admin or aaa privileges. Once a local user account is disabled, the user cannot log in. Configuration details for disabled local user accounts are not deleted by the database. If you re-enable a disabled local user account, the account becomes active again with the existing configuration, including username and password.

Remotely Authenticated User Accounts

A remotely authenticated user account is any user account that is authenticated through LDAP, RADIUS, or TACACS+.

If a user maintains a local user account and a remote user account simultaneously, the roles defined in the local user account override those maintained in the remote user account.

Expiration of User Accounts

User accounts can be configured to expire at a predefined time. When the expiration time is reached, the user account is disabled.

By default, user accounts do not expire.

Note

After you configure a user account with an expiration date, you cannot reconfigure the account to not expire. You can, however, configure the account with the latest expiration date available.

Guidelines for Cisco UCS Manager Usernames

The username is also used as the login ID for Cisco UCS Manager. When you assign usernames to Cisco UCS Manager user accounts, consider the following guidelines and restrictions:

- The login ID can contain between 1 and 32 characters, including the following:
 - Any alphabetic character
 - Any digit
 - `_` (underscore)
 - `-` (dash)
 - `.` (dot)
The unique username for each user account cannot be all-numeric. You cannot create a local user with an all-numeric username.

The unique username must start with an alphabetic character. It cannot start with a number or a special character, such as an underscore.

After you create a user account, you cannot change the username. You must delete the user account and create a new one.

Reserved Words: Locally Authenticated User Accounts

The following words cannot be used when creating a local user account in Cisco UCS Manager.

- root
- bin
- daemon
- adm
- ip
- sync
- shutdown
- halt
- news
- uucp
- operator
- games
- gopher
- nobody
- nscl
- mailnull
- mail
- rpcuser
- rpc
- mtsuser
- ftpuser
- ftp
- man
- sys
- samdme
• debug

Guidelines for Cisco UCS Manager Passwords

A password is required for each locally authenticated user account. A user with admin or aaa privileges can configure Cisco UCS Manager to perform a password strength check on user passwords. If the password strength check is enabled, each user must have a strong password.

Cisco recommends that each user have a strong password. If you enable the password strength check for locally authenticated users, Cisco UCS Manager rejects any password that does not meet the following requirements:

• Must contain a minimum of 8 characters and a maximum of 64 characters.
• Must contain at least three of the following:
 ◦ Lower case letters
 ◦ Upper case letters
 ◦ Digits
 ◦ Special characters
• Must not contain a character that is repeated more than 3 times consecutively, such as aaabbb.
• Must not be identical to the username or the reverse of the username.
• Must pass a password dictionary check. For example, the password must not be based on a standard dictionary word.
• Must not contain the following symbols: $ (dollar sign), ? (question mark), and = (equals sign).
• Should not be blank for local user and admin accounts.

Web Session Limits for User Accounts

Web session limits are used by Cisco UCS Manager to restrict the number of web sessions (both GUI and XML) a given user account is permitted to access at any one time.

By default, the number of concurrent web sessions allowed by Cisco UCS Manager is set to 32; although this value can be configured up to the system maximum of 256.

User Roles

User roles contain one or more privileges that define the operations allowed for the user who is assigned the role. A user can be assigned one or more roles. A user assigned multiple roles has the combined privileges of all assigned roles. For example, if Role1 has storage related privileges, and Role2 has server related privileges, users who are assigned to both Role1 and Role2 have storage and server related privileges.

A Cisco UCS domain can contain up to 48 user roles, including the default user roles.

All roles include read access to all configuration settings in the Cisco UCS domain. The difference between the read-only role and other roles is that a user who is only assigned the read-only role cannot modify the system state. A user assigned another role can modify the system state in that user's assigned area or areas.
Roles can be created, modified to add new or remove existing privileges, or deleted. When a role is modified, the new privileges are applied to all users assigned to that role. Privilege assignment is not restricted to the privileges defined for the default roles. That is, you can use a custom set of privileges to create a unique role. For example, the default Server Administrator and Storage Administrator roles have different set of privileges, but a new Server and Storage Administrator role can be created that combines the privileges of both roles.

If a role is deleted after it has been assigned to users, it is also deleted from those user accounts.

User profiles on AAA servers (RADIUS or TACACS+) should be modified to add the roles corresponding to the privileges granted to that user. The attribute is used to store the role information. The AAA servers return this attribute with the request and parse it to get the roles. LDAP servers return the roles in the user profile attributes.

Note

If a local user account and a remote user account have the same username, any roles assigned to the remote user are overridden by those assigned to the local user.

Default User Roles

The system contains the following default user roles:

AAA Administrator

Read-and-write access to users, roles, and AAA configuration. Read access to the rest of the system.

Administrator

Complete read-and-write access to the entire system. The default admin account is assigned this role by default and it cannot be changed.

Facility Manager

Read-and-write access to power management operations through the power-mgmt privilege. Read access to the rest of the system.

Network Administrator

Read-and-write access to fabric interconnect infrastructure and network security operations. Read access to the rest of the system.

Operations

Read-and-write access to systems logs, including the syslog servers, and faults. Read access to the rest of the system.

Read-Only

Read-only access to system configuration with no privileges to modify the system state.

Server Equipment Administrator

Read-and-write access to physical server related operations. Read access to the rest of the system.
Server Profile Administrator
Read-and-write access to logical server related operations. Read access to the rest of the system.

Server Security Administrator
Read-and-write access to server security related operations. Read access to the rest of the system.

Storage Administrator
Read-and-write access to storage operations. Read access to the rest of the system.

Reserved Words: User Roles
The following words cannot be used when creating custom roles in Cisco UCS Manager.

• network-admin
• network-operator
• vdc-admin
• vdc-operator
• server-admin

Privileges
Privileges give users assigned to user roles access to specific system resources and permission to perform specific tasks. The following table lists each privilege and the user role given that privilege by default.

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
<th>Default Role Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>System security and AAA</td>
<td>AAA Administrator</td>
</tr>
<tr>
<td>admin</td>
<td>System administration</td>
<td>Administrator</td>
</tr>
<tr>
<td>ext-lan-config</td>
<td>External LAN configuration</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-policy</td>
<td>External LAN policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-qos</td>
<td>External LAN QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-lan-security</td>
<td>External LAN security</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>ext-san-config</td>
<td>External SAN configuration</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>ext-san-policy</td>
<td>External SAN policy</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>ext-san-qos</td>
<td>External SAN QoS</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>Privilege</td>
<td>Description</td>
<td>Default Role Assignment</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ext-san-security</td>
<td>External SAN security</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>fault</td>
<td>Alarms and alarm policies</td>
<td>Operations</td>
</tr>
<tr>
<td>operations</td>
<td>Logs and Smart Call Home</td>
<td>Operations</td>
</tr>
<tr>
<td>pod-config</td>
<td>Pod configuration</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-policy</td>
<td>Pod policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-qos</td>
<td>Pod QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>pod-security</td>
<td>Pod security</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>power-mgmt</td>
<td>Read-and-write access to power management operations</td>
<td>Facility Manager</td>
</tr>
<tr>
<td>read-only</td>
<td>Read-only access</td>
<td>Read-Only</td>
</tr>
<tr>
<td></td>
<td>Read-only cannot be selected as a privilege; it is assigned to every user role.</td>
<td></td>
</tr>
<tr>
<td>server-equipment</td>
<td>Server hardware management</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-maintenance</td>
<td>Server maintenance</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-policy</td>
<td>Server policy</td>
<td>Server Equipment Administrator</td>
</tr>
<tr>
<td>server-security</td>
<td>Server security</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-config</td>
<td>Service profile configuration</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-config-policy</td>
<td>Service profile configuration policy</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-ext-access</td>
<td>Service profile end point access</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-network</td>
<td>Service profile network</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-network-policy</td>
<td>Service profile network policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-qos</td>
<td>Service profile QoS</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-qos-policy</td>
<td>Service profile QoS policy</td>
<td>Network Administrator</td>
</tr>
<tr>
<td>service-profile-security</td>
<td>Service profile security</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-security-policy</td>
<td>Service profile security policy</td>
<td>Server Security Administrator</td>
</tr>
</tbody>
</table>
User Locales

A user can be assigned one or more locales. Each locale defines one or more organizations (domains) the user is allowed access, and access would be limited to the organizations specified in the locale. One exception to this rule is a locale without any organizations, which gives unrestricted access to system resources in all organizations.

A Cisco UCS domain can contain up to 48 user locales.

Users with AAA privileges (AAA Administrator role) can assign organizations to the locale of other users. The assignment of organizations is restricted to only those in the locale of the user assigning the organizations. For example, if a locale contains only the Engineering organization then a user assigned that locale can only assign the Engineering organization to other users.

Note

You cannot assign a locale to users with one or more of the following privileges:

- aaa
- admin
- operations

You can hierarchically manage organizations. A user that is assigned at a top level organization has automatic access to all organizations under it. For example, an Engineering organization can contain a Software Engineering organization and a Hardware Engineering organization. A locale containing only the Software Engineering organization has access to system resources only within that organization; however, a locale that contains the Engineering organization has access to the resources for both the Software Engineering and Hardware Engineering organizations.

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
<th>Default Role Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-profile-server</td>
<td>Service profile server management</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-server-oper</td>
<td>Service profile consumer</td>
<td>Server Profile Administrator</td>
</tr>
<tr>
<td>service-profile-server-policy</td>
<td>Service profile pool policy</td>
<td>Server Security Administrator</td>
</tr>
<tr>
<td>service-profile-storage</td>
<td>Service profile storage</td>
<td>Storage Administrator</td>
</tr>
<tr>
<td>service-profile-storage-policy</td>
<td>Service profile storage policy</td>
<td>Storage Administrator</td>
</tr>
</tbody>
</table>
Configuring User Roles

Creating a User Role

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/security # create role name</td>
<td>Creates the user role and enters security role mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A/security/role # add privilege privilege-name</td>
<td>Adds one or more privileges to the role. Note You can specify more than one privilege-name on the same command line to add multiple privileges to the role, or you can add privileges to the same role using multiple add commands.</td>
</tr>
<tr>
<td>Step 4 UCS-A/security/role # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates the service-profile-security-admin role, adds the service profile security and service profile security policy privileges to the role, and commits the transaction:

UCS-A# scope security
UCS-A/security # create role ls-security-admin
UCS-A/security/role* # add privilege service-profile-security service-profile-security-policy
UCS-A/security/role* # commit-buffer

Adding Privileges to a User Role

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/security # scope role name</td>
<td>Enters security role mode for the specified role.</td>
</tr>
<tr>
<td>Step 3 UCS-A/security/role # add privilege privilege-name</td>
<td>Adds one or more privileges to the existing privileges of the user role. Note You can specify more than one privilege-name on the same command line to add multiple privileges to the role, or you can add privileges to the same role using multiple add privilege commands.</td>
</tr>
</tbody>
</table>
The following example adds the server security and server policy privileges to the service-profile-security-admin role and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope role service-profile-security-admin
UCS-A /security/role # add privilege server-security server-policy
UCS-A /security/role* # commit-buffer
UCS-A /security/role #
```

Removing Privileges from a User Role

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope role name</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/role # remove privilege privilege-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /security/role # commit-buffer</td>
</tr>
</tbody>
</table>

The following example removes the server security and server policy privileges from the service-profile-security-admin role and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope role service-profile-security-admin
UCS-A /security/role # remove privilege server-security server-policy
UCS-A /security/role* # commit-buffer
UCS-A /security/role #
```
Deleting a User Role

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/security# delete role name</td>
<td>Deletes the user role.</td>
</tr>
<tr>
<td>Step 3 UCS-A/security# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the service-profile-security-admin role and commits the transaction:

```
UCS-A# scope security
UCS-A /security # delete role service-profile-security-admin
UCS-A /security* # commit-buffer
UCS-A /security #
```

Configuring Locales

Creating a Locale

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security# create locale locale-name</td>
<td>Creates a locale and enters security locale mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/locale# create org-ref org-ref-name orgdn orgdn-name</td>
<td>References (binds) an organization to the locale. The org-ref-name argument is the name used to identify the organization reference, and the orgdn-name argument is the distinguished name of the organization being referenced.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/locale# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates the western locale, references the finance organization to the locale, names the reference finance-ref, and commits the transaction:

```
UCS-A# scope security
UCS-A /security# create locale western
UCS-A /security/locale* # create org-ref finance-ref orgdn finance
UCS-A /security/locale* # commit-buffer
UCS-A /security/locale #
```
Assigning an Organization to a Locale

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A# scope locale locale-name</td>
<td>Enters security locale mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/locale # create org-ref org-ref-name orgdn orgdn-name</td>
<td>References (binds) an organization to the locale. The org-ref-name argument is the name used to identify the organization reference, and the orgdn-name argument is the distinguished name of the organization being referenced.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/locale # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enters the western locale, adds (references) the marketing organization to the locale, names the reference marketing-ref, and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope locale western
UCS-A /security/locale* # create org-ref marketing-ref orgdn marketing
UCS-A /security/locale* # commit-buffer
```

Deleting an Organization from a Locale

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope locale locale-name</td>
<td>Enters security locale mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/locale # delete org-ref org-ref-name</td>
<td>Deletes the organization from the locale.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/locale # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the finance organization from the western locale and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope locale western
UCS-A /security/locale # delete org-ref finance-ref
UCS-A /security/locale* # commit-buffer
UCS-A /security/locale #
```
Deleting a Locale

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # delete locale locale-name</td>
<td>Deletes the locale.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the western locale and commits the transaction:

```
UCS-A# scope security
UCS-A /security # delete locale western
UCS-A /security* # commit-buffer
UCS-A /security #
```

Configuring Locally Authenticated User Accounts

Creating a User Account

At a minimum, we recommend that you create the following users:

- Server administrator account
- Network administrator account
- Storage administrator

Before You Begin

Perform the following tasks, if the system includes any of the following:

- Remote authentication services, ensure the users exist in the remote authentication server with the appropriate roles and privileges.
- Multi-tenancy with organizations, create one or more locales. If you do not have any locales, all users are created in root and are assigned roles and privileges in all organizations.
- SSH authentication, obtain the SSH key.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /security # create local-user local-user-name</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /security/local-user # set account-status {active</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /security/local-user # set password password</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /security/local-user # set firstname first-name</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /security/local-user # set lastname last-name</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /security/local-user # set expiration month day-of-month year</td>
</tr>
<tr>
<td>8</td>
<td>UCS-A /security/local-user # set email email-addr</td>
</tr>
<tr>
<td>9</td>
<td>UCS-A /security/local-user # set phone phone-num</td>
</tr>
<tr>
<td>10</td>
<td>UCS-A /security/local-user # set sshkey ssh-key</td>
</tr>
<tr>
<td>11</td>
<td>UCS-A security/local-user # commit-buffer</td>
</tr>
</tbody>
</table>

The following example creates the user account named kikipopo, enables the user account, sets the password to foo12345, and commits the transaction:

```plaintext
UCS-A# scope security
UCS-A /security # create local-user kikipopo
UCS-A /security/local-user* # set account-status active
UCS-A /security/local-user* # set password
Enter a password: 
Confirm the password:
UCS-A /security/local-user* # commit-buffer
UCS-A /security/local-user #
```
The following example creates the user account named lincey, enables the user account, sets an OpenSSH key for passwordless access, and commits the transaction.

```plaintext
UCS-A# scope security
UCS-A /security# create local-user lincey
UCS-A /security/local-user* # set account-status active
UCS-A /security/local-user* # set sshkey "ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAuo9VQ2CmWBI9/S1f30k1CWjnV31gdXMzO0WU15iPw851kdGQqap+NFuNmHcb4K
iaQ8BX/FdmtlxyQcawcljy+k8f4VeOlBxlsGk51uq51s1ob1VOIEwcKEL/h51rdbN1I8y3SS9I/gGiB29ARlo9LDpD
mHPH2lQgyH7El1M8="
UCS-A /security/local-user* # commit-buffer
UCS-A /security/local-user #
```

The following example creates the user account named jforlenz, enables the user account, sets a Secure SSH key for passwordless access, and commits the transaction.

```plaintext
UCS-A# scope security
UCS-A /security# create local-user jforlenz
UCS-A /security/local-user* # set account-status active
UCS-A /security/local-user* # set sshkey
Enter lines one at a time. Enter ENDOFBUF to finish. Press ^C to abort.
User's SSH key:
> ----- BEGIN SSH2 PUBLIC KEY ----- 
> AAAAB3NzaC1yc2EAAAABIwAAAIEAuo9VQ2CmWBI9/S1f30k1CWjnV31gdXMzO0WU15iPw851kdGQqap+NFuNmHcb4K
> iaQ8BX/FdmtlxyQcawcljy+k8f4VeOlBxlsGk51uq51s1ob1VOIEwcKEL/h51rdbN1I8y3SS9I/gGiB29ARlo9LDpD
> mHPH2lQgyH7El1M8=
> ----- END SSH2 PUBLIC KEY ----- 
> END OFBUF
UCS-A /security/local-user* # commit-buffer
UCS-A /security/local-user #
```

Enabling the Password Strength Check for Locally Authenticated Users

You must be a user with admin or aaa privileges to enable the password strength check. If the password strength check is enabled, Cisco UCS Manager does not permit a user to choose a password that does not meet the guidelines for a strong password.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /security # enforce-strong-password {yes</td>
<td>no}</td>
</tr>
</tbody>
</table>

The following example enables the password strength check:

```plaintext
UCS-A# scope security
UCS-A /security # set enforce-strong-password yes
UCS-A /security #
```
Setting Web Session Limits for User Accounts

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # scope web-session-limits</td>
<td>Enters system services web session limits mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services/web-session-limits # set peruser num-of-logins-per-user</td>
<td>Sets the maximum number of concurrent HTTP and HTTPS sessions allowed for each user. Enter an integer between 1 and 256. By default, this value is set to 32.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /system/services/web-session-limits # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the maximum number of HTTP and HTTPS sessions allowed by each user account to 60 and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # scope web-session-limits
UCS-A /system/services/web-session-limits* # set peruser 60
UCS-A /system/services/web-session-limits* # commit-buffer
```

Assigning a Role to a User Account

Changes in user roles and privileges do not take effect until the next time the user logs in. If a user is logged in when you assign a new role to or remove an existing role from a user account, the active session continues with the previous roles and privileges.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope local-user local-user-name</td>
<td>Enters security local user mode for the specified local user account.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/local-user # create role role-name</td>
<td>Assigns the specified role to the user account. Note The <code>create role</code> command can be entered multiple times to assign more than one role to a user account.</td>
</tr>
</tbody>
</table>
Assigning a Locale to a User Account

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope local-user local-user-name</td>
<td>Enters security local user mode for the specified local user account.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/local-user # create locale locale-name</td>
<td>Assigns the specified locale to the user account.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The <code>create locale</code> command can be entered multiple times to assign more than one locale to a user account.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A security/local-user # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example assigns the western locale to the kikipopo local user account and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope local-user kikipopo
UCS-A /security/local-user # create locale western
UCS-A /security/local-user* # commit-buffer
UCS-A /security/local-user #
```

Assigning Locales to User Accounts

Do not assign locales to users with an admin or aaa role.
Removing a Role from a User Account

Changes in user roles and privileges do not take effect until the next time the user logs in. If a user is logged in when you assign a new role to or remove an existing role from a user account, the active session continues with the previous roles and privileges.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>UCS-A# scope security</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters security local user mode for the specified local user account.</td>
</tr>
<tr>
<td>UCS-A /security # scope local-user local-user-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Removes the specified role from the user account.</td>
</tr>
<tr>
<td>UCS-A /security/local-user # delete role role-name</td>
<td>Note: The delete role command can be entered multiple times to remove more than one role from a user account.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Commits the transaction.</td>
</tr>
<tr>
<td>UCS-A security/local-user # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example removes the operations role from the kikipopo local user account and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope local-user kikipopo
UCS-A /security/local-user # delete role operations
UCS-A /security/local-user* # commit-buffer
```

Removing a Locale from a User Account

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>UCS-A# scope security</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters security local user mode for the specified local user account.</td>
</tr>
<tr>
<td>UCS-A /security # scope local-user local-user-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Removes the specified locale from the user account.</td>
</tr>
<tr>
<td>UCS-A /security/local-user # delete locale locale-name</td>
<td>Note: The delete locale command can be entered multiple times to remove more than one locale from a user account.</td>
</tr>
</tbody>
</table>
Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A security/local-user # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example removes the western locale from the kikipopo local user account and commits the transaction:

```
UCS-A# scope security
UCS-A /security # scope local-user kikipopo
UCS-A /security/local-user # delete locale western
UCS-A /security/local-user* # commit-buffer
UCS-A /security/local-user #
```

Enabling or Disabling a User Account

You must be a user with admin or aaa privileges to enable or disable a local user account.

Before You Begin

Create a local user account.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope security</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /security # scope local-user</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /security/local-user # set account-status {active</td>
</tr>
</tbody>
</table>

The following example enables a local user account called accounting:

```
UCS-A# scope security
UCS-A /security # scope local-user accounting
UCS-A /security/local-user # set account-status active
```
Clearing the Password History for a Locally Authenticated User

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 \ UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 \ UCS-A /security # scope local-user user-name</td>
<td>Enters local user security mode for the specified user account.</td>
</tr>
<tr>
<td>Step 3 \ UCS-A /security/local-user # set clear password-history yes</td>
<td>Clears the password history for the specified user account.</td>
</tr>
<tr>
<td>Step 4 \ UCS-A /security/local-user # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures the password history count and commits the transaction:

```
UCS-A \# scope security
UCS-A /security \# scope local-user admin
UCS-A /security/local-user \# set clear password-history yes
UCS-A /security/local-user \# commit-buffer
```

Deleting a User Account

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 \ UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 \ UCS-A /security # delete local-user local-user-name</td>
<td>Deletes the local-user account.</td>
</tr>
<tr>
<td>Step 3 \ UCS-A /security # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the foo user account and commits the transaction:

```
UCS-A\# scope security
UCS-A /security \# delete local-user foo
UCS-A /security* \# commit-buffer
UCS-A /security \#
```
Password Profile for Locally Authenticated Users

The password profile contains the password history and password change interval properties for all locally authenticated users of Cisco UCS Manager. You cannot specify a different password profile for each locally authenticated user.

Note

You must have admin or aaa privileges to change the password profile properties. Except for password history, these properties do not apply to users with admin or aaa privileges.

Password History Count

The password history count allows you to prevent locally authenticated users from reusing the same password over and over again. When this property is configured, Cisco UCS Manager stores passwords that were previously used by locally authenticated users up to a maximum of 15 passwords. The passwords are stored in reverse chronological order with the most recent password first to ensure that the only the oldest password can be reused when the history count threshold is reached.

A user must create and use the number of passwords configured in the password history count before being able to reuse one. For example, if you set the password history count to 8, a locally authenticated user cannot reuse the first password until after the ninth password has expired.

By default, the password history is set to 0. This value disables the history count and allows users to reuse previously passwords at any time.

If necessary, you can clear the password history count for a locally authenticated user and enable reuse of previous passwords.

Password Change Interval

The password change interval enables you to restrict the number of password changes a locally authenticated user can make within a given number of hours. The following table describes the two configuration options for the password change interval.

<table>
<thead>
<tr>
<th>Interval Configuration</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| No password change allowed | This option does not passwords for locally authenticated users to be changed within a specified number of hours after a password change. You can specify a no change interval between 1 and 745 hours. By default, the no change interval is 24 hours. | For example, to prevent passwords from being changed within 48 hours after a locally authenticated user changes his or her password, set the following:
 • Change during interval to disable
 • No change interval to 48 |

Cisco UCS Manager CLI Configuration Guide, Release 2.0
Interval Configuration

<table>
<thead>
<tr>
<th>Password changes allowed within change interval</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| This option specifies the maximum number of times that passwords for locally authenticated users can be changed within a pre-defined interval. You can specify a change interval between 1 and 745 hours and a maximum number of password changes between 0 and 10. By default, a locally authenticated user is permitted a maximum of 2 password changes within a 48 hour interval. | For example, to allow to be changed a maximum of once within 24 hours after a locally authenticated user changes his or her password, set the following:
- Change during interval to enable
- Change count to 1
- Change interval to 24 | |

Configuring the Maximum Number of Password Changes for a Change Interval

You must have admin or aaa privileges to change the password profile properties. Except for password history, these properties do not apply to users with admin or aaa privileges.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1:
UCS-A# scope security | Enters security mode. |
| Step 2:
UCS-A /security # scope password-profile | Enters password profile security mode. |
| Step 3:
UCS-A /security/password-profile # set change-during-interval enable | Restricts the number of password changes a locally authenticated user can make within a given number of hours. |
| Step 4:
UCS-A /security/password-profile # set change-count pass-change-num | Specifies the maximum number of times a locally authenticated user can change his or her password during the Change Interval.
This value can be anywhere from 0 to 10. |
| Step 5:
UCS-A /security/password-profile # set change-interval num-of-hours | Specifies the maximum number of hours over which the number of password changes specified in the Change Count field are enforced.
This value can be anywhere from 1 to 745 hours.
For example, if this field is set to 48 and the Change Count field is set to 2, a locally authenticated user can make no more than 2 password changes within a 48 hour period. |
| Step 6:
UCS-A /security/password-profile # commit-buffer | Commits the transaction to the system configuration. |
The following example enables the change during interval option, sets the change count to 5, sets the change interval to 72 hours, and commits the transaction:

```
UCS-A # scope security
UCS-A /security # scope password-profile
UCS-A /security/password-profile # set change-during-interval enable
UCS-A /security/password-profile* # set change-count 5
UCS-A /security/password-profile* # set change-interval 72
UCS-A /security/password-profile* # commit-buffer
UCS-A /security/password-profile #
```

Configuring a No Change Interval for Passwords

You must have admin or aaa privileges to change the password profile properties. Except for password history, these properties do not apply to users with admin or aaa privileges.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /security # scope password-profile</td>
<td>Enters password profile security mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /security/password-profile # set change-during-interval disable</td>
<td>Disables the change during interval feature.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /security/password-profile # set no-change-interval min-num-hours</td>
<td>Specifies the minimum number of hours that a locally authenticated user must wait before changing a newly created password. This value can be anywhere from 1 to 745 hours. This interval is ignored if the Change During Interval property is not set to Disable.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /security/password-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables the change during interval option, sets the no change interval to 72 hours, and commits the transaction:

```
UCS-A # scope security
UCS-A /security # scope password-profile
UCS-A /security/password-profile # set change-during-interval disable
UCS-A /security/password-profile* # set no-change-interval 72
UCS-A /security/password-profile* # commit-buffer
UCS-A /security/password-profile #
```

Configuring the Password History Count

You must have admin or aaa privileges to change the password profile properties.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # scope password-profile</td>
<td>Enters password profile security mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /security/password-profile # set history-count num-of-passwords</td>
<td>Specifies the number of unique passwords that a locally authenticated user must create before that user can reuse a previously used password. This value can be anywhere from 0 to 15. By default, the History Count field is set to 0, which disables the history count and allows users to reuse previously used passwords at any time.</td>
</tr>
<tr>
<td>Step 4 UCS-A /security/password-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures the password history count and commits the transaction:

UCS-A # scope security
UCS-A /security # scope password-profile
UCS-A /security/password-profile # set history-count 5
UCS-A /security/password-profile* # commit-buffer
UCS-A /security/password-profile #

Monitoring User Sessions

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope security</td>
<td>Enters security mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /security # show user-session {local</td>
<td>remote} [detail]</td>
</tr>
</tbody>
</table>

The following example lists all local users logged in to the system. The asterisk indicates which session is the current login session.

UCS-A# scope security
UCS-A /security # show user-session local
Session Id User Host Login Time
------------------------------- --------------- --------------------------
pts_25_1_31264* steve 192.168.100.111 2009-05-09T14:06:59
ttyS0_1_3532 jeff console 2009-05-02T15:11:08
The following example displays detailed information on all local users logged into the system:

```
UCS-A# scope security
UCS-A /security # show user-session local detail
Session Id pts_25_1_31264:
  Fabric Id: A
  Term: pts/25
  User: steve
  Host: 64.101.53.93
  Pid: 31264
  Login Time: 2009-05-09T14:06:59

Session Id ttyS0_1_3532:
  Fabric Id: A
  Term: ttyS0
  User: jeff
  Host: console
  Pid: 3532
  Login Time: 2009-05-02T15:11:08

Session Id web_25277_A:
  Fabric Id: A
  Term: web_25277
  User: faye
  Host: 192.168.100.112
  Pid: 3518
```
Managing Firmware

This chapter includes the following sections:

- Overview of Firmware, page 185
- Firmware Image Management, page 186
- Firmware Versions, page 188
- Firmware Upgrades, page 189
- Firmware Downgrades, page 201
- Completing the Prerequisites for Upgrading the Firmware, page 201
- Downloading and Managing Firmware Packages, page 206
- Directly Upgrading Firmware at Endpoints, page 214
- Updating Firmware through Service Profiles, page 225
- Managing the Capability Catalog, page 232
- Updating Management Extensions, page 238

Overview of Firmware

Cisco UCS uses firmware obtained from and certified by Cisco to support the endpoints in a Cisco UCS domain. Each endpoint is a component in the Cisco UCS domain that requires firmware to function. The upgrade order for the endpoints in a Cisco UCS domain depends upon the upgrade path, but includes the following:

- Cisco UCS Manager
- I/O modules
- Fabric interconnects
- Endpoints physically located on adapters, including NIC and HBA firmware, and Option ROM (where applicable) that can be upgraded through firmware packages included in a service profile
Endpoints physically located on servers, such as the BIOS, storage controller (RAID controller), and Cisco Integrated Management Controller (CIMC) that can be upgraded through firmware packages included in a service profile.

See the required order of steps for your upgrade path to determine the appropriate order in which to upgrade the endpoints in your Cisco UCS domain.

Note

Beginning with Cisco UCS, Release 1.4(1), Cisco is releasing firmware upgrades in multiple bundles, rather than one large firmware package. For more information see Firmware Image Management, on page 186.

Cisco maintains a set of best practices for managing firmware images and updates in this document and in the following technical note: Unified Computing System Firmware Management Best Practices.

This document uses the following definitions for managing firmware:

Upgrade

Changes the firmware running on an endpoint to another image, such as a release or patch. Upgrade includes both update and activation.

Update

Copies the firmware image to the backup partition on an endpoint.

Activate

Sets the firmware in the backup partition as the active firmware version on the endpoint. Activation can require or cause the reboot of an endpoint.

For Management Extensions and Capability Catalog upgrades, update and activate occur simultaneously. You only need to update or activate those upgrades. You do not need to perform both steps.

Firmware Image Management

Cisco delivers all firmware updates to Cisco UCS components in bundles of images. Cisco UCS firmware updates are available to be downloaded in the following bundles:

Cisco UCS Infrastructure Software Bundle

This bundle includes the following firmware images that are required to update the following components:

- Cisco UCS Manager software
- Kernel and system firmware for the fabric interconnects
- I/O module firmware
Cisco UCS B-Series Blade Server Software Bundle

This bundle includes the following firmware images that are required to update the firmware for the blade servers in a Cisco UCS domain. In addition to the bundles created for a release, these bundles can also be released between infrastructure bundles to enable Cisco UCS Manager to support a blade server that is not included in the most recent infrastructure bundle.

- CIMC firmware
- BIOS firmware
- Adapter firmware
- Board controller firmware
- Third-party firmware images required by the new server

Cisco UCS C-Series Rack-Mount Server Software Bundle

This bundle includes the following firmware images that are required to update components on rack-mount servers that have been integrated with and are managed by Cisco UCS Manager:

- CIMC firmware
- BIOS firmware
- Adapter firmware
- Storage controller firmware

Note: You cannot use this bundle for standalone C-series servers. The firmware management system in those servers cannot interpret the header required by Cisco UCS Manager. For information on how to upgrade standalone C-series servers, see the C-series configuration guides.

Cisco also provides release notes, which you can obtain on the same website from which you obtained the bundles.

Firmware Image Headers

Every firmware image has a header, which includes the following:

- Checksum
- Version information
- Compatibility information that the system can use to verify the compatibility of component images and any dependencies

Firmware Image Catalog

Cisco UCS Manager provides you with two views of the catalog of firmware images and their contents that have been downloaded to the fabric interconnect:
Packages

This view provides you with a read-only representation of the firmware bundles that have been downloaded onto the fabric interconnect. This view is sorted by image, not by the contents of the image. For packages, you can use this view to see which component images are in each downloaded firmware bundle.

Images

The images view lists the component images available on the system. You cannot use this view to see complete firmware bundles or to group the images by bundle. The information available about each component image includes the name of the component, the image size, the image version, and the vendor and model of the component.

You can use this view to identify the firmware updates available for each component. You can also use this view to delete obsolete and unneeded images. Cisco UCS Manager deletes a package after all images in the package have been deleted.

Tip

Cisco UCS Manager stores the images in bootflash on the fabric interconnect. In a cluster system, space usage in bootflash on both fabric interconnects is the same, because all images are synchronized between them. If Cisco UCS Manager reports that the bootflash is out of space, delete obsolete images to free up space.

Firmware Versions

The firmware version terminology used depends upon the type of endpoint, as follows:

Firmware Versions in CIMC, I/O Modules, and Adapters

Each CIMC, I/O module, and adapter has two slots for firmware in flash. Each slot holds a version of firmware. One slot is active and the other is the backup slot. A component boots from whichever slot is designated as active.

The following firmware version terminology is used in Cisco UCS Manager:

Running Version

The running version is the firmware that is active and in use by the endpoint.

Startup Version

The startup version is the firmware that will be used when the endpoint next boots up. Cisco UCS Manager uses the activate operation to change the startup version.

Backup Version

The backup version is the firmware in the other slot and is not in use by the endpoint. This version can be firmware that you have updated to the endpoint but have not yet activated, or it can be an older firmware version that was replaced by a recently activated version. Cisco UCS Manager uses the update operation to replace the image in the backup slot.

If the endpoint cannot boot from the startup version, it boots from the backup version.
Firmware Versions in the Fabric Interconnect and Cisco UCS Manager

You can only activate the fabric interconnect firmware and Cisco UCS Manager on the fabric interconnect. The fabric interconnect and Cisco UCS Manager firmware do not have backup versions, because all the images are stored on the fabric interconnect. As a result, the number of bootable fabric interconnect images is not limited to two, like the server CIMC and adapters. Instead, the number of bootable fabric interconnect images is limited by the available space in the memory of the fabric interconnect and the number of images stored there.

The fabric interconnect and Cisco UCS Manager firmware have running and startup versions of the kernel and system firmware. The kernel and system firmware must run the same versions of firmware.

Firmware Upgrades

Cisco UCS firmware is upgraded through a combination of the following methods:

- Direct upgrade at the endpoints. For a cluster configuration with two fabric interconnects, a direct upgrade can be minimally disruptive to data traffic. However, it requires that the Cisco UCS domain does not include firmware policies for those endpoints that you upgrade directly. You cannot avoid disruption to traffic in a Cisco UCS domain with only one fabric interconnect.

 Note
 Direct upgrade is not available for all endpoints, including the server BIOS, storage controller, HBA firmware, and HBA option ROM. You must upgrade those endpoints through the host firmware package included in the service profile associated with the server.

- Upgrades to server endpoints through service profiles that include a host firmware package, a management firmware package, or both. This method can be disruptive to data traffic and should be performed during a maintenance window.

 Note
 The Cisco UCS Manager CLI does not allow you to upgrade hardware that is not supported in the release to which you are upgrading, Cisco UCS Manager CLI displays an error message if you attempt to upgrade hardware to an unsupported release.

Cautions, Guidelines, and Best Practices for Firmware Upgrades

Before you upgrade the firmware for any endpoint in a Cisco UCS domain, consider the following cautions, guidelines, and best practices:

 Note
 The Cisco UCS Manager CLI does not allow you to upgrade hardware that is not supported in the release to which you are upgrading, Cisco UCS Manager CLI displays an error message if you attempt to upgrade hardware to an unsupported release.
Configuration Changes and Settings that Can Impact Upgrades

Depending upon the configuration of your Cisco UCS domain, the following changes may require you to make configuration changes after you upgrade. To avoid faults and other issues, we recommend that you make any required changes before you upgrade.

Overlapping FCoE VLAN IDs and Ethernet VLAN IDs Are No Longer Allowed with Cisco UCS Release 2.0

Caution

In Cisco UCS 1.4 and earlier releases, Ethernet VLANs and FCoE VLANs could have overlapping VLAN IDs. However, starting with Cisco UCS release 2.0, overlapping VLAN IDs are not allowed. If Cisco UCS Manager detects overlapping VLAN IDs during an upgrade, it raises a critical fault. If you do not reconfigure your VLAN IDs, Cisco UCS Manager raises a critical fault and drops Ethernet traffic on the overlapped VLANs. Therefore, we recommend that you ensure there are no overlapping Ethernet and FCoE VLAN IDs before you upgrade to Cisco UCS release 2.0.

If you did not explicitly configure the FCoE VLAN ID for a VSAN in Cisco UCS 1.4 and earlier releases, Cisco UCS Manager assigned VLAN 1 as the default FCoE VLAN for the default VSAN (with default VSAN ID 1). In those releases, VLAN 1 was also used as the default VLAN for Ethernet traffic. Therefore, if you accepted the default VLAN ID for the FCoE VLAN and one or more Ethernet VLANs, you must reconfigure the VLAN IDs for either the FCoE VLAN(s) on the VSAN(s) or the Ethernet VLAN(s).

For a new installation of Cisco UCS release 2.0, the default VLAN IDs are as follows:

- The default Ethernet VLAN ID is 1.
- The default FCoE VLAN ID is 4048.

After an upgrade from Cisco UCS release 1.4, where VLAN ID 4048 was used for FCoE storage port native VLAN, to release 2.0, the default VLAN IDs are as follows:

- The default Ethernet VLAN ID is 1.
- The current default FCoE VLAN ID is preserved. Cisco UCS Manager raises a critical fault on the conflicting Ethernet VLAN, if any. You must change one of the VLAN IDs to a VLAN ID that is not used or reserved.

Note

If a Cisco UCS domain uses one of the default VLAN IDs, which results in overlapping VLANs, you can change one or more of the default VLAN IDs to any VLAN ID that is not used or reserved. In release 2.0, VLANs with IDs from 3968 to 4047 are reserved.

VSANs with IDs in the Reserved Range are not Operational

A VSAN with an ID in the reserved range is not operational after an upgrade. Make sure that none of the VSANs configured in Cisco UCS Manager are in the reserved range, as follows:

- If you plan to use FC switch mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3040 to 4078.
- If you plan to use FC end-host mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3840 to 4079.
If a VSAN has an ID in the reserved range, change that VSAN ID to any VSAN ID that is not used or reserved.

All Connectivity May Be Lost During Upgrades if vNIC Failover and NIC Teaming Are Both Enabled

All connectivity may be lost during firmware upgrades if you have configured both **Enable Failover** on one or more vNICs and you have also configured NIC teaming/bonding at the host operating system level. Please design for availability by using one or the other method, but never both.

To determine whether you have enabled failover for one or more vNICs in a Cisco UCS domain, verify the configuration of the vNICs within each service profile associated with a server. For more information, see the [Cisco UCS Manager configuration guide](#) for the release that you are running.

Impact of Upgrade from a Release Prior to Release 1.3(1i)

An upgrade from an earlier Cisco UCS firmware release to release 1.3(1i) or higher has the following impact on the Protect Configuration property of the local disk configuration policy the first time servers are associated with service profiles after the upgrade:

Unassociated Servers

After you upgrade the Cisco UCS domain, the initial server association proceeds without configuration errors whether or not the local disk configuration policy matches the server hardware. Even if you enable the Protect Configuration property, Cisco UCS does not protect the user data on the server if there are configuration mismatches between the local disk configuration policy on the previous service profile and the policy in the new service profile.

Note

If you enable the Protect Configuration property and the local disk configuration policy encounters mismatches between the previous service profile and the new service profile, all subsequent service profile associations with the server are blocked.

Associated Servers

Any servers that are already associated with service profiles do not reboot after the upgrade. Cisco UCS Manager does not report any configuration errors if there is a mismatch between the local disk configuration policy and the server hardware.

When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.

Hardware-Related Guidelines and Best Practices for Firmware Upgrades

The hardware in a Cisco UCS domain can impact how you upgrade. Before you upgrade any endpoint, consider the following guidelines and best practices:
No Server or Chassis Maintenance

Caution
Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Avoid Replacing RAID-Configured Hard Disks Prior to Upgrade
Under the following circumstances, Cisco UCS Manager may scrub all data on a hard disk as part of the RAID synchronization process during an upgrade of the server firmware:

- The hard disks in the server are configured for RAID.
- One or more of the RAID-configured hard disks in the server are removed.
- The hard disk or disks are replaced with hard disks that are configured with a pre-existing RAID and the local disk configuration policy included in the service profile on the server is not used to configure those hard disks.
- The server firmware is upgraded, causing the server to reboot and Cisco UCS Manager to begin the RAID synchronization process.

If the original hard disks contained vital data that needs to preserved, avoid inserting new hard disks that are already configured for RAID.

Always Upgrade Cisco UCS Gen-2 Adapters through a Host Firmware Package
You cannot upgrade Cisco UCS Gen-2 adapters directly at the endpoints. You must upgrade the firmware on those adapters through a host firmware package.

Cannot Upgrade Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter
The firmware on the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter (N20-AI0002), Intel-based adapter card, is burned into the hardware at manufacture. You cannot upgrade the firmware on this adapter.

Number of Fabric Interconnects
For a cluster configuration with two fabric interconnects, you can take advantage of the failover between the fabric interconnects and perform a direct firmware upgrade of the endpoints without disrupting data traffic. However, you cannot avoid disrupting data traffic for those endpoints which must be upgraded through a host or management firmware package.

For a standalone configuration with a single fabric interconnect, you can minimize the disruption to data traffic when you perform a direct firmware upgrade of the endpoints. However, you must reboot the fabric interconnect to complete the upgrade and, therefore, cannot avoid disrupting traffic.

Firmware- and Software-Related Best Practices for Upgrades
Before you upgrade any endpoint, consider the following guidelines and best practices:
Determine Appropriate Type of Firmware Upgrade for Each Endpoint

Some endpoints, such as adapters and the server CIMC, can be upgraded through either a direct firmware upgrade or a firmware package included in a service profile. The configuration of a Cisco UCS domain determines how you upgrade these endpoints. If the service profiles associated with the servers include a host firmware package, upgrade the adapters for those servers through the firmware package. In the same way, if the service profiles associated with the servers include a management firmware package, upgrade the CIMC for those servers through the firmware package.

Upgrades of a CIMC through a management firmware package or an adapter through a firmware package in the service profile associated with the server take precedence over direct firmware upgrades. You cannot directly upgrade an endpoint if the service profile associated with the server includes a firmware package. To perform a direct upgrade, you must remove the firmware package from the service profile.

Do Not Activate All Endpoints Simultaneously in Cisco UCS Manager GUI

If you use Cisco UCS Manager GUI to update the firmware, do not select ALL from the Filter drop-down list in the Activate Firmware dialog box to activate all endpoints simultaneously. Many firmware releases and patches have dependencies that require the endpoints to be activated in a specific order for the firmware update to succeed. This order can change depending upon the contents of the release or patch. Activating all endpoints does not guarantee that the updates occur in the required order and can disrupt communications between the endpoints and the fabric interconnects and Cisco UCS Manager. For information about the dependencies in a specific release or patch, see the release notes provided with that release or patch.

Impact of Activation for Adapters and I/O Modules

During a direct upgrade, you should configure Set Startup Version Only for an adapter. With this setting, the activated firmware moves into the pending-next-boot state, and the server is not immediately rebooted. The activated firmware does not become the running version of firmware on the adapter until the server is rebooted. You cannot configure Set Startup Version Only for an adapter in the host firmware package.

If a server is not associated with a service profile, the activated firmware remains in the pending-next-boot state. Cisco UCS Manager does not reboot the endpoints or activate the firmware until the server is associated with a service profile. If necessary, you can manually reboot or reset an unassociated server to activate the firmware.

When you configure Set Startup Version Only for an I/O module, the I/O module is rebooted when the fabric interconnect in its data path is rebooted. If you do not configure Set Startup Version Only for an I/O module, the I/O module reboots and disrupts traffic. In addition, if Cisco UCS Manager detects a protocol and firmware version mismatch between the fabric interconnect and the I/O module, Cisco UCS Manager automatically updates the I/O module with the firmware version that matches the firmware in the fabric interconnect and then activates the firmware and reboots the I/O module again.

Select Ignore Compatibility Check When Upgrading

During a direct upgrade to a newer release, we recommend that you choose Ignore Compatibility Check. Newer releases may have incompatible code with older releases. This option ensures that the upgrade can proceed and avoids compatibility issues.

Disable Call Home before Upgrading to Avoid Unnecessary Alerts (Optional)

When you upgrade a Cisco UCS domain, Cisco UCS Manager restarts the components to complete the upgrade process. This restart causes events that are identical to service disruptions and component failures that trigger Call Home alerts to be sent. If you do not disable Call Home before you begin the upgrade, you can ignore the alerts generated by the upgrade-related component restarts.
Required Order of Components for Firmware Activation

If you upgrade firmware by individual components in a Cisco UCS domain, activate the updates in the required order for quicker activation and to avoid potential issues with conflicting firmware versions.

Summary of Steps for Upgrading from Cisco UCS, Release 1.0(2) and Later

1. Download the following firmware images:
 - Cisco UCS Infrastructure Software Bundle—Required for all Cisco UCS domains.
 - Cisco UCS B-Series Blade Server Software Bundle—Required for all Cisco UCS domains that include blade servers.
 - Cisco UCS C-Series Rack-Mount Server Software Bundle—Only required for Cisco UCS domains that include integrated rack-mount servers. This bundle contains firmware to enable Cisco UCS Manager to manage those servers and is not applicable to standalone C-Series rack-mount servers.

2. (Optional) Disable Call Home—If the Cisco UCS domain includes Call Home or Smart Call Home, disable Call Home to ensure you do not receive unnecessary alerts when Cisco UCS Manager restarts components.

3. Update adapters, /BMC, and IOMs—If you prefer, you can upgrade the adapters in a host firmware package as part of the last upgrade step.

4. Activate adapters—Choose Ignore Compatibility Check and Set Startup Version Only when performing this step.

5. Activate /BMC—Choose Ignore Compatibility Check when performing this step.

6. Activate Cisco UCS Manager—Choose Ignore Compatibility Check when performing this step.

7. Activate I/O modules—Choose Ignore Compatibility Check and Set Startup Version Only when performing this step.

8. Activate subordinate fabric interconnect—Choose Ignore Compatibility Check when performing this step.

9. Activate primary fabric interconnect—Choose Ignore Compatibility Check when performing this step.

10. Update host firmware package(s) for servers—Must be the last firmware upgraded. We recommend that you upgrade the board controller firmware during this step to avoid an additional reboot of servers with that firmware. You must upgrade the following firmware in a host firmware package:
 - BIOS
 - Storage controller
 - Certain adapters

11. (Optional) Enable Call Home—If you disabled Call Home before the upgrading the firmware, enable Call Home.

Summary of Upgrading from Cisco UCS, Release 1.0(1)

1. Download the following firmware images:
 - Cisco UCS Infrastructure Software Bundle—Required for all Cisco UCS domains.
• Cisco UCS B-Series Blade Server Software Bundle—Required for all Cisco UCS domains that include blade servers.

• Cisco UCS C-Series Rack-Mount Server Software Bundle—Only required for Cisco UCS domains that include integrated rack-mount servers. This bundle contains firmware to enable Cisco UCS Manager to manage those servers and is not applicable to standalone C-Series rack-mount servers.

2 (Optional) Disable Call Home—If the Cisco UCS domain includes Call Home or Smart Call Home, disable Call Home to ensure you do not receive unnecessary alerts when Cisco UCS Manager restarts components.

3 Update adapters, BMC, and IOMs—If you prefer, you can upgrade the adapters in a host firmware package as part of the last upgrade step.

4 Activate adapters—Choose Ignore Compatibility Check and Set Startup Version Only when performing this step.

5 BMC—Choose Ignore Compatibility Check when performing this step.

6 Activate I/O modules—Choose Ignore Compatibility Check and Set Startup Version Only when performing this step.

7 Activate subordinate fabric interconnect—Choose Ignore Compatibility Check when performing this step.

8 Activate primary fabric interconnect—Choose Ignore Compatibility Check when performing this step.

9 Activate Cisco UCS Manager—Choose Ignore Compatibility Check when performing this step.

10 Update host firmware package(s) for servers—Must be the last firmware upgraded. We recommend that you upgrade the board controller firmware during this step to avoid an additional reboot of servers with that firmware. You must upgrade the following firmware in a host firmware package:

 • BIOS
 • Storage controller
 • Certain adapters

11 (Optional) Enable Call Home—If you disabled Call Home before the upgrading the firmware, enable Call Home.

Required Order for Adding Support for Previously Unsupported Servers

From Cisco UCS, Release 1.4(1) and later, the method for adding support for previously unsupported type of servers, such as a new blade server or a rack-mount server, to an existing Cisco UCS domain requires the following additional steps after you upgrade your existing firmware to the new release.

Adding Support for a Previously Unsupported Cisco UCS Blade Server

After you upgrade the firmware for the existing components, you can add support for a previously unsupported server that was released between infrastructure bundle releases. When you add the first server of a previously unsupported type of blade server, you must perform the steps to enable Cisco UCS Manager to support that type of server in the following order:
1 Insert the blade server into the chassis as described in the server installation guide. Cisco UCS Manager cannot discover the server as it is unsupported, and the finite state machine (FSM) for the discovery fails with an unsupported server error.

2 Obtain the B-Series server bundle for the new blade server from Cisco.com and download it to the fabric interconnect.

3 Activate the Capability Catalog image from the server bundle.

4 Activate the Management Extension from the server bundle.

5 Wait for Cisco UCS Manager to retry discovery of the new server. If server discovery does not begin within a few minutes, acknowledge the server.

Note

You only need to perform these steps for the first server of a previously unsupported type of blade server. Cisco UCS Manager discovers all subsequent servers of that type automatically.

Integrating Cisco UCS Rack-Mount Servers

After you upgrade the firmware for the existing components, you can integrate one or more Cisco UCS rack-mount servers. When you integrate rack-mount servers, you must perform the steps in the following order:

1 If you have not already done so, configure the rack server discovery policy in Cisco UCS Manager.

2 Follow the instructions in the appropriate rack-mount server installation guide for installing and integrating a rack-mount server in a system managed by Cisco UCS Manager.

3 Wait for Cisco UCS Manager to discover the new server. If server discovery does not begin within a few minutes, acknowledge the server.

Direct Firmware Upgrade at Endpoints

If you follow the correct procedure and apply the upgrades in the correct order, a direct firmware upgrade and the activation of the new firmware version on the endpoints is minimally disruptive to traffic in a Cisco UCS domain.

You can directly upgrade the firmware on the following endpoints:

- Adapters
- CIMCs
- I/O modules
- Board controllers
- Cisco UCS Manager
- Fabric interconnects

The adapter and board controller firmware can also be upgraded through the host firmware package in the service profile. If you use a host firmware package to upgrade this firmware, you can reduce the number of times a server needs to be rebooted during the firmware upgrade process.
Upgrades of a CIMC through a management firmware package or an adapter through a firmware package in the service profile associated with the server take precedence over direct firmware upgrades. You cannot directly upgrade an endpoint if the service profile associated with the server includes a firmware package. To perform a direct upgrade, you must remove the firmware package from the service profile.

Stages of a Direct Firmware Upgrade

Cisco UCS Manager separates the direct upgrade process into two stages to ensure that you can push the firmware to an endpoint while the system is running without affecting uptime on the server or other endpoints.

Update

During this stage, the system copies the selected firmware version from the primary fabric interconnect to the backup partition in the endpoint and verifies that the firmware image is not corrupt. The update process always overwrites the firmware in the backup slot.

The update stage applies only to the following endpoints:

- Adapters
- CIMCs
- I/O modules

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Activate

During this stage, the system sets the specified image version (normally the backup version) as the startup version and, if you do not specify Set Startup Version Only, immediately reboots the endpoint. When the endpoint is rebooted, the backup partition becomes the active partition, and the active partition becomes the backup partition. The firmware in the new active partition becomes the startup version and the running version.

The following endpoints only require activation because the specified firmware image already exists on the endpoint:

- Cisco UCS Manager
- Fabric interconnects
- Board controllers on those servers that support them

When the firmware is activated, the endpoint is rebooted and the new firmware becomes the active kernel version and system version. If the endpoint cannot boot from the startup firmware, it defaults to the backup version and raises a fault.
When you configure Set Startup Version Only for an I/O module, the I/O module is rebooted when the fabric interconnect in its data path is rebooted. If you do not configure Set Startup Version Only for an I/O module, the I/O module reboots and disrupts traffic. In addition, if Cisco UCS Manager detects a protocol and firmware version mismatch between the fabric interconnect and the I/O module, Cisco UCS Manager automatically updates the I/O module with the firmware version that matches the firmware in the fabric interconnect and then activates the firmware and reboots the I/O module again.

Outage Impacts of Direct Firmware Upgrades

When you perform a direct firmware upgrade on an endpoint, you can disrupt traffic or cause an outage in one or more of the endpoints in the Cisco UCS domain.

Outage Impact of a Fabric Interconnect Firmware Upgrade

When you upgrade the firmware for a fabric interconnect, you cause the following outage impacts and disruptions:

- The fabric interconnect reboots.
- The corresponding I/O modules reboot.

Outage Impact of a Cisco UCS Manager Firmware Upgrade

A firmware upgrade to Cisco UCS Manager causes the following disruptions:

- Cisco UCS Manager GUI—All users logged in to Cisco UCS Manager GUI are logged out and their sessions ended.

 Any unsaved work in progress is lost.
- Cisco UCS Manager CLI—All users logged in through telnet are logged out and their sessions ended.

Outage Impact of an I/O Module Firmware Upgrade

When you upgrade the firmware for an I/O module, you cause the following outage impacts and disruptions:

- For a standalone configuration with a single fabric interconnect, data traffic is disrupted when the I/O module reboots. For a cluster configuration with two fabric interconnects, data traffic fails over to the other I/O module and the fabric interconnect in its data path.
- If you activate the new firmware as the startup version only, the I/O module reboots when the corresponding fabric interconnect is rebooted.
- If you activate the new firmware as the running and startup version, the I/O module reboots immediately.
- An I/O module can take up to ten minutes to become available after a firmware upgrade.

Outage Impact of a CIMC Firmware Upgrade

When you upgrade the firmware for a CIMC in a server, you impact only the CIMC and internal processes. You do not interrupt server traffic. This firmware upgrade causes the following outage impacts and disruptions to the CIMC:
Any activities being performed on the server through the KVM console and vMedia are interrupted.
Any monitoring or IPMI polling is interrupted.

Outage Impact of an Adapter Firmware Upgrade
If you activate the firmware for an adapter and do not configure the **Set Startup Version Only** option, you cause the following outage impacts and disruptions:

- The server reboots.
- Server traffic is disrupted.

Firmware Upgrades through Service Profiles
You can use service profiles to upgrade the server and adapter firmware, including the BIOS on the server, by defining the following policies and including them in the service profile associated with a server:

- Host Firmware Package policy
- Management Firmware Package policy

Note
You cannot upgrade the firmware on an I/O module, fabric interconnect, or Cisco UCS Manager through service profiles. You must upgrade the firmware on those endpoints directly.

Host Firmware Package
This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

- Adapter
- BIOS
- Board Controller
- FC Adapters
- HBA Option ROM
- Storage Controller

Tip
You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy.
This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

Prerequisites

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

Management Firmware Package

This policy enables you to specify a set of firmware versions that make up the management firmware package (also known as a management firmware pack). The management firmware package includes the Cisco Integrated Management Controller (CIMC) on the server. You do not need to use this package if you upgrade the CIMC directly.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the CIMC firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Stages of a Firmware Upgrade through Service Profiles

You can use the host and management firmware package policies in service profiles to upgrade server and adapter firmware.

Caution

If you modify a host firmware package by adding an endpoint or changing firmware versions for an existing endpoint, Cisco UCS Manager upgrades the endpoints and reboots all servers associated with that firmware package as soon as the changes are saved, disrupting data traffic to and from the servers.

New Service Profile

For a new service profile, this upgrade takes place over the following stages:

Firmware Package Policy Creation

During this stage, you create the host and/or management firmware packages and include them in the appropriate firmware policies.
Service Profile Association

During this stage, you include the firmware packages in a service profile, and then associate the service profile with a server. The system pushes the selected firmware versions to the endpoints. For a host firmware package, the server is rebooted to ensure that the endpoints are running the versions specified in the firmware package.

Existing Service Profile

If the service profile is already associated with a server, Cisco UCS Manager upgrades the firmware as soon as you save the changes to the host firmware packages. For a host firmware package, Cisco UCS Manager reboots the server as soon as the change is saved.

Firmware Downgrades

You downgrade firmware in a Cisco UCS domain in the same way that you upgrade firmware. The package or version that you select when you update the firmware determines whether you are performing an upgrade or a downgrade.

Note

The Cisco UCS Manager CLI does not allow you to downgrade hardware that is not supported in the release to which you are downgrading. Cisco UCS Manager CLI displays an error message if you attempt to downgrade hardware to an unsupported release.

Completing the Prerequisites for Upgrading the Firmware

Prerequisites for Upgrading and Downgrading Firmware

All endpoints in a Cisco UCS domain must be fully functional and all processes must be complete before you begin a firmware upgrade or downgrade on those endpoints. You cannot upgrade or downgrade an endpoint that is not in a functional state. For example, the firmware on a server that has not been discovered cannot be upgraded or downgraded. An incomplete process, such as an FSM that has failed after the maximum number of retries, can cause the upgrade or downgrade on an endpoint to fail. If an FSM is in progress, Cisco UCS Manager queues up the update and activation and runs them when the FSM has completed successfully.

Before you upgrade or downgrade firmware in a Cisco UCS domain, complete the following prerequisites:

- Review the Release Notes.
- Back up the configuration into an All Configuration backup file.
- For a cluster configuration, verify that the high availability status of the fabric interconnects shows that both are up and running.
- For a standalone configuration, verify that the Overall Status of the fabric interconnect is Operable.
- Verify that the data path is up and running. For more information, see Verifying that the Data Path is Ready.
- Verify that all servers, I/O modules, and adapters are fully functional. An inoperable server cannot be upgraded.

- Verify that the Cisco UCS domain does not include any critical or major faults. If such faults exist, you must resolve them before you upgrade the system. A critical or major fault may cause the upgrade to fail.

- Verify that all servers have been discovered. They do not need to be powered on or associated with a service profile.

- If you want to integrate a rack-mount server into the Cisco UCS domain, follow the instructions in the appropriate rack-mount server installation guide for installing and integrating a rack-mount server in a system managed by Cisco UCS Manager.

Creating an All Configuration Backup File

This procedure assumes that you do not have an existing backup operation for an All Configuration backup file.

Before You Begin

Obtain the backup server IP address and authentication credentials.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope system</code></td>
<td>Enters system mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | UCS-A /system # `create backup URL all-configuration enabled` | Creates an enabled All Configuration backup operation that runs as soon as you enter the `commit-buffer` command. The `all-configuration` option backs up the server, fabric, and system related configuration. Specify the URL for the backup file using one of the following syntax:
 - `ftp://username@hostname/path`
 - `scp://username@hostname/path`
 - `sftp://username@hostname/path`
 - `tftp://hostname:port-num/path` |
| **Step 3** | UCS-A /system # `commit-buffer` | Commits the transaction. |

The following example uses SCP to create an All Configuration backup file on the host named host35 and commits the transaction:

```
UCS-A# `scope system`
UCS-A /system* # `create backup scp://user@host35/backups/all-config.bak all-configuration enabled`
Password:
UCS-A /system* # `commit-buffer`
UCS-A /system #
```
Verifying the Operability of a Fabric Interconnect

If your Cisco UCS domain is running in a high availability cluster configuration, you must verify the operability of both fabric interconnects.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>**UCS-A# scope fabric-interconnect {a</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fabric-interconnect #show</td>
</tr>
<tr>
<td></td>
<td>Displays information about the fabric interconnect.</td>
</tr>
<tr>
<td></td>
<td>Verify that the operability of the fabric interconnects is in the</td>
</tr>
<tr>
<td></td>
<td>Operable state. If the operability is not in the Operable state, run a</td>
</tr>
<tr>
<td></td>
<td>show tech-support command and contact Cisco Technical Support.</td>
</tr>
<tr>
<td></td>
<td>Do not proceed with the firmware upgrade. For more information about</td>
</tr>
<tr>
<td></td>
<td>the show tech-support command, see the Cisco UCS Manager B-Series</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting Guide.</td>
</tr>
</tbody>
</table>

The following example displays that the operability for both fabric interconnects is in the Operable state:

```
UCS-A# scope fabric-interconnect a
UCS-A /fabric-interconnect # show
Fabric Interconnect:
ID OOB IP Addr   OOB Gateway   OOB Netmask   Operability
--- ------------- ------------- -------------- ------------
A   192.168.100.10 192.168.100.20 255.255.255.0 Operable

UCS-A /fabric-interconnect # exit
UCS-A# scope fabric-interconnect b
UCS-A /fabric-interconnect # show
Fabric Interconnect:
ID OOB IP Addr   OOB Gateway   OOB Netmask   Operability
--- ------------- ------------- -------------- ------------
B   192.168.100.11 192.168.100.20 255.255.255.0 Operable
```

Verifying the High Availability Status and Roles of a Cluster Configuration

The high availability status is the same for both fabric interconnects in a cluster configuration.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# show cluster state</td>
</tr>
<tr>
<td></td>
<td>Displays the operational state and leadership role for both fabric</td>
</tr>
<tr>
<td></td>
<td>interconnects in a high availability cluster.</td>
</tr>
<tr>
<td></td>
<td>Verify that both fabric interconnects (A and B) are in the Up state</td>
</tr>
<tr>
<td></td>
<td>and HA is in the Ready state. If the fabric interconnects are not in</td>
</tr>
<tr>
<td></td>
<td>the Up state or HA is not in the Ready state, run a show tech-support</td>
</tr>
<tr>
<td></td>
<td>command and contact Cisco Technical Support. Do not proceed with the</td>
</tr>
<tr>
<td></td>
<td>firmware upgrade. For more</td>
</tr>
</tbody>
</table>

Completing the Prerequisites for Upgrading the Firmware
Verifying the Status of an I/O Module

If your Cisco UCS is running in a high availability cluster configuration, you must verify the status for both I/O modules in all chassis.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
</tbody>
</table>

```
UCS-A# scope chassis chassis-id
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enters chassis I/O module mode for the selected I/O module.</td>
</tr>
</tbody>
</table>

```
UCS-A/chassis# scope iom iom-id
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Shows the status of the specified I/O module on the specified chassis.</td>
</tr>
</tbody>
</table>

```
UCS-A# show
```

Verify that the overall status of the I/O module is in the Operable state. If the overall status is not in the Operable state, run a `show tech-support` command and contact Cisco Technical Support. Do not proceed with the firmware upgrade. For more information about the `show tech-support` command, see the *Cisco UCS Troubleshooting Guide*.

The following example displays that the overall status for both I/O modules on chassis 1 is in the Operable state:

```
UCS-A# scope chassis 1
UCS-A /chassis # scope iom 1
UCS-A /chassis/iom # show
IOM: 
      ID   Side  Fabric ID Overall Status
---------- ----- --------- --------------
```
Verifying the Status of a Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters chassis server mode for the specified server in the specified chassis.</td>
</tr>
<tr>
<td>UCS-A# <code>scope server chassis-id</code> server-id</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Shows the status detail of the server. Verify that the overall status of the server is Ok, Unavailable, or any value that does not indicate a failure. If the overall status is in a state that indicates a failure, such as Discovery Failed, the endpoints on that server cannot be upgraded.</td>
</tr>
<tr>
<td>UCS-A /chassis/server # show status detail</td>
<td></td>
</tr>
</tbody>
</table>

The following example displays that the overall status for server 7 on chassis 1 is in the Ok state:

```
UCS-A# `scope server 1/7`
UCS-A /chassis/server # `show status detail`
Server 1/7:
  Slot Status: Equipped
  Conn Path: A,B
  Conn Status: A,B
  Managing Instance: B
  Availability: Unavailable
  Admin State: In Service
  Overall Status: Ok
  Oper Qualifier: N/A
  Discovery: Complete
  Current Task: 
```

Verifying the Status of Adapters on Servers in a Chassis

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters chassis server mode for the specified server in the specified chassis.</td>
</tr>
<tr>
<td>UCS-A# <code>scope server chassis-id</code> server-id</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Displays the status of the adapter. Verify that the overall status of the adapter is in the Operable state. If the overall status of the adapter is in any state other than Operable, you cannot upgrade it. However, you can</td>
</tr>
<tr>
<td>UCS-A /chassis/server # <code>show adapter status</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>proceed with the upgrade for the other adapters in the Cisco UCS domain.</td>
</tr>
</tbody>
</table>

The following example displays that the overall status for the adapter in server 7 on chassis 1 is in the Operable state:

```
UCS-A# scope server 1/7
UCS-A /chassis/server # show adapter status
Server 1/1:
    Overall Status
    --------------
    Operable
```

Downloading and Managing Firmware Packages

Obtaining Software Bundles from Cisco

Before You Begin

Determine which of the following software bundles you need to update the Cisco UCS domain:

- Cisco UCS Infrastructure Software Bundle—Required for all Cisco UCS domains.
- Cisco UCS B-Series Blade Server Software Bundle—Required for all Cisco UCS domains that include blade servers.
- Cisco UCS C-Series Rack-Mount Server Software Bundle—Only required for Cisco UCS domains that include integrated rack-mount servers. This bundle contains firmware to enable Cisco UCS Manager to manage those servers and is not applicable to standalone C-Series rack-mount servers.

Procedure

1. **Step 1**
 - In a web browser, navigate to Cisco.com.
2. **Step 2**
 - Under Support, click All Downloads.
3. **Step 3**
 - In the center pane, click Unified Computing and Servers.
4. **Step 4**
 - If prompted, enter your Cisco.com username and password to log in.
5. **Step 5**
 - In the right pane, click the link for the software bundles you require, as follows:

<table>
<thead>
<tr>
<th>Bundle</th>
<th>Navigation Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS Infrastructure Software Bundle</td>
<td>Click Cisco UCS Infrastructure and UCS Manager Software > Unified Computing System (UCS) Infrastructure Software Bundle.</td>
</tr>
</tbody>
</table>
The Unified Computing System (UCS) Documentation Roadmap Bundle, which is accessible through these paths, is a downloadable ISO image of all Cisco UCS documentation.

Step 6

On the first page from which you download a software bundle, click the Release Notes link to download the latest version of the Release Notes.

Step 7

For each software bundle that you want to download, do the following:

a) Click the link for the release you want to download the latest release 2.0 software bundle. The release number is followed by a number and a letter in parentheses. The number identifies the maintenance release level, and the letter differentiates between patches of that maintenance release. For more information about what is in each maintenance release and patch, see the latest version of the Release Notes.

b) Click one of the following buttons and follow the instructions provided:

 • **Download Now**—Allows you to download the software bundle immediately.

 • **Add to Cart**—Adds the software bundle to your cart to be downloaded at a later time.

b) Follow the prompts to complete your download of the software bundle(s).

Step 8

Read the Release Notes before upgrading your Cisco UCS domain.

What to Do Next

Download the software bundles to the fabric interconnect.

Downloading Firmware Images to the Fabric Interconnect from a Remote Location

Note

In a cluster setup, the image file for the firmware bundle is downloaded to both fabric interconnects, regardless of which fabric interconnect is used to initiate the download. Cisco UCS Manager maintains all firmware packages and images in both fabric interconnects in sync. If one fabric interconnect is down, the download still finishes successfully. The images are synced to the other fabric interconnect when it comes back online.

Before You Begin

Obtain the required firmware bundles from Cisco.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td>UCS-A# scope firmware</td>
<td>Downloads the firmware bundle for Cisco UCS. Using the download path provided by Cisco, specify the URL with one of the following syntax:</td>
</tr>
<tr>
<td>Step 2</td>
<td>TFTP has a file size limitation of 32 MB. Because firmware bundles can be much larger than that, we recommend that you do not select TFTP for firmware downloads.</td>
</tr>
<tr>
<td>UCS-A /firmware # download image URL</td>
<td>If you use a hostname rather than an IP address, configure a DNS server in Cisco UCS Manager.</td>
</tr>
<tr>
<td>Note</td>
<td>Enter the password for the remote server.</td>
</tr>
<tr>
<td>Step 3</td>
<td>The password for the remote server username. This field does not apply if the protocol is tftp.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Displays the status for your download task. When your image is completely downloaded, the task state changes from Downloading to Downloaded. The CLI does not automatically refresh, so you may have to enter the show download-task command multiple times until the task state displays Downloaded.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat this task until all of the firmware bundles have been downloaded to the fabric interconnect.</td>
</tr>
</tbody>
</table>

The following example uses SCP to download the ucs-k9-bundle.1.0.0.988.gbin firmware package.

```
UCS-A# scope firmware
UCS-A /firmware # download image scp://user1@10.168.10.10/images/ucs-k9-bundle.1.0.0.988.gbin
Password: yourpassword
UCS-A /firmware # show download-task
``` 

What to Do Next

After the image file for the firmware bundles have downloaded completely, update the firmware on the endpoints.
Displaying the Firmware Package Download Status

After a firmware download operation has been started, you can check the download status to see if the package is still downloading or if it has completely downloaded.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope firmware</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /firmware # show download-task</td>
<td>Displays the status for your download task. When your image is completely downloaded, the task state changes from Downloading to Downloaded. The CLI does not automatically refresh, so you may have to enter the <code>show download-task</code> command multiple times until the task state displays Downloaded.</td>
</tr>
</tbody>
</table>

The following example displays the download status for the ucs-k9-bundle.1.0.0.988.gbin firmware package. The `show download-task` command is entered multiple times until the download state indicates that the firmware package has been downloaded:

```
UCS-A# scope firmware
UCS-A /firmware # show download-task
Download task:
File Name Protocol Server Uerid State
---------- -------- --------------- -----
ucs-k9-bundle.1.0.0.988.gbin Scp 10.193.32.11 user1 Downloading
UCS-A /firmware # show download-task
Download task:
File Name Protocol Server Userid State
---------- -------- --------------- -----
ucs-k9-bundle.1.0.0.988.gbin Scp 10.193.32.11 user1 Downloading
```

Canceling an Image Download

You can cancel the download task for an image only while it is in progress. After the image has downloaded, deleting the download task does not delete the image that was downloaded. You cannot cancel the FSM related to the image download task.
Displaying All Available Software Images on the Fabric Interconnect

This procedure is optional and displays the available software images on the fabric interconnect for all endpoints. You can also use the `show image` command in each endpoint mode to display the available software images for that endpoint.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope firmware</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /firmware # <code>delete download-task task-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /firmware # <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example displays all available software images on the fabric interconnect:

```
UCS-A# `scope firmware`
UCS-A /firmware # `show image`
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ucs-2100.1.0.0.988.gbin</td>
<td>Iom</td>
<td>1.0(0.988)</td>
</tr>
<tr>
<td>ucs-6100-k9-kickstart.4.0.1a.N2.1.0.988.gbin</td>
<td>Switch Kernel</td>
<td></td>
</tr>
<tr>
<td>ucs-6100-k9-system.4.0.1a.N2.1.0.988.gbin</td>
<td>Switch Software</td>
<td></td>
</tr>
<tr>
<td>ucs-b200-m1-bios.S5500.86B.01.00.0030-978a.021920.gbin</td>
<td>Server Bios</td>
<td></td>
</tr>
<tr>
<td>ucs-b200-m1-bmc.1.0.0.988.gbin</td>
<td>Bmc</td>
<td>1.0(0.988)</td>
</tr>
<tr>
<td>ucs-b200-m1-sasctlr.2009.02.09.gbin</td>
<td>Storage Controller</td>
<td>2009.02.09</td>
</tr>
<tr>
<td>ucs-m71kr-e-cna.1.0.0.988.gbin</td>
<td>Adapter</td>
<td>1.0(0.988)</td>
</tr>
<tr>
<td>ucs-m71kr-e-hba.zf280a4.gbin</td>
<td>Host Hba</td>
<td>zf280a4</td>
</tr>
</tbody>
</table>
```
Displaying All Available Packages on the Fabric Interconnect

This procedure is optional and displays the available software packages on the fabric interconnect for all endpoints. You can also use the `show package` command in each endpoint mode to display the available software images for that endpoint.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope firmware</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /firmware # show package</td>
<td>Displays all software packages downloaded onto the fabric interconnect.</td>
</tr>
</tbody>
</table>

**Note** You must provide the software version number when directly updating an endpoint. If you intend to directly update firmware at an endpoint, note its version number in the right column.

The following example displays all available software packages on the fabric interconnect:

```
UCS-A# scope firmware
UCS-A /firmware # show package

Name ... Version
--- ------
ucs-k9-bundle.1.3.0.221.bin
ucs-k9-bundle.1.4.0.292.gbin
ucs-k9-bundle.1.4.0.357.gbin
ucs-k9-bundle.1.4.0.378.gbin
ucs-k9-bundle.1.4.0.390.gbin
Pubs-A / firmware #
```

Determining the Contents of a Firmware Package

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope firmware</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /firmware # show package package-name expand</td>
<td>Displays the contents of the specified firmware package.</td>
</tr>
</tbody>
</table>

The following example displays the contents of a firmware package:

```
UCS-A# scope firmware
UCS-A /firmware # show package ucs-k9-bundle.1.4.0.390.gbin expand
```
Checking the Available Space on a Fabric Interconnect

If an image download fails, check whether the bootflash on the fabric interconnect or fabric interconnects in the Cisco UCS has sufficient available space.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fabric-interconnect {a</td>
<td>b}</td>
</tr>
</tbody>
</table>

**Note**

When you download a firmware image bundle, a fabric interconnect needs at least twice as much available space as the size of the firmware image bundle. If the bootflash does not have sufficient space, delete the obsolete firmware, core files, and other unneeded objects from the fabric interconnect.
The following example displays the available space for a fabric interconnect:

```
UCS-A# scope fabric-interconnect
UCS-A /fabric-interconnect # show storage
Storage on local flash drive of fabric interconnect:
<table>
<thead>
<tr>
<th>Partition</th>
<th>Size (MB)</th>
<th>Used</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootflash</td>
<td>8658</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>opt</td>
<td>1917</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>workspace</td>
<td>277</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
UCS-A /fabric-interconnect #
```

### Deleting Firmware Packages from a Fabric Interconnect

Use this procedure if you want to delete an entire package. If you prefer, you can also delete only a single image from a package.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope firmware</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /firmware # delete package package-name</td>
<td>Deletes the specified firmware package.</td>
</tr>
<tr>
<td>Step 3 UCS-A /firmware # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager deletes the selected package or packages and all images contained within each package.

The following example deletes a firmware package and commits the transaction:

```
UCS-A# scope firmware
UCS-A /firmware # delete image ucs-k9-bundle.1.4.0.433m.gbin
UCS-A /firmware* # commit-buffer
UCS-A /firmware #
```

### Deleting Firmware Images from a Fabric Interconnect

Use this procedure if you want to delete only a single image from a package.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope firmware</td>
<td>Enters firmware mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /firmware # delete image image-name</td>
<td>Deletes the specified firmware image.</td>
</tr>
<tr>
<td>Step 3 UCS-A /firmware # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example deletes a firmware image and commits the transaction:

```
UCS-A# scope firmware
UCS-A /firmware # delete image ucs-2100.1.4.0.433k.gbin
UCS-A /firmware* # commit-buffer
UCS-A /firmware #
```

**Directly Upgrading Firmware at Endpoints**

**Updating and Activating the Firmware on an Adapter**

⚠️ **Caution**

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope adapter</code> <code>chassis-id / blade-id / adapter-id</code></td>
<td>Enters chassis server adapter mode for the specified adapter.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A/chassis/server/adapter # <code>show image</code></td>
<td>Displays the available software images for the adapter.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A/chassis/server/adapter # <code>update firmware</code> <code>version-num</code></td>
<td>Updates the selected firmware version on the adapter.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A/chassis/server/adapter # <code>commit-buffer</code></td>
<td>(Optional) Commits the transaction.</td>
</tr>
<tr>
<td></td>
<td>Use this step only if you intend to use the <code>show firmware</code> command in Step 5 to verify that the firmware update completed successfully before activating the firmware in Step 6. You can skip this step and commit the <code>update-firmware</code> and <code>activate-firmware</code> commands in the same transaction; however, if the firmware update does not complete successfully, the firmware activation does not start.</td>
</tr>
<tr>
<td></td>
<td>Cisco UCS Manager copies the selected firmware image to the backup memory partition and verifies that image is not corrupt. The image remains as the backup version until you explicitly activate it.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A/chassis/server/adapter # <code>show firmware</code></td>
<td>(Optional) Displays the status of the firmware update.</td>
</tr>
<tr>
<td></td>
<td>Use this step only if you want to verify that the firmware update completed successfully. The firmware update is complete when the update status is Ready. The CLI does not automatically refresh, so you may have to enter the <code>show firmware</code> command multiple times</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong> UCS-A/chassis/server/adapter # activate firmware version-num [ignorecompcheck [set-startup-only]]</td>
<td>Activates the selected firmware version on the adapter. Use the <code>set-startup-only</code> keyword if you want to move the activated firmware into the pending-next-boot state and not immediately reboot the server. The activated firmware does not become the running version of firmware on the adapter until the server is rebooted. You cannot use the <code>set-startup-only</code> keyword for an adapter in the host firmware package. Use the <code>ignorecompcheck</code> keyword if you want to ignore the compatibility check and activate the firmware regardless of any possible incompatibilities or currently executing tasks.</td>
</tr>
<tr>
<td><strong>Step 7</strong> UCS-A/chassis/server/adapter # commit-buffer</td>
<td>Commits the transaction. If a server is not associated with a service profile, the activated firmware remains in the pending-next-boot state. Cisco UCS Manager does not reboot the endpoints or activate the firmware until the server is associated with a service profile. If necessary, you can manually reboot or reset an unassociated server to activate the firmware.</td>
</tr>
<tr>
<td><strong>Step 8</strong> UCS-A/chassis/server/adapter # show firmware</td>
<td>(Optional) Displays the status of the firmware activation. Use this step only if you want to verify that the firmware activation completed successfully. The CLI does not automatically refresh, so you may have to enter the <code>show firmware</code> command multiple times until the task state changes from Activating to Ready.</td>
</tr>
</tbody>
</table>

The following example updates and activates the adapter firmware to version 1.2(1) in the same transaction, without verifying that the firmware update and firmware activation completed successfully:

```
UCS-A# scope adapter 1/1/1
UCS-A# /chassis/server/adapter # show image
Name: Adapter 1.2(1) Active
UCS-A# /chassis/server/adapter # update firmware 1.2(1)
UCS-A# /chassis/server/adapter# activate firmware 1.2(1) ignorecompcheck set-startup-only
UCS-A# /chassis/server/adapter# commit-buffer
```

The following example updates the adapter firmware to version 1.2(1), verifies that the firmware update completed successfully before starting the firmware activation, activates the adapter firmware, and verifies that the firmware activation completed successfully:

```
UCS-A# scope adapter 1/1/1
UCS-A# /chassis/server/adapter # show image
Name: Adapter 1.2(1) Active
UCS-A# /chassis/server/adapter# show firmware
```
Directly Upgrading Firmware at Endpoints

Updating and Activating the BIOS Firmware on a Server

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope server chassis-id / blade-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A / chassis/server # scope bios</td>
<td>Enters chassis server BIOS mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A / chassis/server/bios # show image</td>
<td>Displays the available BIOS firmware images.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A / chassis/server/bios # update firmware version-num</td>
<td>Updates the selected BIOS firmware for the server.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A / chassis/server/bios # commit-buffer</td>
<td>(Optional) Commits the transaction. Use this step only if you intend to use the show firmware command in Step 6 to verify that the firmware update completed successfully before activating the firmware in Step 7. You can...</td>
</tr>
</tbody>
</table>
The following example updates and activates the BIOS firmware in the same transaction, without verifying that the firmware update and activation completed successfully:

```
UCS-A# scope server 1/1
UCS-A# /chassis/server # scope bios
UCS-A# /chassis/server/bios # show image
Name Type Version
--------------------- ----------- -----------
ucs-b230-m1-bios.B230.2.0.1.1.49.gbin Server Bios B230.2.0.1.1.49
ucs-b230-m1-bios.B230.2.0.2.0.00.gbin Server Bios B230.2.0.2.0.00

UCS-A# /chassis/server/bios # update firmware B230.2.0.2.0.00
UCS-A# /chassis/server/bios* # activate firmware B230.2.0.2.0.00 ignorecompcheck
UCS-A# /chassis/server/bios* # commit-buffer
```
Updating and Activating the CIMC Firmware on a Server

The activation of firmware for a CIMC does not disrupt data traffic. However, it will interrupt all KVM sessions and disconnect any vMedia attached to the server.

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>UCS-A# scope server chassis-id / blade-id</strong> Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>UCS-A/chassis/server # scope cimc</strong> Enters chassis server CIMC mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>UCS-A/chassis/server/cimc # show image</strong> Displays the available software images for the adapter.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>UCS-A /chassis/server/cimc # update firmware version-num</strong> Updates the selected firmware version on the CIMC in the server.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>UCS-A /chassis/server/cimc # commit-buffer</strong> (Optional) Commits the transaction. Use this step only if you intend to use the <strong>show firmware</strong> command in Step 6 to verify that the firmware update completed successfully before activating the firmware in Step 7. You can skip this step and commit the <strong>update-firmware</strong> and <strong>activate-firmware</strong> commands in the same transaction; however, if the firmware update does not complete successfully, the firmware activation does not start. Cisco UCS Manager copies the selected firmware image to the backup memory partition and verifies that image is not corrupt. The image remains as the backup version until you explicitly activate it.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>UCS-A /chassis/server/cimc # show firmware</strong> (Optional) Displays the status of the firmware update. Use this step only if you want to verify that the firmware update completed successfully. The firmware update is complete when the update status is Ready. The CLI does not automatically refresh, so you may have to enter the <strong>show firmware</strong> command multiple times until the task state changes from Updating to Ready. Continue to Step 7 when the update status is Ready.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>UCS-A /chassis/server/cimc # activate firmware version-num [ignorecompcheck]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Activates the selected firmware version on the CIMC in the server.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use the <strong>ignorecompcheck</strong> keyword if you want to ignore the compatibility check and activate the firmware regardless of any possible incompatibilities or currently executing tasks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>UCS-A /chassis/server/cimc # commit-buffer</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commits the transaction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>UCS-A /chassis/server/cimc # show firmware</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays the status of the firmware activation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use this step only if you want to verify that the firmware activation completed successfully. The CLI does not automatically refresh, so you may have to enter the <strong>show firmware</strong> command multiple times until the task state changes from Activating to Ready.</td>
<td></td>
</tr>
</tbody>
</table>

The following example updates and activates the CIMC firmware to version 1.2(1) in the same transaction, without verifying that the firmware update and firmware activation completed successfully:

```
UCS-A# scope server 1/1
UCS-A# /chassis/server # scope cimc
UCS-A# /chassis/server/cimc # show image
Name Type Version State

ucs-b200-m1-k9-cimc.1.2.1.gbin Bmc 1.2(1) Active
UCS-A# /chassis/server/cimc # update firmware 1.2(1)
UCS-A# /chassis/server/cimc* # activate firmware 1.2(1) ignorecompcheck set-startup-only
UCS-A# /chassis/server/cimc # commit-buffer

UCS-A# /chassis/server/cimc # show firmware
```

The following example updates the CIMC firmware to version 1.2(1), verifies that the firmware update completed successfully before starting the firmware activation, activates the CIMC firmware, and verifies that the firmware activation completed successfully:

```
UCS-A# scope server 1/1
UCS-A# /chassis/server # scope cimc
UCS-A# /chassis/server/cimc # show image
Name Type Version State

ucs-b200-m1-k9-cimc.1.2.1.gbin Bmc 1.2(1) Active
UCS-A# /chassis/server/cimc # update firmware 1.2(1)
UCS-A# /chassis/server/cimc* # commit-buffer
UCS-A# /chassis/server/cimc* # show firmware
Running-Vers Update-Status Activate-Status
------------------------- -------------------------
1.1(1) Updating Ready
UCS-A# /chassis/server/cimc # show firmware
Running-Vers Update-Status Activate-Status
------------------------- -------------------------
```
Updating and Activating the Firmware on an IOM

If your system is running in a high availability cluster configuration, you must update and activate both I/O modules.

Caution

Do not remove the hardware that contains the endpoint or perform any maintenance on it until the update process has completed. If the hardware is removed or otherwise unavailable due to maintenance, the firmware update fails. This failure may corrupt the backup partition. You cannot update the firmware on an endpoint with a corrupted backup partition.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope chassis</td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>chassis-id</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A/chassis # scope iom</td>
<td>Enters chassis I/O module mode for the selected I/O module.</td>
</tr>
<tr>
<td>iom-id</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A/chassis/iom # show image</td>
<td>Displays the available software images for the I/O module.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A/chassis/iom # update firmware version-num</td>
<td>Updates the selected firmware version on the I/O module.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /chassis/iom #</td>
<td>(Optional) Commits the transaction.</td>
</tr>
<tr>
<td>commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

Use this step only if you intend to use the `show firmware` command in Step 6 to verify that the firmware update completed successfully before activating the firmware in Step 7. You can skip this step and commit the `update-firmware` and `activate-firmware` commands in the same transaction; however, if the firmware update does not complete successfully, the firmware activation does not start.

Cisco UCS Manager copies the selected firmware image to the backup memory partition and verifies that image is not corrupt. The image remains as the backup version until you explicitly activate it.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> UCS-A/chassis/iom # show firmware</td>
<td>(Optional) Displays the status of the firmware update. Use this step only if you want to verify that the firmware update completed successfully. The firmware update is complete when the update status is Ready. The CLI does not automatically refresh, so you may have to enter the <code>show firmware</code> command multiple times until the task state changes from Updating to Ready. Continue to Step 7 when the update status is Ready.</td>
</tr>
<tr>
<td><strong>Step 7</strong> UCS-A/chassis/iom # activate firmware version-num [ignorecompcheck [set-startup-only]]</td>
<td>Activates the selected firmware version on the I/O module. Use the <code>set-startup-only</code> keyword if you want to reboot the I/O module only when the fabric interconnect in its data path reboots. If you do not use the <code>set-startup-only</code> keyword, the I/O module reboots and disrupts traffic. In addition, if Cisco UCS Manager detects a protocol and firmware version mismatch between it and the I/O module, it updates the I/O module with the firmware version that matches its own and then activates the firmware and reboots the I/O module again. Use the <code>ignorecompcheck</code> keyword if you want to ignore the compatibility check and activate the firmware regardless of any possible incompatibilities or currently executing tasks.</td>
</tr>
<tr>
<td><strong>Step 8</strong> UCS-A/chassis/iom # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
<tr>
<td><strong>Step 9</strong> UCS-A/chassis/iom # show firmware</td>
<td>(Optional) Displays the status of the firmware activation. Use this step only if you want to verify that the firmware activation completed successfully. The CLI does not automatically refresh, so you may have to enter the <code>show firmware</code> command multiple times until the task state changes from Activating to Ready.</td>
</tr>
</tbody>
</table>

The following example updates and activates the I/O module firmware to version 1.2(1) in the same transaction, without verifying that the firmware update and firmware activation completed successfully:

```
UCS-A# scope chassis 1
UCS-A# /chassis # scope iom 1
UCS-A# /chassis/iom # show image
Name Type Version State
------------------- -------------- ------
ucS-2100.1.2.1.gbin Iom 1.2(1) Active

UCS-A# /chassis/iom # update firmware 1.2(1)
UCS-A# /chassis/iom* # activate firmware 1.2(1) ignorecompcheck set-startup-only
UCS-A# /chassis/iom* # commit-buffer
UCS-A# /chassis/iom #
```
The following example updates the I/O module firmware to version 1.2(1), verifies that the firmware update completed successfully before starting the firmware activation, activates the I/O module firmware, and verifies that the firmware activation completed successfully:

```
UCS-A# scope chassis 1
UCS-A# /chassis # scope iom 1
UCS-A# /chassis/iom # show image
Name Type Version State
-- -------------------- ------------- -----
ucs-2100.1.2.1.gbin Iom 1.2(1) Active

UCS-A# /chassis/iom # update firmware 1.2(1)
UCS-A# /chassis/iom* # commit-buffer

UCS-A# /chassis/iom # show firmware
IOM Fabric ID Running-Vers Update-Status Activate-Status
------- --------- --------------- --------------- ---------------
1 A 1.1(1) Updating Ready

UCS-A# /chassis/iom # show firmware
IOM Fabric ID Running-Vers Update-Status Activate-Status
------- --------- --------------- --------------- ---------------
1 A 1.1(1) Ready Ready

UCS-A# /chassis/iom # activate firmware 1.2(1) ignorecompcheck
UCS-A# /chassis/iom* # commit-buffer
UCS-A# /chassis/iom # show firmware
IOM Fabric ID Running-Vers Update-Status Activate-Status
------- --------- --------------- --------------- ---------------
1 A 1.1(1) Ready Activating

UCS-A# /chassis/iom # show firmware
IOM Fabric ID Running-Vers Update-Status Activate-Status
------- --------- --------------- --------------- ---------------
1 A 1.2(1) Ready Ready
```

**Activating the Board Controller Firmware on a Server**

Only certain servers, such as the Cisco UCS B440 High Performance blade server and the Cisco UCS B230 blade server, have board controller firmware. The board controller firmware controls many of the server functions, including eUSBs, LEDs, and I/O connectors.

**Note**

This activation procedure causes the server to reboot. Depending upon whether or not the service profile associated with the server includes a maintenance policy, the reboot can occur immediately. To reduce the number of times a server needs to be rebooted during the upgrade process, we recommend that you upgrade the board controller firmware through the host firmware package in the service profile as the last step of upgrading a Cisco UCS domain, along with the server BIOS.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope server chassis-id / server-id</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /chassis/server # scope boardcontroller</td>
</tr>
</tbody>
</table>
### Directly Upgrading Firmware at Endpoints

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /chassis/server/boardcontroller # show image</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /chassis/server/boardcontroller # show firmware</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>UCS-A /chassis/server/boardcontroller # activate firmware version-num [ignorecompcheck]</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>UCS-A /chassis/server/boardcontroller # commit-buffer</td>
</tr>
</tbody>
</table>

Cisco UCS Manager disconnects all active sessions, logs out all users, and activates the software. When the upgrade is complete, you are prompted to log back in. If you are prompted to re-login immediately after being disconnected, the login will fail. You must wait until the activation of Cisco UCS Manager is completed, which takes a few minutes.

The following example activates the board controller firmware:

```plaintext
UCS-A# scope server 1/1
UCS-A# /chassis/server # scope boardcontroller
UCS-A# /chassis/server/boardcontroller # show image
Name Type Version State
-------------------------------------- ----------------- ------------------ -----
ucs-b440-m1-pld.B440100C-B4402006.bin Board Controller B440100C-B4402006 Active
UCS-A# /chassis/server/boardcontroller # show firmware
BoardController:
 Running-Vers: B440100C-B4402006
 Activate-Status: Ready
UCS-A# /chassis/server/boardcontroller # activate firmware B440100C-B4402006 ignorecompcheck
UCS-A# /chassis/server/boardcontroller# # commit-buffer
```

### Activating the Cisco UCS Manager Software

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope system</td>
</tr>
</tbody>
</table>
### Command or Action

**Step 2** UCS-A /system # show image

Displays the available software images for Cisco UCS Manager (system).

**Step 3** UCS-A /system # activate firmware version-num [ignorecompcheck]

Activates the selected firmware version on the system.

Use the `ignorecompcheck` keyword if you want to ignore the compatibility check and activate the firmware regardless of any possible incompatibilities or currently executing tasks.

**Note** Activating Cisco UCS Manager does not require rebooting the fabric interconnect; however, management services will briefly go down and all VSH shells will be terminated as part of the activation.

**Step 4** UCS-A /system # commit-buffer

Commits the transaction.

Cisco UCS Manager makes the selected version the startup version and schedules the activation to occur when the fabric interconnects are upgraded.

The following example upgrades Cisco UCS Manager to version 1.2(1) and commits the transaction:

```plaintext
UCS-A# scope system
UCS-A# /system # show image
Name | Type | Version | State |
---|-----------------|----------|--------|
ucs-manager-k9.1.2.1.gbin System | 1.2(1) | Active |
UCS-A# /system # activate firmware 1.2(1)
UCS-A# /system* # commit-buffer
UCS-A# /system #
```

### Activating the Firmware on a Fabric Interconnect

When updating the firmware on two fabric interconnects in a high availability cluster configuration, you must activate the subordinate fabric interconnect before activating the primary fabric interconnect. For more information about determining the role for each fabric interconnect, see **Verifying the High Availability Status and Roles of a Cluster Configuration**, on page 203.

For a standalone configuration with a single fabric interconnect, you can minimize the disruption to data traffic when you perform a direct firmware upgrade of the endpoints. However, you must reboot the fabric interconnect to complete the upgrade and, therefore, cannot avoid disrupting traffic.

**Tip** If you ever need to recover the password to the admin account that was created when you configured the fabric interconnects for the Cisco UCS domain, you must know the running kernel version and the running system version. If you do not plan to create additional accounts, we recommend that you save the path to these firmware versions in a text file so that you can access them if required.
### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fabric-interconnect {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fabric-interconnect # show image</td>
<td>Displays the available software images for the fabric interconnect.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fabric-interconnect # activate firmware {kernel-version kernel-ver-num</td>
<td>system-version system-ver-num}</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fabric-interconnect # commit-buffer</td>
<td>Commits the transaction. Cisco UCS Manager updates and activates the firmware, and then reboots the fabric interconnect and any I/O module in the data path to that fabric interconnect, disrupting data traffic to and from that fabric interconnect.</td>
</tr>
</tbody>
</table>

The following example upgrades the fabric interconnect to version 4.0(1a)N2(1.2.1) and commits the transaction:

```
UCS-A# scope fabric-interconnect a
UCS-A /fabric-interconnect # show image

Name Type Version State
--- ----------------- -------- -----
ucs-6100-k9-kickstart.4.0.1a.N2.1.2.1.gbin Fabric Interconnect 4.0(1a)N2(1.2.1) Active
ucs-6100-k9-system.4.0.1a.N2.1.2.1.gbin Fabric Interconnect 4.0(1a)N2(1.2.1) Active

UCS-A /fabric-interconnect # activate firmware kernel-version 4.0(1a)N2(1.2.1) system-version 4.0(1a)N2(1.2.1)
UCS-A /fabric-interconnect# # commit-buffer
UCS-A /fabric-interconnect #
```

### Updating Firmware through Service Profiles

#### Host Firmware Package

This policy enables you to specify a set of firmware versions that make up the host firmware package (also known as the host firmware pack). The host firmware includes the following firmware for server and adapter endpoints:

- Adapter
- BIOS
- Board Controller
- FC Adapters
You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

The firmware package is pushed to all servers associated with service profiles that include this policy. This policy ensures that the host firmware is identical on all servers associated with service profiles which use the same policy. Therefore, if you move the service profile from one server to another, the firmware versions are maintained. Also, if you change the firmware version for an endpoint in the firmware package, new versions are applied to all the affected service profiles immediately, which could cause server reboots.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect.

**Prerequisites**

This policy is not dependent upon any other policies. However, you must ensure that the appropriate firmware has been downloaded to the fabric interconnect. If the firmware image is not available when Cisco UCS Manager is associating a server with a service profile, Cisco UCS Manager ignores the firmware upgrade and completes the association.

**Effect of Updates to Host Firmware Packages and Management Firmware Packages**

To update firmware through a host firmware package or a management firmware package, you need to update the firmware in the package. What happens after you save the changes to a host or management firmware package depends upon how the Cisco UCS domain is configured.

The following table describes the most common options for upgrading servers with a host or management firmware package.
### Service Profile

<table>
<thead>
<tr>
<th>Host or management firmware package is not included in a service profile or an updating service profile template. OR</th>
<th>No maintenance policy</th>
<th>After you update the firmware package, do one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to upgrade the firmware without making any changes to the existing service profile or updating service profile template.</td>
<td>No maintenance policy</td>
<td>• To reboot and upgrade some or all servers simultaneously, follow the procedure in the Cisco UCS Manager configuration guides for the appropriate release to add the firmware package to one or more service profiles that are associated with servers or to an updating service profile template.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To reboot and upgrade one server at a time, do the following for each server:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Create a new service profile and include the firmware package in that service profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Dissociate the server from its service profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Associate the server with the new service profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 After the server has been rebooted and the firmware upgraded, disassociate the server from the new service profile and associate it with its original service profile.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>If the original service profile includes a scrub policy, this procedure may result in data loss when the disk or the BIOS is scrubbed upon association with the new service profile.</td>
</tr>
</tbody>
</table>

### Service Profile

<table>
<thead>
<tr>
<th>Host or management firmware package is included in one or more service profiles, and the service profiles are associated with one or more servers. OR</th>
<th>No maintenance policy OR</th>
<th>The following occurs when you update the firmware package:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host or management firmware package is included in an updating service profile template, and the service profiles created from that template are associated with one or more servers.</td>
<td>A maintenance policy configured for immediate updates.</td>
<td>1 The changes to the firmware package take effect as soon as you save them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Cisco UCS Manager verifies the model numbers and vendor against all servers associated with service profiles that include this policy. If the model numbers and vendor match a firmware version in the policy, Cisco UCS Manager reboots the servers and updates the firmware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All servers associated with service profiles that include the firmware package are rebooted at the same time.</td>
</tr>
</tbody>
</table>
The following occurs when you update the firmware package:

1. Cisco UCS Manager asks you to confirm your change and advises that a user-acknowledged reboot of the servers is required.

2. Click the flashing Pending Activities button to select the servers you want to reboot and apply the new firmware.

3. Cisco UCS Manager verifies the model numbers and vendor against all servers associated with service profiles that include this policy. If the model numbers and vendor match a firmware version in the policy, Cisco UCS Manager reboots the server and updates the firmware.

A manual reboot of the servers does not cause Cisco UCS Manager to apply the firmware package, nor does it cancel the pending activities. You must acknowledge or cancel the pending activity through the Pending Activities button.

### Table: Service Profile, Maintenance Policy, Upgrade Actions

<table>
<thead>
<tr>
<th>Service Profile</th>
<th>Maintenance Policy</th>
<th>Upgrade Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host or management firmware package is included in one or more service profiles, and the service profiles are associated with one or more servers.</td>
<td>Configured for user acknowledgment</td>
<td>The following occurs when you update the firmware package:</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>1. Cisco UCS Manager asks you to confirm your change and advises that a user-acknowledged reboot of the servers is required.</td>
</tr>
<tr>
<td>Host or management firmware package is included in an updating service profile template, and the service profiles created from that template are associated with one or more servers.</td>
<td></td>
<td>2. Click the flashing Pending Activities button to select the servers you want to reboot and apply the new firmware.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td>3. Cisco UCS Manager verifies the model numbers and vendor against all servers associated with service profiles that include this policy. If the model numbers and vendor match a firmware version in the policy, Cisco UCS Manager reboots the server and updates the firmware.</td>
</tr>
<tr>
<td>Host or management firmware package is included in one or more service profiles, and the service profiles are associated with one or more servers.</td>
<td>Configured for changes to take effect during a specific maintenance window.</td>
<td>A manual reboot of the servers does not cause Cisco UCS Manager to apply the firmware package, nor does it cancel the scheduled maintenance activities.</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host or management firmware package is included in an updating service profile template, and the service profiles created from that template are associated with one or more servers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Creating or Updating a Host Firmware Package

If the policy is included in one or more service profiles associated with a server and those service profiles do not include maintenance policies, Cisco UCS Manager updates and activates the firmware in the server and adapter with the new versions and reboots the server as soon as you save the host firmware package policy.

Tip

You can include more than one type of firmware in the same host firmware package. For example, a host firmware package can include both BIOS firmware and storage controller firmware or adapter firmware for two different models of adapters. However, you can only have one firmware version with the same type, vendor, and model number. The system recognizes which firmware version is required for an endpoint and ignores all other firmware versions.

Before You Begin

Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A org/ # create fw-host-pack pack-name</td>
<td>Creates a host firmware package with the specified package name and enters organization firmware host package mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/fw-host-pack # set descr description</td>
<td>(Optional) Provides a description for the host firmware package. Note: If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A org/fw-host-pack # create pack-image hw-vendor-name hw-model</td>
<td>adapter</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A org/fw-host-pack/pack-image # set version version-num</td>
<td>(Optional) Specifies the package image version number. Changing this number triggers firmware updates on all components using the firmware through a service profile. Use this step only when updating a host firmware package, not when creating a package.</td>
</tr>
</tbody>
</table>
The following example creates the app1 host firmware package, creates a storage controller package image with version 2009.02.09 firmware, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create fw-host-pack app1
UCS-A /org/fw-host-pack* # set descr "This is a host firmware package example."
UCS-A /org/fw-host-pack* # create pack-image Cisco UCS storage-controller 2009.02.09
UCS-A /org/fw-host-pack/pack-image* # commit-buffer
```

What to Do Next
Include the policy in a service profile and/or template.

## Creating or Updating a Management Firmware Package

**Caution**

If the policy is included in one or more service profiles associated with a server and those service profiles do not include maintenance policies, Cisco UCS Manager updates and activates the management firmware in the server with the new versions and reboots the server as soon as you save the management firmware package policy.

**Before You Begin**
Ensure that the appropriate firmware has been downloaded to the fabric interconnect.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code> .</td>
</tr>
<tr>
<td>UCS-A# scope org org-name</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Creates a management firmware package with the specified package name and enters organization firmware management package mode.</td>
</tr>
<tr>
<td>UCS-A org/ # create fw-mgmt-pack pack-name</td>
<td></td>
</tr>
</tbody>
</table>
The following example creates the cimc1 host firmware package, creates a CIMC package image with version 1.0(0.988) firmware, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create fw-mgmt-pack cimc1
UCS-A /org/fw-mgmt-pack* # set descr "This is a management firmware package example."
UCS-A /org/fw-mgmt-pack* # create pack-image Cisco UCS cimc 1.0(0.988)
UCS-A /org/fw-mgmt-pack/pack-image* # commit-buffer
```

**What to Do Next**

Include the policy in a service profile and/or template.
Managing the Capability Catalog

Capability Catalog

The Capability Catalog is a set of tunable parameters, strings, and rules. Cisco UCS Manager uses the catalog to update the display and configurability of components such as newly qualified DIMMs and disk drives for servers.

The catalog is divided by hardware components, such as the chassis, CPU, local disk, and I/O module. You can use the catalog to view the list of providers available for that component. There is one provider per hardware component. Each provider is identified by the vendor, model (PID), and revision. For each provider, you can also view details of the equipment manufacturer and the form factor.

For information about which hardware components are dependent upon a particular catalog release, see the component support tables in the Service Notes for the B-Series servers. For information about which components are introduced in a specific release, see the Cisco UCS Release Notes.

Contents of the Capability Catalog

The contents of the Capability Catalog include the following:

Implementation-Specific Tunable Parameters

- Power and thermal constraints
- Slot ranges and numbering
- Adapter capacities

Hardware-Specific Rules

- Firmware compatibility for components such as the BIOS, CIMC, RAID controller, and adapters
- Diagnostics
- Hardware-specific reboot

User Display Strings

- Part numbers, such as the CPN, PID/VID
- Component descriptions
- Physical layout/dimensions
- OEM information
Updates to the Capability Catalog

Capability Catalog updates are included in each Cisco UCS Manager update. Unless otherwise instructed by Cisco Technical Support, you only need to activate the Capability Catalog update after you’ve downloaded, updated, and activated an Cisco UCS Infrastructure Software Bundle.

As soon as you activate a Capability Catalog update, Cisco UCS Manager immediately updates to the new baseline catalog. You do not have to perform any further tasks. Updates to the Capability Catalog do not require you to reboot any component in the Cisco UCS domain or to reinstall Cisco UCS Manager.

Each Cisco UCS Manager release contains a baseline catalog. In rare circumstances, Cisco releases an update to the Capability Catalog and makes it available on the same site where you download firmware images. The catalog update is compatible with Cisco UCS, Release 1.3(1) and later.

The Capability Catalog version is determined by the version of Cisco UCS Manager that you are using. Cisco UCS Manager 2.0 releases work with any 2.0 release of the Capability Catalog, but not with any 1.0 releases of the Capability Catalog. For information about Capability Catalog releases supported by specific Cisco UCS Manager releases, see the Release Notes for Cisco UCS Manager accessible through the Cisco UCS B-Series Servers Documentation Roadmap available at the following URL: http://www.cisco.com/go/unifiedcomputing/b-series-doc.

Activating a Capability Catalog Update

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope capability</td>
<td>Enters system capability mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/capability # activate firmware firmware-version</td>
<td>Activates the specified Capability Catalog version.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/capability # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example activates a Capability Catalog update and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope capability
UCS-A /system/capability # activate firmware 1.0(3)
UCS-A /system/capability* # commit-buffer
```
Verifying that the Capability Catalog is Current

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /system # scope capability</td>
<td>Enters system capability mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /system/capability # show version</td>
<td>Displays the current Capability Catalog version.</td>
</tr>
<tr>
<td>4</td>
<td>On Cisco.com, determine the most recent release of the Capability Catalog available.</td>
<td>For more information about the location of Capability Catalog updates, see Obtaining Capability Catalog Updates from Cisco, on page 237.</td>
</tr>
<tr>
<td>5</td>
<td>If a more recent version of the Capability Catalog is available on Cisco.com, update the Capability Catalog with that version.</td>
<td></td>
</tr>
</tbody>
</table>

The following example displays the current Capability Catalog version:

UCS-A# scope system
UCS-A /system # scope capability
UCS-A /system/capability # show version
Catalog:
  Running-Vers: 1.0(8.35)
  Activate-Status: Ready
UCS-A /system/capability #

Restarting a Capability Catalog Update

You can restart a failed Capability Catalog file update, modifying the update parameters if necessary.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope system</td>
<td>Enters system command mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /system # scope capability</td>
<td>Enters capability command mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /system/capability # show cat-updater [filename ]</td>
<td>(Optional) Displays the update history for Capability Catalog file update operations.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /system/capability # scope cat-updater filename</td>
<td>Enters the command mode for the Capability Catalog file update operation.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /system/capability/cat-updater # set userid username</td>
<td>(Optional) Specifies the username for the remote server.</td>
</tr>
</tbody>
</table>
### Managing the Capability Catalog

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>UCS-A /system/capability/cat-updater # set password <code>password</code></td>
<td>(Optional) Specifies the password for the remote server username. If no password is configured, you are prompted for a password when you start the update.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>UCS-A /system/capability/cat-updater # set protocol `{ftp</td>
<td>scp</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>UCS-A /system/capability/cat-updater # set server `{hostname</td>
<td>ip-address}`</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>UCS-A /system/capability/cat-updater # set path <code>pathname/filename</code></td>
<td>(Optional) Specifies the path and file name of the Capability Catalog file on the remote server.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>UCS-A /system/capability/cat-updater # restart</td>
<td>Restarts the Capability Catalog file update operation.</td>
</tr>
</tbody>
</table>

The following example changes the server IP address and restarts the Capability Catalog file update operation:

```
UCS-A# scope system
UCS-A /system # scope capability
UCS-A /system/capability # show cat-updater
Catalog Updater:
 File Name Protocol Server Userid Status
 --------- -------- --------------- ---------- -----
 ucs-catalog.1.0.0.4.bin Scp 192.0.2.111 user1 Failed
UCS-A /system/capability # scope cat-updater ucs-catalog.1.0.0.4.bin
UCS-A /system/capability/cat-updater # set server 192.0.2.112
UCS-A /system/capability/cat-updater # restart
```

### Viewing a Capability Catalog Provider

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# <code>scope system</code></td>
<td>Enters system command mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /system # <code>scope capability</code></td>
<td>Enters capability command mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /system/capability # `show {chassis</td>
<td>cpu</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`memory</td>
<td>psu</td>
</tr>
</tbody>
</table>

---

**Note:** If the server contains one or more SATA devices, such as a hard disk drive or solid state drive, the `show disk` command displays ATA in the Vendor field. Use the `expand` keyword to display additional vendor information.

The following example lists the installed fans and displays detailed information from the Capability Catalog about a specific fan:

```bash
UCS-A# scope system
UCS-A /system # scope capability
UCS-A /system/capability # show fan

Fan Module:
Vendor: Cisco Systems, Inc.
Model: N10-FAN1
Revision: 0

Equipment Manufacturing:
Name: Fan Module for UCS 6140 Fabric Interconnect
PID: N10-FAN1
VID: NA
Caption: Fan Module for UCS 6140 Fabric Interconnect
Part Number: N10-FAN1
SKU: N10-FAN1
CLEI:
Equipment Type:

Form Factor:
Depth (C): 6.700000
Height (C): 1.600000
Width (C): 4.900000
Weight (C): 1.500000

UCS-A /system/capability #
```

---

---

**Downloading Individual Capability Catalog Updates**

**Obtaining Capability Catalog Updates from Cisco**

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In a web browser, navigate to <a href="https://www.cisco.com">Cisco.com</a>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Under <strong>Support</strong>, click <strong>All Downloads</strong>.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the center pane, click <strong>Unified Computing and Servers</strong>.</td>
</tr>
<tr>
<td>Step 4</td>
<td>If prompted, enter your Cisco.com username and password to log in.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the right pane, click <strong>Cisco UCS Infrastructure and UCS Manager Software &gt; Unified Computing System (UCS) Manager Capability Catalog</strong>.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click the link for the latest release of the Capability Catalog.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click one of the following buttons and follow the instructions provided:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Download Now</strong>—Allows you to download the catalog update immediately</td>
</tr>
<tr>
<td></td>
<td>• <strong>Add to Cart</strong>—Adds the catalog update to your cart to be downloaded at a later time</td>
</tr>
<tr>
<td>Step 8</td>
<td>Follow the prompts to complete your download of the catalog update.</td>
</tr>
</tbody>
</table>

**What to Do Next**

Update the Capability Catalog.

**Updating the Capability Catalog from a Remote Location**

You cannot perform a partial update to the Capability Catalog. When you update the Capability Catalog, all components included in the catalog image are updated.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope system</code></td>
<td>Enters system command mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/system # <code>scope capability</code></td>
<td>Enters capability command mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A/system/capability # <code>update catalog URL</code></td>
<td>Imports and applies the specified Capability Catalog file. Specify the URL for the operation using one of the following syntax:</td>
</tr>
<tr>
<td></td>
<td>• <code>ftp://username@hostname / path</code></td>
</tr>
<tr>
<td></td>
<td>• <code>scp://username@hostname / path</code></td>
</tr>
<tr>
<td></td>
<td>• <code>sftp://username@hostname / path</code></td>
</tr>
<tr>
<td></td>
<td>• <code>tftp://hostname : port-num / path</code></td>
</tr>
</tbody>
</table>
### Purpose

When a username is specified, you are prompted for a password.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>UCS-A /system/capability # show version</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /system/capability # show cat-updater [filename ]</td>
</tr>
</tbody>
</table>

Cisco UCS Manager downloads the image and updates the Capability Catalog. You do not need to reboot any hardware components.

The following example uses SCP to import a Capability Catalog file:

```
UCS-A# scope system
UCS-A /system # scope capability
UCS-A /system/capability # update catalog
scp://user1@192.0.2.111/catalogs/ucs-catalog.1.0.0.4.bin
Password:
UCS-A /system/capability # show version
Catalog:
Update Version: 1.0(0.4)

UCS-A /system/capability # show cat-updater
Catalog Updater:
 File Name Protocol Server Userid Status
 --------- -------- --------------- --------------- ------
 ucs-catalog.1.0.0.4.bin Scp 192.0.2.111 user1 Success

UCS-A /system/capability #
```

### Updating Management Extensions

#### Management Extensions

Management Extension updates are included in each Cisco UCS Manager update. Unless otherwise instructed by Cisco Technical Support, you only need to activate the Management Extension update after you've downloaded, updated, and activated an Cisco UCS Infrastructure Software Bundle.

Management Extensions enable you to add support for previously unsupported servers and other hardware to Cisco UCS Manager. For example, you may need to activate a Management Extension if you want to add a new, previously unsupported server to an existing Cisco UCS domain.

The Management Extension image contains the images, information, and firmware required by Cisco UCS Manager to be able to manage the new hardware.

Cisco UCS Manager may need to access a Management Extension when you activate. Therefore, the Management Extension is locked during the activation and update process.
**Activating a Management Extension**

The Management Extension is included in the server bundle that you have already downloaded. You do not need to download the Management Extension separately.

To verify the Management Extension version, issue the `show version` command.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope management-extension</td>
<td>Enters system Management Extension mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/management-extension # activate firmware <code>firmware-version</code> [force-activation]</td>
<td>Activates the specified Management Extension. Use the <code>force-activation</code> keyword to activate the firmware regardless of any possible incompatibilities or currently executing tasks.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/management-extension # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example activates the Management Extension and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope management-extension
UCS-A /system/management-extension # activate firmware 1.0(4)
CS-A /system/management-extension* # commit-buffer
```
Configuring DNS Servers

This chapter includes the following sections:

- DNS Servers in Cisco UCS, page 241
- Configuring a DNS Server, page 241
- Deleting a DNS Server, page 242

DNS Servers in Cisco UCS

You need to specify an external DNS server for each Cisco UCS domain to use if the system requires name resolution of hostnames. For example, you cannot use a name such as www.cisco.com when you are configuring a setting on a fabric interconnect if you do not configure a DNS server. You would need to use the IP address of the server.

Configuring a DNS Server

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # create dns ip-addr</td>
<td>Configures the system to use the DNS server with the specified IP address.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example configures a DNS server with the IP address 192.168.200.105 and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # create dns 192.168.200.105
UCS-A /system/services* # commit-buffer
```

Deleting a DNS Server

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # delete dns ip-addr</td>
<td>Deletes the NTP server with the specified IP address.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/services # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the DNS server with the IP address 192.168.200.105 and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # delete dns 192.168.200.105
UCS-A /system/services* # commit-buffer
UCS-A /system/services #
```
Configuring System-Related Policies

This chapter includes the following sections:

• Configuring the Chassis Discovery Policy, page 243
• Configuring the Chassis Connectivity Policy, page 247
• Configuring the Rack Server Discovery Policy, page 248
• Configuring the Aging Time for the MAC Address Table, page 250

Configuring the Chassis Discovery Policy

Chassis Discovery Policy

The chassis discovery policy determines how the system reacts when you add a new chassis. Cisco UCS Manager uses the settings in the chassis discovery policy to determine the minimum threshold for the number of links between the chassis and the fabric interconnect and whether to group links from the IOM to the fabric interconnect in a fabric port channel.

Chassis Links

If you have a Cisco UCS domain that has some chassis wired with 1 link, some with 2 links, some with 4 links, and some with 8 links we recommend that you configure the chassis discovery policy for the minimum number links in the domain so that Cisco UCS Manager can discover all the chassis.

Tip

For Cisco UCS implementations that mix IOMs with different numbers of links, we recommend using the platform max value. Using platform max insures that Cisco UCS Manager uses the maximum number of IOM uplinks available.

After the initial discovery, you must reacknowledge the chassis that are wired for a greater number of links and Cisco UCS Manager configures the chassis to use all available links.

Cisco UCS Manager cannot discover any chassis that is wired for fewer links than are configured in the chassis discovery policy. For example, if the chassis discovery policy is configured for 4 links, Cisco UCS Manager
cannot discover any chassis that is wired for 1 link or 2 links. Reacknowledgement of the chassis does not resolve this issue.

The following table provides an overview of how the chassis discovery policy works in a multi-chassis Cisco UCS domain:

**Table 12: Chassis Discovery Policy and Chassis Links**

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
<th>8-Link Chassis Discovery Policy</th>
<th>Platform-Max Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 link between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link.</td>
</tr>
<tr>
<td>2 links between IOM and fabric interconnects</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 link.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
</tr>
</tbody>
</table>
### Number of Links Wired for the Chassis

<table>
<thead>
<tr>
<th>Number of Links Wired for the Chassis</th>
<th>1-Link Chassis Discovery Policy</th>
<th>2-Link Chassis Discovery Policy</th>
<th>4-Link Chassis Discovery Policy</th>
<th>8-Link Chassis Discovery Policy</th>
<th>Platform-Max Discovery Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4 links between IOM and fabric interconnects</strong></td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 4 links.</td>
<td>Chassis cannot be discovered by Cisco UCS Manager and is not added to the Cisco UCS domain.</td>
<td>If the IOM has 4 links, the chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 4 links. If the IOM has 8 links, the chassis is not fully discovered by Cisco UCS Manager.</td>
</tr>
<tr>
<td><strong>8 links between IOM and fabric interconnects</strong></td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 1 link. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 2 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 4 links. After initial discovery, reacknowledge the chassis and Cisco UCS Manager recognizes and uses the additional links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 8 links.</td>
<td>Chassis is discovered by Cisco UCS Manager and added to the Cisco UCS domain as a chassis wired with 8 links.</td>
</tr>
</tbody>
</table>

### Link Grouping

For hardware configurations that support fabric port channels, link grouping determines whether all of the links from the IOM to the fabric interconnect are grouped into a fabric port channel during chassis discovery. If the link grouping preference is set to port channel, all of the links from the IOM to the fabric interconnect...
are grouped in a fabric port channel. If set to no group, links from the IOM to the fabric interconnect are not
(grouped in a fabric port channel.

Once a fabric port channel is created, links can be added or removed by changing the link group preference
and reacknowledging the chassis, or by enabling or disabling the chassis from the port channel.

Note

The link grouping preference only takes effect if both sides of the links between an IOM or FEX and the
fabric interconnect support fabric port channels. If one side of the links does not support fabric port
channels, this preference is ignored and the links are not grouped in a port channel.

Configuring the Chassis Discovery Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td>UCS-A# scope org /</td>
<td>Note The chassis discovery policy can be accessed only from the root organization.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters organization chassis discovery policy mode.</td>
</tr>
<tr>
<td>UCS-A/org # scope chassis-disc-policy</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Specifies the minimum threshold for the number of links between the chassis and the fabric interconnect.</td>
</tr>
<tr>
<td>UCS-A/org/chassis-disc-policy # set action {1-link</td>
<td>2-link</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Provides a description for the chassis discovery policy.</td>
</tr>
<tr>
<td>UCS-A/org/chassis-disc-policy # set descr description</td>
<td>Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies whether the links from the IOMs to the fabric interconnects are grouped in a port channel.</td>
</tr>
<tr>
<td>UCS-A/org/chassis-disc-policy # set link-aggregation-pref {none</td>
<td>port-channel}</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) Uses the specified server pool policy qualifications to associate this policy with a server pool.</td>
</tr>
<tr>
<td>UCS-A/org/chassis-disc-policy # set qualifier qualifier</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A/org/chassis-disc-policy # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>
The following example scopes to the default chassis discovery policy, sets it to discover chassis with four links to a fabric interconnect, provides a description for the policy, specifies the server pool policy qualifications that will be used to qualify the chassis, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope chassis-disc-policy
UCS-A /org/chassis-disc-policy* # set action 4-link
UCS-A /org/chassis-disc-policy* # set descr "This is an example chassis discovery policy."
UCS-A /org/chassis-disc-policy* # set qualifier ExampleQual
UCS-A /org/chassis-disc-policy* # commit-buffer
UCS-A /org/chassis-disc-policy #
```

The following example scopes to the default chassis discovery policy, sets it to discover chassis with eight links to a fabric interconnect, provides a description for the policy, sets the link grouping preference to port channel, specifies the server pool policy qualifications that will be used to qualify the chassis, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope chassis-disc-policy
UCS-A /org/chassis-disc-policy* # set action 8-link
UCS-A /org/chassis-disc-policy* # set descr "This is an example chassis discovery policy."
UCS-A /org/chassis-disc-policy* # set link-aggregation-pref port-channel
UCS-A /org/chassis-disc-policy* # set qualifier ExampleQual
UCS-A /org/chassis-disc-policy* # commit-buffer
UCS-A /org/chassis-disc-policy #
```

**What to Do Next**

To customize fabric port channel connectivity for a specific chassis, configure the chassis connectivity policy.

**Configuring the Chassis Connectivity Policy**

**Chassis Connectivity Policy**

The chassis connectivity policy determines the whether a specific chassis is included in a fabric port channel after chassis discovery. This policy is helpful for users who want to configure one or more chassis differently from what is specified in the global chassis discovery policy. The chassis connectivity policy also allows for different connectivity modes per fabric interconnect, further expanding the level of control offered with regards to chassis connectivity.

By default, the chassis connectivity policy is set to global. This means that connectivity control is configured when the chassis is newly discovered, using the settings configured in the chassis discovery policy. Once the chassis is discovered, the chassis connectivity policy controls whether the connectivity control is set to none or port channel.

**Note**

The chassis connectivity policy is created by Cisco UCS Manager only when the hardware configuration supports fabric port channels. At this time, only the 6200 series fabric interconnects and the 2200 series IOMs support this feature. For all other hardware combinations, Cisco UCS Manager does not create a chassis connectivity policy.
Configuring a Chassis Connectivity Policy

Changing the connectivity mode for a chassis could result in decreased VIF namespace.

Caution

Changing the connectivity mode for a chassis results in chassis reacknowledgement. Traffic may be disrupted during this time.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A/org # scope chassis-conn-policy chassis-num [a</td>
</tr>
<tr>
<td></td>
<td>Enters chassis connection policy organization mode for the specified chassis and fabric.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A/org/chassis-conn-policy # set link-aggregation-pref {global</td>
</tr>
<tr>
<td></td>
<td>Specifies whether the links from the IOMs to the fabric interconnects are grouped in a port channel.</td>
</tr>
<tr>
<td></td>
<td>• None—No links are grouped in a port channel</td>
</tr>
<tr>
<td></td>
<td>• Port Channel—All links from an IOM to a fabric interconnect are grouped in a port channel.</td>
</tr>
<tr>
<td></td>
<td>• Global—The chassis inherits this configuration from the chassis discovery policy. This is the default value.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A/org/chassis-conn-policy # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following examples show how to change the fabric port channel connectivity for two chassis. Chassis 6, fabric A is changed to port channel and chassis 12, fabric B is changed to discrete links:

```
UCS-A# scope org /
UCS-A /org # scope chassis-conn-policy 6 a
UCS-A /org/chassis-conn-policy # set link-aggregation-pref port-channel
UCS-A /org/chassis-conn-policy* # up
UCS-A /org* # scope chassis-conn-policy 12 b
UCS-A /org/chassis-conn-policy* # set link-aggregation-pref none
UCS-A /org/chassis-conn-policy* # commit-buffer
UCS-A /org/chassis-conn-policy #
```

Configuring the Rack Server Discovery Policy

Rack Server Discovery Policy

The rack server discovery policy determines how the system reacts when you add a new rack-mount server. Cisco UCS Manager uses the settings in the rack server discovery policy to determine whether any data on
the hard disks are scrubbed and whether server discovery occurs immediately or needs to wait for explicit user acknowledgement.

Cisco UCS Manager cannot discover any rack-mount server that has not been correctly cabled and connected to the fabric interconnects. For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

## Configuring the Rack Server Discovery Policy

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org /</td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /org # scope rackserver-disc-policy</td>
<td>Enters organization rack server discovery policy mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /org/rackserver-disc-policy # set action {immediate</td>
<td>user-acknowledged}</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /org/rackserver-disc-policy # set descr description</td>
<td>(Optional) Provides a description for the rack server discovery policy.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>UCS-A /org/rackserver-disc-policy # set scrub-policy scrub-pol-name</td>
<td>Specifies the scrub policy that should run on a newly discovered rack server.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>UCS-A /org/rackserver-disc-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example scopes to the default rack server discovery policy, sets it to immediately discover new rack servers, provides a description for the policy, specifies a scrub policy called scrubpol1, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope rackserver-disc-policy
UCS-A /org/rackserver-disc-policy* # set action immediate
UCS-A /org/rackserver-disc-policy* # set descr "This is an example rackserver discovery policy."
UCS-A /org/rackserver-disc-policy* # set scrub-policy scrubpol1
UCS-A /org/rackserver-disc-policy* # commit-buffer
UCS-A /org/rackserver-disc-policy #
```
## Configuring the Aging Time for the MAC Address Table

### Aging Time for the MAC Address Table

To efficiently switch packets between ports, the fabric interconnect maintains a MAC address table. It dynamically builds the MAC address table by using the MAC source address from the packets received and the associated port on which the packets were learned. The fabric interconnect uses an aging mechanism, defined by a configurable aging timer, to determine how long an entry remains in the MAC address table. If an address remains inactive for a specified number of seconds, it is removed from the MAC address table.

You can configure the amount of time (age) that a MAC address entry (MAC address and associated port) remains in the MAC address table.

### Configuring the Aging Time for the MAC Address Table

#### Procedure

**Step 1**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
</tbody>
</table>

**Step 2**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /eth-uplink # set mac-aging {dd hh mm ss</td>
<td>mode-default</td>
</tr>
</tbody>
</table>

**Step 3**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /eth-uplink # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the aging time for the MAC address table to one day and 12 hours and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink # set mac-aging 01 12 00 00
UCS-A /eth-uplink# commit-buffer
UCS-A /eth-uplink #
MANAGING LICENSES

This chapter includes the following sections:

- Licenses, page 251
- Obtaining the Host ID for a Fabric Interconnect, page 252
- Obtaining a License, page 253
- Installing a License, page 254
- Viewing the Licenses Installed on a Fabric Interconnect, page 254
- Viewing License Usage for a Fabric Interconnect, page 255
- Uninstalling a License, page 257

Licenses

Each Cisco UCS fabric interconnect comes with several port licenses that are factory installed and shipped with the hardware. Fabric interconnects can be purchased fully licensed or partially licensed. Additional licenses can also be purchased after delivery.

At a minimum, each fabric interconnect ships with the following counted licenses pre-installed:

- Cisco UCS 6120XP fabric interconnect—pre-installed licenses for the first eight Ethernet ports enabled in Cisco UCS Manager and any Fibre Channel ports on expansion modules
- Cisco UCS 6140XP fabric interconnect—pre-installed licenses for the first sixteen Ethernet ports enabled in Cisco UCS Manager and any Fibre Channel ports on expansion modules
- Cisco UCS 6248 fabric interconnect—pre-installed licenses for the first twelve unified ports enabled in Cisco UCS Manager. Expansion modules come with eight licenses that can be used on the expansion module or the base module.
- Cisco UCS 6296 fabric interconnect—pre-installed licenses for the first eighteen unified ports enabled in Cisco UCS Manager. Expansion modules come with eight licenses that can be used on the expansion module or the base module.
The eight default licenses that come with a 6200 series fabric interconnect expansion module can be used to enable ports on the base module, but will travel with the expansion module if it is removed. Upon removal of an expansion module, any default expansion module licenses being used by the base module are removed from the ports on the base module, resulting in unlicensed ports.

Port licenses are not bound to physical ports. When you disable a licensed port, that license is then retained for use with the next enabled port. If you want to use additional fixed ports, you must purchase and install licenses for those ports.

Licenses are not portable across product generations. Licenses purchased for 6100 series fabric interconnects cannot be used to enable ports on 6200 series fabric interconnects or vice-versa.

Grace Period

If you attempt to use a port that does not have an installed license, Cisco UCS initiates a 120 day grace period. The grace period is measured from the first use of the port without a license and is paused when a valid license file is installed. The amount of time used in the grace period is retained by the system.

Each physical port has its own grace period. Initiating the grace period on a single port does not initiate the grace period for all ports.

If a licensed port is unconfigured, that license is transferred to a port functioning within a grace period. If multiple ports are acting within grace periods, the license is moved to the port whose grace period is closest to expiring.

High Availability Configurations

To avoid inconsistencies during failover, we recommend that both fabric interconnects in the cluster have the same number of ports licensed. If symmetry is not maintained and failover occurs, Cisco UCS enables the missing licenses and initiates the grace period for each port being used on the failover node.

Obtaining the Host ID for a Fabric Interconnect

The host ID is also known as the serial number.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope license</td>
<td>Enters license mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /license # show server-host-id</td>
<td>Obtains the host ID or serial number for the fabric interconnect.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the entire host ID that displays after the equal (=) sign.</td>
</tr>
</tbody>
</table>
The following example obtains the host ID for a fabric interconnect:

```
UCS-A# scope license
UCS-A /license # show server-host-id
Server host id:
 Scope Host Id
 ----- -------
 A VDH=SSI112121212
 B VDH=SSI1313131313
UCS-A /license #
```

What to Do Next
Obtain the required licenses from Cisco.

---

## Obtaining a License

[Note]

This process may change after the release of this document. If one or more of these steps no longer applies, contact your Cisco representative for information on how to obtain a license file.

### Before You Begin

Obtain the following:

- Host ID or serial number for the fabric interconnect
- Claim certificate or other proof of purchase document for the fabric interconnect or expansion module

### Procedure

**Step 1**
Obtain the product authorization key (PAK) from the claim certificate or other proof of purchase document.

**Step 2**
Locate the website URL in the claim certificate or proof of purchase document.

**Step 3**
Access the website URL for the fabric interconnect and enter the serial number and the PAK. Cisco sends you the license file by email. The license file is digitally signed to authorize use on only the requested fabric interconnect. The requested features are also enabled once Cisco UCS Manager accesses the license file.

### What to Do Next

Install the license on the fabric interconnect.
Installing a License

In a cluster setup, we recommend that you download and install licenses to both fabric interconnects in matching pairs. An individual license is only downloaded to the fabric interconnect that is used to initiate the download.

Before You Begin

Obtain the required licenses from Cisco.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope license</td>
<td>Enters license mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /license # download</td>
<td>Downloads the license from its source location. For the from-filesystem: argument, use one of the following syntaxes:</td>
</tr>
<tr>
<td>license from-filesystem</td>
<td>• ftp:// server-ip-addr</td>
</tr>
<tr>
<td></td>
<td>• scp:// username@server-ip-addr</td>
</tr>
<tr>
<td></td>
<td>• sftp:// username@server-ip-addr</td>
</tr>
<tr>
<td></td>
<td>• tftp:// server-ip-addr : port-num</td>
</tr>
<tr>
<td>Step 3 UCS-A /license # install</td>
<td>Installs the license.</td>
</tr>
<tr>
<td>license_filename</td>
<td></td>
</tr>
</tbody>
</table>

The following example uses FTP to download and install a license:

```
UCS-A # scope license
UCS-A /license # download license from-filesystem ftp://192.168.10.10/license/port9.lic
UCS-A /license # install file port9.lic
UCS-A /license #
```

Viewing the Licenses Installed on a Fabric Interconnect

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope license</td>
<td>Enters license mode.</td>
</tr>
</tbody>
</table>
Viewing License Usage for a Fabric Interconnect

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope license</td>
<td>Enters license mode.</td>
</tr>
</tbody>
</table>

The following example displays the full details for the licenses installed on a fabric interconnect:

UCS-A# scope license
UCS-A /license # show file detail

License file: UCSFEAT20100928112305377.lic
Id: 1212121212121212
Version: 1.0
Scope: A
State: Installed
Features
Feature Name: ETH_PORT_ACTIVATION_PKG
Vendor: cisco
Version: 1.0
Quantity: 24
Lines
  Line Id: 1
  Type: Increment
  Expiry Date: Never
  Pak:
  Quantity: 24
  Signature: B10101010101

License file: UCSFEAT20100928112332175.lic
Id: 1313131313131313
Version: 1.0
Scope: B
State: Installed
Features
Feature Name: ETH_PORT_ACTIVATION_PKG
Vendor: cisco
Version: 1.0
Quantity: 24
Lines
  Line Id: 1
  Type: Increment
  Expiry Date: Never
  Pak:
  Quantity: 24
  Signature: F302020202020

UCS-A /license #
### Viewing License Usage for a Fabric Interconnect

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 UCS-A /license # show usage</td>
<td>Displays the license usage table for all license files installed on the fabric interconnect.</td>
</tr>
</tbody>
</table>

This following are included:

- **Feat Name**
  The name of the feature to which the license applies.

- **Scope**
  The fabric associated with the license.

- **Default**
  The default number of licenses provided for this Cisco UCS domain.

- **Total Quant**
  The total number of licenses available. This value is the sum of the number of default licenses plus the number of purchased licenses.

- **Used Quant**
  The number of licenses currently being used by the system. If this value exceeds the total number of licenses available, then some ports will stop functioning after their associated grace period expires.

- **State**
  The operational state of the license.

- **Peer License Count Comparison**
  The number of licenses on the peer fabric interconnect compared to this fabric interconnect. This can be one of the following:

  - **exceeds**—the peer fabric interconnect has more licenses installed than this fabric interconnect
  - **lacks**—the peer fabric interconnect has fewer licenses installed than this fabric interconnect
  - **matching**—the same number of licenses are installed on both fabric interconnects
The number of grace period days that this license has used. After the grace period ends, Cisco UCS sends alert messages until a new license is purchased.

The following example displays full details of the licenses installed on a fabric interconnect:

```
UCS-A# scope license
UCS-A /license # show usage
Feat Name Scope Default Total Quant Used Quant State Peer Count
Comparison Grace Used

ETH_PORT_ACTIVATION_PKG A 16 40 11 License Ok Matching 0
ETH_PORT_ACTIVATION_PKG B 16 40 11 License Ok Matching 0
```

Uninstalling a License

 Permanent licenses cannot be uninstalled if they are in use. You can only uninstall a permanent license that is not in use. If you try to delete a permanent license that is being used, Cisco UCS Manager rejects the request with an error message.

**Before You Begin**

- Back up the Cisco UCS Manager configuration.
- Disable the feature or port associated with the license you want to uninstall.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope license</td>
<td>Enters license mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /license # clear file license-filename</td>
<td>Uninstalls the specified license.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager deactivates the license, removes the license from the list of licenses, and deletes the license from the fabric interconnect. In a cluster setup, you must uninstall the license from the other fabric interconnect.
The following example shows the uninstallation of port9.lic:

```
UCS-A # scope license
UCS-A /license # clear file port9.lic
Clearing license port9.lic:
SERVER this_host ANY
VENDOR cisco
INCREMENT ETH_PORT_ACTIVATION_PKG cisco 1.0 permanent 1 \
 VENDOR_STRING=<LIC_SOURCE>UCS_SWIFT</LIC_SOURCE><SKU>N10-L001=</SKU> \
 HOSTID=VDH=FLC12360025 \
 NOTICE="<LicFileID>20090519200954833</LicFileID><LicLineID>1</LicLineID> \
 <PAK></PAK>" SIGN=C01FAE4E87FA
Clearing licensedone
UCS-A /license #
```
Managing Virtual Interfaces

This chapter includes the following sections:

- Virtual Interfaces, page 259
- Virtual Interface Subscription Management and Error Handling, page 259

Virtual Interfaces

In a blade server environment, the number of vNICs and vHBAs configurable for a service profile is determined by adapter capability and the amount of virtual interface (VIF) namespace available on the adapter. In Cisco UCS, portions of VIF namespace are allotted in chunks called VIFs. Depending on your hardware, the maximum number of VIFs are allocated on a predefined, per-port basis. The maximum number of VIFs varies based on hardware capability and port connectivity. For each configured vNIC or vHBA, one or two VIFs are allocated. Stand-alone vNICs and vHBAs use one VIF and failover vNICs and vHBAs use two.

The following variables affect the number of VIFs available to a blade server, and therefore, how many vNICs and vHBAs you can configure for a service profile.

- Maximum number of VIFs supported on your fabric interconnect
- How the fabric interconnects are cabled
- If your fabric interconnect and IOM are configured in fabric port channel mode

For more information about the maximum number of VIFs supported by your hardware configuration, see Cisco UCS 6100 and 6200 Series Configuration Limits for Cisco UCS Manager for your software release.

Virtual Interface Subscription Management and Error Handling

For fabric interconnects grouped in a port-channel, changes to the way you connect the fabric interconnect to the I/O module could result in a drastic change to the number of VIFs available to a blade server. To help you track the effect of these changes, Cisco UCS Manager maintains the following metrics:

- Maximum number of VIFs supported by hardware
- Connectivity type
If you change your configuration in a way that decreases the number of VIFs available to a blade, UCS Manager will display a warning and ask you if you want to proceed. This includes several scenarios, including times where adding or moving a connection decreases the number of VIFs.
PART III

Network Configuration

- Configuring VLANs, page 263
- Configuring LAN Pin Groups, page 275
- Configuring MAC Pools, page 277
- Configuring Quality of Service, page 281
- Configuring Network-Related Policies, page 291
- Configuring Upstream Disjoint Layer-2 Networks, page 301
CHAPTER 16

Configuring VLANs

This chapter includes the following sections:

- Named VLANs, page 263
- Private VLANs, page 264
- VLAN Port Limitations, page 265
- Configuring Named VLANs, page 266
- Configuring Private VLANs, page 271
- Viewing the VLAN Port Count, page 274

Named VLANs

A named VLAN creates a connection to a specific external LAN. The VLAN isolates traffic to that external LAN, including broadcast traffic.

The name that you assign to a VLAN ID adds a layer of abstraction that allows you to globally update all servers associated with service profiles that use the named VLAN. You do not need to reconfigure the servers individually to maintain communication with the external LAN.

You can create more than one named VLAN with the same VLAN ID. For example, if servers that host business services for HR and Finance need to access the same external LAN, you can create VLANs named HR and Finance with the same VLAN ID. Then, if the network is reconfigured and Finance is assigned to a different LAN, you only have to change the VLAN ID for the named VLAN for Finance.

In a cluster configuration, you can configure a named VLAN to be accessible only to one fabric interconnect or to both fabric interconnects.
Guidelines for VLAN IDs

**Important**

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

VLAN 4048 is user-configurable. However, Cisco UCS Manager uses VLAN 4048 for the following default values. If you want to assign 4048 to a VLAN, you must reconfigure these values:

- After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.
- After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049.

The VLAN name is case sensitive.

**Private VLANs**

A private VLAN (PVLAN) partitions the Ethernet broadcast domain of a VLAN into subdomains and allows you to isolate some ports. Each subdomain in a PVLAN includes a primary VLAN and one or more secondary VLANs. All secondary VLANs in a PVLAN must share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another.

**Isolated VLANs**

All secondary VLANs in a Cisco UCS domain must be isolated VLANs. Cisco UCS does not support community VLANs.

**Ports on Isolated VLANs**

Communications on an isolated VLAN can only use the associated port in the primary VLAN. These ports are isolated ports and are not configurable in Cisco UCS Manager. If the primary VLAN includes multiple secondary VLANs, those isolated VLANs cannot communicate directly with each other.

An isolated port is a host port that belongs to an isolated secondary VLAN. This port has complete isolation from other ports within the same private VLAN domain. PVLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports. You can have more than one isolated port in a specified isolated VLAN. Each port is completely isolated from all other ports in the isolated VLAN.

**Guidelines for Uplink Ports**

When you create PVLANs, be aware of the following guidelines:

- The uplink Ethernet port channel cannot be in promiscuous mode.
- Each primary VLAN can have only one isolated VLAN.
• VIFs on VNTAG adapters can have only one isolated VLAN.

**Guidelines for VLAN IDs**

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

VLAN 4048 is user-configurable. However, Cisco UCS Manager uses VLAN 4048 for the following default values. If you want to assign 4048 to a VLAN, you must reconfigure these values:

- After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.
- After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049.

The VLAN name is case sensitive.

**VLAN Port Limitations**

Cisco UCS Manager limits the number of VLAN port instances that can be configured under border and server domains on a fabric interconnect to 6000.

**Types of Ports Included in the VLAN Port Count**

The following types of ports are counted in the VLAN port calculation:

- Border uplink Ethernet ports
- Border uplink Ether-channel member ports
- FCoE ports in a SAN cloud
- Ethernet ports in a NAS cloud
- Static and dynamic vNICs created through service profiles
- VM vNICs created as part of a port profile in a hypervisor in hypervisor domain

Based on the number of VLANs configured for these ports, Cisco UCS Manager keeps track of the cumulative count of VLAN port instances and enforces the VLAN port limit during validation. Cisco UCS Manager reserves some pre-defined VLAN port resources for control traffic. These include management VLANs configured under HIF and NIF ports.

**VLAN Port Limit Enforcement**

Cisco UCS Manager validates VLAN port availability during the following operations.
Configuring and unconfiguring border ports and border port channels

Adding or removing VLANs from a cloud

Configuring or unconfiguring SAN or NAS ports

Associating or disassociating service profiles that contain configuration changes

Configuring or unconfiguring VLANs under vNICs or vHBAs

Upon receiving creation or deleting notifications from a VMWare vNIC, from an ESX hypervisor

Note This is outside the control of Cisco UCS Manager

• Fabric interconnect reboot

• Cisco UCS Manager upgrade or downgrade

Cisco UCS Manager strictly enforces the VLAN port limit on service profile operations. If Cisco UCS Manager detects that you have exceeded the VLAN port limit service profile configuration will fail during deployment. Exceeding the VLAN port count in a border domain is less disruptive. When the VLAN port count is exceeded in a border domain Cisco UCS Manager changes the allocation status to Exceeded. In order to change the status back to Available, you should complete one of the following actions:

• Unconfigure one or more border ports

• Remove VLANs from the LAN cloud

• Unconfigure one or more vNICs or vHBAs

**Configuring Named VLANs**

**Creating a Named VLAN Accessible to Both Fabric Interconnects (Uplink Ethernet Mode)**

---

**Important**

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

---

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A/eth-uplink # create vlan vlan-name vlan-id</td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet uplink VLAN mode.</td>
</tr>
</tbody>
</table>
Creating a Named VLAN Accessible to Both Fabric Interconnects (Ethernet Storage Mode)

### Important
You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-storage # create vlan vlan-name vlan-id</td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet storage VLAN mode. The VLAN name is case sensitive.</td>
</tr>
</tbody>
</table>
### Configuring Named VLANs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /eth-storage/vlan # create member-port {a</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /eth-storage/vlan/member-port # commit-buffer</td>
</tr>
</tbody>
</table>

The following example creates a named VLAN for both fabric interconnects, names the VLAN accounting, assigns the VLAN ID 2112, creates a member port on slot 2, port 20, and commits the transaction:

```
UCS-A# scope eth-storage
UCS-A /eth-storage # create vlan accounting 2112
UCS-A /eth-storage/vlan* # create member-port a 2 20
UCS-A /eth-storage/vlan/member-port* # commit-buffer
UCS-A /eth-storage/vlan/member-port #
```

### Creating a Named VLAN Accessible to One Fabric Interconnect (Uplink Ethernet Mode)

**Important**

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope eth-uplink</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /eth-uplink # scope fabric {a</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /eth-uplink/fabric # create vlan vlan-name vlan-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /eth-uplink/fabric/vlan # set sharing {isolated</td>
</tr>
</tbody>
</table>

- **isolated** — This is a secondary VLAN associated with a primary VLAN. This VLAN is private.
- **none** — This VLAN does not have any secondary or private VLANs.
### Configuring Named VLANs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>• primary</strong> — This VLAN can have one or more secondary VLANs.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /eth-uplink/fabric/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a named VLAN for fabric interconnect A, names the VLAN finance, assigns the VLAN ID 3955, sets the sharing to none, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # create vlan finance 3955
UCS-A /eth-uplink/fabric/vlan* # set sharing none
UCS-A /eth-uplink/fabric/vlan* # commit-buffer
```

### Creating a Named VLAN Accessible to One Fabric Interconnect (Ethernet Storage Mode)

#### Important
You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope eth-storage</td>
<td>Enters Ethernet storage mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /eth-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /eth-storage/fabric # create vlan vlan-name vlan-id</td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet storage fabric interconnect VLAN mode. The VLAN name is case sensitive.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /eth-storage/vlan # create member-port {a</td>
<td>b} slot-id port-id</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /eth-storage/fabric/vlan/member-port # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example creates a named VLAN for fabric interconnect A, names the VLAN finance, assigns the VLAN ID 3955, creates a member port on slot 2, port 20, and commits the transaction:

```plaintext
UCS-A# scope eth-storage
UCS-A /eth-storage # scope fabric a
UCS-A /eth-storage/fabric # create vlan finance 3955
UCS-A /eth-storage/fabric/vlan* # create member-port a 2 20
UCS-A /eth-storage/fabric/vlan/member-port* # commit-buffer
```

### Deleting a Named VLAN

If Cisco UCS Manager includes a named VLAN with the same VLAN ID as the one you delete, the VLAN is not removed from the fabric interconnect configuration until all named VLANs with that ID are deleted.

If you are deleting a private primary VLAN, make sure to reassign the secondary VLANs to another working primary VLAN.

#### Before You Begin

Before you delete a VLAN from a fabric interconnect, ensure that the VLAN has been removed from all vNICs and vNIC templates.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-uplink # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink # delete vlan vlan-name</td>
<td>Deletes the specified named VLAN.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-uplink # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a named VLAN accessible to both fabric interconnects and commits the transaction:

```plaintext
UCS-A# scope eth-uplink
UCS-A /eth-uplink # delete vlan accounting
UCS-A /eth-uplink* # commit-buffer
UCS-A /eth-uplink #
```
The following example deletes a named VLAN accessible to one fabric interconnect and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # delete vlan finance
UCS-A /eth-uplink/fabric* # commit-buffer
UCS-A /eth-uplink/fabric #
```

### Configuring Private VLANs

#### Creating a Primary VLAN for a Private VLAN (Accessible to Both Fabric Interconnects)

<table>
<thead>
<tr>
<th>Important</th>
<th>You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.</th>
</tr>
</thead>
</table>

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /eth-uplink # create vlan vlan-name vlan-id</td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet uplink VLAN mode. The VLAN name is case sensitive.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /eth-uplink/vlan # set sharing primary</td>
<td>Sets the VLAN as the primary VLAN.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /eth-uplink/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a named VLAN for both fabric interconnects, names the VLAN accounting, assigns the VLAN ID 2112, makes this VLAN the primary VLAN, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # create vlan accounting 2112
UCS-A /eth-uplink/vlan* # set sharing primary
UCS-A /eth-uplink/vlan* # commit-buffer
UCS-A /eth-uplink/vlan #
```
Creating a Primary VLAN for a Private VLAN (Accessible to One Fabric Interconnect)

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /eth-uplink/fabric # create vlan name vlan-name vlan-id</td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet uplink fabric interconnect VLAN mode. The VLAN name is case sensitive.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /eth-uplink/fabric/vlan # set sharing primary</td>
<td>Sets the VLAN as the primary VLAN.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /eth-uplink/fabric/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a named VLAN for fabric interconnect A, names the VLAN finance, assigns the VLAN ID 3955, makes this VLAN the primary VLAN, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # create vlan name finance 3955
UCS-A /eth-uplink/fabric/vlan* # set sharing primary
UCS-A /eth-uplink/fabric/vlan* # commit-buffer
UCS-A /eth-uplink/fabric/vlan #
```

Creating a Secondary VLAN for a Private VLAN (Accessible to Both Fabric Interconnects)

You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved.

VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.
### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope eth-uplink</code></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>/eth-uplink # create vlan vlan-name vlan-id</code></td>
<td>Creates a named VLAN, specifies the VLAN name and VLAN ID, and enters Ethernet uplink VLAN mode. The VLAN name is case sensitive.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A <code>/eth-uplink/vlan # set sharing isolated</code></td>
<td>Sets the VLAN as the secondary VLAN.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A <code>/eth-uplink/vlan # set pubnname primary-vlan-name</code></td>
<td>Specifies the primary VLAN to be associated with this secondary VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A <code>/eth-uplink/vlan # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a named VLAN for both fabric interconnects, names the VLAN accounting, assigns the VLAN ID 2112, makes this VLAN the secondary VLAN, associates the secondary VLAN with the primary VLAN, and commits the transaction:

```
UCS-A# `scope eth-uplink`
UCS-A `/eth-uplink # create vlan accounting 2112`
UCS-A `/eth-uplink/vlan* # set sharing isolated`
UCS-A `/eth-uplink/vlan* # set pubnname pvlan1000`
UCS-A `/eth-uplink/vlan* # commit-buffer`
```

### Creating a Secondary VLAN for a Private VLAN (Accessible to One Fabric Interconnect)

**Important** You cannot create VLANs with IDs from 3968 to 4047. This range of VLAN IDs is reserved. VLANs in the LAN cloud and FCoE VLANs in the SAN cloud must have different IDs. Using the same ID for a VLAN and an FCoE VLAN in a VSAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope eth-uplink</code></td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A `/eth-uplink # scope fabric {a</td>
<td>b}`</td>
</tr>
</tbody>
</table>
### Viewing the VLAN Port Count

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# `scope fabric-interconnect {a</td>
<td>b}`</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>/fabric-interconnect # show vlan-port-count</code></td>
<td>Displays the VLAN port count.</td>
</tr>
</tbody>
</table>

The following example displays the VLAN port count for fabric interconnect A:

UCS-A# `scope fabric-interconnect a`  
UCS-A `/fabric-interconnect # show vlan-port-count`  

**VLAN-Port Count:**  
**VLAN-Port Limit**  
Access VLAN-Port Count | Border VLAN-Port Count | Alloc Status  
----------------- | -------------- | -------------- | -------------- | --------------  
6000 | 3 | 0 | Available
Configuring LAN Pin Groups

This chapter includes the following sections:

- LAN Pin Groups, page 275
- Configuring a LAN Pin Group, page 275

LAN Pin Groups

Cisco UCS uses LAN pin groups to pin Ethernet traffic from a vNIC on a server to an uplink Ethernet port or port channel on the fabric interconnect. You can use this pinning to manage the distribution of traffic from the servers.

To configure pinning for a server, you must include the LAN pin group in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server. All traffic from the vNIC travels through the I/O module to the specified uplink Ethernet port.

Note

If you do not assign a pin group to a server interface through a vNIC policy, Cisco UCS Manager chooses an uplink Ethernet port or port channel for traffic from that server interface dynamically. This choice is not permanent. A different uplink Ethernet port or port channel may be used for traffic from that server interface after an interface flap or a server reboot.

Configuring a LAN Pin Group

In a system with two fabric interconnects, you can associate the pin group with only one fabric interconnect or with both fabric interconnects.

Before You Begin

Configure the ports and port channels with which you want to configure the pin group. You can only include ports and port channels configured as uplink ports in a LAN pin group.
### Configuring a LAN Pin Group

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /eth-uplink # create pin-group pin-group-name</td>
<td>Creates an Ethernet (LAN) pin group with the specified name, and enters Ethernet uplink pin group mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /eth-uplink/pin-group # set descr description</td>
<td>(Optional) Provides a description for the pin group. <strong>Note</strong>: If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /eth-uplink/pin-group # set target {a</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /eth-uplink/pin-group # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a LAN pin group named pingroup54 on fabric A, provides a description for the pin group, sets the pin group target to port channel 28, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # create pin-group pingroup54
UCS-A /eth-uplink/pin-group* # set descr "This is my pin group #54"
UCS-A /eth-uplink/pin-group* # set target a port-channel 28
UCS-A /eth-uplink/pin-group* # commit-buffer
UCS-A /eth-uplink/pin-group #
```

#### What to Do Next

Include the pin group in a vNIC template.
Configuring MAC Pools

This chapter includes the following sections:

- MAC Pools, page 277
- Creating a MAC Pool, page 277
- Deleting a MAC Pool, page 278

MAC Pools

A MAC pool is a collection of network identities, or MAC addresses, that are unique in their layer 2 environment and are available to be assigned to vNICs on a server. If you use MAC pools in service profiles, you do not have to manually configure the MAC addresses to be used by the server associated with the service profile.

In a system that implements multi-tenancy, you can use the organizational hierarchy to ensure that MAC pools can only be used by specific applications or business services. Cisco UCS Manager uses the name resolution policy to assign MAC addresses from the pool.

To assign a MAC address to a server, you must include the MAC pool in a vNIC policy. The vNIC policy is then included in the service profile assigned to that server.

You can specify your own MAC addresses or use a group of MAC addresses provided by Cisco.

Creating a MAC Pool

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A/org # create mac-pool mac-pool-name</td>
<td>Creates a MAC pool with the specified name, and enters organization MAC pool mode.</td>
</tr>
</tbody>
</table>
Deleting a MAC Pool

The following example creates a MAC pool named pool37, provides a description for the pool, defines a MAC address block by specifying the first and last MAC addresses in the block, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create mac-pool pool37
UCS-A /org/mac-pool* # set descr "This is my MAC pool"
UCS-A /org/mac-pool* # create block 00:A0:D7:42:00:01 00:A0:D7:42:01:00
UCS-A /org/mac-pool/block* # commit-buffer
UCS-A /org/mac-pool/block #
```

**What to Do Next**

Include the MAC pool in a vNIC template.

### Deleting a MAC Pool

If you delete a pool, Cisco UCS Manager does not reallocate any addresses from that pool that have been assigned to vNICs or vHBAs. All assigned addresses from a deleted pool remain with the vNIC or vHBA to which they are assigned until one of the following occurs:

- The associated service profiles are deleted.
- The vNIC or vHBA to which the address is assigned is deleted.
- The vNIC or vHBA is assigned to a different pool.
## Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>/org # delete mac-pool pool-name</code></td>
<td>Deletes the specified MAC pool.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A <code>/org # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the MAC pool named pool4 and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # delete mac-pool pool4
UCS-A /org* # commit-buffer
UCS-A /org #
```
CHAPTER 19

Configuring Quality of Service

This chapter includes the following sections:

- Quality of Service, page 281
- Configuring System Classes, page 281
- Configuring Quality of Service Policies, page 284
- Configuring Flow Control Policies, page 287

Quality of Service

Cisco UCS provides the following methods to implement quality of service:

- System classes that specify the global configuration for certain types of traffic across the entire system
- QoS policies that assign system classes for individual vNICs
- Flow control policies that determine how uplink Ethernet ports handle pause frames

Configuring System Classes

System Classes

Cisco UCS uses Data Center Ethernet (DCE) to handle all traffic inside a Cisco UCS domain. This industry standard enhancement to Ethernet divides the bandwidth of the Ethernet pipe into eight virtual lanes. Two virtual lanes are reserved for internal system and management traffic. You can configure quality of service for the other six virtual lanes. System classes determine how the DCE bandwidth in these six virtual lanes is allocated across the entire Cisco UCS domain.

Each system class reserves a specific segment of the bandwidth for a specific type of traffic. This provides a level of traffic management, even in an oversubscribed system. For example, you can configure the Fibre Channel Priority system class to determine the percentage of DCE bandwidth allocated to FCoE traffic.

The following table describes the system classes that you can configure:
Table 13: System Classes

<table>
<thead>
<tr>
<th>System Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>A configurable set of system classes that you can include in the QoS policy for a service profile. Each system class manages one lane of traffic. All properties of these system classes are available for you to assign custom settings and policies.</td>
</tr>
<tr>
<td>Gold</td>
<td>A system class that sets the quality of service for the lane reserved for Basic Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a drop policy that allows it to drop data packets if required. You cannot disable this system class.</td>
</tr>
<tr>
<td>Silver</td>
<td>A system class that sets the quality of service for the lane reserved for Fibre Channel over Ethernet traffic. Some properties of this system class are preset and cannot be modified. For example, this class has a no-drop policy that ensures it never drops data packets. You cannot disable this system class.</td>
</tr>
</tbody>
</table>

Configuring a System Class

The type of adapter in a server may limit the maximum MTU supported. For example, network MTU above the maximums may cause the packet to be dropped for the following adapters:

- The Cisco UCS M71KR CNA adapter, which supports a maximum MTU of 9216.
- The Cisco UCS 82598KR-CI adapter, which supports a maximum MTU of 14000.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/eth-server # scope qos</td>
<td>Enters Ethernet server QoS mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A/eth-server/qos # scope eth-classified {bronze</td>
<td>gold</td>
</tr>
<tr>
<td>Step 4 UCS-A/eth-server/qos/eth-classified # enable</td>
<td>Enables the specified system class.</td>
</tr>
<tr>
<td>Step 5 UCS-A/eth-server/qos/eth-classified # set cos cos-value</td>
<td>Specifies the class of service for the specified system class. Valid class of service values are 0 to 6; higher values indicate more important traffic.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Specifies whether the channel can drop packets or not.</td>
</tr>
<tr>
<td>UCS-A /eth-server/qos/eth-classified # set drop {drop</td>
<td>no-drop}</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>The maximum transmission unit, or packet size, that this vNIC accepts.</td>
</tr>
<tr>
<td>UCS-A /eth-server/qos/eth-classified # set mtu {mtu-value</td>
<td>fc</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies whether the class is optimized to for sending multicast packets.</td>
</tr>
<tr>
<td>UCS-A /eth-server/qos/eth-classified # set multicast-optimize {no</td>
<td>yes}</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Specifies the relative weight for the specified system class. Valid weight values are 0 to 10.</td>
</tr>
<tr>
<td>UCS-A /eth-server/qos/eth-classified # set weight {weight-value</td>
<td>best-effort</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /eth-server/qos/eth-classified # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example enables the platinum system class, allows the channel to drop packets, sets the class of service to 6, sets the MTU to normal, optimizes the class for sending multicast packets, sets the relative weight to 5, and commits the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope qos
UCS-A /eth-server/qos # scope eth-classified platinum
UCS-A /eth-server/qos/eth-classified # enable
UCS-A /eth-server/qos/eth-classified* # set drop drop
UCS-A /eth-server/qos/eth-classified* # set cos 6
UCS-A /eth-server/qos/eth-classified* # set mtu normal
UCS-A /eth-server/qos/eth-classified* # set multicast-optimize yes
UCS-A /eth-server/qos/eth-classified* # set weight 5
UCS-A /eth-server/qos/eth-classified* # commit-buffer
```

### Disabling a System Class

If you disable a system class that is used in a QoS policy, Cisco UCS Manager uses the system class configured with CoS 0 for traffic on servers that are configured with the QoS policy. If no system class is configured as CoS 0, the Best Effort system class is used. You cannot disable the Best Effort or Fibre Channel system classes.
## Configuring Quality of Service Policies

### Quality of Service Policy

A quality of service (QoS) policy assigns a system class to the outgoing traffic for a vNIC or vHBA. This system class determines the quality of service for that traffic. For certain adapters you can also specify additional controls on the outgoing traffic, such as burst and rate.

You must include a QoS policy in a vNIC policy or vHBA policy and then include that policy in a service profile to configure the vNIC or vHBA.

### Configuring a QoS Policy

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Switch-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters org mode for the specified organization. To enter the default</td>
</tr>
<tr>
<td></td>
<td>org mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Switch-A /org # create qos-policy policy-name</td>
</tr>
<tr>
<td></td>
<td>Creates the specified QoS policy, and enters org QoS policy mode.</td>
</tr>
</tbody>
</table>

---

### Configuring Quality of Service Policies

The following example disables the platinum system class and commits the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server # scope qos
UCS-A /eth-server/qos # scope eth-classified platinum
UCS-A /eth-server/qos/eth-classified # disable
UCS-A /eth-server/qos/eth-classified* # commit-buffer
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Switch-A /org/qos-policy # create egress-policy</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Creates the egress policy (for both vNICs and vHBAs) to be used by the QoS policy, and enters org QoS policy egress policy mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Switch-A /org/qos-policy/egress-policy # set host-cos-control {full</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>(Optional) Specifies whether the host or Cisco UCS Manager controls the class of service (CoS). Use the <em>full</em> keyword to have the host control the CoS. If the packet has a valid CoS value, the host uses that value. Otherwise, it uses the CoS value associated with the specified class priority. Use the <em>none</em> keyword to have Cisco UCS Manager use the CoS value associated with the specified priority.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Switch-A /org/qos-policy/egress-policy # set prio sys-class-name</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Specifies the system class to be used for the egress policy. The <em>sys-class-name</em> argument can be one of the following class keywords:</td>
</tr>
<tr>
<td>                                                                                                                                                                                                                                                                                                                                                                                                                                                        &amp;n...</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Switch-A /org/qos-policy/egress-policy # set rate {line-rate</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Specifies the rate limit for egress traffic by defining the average traffic rate and burst size. The <em>line-rate</em> keyword sets the rate limit to the physical line rate. Rate limiting is not applicable to all adapters. For example, this setting is not supported on the Cisco UCS M82-8P Virtual Interface Card.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Switch-A /org/qos-policy/egress-policy # committ-buffer</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example creates a QoS policy for vNIC traffic, assigns the platinum system class and sets the rate limit (traffic rate and burst size) for the egress policy, and commits the transaction:

```bash
Switch-A# scope org /Switch-A /org # create qos-policy VnicPolicy34
Switch-A /org/qos-policy* # create egress-policy
Switch-A /org/qos-policy/egress-policy* # set prio platinum
Switch-A /org/qos-policy/egress-policy* # set rate 5000000 burst 65000
Switch-A /org/qos-policy/egress-policy* # commit-buffer
```

The following example creates a QoS policy for vHBA traffic, assigns the fc (Fibre Channel) system class and sets the rate limit (traffic rate and burst size) for the egress policy, and commits the transaction:

```bash
Switch-A# scope org /
Switch-A /org # create qos-policy VhbaPolicy12
Switch-A /org/qos-policy* # create egress-policy
Switch-A /org/qos-policy/egress-policy* # set prio fc
Switch-A /org/qos-policy/egress-policy* # set rate 5000000 burst 65000
Switch-A /org/qos-policy/egress-policy* # commit-buffer
```

**What to Do Next**

Include the QoS policy in a vNIC or vHBA template.

### Deleting a QoS Policy

If you delete a QoS policy that is in use or you disable a system class that is used in a QoS policy, any vNIC or vHBA that uses that QoS policy is assigned to the Best Effort system class or to the system class with a CoS of 0. In a system that implements multi-tenancy, Cisco UCS Manager first attempts to find a matching QoS policy in the organization hierarchy.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete qos-policy policy-name</td>
<td>Deletes the specified QoS policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following deletes the QoS policy named QosPolicy34 and commits the transaction:

```bash
UCS-A# scope org /
UCS-A /org # delete qos-policy QosPolicy34
UCS-A /org* # commit-buffer
UCS-A /org #
```
Configuring Flow Control Policies

Flow Control Policy

Flow control policies determine whether the uplink Ethernet ports in a Cisco UCS domain send and receive IEEE 802.3x pause frames when the receive buffer for a port fills. These pause frames request that the transmitting port stop sending data for a few milliseconds until the buffer clears.

For flow control to work between a LAN port and an uplink Ethernet port, you must enable the corresponding receive and send flow control parameters for both ports. For Cisco UCS, the flow control policies configure these parameters.

When you enable the send function, the uplink Ethernet port sends a pause request to the network port if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. If you enable the receive function, the uplink Ethernet port honors all pause requests from the network port. All traffic is halted on that uplink port until the network port cancels the pause request.

Because you assign the flow control policy to the port, changes to the policy have an immediate effect on how the port reacts to a pause frame or a full receive buffer.

Configuring a Flow Control Policy

Before You Begin

Configure the network port with the corresponding setting for the flow control that you need. For example, if you enable the send setting for flow-control pause frames in the policy, make sure that the receive parameter in the network port is set to on or desired. If you want the Cisco UCS port to receive flow-control frames, make sure that the network port has a send parameter set to on or desired. If you do not want to use flow control, you can set the send and receive parameters on the network port to off.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A#  <code>scope eth-uplink</code> \nEnters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A <code>/eth-uplink # scope flow-control</code> \nEnters Ethernet uplink flow control mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A <code>/eth-uplink/flow-control # create policy policy-name</code> \nCreates the specified flow control policy.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A <code>/eth-uplink/flow-control/policy # set prio prio-option</code> \nSpecifies one of the following flow control priority options: \n  * <strong>auto</strong> — The Cisco UCS system and the network negotiate whether PPP will be used on this fabric interconnect. \n  * <strong>on</strong> — PPP is enabled on this fabric interconnect.</td>
</tr>
</tbody>
</table>
### Configuring Flow Control Policies

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** UCS-A /eth-uplink/flow-control/policy # set receive receive-option | Specifies one of the following flow control receive options:  
- *off* — Pause requests from the network are ignored and traffic flow continues as normal.  
- *on* — Pause requests are honored and all traffic is halted on that uplink port until the network cancels the pause request. |
| **Step 6** UCS-A /eth-uplink/flow-control/policy # set send send-option | Specifies one of the following flow control send options:  
- *off* — Traffic on the port flows normally regardless of the packet load.  
- *on* — The Cisco UCS system sends a pause request to the network if the incoming packet rate becomes too high. The pause remains in effect for a few milliseconds before traffic is reset to normal levels. |
| **Step 7** UCS-A /org/qos-policy/vnic-egress-policy # commit-buffer | Commits the transaction to the system configuration. |

The following configures a flow control policy and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope flow-control
UCS-A /eth-uplink/flow-control # create policy FlowControlPolicy23
UCS-A /eth-uplink/flow-control/policy* # set prio auto
UCS-A /eth-uplink/flow-control/policy* # set receive on
UCS-A /eth-uplink/flow-control/policy* # set send on
UCS-A /eth-uplink/flow-control/policy* # commit-buffer
```

**What to Do Next**

Associate the flow control policy with an uplink Ethernet port or port channel.

### Deleting a Flow Control Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /eth-uplink # scope flow-control</td>
<td>Enters Ethernet uplink flow control mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /eth-uplink/flow-control # delete policy policy-name</td>
<td>Deletes the specified flow control policy.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /eth-uplink/flow-control # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the flow control policy named FlowControlPolicy23 and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope flow-control
UCS-A /eth-uplink/flow-control # delete policy FlowControlPolicy23
UCS-A /eth-uplink/flow-control* # commit-buffer
UCS-A /eth-uplink/flow-control #
Configuring Network-Related Policies

This chapter includes the following sections:

- Configuring vNIC Templates, page 291
- Configuring Ethernet Adapter Policies, page 294
- Configuring Network Control Policies, page 297

Configuring vNIC Templates

vNIC Template

This policy defines how a vNIC on a server connects to the LAN. This policy is also referred to as a vNIC LAN connectivity policy.

Beginning in Cisco UCS, Release 2.0(2), Cisco UCS Manager does not automatically create a VM-FEX port profile with the correct settings when you create a vNIC template. If you want to create a VM-FEX port profile, you must configure the target of the vNIC template as a VM.

You need to include this policy in a service profile for it to take effect.

Note

If your server has two Emulex or QLogic NICs (Cisco UCS CNA M71KR-E or Cisco UCS CNA M71KR-Q), you must configure vNIC policies for both adapters in your service profile to get a user-defined MAC address for both NICs. If you do not configure policies for both NICs, Windows still detects both of them in the PCI bus. Then because the second eth is not part of your service profile, Windows assigns it a hardware MAC address. If you then move the service profile to a different server, Windows sees additional NICs because one NIC did not have a user-defined MAC address.
## Configuring a vNIC Template

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
</tbody>
</table>
| Step 2 | UCS-A `/org # create vnic-templ vnic-templ-name [eth-if vlan-name] [fabric {a | b}] [target {adapter | vm}]` | Creates a vNIC template and enters organization vNIC template mode. The target you choose determines whether or not Cisco UCS Manager automatically creates a VM-FEX port profile with the appropriate settings for the vNIC template. This can be one of the following:  
  - **Adapter**—The vNICs apply to all adapters. No VM-FEX port profile is created if you choose this option.  
  - **VM**—The vNICs apply to all virtual machines. A VM-FEX port profile is created if you choose this option. |
| Step 3 | UCS-A `/org/vnic-templ # set descr description` | (Optional) Provides a description for the vNIC template. |
| Step 4 | UCS-A `/org/vnic-templ # set fabric {a | a-b | b | b-a}` | (Optional) Specifies the fabric to use for the vNIC. If you did not specify the fabric when creating the vNIC template in Step 2, you have the option to specify it with this command.  
If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, choose **a-b** (A is the primary) or **b-a** (B is the primary).  
**Note** Do not enable fabric failover for the vNIC under the following circumstances:  
  - If the Cisco UCS domain is running in Ethernet Switch Mode. vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.  
  - If you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-C1 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>UCS-A /org/vnic-templ # set mac-pool mac-pool-name</td>
<td>The MAC address pool that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /org/vnic-templ # set mtu mtu-value</td>
<td>The maximum transmission unit, or packet size, that vNICs created from this vNIC template should use. Enter an integer between 1500 and 9216. <strong>Note</strong> If the vNIC template has an associated QoS policy, the MTU specified here must be equal to or less than the MTU specified in the associated QoS system class. If this MTU value exceeds the MTU value in the QoS system class, packets may be dropped during data transmission.</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /org/vnic-templ # set nw-control-policy policy-name</td>
<td>The network control policy that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>8</td>
<td>UCS-A /org/vnic-templ # set pin-group group-name</td>
<td>The LAN pin group that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>9</td>
<td>UCS-A /org/vnic-templ # set qos-policy policy-name</td>
<td>The quality of service policy that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>10</td>
<td>UCS-A /org/vnic-templ # set stats-policy policy-name</td>
<td>The statistics collection policy that vNICs created from this vNIC template should use.</td>
</tr>
<tr>
<td>11</td>
<td>UCS-A /org/vnic-templ # set type {initial-template</td>
<td>updating-template}</td>
</tr>
<tr>
<td>12</td>
<td>UCS-A /org/vnic-templ # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a vNIC template and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # create vnic template VnicTempFoo
UCS-A /org/vnic-templ* # set descr "This is a vNIC template example."
UCS-A /org/vnic-templ* # set fabric a
UCS-A /org/vnic-templ* # set mac-pool pool137
UCS-A /org/vnic-templ* # set mtu 8900
UCS-A /org/vnic-templ* # set nw-control-policy ncp5
UCS-A /org/vnic-templ* # set pin-group PinGroup54
UCS-A /org/vnic-templ* # set qos-policy QosPol15
UCS-A /org/vnic-templ* # set stats-policy ServStatsPolicy
UCS-A /org/vnic-templ* # set type updating-template
UCS-A /org/vnic-templ* # commit-buffer
UCS-A /org/vnic-templ #
```
Deleting a vNIC Template

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org# delete vnic-templ vnic-templ-name</td>
<td>Deletes the specified vNIC template.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the vNIC template named VnicTempFoo and commits the transaction:

UCS-A# scope org /
UCS-A /org# delete vnic-template VnicTempFoo
UCS-A /org*# commit-buffer
UCS-A /org#

Configuring Ethernet Adapter Policies

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling
- Performance enhancement
- RSS hash
- Failover in an cluster configuration with two fabric interconnects
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- Max LUNs Per Target—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.
- Link Down Timeout—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5s in SANsurfer.
- Max Data Field Size—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

Important

We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

Completion Queues = Transmit Queues + Receive Queues
Interrupt Count = (Completion Queues + 2) rounded up to nearest power of 2

For example, if Transmit Queues = 1 and Receive Queues = 8 then:

Completion Queues = 1 + 8 = 9
Interrupt Count = (9 + 2) rounded up to the nearest power of 2 = 16

Configuring an Ethernet Adapter Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
</tbody>
</table>
### Configuring Ethernet Adapter Policies

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>UCS-A /org # create eth-policy policy-name</td>
<td>Creates the specified Ethernet adapter policy and enters organization Ethernet policy mode.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /org/eth-policy # set comp-queue count</td>
<td>(Optional) Configures the Ethernet completion queue.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /org/eth-policy # set descr description</td>
<td>(Optional) Provides a description for the policy. <strong>Note</strong> If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /org/eth-policy # set failover timeout timeout-sec</td>
<td>(Optional) Configures the Ethernet failover.</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /org/eth-policy # set interrupt {coalescing-time sec} coalescing-type {idle min}</td>
<td>count count</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /org/eth-policy # set offload {large-receive | tcp-rx-checksum | \tcp-segment | tcp-tx-checksum} {disabled | enabled}</td>
<td>(Optional) Configures the Ethernet offload.</td>
</tr>
<tr>
<td>8</td>
<td>UCS-A /org/eth-policy # set recv-queue {count count | ring-size size-num}</td>
<td>(Optional) Configures the Ethernet receive queue.</td>
</tr>
<tr>
<td>9</td>
<td>UCS-A /org/eth-policy # set rss receivesidescaling {disabled | enabled}</td>
<td>(Optional) Configures the RSS.</td>
</tr>
<tr>
<td>10</td>
<td>UCS-A /org/eth-policy # set trans-queue {count count | ring-size size-num}</td>
<td>(Optional) Configures the Ethernet transmit queue.</td>
</tr>
<tr>
<td>11</td>
<td>UCS-A /org/eth-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures an Ethernet adapter policy, and commits the transaction:

```bash
UCS-A# scope org /
UCS-A /org* # create eth-policy EthPolicy19
UCS-A /org/eth-policy* # set comp-queue count 16
UCS-A /org/eth-policy* # set descr "This is an Ethernet adapter policy example."
UCS-A /org/eth-policy* # set failover timeout 300
UCS-A /org/eth-policy* # set interrupt count 64
UCS-A /org/eth-policy* # set offload large-receive disabled
UCS-A /org/eth-policy* # set recv-queue count 32
UCS-A /org/eth-policy* # set rss receivesidescaling enabled
UCS-A /org/eth-policy* # set trans-queue
UCS-A /org/eth-policy* # commit-buffer
UCS-A /org/eth-policy *
```
Deleting an Ethernet Adapter Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete eth-policy policy-name</td>
<td>Deletes the specified Ethernet adapter policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the Ethernet adapter policy named EthPolicy19 and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # delete eth-policy EthPolicy19
UCS-A /org* # commit-buffer
UCS-A /org #
```

Configuring Network Control Policies

Network Control Policy

This policy configures the network control settings for the Cisco UCS domain, including the following:

- Whether the Cisco Discovery Protocol (CDP) is enabled or disabled
- How the VIF behaves if no uplink port is available in end-host mode
- The action that Cisco UCS Manager takes on the remote Ethernet interface, vEthernet interface, or vFibreChannel interface when the associated border port fails
- Whether the server can use different MAC addresses when sending packets to the fabric interconnect
- Whether MAC registration occurs on a per-VNIC basis or for all VLANs.

Action on Uplink Fail

By default, the Action on Uplink Fail property in the network control policy is configured with a value of link-down. For adapters such as the Cisco UCS M81KR Virtual Interface Card, this default behavior directs Cisco UCS Manager to bring the vEthernet or vFibreChannel interface down if the associated border port fails. For Cisco UCS systems using a non-VM-FEX capable converged network adapter that supports both Ethernet and FCoE traffic, such as Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, this default behavior directs Cisco UCS Manager to bring the remote Ethernet interface down if the associated border port fails. In this scenario, any vFibreChannel interfaces that are bound to the remote Ethernet interface are brought down as well.
Cisco UCS Manager, release 1.4(2) and earlier did not enforce the **Action on Uplink Fail** property for those types of non-VM-FEX capable converged network adapters mentioned above. If the **Action on Uplink Fail** property was set to link-down, Cisco UCS Manager would ignore this setting and instead issue a warning. In the current version of Cisco UCS Manager this setting is enforced. Therefore, if your implementation includes one of those converged network adapters and the adapter is expected to handle both Ethernet and FCoE traffic, we recommend that you configure the **Action on Uplink Fail** property with a value of warning.

Please note that this configuration may result in an Ethernet teaming driver not being able to detect a link failure when the border port goes down.

**MAC Registration Mode**

In Cisco UCS Manager, releases 1.4 and earlier, MAC addresses were installed on all of the VLANs belonging to an interface. Starting in release 2.0, MAC addresses are installed only on the native VLAN by default. In most implementations this maximizes the VLAN port count.

**Note**

If a trunking driver is being run on the host and the interface is in promiscuous mode, we recommend that you set the Mac Registration Mode to All VLANs.

**Configuring a Network Control Policy**

MAC address-based port security for Emulex converged Network Adapters (N20-AE0102) is not supported. When MAC address-based port security is enabled, the fabric interconnect restricts traffic to packets that contain the MAC address that it first learns. This is either the source MAC address used in the FCoE Initialization Protocol packet, or the MAC address in an ethernet packet, whichever is sent first by the adaptor. This configuration can result in either FCoE or Ethernet packets being dropped.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org /</td>
<td>Enters the root organization mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # create nw-ctrl-policy policy-name</td>
<td>Creates the specified network control policy, and enters organization network control policy mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/nw-ctrl-policy # {disable</td>
<td>enable} cdp</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/nw-ctrl-policy # set uplink-fail-action {link-down</td>
<td>warning}</td>
</tr>
</tbody>
</table>

Use the **link-down** keyword to change the operational state of a vNIC to down when uplink connectivity is lost on the fabric interconnect, and facilitate fabric failover for vNICs. Use the **warning** keyword to maintain server-to-server connectivity even when no uplink port is
### Configuring Network Control Policies

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>available, and disable fabric failover when uplink connectivity is lost on the fabric interconnect. The default uplink failure action is link-down.</td>
</tr>
</tbody>
</table>

**Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/nw-ctrl-policy # set mac-registration-mode {all-host-vlans</td>
<td>only-native-vlan}</td>
</tr>
</tbody>
</table>

  - **Only Native Vlan**—MAC addresses are only added to the native VLAN. This option is the default, and it maximizes the port+VLAN count.
  - **All Host Vlans**—MAC addresses are added to all VLANs with which they are associated. Select this option if your VLANs are configured to use trunking but are not running in Promiscuous mode. |

**Step 6**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/nw-ctrl-policy # create mac-security</td>
<td>Enters organization network control policy MAC security mode</td>
</tr>
</tbody>
</table>

**Step 7**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/nw-ctrl-policy/mac-security # set forged-transmit {allow</td>
<td>deny}</td>
</tr>
</tbody>
</table>

**Step 8**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/nw-ctrl-policy/mac-security # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a network control policy named ncp5, enables CDP, sets the uplink fail action to link-down, denies forged MAC addresses (enables MAC security), and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create nw-ctrl-policy ncp5
UCS-A /org/nw-ctrl-policy* # enable cdp
UCS-A /org/nw-ctrl-policy* # set uplink-fail-action link-down
UCS-A /org/nw-ctrl-policy* # create mac-security
UCS-A /org/nw-ctrl-policy/mac-security* # set forged-transmit deny
UCS-A /org/nw-ctrl-policy/mac-security* # commit-buffer
UCS-A /org/nw-ctrl-policy/mac-security #
```

### Deleting a Network Control Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org /</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org # delete nwctrl-policy</td>
</tr>
<tr>
<td></td>
<td>policy-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
</tr>
</tbody>
</table>

The following example deletes the network control policy named ncp5 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete nwctrl-policy ncp5
UCS-A /org* # commit-buffer
UCS-A /org #
```
This chapter includes the following sections:

- **Upstream Disjoint Layer-2 Networks**, page 301
- **Guidelines for Configuring Upstream Disjoint L2 Networks**, page 302
- **Pinning Considerations for Upstream Disjoint L2 Networks**, page 303
- **Configuring Cisco UCS for Upstream Disjoint L2 Networks**, page 304
- **Assigning Ports and Port Channels to VLANs**, page 305
- **Removing Ports and Port Channels from VLANs**, page 306
- **Viewing Ports and Port Channels Assigned to VLANs**, page 307

### Upstream Disjoint Layer-2 Networks

Upstream disjoint layer-2 networks (disjoint L2 networks) are required if you have two or more Ethernet “clouds” that never connect, but must be accessed by servers or virtual machines located in the same Cisco UCS domain. For example, you could configure disjoint L2 networks if you require one of the following:

- Servers or virtual machines to access a public network and a backup network
- In a multi-tenant system, servers or virtual machines for more than one customer are located in the same Cisco UCS domain and need to access the L2 networks for both customers.

**Note**

By default, data traffic in Cisco UCS works on a principle of mutual inclusion. All traffic for all VLANs and upstream networks travels along all uplink ports and port channels. If you have upgraded from a release that does not support upstream disjoint layer-2 networks, you must assign the appropriate uplink interfaces to your VLANs, or traffic for those VLANs continues to flow along all uplink ports and port channels.

The configuration for disjoint L2 networks works on a principle of selective exclusion. Traffic for a VLAN that is designated as part of a disjoint network can only travel along an uplink Ethernet port or port channel that is specifically assigned to that VLAN, and is selectively excluded from all other uplink ports and port channels. However, traffic for VLANs that are not specifically assigned to an uplink Ethernet port or port...
channel can still travel on all uplink ports or port channels, including those that carry traffic for the disjoint L2 networks.

In Cisco UCS, the VLAN represents the upstream disjoint L2 network. When you design your network topology for disjoint L2 networks, you must assign uplink interfaces to VLANs not the reverse.

For information about the maximum number of supported upstream disjoint L2 networks, see Cisco UCS 6100 and 6200 Series Configuration Limits for Cisco UCS Manager, Release 2.0.

Guidelines for Configuring Upstream Disjoint L2 Networks

When you plan your configuration for upstream disjoint L2 networks, consider the following:

**Ethernet Switching Mode Must Be End-Host Mode**

Cisco UCS only supports disjoint L2 networks when the Ethernet switching mode of the fabric interconnects is configured for end-host mode. You cannot connect to disjoint L2 networks if the Ethernet switching mode of the fabric interconnects is switch mode.

**Symmetrical Configuration Is Recommended for High Availability**

If a Cisco UCS domain is configured for high availability with two fabric interconnects, we recommend that both fabric interconnects are configured with the same set of VLANs.

**VLAN Validity Criteria Are the Same for Uplink Ethernet Ports and Port Channels**

The VLAN used for the disjoint L2 networks must be configured and assigned to an uplink Ethernet port or uplink Ethernet port channel. If the port or port channel does not include the VLAN, Cisco UCS Manager considers the VLAN invalid and does the following:

- Displays a configuration warning in the **Status Details** area for the server.
- Ignores the configuration for the port or port channel and drops all traffic for that VLAN.

---

**Note**

The validity criteria are the same for uplink Ethernet ports and uplink Ethernet port channels. Cisco UCS Manager does not differentiate between the two.

**Overlapping VLANs Are Not Supported**

Cisco UCS does not support overlapping VLANs in disjoint L2 networks. You must ensure that each VLAN only connects to one upstream disjoint L2 domain.

**Each vNIC Can Only Communicate with One Disjoint L2 Network**

A vNIC can only communicate with one disjoint L2 network. If a server needs to communicate with multiple disjoint L2 networks, you must configure a vNIC for each of those networks.

To communicate with more than two disjoint L2 networks, a server must have a Cisco VIC adapter that supports more than two vNICs.
Appliance Port Must Be Configured with the Same VLAN as Uplink Ethernet Port or Port Channel

For an appliance port to communicate with a disjoint L2 network, you must ensure that at least one uplink Ethernet port or port channel is in the same network and is therefore assigned to the same VLANs that are used by the appliance port. If Cisco UCS Manager cannot identify an uplink Ethernet port or port channel that includes all VLANs that carry traffic for an appliance port, the appliance port experiences a pinning failure and goes down.

For example, a Cisco UCS domain includes a global VLAN named vlan500 with an ID of 500. vlan500 is created as a global VLAN on the uplink Ethernet port. However, Cisco UCS Manager does not propagate this VLAN to appliance ports. To configure an appliance port with vlan500, you must create another VLAN named vlan500 with an ID of 500 for the appliance port. You can create this duplicate VLAN in the Appliances node on the LAN tab of the Cisco UCS Manager GUI or the eth-storage scope in the Cisco UCS Manager CLI. If you are prompted to check for VLAN Overlap, accept the overlap and Cisco UCS Manager creates the duplicate VLAN for the appliance port.

Default VLAN 1 Cannot Be Configured Explicitly on an Uplink Ethernet Port or Port Channel

Cisco UCS Manager implicitly assigns default VLAN 1 to all uplink ports and port channels. Even if you do not configure any other VLANs, Cisco UCS uses default VLAN 1 to handle data traffic for all uplink ports and port channels.

Note

After you configure VLANs in a Cisco UCS domain, default VLAN 1 remains implicitly on all uplink ports and port channels. You cannot explicitly assign default VLAN 1 to an uplink port or port channel, nor can you remove it from an uplink port or port channel.

If you attempt to assign default VLAN 1 to a specific port or port channel, Cisco UCS Manager raises an Update Failed fault.

Therefore, if you configure a Cisco UCS domain for disjoint L2 networks, do not configure any vNICs with default VLAN 1 unless you want all data traffic for that server to be carried on all uplink Ethernet ports and port channels and sent to all upstream networks.

Pinning Considerations for Upstream Disjoint L2 Networks

Communication with an upstream disjoint L2 network requires that you ensure that the pinning is properly configured. Whether you implement soft pinning or hard pinning, a VLAN membership mismatch causes traffic for one or more VLANs to be dropped.

Soft Pinning

Soft pinning is the default behavior in Cisco UCS. If you plan to implement soft pinning, you do not need to create LAN pin groups to specify a pin target for a vNIC. Instead, Cisco UCS Manager pins the vNIC to an uplink Ethernet port or port channel according to VLAN membership criteria.

With soft pinning, Cisco UCS Manager validates data traffic from a vNIC against the VLAN membership of all uplink Ethernet ports and port channels. If you have configured disjoint L2 networks, Cisco UCS Manager must be able to find an uplink Ethernet port or port channel that is assigned to all VLANS on the vNIC. If no uplink Ethernet port or port channel is configured with all VLANS on the vNIC, Cisco UCS Manager does the following:

• Brings the link down.
• Drops the traffic for all of the VLANs on the vNIC.
• Raises the following faults:
  ◦ Link Down
  ◦ VIF Down

Cisco UCS Manager does not raise a fault or warning about the VLAN configuration. For example, a vNIC on a server is configured with VLANs 101, 102, and 103. Interface 1/3 is assigned only to VLAN 102. Interfaces 1/1 and 1/2 are not explicitly assigned to a VLAN, which makes them available for traffic on VLANs 101 and 103. As a result of this configuration, the Cisco UCS domain does not include a border port interface that can carry traffic for all three VLANs for which the vNIC is configured. As a result, Cisco UCS Manager brings down the vNIC, drops traffic for all three VLANs on the vNIC, and raises the Link Down and VIF Down faults.

**Hard Pinning**

Hard pinning occurs when you use LAN pin groups to specify the pinning target for the traffic intended for the disjoint L2 networks. In turn, the uplink Ethernet port or port channel that is the pinning target must be configured to communicate with the appropriate disjoint L2 network.

With hard pinning, Cisco UCS Manager validates data traffic from a vNIC against the VLAN membership of all uplink Ethernet ports and port channels, and validates the LAN pin group configuration to ensure it includes the VLAN and the uplink Ethernet port or port channel. If the validation fails at any point, Cisco UCS Manager does the following:

• Raises a Pinning VLAN Mismatch fault with a severity of Warning.
• Drops traffic for the VLAN.
• Does not bring the link down, so that traffic for other VLANs can continue to flow along it.

For example, if you want to configure hard pinning for an upstream disjoint L2 network that uses VLAN 177, do the following:

• Create a LAN pin group with the uplink Ethernet port or port channel that carries the traffic for the disjoint L2 network.
• Configure at least one vNIC in the service profile with VLAN 177 and the LAN pin group.
• Assign VLAN 177 to an uplink Ethernet port or port channel included in the LAN pin group

If the configuration fails at any of these three points, then Cisco UCS Manager warns for a VLAN mismatch for VLAN 177 and drops the traffic for that VLAN only.

**Configuring Cisco UCS for Upstream Disjoint L2 Networks**

When you configure a Cisco UCS domain to connect with upstream disjoint L2 networks, you need to ensure that you complete all of the following steps.

**Before You Begin**

Before you begin this configuration, ensure that the ports on the fabric interconnects are properly cabled to support your disjoint L2 networks configuration.
### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Configure Ethernet switching mode for both fabric interconnects in Ethernet End-Host Mode. The Ethernet switching mode must be in End-Host Mode for Cisco UCS to be able to communicate with upstream disjoint L2 networks. See Configuring Ethernet Switching Mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configure the ports and port channels that you require to carry traffic for the disjoint L2 networks. See Configuring Ports and Port Channels, on page 71.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configure the LAN pin groups required to pin the traffic for the appropriate uplink Ethernet ports or port channels. (Optional) See Configuring LAN Pin Groups, on page 275.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Create one or more VLANs. These can be named VLANs or private VLANs. For a cluster configuration, we recommend that you create the VLANs in Uplink Ethernet Mode and accessible to both fabric interconnects. See Configuring VLANs, on page 263.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Assign the desired ports or port channels to the VLANs for the disjoint L2 networks. When this step is completed, traffic for those VLANs can only be sent through the trunks for the assigned ports and/or port channels. Assigning Ports and Port Channels to VLANs, on page 305</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Ensure that the service profiles for all servers that need to communicate with the disjoint L2 networks include the correct LAN connectivity configuration to ensure the vNICs send the traffic to the appropriate VLAN. You can complete this configuration through one or more vNIC templates or when you configure the networking options for the service profile. See Configuring Service Profiles, on page 465.</td>
</tr>
</tbody>
</table>

### Assigning Ports and Port Channels to VLANs

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope eth-uplink Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A/eth-uplink # scope vlan vlan-name Enters Ethernet uplink VLAN mode for the specified VLAN.</td>
</tr>
</tbody>
</table>
Removing Ports and Port Channels from VLANs

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /eth-uplink # scope vlan vlan-name</td>
<td>Enters Ethernet uplink VLAN mode for the specified VLAN.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /eth-uplink/vlan # delete member-port fabric-interconnect slot-id port-id</td>
<td>Deletes the specified Uplink Ethernet member port assignment from the VLAN.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /eth-uplink/vlan # delete member-port-channel fabric-interconnect member-port-chan-id</td>
<td>Deletes the specified Uplink Ethernet port channel assignment from the VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /eth-uplink/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example assigns uplink Ethernet ports to a named VLAN called VLAN100 on fabric interconnect A and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope vlan VLAN100
UCS-A /eth-uplink/vlan # create member-port a 2
UCS-A /eth-uplink/vlan # create member-port a 4
UCS-A /eth-uplink/vlan* # commit-buffer
```

## Removing Ports and Port Channels from VLANs

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> UCS-A /eth-uplink/vlan # create member-port fabric-interconnect slot-id port-id</td>
<td>Assigns the specified VLAN to the specified uplink Ethernet port.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /eth-uplink/vlan # create member-port-channel fabric-interconnect member-port-chan-id</td>
<td>Assigns the specified VLAN to the specified uplink Ethernet port channel.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /eth-uplink/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

After a port or port channel is assigned to one or more VLANs, it is removed from all other VLANs.
The following example deletes the association between uplink Ethernet port 2 on fabric interconnect A and the named VLAN called MyVLAN and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope vlan MyVLAN
UCS-A /eth-uplink/vlan # delete member-port a 2
UCS-A /eth-uplink/vlan* # commit-buffer
UCS-A /eth-uplink/vlan #
```

### Viewing Ports and Port Channels Assigned to VLANs

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /eth-uplink # scope vlan vlan-name</td>
<td>Enters Ethernet uplink VLAN mode for the specified VLAN.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /eth-uplink/vlan # show member-port [detail</td>
<td>expand]</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /eth-uplink/vlan # show member-port-channel [detail</td>
<td>expand]</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /eth-uplink/vlan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example displays the full details for uplink Ethernet ports assigned to a named VLAN called MyVLAN:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope vlan MyVLAN
UCS-A /eth-uplink/vlan # show member-port detail
Member Port:
 Fabric ID: A
```
Slot ID: 1
Port ID: 2
Mark Native Vlan: No
UCS-A /eth-uplink/vlan #
PART IV

Storage Configuration

• Configuring Named VSANs, page 311
• Configuring SAN Pin Groups, page 321
• Configuring WWN Pools, page 323
• Configuring Storage-Related Policies, page 327
Configuring Named VSANs

This chapter includes the following sections:

• Named VSANs, page 311
• Fibre Channel Uplink Trunking for Named VSANs, page 312
• Guidelines and Recommendations for VSANs, page 312
• Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Uplink Mode), page 314
• Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Storage Mode), page 315
• Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Uplink Mode), page 316
• Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Storage Mode), page 317
• Deleting a Named VSAN, page 318
• Changing the VLAN ID for the FCoE Native VLAN for a Named VSAN, page 318
• Changing the VLAN ID for the FCoE Native VLAN for a Storage VSAN, page 319
• Enabling or Disabling Fibre Channel Uplink Trunking, page 319

Named VSANs

A named VSAN creates a connection to a specific external SAN. The VSAN isolates traffic to that external SAN, including broadcast traffic. The traffic on one named VSAN knows that the traffic on another named VSAN exists, but cannot read or access that traffic.

Like a named VLAN, the name that you assign to a VSAN ID adds a layer of abstraction that allows you to globally update all servers associated with service profiles that use the named VSAN. You do not need to reconfigure the servers individually to maintain communication with the external SAN. You can create more than one named VSAN with the same VSAN ID.
Named VSANs in Cluster Configurations

In a cluster configuration, a named VSAN can be configured to be accessible only to the Fibre Channel uplink ports on one fabric interconnect or to the Fibre Channel uplink ports on both fabric interconnects.

Named VSANs and the FCoE VLAN ID

You must configure each named VSAN with an FCoE VLAN ID. This property determines which VLAN is used for transporting the VSAN and its Fibre Channel packets.

For FIP capable, converged network adapters, such as the Cisco UCS CNA M72KR-Q and the Cisco UCS CNA M72KR-E, the named VSAN must be configured with a named VLAN that is not the native VLAN for the FCoE VLAN ID. This configuration ensures that FCoE traffic can pass through these adapters.

In the following sample configuration, a service profile with a vNIC and vHBA mapped to fabric A is associated with a server that has FIP capable, converged network adapters:

- The vNIC is configured to use VLAN 10.
- VLAN 10 is also designated as the native VLAN for the vNIC.
- The vHBA is configured to use VSAN 2.
- Therefore, VSAN 2 cannot be configured with VLAN 10 as the FCoE VLAN ID. VSAN 2 can be mapped to any other VLAN configured on fabric A.

Fibre Channel Uplink Trunking for Named VSANs

You can configure Fibre Channel uplink trunking for the named VSANs on each fabric interconnect. If you enable trunking on a fabric interconnect, all named VSANs in a Cisco UCS domain are allowed on all Fibre Channel uplink ports on that fabric interconnect.

Guidelines and Recommendations for VSANs

The following guidelines and recommendations apply to all named VSANs, including storage VSANs.

VSAN 4079 is a Reserved VSAN ID

Do not configure a VSAN as 4079. This VSAN is reserved and cannot be used in either FC switch mode or FC end-host mode.

If you create a named VSAN with ID 4079, Cisco UCS Manager marks that VSAN with an error and raises a fault.

Reserved VSAN Range for Named VSANs in FC Switch Mode

If you plan to use FC switch mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3040 to 4078.

VSANs in that range are not operational if the fabric interconnects are configured to operate in FC switch mode. Cisco UCS Manager marks that VSAN with an error and raises a fault.
Reserved VSAN Range for Named VSANs in FC End-Host Mode

If you plan to use FC end-host mode in a Cisco UCS domain, do not configure VSANs with an ID in the range from 3840 to 4079.

VSANs in that range are not operational if the following conditions exist in a Cisco UCS domain:

- The fabric interconnects are configured to operate in FC end-host mode.
- The Cisco UCS domain is configured with Fibre Channel trunking or SAN port channels.

If these configurations exist, Cisco UCS Manager does the following:

1. Renders all VSANs with an ID in the range from 3840 to 4079 non-operational.
2. Raises a fault against the non-operational VSANs.
3. Transfers all non-operational VSANs to the default VSAN.
4. Transfers all vHBAs associated with the non-operational VSANs to the default VSAN.

If you disable Fibre Channel trunking and delete any existing SAN port channels, Cisco UCS Manager returns all VSANs in the range from 3840 to 4078 to an operational state and restores any associated vHBAs back to those VSANs.

Range Restrictions for Named VSAN IDs in FC Switch Mode

If you plan to use FC switch mode in a Cisco UCS domain, do not configure VSANs in the range from 3040 to 4078.

When a fabric interconnect operating in FC switch mode is connected to MDS as the upstream switch, VSANs configured in Cisco UCS Manager in the range from 3040 to 4078 and assigned as port VSANs cannot be created in MDS. This configuration results in a possible port VSAN mismatch.

Guidelines for FCoE VLAN IDs

Note

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

VLAN 4048 is user-configurable. However, Cisco UCS Manager uses VLAN 4048 for the following default values. If you want to assign 4048 to a VLAN, you must reconfigure these values:

The default FCoE VLAN varies according to the type of VSAN and whether Cisco UCS is a fresh installation or an upgrade, as follows:

- After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.
- After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049.
Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Uplink Mode)

**Note**
FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope fc-uplink</code></td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>/fc-uplink</code> # <code>create vsan vsan-name vsan-id fcoe-id</code></td>
<td>Creates the specified named VSAN, specifies the VSAN name, VSAN ID and FCoE VLAN ID, and enters Fibre Channel uplink VSAN mode.</td>
</tr>
<tr>
<td></td>
<td>• After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.</td>
</tr>
<tr>
<td></td>
<td>• After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A <code>/fc-uplink/vsan</code> # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a named VSAN for both fabric interconnects, names the VSAN accounting, assigns the VSAN ID 2112, assigns the FCoE VLAN ID 4021, and commits the transaction:

```
UCS-A# `scope fc-uplink`
UCS-A `/fc-uplink` # `create vsan accounting 2112 4021`
UCS-A `/fc-uplink/vsan` # `commit-buffer`
UCS-A `/fc-uplink/vsan`
```
Creating a Named VSAN Accessible to Both Fabric Interconnects (Fibre Channel Storage Mode)

Note

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>UCS-A# scope fc-storage</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Creates the specified named VSAN, specifies the VSAN name, VSAN ID, and FCoE VLAN ID, and enters Fibre Channel storage VSAN mode.</td>
</tr>
<tr>
<td>UCS-A /fc-storage # create vsan vsan-name vsan-id fcoe-id</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Creates a member port; specifies the slot ID and port ID.</td>
</tr>
<tr>
<td>UCS-A /fc-storage/vsan # create member-port {a</td>
<td>b} slot-id port-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /fc-storage/vsan # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example creates a named VSAN, names the VSAN finance, assigns the VSAN ID 3955, assigns the FCoE VLAN ID 4021, creates a member port and assigns the it to member port A, slot 1 port 40, and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage/ # create VSAN finance 3955 4021
UCS-A /fc-storage/vsan # create member-port fcoe a 1 40
UCS-A /fc-storage/vsan/member-port* # commit-buffer
UCS-A /fc-storage/vsan/member-port #
```
Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Uplink Mode)

**Note**

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A/fc-uplink # scope fabric {a</td>
<td>b}</td>
</tr>
</tbody>
</table>
| 3    | UCS-A /fc-uplink/fabric # create vsan vsan-name vsan-id fcoe-id | Creates the specified named VSAN, specifies the VSAN name, VSAN ID, and FCoE VLAN ID, and enters Fibre Channel uplink VSAN mode.  
  • After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.  
  • After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049. |
| 4    | UCS-A /fc-uplink/fabric/vsan # commit-buffer | Commits the transaction to the system configuration. |

The following example creates a named VSAN for fabric interconnect A, names the VSAN finance, assigns the VSAN ID 3955, assigns the FCoE VLAN ID 2221, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # create vsan finance 3955 2221
UCS-A /fc-uplink/fabric/vsan* # commit-buffer
UCS-A /fc-uplink/fabric/vsan #
```
Creating a Named VSAN Accessible to One Fabric Interconnect (Fibre Channel Storage Mode)

Note

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>UCS-A# scope fc-storage</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters Fibre Channel storage mode for the specified fabric interconnect.</td>
</tr>
<tr>
<td>UCS-A/fc-storage# scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Creates the specified named VSAN, specifies the VSAN name, VSAN ID, and FCoE VLAN ID, and enters Fibre Channel storage VSAN mode.</td>
</tr>
<tr>
<td>UCS-A/fc-storage/fabric# create vsan vsan-name vsan-id fcoe-id</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>After an upgrade to Cisco UCS, release 2.0: The FCoE storage port native VLAN uses VLAN 4048 by default. If the default FCoE VSAN was set to use VLAN 1 before the upgrade, you must change it to a VLAN ID that is not used or reserved. For example, consider changing the default to 4049 if that VLAN ID is not in use.</td>
</tr>
<tr>
<td></td>
<td>After a fresh install of Cisco UCS, release 2.0: The FCoE VLAN for the default VSAN uses VLAN 4048 by default. The FCoE storage port native VLAN uses VLAN 4049.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Creates a member port on the specified VSAN.</td>
</tr>
<tr>
<td>UCS-A/fc-storage/fabric/vsan# create member-port {a</td>
<td>b} slot-id port-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A/fc-storage/fabric/vsan# commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example creates a named VSAN on fabric A, names the VSAN finance, assigns the VSAN ID 3955, assigns the FCoE VLAN ID 2221, creates a member port and assigns the it to member port A, slot 1 port 40, and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage/ # scope fabric a
UCS-A /fc-storage/fabric # create VSAN finance 3955 2221
UCS-A /fc-storage/fabric/vsan # create member-port a 1 40
```

Cisco UCS Manager CLI Configuration Guide, Release 2.0
Deleting a Named VSAN

If Cisco UCS Manager includes a named VSAN with the same VSAN ID as the one you delete, the VSAN is not removed from the fabric interconnect configuration until all named VSANs with that ID are deleted.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-uplink # delete vsan vsan-name</td>
<td>Deletes the specified named VSAN.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a named VSAN and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # delete vsan finance
UCS-A /fc-uplink* # commit-buffer
UCS-A /fc-uplink #
```

Changing the VLAN ID for the FCoE Native VLAN for a Named VSAN

**Note**

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-uplink # scope vsan vsan-name</td>
<td>Enters VSAN mode for the specified named VSAN.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink/vsan # set fcoe-vlan fcoe-vlan-id</td>
<td>Sets the unique identifier assigned to the VLAN used for Fibre Channel connections.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-uplink/vsan # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example changes the VLAN ID for the FCoE Native VLAN on a named VSAN called finance to 4000 and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope vsan finance
UCS-A /fc-uplink/vsan # set fcoe-vlan 4000
UCS-A /fc-uplink/vsan* # commit-buffer
UCS-A /fc-uplink/vsan #
```

### Changing the VLAN ID for the FCoE Native VLAN for a Storage VSAN

**Note**

FCoE VLANs in the SAN cloud and VLANs in the LAN cloud must have different IDs. Using the same ID for an FCoE VLAN in a VSAN and a VLAN results in a critical fault and traffic disruption for all vNICs and uplink ports using that FCoE VLAN. Ethernet traffic is dropped on any VLAN which has an ID that overlaps with an FCoE VLAN ID.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-storage</td>
<td>Enters Fibre Channel storage mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-storage # set fcoe-storage-native-vlan fcoe-id</td>
<td>Sets the unique identifier assigned to the VLAN used for Fibre Channel connections.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-storage # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example changes the VLAN ID for the FCoE Native VLAN on a storage VSAN called finance to 4000 and commits the transaction:

```
UCS-A# scope fc-storage
UCS-A /fc-storage # set fcoe-storage-native-vlan 4000
UCS-A /fc-storage* # commit-buffer
UCS-A /fc-storage #
```

### Enabling or Disabling Fibre Channel Uplink Trunking

**Note**

If the fabric interconnects are configured for Fibre Channel end-host mode, enabling Fibre Channel uplink trunking renders all VSANs with an ID in the range from 3840 to 4079 non-operational.
Enabling or Disabling Fibre Channel Uplink Trunking

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope fc-uplink</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /fc-uplink # scope fabric {a</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /fc-uplink/fabric # set uplink-trunking {enabled</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /fc-uplink/fabric # commit-buffer</td>
</tr>
</tbody>
</table>

The following example enables Fibre Channel uplink trunking for fabric A and commits the transaction:

UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope fabric a
UCS-A /fc-uplink/fabric # set uplink-trunking enabled
UCS-A /fc-uplink/fabric* # commit-buffer
UCS-A /fc-uplink/fabric #
Configuring SAN Pin Groups

This chapter includes the following sections:

- SAN Pin Groups, page 321
- Configuring a SAN Pin Group, page 321

SAN Pin Groups

Cisco UCS uses SAN pin groups to pin Fibre Channel traffic from a vHBA on a server to an uplink Fibre Channel port on the fabric interconnect. You can use this pinning to manage the distribution of traffic from the servers.

**Note**

In Fibre Channel switch mode, SAN pin groups are irrelevant. Any existing SAN pin groups will be ignored.

To configure pinning for a server, you must include the SAN pin group in a vHBA policy. The vHBA policy is then included in the service profile assigned to that server. All traffic from the vHBA will travel through the I/O module to the specified uplink Fibre Channel port.

You can assign the same pin group to multiple vHBA policies. As a result, you do not need to manually pin the traffic for each vHBA.

**Important**

Changing the target interface for an existing SAN pin group disrupts traffic for all vHBAs which use that pin group. The fabric interconnect performs a log in and log out for the Fibre Channel protocols to re-pin the traffic.

Configuring a SAN Pin Group

In a system with two fabric interconnects, you can associate the pin group with only one fabric interconnect or with both fabric interconnects.
# Configuring a SAN Pin Group

## Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /fc-uplink # create pin-group pin-group-name</td>
<td>Creates a Fibre Channel (SAN) pin group with the specified name, and enters Fibre Channel uplink pin group mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /fc-uplink/pin-group # set descr description</td>
<td>(Optional) Provides a description for the pin group. <strong>Note</strong> If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /fc-uplink/pin-group # set target {a</td>
<td>b</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>UCS-A /fc-uplink/pin-group # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a SAN pin group named fcpingroup12, provides a description for the pin group, sets the pin group target to slot 2, port 1, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # create pin-group fcpingroup12
UCS-A /fc-uplink/pin-group* # set descr "This is my pin group #12"
UCS-A /fc-uplink/pin-group* # set target a port 2/1
UCS-A /fc-uplink/pin-group* # commit-buffer
UCS-A /fc-uplink/pin-group #
```

## What to Do Next

Include the pin group in a vHBA template.
Configuring WWN Pools

This chapter includes the following sections:

- WWN Pools, page 323
- Creating a WWN Pool, page 324
- Deleting a WWN Pool, page 325

**WWN Pools**

A WWN pool is a collection of WWNs for use by the Fibre Channel vHBAs in a Cisco UCS domain. You create separate pools for the following:

- WW node names assigned to the server
- WW port names assigned to the vHBA

---

**Important**

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WWN prefix for all blocks in a pool:

20:00:00:25:B5:XX:XX:XX

If you use WWN pools in service profiles, you do not have to manually configure the WWNs that will be used by the server associated with the service profile. In a system that implements multi-tenancy, you can use a WWN pool to control the WWNs used by each organization.

You assign WWNs to pools in blocks. For each block or individual WWN, you can assign a boot target.

**WWNN Pools**

A WWNN pool is a WWN pool that contains only WW node names. If you include a pool of WWNNs in a service profile, the associated server is assigned a WWNN from that pool.
**WWPN Pools**

A WWPN pool is a WWN pool that contains only WW port names. If you include a pool of WWPNs in a service profile, the port on each vHBA of the associated server is assigned a WWPN from that pool.

## Creating a WWN Pool

### Important

A WWN pool can include only WWNNs or WWPNs in the ranges from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF:FF. All other WWN ranges are reserved. To ensure the uniqueness of the Cisco UCS WWNNs and WWPNs in the SAN fabric, we recommend that you use the following WNN prefix for all blocks in a pool: 20:00:00:25:B5:XX:XX:XX

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code></td>
</tr>
</tbody>
</table>
| Step 2 | UCS-A /org # create wwn-pool wwn-pool-name {node-wwn-assignment | port-wwn-assignment} | Creates a WWN pool with the specified name and purpose, and enters organization WWN pool mode. The purpose of the WWN pool can be one of the following:  
  - To assign world wide node names (WWNNs) and world wide port names (WWPNs)  
  - To assign only WWNNs  
  - To assign only WWPNs |
| Step 3 | UCS-A /org/wwn-pool # set descr description | (Optional) Provides a description for the WWN pool.  
  **Note** If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any `show` command output. |
| Step 4 | UCS-A /org/wwn-pool # create block first-wwn last-wwn | (Optional) Creates a block (range) of WWNs, and enters organization WWN pool block mode. You must specify the first and last WWN in the block using the form `first-wwn` to `last-wwn`, with the WWNs separated by a space.  
  **Note** A WWN pool can contain more than one WWN block. To create multiple WWN blocks, you must enter multiple `create block` commands from organization WWN pool mode. |
Deleting a WWN Pool

If you delete a pool, Cisco UCS Manager does not reallocate any addresses from that pool that have been assigned to vNICs or vHBAs. All assigned addresses from a deleted pool remain with the vNIC or vHBA to which they are assigned until one of the following occurs:

- The associated service profiles are deleted.
- The vNIC or vHBA to which the address is assigned is deleted.
- The vNIC or vHBA is assigned to a different pool.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete wwn-pool pool-name</td>
<td>Deletes the specified WWN pool.</td>
</tr>
</tbody>
</table>
Deleting a WWN Pool

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>UCS-A /org # <strong>commit-buffer</strong></td>
</tr>
</tbody>
</table>

The following example deletes the WWN pool named pool4 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete wwn-pool pool4
UCS-A /org* # commit-buffer
UCS-A /org #
```
Configuring Storage-Related Policies

This chapter includes the following sections:

- Configuring vHBA Templates, page 327
- Configuring Fibre Channel Adapter Policies, page 329

Configuring vHBA Templates

vHBA Template

This template is a policy that defines how a vHBA on a server connects to the SAN. It is also referred to as a vHBA SAN connectivity template.

You need to include this policy in a service profile for it to take effect.

Configuring a vHBA Template

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create vhba-templ vhba-templ-name [fabric {a</td>
<td>b}] [fc-if vsan-name]</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/vhba-templ # set descr description</td>
<td>(Optional) Provides a description for the vHBA template.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/vhba-templ # set fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/vhba-templ # set fc-if vsan-name</td>
<td>(Optional) Specifies the Fibre Channel interface (named VSAN) to use for the vHBA template. If you did not specify the Fibre Channel interface when creating the vHBA template in Step 2, you have the option to specify it with this command.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/vhba-templ # set max-field-size size-num</td>
<td>Specifies the maximum size of the Fibre Channel frame payload (in bytes) that the vHBA supports.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/vhba-templ # set pin-group group-name</td>
<td>Specifies the pin group to use for the vHBA template.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /org/vhba-templ # set qos-policy mac-pool-name</td>
<td>Specifies the QoS policy to use for the vHBA template.</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /org/vhba-templ # set stats-policy policy-name</td>
<td>Specifies the server and server component statistics threshold policy to use for the vHBA template.</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /org/vhba-templ # set type {initial-template</td>
<td>updating-template}</td>
</tr>
<tr>
<td>Step 11</td>
<td>UCS-A /org/vhba-templ # set wwpn-pool pool-name</td>
<td>Specifies the WWPN pool to use for the vHBA template.</td>
</tr>
<tr>
<td>Step 12</td>
<td>UCS-A /org/vhba-templ # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a vHBA template and commits the transaction:

```
UCS-A# scope org /vcenter/UCS-A
UCS-A /org* # create vhba template VhbaTempFoo
UCS-A /org/vhba-templ* # set descr "This is a vHBA template example."
UCS-A /org/vhba-templ* # set fabric a
UCS-A /org/vhba-templ* # set fc-if accounting
UCS-A /org/vhba-templ* # set max-field-size 2112
UCS-A /org/vhba-templ* # set pin-group FcPinGroup12
UCS-A /org/vhba-templ* # set qos-policy policy34foo
UCS-A /org/vhba-templ* # set stats-policy ServStatsPolicy
UCS-A /org/vhba-templ* # set type updating-template
UCS-A /org/vhba-templ* # set wwpn-pool SanPool7
UCS-A /org/vhba-templ* # commit-buffer
```

Cisco UCS Manager CLI Configuration Guide, Release 2.0

OL-25721-05

328
Deleting a vHBA Template

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # delete vhba-templ vhba-templ-name</td>
<td>Deletes the specified vHBA template.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the vHBA template named VhbaTempFoo and commits the transaction:

```bash
UCS-A# scope org /
UCS-A /org # delete vhba template VhbaTempFoo
UCS-A /org # commit-buffer
UCS-A /org #
```

Configuring Fibre Channel Adapter Policies

Ethernet and Fibre Channel Adapter Policies

These policies govern the host-side behavior of the adapter, including how the adapter handles traffic. For example, you can use these policies to change default settings for the following:

- Queues
- Interrupt handling
- Performance enhancement
- RSS hash
- Failover in an cluster configuration with two fabric interconnects
For Fibre Channel adapter policies, the values displayed by Cisco UCS Manager may not match those displayed by applications such as QLogic SANsurfer. For example, the following values may result in an apparent mismatch between SANsurfer and Cisco UCS Manager:

- **Max LUNs Per Target**—SANsurfer has a maximum of 256 LUNs and does not display more than that number. Cisco UCS Manager supports a higher maximum number of LUNs.
- **Link Down Timeout**—In SANsurfer, you configure the timeout threshold for link down in seconds. In Cisco UCS Manager, you configure this value in milliseconds. Therefore, a value of 5500 ms in Cisco UCS Manager displays as 5s in SANsurfer.
- **Max Data Field Size**—SANsurfer has allowed values of 512, 1024, and 2048. Cisco UCS Manager allows you to set values of any size. Therefore, a value of 900 in Cisco UCS Manager displays as 512 in SANsurfer.

### Operating System Specific Adapter Policies

By default, Cisco UCS provides a set of Ethernet adapter policies and Fibre Channel adapter policies. These policies include the recommended settings for each supported server operating system. Operating systems are sensitive to the settings in these policies. Storage vendors typically require non-default adapter settings. You can find the details of these required settings on the support list provided by those vendors.

We recommend that you use the values in these policies for the applicable operating system. Do not modify any of the values in the default policies unless directed to do so by Cisco Technical Support.

However, if you are creating an Ethernet adapter policy for a Windows OS (instead of using the default Windows adapter policy), you must use the following formulas to calculate values that work with Windows:

\[
\text{Completion Queues} = \text{Transmit Queues} + \text{Receive Queues}
\]

\[
\text{Interrupt Count} = (\text{Completion Queues} + 2) \text{ rounded up to the nearest power of 2}
\]

For example, if \(\text{Transmit Queues} = 1\) and \(\text{Receive Queues} = 8\) then:

\[
\text{Completion Queues} = 1 + 8 = 9
\]
\[
\text{Interrupt Count} = (9 + 2) \text{ rounded up to the nearest power of 2} = 16
\]

### Configuring a Fibre Channel Adapter Policy

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org# <code>create fc-policy policy-name</code></td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/fc-policy# <code>set descr description</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/fc-policy# `set error-recovery {fcp-error-recovery {disabled</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/fc-policy# `set interrupt mode {intx</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/fc-policy# `set port {io-throttle-count throttle-count</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /org/fc-policy# `set port-p-logi {retries retry-count</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /org/fc-policy# `set recv-queue {count count</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /org/fc-policy# `set scsi-io {count count</td>
</tr>
<tr>
<td>Step 12</td>
<td>UCS-A /org/fc-policy# <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example configures a Fibre Channel adapter policy and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # create fc-policy FcPolicy42
UCS-A /org/fc-policy* # set descr "This is a Fibre Channel adapter policy example."
UCS-A /org/fc-policy* # set error-recovery error-detect-timeout 2500
```
Configuring Fibre Channel Adapter Policies

Deleting a Fibre Channel Adapter Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>/org # </code>delete fc-policy policy-name`</td>
<td>Deletes the specified Fibre Channel adapter policy.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A <code>/org # </code>commit-buffer`</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the Fibre Channel adapter policy named FcPolicy42 and commits the transaction:

UCS-A# `scope org /`  
UCS-A `/org # delete fc-policy FcPolicy42`  
UCS-A `/org* # commit-buffer`  
UCS-A `/org #`
PART V

Server Configuration

• Configuring Server-Related Pools, page 335
• Setting the Management IP Address, page 339
• Configuring Server-Related Policies, page 347
• Configuring Server Boot, page 413
• Deferring Deployment of Service Profile Updates, page 453
• Configuring Service Profiles, page 465
• Managing Power in Cisco UCS, page 491
Configuring Server-Related Pools

This chapter includes the following sections:

- Server Pool Configuration, page 335
- UUID Suffix Pool Configuration, page 337

Server Pool Configuration

Server Pools

A server pool contains a set of servers. These servers typically share the same characteristics. Those characteristics can be their location in the chassis, or an attribute such as server type, amount of memory, local storage, type of CPU, or local drive configuration. You can manually assign a server to a server pool, or use server pool policies and server pool qualifications to automate the assignment.

If your system implements multi-tenancy through organizations, you can designate one or more server pools to be used by a specific organization. For example, a pool that includes all servers with two CPUs could be assigned to the Marketing organization, while all servers with 64 GB memory could be assigned to the Finance organization.

A server pool can include servers from any chassis in the system. A given server can belong to multiple server pools.

Creating a Server Pool

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
</tbody>
</table>
### Server Pool Configuration

**Step 2**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org # create server-pool server-pool-name</td>
<td>Creates a server pool with the specified name, and enters organization server pool mode.</td>
</tr>
</tbody>
</table>

**Step 3**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/server-pool # create server chassis-num/slot-num</td>
<td>Creates a server for the server pool.</td>
</tr>
</tbody>
</table>

*Note*  A server pool can contain more than one server. To create multiple servers for the pool, you must enter multiple `create server` commands from organization server pool mode.

**Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/server-pool # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a server pool named ServPool2, creates two servers for the server pool, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create server-pool ServPool2
UCS-A /org/server-pool* # create server 1/1
UCS-A /org/server-pool* # create server 1/4
UCS-A /org/server-pool* # commit-buffer
UCS-A /org/server-pool #
```

### Deleting a Server Pool

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete server-pool server-pool-name</td>
</tr>
<tr>
<td></td>
<td>Deletes the specified server pool.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server pool named ServPool2 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete server-pool ServPool2
UCS-A /org* # commit-buffer
UCS-A /org #
```
UUID Suffix Pool Configuration

UUID Suffix Pools

A UUID suffix pool is a collection of SMBIOS UUIDs that are available to be assigned to servers. The first number of digits that constitute the prefix of the UUID are fixed. The remaining digits, the UUID suffix, are variable. A UUID suffix pool ensures that these variable values are unique for each server associated with a service profile which uses that particular pool to avoid conflicts.

If you use UUID suffix pools in service profiles, you do not have to manually configure the UUID of the server associated with the service profile.

Creating a UUID Suffix Pool

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create uuid-suffix-pool pool-name</td>
<td>Creates a UUID suffix pool with the specified pool name and enters organization UUID suffix pool mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/uuid-suffix-pool # set descr description</td>
<td>(Optional) Provides a description for the UUID suffix pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/uuid-suffix-pool # create block first-uuid last-uuid</td>
<td>Creates a block (range) of UUID suffixes, and enters organization UUID suffix pool block mode. You must specify the first and last UUID suffixes in the block using the form nnnn-nnnnnnnnnnnn, with the UUID suffixes separated by a space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> A UUID suffix pool can contain more than one UUID suffix block. To create multiple blocks, you must enter multiple create block commands from organization UUID suffix pool mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/uuid-suffix-pool/block # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example creates a UUID suffix pool named pool4, provides a description for the pool, specifies a block of UUID suffixes to be used for the pool, and commits the transaction:

UCS-A# scope org /
UCS-A /org # create uuid-suffix-pool pool4
UCS-A /org/uuid-suffix-pool* # set descr "This is UUID suffix pool 4"
UCS-A /org/uuid-suffix-pool* # create block 1000-000000000001 1000-000000000010
UCS-A /org/uuid-suffix-pool/block* # commit-buffer
UCS-A /org/uuid-suffix-pool/block #

What to Do Next
Include the UUID suffix pool in a service profile and/or template.

Deleting a UUID Suffix Pool

If you delete a pool, Cisco UCS Manager does not reallocate any addresses from that pool that have been assigned to vNICs or vHBAs. All assigned addresses from a deleted pool remain with the vNIC or vHBA to which they are assigned until one of the following occurs:

- The associated service profiles are deleted.
- The vNIC or vHBA to which the address is assigned is deleted.
- The vNIC or vHBA is assigned to a different pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /org # delete uuid-suffix-pool pool-name</td>
</tr>
<tr>
<td></td>
<td>Deletes the specified UUID suffix pool.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /org # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the UUID suffix pool named pool4 and commits the transaction:

UCS-A# scope org /
UCS-A /org # delete uuid-suffix-pool pool4
UCS-A /org* # commit-buffer
UCS-A /org #
CHAPTER 27

Setting the Management IP Address

This chapter includes the following sections:

- Management IP Address, page 339
- Configuring the Management IP Address on a Blade Server, page 340
- Configuring the Management IP Address on a Rack Server, page 341
- Setting the Management IP Address on a Service Profile or Service Profile Template, page 343
- Configuring the Management IP Pool, page 344

Management IP Address

Each server in a Cisco UCS domain must have a management IP address assigned to its Cisco Integrated Management Controller (CIMC) or to the service profile associated with the server. Cisco UCS Manager uses this IP address for external access that terminates in the CIMC. This external access can be through one of the following:

- KVM console
- Serial over LAN
- An IPMI tool

The management IP address used to access the CIMC on a server can be one of the following:

- A static IPv4 address assigned directly to the server.
- A static IPv4 address assigned to a service profile. You cannot configure a service profile template with a static IP address.
- An IP address drawn from the management IP address pool and assigned to a service profile or service profile template.

You can assign a management IP address to each CIMC on the server and to the service profile associated with the server. If you do so, you must use different IP addresses for each of them.
You cannot assign a static IP address to a server or service profile if that IP address has already been assigned to a server or service profile in the Cisco UCS domain. If you attempt to do so, Cisco UCS Manager warns you that the IP address is already in use and rejects the configuration.

A management IP address that is assigned to a service profile moves with the service profile. If a KVM or SoL session is active when you migrate the service profile to another server, Cisco UCS Manager terminates that session and does not restart it after the migration is completed. You configure this IP address when you create or modify a service profile.

Configuring the Management IP Address on a Blade Server

Configuring a Blade Server to Use a Static IP Address

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope server chassis-id / blade-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A/chassis/server # scope cimc</td>
<td>Enters chassis server CIMC mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A/chassis/server/cimc # create ext-static-ip</td>
<td>Creates a static management IP address for the specified server.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A/chassis/server/cimc/ext-static-ip # set addr ip-addr</td>
<td>Specifies the static IPv4 address to be assigned to the server.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A/chassis/server/cimc/ext-static-ip # set default-gw ip-addr</td>
<td>Specifies the default gateway that the IP address should use.</td>
</tr>
<tr>
<td><strong>Step 6</strong> UCS-A/chassis/server/cimc/ext-static-ip # set subnet ip-addr</td>
<td>Specifies the subnet mask for the IP address.</td>
</tr>
<tr>
<td><strong>Step 7</strong> UCS-A/chassis/server/cimc/ext-static-ip # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a static management IP address for chassis 1 server 1, sets the static IPv4 address, sets the default gateway, sets the subnet mask, and commits the transaction:

UCS-A# scope server 1/1
UCS-A /chassis/server # scope cimc
UCS-A /chassis/server/cimc # create ext-static-ip
UCS-A /chassis/server/cimc/ext-static-ip* # set addr 192.168.10.10
UCS-A /chassis/server/cimc/ext-static-ip* # set default-gw 192.168.10.1
UCS-A /chassis/server/cimc/ext-static-ip* # set subnet 255.255.255.0
UCS-A /chassis/server/cimc/ext-static-ip* # commit-buffer
UCS-A /chassis/server/cimc/ext-static-ip #
Configuring a Blade Server to Use the Management IP Pool

Deleting the static management IP address returns the specified server to the management IP pool.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server chassis-id / blade-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis/server # scope cimc</td>
<td>Enters chassis server CIMC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis/server/cimc # delete ext-static-ip</td>
<td>Deletes the external static IP address and returns the blade server to the management IP pool.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /chassis/server/cimc/ # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the static management IP address for chassis 1 server 1 and commits the transaction:

UCS-A# scope server 1/1
UCS-A /chassis/server # scope cimc
UCS-A /chassis/server/cimc # delete ext-static-ip
UCS-A /chassis/server/cimc/ # commit-buffer
UCS-A /chassis/server/cimc/ #

Configuring the Management IP Address on a Rack Server

Configuring a Rack Server to Use a Static IP Address

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server blade-id</td>
<td>Enters server mode for the specified server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /server # scope cimc</td>
<td>Enters server CIMC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /server/cimc # create ext-static-ip</td>
<td>Creates a static management IP address for the specified server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /server/cimc/ext-static-ip # set addr ip-addr</td>
<td>Specifies the static IPv4 address to be assigned to the server.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /server/cimc/ext-static-ip # set default-gw ip-addr</td>
<td>Specifies the default gateway that the IP address should use.</td>
</tr>
</tbody>
</table>
### Configuring the Management IP Address on a Rack Server

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>UCS-A /server/cimc/ext-static-ip # set subnet ip-addr</td>
</tr>
<tr>
<td></td>
<td>Specifies the subnet mask for the IP address.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>UCS-A /server/cimc/ext-static-ip # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a static management IP address for rack server 1, sets the static IPv4 address, sets the default gateway, sets the subnet mask, and commits the transaction:

```
UCS-A# scope server 1
UCS-A /server # scope cimc
UCS-A /server/cimc # create ext-static-ip
UCS-A /server/cimc/ext-static-ip* # set addr 192.168.10.10
UCS-A /server/cimc/ext-static-ip* # set default-gw 192.168.10.1
UCS-A /server/cimc/ext-static-ip* # set subnet 255.255.255.0
UCS-A /server/cimc/ext-static-ip* # commit-buffer
```

### Configuring a Rack Server to Use the Management IP Pool

Deleting the static management IP address returns the specified server to the management IP pool.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A /scope server blade-id</td>
</tr>
<tr>
<td></td>
<td>Enters server mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /server # scope cimc</td>
</tr>
<tr>
<td></td>
<td>Enters server CIMC mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /server/cimc # delete ext-static-ip</td>
</tr>
<tr>
<td></td>
<td>Deletes the external static IP address and returns the rack server to the management IP pool.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /server/cimc/ # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the static management IP address for rack server 1 and commits the transaction:

```
UCS-A# scope server 1
UCS-A /server # scope cimc
UCS-A /server/cimc # delete ext-static-ip
UCS-A /server/cimc* # commit-buffer
UCS-A /server/cimc/ #
```
## Setting the Management IP Address on a Service Profile or Service Profile Template

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
</tbody>
</table>
| Step 3 | UCS-A/org/service-profile # set ext-mgmt-ip-state {none | pooled | static} | Specifies how the management IP address will be assigned to the service profile. You can set the management IP address policy using the following options:  
  - None--The service profile is not assigned an IP address.  
  - Pooled--The service profile is assigned an IP address from the management IP pool.  
  - Static--The service profile is assigned the configured static IP address. **Note** Setting the ext-management-ip-state to static for a service profile template is not supported and will result in an error. |
| Step 4 | UCS-A/org/service-profile # commit-buffer | Commits the transaction to the system configuration. |

The following example sets the management IP address policy for a service profile called accounting to static and then commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # set ext-mgmt-ip-state static
UCS-A /org/service-profile* # commit-buffer
```

### What to Do Next

If you have set the management IP address to static, configure a server to use a static IP address.
Configuring the Management IP Pool

Management IP Pool

The management IP pool is a collection of external IP addresses. Cisco UCS Manager reserves each block of IP addresses in the management IP pool for external access that terminates in the CIMC on a server.

You can configure service profiles and service profile templates to use IP addresses from the management IP pool. You cannot configure servers to use the management IP pool.

All IP addresses in the management IP pool must be in the same subnet as the IP address of the fabric interconnect.

Note

The management IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.

Configuring an IP Address Block for the Management IP Pool

The management IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org /</td>
<td>Enters root organization mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope ip-pool ext-mgmt</td>
<td>Enters organization IP pool mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/ip-pool # set descr description</td>
<td>(Optional) Provides a description for the management IP pool. This description applies to all address blocks in the management IP pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/ip-pool # create block first-ip-addr last-ip-addr gateway-ip-addr subnet-mask</td>
<td>Creates a block (range) of IP addresses, and enters organization IP pool block mode. You must specify the first and last IP addresses in the address range, the gateway IP address, and subnet mask.</td>
</tr>
</tbody>
</table>
AIP pool can contain more than one IP address block. To create multiple IP address blocks, you must enter multiple create block commands from organization IP pool mode.

**Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/ip-pool/block # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures an IP address block for the management IP pool and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope ip-pool ext-mgmt
UCS-A /org/ip-pool* # set descr "This is a management IP pool example."
UCS-A /org/ip-pool* # create block 192.168.100.1 192.168.100.200 192.168.100.10 255.255.255.0
UCS-A /org/ip-pool/block* # commit-buffer
UCS-A /org/ip-pool/block #
```

**What to Do Next**

Configure one or more service profiles or service profile templates to obtain the CIMC IP address from the management IP pool.

## Deleting an IP Address Block from the Management IP Pool

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name .</td>
</tr>
<tr>
<td>UCS-A /org # scope ip-pool ext-mgmt</td>
<td>Enters the management IP pool.</td>
</tr>
<tr>
<td>UCS-A /org/ip-pool # delete block first-ip-addr last-ip-addr</td>
<td>Deletes the specified block (range) of IP addresses.</td>
</tr>
<tr>
<td>UCS-A /org/ip-pool # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures an IP address block for the management IP pool and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope ip-pool ext-mgmt
UCS-A /org/ip-pool # delete block 192.168.100.1 192.168.100.200
UCS-A /org/ip-pool* # commit-buffer
UCS-A /org/ip-pool #
```
Configuring Server-Related Policies

This chapter includes the following sections:

- Configuring BIOS Settings, page 347
- Configuring IPMI Access Profiles, page 372
- Configuring Local Disk Configuration Policies, page 376
- Configuring Scrub Policies, page 381
- Configuring Serial over LAN Policies, page 383
- Configuring Server Autoconfiguration Policies, page 385
- Configuring Server Discovery Policies, page 387
- Configuring Server Inheritance Policies, page 389
- Configuring Server Pool Policies, page 391
- Configuring Server Pool Policy Qualifications, page 393
- Configuring vNIC/vHBA Placement Policies, page 405

Configuring BIOS Settings

Server BIOS Settings

Cisco UCS provides two methods for making global modifications to the BIOS settings on servers in an Cisco UCS domain. You can create one or more BIOS policies that include a specific grouping of BIOS settings that match the needs of a server or set of servers, or you can use the default BIOS settings for a specific server platform.

Both the BIOS policy and the default BIOS settings for a server platform enable you to fine tune the BIOS settings for a server managed by Cisco UCS Manager.

Depending upon the needs of the data center, you can configure BIOS policies for some service profiles and use the BIOS defaults in other service profiles in the same Cisco UCS domain, or you can use only one of them. You can also use Cisco UCS Manager to view the actual BIOS settings on a server and determine whether they are meeting current needs.
Cisco UCS Manager pushes BIOS configuration changes through a BIOS policy or default BIOS settings to the Cisco Integrated Management Controller (CIMC) buffer. These changes remain in the buffer and do not take effect until the server is rebooted.

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.

#### Main BIOS Settings

The following table lists the main server BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Reboot on BIOS Settings Change**<br>set reboot-on-update | When the server is rebooted after you change one or more BIOS settings.  
yes—If you enable this setting, the server is rebooted according to the maintenance policy in the server's service profile. For example, if the maintenance policy requires user acknowledgment, the server is not rebooted and the BIOS changes are not applied until a user acknowledges the pending activity.  
no—If you do not enable this setting, the BIOS changes are not applied until the next time the server is rebooted, whether as a result of another server configuration change or a manual reboot. |
| **Quiet Boot**<br>set quiet-boot-config quiet-boot | What the BIOS displays during Power On Self-Test (POST). This can be one of the following:  
  - **disabled**—The BIOS displays all messages and Option ROM information during boot.  
  - **enabled**—The BIOS displays the logo screen, but does not display any messages or Option ROM information during boot.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Post Error Pause</strong></td>
<td>What happens when the server encounters a critical error during POST. This can be one of the following:</td>
</tr>
<tr>
<td>Post Error Pause</td>
<td></td>
</tr>
<tr>
<td>set post-error-pause-config</td>
<td></td>
</tr>
<tr>
<td>post-error-pause</td>
<td></td>
</tr>
<tr>
<td><strong>Resume Ac On Power Loss</strong></td>
<td>How the server behaves when power is restored after an unexpected power loss. This can be one of the following:</td>
</tr>
<tr>
<td>Resume Ac On Power Loss</td>
<td></td>
</tr>
<tr>
<td>set resume-ac-on-power-loss-config</td>
<td></td>
</tr>
<tr>
<td>resume-action</td>
<td></td>
</tr>
<tr>
<td><strong>Front Panel Lockout</strong></td>
<td>Whether the power and reset buttons on the front panel are ignored by the server. This can be one of the following:</td>
</tr>
<tr>
<td>Front Panel Lockout</td>
<td></td>
</tr>
<tr>
<td>set front-panel-lockout-config</td>
<td></td>
</tr>
<tr>
<td>front-panel-lockout</td>
<td></td>
</tr>
</tbody>
</table>
### Processor BIOS Settings

The following table lists the processor BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Turbo Boost**  
 set intel-turbo-boost-config turbo-boost | Whether the processor uses Intel Turbo Boost Technology, which allows the processor to automatically increase its frequency if it is running below power, temperature, or voltage specifications. This can be one of the following:  
  - **disabled** — The processor does not increase its frequency automatically.  
  - **enabled** — The processor utilizes Turbo Boost Technology if required.  
  - **platform-default** — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
### Enhanced Intel Speedstep

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Intel Speedstep</td>
<td>Whether the processor uses Enhanced Intel SpeedStep Technology, which allows the system to dynamically adjust processor voltage and core frequency. This technology can result in decreased average power consumption and decreased average heat production. This can be one of the following:</td>
</tr>
<tr>
<td><strong>set enhanced-intel-speedstep-config</strong> speed-step</td>
<td></td>
</tr>
<tr>
<td><strong>disabled</strong></td>
<td>The processor never dynamically adjusts its voltage or frequency.</td>
</tr>
<tr>
<td><strong>enabled</strong></td>
<td>The processor utilizes Enhanced Intel SpeedStep Technology and enables all supported processor sleep states to further conserve power.</td>
</tr>
<tr>
<td><strong>platform-default</strong></td>
<td>The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.

---

### Hyper Threading

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper Threading</td>
<td>Whether the processor uses Intel Hyper-Threading Technology, which allows multithreaded software applications to execute threads in parallel within each processor. This can be one of the following:</td>
</tr>
<tr>
<td><strong>set hyper-threading-config</strong> hyper-threading</td>
<td></td>
</tr>
<tr>
<td><strong>disabled</strong></td>
<td>The processor does not permit hyperthreading.</td>
</tr>
<tr>
<td><strong>enabled</strong></td>
<td>The processor allows for the parallel execution of multiple threads.</td>
</tr>
<tr>
<td><strong>platform-default</strong></td>
<td>The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.
### Core Multi Processing

**Name**

Set `core-multi-processing-config` `multi-processing`

**Description**

Sets the state of logical processor cores in a package. If you disable this setting, Hyper Threading is also disabled. This can be one of the following:

- **all**—Enables multi processing on all logical processor cores.
- **1 through 10**—Specifies the number of logical processor cores that can run on the server. To disable multi processing and have only one logical processor core running on the server, select 1.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.

### Execute Disabled Bit

**Name**

Set `execute-disable bit`

**Description**

Classifies memory areas on the server to specify where where application code can execute. As a result of this classification, the processor disables code execution if a malicious worm attempts to insert code in the buffer. This setting helps to prevent damage, worm propagation, and certain classes of malicious buffer overflow attacks. This can be one of the following:

- **disabled**—The processor does not classify memory areas.
- **enabled**—The processor classifies memory areas.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.

### Virtualization Technology (VT)

**Name**

Set `intel-vt-config vt`

**Description**

Whether the processor uses Intel Virtualization Technology, which allows a platform to run multiple operating systems and applications in independent partitions. This can be one of the following:

- **disabled**—The processor does not permit virtualization.
- **enabled**—The processor allows multiple operating systems in independent partitions.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

**Note**

If you change this option, you must power cycle the server before the setting takes effect.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Cache Access</td>
<td>Allows processors to increase I/O performance by placing data from I/O devices directly into the processor cache. This setting helps to reduce cache misses. This can be one of the following:</td>
</tr>
</tbody>
</table>
| set direct-cache-access-config access | • **disabled**—Data from I/O devices is not placed directly into the processor cache.  
• **enabled**—Data from I/O devices is placed directly into the processor cache.  
• **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
| Processor C State         | Whether the system can enter a power savings mode during idle periods. This can be one of the following:                                           |
| set processor-c-state-config c-state | • **disabled**—The system remains in high performance state even when idle.  
• **enabled**—The system can reduce power to system components such as the DIMMs and CPUs.  
• **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |

We recommend that you contact your operating system vendor to make sure the operating system supports this feature.

| Processor C1E             | Allows the processor to transition to its minimum frequency upon entering C1. This setting does not take effect until after you have rebooted the server. This can be one of the following: |
| set processor-c1e-config c1e | • **disabled**—The CPU continues to run at its maximum frequency in C1 state.  
• **enabled**—The CPU transitions to its minimum frequency. This option saves the maximum amount of power in C1 state.  
• **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor C3 Report</td>
<td>Whether the processor sends the C3 report to the operating system. This can be one of the following:</td>
</tr>
<tr>
<td><code>set processor-c3-report-config</code></td>
<td>• <strong>disabled</strong> — The processor does not send the C3 report.</td>
</tr>
<tr>
<td><code>processor-c3-report</code></td>
<td>• <strong>acpi-c2</strong> — The processor sends the C3 report using the ACPI C2 format.</td>
</tr>
<tr>
<td></td>
<td>• <strong>acpi-c3</strong> — The processor sends the C3 report using the ACPI C3 format.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong> — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td>On the B440 server, the BIOS Setup menu uses enabled and disabled for these options. If you specify acpi-c2 or acpi-c2, the server sets the BIOS value for that option to enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Processor C6 Report</strong></td>
</tr>
<tr>
<td><code>set processor-c6-report-config</code></td>
<td><strong>Processor C6 Report</strong></td>
</tr>
<tr>
<td><code>processor-c6-report</code></td>
<td>Whether the processor sends the C6 report to the operating system. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• <strong>disabled</strong> — The processor does not send the C6 report.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong> — The processor sends the C6 report.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong> — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td><strong>Processor C7 Report</strong></td>
</tr>
<tr>
<td><code>set processor-c7-report-config</code></td>
<td><strong>Processor C7 Report</strong></td>
</tr>
<tr>
<td><code>processor-c7-report</code></td>
<td>Whether the processor sends the C7 report to the operating system. This can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• <strong>disabled</strong> — The processor does not send the C7 report.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong> — The processor sends the C7 report.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong> — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **CPU Performance**<br>set cpu-performance-config<br>cpu-performance | Sets the CPU performance profile for the server. This can be one of the following:  
  • *enterprise*—All prefetchers and data reuse are disabled.  
  • *high-throughput*—All prefetchers are enabled, and data reuse is disabled.  
  • *hpc*—All prefetchers and data reuse are enabled. This setting is also known as high performance computing.  
  • *platform-default*—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
| **Max Variable MTRR Setting**<br>set max-variable-mtrr-setting-config<br>processor-mtrr | Allows you to select the number of MTRR variables. This can be one of the following:  
  • *auto-max*—The BIOS uses the default value for the processor.  
  • *8*—The BIOS uses the number specified for the variable MTRR.  
  • *platform-default*—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
The amount of power available to the server components when they are idle. This can be one of the following:

- **c0**—The server provides all server components with full power at all times. This option maintains the highest level of performance and requires the greatest amount of power.

- **c1**—When the CPU is idle, the system slightly reduces the power consumption. This option requires less power than C0 and allows the server to return quickly to high performance mode.

- **c3**—When the CPU is idle, the system reduces the power consumption further than with the C1 option. This requires less power than C1 or C0, but it takes the server slightly longer to return to high performance mode.

- **c6**—When the CPU is idle, the system reduces the power consumption further than with the C3 option. This option saves more power than C0, C1, or C3, but there may be performance issues until the server returns to full power.

- **no-limit**—The server may enter any available C state.

- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

### Intel Directed I/O BIOS Settings

The following table lists the Intel Directed I/O BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT for Directed I/O</td>
<td>Whether the processor uses Intel Virtualization Technology for Directed I/O (VT-d). This can be one of the following:</td>
</tr>
<tr>
<td>set intel-vt-directed-io-config vtd</td>
<td>• <strong>disabled</strong>—The processor does not use virtualization technology.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong>—The processor uses virtualization technology.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

**Note** This option must be enabled if you want to change any of the other Intel Directed I/O BIOS settings.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interrupt Remap</strong></td>
<td>Whether the processor supports Intel VT-d Interrupt Remapping. This can be one of the following:</td>
</tr>
<tr>
<td>set intel-vt-directed-io-config</td>
<td></td>
</tr>
<tr>
<td>interrupt-remapping</td>
<td>- <strong>disabled</strong>—The processor does not support remapping.</td>
</tr>
<tr>
<td></td>
<td>- <strong>enabled</strong>—The processor uses VT-d Interrupt Remapping as required.</td>
</tr>
<tr>
<td></td>
<td>- <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>Coherency Support</strong></td>
<td>Whether the processor supports Intel VT-d Coherency. This can be one of the following:</td>
</tr>
<tr>
<td>set intel-vt-directed-io-config</td>
<td></td>
</tr>
<tr>
<td>coherency-support</td>
<td>- <strong>disabled</strong>—The processor does not support coherency.</td>
</tr>
<tr>
<td></td>
<td>- <strong>enabled</strong>—The processor uses VT-d Coherency as required.</td>
</tr>
<tr>
<td></td>
<td>- <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>ATS Support</strong></td>
<td>Whether the processor supports Intel VT-d Address Translation Services (ATS). This can be one of the following:</td>
</tr>
<tr>
<td>set intel-vt-directed-io-config</td>
<td></td>
</tr>
<tr>
<td>ats-support</td>
<td>- <strong>disabled</strong>—The processor does not support ATS.</td>
</tr>
<tr>
<td></td>
<td>- <strong>enabled</strong>—The processor uses VT-d ATS as required.</td>
</tr>
<tr>
<td></td>
<td>- <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>Pass Through DMA Support</strong></td>
<td>Whether the processor supports Intel VT-d Pass-through DMA. This can be one of the following:</td>
</tr>
<tr>
<td>set intel-vt-directed-io-config</td>
<td></td>
</tr>
<tr>
<td>passthrough-dma</td>
<td>- <strong>disabled</strong>—The processor does not support pass-through DMA.</td>
</tr>
<tr>
<td></td>
<td>- <strong>enabled</strong>—The processor uses VT-d Pass-through DMA as required.</td>
</tr>
<tr>
<td></td>
<td>- <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
# RAS Memory BIOS Settings

The following table lists the RAS memory BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Memory RAS Config**<br>set memory-ras-config ras-config | How the memory reliability, availability, and serviceability (RAS) is configured for the server. This can be one of the following:  
  - **maximum performance**—System performance is optimized.  
  - **mirroring**—System reliability is optimized by using half the system memory as backup.  
  - **lockstep**—If the DIMM pairs in the server have an identical type, size, and organization and are populated across the SMI channels, you can enable lockstep mode to minimize memory access latency and provide better performance. Lockstep is enabled by default for B440 servers.  
  - **sparing**—System reliability is enhanced with a degree of memory redundancy while making more memory available to the operating system than mirroring.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
| **NUMA**<br>set numa-config numa-optimization | Whether the BIOS supports NUMA. This can be one of the following:  
  - **disabled**—The BIOS does not support NUMA.  
  - **enabled**—The BIOS includes the ACPI tables that are required for NUMA-aware operating systems. If you enable this option, the system must disable Inter-Socket Memory interleaving on some platforms.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mirroring Mode</strong></td>
<td>Memory mirroring enhances system reliability by keeping two identical data images in memory.</td>
</tr>
<tr>
<td>set memory-mirroring-mode</td>
<td>This option is only available if you choose the <strong>mirroring</strong> option for <strong>Memory RAS Config</strong>. It can be one of the following:</td>
</tr>
<tr>
<td>mirroring-mode</td>
<td>• <strong>inter-socket</strong>—Memory is mirrored between two Integrated Memory Controllers (IMCs) across CPU sockets.</td>
</tr>
<tr>
<td></td>
<td>• <strong>intra-socket</strong>—One IMC is mirrored with another IMC in the same socket.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>Sparing Mode</strong></td>
<td>Sparing optimizes reliability by holding memory in reserve so that it can be used in case other DIMMs fail. This option provides some memory redundancy, but does not provide as much redundancy as mirroring. The available sparing modes depend on the current memory population.</td>
</tr>
<tr>
<td>set memory-sparing-mode</td>
<td>This option is only available if you choose the <strong>sparing</strong> option for <strong>Memory RAS Config</strong>. It can be one of the following:</td>
</tr>
<tr>
<td>sparing-mode</td>
<td>• <strong>dimm-sparing</strong>—One DIMM is held in reserve. If a DIMM fails, the contents of a failing DIMM are transferred to the spare DIMM.</td>
</tr>
<tr>
<td></td>
<td>• <strong>rank-sparing</strong>—A spare rank of DIMMs is held in reserve. If a rank of DIMMs fails, the contents of the failing rank are transferred to the spare rank.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>LV DDR Mode</strong></td>
<td>Whether the system prioritizes low voltage or high frequency memory operations. This can be one of the following:</td>
</tr>
<tr>
<td>set lv-dimm-support-config</td>
<td>• <strong>power-saving-mode</strong>—The system prioritizes low voltage memory operations over high frequency memory operations. This mode may lower memory frequency in order to keep the voltage low.</td>
</tr>
<tr>
<td>lv-ddr-mode</td>
<td>• <strong>performance-mode</strong>—The system prioritizes high frequency operations over low voltage operations.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>
Serial Port BIOS Settings

The following table lists the serial port BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serial Port A</strong></td>
<td>Whether serial port A is enabled or disabled. This can be one of the following:</td>
</tr>
<tr>
<td>set serial-port-a-config serial-port-a</td>
<td>• <strong>disabled</strong>—The serial port is disabled.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong>—The serial port is enabled.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

USB BIOS Settings

The following table lists the USB BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Make Device Non Bootable</strong></td>
<td>Whether the server can boot from a USB device. This can be one of the following:</td>
</tr>
<tr>
<td>set usb-boot-config make-device-non-bootable</td>
<td>• <strong>disabled</strong>—The server can boot from a USB device.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong>—The server cannot boot from a USB device.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>USB System Idle Power Optimizing Setting</td>
<td>Whether the USB System Idle Power Optimizing setting is used to reduce USB EHCI idle power consumption. Depending upon the value you choose, this setting can have an impact on performance. This can be one of the following:</td>
</tr>
<tr>
<td>set</td>
<td>• <strong>high-performance</strong>—The USB System Idle Power Optimizing setting is disabled, because optimal performance is preferred over power savings. Selecting this option can significantly improve performance. We recommend you select this option unless your site has server power restrictions.</td>
</tr>
<tr>
<td>usb-system-idle-power-optimizing-setting-config</td>
<td>• <strong>lower-idle-power</strong>—The USB System Idle Power Optimizing setting is enabled, because power savings are preferred over optimal performance.</td>
</tr>
<tr>
<td>usb-idle-power-optimizing</td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td>USB Front Panel Access Lock</td>
<td>USB front panel lock is configured to enable or disable the front panel access to USB ports. This can be one of the following:</td>
</tr>
<tr>
<td>set</td>
<td>• <strong>disabled</strong></td>
</tr>
<tr>
<td>usb-front-panel-access-lock-config</td>
<td>• <strong>enabled</strong></td>
</tr>
<tr>
<td>usb-front-panel-lock</td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
</tbody>
</table>

**PCI Configuration BIOS Settings**

The following table lists the PCI configuration BIOS settings that you can configure through a BIOS policy or the default BIOS settings:
**Max Memory Below 4G**

Whether the BIOS maximizes memory usage below 4GB for an operating system without PAE support, depending on the system configuration. This can be one of the following:

- **disabled**—Does not maximize memory usage. Choose this option for all operating systems with PAE support.
- **enabled**—Maximizes memory usage below 4GB for an operating system without PAE support.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Memory Below 4G set max-memory-below-4gb-config max-memory</td>
</tr>
</tbody>
</table>

**Memory Mapped IO Above 4Gb Config**

Whether to enable or disable memory mapped I/O of 64-bit PCI devices to 4GB or greater address space. Legacy option ROMs are not able to access addresses above 4GB. PCI devices that are 64-bit compliant but use a legacy option ROM may not function correctly with this setting enabled. This can be one of the following:

- **disabled**—Does not map I/O of 64-bit PCI devices to 4GB or greater address space.
- **enabled**—Maps I/O of 64-bit PCI devices to 4GB or greater address space.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Mapped IO Above 4Gb Config set memory-mapped-io-above-4gb-config memory-mapped-io</td>
</tr>
</tbody>
</table>

**Boot Options BIOS Settings**

The following table lists the boot options BIOS settings that you can configure through a BIOS policy or the default BIOS settings:

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Option Retry set boot-option-retry-config retry</td>
</tr>
</tbody>
</table>

Whether the BIOS retries NON-EFI based boot options without waiting for user input. This can be one of the following:

- **disabled**—Waits for user input before retrying NON-EFI based boot options.
- **enabled**—Continually retries NON-EFI based boot options without waiting for user input.
- **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Intel Entry SAS RAID set intel-entry-sas-raid-config sas-raid | Whether the Intel SAS Entry RAID Module is enabled. This can be one of the following:  
• disabled—The Intel SAS Entry RAID Module is disabled.  
• enabled—The Intel SAS Entry RAID Module is enabled.  
• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
| Intel Entry SAS RAID Module set intel-entry-sas-raid-config sas-raid-module | How the Intel SAS Entry RAID Module is configured. This can be one of the following:  
• it-ir-raid—Configures the RAID module to use Intel IT/IR RAID.  
• intel-esrtii—Configures the RAID module to use Intel Embedded Server RAID Technology II.  
• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
| Onboard SCU Storage Support set onboard-sas-storage-config onboard-sas-ctrl | Whether the onboard software RAID controller is available to the server. This can be one of the following:  
• disabled—The software RAID controller is not available.  
• enabled—The software RAID controller is available.  
• platform-default—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |

**Server Management BIOS Settings**

The following tables list the server management BIOS settings that you can configure through a BIOS policy or the default BIOS settings:
## General Settings

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Assert Nmi on Serr</strong></td>
<td>Whether the BIOS generates a non-maskable interrupt (NMI) and logs an error when a system error (SERR) occurs. This can be one of the following:</td>
</tr>
<tr>
<td>set assert-nmi-on-serr-config assertion</td>
<td>• <strong>disabled</strong>—The BIOS does not generate an NMI or log an error when a SERR occurs.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong>—The BIOS generates an NMI and logs an error when a SERR occurs. You must enable this setting if you want to enable <strong>Assert Nmi on Perr</strong>.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>Assert Nmi on Perr</strong></td>
<td>Whether the BIOS generates a non-maskable interrupt (NMI) and logs an error when a processor bus parity error (PERR) occurs. This can be one of the following:</td>
</tr>
<tr>
<td>set assert-nmi-on-perr-config assertion</td>
<td>• <strong>disabled</strong>—The BIOS does not generate an NMI or log an error when a PERR occurs.</td>
</tr>
<tr>
<td></td>
<td>• <strong>enabled</strong>—The BIOS generates an NMI and logs an error when a PERR occurs. You must enable <strong>Assert Nmi on Serr</strong> to use this setting.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td><strong>OS Boot Watchdog Timer</strong></td>
<td>Whether the BIOS programs the watchdog timer with a predefined timeout value. If the operating system does not complete booting before the timer expires, the CIMC resets the system and an error is logged. This can be one of the following:</td>
</tr>
<tr>
<td>set os-boot-watchdog-timer-config</td>
<td>• <strong>disabled</strong>—The watchdog timer is not used to track how long the server takes to boot.</td>
</tr>
<tr>
<td>os-boot-watchdog-timer</td>
<td>• <strong>enabled</strong>—The watchdog timer tracks how long the server takes to boot. If the server does not boot within the predefined length of time, the CIMC resets the system and logs an error.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td>This feature requires either operating system support or Intel Management software.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OS Boot Watchdog Timer Timeout Policy</td>
<td>What action the system takes if the watchdog timer expires. This can be one of the following:</td>
</tr>
<tr>
<td>set os-boot-watchdog-timer-policy-config os-boot-watchdog-timer-policy</td>
<td>• <strong>power-off</strong>—The server is powered off if the watchdog timer expires during OS boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>reset</strong>—The server is reset if the watchdog timer expires during OS boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td>This option is only available if you enable the OS Boot Watchdog Timer.</td>
</tr>
<tr>
<td>OS Boot Watchdog Timer Timeout</td>
<td>What timeout value the BIOS uses to configure the watchdog timer. This can be one of the following:</td>
</tr>
<tr>
<td>set os-boot-watchdog-timer-timeout-config os-boot-watchdog-timer-timeout</td>
<td>• <strong>5-minutes</strong>—The watchdog timer expires 5 minutes after the OS begins to boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>10-minutes</strong>—The watchdog timer expires 10 minutes after the OS begins to boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>15-minutes</strong>—The watchdog timer expires 15 minutes after the OS begins to boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>20-minutes</strong>—The watchdog timer expires 20 minutes after the OS begins to boot.</td>
</tr>
<tr>
<td></td>
<td>• <strong>platform-default</strong>—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.</td>
</tr>
<tr>
<td></td>
<td>This option is only available if you enable the OS Boot Watchdog Timer.</td>
</tr>
</tbody>
</table>
### Console Redirection Settings

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Console Redirection**  
set console-redir-config console-redir | Allows a serial port to be used for console redirection during POST and BIOS booting. After the BIOS has booted and the operating system is responsible for the server, console redirection is irrelevant and has no effect. This can be one of the following:  
- **disabled** — No console redirection occurs during POST.  
- **serial-port-a** — Enables serial port A for console redirection during POST. This option is valid for blade servers and rack-mount servers.  
- **serial-port-b** — Enables serial port B for console redirection and allows it to perform server management tasks. This option is only valid for rack-mount servers.  
- **platform-default** — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.  

**Note**  
If you enable this option, you also disable the display of the Quiet Boot logo screen during POST. |
| **Flow Control**  
set console-redir-config flow-control | Whether a handshake protocol is used for flow control. Request to Send / Clear to Send (RTS/CTS) helps to reduce frame collisions that can be introduced by a hidden terminal problem. This can be one of the following:  
- **none** — No flow control is used.  
- **rts-cts** — RTS/CTS is used for flow control.  
- **platform-default** — The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.  

**Note**  
This setting must match the setting on the remote terminal application. |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| **BAUD Rate**<br>**set console-redir-config baud-rate** | What BAUD rate is used for the serial port transmission speed. If you disable Console Redirection, this option is not available. This can be one of the following:  
  - **9600**—A 9600 BAUD rate is used.  
  - **19200**—A 19200 BAUD rate is used.  
  - **38400**—A 38400 BAUD rate is used.  
  - **57600**—A 57600 BAUD rate is used.  
  - **115200**—A 115200 BAUD rate is used.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.  
  **Note** This setting must match the setting on the remote terminal application. |
| **Terminal Type**<br>**set console-redir-config terminal-type** | What type of character formatting is used for console redirection. This can be one of the following:  
  - **pc-ansi**—The PC-ANSI terminal font is used.  
  - **vt100**—A supported vt100 video terminal and its character set are used.  
  - **vt100-plus**—A supported vt100-plus video terminal and its character set are used.  
  - **vt-utf8**—A video terminal with the UTF-8 character set is used.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor.  
  **Note** This setting must match the setting on the remote terminal application. |
| **Legacy OS Redirect**<br>**set console-redir-config legacy-os-redir** | Whether redirection from a legacy operating system, such as DOS, is enabled on the serial port. This can be one of the following:  
  - **disabled**—The serial port enabled for console redirection is hidden from the legacy operating system.  
  - **enabled**—The serial port enabled for console redirection is visible to the legacy operating system.  
  - **platform-default**—The BIOS uses the value for this attribute contained in the BIOS defaults for the server type and vendor. |
**BIOS Policy**

The BIOS policy is a policy that automates the configuration of BIOS settings for a server or group of servers. You can create global BIOS policies available to all servers in the root organization, or you can create BIOS policies in sub-organizations that are only available to that hierarchy.

To use a BIOS policy, do the following:

1. Create the BIOS policy in Cisco UCS Manager.
2. Assign the BIOS policy to one or more service profiles.
3. Associate the service profile with a server.

During service profile association, Cisco UCS Manager modifies the BIOS settings on the server to match the configuration in the BIOS policy. If you do not create and assign a BIOS policy to a service profile, the server uses the default BIOS settings for that server platform.

**Default BIOS Settings**

Cisco UCS Manager includes a set of default BIOS settings for each type of server supported by Cisco UCS. The default BIOS settings are available only in the root organization and are global. Only one set of default BIOS settings can exist for each server platform supported by Cisco UCS. You can modify the default BIOS settings, but you cannot create an additional set of default BIOS settings.

Each set of default BIOS settings are designed for a particular type of supported server and are applied to all servers of that specific type which do not have a BIOS policy included in their service profiles.

Unless a Cisco UCS implementation has specific needs that are not met by the server-specific settings, we recommend that you use the default BIOS settings that are designed for each type of server in the Cisco UCS domain.

Cisco UCS Manager applies these server platform-specific BIOS settings as follows:

- The service profile associated with a server does not include a BIOS policy.
- The BIOS policy is configured with the platform-default option for a specific setting.

You can modify the default BIOS settings provided by Cisco UCS Manager. However, any changes to the default BIOS settings apply to all servers of that particular type or platform. If you want to modify the BIOS settings for only certain servers, we recommend that you use a BIOS policy.
Creating a BIOS Policy

Cisco UCS Manager pushes BIOS configuration changes through a BIOS policy or default BIOS settings to the Cisco Integrated Management Controller (CIMC) buffer. These changes remain in the buffer and do not take effect until the server is rebooted.

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters org mode for the specified organization. To enter the default org mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>UCS-A# <code>scope org org-name</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Creates a BIOS policy with the specified policy name, and enters org BIOS policy mode.</td>
</tr>
<tr>
<td>UCS-A /org # <code>create bios-policy policy-name</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configure the BIOS settings.</td>
</tr>
<tr>
<td></td>
<td>For the CLI commands, descriptions and information about the options for each BIOS setting, see the following topics:</td>
</tr>
<tr>
<td></td>
<td>• Main page: Main BIOS Settings, on page 348</td>
</tr>
<tr>
<td></td>
<td>• Processor page: Processor BIOS Settings, on page 350</td>
</tr>
<tr>
<td></td>
<td>• Intel Directed IO page: Intel Directed I/O BIOS Settings, on page 356</td>
</tr>
<tr>
<td></td>
<td>• RAS Memory page: RAS Memory BIOS Settings, on page 358</td>
</tr>
<tr>
<td></td>
<td>• Serial Port page: Serial Port BIOS Settings, on page 360</td>
</tr>
<tr>
<td></td>
<td>• USB page: USB BIOS Settings, on page 360</td>
</tr>
<tr>
<td></td>
<td>• PCI Configuration page: PCI Configuration BIOS Settings, on page 361</td>
</tr>
<tr>
<td></td>
<td>• Boot Options page: Boot Options BIOS Settings, on page 362</td>
</tr>
<tr>
<td></td>
<td>• Server Management page: Server Management BIOS Settings, on page 363</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /org/bios-policy # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example creates a BIOS policy under the root organization and commits the transaction:

```
UCS-A# `scope org /`
UCS-A /org # `create bios-policy biosPolicy3`
UCS-A /org/bios-policy# `set numa-config numa-optimization enabled`
```
Modifying BIOS Defaults

We recommend that you verify the support for BIOS settings in the server that you want to configure. Some settings, such as Mirroring Mode and Sparing Mode for RAS Memory, are not supported by all Cisco UCS servers.

Unless a Cisco UCS implementation has specific needs that are not met by the server-specific settings, we recommend that you use the default BIOS settings that are designed for each type of server in the Cisco UCS domain.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # scope server-defaults</td>
<td>Enters server defaults mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/server-defaults # show platform</td>
<td>(Optional) Displays platform descriptions for all servers.</td>
</tr>
</tbody>
</table>
| Step 4 UCS-A /system/server-defaults/platform # scope platform platform-description | Enters server defaults mode for the server specified. For the platform-description argument, enter the server description displayed by the show platform command using the following format: "vendor" "model revision."

Tip You must enter the vendor exactly as shown in the show platform command, including all punctuation marks. |
| Step 5 UCS-A /system/server-defaults/platform # scope bios-settings | Enters server defaults BIOS settings mode for the server. |
| Step 6 Reconfigure the BIOS settings. | For the CLI commands, descriptions and information about the options for each BIOS setting, see the following topics: |

  • Main page: Main BIOS Settings, on page 348
  • Processor page: Processor BIOS Settings, on page 350
  • Intel Directed IO page: Intel Directed I/O BIOS Settings, on page 356
  • RAS Memory page: RAS Memory BIOS Settings, on page 358
  • Serial Port page: Serial Port BIOS Settings, on page 360
  • USB page: USB BIOS Settings, on page 360
### Configuring BIOS Settings

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PCI Configuration page: PCI Configuration BIOS Settings, on page 361</td>
<td></td>
</tr>
<tr>
<td>• Boot Options page: Boot Options BIOS Settings, on page 362</td>
<td></td>
</tr>
<tr>
<td>• Server Management page: Server Management BIOS Settings, on page 363</td>
<td></td>
</tr>
</tbody>
</table>

**Step 7**

UCS-A /system/server-defaults/platform/bios-settings 
# commit-buffer

Commits the transaction to the system configuration.

The following example shows how to change the NUMA default BIOS setting for a platform and commit the transaction:

UCS-A# scope system
UCS-A /system # scope server-defaults
UCS-A /system/server-defaults # show platform

Platform:  
Product Name Vendor Model Revision  
---------- ---------- ---------- --------  
Cisco B200-M1 Cisco Systems, Inc. N20-B6620-1 0

UCS-A /system/server-defaults # scope platform "Cisco Systems, Inc." N20-B6620-1 0
UCS-A /system/server-defaults/platform # scope bios-settings
UCS-A /system/server-defaults/platform/bios-settings # set numa-config numa-optimization disabled
UCS-A /system/server-defaults/platform/bios-settings* # commit-buffer
UCS-A /system/server-defaults/platform/bios-settings 

---

### Viewing the Actual BIOS Settings for a Server

Follow this procedure to see the actual BIOS settings on a server.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope server chassis-id / server-id</td>
</tr>
<tr>
<td></td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /chassis/server # scope bios</td>
</tr>
<tr>
<td></td>
<td>Enters BIOS mode for the specified server.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /chassis/server/bios # scope bios-settings</td>
</tr>
<tr>
<td></td>
<td>Enters BIOS settings mode for the specified server.</td>
</tr>
</tbody>
</table>
### Configuring IPMI Access Profiles

**IPMI Access Profile**

This policy allows you to determine whether IPMI commands can be sent directly to the server, using the IP address. For example, you can send commands to retrieve sensor data from the CIMC. This policy defines the IPMI access, including a username and password that can be authenticated locally on the server, and whether the access is read-only or read-write.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

**Configuring an IPMI Access Profile**

**Before You Begin**

Obtain the following:

- Username with appropriate permissions that can be authenticated by the operating system of the server
- Password for the username
- Permissions associated with the username

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>UCS-A# scope org org-name</strong></td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization.</td>
</tr>
<tr>
<td></td>
<td>To enter the root organization mode, type / as the <code>org-name</code>.</td>
</tr>
</tbody>
</table>
### Command or Action

**Step 2**  
UCS-A /org # create ipmi-access-profile profile-name  
**Purpose:** Creates the specified IPMI access profile and enters organization IPMI access profile mode.

**Step 3**  
UCS-A /org/ipmi-access-profile # create ipmi-user ipmi-user-name  
**Purpose:** Creates the specified endpoint user and enters organization IPMI access profile endpoint user mode.  
**Note:** More than one endpoint user can be created within an IPMI access profile, with each endpoint user having its own password and privileges.

**Step 4**  
UCS-A /org/ipmi-access-profile/ipmi-user # set password  
**Purpose:** Sets the password for the endpoint user.  
After entering the `set password` command, you are prompted to enter and confirm the password. For security purposes, the password that you type does not appear in the CLI.

**Step 5**  
UCS-A /org/ipmi-access-profile/ipmi-user # set privilege {admin | readonly}  
**Purpose:** Specifies whether the endpoint user has administrative or read-only privileges.

**Step 6**  
UCS-A /org/ipmi-access-profile/ipmi-user # commit-buffer  
**Purpose:** Commits the transaction to the system configuration.

---

The following example creates an IPMI access profile named ReadOnly, creates an endpoint user named bob, sets the password and the privileges for bob, and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # create ipmi-access-profile ReadOnly
UCS-A /org/ipmi-access-profile* # create ipmi-user bob
UCS-A /org/ipmi-access-profile/ipmi-user* # set password
Enter a password:
Confirm the password:
UCS-A /org/ipmi-access-profile/ipmi-user* # set privilege readonly
UCS-A /org/ipmi-access-profile/ipmi-user* # commit-buffer
UCS-A /org/ipmi-access-profile/ipmi-user #
```

**What to Do Next**

Include the IPMI profile in a service profile and/or template.
Deleting an IPMI Access Profile

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete ipmi-access-profile profile-name</td>
<td>Deletes the specified IPMI access profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the IPMI access profile named ReadOnly and commits the transaction:

```bash
UCS-A# scope org /
UCS-A /org # delete ipmi-access-profileReadOnly
UCS-A /org* # commit-buffer
UCS-A /org #
```

Adding an Endpoint User to an IPMI Access Profile

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope ipmi-access-profile profile-name</td>
<td>Enters organization IPMI access profile mode for the specified IPMI access profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/ipmi-access-profile # create ipmi-user ipmi-user-name</td>
<td>Creates the specified endpoint user and enters organization IPMI access profile endpoint user mode. <strong>Note</strong> More than one endpoint user can be created within an IPMI access profile, with each endpoint user having its own password and privileges.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/ipmi-access-profile/ipmi-user # set password</td>
<td>Sets the password for the endpoint user. After entering the <strong>set password</strong> command, you are prompted to enter and confirm the password. For security purposes, the password that you type does not appear in the CLI.</td>
</tr>
</tbody>
</table>
### Configuring IPMI Access Profiles

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong> UCS-A /org/ipmi-access-profile/ipmi-user # set privilege {admin</td>
<td>readonly}</td>
</tr>
<tr>
<td><strong>Step 6</strong> UCS-A /org/ipmi-access-profile/ipmi-user # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds an endpoint user named alice to the IPMI access profile named ReadOnly and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope ipmi-access-profile ReadOnly
UCS-A /org/ipmi-access-profile* # create ipmi-user alice
UCS-A /org/ipmi-access-profile/ipmi-user* # set password
Enter a password:
Confirm the password:
UCS-A /org/ipmi-access-profile/ipmi-user* # set privilege readonly
UCS-A /org/ipmi-access-profile/ipmi-user* # commit-buffer
```

### Deleting an Endpoint User from an IPMI Access Profile

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org# scope ipmi-access-profile profile-name</td>
<td>Enters organization IPMI access profile mode for the specified IPMI access profile.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/ipmi-access-profile # delete ipmi-user epuser-name</td>
<td>Deletes the specified endpoint user from the IPMI access profile.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/ipmi-access-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the endpoint user named alice from the IPMI access profile named ReadOnly and commits the transaction:

```
UCS-A# scope org /
UCS-A /org# scope ipmi-access-profile ReadOnly
UCS-A /org/ipmi-access-profile # delete ipmi-user alice
UCS-A /org/ipmi-access-profile* # commit-buffer
UCS-A /org/ipmi-access-profile #
```
Configuring Local Disk Configuration Policies

Local Disk Configuration Policy

This policy configures any optional SAS local drives that have been installed on a server through the onboard RAID controller of the local drive. This policy enables you to set a local disk mode for all servers that are associated with a service profile that includes the local disk configuration policy.

The local disk modes include the following:

- **No Local Storage**—For a diskless server or a SAN only configuration. If you select this option, you cannot associate any service profile which uses this policy with a server that has a local disk.
- **RAID 0 Striped**—Data is striped across all disks in the array, providing fast throughput. There is no data redundancy, and all data is lost if any disk fails.
- **RAID 1 Mirrored**—Data is written to two disks, providing complete data redundancy if one disk fails. The maximum array size is equal to the available space on the smaller of the two drives.
- **Any Configuration**—For a server configuration that carries forward the local disk configuration without any changes.
- **No RAID**—For a server configuration that removes the RAID and leaves the disk MBR and payload unaltered.
- **RAID 5 Striped Parity**—Data is striped across all disks in the array. Part of the capacity of each disk stores parity information that can be used to reconstruct data if a disk fails. RAID 5 provides good data throughput for applications with high read request rates.
- **RAID 6 Striped Dual Parity**—Data is striped across all disks in the array and two parity disks are used to provide protection against the failure of up to two physical disks. In each row of data blocks, two sets of parity data are stored.
- **RAID10 Mirrored and Striped**—RAID 10 uses mirrored pairs of disks to provide complete data redundancy and high throughput rates.

You must include this policy in a service profile, and that service profile must be associated with a server for the policy to take effect.

Guidelines for all Local Disk Configuration Policies

Before you create a local disk configuration policy, consider the following guidelines:

**No Mixed HDDs and SSDs**

Do not include HDDs and SSDs in a single server or RAID configuration.

**Do Not Assign a Service Profile with the Default Local Disk Configuration Policy from a B200 M1 or M2 to a B200 M3**

Due to the differences in the RAID/JBOD support provided by the storage controllers of B200 M1 and M2 servers and those of the B200 M3 server, you cannot assign or re-assign a service profile that includes the default local disk configuration policy from a B200M1 or M2 server to a B200 M3 server. The default local disk configuration policy includes those with Any Configuration or JBOD configuration.
Impact of Upgrade from a Release Prior to Release 1.3(1i)

An upgrade from an earlier Cisco UCS firmware release to release 1.3(1i) or higher has the following impact on the Protect Configuration property of the local disk configuration policy the first time servers are associated with service profiles after the upgrade:

Unassociated Servers

After you upgrade the Cisco UCS domain, the initial server association proceeds without configuration errors whether or not the local disk configuration policy matches the server hardware. Even if you enable the Protect Configuration property, Cisco UCS does not protect the user data on the server if there are configuration mismatches between the local disk configuration policy on the previous service profile and the policy in the new service profile.

Note

If you enable the Protect Configuration property and the local disk configuration policy encounters mismatches between the previous service profile and the new service profile, all subsequent service profile associations with the server are blocked.

Associated Servers

Any servers that are already associated with service profiles do not reboot after the upgrade. Cisco UCS Manager does not report any configuration errors if there is a mismatch between the local disk configuration policy and the server hardware.

When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.

Guidelines for Local Disk Configuration Policies Configured for RAID

No Mixed HDDs and SSDs

Do not include HDDs and SSDs in a single RAID configuration.

Do Not Use the Any Configuration Mode on Servers with MegaRAID Storage Controllers

If a blade server or rack-mount server in a Cisco UCS domain includes a MegaRAID storage controller, do not configure the local disk configuration policy in the service profile for that server with the Any Configuration mode. If you use this mode for servers with a MegaRAID storage controller, the installer for the operating system cannot detect any local storage on the server.

If you want to install an operating system on local storage on a server with a MegaRAID storage controller, you must configure the local disk configuration policy with a mode that creates a RAID LUN (RAID volume) on the server.

Server May Not Boot After RAID1 Cluster Migration if Any Configuration Mode Specified in Service Profile

After RAID1 clusters are migrated, you need to associate a service profile with the server. If the local disk configuration policy in the service profile is configured with Any Configuration mode rather than RAID1, the RAID LUN remains in "inactive" state during and after association. As a result, the server cannot boot.
To avoid this issue, ensure that the service profile you associate with the server contains the identical local disk configuration policy as the original service profile before the migration and does not include the Any Configuration mode.

**Configure RAID Settings in Local Disk Configuration Policy for Servers with MegaRAID Storage Controllers**

If a blade server or integrated rack-mount server has a MegaRAID controller, you must configure RAID settings for the drives in the Local Disk Configuration policy included in the service profile for that server. If you do not configure your RAID LUNs before installing the OS, disk discovery failures might occur during the installation and you might see error messages such as “No Device Found.”

**Do Not Use JBOD Mode on Servers with MegaRAID Storage Controllers**

Do not configure or use JBOD mode or JBOD operations on any blade server or integrated rack-mount server with a MegaRAID storage controllers. JBOD mode and operations are not intended for nor are they fully functional on these servers.

**Maximum of One RAID Volume and One RAID Controller in Integrated Rack-Mount Servers**

A rack-mount server that has been integrated with Cisco UCS Manager can have a maximum of one RAID volume irrespective of how many hard drives are present on the server. All the local hard drives in an integrated rack-mount server must be connected to only one RAID Controller. Integration with Cisco UCS Manager does not support the connection of local hard drives to multiple RAID Controllers in a single rack-mount server. We therefore recommend that you request a single RAID Controller configuration when you order rack-mount servers to be integrated with Cisco UCS Manager.

In addition, do not use third party tools to create multiple RAID LUNs on rack-mount servers. Cisco UCS Manager does not support that configuration.

**Maximum of One RAID Volume and One RAID Controller in Blade Servers**

A blade server can have a maximum of one RAID volume irrespective of how many drives are present in the server. All the local hard drives must be connected to only one RAID controller. For example, a B200 M3 server has an LSI controller and an Intel Patsburg controller, but only the LSI controller can be used as a RAID controller.

In addition, do not use third party tools to create multiple RAID LUNs on blade servers. Cisco UCS Manager does not support that configuration.

**Number of Disks Selected in Mirrored RAID Should Not Exceed Two**

If the number of disks selected in the Mirrored RAID exceed two, RAID 1 is created as a RAID 10 LUN. This issue can occur with the Cisco UCS B440 M1 and B440 M2 servers.

**B420 M3 Server Does Not Support All Configuration Modes**

The B420 M3 server does not support the following configuration modes in a local disk configuration policy:

- No RAID
- RAID 6 Striped Dual Parity

In addition, the B420 M3 does not support JBOD modes or operations.
## Creating a Local Disk Configuration Policy

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create local-disk-config-policy policy-name</td>
<td>Creates a local disk configuration policy and enters local disk configuration policy mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/local-disk-config-policy # set descr description</td>
<td>(Optional) Provides a description for the local disk configuration policy.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/local-disk-config-policy # set mode {any-configuration</td>
<td>Specifies the mode for the local disk configuration policy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no-local-storage</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/local-disk-config-policy # set protect {yes</td>
<td>no}</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Caution</strong> Protect Configuration becomes non-functional if one or more disks in the server are defective or faulty. When a service profile is disassociated from a server and a new service profile associated, the setting for the Protect Configuration property in the new service profile takes precedence and overwrites the setting in the previous service profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> If you disassociate the server from a service profile with this option enabled and then associate it with a new service profile that includes a local disk configuration policy with different properties, the server returns a configuration mismatch error and the association fails.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/local-disk-config-policy# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a local disk configuration policy and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create local-disk-config-policy DiskPolicy7
UCS-A /org/local-disk-config-policy* # set mode raid-1-mirrored
```
Configuring Local Disk Configuration Policies

UCS-A /org/local-disk-config-policy* # set protect yes
UCS-A /org/local-disk-config-policy* # commit-buffer

Viewing a Local Disk Configuration Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # show local-disk-config-policy policy-name</td>
<td>Displays the local disk policy. If you have not configured a local disk policy, the local disk configuration (created by the create local-disk-config command) displays. Displays the local disk definition (set by the create local-disk-config command). If the serial over LAN definition is not set, and if a policy is set (using the set local-disk-config-policy command), then the policy will be displayed.</td>
</tr>
</tbody>
</table>

The following example shows how to display local disk policy information for a local disk configuration policy called DiskPolicy7:

UCS-A# scope org /
UCS-A /org # show local-disk-config-policy DiskPolicy7

Local Disk Config Policy:
Name: DiskPolicy7
Mode: Raid 1 Mirrored
Description: 
Protect Configuration: Yes

Deleting a Local Disk Configuration Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # delete local-disk-config-policy policy-name</td>
<td>Deletes the specified local disk configuration policy.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example deletes the local disk configuration policy named DiskPolicy7 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete local-disk-config-policy DiskPolicy7
UCS-A /org* # commit-buffer
UCS-A /org #
```

### Configuring Scrub Policies

**Scrub Policy**

This policy determines what happens to local data and to the BIOS settings on a server during the discovery process and when the server is disassociated from a service profile. Depending upon how you configure a scrub policy, the following can occur at those times:

**Disk Scrub**

One of the following occurs to the data on any local drives on disassociation:

- If enabled, destroys all data on any local drives
- If disabled, preserves all data on any local drives, including local storage configuration

**BIOS Settings Scrub**

One of the following occurs to the BIOS settings when a service profile containing the scrub policy is disassociated from a server:

- If enabled, erases all BIOS settings for the server and resets them to the BIOS defaults for that server type and vendor
- If disabled, preserves the existing BIOS settings on the server

### Creating a Scrub Policy

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create scrub-policy policy-name</td>
<td>Creates a scrub policy with the specified policy name, and enters organization scrub policy mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/scrub-policy # set descr description</td>
<td>(Optional) Provides a description for the scrub policy.</td>
</tr>
</tbody>
</table>
### Configuring Scrub Policies

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Note</strong></td>
<td>If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
</tbody>
</table>

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| UCS-A /org/scrub-policy # set disk-scrub {no | yes} | Disables or enables disk scrubbing on servers using this scrub policy as follows:  
- If enabled, destroys all data on any local drives  
- If disabled, preserves all data on any local drives, including local storage configuration |

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| UCS-A /org/scrub-policy # set bios-settings-scrub {no | yes} | Disables or enables BIOS settings scrubbing on servers using this scrub policy as follows:  
- If enabled, erases all BIOS settings for the server and resets them to the BIOS defaults for that server type and vendor  
- If disabled, preserves the existing BIOS settings on the server |

**Step 6**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org/scrub-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a scrub policy named ScrubPolicy2, enables disk scrubbing on servers using the scrub policy, and commits the transaction:

UCS-A# scope org /  
UCS-A /org # create scrub-policy ScrubPolicy2  
UCS-A /org/scrub-policy* # set descr "Scrub disk but not BIOS."  
UCS-A /org/scrub-policy* # set disk-scrub yes  
UCS-A /org/scrub-policy* # set bios-settings-scrub no  
UCS-A /org/scrub-policy* # commit-buffer

### Deleting a Scrub Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>UCS-A# scope org org-name</td>
<td>Enter organization mode for the specified organization.</td>
</tr>
</tbody>
</table>

**Step 2**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /org # delete scrub-policy policy-name</td>
<td>Deletes the specified scrub policy.</td>
</tr>
</tbody>
</table>
### Configuring Serial over LAN Policies

#### Serial over LAN Policy

This policy sets the configuration for the serial over LAN connection for all servers associated with service profiles that use the policy. By default, the serial over LAN connection is disabled.

If you implement a serial over LAN policy, we recommend that you also create an IPMI profile.

You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

#### Configuring a Serial over LAN Policy

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code> .</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org# create sol-policy policy-name</td>
<td>Creates a serial over LAN policy and enters organization serial over LAN policy mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/sol-policy# set descr description</td>
<td>(Optional) Provides a description for the policy. <strong>Note</strong> If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/sol-policy# set speed {115200</td>
<td>19200</td>
</tr>
</tbody>
</table>

The following example deletes the scrub policy named ScrubPolicy2 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete scrub-policy ScrubPolicy2
UCS-A /org* # commit-buffer
UCS-A /org #
```

---

---
Disables or enables the serial over LAN policy. By default, the serial over LAN policy is disabled; you must enable it before it can be applied.

Commitsthetransactiontothesystemconfiguration.

The following example creates a serial over LAN policy named Sol9600, provides a description for the policy, sets the speed to 9,600 baud, enables the policy, and commits the transaction:

```plaintext
UCS-A# scope org/
UCS-A /org/* # create sol-policy Sol9600
UCS-A /org/sol-policy* # set descr "Sets serial over LAN policy to 9600 baud."
UCS-A /org/sol-policy* # set speed 9600
UCS-A /org/sol-policy* # enable
UCS-A /org/sol-policy* # commit-buffer
UCS-A /org/sol-policy
```

### Viewing a Serial over LAN Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # show sol-policy policy-name</td>
<td>Displays the serial over LAN definition (set by the create sol-config command). If the serial over LAN definition is not set, and if a policy is set (using the set sol-policy command), then the policy will be displayed.</td>
</tr>
</tbody>
</table>

The following example shows how to display serial over LAN information for a serial over LAN policy called Sol9600:

```plaintext
UCS-A# scope org /
UCS-A /org # show sol-policy Sol9600

SOL Policy:
Full Name: Sol9600
SOL State: Enable
Speed: 9600
Description:
```
Deleting a Serial over LAN Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /org # delete sol-policy policy-name</td>
</tr>
<tr>
<td></td>
<td>Deletes the specified serial over LAN policy.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /org # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the serial over LAN policy named Sol9600 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # delete sol-policy Sol9600
UCS-A /org* # commit-buffer
UCS-A /org #
```

Configuring Server Autoconfiguration Policies

**Server Autoconfiguration Policy**

Cisco UCS Manager uses this policy to determine how to configure a new server. If you create a server autoconfiguration policy, the following occurs when a new server starts:

1. The qualification in the server autoconfiguration policy is executed against the server.
2. If the server meets the required qualifications, the server is associated with a service profile created from the service profile template configured in the server autoconfiguration policy. The name of that service profile is based on the name given to the server by Cisco UCS Manager.
3. The service profile is assigned to the organization configured in the server autoconfiguration policy.

**Configuring a Server Autoconfiguration Policy**

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # create server-autoconfig-policy <em>policy-name</em></td>
<td>Creates a server autoconfiguration policy with the specified policy name, and enters organization server autoconfiguration policy mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/server-autoconfig-policy # set descr <em>description</em></td>
<td>(Optional) Provides a description for the policy.&lt;br&gt;Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <em>show</em> command output.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/server-autoconfig-policy # set destination org <em>org-name</em></td>
<td>(Optional) Specifies the organization for which the server is to be used.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /org/server-autoconfig-policy # set qualifier server-qual-name</td>
<td>(Optional) Specifies server pool policy qualification to use for qualifying the server.</td>
</tr>
<tr>
<td><strong>Step 6</strong> UCS-A /org/server-autoconfig-policy # set template <em>profile-name</em></td>
<td>(Optional) Specifies a service profile template to use for creating a service profile instance for the server.</td>
</tr>
<tr>
<td><strong>Step 7</strong> UCS-A /org/server-autoconfig-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a server autoconfiguration policy named AutoConfigFinance, provides a description for the policy, specifies finance as the destination organization, ServPoolQual22 as the server pool policy qualification, and ServTemp2 as the service profile template, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # create server-autoconfig-policy AutoConfigFinance
UCS-A /org/server-autoconfig-policy* # set descr "Server Autoconfiguration Policy for Finance"
UCS-A /org/server-autoconfig-policy* # set destination org finance
UCS-A /org/server-autoconfig-policy* # set qualifier ServPoolQual22
UCS-A /org/server-autoconfig-policy* # set template ServTemp2
UCS-A /org/server-autoconfig-policy* # commit-buffer
UCS-A /org/server-autoconfig-policy #
```
Deleting a Server Autoconfiguration Policy

**Procedure**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>UCS-A# scope org org-name</th>
<th>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete server-autoconfig-policy policy-name</td>
<td>Deletes the specified server autoconfiguration policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server autoconfiguration policy named AutoConfigFinance and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # delete server-autoconfig-policy AutoConfigFinance
UCS-A /org* # commit-buffer
UCS-A /org #
```

Configuring Server Discovery Policies

**Server Discovery Policy**

This discovery policy determines how the system reacts when you add a new server. If you create a server discovery policy, you can control whether the system conducts a deep discovery when a server is added to a chassis, or whether a user must first acknowledge the new server. By default, the system conducts a full discovery.

If you create a server discovery policy, the following occurs when a new server starts:

1. The qualification in the server discovery policy is executed against the server.
2. If the server meets the required qualifications, Cisco UCS Manager applies the following to the server:
   - Depending upon the option selected for the action, either discovers the new server immediately or waits for a user to acknowledge the new server
   - Applies the scrub policy to the server

**Configuring a Server Discovery Policy**

**Before You Begin**

If you plan to associate this policy with a server pool, create server pool policy qualifications.
## Configuring Server Discovery Policies

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# <code>scope org /</code></td>
<td>Enters the root organization mode. <strong>Note</strong>: Chassis discovery policies can only be accessed from the root organization.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /org # <code>create server-disc-policy policy-name</code></td>
<td>Creates a server discovery policy with the specified policy name, and enters org server discovery policy mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /org/server-disc-policy # `set action {diag</td>
<td>immediate</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /org/chassis-disc-policy # <code>set descr description</code></td>
<td>(Optional) Provides a description for the server discovery policy. <strong>Note</strong>: If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>UCS-A /org/server-disc-policy # <code>set qualifier qualifier</code></td>
<td>(Optional) Uses the specified server pool policy qualifications to associates this policy with a server pool.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>UCS-A /org/server-disc-policy # <code>set scrub-policy</code></td>
<td>Specifies the scrub policy to be used by this policy. The scrub policy defines whether the disk drive on a server should be scrubbed clean upon discovery.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>UCS-A /org/server-disc-policy # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a server discovery policy named ServDiscPolExample, sets it to immediately discover new servers, provides a description for the policy, specifies the server pool policy qualifications and scrub policy, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create server-disc-policy ServDiscPolExample
UCS-A /org/server-disc-policy* # set action immediate
UCS-A /org/server-disc-policy* # set descr "This is an example server discovery policy."
UCS-A /org/server-disc-policy* # set qualifier ExampleQual
UCS-A /org/server-disc-policy* # set scrub-policy NoScrub
UCS-A /org/server-disc-policy # commit-buffer
```

### What to Do Next

Include the server discovery policy in a service profile and/or template.
Deleting a Server Discovery Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A/org # Delete server-disc-policy policy-name</td>
<td>Deletes the specified server discovery policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A/org/server-disc-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server discovery policy named ServDiscPolExample and commits the transaction:

```
UCS-A# scope org /
UCS-A/org # delete server-disc-policy ServDiscPolExample
UCS-A/org # commit-buffer
```

Configuring Server Inheritance Policies

Server Inheritance Policy

This policy is invoked during the server discovery process to create a service profile for the server. All service profiles created from this policy use the values burned into the blade at manufacture. The policy performs the following:

- Analyzes the inventory of the server
- If configured, assigns the server to the selected organization
- Creates a service profile for the server with the identity burned into the server at manufacture

You cannot migrate a service profile created with this policy to another server.

Configuring a Server Inheritance Policy

A blade server or rack-mount server with a VIC adapter, such as the Cisco UCS M81KR Virtual Interface Card, does not have server identity values burned into the server hardware at manufacture. As a result, the identity of the adapter must be derived from default pools. If the default pools do not include sufficient entries for one to be assigned to the server, service profile association fails with a configuration error.
### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A <code>/org # create server-inherit-policy policy-name</code></td>
<td>Creates a server inheritance policy with the specified policy name, and enters organization server inheritance policy mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A <code>/org/server-inherit-policy # set descr description</code></td>
<td>(Optional) Provides a description for the policy. <strong>Note</strong> If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A <code>/org/server-inherit-policy # set destination org org-name</code></td>
<td>(Optional) Specifies the organization for which the server is to be used.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A <code>/org/server-inherit-policy # set qualifier server-qual-name</code></td>
<td>(Optional) Specifies server pool policy qualification to use for qualifying the server.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A <code>/org/server-inherit-policy # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a server inheritance policy named InheritEngineering, provides a description for the policy, specifies engineering as the destination organization and ServPoolQual22 as the server pool policy qualification, and commits the transaction:

```cisco
UCS-A# scope org /
UCS-A /org* # create server-inherit-policy InheritEngineering
UCS-A /org/server-inherit-policy* # set descr "Server Inheritance Policy for Engineering"
UCS-A /org/server-inherit-policy* # set destination org engineering
UCS-A /org/server-inherit-policy* # set qualifier ServPoolQual22
UCS-A /org/server-inherit-policy* # commit-buffer
```
Deleting a Server Inheritance Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>UCS-A /org # delete server-inherit-policy policy-name</td>
<td>Deletes the specified server inheritance policy.</td>
</tr>
<tr>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server inheritance policy named InheritEngineering and commits the transaction:

UCS-A# scope org /
UCS-A /org* # delete server-inherit-policy InheritEngineering
UCS-A /org* # commit-buffer

Configuring Server Pool Policies

**Server Pool Policy**

This policy is invoked during the server discovery process. It determines what happens if server pool policy qualifications match a server to the target pool specified in the policy.

If a server qualifies for more than one pool and those pools have server pool policies, the server is added to all those pools.

**Configuring a Server Pool Policy**

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>UCS-A /org # create pooling-policy policy-name</td>
<td>Creates a server pool policy with the specified name, and enters organization pooling policy mode.</td>
</tr>
<tr>
<td>UCS-A /org/pooling-policy # set descr description</td>
<td>(Optional) Provides a description for the server pool policy.</td>
</tr>
</tbody>
</table>
### Configuring Server Pool Policies

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Note</strong> If your description includes spaces, special</td>
<td></td>
</tr>
<tr>
<td>characters, or punctuation, you must begin and</td>
<td></td>
</tr>
<tr>
<td>end your description with quotation marks. The</td>
<td></td>
</tr>
<tr>
<td>quotation marks will not appear in the description</td>
<td></td>
</tr>
<tr>
<td>field of any show command output.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 4** UCS-A /org/pooling-policy # set pool pool-distinguished-name  
Specifies the server pool to use with the server pool policy.  
You must specify the full distinguished name for the pool.

**Step 5** UCS-A /org/pooling-policy # set qualifier qualifier-name  
Specifies the server pool qualifier to use with the server pool policy.

**Step 6** UCS-A /org/pooling-policy # commit-buffer  
Commits the transaction to the system configuration.

The following example creates a server pool policy named ServerPoolPolicy4 and commits the transaction:

UCS-A# scope org /
UCS-A /org # create pooling-policy ServerPoolPolicy4
UCS-A /org/pooling-policy* # set pool org-root/compute-pool-pool3
UCS-A /org/pooling-policy* # set qualifier ServPoolQual8
UCS-A /org/pooling-policy* # commit-buffer
UCS-A /org/pooling-policy #

### Deleting a Server Pool Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # delete pooling-policy</td>
<td>Deletes the specified server pool policy.</td>
</tr>
<tr>
<td>policy-name</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server pool policy named ServerPoolPolicy4 and commits the transaction:

UCS-A# scope org /
UCS-A /org # delete pooling-policy ServerPoolPolicy4
UCS-A /org/pooling-policy* # commit-buffer
UCS-A /org/pooling-policy #
Configuring Server Pool Policy Qualifications

Server Pool Policy Qualifications

This policy qualifies servers based on the inventory of a server conducted during the discovery process. The qualifications are individual rules that you configure in the policy to determine whether a server meets the selection criteria. For example, you can create a rule that specifies the minimum memory capacity for servers in a data center pool.

Qualifications are used in other policies to place servers, not just by the server pool policies. For example, if a server meets the criteria in a qualification policy, it can be added to one or more server pools or have a service profile automatically associated with it.

You can use the server pool policy qualifications to qualify servers according to the following criteria:

- Adapter type
- Chassis location
- Memory type and configuration
- Power group
- CPU cores, type, and configuration
- Storage configuration and capacity
- Server model

Depending upon the implementation, you may configure several policies with server pool policy qualifications including the following:

- Autoconfiguration policy
- Chassis discovery policy
- Server discovery policy
- Server inheritance policy
- Server pool policy

Creating a Server Pool Policy Qualification

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
</tbody>
</table>
### Creating a Server Pool Qualification

**Purpose**

Creates a server pool qualification with the specified name, and enters organization server qualification mode.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A /org # <code>create server-qual server-qual-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/server-qual # <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example creates a server pool qualification named ServPoolQual22 and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org* # create server-qual ServPoolQual22
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #
```

### What to Do Next

Configure one or more of the following server component qualifications:

- Adapter qualification
- Chassis qualification
- Memory qualification
- Power group qualification
- Processor qualification
- Storage qualification

### Deleting a Server Pool Policy Qualification

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code> Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code> .</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # <code>delete server-qual server-qual-name</code> Deletes the specified server pool qualification.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/server-qual # <code>commit-buffer</code> Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server pool qualification named ServPoolQual22 and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org* # delete server-qual ServPoolQual22
UCS-A /org* # commit-buffer
UCS-A /org #
```
# Creating an Adapter Qualification

## Before You Begin
Create a server pool policy qualification.

## Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **UCS-A# scope org org-name** | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| Step 2 | **UCS-A /org # scope server-qual server-qual-name** | Enters organization server qualification mode for the specified server pool policy qualification. |
| Step 3 | **UCS-A /org/server-qual # create adapter** | Creates an adapter qualification and enters organization server qualification adapter mode. |
| Step 4 | **UCS-A /org/server-qual/adapter # create cap-qual adapter-type** | Creates an adapter capacity qualification for the specified adapter type and enters organization server qualification adapter capacity qualification mode. The `adapter-type` argument can be any of the following values:  
  - `fcoe` — Fibre Channel over Ethernet  
  - `non-virtualized-eth-if` — Non-virtualized Ethernet interface  
  - `non-virtualized-fc-if` — Non-virtualized Fibre Channel interface  
  - `path-encap-consolidated` — Path encapsulation consolidated  
  - `path-encap-virtual` — Path encapsulation virtual  
  - `protected-eth-if` — Protected Ethernet interface  
  - `protected-fc-if` — Protected Fibre Channel interface  
  - `protected-fcoe` — Protected Fibre Channel over Ethernet  
  - `virtualized-eth-if` — Virtualized Ethernet interface  
  - `virtualized-fc-if` — Virtualized Fibre Channel interface  
  - `virtualized-scsi-if` — Virtualized SCSI interface |
| Step 5 | **UCS-A /org/server-qual/adapter/cap-qual # set maximum {max-cap | unspecified]** | Specifies the maximum capacity for the selected adapter type. |
| Step 6 | **UCS-A /org/server-qual/adapter/cap-qual # commit-buffer** | Commits the transaction to the system configuration. |
The following example creates and configures an adapter qualification for a non-virtualized Ethernet interface and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # create adapter
UCS-A /org/server-qual/adapter* # create cap-qual non-virtualized-eth-if
UCS-A /org/server-qual/adapter/cap-qual* # set maximum 2500000000
UCS-A /org/server-qual/adapter/cap-qual* # commit-buffer
UCS-A /org/server-qual/adapter/cap-qual #
```

### Deleting an Adapter Qualification

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>UCS-A /org # scope server-qual server-qual-name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>UCS-A /org/server-qual # delete adapter</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>UCS-A /org/server-qual # commit-buffer</td>
</tr>
</tbody>
</table>

Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.

Enters organization server qualification mode for the specified server pool policy qualification.

Deletes the adapter qualification from the server pool policy qualification.

Commits the transaction to the system configuration.

The following example deletes the adapter qualification from the server pool policy qualification named ServPoolQual22 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete adapter
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #
```

### Configuring a Chassis Qualification

#### Before You Begin

Create a server pool policy qualification.
### Configuring Server Pool Policy Qualifications

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A/org# scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A/org/server-qual# create chassis min-chassis-num max-chassis-num</td>
<td>Creates a chassis qualification for the specified chassis range and enters organization server qualification chassis mode.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A/org/server-qual/chassis# create slot min-slot-num max-slot-num</td>
<td>Creates a chassis slot qualification for the specified slot range and enters organization server qualification chassis slot mode.</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A/org/server-qual/chassis/slot# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a chassis qualification for slots 1 to 4 on chassis 1 and 2 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope server-qual ServPoolQual22
UCS-A /org/server-qual* # create chassis 1 2
UCS-A /org/server-qual/chassis* # create slot 1 4
UCS-A /org/server-qual/chassis/slot* # commit-buffer
```

### Deleting a Chassis Qualification

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A/org# scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A/org/server-qual# delete chassis min-chassis-num max-chassis-num</td>
<td>Deletes the chassis qualification for the specified chassis range.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A/org/server-qual# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example deletes the chassis qualification for chassis 1 and 2 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete chassis 1 2
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #
```

Creating a CPU Qualification

**Before You Begin**

Create a server pool policy qualification.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/server-qual # create cpu</td>
<td>Creates a CPU qualification and enters organization server qualification processor mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/server-qual/cpu # set arch {any</td>
<td>dual-core-opteron</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/server-qual/cpu # set maxcores {max-core-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/server-qual/cpu # set mincores {min-core-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/server-qual/cpu # set maxprocs {max-proc-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /org/server-qual/cpu # set minprocs {min-proc-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /org/server-qual/cpu # set maxthreads {max-thread-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /org/server-qual/cpu # set minthreads {min-thread-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 11</td>
<td>UCS-A /org/server-qual/cpu # set stepping {step-num</td>
<td>unspecified}</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 12</strong> UCS-A /org/server-qual/cpu # set model-regex regex</td>
<td>Specifies a regular expression that the processor name must match.</td>
</tr>
<tr>
<td><strong>Step 13</strong> UCS-A /org/server-qual/cpu # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates and configures a CPU qualification and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # create processor
UCS-A /org/server-qual/cpu* # set arch xeon
UCS-A /org/server-qual/cpu* # set maxcores 8
UCS-A /org/server-qual/cpu* # set mincores 4
UCS-A /org/server-qual/cpu* # set maxprocs 2
UCS-A /org/server-qual/cpu* # set minprocs 1
UCS-A /org/server-qual/cpu* # set maxthreads 16
UCS-A /org/server-qual/cpu* # set minthreads 8
UCS-A /org/server-qual/cpu* # set stepping 5
UCS-A /org/server-qual/cpu* # commit-buffer
UCS-A /org/server-qual/cpu #
```

### Deleting a CPU Qualification

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the org-name .</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/server-qual # delete cpu</td>
<td>Deletes the processor qualification.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/server-qual # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the processor qualification and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete cpu
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #
```
Creating a Power Group Qualification

Before You Begin
Create a server pool policy qualification.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/server-qual # create power-group power-group-name</td>
<td>Creates a power group qualification for the specified power group name.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/server-qual # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a power group qualification for a power group called powergroup1 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # create power-group powergroup1
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #

Deleting a Power Group Qualification

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/server-qual # delete power-group power-group-name</td>
<td>Deletes the specified power group qualification.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/server-qual # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example deletes a power group qualification for a power group called powergroup1 and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete power-group powergroup1
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #
```

### Creating a Memory Qualification

#### Before You Begin
Create a server pool policy qualification.

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | UCS-A# `scope org org-name` | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| Step 2 | UCS-A /org # `scope server-qual server-qual-name` | Enters organization server qualification mode for the specified server pool policy qualification.
| Step 3 | UCS-A /org/server-qual # `create memory` | Creates a memory qualification and enters organization server qualification memory mode.
| Step 4 | UCS-A /org/server-qual/memory # `set clock {clock-num | unspec}` | Specifies the memory clock speed.
| Step 5 | UCS-A /org/server-qual/memory # `set maxcap {max-cap-num | unspec}` | Specifies the maximum capacity of the memory array.
| Step 6 | UCS-A /org/server-qual/memory # `set mincap {min-cap-num | unspec}` | Specifies the minimum capacity of the memory array.
| Step 7 | UCS-A /org/server-qual/memory # `set speed {speed-num | unspec}` | Specifies the memory data rate.
| Step 8 | UCS-A /org/server-qual/memory # `set units {unit-num | unspec}` | Specifies the number of memory units (DRAM chips mounted to the memory board).
| Step 9 | UCS-A /org/server-qual/memory # `set width {width-num | unspec}` | Specifies the bit width of the data bus.
| Step 10 | UCS-A /org/server-qual/memory # `commit-buffer` | Commits the transaction to the system configuration.

The following example creates and configures a memory qualification and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # create memory
UCS-A /org/server-qual/memory* # set clock 1067
```
Deleting a Memory Qualification

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>scope server-qual server-qual-name</code></td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A <code>delete memory</code></td>
<td>Deletes the memory qualification.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the memory qualification and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete memory
UCS-A /org/server-qual # commit-buffer
```

Creating a Physical Qualification

**Before You Begin**

Create a server pool policy qualification.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A <code>scope server-qual server-qual-name</code></td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
</tbody>
</table>
Configuring Server Pool Policy Qualifications

### Creating a Physical Qualification

#### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> UCS-A /org/server-qual # create physical-qual</td>
<td>Creates a physical qualification and enters organization server qualification physical mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/server-qual/physical-qual # set model-regex regex</td>
<td>Specifies a regular expression that the model name must match.</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /org/server-qual/physical-qual # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates and configures a physical qualification and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # create physical-qual
UCS-A /org/server-qual/physical-qual* # set model-regex
UCS-A /org/server-qual/physical-qual* # commit-buffer
UCS-A /org/server-qual/physical-qual #

### Deleting a Physical Qualification

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name .</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # scope server-qual server-qual-name</td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/server-qual # delete physical-qual</td>
<td>Deletes the physical qualification.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/server-qual # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a physical qualification and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope server-qual ServPoolQual22
UCS-A /org/server-qual # delete physical-qual
UCS-A /org/server-qual* # commit-buffer
UCS-A /org/server-qual #

### Creating a Storage Qualification

#### Before You Begin

Create a server pool policy qualification.
## Configuring Server Pool Policy Qualifications

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | UCS-A# `scope org org-name` | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| 2    | UCS-A /org # `scope server-qual server-qual-name` | Enters organization server qualification mode for the specified server pool policy qualification. | |
| 3    | UCS-A /org/server-qual # `create storage` | Creates a storage qualification and enters organization server qualification storage mode. |
| 4    | UCS-A /org/server-qual/storage # `set blocksize` `{block-size-num | unspecified}` | Specifies the storage block size. |
| 5    | UCS-A /org/server-qual/storage # `set maxcap` `{max-cap-num | unspecified}` | Specifies the maximum capacity of the storage array. |
| 6    | UCS-A /org/server-qual/storage # `set mincap` `{min-cap-num | unspecified}` | Specifies the minimum capacity of the storage array. |
| 7    | UCS-A /org/server-qual/storage # `set numberofblocks` `{block-num | unspecified}` | Specifies the number of blocks. |
| 8    | UCS-A /org/server-qual/storage # `set perdiskcap` `{disk-cap-num | unspecified}` | Specifies the per-disk capacity. |
| 9    | UCS-A /org/server-qual/storage # `set units` `{unit-num | unspecified}` | Specifies the number of storage units. |
| 10   | UCS-A /org/server-qual/storage # `commit-buffer` | Commits the transaction to the system configuration. |

The following example creates and configures a storage qualification and commits the transaction:

```
UCS-A# `scope org /
UCS-A /org # `scope server-qual ServPoolQual22
UCS-A /org/server-qual # `create storage
UCS-A /org/server-qual/storage* # `set blocksize 512
UCS-A /org/server-qual/storage* # `set maxcap 420000
UCS-A /org/server-qual/storage* # `set mincap 140000
UCS-A /org/server-qual/storage* # `set numberofblocks 287277984
UCS-A /org/server-qual/storage* # `set perdiskcap 140000
UCS-A /org/server-qual/storage* # `set units 1
UCS-A /org/server-qual/storage* # `commit-buffer
UCS-A /org/server-qual/storage#
```
Deleting a Storage Qualification

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # <code>scope server-qual server-qual-name</code></td>
<td>Enters organization server qualification mode for the specified server pool policy qualification.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/server-qual # <code>delete storage</code></td>
<td>Deletes the storage qualification.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/server-qual/ # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the storage qualification and commits the transaction:

```
UCS-A# `scope org /
UCS-A /org # `scope server-qual ServPoolQual22
UCS-A /org/server-qual # `delete storage
UCS-A /org/server-qual* # `commit-buffer
UCS-A /org/server-qual #
```

Configuring vNIC/vHBA Placement Policies

vNIC/vHBA Placement Policies

vNIC/vHBA placement policies are used to determine what types of vNICs or vHBAs can be assigned to the physical adapters on a server. Each vNIC/vHBA placement policy contains four virtual network interface connections (vCons) that are virtual representations of the physical adapters. When a vNIC/vHBA placement policy is assigned to a service profile, and the service profile is associated with a server, the vCons in the vNIC/vHBA placement policy are assigned to the physical adapters.

If you do not include a vNIC/vHBA placement policy in the service profile or you use the default configuration for a server with two adapters, Cisco UCS Manager defaults to the All configuration and equally distributes the vNICs and vHBAs between the adapters.

You can use this policy to assign vNICs or vHBAs to either of the two vCons. Cisco UCS Manager uses the vCon assignment to determine how to assign the vNICs and vHBAs to the physical adapter during service profile association.

- **All**—All configured vNICs and vHBAs can be assigned to the vCon, whether they are explicitly assigned to it, unassigned, or dynamic.
- **Assigned Only**—vNICs and vHBAs must be explicitly assigned to the vCon. You can assign them explicitly through the service profile or the properties of the vNIC or vHBA.
• **Exclude Dynamic**—Dynamic vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for all static vNICs and vHBAs, whether they are unassigned or explicitly assigned to it.

• **Exclude Unassigned**—Unassigned vNICs and vHBAs cannot be assigned to the vCon. The vCon can be used for dynamic vNICs and vHBAs and for static vNICs and vHBAs that are explicitly assigned to it.

### vCon to Adapter Placement

Cisco UCS Manager maps every vCon in a service profile to a physical adapter on the server. How that mapping occurs and how the vCons are assigned to a specific adapter in a server with two adapters depends upon the type of server. You must consider this placement when you configure the vNIC/vHBA placement policy to assign vNICs and vHBAs to vCons.

---

**Note**

vCon to adapter placement is not dependent upon the PCIE slot number of the adapter. The adapter numbers used for the purpose of vCon placement are not the PCIE slot numbers of the adapters, but the ID assigned to them during server discovery.

---

### vCon to Adapter Placement for N20-B6620-2 and N20-B6625-2 Blade Servers

In these blade servers, the adapters are numbered left to right, but vCons are numbered right to left. If the server has a single adapter, all vCons are assigned to that adapter. However, if the server has two adapters, the vCons are assigned to the adapters in reverse order, as follows:

- Adapter1 is assigned vCon2 and vCon4
- Adapter2 is assigned vCon1 and vCon3

### vCon to Adapter Placement for All Other Supported Servers

For all other servers supported by Cisco UCS, the vCon assignment depends upon the number of adapters in the server, as follows:

**Table 14: vCon to Adapter Placement by Number of Adapters in Server**

<table>
<thead>
<tr>
<th>Number of Adapters</th>
<th>vCon1 Assignment</th>
<th>vCon2 Assignment</th>
<th>vCon3 Assignment</th>
<th>vCon4 Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adapter1</td>
<td>Adapter1</td>
<td>Adapter1</td>
<td>Adapter1</td>
</tr>
<tr>
<td>2</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter1</td>
<td>Adapter2</td>
</tr>
<tr>
<td>3</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter3</td>
<td>Adapter2</td>
</tr>
<tr>
<td>4</td>
<td>Adapter1</td>
<td>Adapter2</td>
<td>Adapter3</td>
<td>Adapter4</td>
</tr>
</tbody>
</table>
vNIC/vHBA to vCon Assignment

Cisco UCS Manager provides two options for assigning vNICs and vHBAs to vCons through the vNIC/vHBA placement policy: explicit assignment and implicit assignment.

Explicit Assignment of vNICs and vHBAs

With explicit assignment, you specify the vCon and, therefore, the adapter to which a vNIC or vHBA is assigned. Use this assignment option when you need to determine how the vNICs and vHBAs are distributed between the adapters on a server.

To configure a vCon and the associated vNICs and vHBAs for explicit assignment, do the following:

• Set the vCon configuration to any of the available options. You can configure the vCons through a vNIC/vHBA placement policy or in the service profile associated with the server. If a vCon is configured for All, you can still explicitly assign a vNIC or vHBA to that vCon.

• Assign the vNICs and vHBAs to a vCon. You can make this assignment through the Virtual Host Interface Placement properties of the vNIC or vHBA or in the service profile associated with the server.

If you attempt to assign a vNIC or vHBA to a vCon that is not configured for that type of vNIC or vHBA, Cisco UCS Manager displays a message box to advise you of the configuration error.

During service profile association, Cisco UCS Manager validates the configured placement of the vNICs and vHBAs against the number and capabilities of the physical adapters in the server before assigning the vNICs and vHBAs according to the configuration in the policy. Load distribution is based upon the explicit assignments to the vCons and adapters configured in this policy.

If the adapters do not support the assignment of one or more vNICs or vHBAs, Cisco UCS Manager raises a fault against the service profile.

Note

vCon to adapter assignment occurs in a round-robin order. This order means that vNICs are placed on the adapters in the following order: vcon-1, vcon-3, vcon-2, vcon-4. As a result, under the following circumstances, the PCIE order of vNICs can be different than the explicit assignment configured in Cisco UCS Manager:

• In a server with two adapters when vNICs are explicitly assigned to all four vCons.

• When a service profile that includes explicit assignment is migrated from a server with a higher number of adapters to one with a lower number of adapters.

Implicit Assignment of vNICs and vHBAs

With implicit assignment, Cisco UCS Manager determines the vCon and, therefore, the adapter to which a vNIC or vHBA is assigned according to the capability of the adapter. Use this assignment option if the adaptor to which a vNIC or vHBA is assigned is not important to your system configuration.

To configure a vCon for implicit assignment, do the following:

• Set the vCon configuration to All, Exclude Dynamic, or Exclude Unassigned. You can configure the vCons through a vNIC/vHBA placement policy or in the service profile associated with the server.
• Do not set the vCon configuration to **Exclude Assigned**. Implicit assignment cannot be performed with this setting.

• Do not assign any vNICs or vHBAs to a vCon.

During service profile association, Cisco UCS Manager verifies the number and capabilities of the physical adapters in the server and assigns the vNICs and vHBAs accordingly. Load distribution is based upon the capabilities of the adapters, and placement of the vNICs and vHBAs is performed according to the actual order determined by the system. For example, if one adapter can accommodate more vNICs than another, that adapter is assigned more vNICs.

If the adapters cannot support the number of vNICs and vHBAs configured for that server, Cisco UCS Manager raises a fault against the service profile.

**Implicit Assignment of vNICs in a Mixed Adapter Environment**

The implicit assignment of vNICs functions differently for a server that has mixed adapters, as follows:

• A dual slot server that has one VIC adapter and one non-VIC adapter, which have different capabilities. For example, a server that contains a Cisco UCS M81KR Virtual Interface Card and a Cisco UCS CNA M71KR-E adapter.

• A configuration that includes both dynamic vNICs and static vNICs.

When you assign vNICs implicitly for a dual slot server that has one VIC adapter and non-VIC adapter, Cisco UCS Manager typically assigns one vNIC to each adapter. The remaining vNICs are assigned according to the relative capabilities of the adapters. The following are examples of the relative capabilities of some of the supported adapters:

• Cisco UCS M81KR Virtual Interface Card (128 vNICs) and Cisco UCS CNA M71KR-E Adapter (2 vNICs) have a 64:1 capability ratio

• Cisco UCS M81KR Virtual Interface Card and Cisco UCS CNA M72KR-E have a 64:1 capability ratio

• Cisco UCS CNA M72KR-E and Cisco UCS CNA M72KR-E have a 1:1 capability ratio

• Cisco UCS M82-8P Virtual Interface Card and Cisco UCS CNA M71KR-E adapter have a 128:1 capability ratio

• Cisco UCS M82-8P Virtual Interface Card and Cisco UCS M81KR Virtual Interface Card have a 2:1 capability ratio.

For example, a Cisco UCS M81KR Virtual Interface Card can handle up to 128 vNICs, while a Cisco UCS CNA M71KR-E can only handle 2 vNICs. This difference gives those adapters a 64:1 ratio. If a dual slot blade server has one of each and you choose to allow implicit assignment of vNICs by Cisco UCS Manager, the load balancing ratio assigns the majority of the vNICs to the Cisco UCS M81KR Virtual Interface Card, as follows:

<table>
<thead>
<tr>
<th>Total Number of vNICs</th>
<th>vNICs Assigned to Cisco UCS M81KR Virtual Interface Card</th>
<th>vNICs Assigned to Cisco UCS CNA M71KR-E Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>128</td>
<td>2</td>
</tr>
</tbody>
</table>
Exceptions to this implicit assignment occur if you configure the vNICs for fabric failover and if you configure dynamic vNICs for the server.

For a configuration that includes vNIC fabric failover where one adapter does not support vNIC failover, Cisco UCS Manager implicitly assigns all vNICs which have fabric failover enabled to the adapter that supports them. If the configuration only includes vNICs that are configured for fabric failover, no vNICs are implicitly assigned to the adapter which does not support them. If some vNICs are configured for fabric failover and some are not, Cisco UCS Manager assigns all failover vNICs to the adapter which supports them and a minimum of one non-failover vNIC to the adapter which does not support them, according to the ratio above.

For a configuration that includes dynamic vNICs, the same implicit assignment would occur. Cisco UCS Manager assigns all dynamic vNICs to the adapter that supports them. However, with a combination of dynamic vNICs and static vNICs, at least one static vNIC is assigned to the adapter that does not support dynamic vNICs.

### Configuring a vNIC/vHBA Placement Policy

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | UCS-A# `scope org org-name` | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| Step 2 | UCS-A `/org` # `create vcon-policy policy-name` | Creates the specified vNIC/vHBA placement profile and enters organization vcon policy mode. |
| Step 3 | UCS-A `/org/vcon-policy` # `set descr description` | (Optional) Provides a description for the vNIC/vHBA Placement Profile.  
**Note** If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any `show` command output. |
| Step 4 | UCS-A `/org/vcon-policy` # `set vcon {1 2} selection {all | assigned-only | exclude-dynamic | exclude-unassigned}` | Specifies the selection preference for the specified vCon. |
| Step 5 | UCS-A `/org/vcon-policy` # `commit-buffer` | Commits the transaction. |
The following example creates a vNIC/vHBA placement policy named Adapter1All, places all vNICs and vHBAs on adapter 1, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create vcon-policy Adapter1
UCS-A /org/vcon-policy* # set descr "This profile places all vNICs and vHBAs on adapter 1."
UCS-A /org/vcon-policy* # set vcon 1 selection all
UCS-A /org/vcon-policy* # commit-buffer
UCS-A /org #
```

**Deleting a vNIC/vHBA Placement Policy**

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified</td>
</tr>
<tr>
<td></td>
<td>organization. To enter the root organization</td>
</tr>
<tr>
<td></td>
<td>mode, type / as the org-name.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>UCS-A/org # delete vcon-policy policy-name</td>
<td>Deletes the specified vNIC/vHBA placement profile.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>UCS-A/org # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example deletes the vNIC/vHBA placement profile named Adapter1All and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete vcon-policy Adapter1All
UCS-A /org* # commit-buffer
UCS-A /org #
```

**Explicitly Assigning a vNIC to a vCon**

**Before You Begin**

Configure the vCons through a vNIC/vHBA placement policy or in the service profile with one of the following values:

- Assigned Only
- Exclude Dynamic
- Exclude Unassigned

If a vCon is configured for All, you can still explicitly assign a vNIC or vHBA to that vCon. However, you have less control with this configuration.
### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** UCS-A# scope org org-name | Enters organization mode for the organization which contains the service profile whose vNICs you want to explicitly assign to a vCon. To enter the root organization mode, type `/` as the `org-name`.
| **Step 2** UCS-A /org # scope service-profile profile-name | Enters organization service profile mode for the specified service. | | | | |
| **Step 3** UCS-A /org/service-profile # scope vnic vnic-name | Enters organization service profile mode for the specified vnic. |
| **Step 4** UCS-A /org/service-profile/vnic # set vcon {1 | 2 | 3 | 4 | any} | Sets the virtual network interface connection (vCon) placement for the specified vNIC. Entering a value of any allows Cisco UCS Manager to determine the vCon to which the vNIC is assigned. |
| **Step 5** UCS-A /org/service-profile/vnic # set order {order-num | unspecified} | Specifies the desired PCI order for the vNIC. Valid values include 0-128 and unspecified. |
| **Step 6** UCS-A /org/service-profile/vnic # commit-buffer | Commits the transaction to the system configuration. |

The following example sets the vCon placement for a vNIC called vnic3 to 2, sets the desired order to 10, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic vnic3
UCS-A /org/service-profile/vnic # set vcon 2
UCS-A /org/service-profile/vnic#* # set order 10
UCS-A /org/service-profile/vnic#* # commit-buffer
UCS-A /org/service-profile/vnic#
```

### Explicitly Assigning a vHBA to a vCon

#### Before You Begin

Configure the vCons through a vNIC/vHBA placement policy or in the service profile with one of the following values:

- Assigned Only
- Exclude Dynamic
- Exclude Unassigned

If a vCon is configured for All, you can still explicitly assign a vNIC or vHBA to that vCon. However, you have less control with this configuration.
### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> UCS-A# scope org org-name</td>
<td>Enters organization mode for the organization which contains the service profile whose vHBAs you want to explicitly assign to a vCon. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td><strong>Step 3</strong> UCS-A /org/service-profile # scope vhba vhba-name</td>
<td>Enters organization service profile mode for the specified vHBA.</td>
</tr>
<tr>
<td><strong>Step 4</strong> UCS-A /org/service-profile/vhba # set vcon {1</td>
<td>2</td>
</tr>
<tr>
<td><strong>Step 5</strong> UCS-A /org/service-profile/vhba # set order {order-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td><strong>Step 6</strong> UCS-A /org/service-profile/vhba # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the vCon placement for a vHBA called vhba3 to 2, sets the desired order to 10, and commits the transaction:

```bash
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vhba vhba3
UCS-A /org/service-profile/vhba # set vcon 2
UCS-A /org/service-profile/vhba* # set order 10
UCS-A /org/service-profile/vhba* # commit-buffer
UCS-A /org/service-profile/vhba #
```
Configuring Server Boot

This chapter includes the following sections:

- Boot Policy, page 413
- Creating a Boot Policy, page 414
- SAN Boot, page 415
- iSCSI Boot, page 418
- LAN Boot, page 448
- Local Disk Boot, page 449
- Virtual Media Boot, page 450
- Deleting a Boot Policy, page 451

Boot Policy

The boot policy determines the following:

- Configuration of the boot device
- Location from which the server boots
- Order in which boot devices are invoked

For example, you can choose to have associated servers boot from a local device, such as a local disk or CD-ROM (VMedia), or you can select a SAN boot or a LAN (PXE) boot.

You must include this policy in a service profile, and that service profile must be associated with a server for it to take effect. If you do not include a boot policy in a service profile, the server uses the default settings in the BIOS to determine the boot order.

Important

Changes to a boot policy may be propagated to all servers created with an updating service profile template that includes that boot policy. Reassociation of the service profile with the server to rewrite the boot order information in the BIOS is auto-triggered.
Creating a Boot Policy

You can also create a local boot policy that is restricted to a service profile or service profile template. However, except for iSCSI boot, we recommend that you create a global boot policy that can be included in multiple service profiles or service profile templates.

Before You Begin

If you are creating a boot policy that boots the server from a SAN LUN and you require reliable SAN boot operations, you must first remove all local disks from servers associated with a service profile that includes the boot policy.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # create boot-policy policy-name {purpose {operational</td>
<td>utility}}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/boot-policy # set descr description</td>
<td>(Optional) Provides a description for the boot policy. Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks do not appear in the description field of any show command output.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/boot-policy # set reboot-on-update {no</td>
<td>yes}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/boot-policy # set enforce-vnic-name {no</td>
<td>yes}</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A/org/boot-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example creates a boot policy named boot-policy-LAN, provides a description for the boot policy, specifies that servers using this policy will not be automatically rebooted when the boot order is changed, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create boot-policy boot-policy-LAN purpose operational
UCS-A /org/boot-policy* # set descr "Boot policy that boots from the LAN."
UCS-A /org/boot-policy* # set reboot-on-update no
UCS-A /org/boot-policy* # commit-buffer
UCS-A /org/boot-policy #
```

### What to Do Next

Configure one or more of the following boot options for the boot policy and set their boot order:

- **LAN Boot** — Boots from a centralized provisioning server. It is frequently used to install operating systems on a server from that server.

  If you choose the LAN Boot option, continue to Configuring a LAN Boot for a Boot Policy, on page 448.

- **Storage Boot** — Boots from an operating system image on the SAN. You can specify a primary and a secondary SAN boot. If the primary boot fails, the server attempts to boot from the secondary.

  We recommend that you use a SAN boot, because it offers the most service profile mobility within the system. If you boot from the SAN, when you move a service profile from one server to another, the new server boots from exactly the same operating system image. Therefore, the new server appears to be exactly the same server to the network.

  If you choose the Storage Boot option, continue to Configuring a SAN Boot for a Boot Policy, on page 416.

- **Virtual Media Boot** — Mimics the insertion of a physical CD into a server. It is typically used to manually install operating systems on a server.

  If you choose the Virtual Media boot option, continue to Configuring a Virtual Media Boot for a Boot Policy, on page 450.

---

**Tip**

We recommend that the boot order in a boot policy include either a local disk or a SAN LUN, but not both, to avoid the possibility of the server booting from the wrong storage type. If you configure a local disk and a SAN LUN for the boot order storage type and the operating system or logical volume manager (LVM) is configured incorrectly, the server might boot from the local disk rather than the SAN LUN.

For example, on a server with Red Hat Linux installed, where the LVM is configured with default LV names and the boot order is configured with a SAN LUN and a local disk, Linux reports that there are two LVs with the same name and boots from the LV with the lowest SCSI ID, which could be the local disk.

Include the boot policy in a service profile and/or template.

---

**SAN Boot**

You can configure a boot policy to boot one or more servers from an operating system image on the SAN. The boot policy can include a primary and a secondary SAN boot. If the primary boot fails, the server attempts to boot from the secondary.
We recommend that you use a SAN boot, because it offers the most service profile mobility within the system. If you boot from the SAN when you move a service profile from one server to another, the new server boots from the exact same operating system image. Therefore, the new server appears to be the exact same server to the network.

To use a SAN boot, ensure that the following is configured:

- The Cisco UCS domain must be able to communicate with the SAN storage device that hosts the operating system image.
- A boot target LUN on the device where the operating system image is located.

**Configuring a SAN Boot for a Boot Policy**

**Tip**

We recommend that the boot order in a boot policy include either a local disk or a SAN LUN, but not both, to avoid the possibility of the server booting from the wrong storage type. If you configure a local disk and a SAN LUN for the boot order storage type and the operating system or logical volume manager (LVM) is configured incorrectly, the server might boot from the local disk rather than the SAN LUN.

For example, on a server with Red Hat Linux installed, where the LVM is configured with default LV names and the boot order is configured with a SAN LUN and a local disk, Linux reports that there are two LVs with the same name and boots from the LV with the lowest SCSI ID, which could be the local disk.

This procedure continues directly from Creating a Boot Policy.

**Before You Begin**

Create a boot policy to contain the SAN boot configuration.

**Note**

If you are creating a boot policy that boots the server from a SAN LUN and you require reliable SAN boot operations, we recommend that you first remove all local disks from servers associated with a service profile that includes the boot policy.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope boot-policy policy-name</td>
<td>Enters organization boot policy mode for the specified boot policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/boot-policy # create storage</td>
<td>Creates a SAN boot for the boot policy and enters organization boot policy storage mode.</td>
</tr>
</tbody>
</table>
### Purpose

#### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>UCS-A /org/boot-policy/storage # set order {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/boot-policy/storage # create san-image {primary</td>
<td>secondary}</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/boot-policy/storage/san-image # set vhba vhba-name</td>
<td>Specifies the vhBA to be used for the SAN boot.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/boot-policy/storage/san-image # create path {primary</td>
<td>secondary}</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /org/boot-policy/storage/san-image/path # set {lun lun-id</td>
<td>wwn wwn-num}</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /org/boot-policy/storage/san-image/path # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enters the boot policy named lab1-boot-policy, creates a SAN boot for the policy, sets the boot order to 1, creates a primary SAN image, uses a vhBA named vHBA2, creates primary path using LUN 967295200, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope boot-policy lab1-boot-policy
UCS-A /org/boot-policy* # create storage
UCS-A /org/boot-policy/storage* # set order 1
UCS-A /org/boot-policy/storage* # create san-image primary
UCS-A /org/boot-policy/storage* # set vhba vHBA2
UCS-A /org/boot-policy/storage/san-image* # create path primary
UCS-A /org/boot-policy/storage/san-image/path* # set lun 967295200
UCS-A /org/boot-policy/storage/san-image/path* # commit-buffer
```

### What to Do Next

Include the boot policy in a service profile and/or template.
iSCSI Boot

iSCSI boot enables a server to boot its operating system from an iSCSI target machine located remotely over a network.

iSCSI boot is supported on the following Cisco UCS hardware:

- Cisco UCS server blades that have the Cisco UCS M51KR-B Broadcom BCM57711 network adapter and use the default MAC address provided by Broadcom.
- Cisco UCS M81KR Virtual Interface Card
- Cisco UCS M82-8P Virtual Interface Card

There are prerequisites that must be met before you configure iSCSI boot. For a list of these prerequisites, see iSCSI Boot Guidelines and Prerequisites, on page 418.

For a high-level procedure for implementing iSCSI boot, see Configuring iSCSI Boot, on page 420.

iSCSI Boot Process

The Cisco UCS Manager iSCSI vNIC and iSCSI boot information created for the service profile is used in the association process to program the mezzanine adapter, located on the blade server. After the adapter is programmed, the blade server reboots with the latest service profile values. After the power on self-test (POST), the adapter attempts to initialize using these service profile values. If the adapter can use the values and log in to its specified target, the adapter initializes and posts an iSCSI Boot Firmware Table (iBFT) to the host memory and a valid bootable LUN to the system BIOS. The iBFT that is posted to the host memory contains the initiator and target configuration that is programmed on the primary iSCSI VNIC.

Note

The iBFT only uses the first iSCSI vNIC and only Target 1 for the initiator-to-target initialization. This scenario is true even if a second target (Target 2) exists for the first iSCSI vNIC.

The next step, which is the installation of the operating system (OS), requires an OS that is iBFT capable. During installation of the OS, the OS installer scans the host memory for the iBFT table and uses the information in the iBFT to discover the boot device and create an iSCSI path to the target LUN. In some OS's a NIC driver is required to complete this path. If this step is successful, the OS installer finds the iSCSI target LUN on which to install the OS.

Note

The iBFT works at the OS installation software level and might not work with HBA mode (also known as TCP offload). Whether iBFT works with HBA mode depends on the OS capabilities during installation. Also, for a server that includes a Cisco UCS M51KR-B Broadcom BCM57711 adapter, the iBFT normally works at a maximum transmission unit (MTU) size of 1500, regardless of the MTU jumbo configuration. If the OS supports HBA mode, you might need to set HBA mode (also known as TCP offload), dual-fabric support, and jumbo MTU size after the iSCSI installation process.

iSCSI Boot Guidelines and Prerequisites

These guidelines and prerequisites must be met before configuring iSCSI boot:
• To set up iSCSI boot from a Windows 2008 server where the second vNIC (failover vNIC) must boot from an iSCSI LUN, consult Microsoft Knowledge Base Article 976042. Microsoft has a known issue where Windows might fail to boot from an iSCSI drive or cause a bugcheck error if the networking hardware is changed. To work around this issue, follow the resolution recommended by Microsoft.

• The storage array must be licensed for iSCSI boot and the array side LUN masking must be properly configured.

• Two IP addresses must be determined, one for each iSCSI initiator. If possible, the IP addresses should be on the same subnet as the storage array. The IP addresses are assigned statically or dynamically using the Dynamic Host Configuration Protocol (DHCP).

• You cannot configure boot parameters in the Global boot policy. Instead, after configuring boot parameters, you need to include the boot policy in the appropriate service profile.

• The operating system (OS) must be iSCSI Boot Firmware Table (iBFT) compatible.

• For Cisco UCS M51KR-B Broadcom BCM57711 network adapters:
  ◦ Blades that use iSCSI boot must contain the Cisco UCS M51KR-B Broadcom BCM57711 network adapter. For information on installing or replacing an adapter card, see the Cisco UCS B250 Extended Memory Blade Server Installation and Service Note. The service note is accessible from the Cisco UCS B-Series Servers Documentation Roadmap at http://www.cisco.com/go/unifiedcomputing/b-series-doc.
  ◦ Set the MAC addresses on the iSCSI device.
  ◦ If you are using the DHCP Vendor ID (Option 43), the MAC address of an iSCSI device needs to be configured in /etc/dhcpd.conf.
  ◦ HBA mode (also known as TCP offload) and the boot to target setting are supported. However, only Windows OS supports HBA mode during installation.
  ◦ Before installing the OS, disable the boot to target setting in the iSCSI adapter policy, then after installing the OS, reenable the boot to target setting.

  **Note** Each time you change an adapter policy setting, the adapter reboots to apply the new setting.

  ◦ When installing the OS on the iSCSI target, the iSCSI target must be ordered before the device where the OS image resides. For example, if you are installing the OS on the iSCSI target from a CD, the boot order should be the iSCSI target and then the CD.

  ◦ After the server has been iSCSI booted, do not modify the Initiator Name, Target name, LUN, iSCSI device IP, or Netmask/gateway using the Broadcom tool.

  ◦ Do not interrupt the POST (power on self-test) process or the Cisco UCS M51KR-B Broadcom BCM57711 network adapter will fail to initialize.

• For Cisco UCS M81KR Virtual Interface Card and Cisco UCS M82-8P Virtual Interface Card:
  • Do not set MAC addresses on the iSCSI device.
  • HBA mode and the boot to target setting are not supported.
• When installing the OS on the iSCSI target, the iSCSI target must be ordered after the device where the OS image resides. For example, if you are installing the OS on the iSCSI target from a CD, the boot order should be the CD and then the iSCSI target.

• If you are using the DHCP Vendor ID (Option 43), the MAC address of the overlay vNIC needs to be configured in /etc/dhcpd.conf.

• After the server has been iSCSI booted, do not modify the IP details of the overlay vNIC.

• The VMware ESX/ESXi operating system does not support storing a core dump file to an iSCSI boot target LUN. Dump files must be written to a local disk.

### Enabling MPIO on Windows

**Note**
If you change the networking hardware, Windows may fail to boot from an iSCSI drive. For more information, see Microsoft support Article ID: 976042.

**Before You Begin**
The server on which you enable MPIO must have a Cisco VIC driver.

**Procedure**

**Step 1**
In the service profile associated with the server, configure the primary and secondary iSCSI vNICs. For more information, see Creating an iSCSI vNIC in a Service Profile, on page 429.

**Step 2**
Using the primary iSCSI vNIC, install the Windows operating system on the iSCSI target LUN.

**Step 3**
After Windows installation is completed, use the Microsoft software iSCSI initiator to connect to the secondary iSCSI vNIC.

**Step 4**
Enable MPIO on the host

**Step 5**
In the service profile associated with the server, add the secondary iSCSI vNIC to the boot policy. For more information, see Creating an iSCSI Boot Policy, on page 427.

### Configuring iSCSI Boot

When you configure an adapter or blade in Cisco UCS to iSCSI boot from a LUN target, you need to complete all of the following steps.
## Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure the iSCSI boot adapter policy.</td>
<td>(Optional) For more information, see Creating an iSCSI Adapter Policy, on page 422</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure the authentication profiles to be used by the initiator and target.</td>
<td>(Optional) For more information, see Creating an Authentication Profile, on page 424</td>
</tr>
<tr>
<td>Step 3</td>
<td>If you plan to configure the iSCSI initiator to use an IP address from a pool of IP addresses, add a block of IP addresses to the iSCSI initiator pool.</td>
<td>(Optional) For more information, see Adding a Block of IP Addresses to the Initiator Pool, on page 425</td>
</tr>
<tr>
<td>Step 4</td>
<td>Create a boot policy that can be used in any service profile. Alternatively, you can create a local boot policy only for the specific service policy. However, we recommend that you create a boot policy that can be shared with multiple service profiles.</td>
<td>For more information about creating a boot policy that can be used in any service profile, see Creating an iSCSI Boot Policy, on page 427.</td>
</tr>
<tr>
<td>Step 5</td>
<td>If you created a boot policy that can be used in any service profile, you need to assign it to the service profile. Otherwise, proceed to the next step.</td>
<td>For more information, see Creating a Service Profile Template, on page 467.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configure an Ethernet vNIC in a service profile.</td>
<td>The Ethernet vNIC is used as the overlay vNIC for the iSCSI device. For more information, see Configuring a vNIC for a Service Profile, on page 474.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Create an iSCSI vNIC in a service profile.</td>
<td>For more information, see Creating an iSCSI vNIC in a Service Profile, on page 429</td>
</tr>
<tr>
<td>Step 8</td>
<td>Set the iSCSI initiator to boot using a static IP Address, an IP address from an IP pool, or DHCP.</td>
<td>See either Creating an iSCSI Initiator that Boots Using a Static IP Address, on page 432, Creating an iSCSI Initiator that Boots Using an IP Address from an IP Pool, on page 434, or Creating an iSCSI Initiator that Boots Using DHCP, on page 436.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Create an iSCSI static or auto target.</td>
<td>For more information, see either Creating an iSCSI Static Target, on page 442 or Creating an iSCSI Auto Target, on page 445.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Associate the service profile with a server.</td>
<td>For more information, see Associating a Service Profile with a Blade Server or Server Pool, on page 485.</td>
</tr>
</tbody>
</table>
Creating an iSCSI Adapter Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enters organization mode for the specified organization. To enter the root organization mode, type `scope org org-name`.
| **Step 2** | Creates the iSCSI adapter policy.
| **Step 3** | Provides a description for the iSCSI adapter policy.
| **Step 4** | The number of seconds to wait until Cisco UCS assumes that the initial login has failed and the iSCSI adapter is unavailable. Enter an integer between 0 and 255. If you enter 0, Cisco UCS uses the value set in the adapter firmware (default: 15 seconds).
| **Step 5** | The number of seconds to wait before the initiator assumes that the DHCP server is unavailable. Enter an integer between 60 and 300 (default: 60 seconds).
| **Step 6** | The number of times to retry the connection in case of a failure during iSCSI LUN discovery.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter an integer between 0 and 60. If you enter 0, Cisco UCS uses the value set in the adapter firmware (default: 15 seconds).</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> UCS-A /org/iscsi-policy # set iscsi-protocol-item tcp-time-stamp {no</td>
<td>yes}</td>
</tr>
<tr>
<td><strong>Step 8</strong> UCS-A /org/iscsi-policy # set iscsi-protocol-item hbamode {no</td>
<td>yes}</td>
</tr>
<tr>
<td><strong>Step 9</strong> UCS-A /org/iscsi-policy # set iscsi-protocol-item boottotarget {no</td>
<td>yes}</td>
</tr>
<tr>
<td><strong>Step 10</strong> UCS-A /org/iscsi-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to create an iSCSI adapter policy called iscsiboot, set the connection timeout, DHCP timeout, and LUN busy retry count, apply a TCP timestamp, and commit the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # create iscsi-policy iscsiboot
UCS-A /org/iscsi-policy* # set iscsi-protocol-item connection-timeout 60
UCS-A /org/iscsi-policy* # set iscsi-protocol-item dhcp-timeout 200
UCS-A /org/iscsi-policy* # set iscsi-protocol-item lun-busy-retry-count 5
UCS-A /org/iscsi-policy* # set iscsi-protocol-item tcp-time-stamp yes
UCS-A /org/iscsi-policy* # set iscsi-protocol-item hbamode yes
UCS-A /org/iscsi-policy* # set iscsi-protocol-item boottotarget yes
UCS-A /org/iscsi-policy* # commit-buffer

What to Do Next
Include the adapter policy in a service profile and/or template.
Deleting an iSCSI Adapter Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete iscsi-policy policy-name</td>
</tr>
<tr>
<td></td>
<td>Deletes the iSCSI adapter policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an iSCSI adapter policy named iscsi-adapter-pol and commit the transaction:

UCS-A# scope org /
UCS-A /org # delete iscsi-policy iscsi-adapter-pol
UCS-A /org* # commit-buffer
UCS-A /org #

Creating an Authentication Profile

If you use authentication for iSCSI boot, you need to create an authentication profile for both the initiator and target.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # create auth-profile profile-name</td>
</tr>
<tr>
<td></td>
<td>Creates an authentication profile with the specified name. The name can be up to 16 alphanumeric characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/auth-profile* # set user-id id-name</td>
</tr>
<tr>
<td></td>
<td>Creates a log in for authentication.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/auth-profile* # set password</td>
</tr>
<tr>
<td></td>
<td>Creates a password for authentication.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/auth-profile* # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/auth-profile* # exit</td>
</tr>
<tr>
<td></td>
<td>Exits the current mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 7</td>
<td>Repeat steps 2 through 6 to create an authentication profile for the target.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager CLI Configuration Guide, Release 2.0

OL-25721-05
The following example shows how to create an authentication profile for an initiator and target and commit the transaction:

```
UCS-A# scope org
UCS-A /org # create auth-profile InitAuth
UCS-A /org/auth-profile* # set user-id init
UCS-A /org/auth-profile* # set password
Enter a password:
Confirm the password:
UCS-A /org/auth-profile* # commit-buffer
UCS-A /org/auth-profile # exit
UCS-A /org #
```

UCS-A # create auth-profile TargetAuth
UCS-A /org/auth-profile* # set user-id target
UCS-A /org/auth-profile* # set password
Enter a password:
Confirm the password:
UCS-A /org/auth-profile* # commit-buffer
UCS-A /org/auth-profile # exit

What to Do Next

Create an Ethernet vNIC to be used as the overlay vNIC for the iSCSI device, and then create an iSCSI vNIC.

Deleting an Authentication Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # delete auth-profile auth-profile-name</td>
<td>Deletes the specified authentication profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an authentication profile called iscsi-auth and commit the transaction:

```
UCS-A# scope org
UCS-A /org # delete auth-profile iscsi-auth
UCS-A /org* # commit-buffer
UCS-A /org #
```

Adding a Block of IP Addresses to the Initiator Pool

You can create a group of IP addresses to be used for iSCSI boot. Cisco UCS Manager reserves the block of IP addresses you specify.

The IP pool must not contain any IP addresses that have been assigned as static IP addresses for a server or service profile.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org# scope ip-pool iscsi-initiator-pool</td>
<td>Enters the mode to specify an iSCSI initiator pool.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/ip-pool# create block from_ip_address to_ip_address default_gateway subnet_mask</td>
<td>Creates a block of IP addresses for the iSCSI initiator.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/ip-pool/block# show detail expand</td>
<td>(Optional) Shows the block of IP addresses that you have created.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/ip-pool/block # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to create an IP initiator pool for the iSCSI vNIC and commit the transaction:

```plaintext
UCS-A # scope org /
UCS-A /org # scope ip-pool iscsi-initiator-pool
UCS-A /org/ip-pool # create block 40.40.40.10 40.40.40.50 40.40.40.1 255.0.0.0
UCS-A /org/ip-pool/block # show detail expand
Block of IP Addresses:
   From: 40.40.40.10
   To: 40.40.40.50
   Default Gateway: 40.40.40.1
   Subnet Mask: 255.0.0.0
UCS-A /org/ip-pool/block # commit buffer
```

What to Do Next
Configure one or more service profiles or service profile templates to obtain the iSCSI initiator IP address from the iSCSI initiator IP pool.

Deleting a Block of IP Addresses from the Initiator Pool

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org# scope ip-pool iscsi-initiator-pool</td>
<td>Enters the mode to specify an iSCSI initiator pool.</td>
</tr>
</tbody>
</table>
DeletethespecifiedblockofIPaddressesfromtheinitiatorpool.

Step 3

UCS-A /org/ip-pool# delete block from_ip_address to_ip_address

Purpose

Deletes the specified block of IP addresses from the initiator pool.

Step 4

UCS-A /org/ip-pool/block# show detail expand

(Optional)

Purpose

Shows that the block of IP addresses has been deleted.

Step 5

UCS-A /org/ip-pool# commit buffer

Purpose

Commits the transaction to the system configuration.

The following example shows how to delete a block of IP addresses from the initiator pool and commit the transaction:

```plaintext
UCS-A # scope org /
UCS-A /org # scope ip-pool iscsi-initiator-pool
UCS-A /org/ip-pool # delete block 40.40.40.10 40.40.40.50 40.40.40.1 255.0.0.0
UCS-A /org/ip-pool # show detail expand
IP Pool:
   Name: iscsi-initiator-pool
   Size: 0
   Assigned: 0
   Descr: 
UCS-A /org/ip-pool # commit buffer
```

Creating an iSCSI Boot Policy

You can add up to two iSCSI vNICs per boot policy. One vNIC acts as the primary iSCSI boot source, and the other acts as the secondary iSCSI boot source.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enters organization mode for the specified organization. To enter the root organization mode, type `l` as the `org-name`.
| UCS-A# scope org org-name | |

Step 2

UCS-A /org # create boot-policy policy-name [purpose {operational | utility}]

Purpose

Creates a boot policy with the specified policy name, and enters organization boot policy mode.

This name can be between 1 and 16 alphanumeric characters. You cannot use spaces or any special characters other than - (hyphen), _ (underscore), : (colon), and . (period), and you cannot change this name after the object has been saved.

When you create the boot policy, specify the `operational` option. This ensures that the server boots from the operating system installed on the server. The `utility` options is reserved and should only be used if instructed to do so by a Cisco representative.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>UCS-A /org/boot-policy # set descr description</td>
<td>(Optional) Provides a description for the boot policy. Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks do not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>4</td>
<td>UCS-A /org/boot-policy # set enforce-vnic-name {no</td>
<td>yes}</td>
</tr>
<tr>
<td>5</td>
<td>UCS-A /org/boot-policy # set reboot-on-update {no</td>
<td>yes}</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /org/boot-policy # create iscsi</td>
<td>Adds an iSCSI boot to the boot policy.</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /org/boot-policy/iscsi # create path {primary</td>
<td>secondary}</td>
</tr>
<tr>
<td>8</td>
<td>UCS-A /org/boot-policy/iscsi/path # create iscsivnicname iscsi-vnic-name</td>
<td>Creates an iSCSI vNIC.</td>
</tr>
<tr>
<td>9</td>
<td>UCS-A /org/boot-policy/iscsi/path # exit</td>
<td>Exits iSCSI path mode.</td>
</tr>
<tr>
<td>10</td>
<td>UCS-A /org/boot-policy/iscsi/path # set order order-num</td>
<td>Specifies the order for the iSCSI boot in the boot order.</td>
</tr>
<tr>
<td>11</td>
<td>Repeat steps 8-10 to create secondary iSCSI vNICs.</td>
<td>(Optional)</td>
</tr>
<tr>
<td>12</td>
<td>UCS-A /org/boot-policy/iscsi # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following examples show how to create an iSCSI boot policy named iscsi-boot-policy-LAN, provide a description for the boot policy, specify that servers using this policy are not automatically rebooted when the boot order is changed, set the boot order for iSCSI boot to 2, create an iSCSI boot and associate it with a vNIC called iscsienic1, and commit the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org* # create boot-policy iscsi-boot-policy-LAN purpose operational
UCS-A /org/boot-policy* # set descr "Boot policy that boots from iSCSI."
UCS-A /org/boot-policy* # set enforce-vnic-name yes
UCS-A /org/boot-policy* # set reboot-on-update no
UCS-A /org/boot-policy* # create iscsi
UCS-A /org/boot-policy/iscsi* # create path primary
UCS-A /org/boot-policy/iscsi/path* # set iscsivnicname iscsienic1
UCS-A /org/boot-policy/iscsi/path* # exit
UCS-A /org/boot-policy/iscsi* # set order 2
UCS-A /org/boot-policy/iscsi* # commit-buffer
UCS-A /org/boot-policy #
```

What to Do Next

Include the boot policy in a service profile and/or template.

After a server is associated with a service profile that includes this boot policy, you can verify the actual boot order in the **Boot Order Details** area on the **General** tab for the server.

Deleting iSCSI Devices from a Boot Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope boot-policy boot-pol-name</td>
<td>Enters boot policy organization mode for the specified boot policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/boot-policy # delete iscsi</td>
<td>Deletes the iSCSI boot from the boot policy.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/boot-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an iSCSI boot from the boot policy named boot-policy-iscsi and commit the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # scope boot-policy boot-policy-iscsi
UCS-A /org/boot-policy # delete iscsi
UCS-A /org/boot-policy* # commit-buffer
UCS-A /org/boot-policy #
```

Creating an iSCSI vNIC in a Service Profile

You can create an iSCSI vNIC in a service profile.
Before You Begin
You must have an Ethernet vNIC in a service policy to be used as the overlay vNIC for the iSCSI device.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # <code>scope service-profile profile-name</code></td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # <code>create vnic-iscsi iscsi-vnic-name</code></td>
<td>Specifies the iSCSI vNIC name.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile/vnic-iscsi* # <code>set iscsi-adaptor-policy iscsi-adaptor-name</code></td>
<td>(Optional) Specifies the iSCSI adapter policy that you have created for this iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/service-profile/vnic-iscsi* # <code>set auth-name authentication-profile-name</code></td>
<td>(Optional) Sets the authentication profile to be used by the iSCSI vNIC. The authentication profile must already exist for it to be set. For more information, see Creating an Authentication Profile, on page 424.</td>
</tr>
<tr>
<td>Step 6 UCS-A /org/service-profile/vnic-iscsi* # `set identity { dynamic-mac {dynamic-mac-address</td>
<td>derived }</td>
</tr>
<tr>
<td>Step 7 UCS-A /org/service-profile/vnic-iscsi* # `set iscsi-identity {initiator-name</td>
<td>initiator-pool-name {iqn-pool-name}</td>
</tr>
<tr>
<td>Step 8 UCS-A /org/service-profile/vnic-iscsi* # <code>set overlay-vnic-name overlay-vnic-name</code></td>
<td>Specifies the Ethernet vNIC that is used by the iSCSI device as the overlay vNIC. For more information, see Configuring a vNIC for a Service Profile, on page 474.</td>
</tr>
<tr>
<td>Step 9 UCS-A /org/service-profile/vnic-iscsi* # <code>create eth-if</code></td>
<td>Creates an Ethernet interface for a VLAN assigned to the iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 10 UCS-A /org/service-profile/vnic-iscsi/eth-if* # <code>set vlanname vlan-name</code></td>
<td>Specifies the VLAN name. The default VLAN is default. For the Cisco UCS M81KR Virtual Interface Card and the Cisco UCS M82-8P Virtual Interface Card, the VLAN that you specify must be the same as the native VLAN on the overlay vNIC. For the Cisco UCS M51KR-B Broadcom BCM57711 adapter, the VLAN that you specify can be any VLAN assigned to the overlay vNIC.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11 UCS-A /org/service-profile/vnic-iscsi # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to create an iSCSI vNIC called scsivnic1, add it to an existing service profile called accounting, and commit the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # create vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # set iscsi-adaptor-policy iscsiboot
UCS-A /org/service-profile/vnic-iscsi* # set auth-name initauth
UCS-A /org/service-profile/vnic-iscsi* # set identity dynamic-mac derived
UCS-A /org/service-profile/vnic-iscsi* # set iscsi-identity initiator-name iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # set overlay-vnic-name eth1
UCS-A /org/service-profile/vnic-iscsi* # create eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # set vlanname default
UCS-A /org/service-profile/vnic-iscsi/eth-if* # commit buffer
```

What to Do Next

Configure an iSCSI initiator to boot using a static IP address, an IP address from a configured IP pool, or DHCP.

Deleting an iSCSI vNIC from a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # delete vnic-iscsi iscsi-vnic-name</td>
<td>Deletes the specified iSCSI vNIC from the specified service profile.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an iSCSI vNIC called scsivnic1 and commit the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # delete vnic-iscsi scsivnic1
UCS-A /org/service-profile* # commit-buffer
UCS-A /org/service-profile #
```
Creating an iSCSI Initiator that Boots Using a Static IP Address

In a service profile, you can create an iSCSI initiator and configure it to boot using a static IP address.

Before You Begin

You have completed the following:

- Created iSCSI overlay vNICs in a service profile.
- Created an iSCSI vNIC in a service profile.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type `/ as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A <code>/org # </code>scope service-profile profile-name`</td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/org/service-profile # </code>scope vnic-iscsi iscsi-vnic-name`</td>
<td>Enters the configuration mode for the specified iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 4 UCS-A <code>/org/service-profile/vnic-iscsi* # </code>scope eth-if`</td>
<td>Enters the configuration mode for the iSCSI Ethernet interface.</td>
</tr>
<tr>
<td>Step 5 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if* # </code>create ip-if`</td>
<td>Creates an IP interface.</td>
</tr>
<tr>
<td>Step 6 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if* # </code>enter static-ip-params`</td>
<td>Specifies that you are entering static IP boot parameters.</td>
</tr>
<tr>
<td>Step 7 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # </code>set addr ip-address`</td>
<td>Specifies the static IP address.</td>
</tr>
<tr>
<td>Step 8 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # </code>set default-gw ip-address`</td>
<td>Specifies the default gateway IP address.</td>
</tr>
<tr>
<td>Step 9 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # </code>set primary-dns ip-address`</td>
<td>Specifies the primary DNS IP address.</td>
</tr>
<tr>
<td>Step 10 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # </code>set secondary-dns ip-address`</td>
<td>Specifies the secondary DNS IP address.</td>
</tr>
<tr>
<td>Step 11 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # </code>set subnet subnet-ip-address`</td>
<td>Specifies the subnet mask.</td>
</tr>
</tbody>
</table>
The following example shows how to configure the initiator to boot using a static IP address and commit the transaction:

```
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # create ip-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # enter static-ip-params
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/ip-if/static-ip-params* # set default-gw 10.104.105.1
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/ip-if/static-ip-params* # set primary-dns 11.11.11.100
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/ip-if/static-ip-params* # set secondary-dns 255.255.255.0
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/ip-if/static-ip-params* # commit-buffer
```

What to Do Next
Create an iSCSI target.

Deleting the Static IP Address Boot Parameters from an iSCSI Initiator

In a service profile, you can delete the static IP address boot parameters from an iSCSI initiator.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A # scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
<td>Enters the configuration mode for the specified iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vnic-iscsi* # scope eth-if</td>
<td>Enters the configuration mode for the iSCSI Ethernet interface.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>*UCS-A /org/service-profile/vnic-iscsi/eth-if # enter ip-if</td>
<td>Enters the configuration mode for an IP interface.</td>
</tr>
<tr>
<td>6</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if # delete static-ip-params*</td>
<td>Deletes the static IP boot parameters from an initiator.</td>
</tr>
<tr>
<td>7</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params # commit buffer*</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the static IP address boot parameters from the initiator and commit the transaction:

```
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # enter ip-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # delete static-ip-params
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/static-ip-params* # commit-buffer
```

Creating an iSCSI Initiator that Boots Using an IP Address from an IP Pool

In a service profile, you can create an iSCSI initiator and configure it to boot using an IP address from an IP pool that you have created.

Before You Begin

You have completed the following:

- Created an overlay vNIC in a service profile
- Created an iSCSI vNIC in a service profile.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A # scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iiscsi-vnic-name</td>
<td>Enters the configuration mode for the specified iSCSI vNIC.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vnic-iscsi* # scope eth-if</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if* # create ip-if</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # enter pooled-ip-params</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/pooled-ip-params* # commit buffer</td>
</tr>
</tbody>
</table>

The following example shows how to create an iSCSI initiator and configure it to boot using an IP address from an IP pool:

```text
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # create ip-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # enter pooled-ip-params
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/ip-if/pooled-ip-params* # commit buffer
```

What to Do Next
Create an iSCSI target.

Deleting the IP Pool Boot Parameter from an iSCSI Initiator

In a service profile, you can create an iSCSI initiator and configure it to boot using an IP address from an IP pool that you have created.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A # scope org org-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
</tr>
</tbody>
</table>

Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.

Enters service profile organization mode for the service profile.

Enters the configuration mode for the specified iSCSI vNIC.
Creating an iSCSI Initiator that Boots Using DHCP

In a service profile, you can create an iSCSI initiator and configure it to boot using DHCP.

Before You Begin

You have completed the following:

- Created iSCSI overlay vNICs in a service profile.
- Created an iSCSI vNIC in a service profile.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # <code>scope service-profile profile-name</code></td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
</tbody>
</table>
Command or Action
Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
</tr>
<tr>
<td></td>
<td>Enters the configuration mode for the specified iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vnic-iscsi* # scope eth-if</td>
</tr>
<tr>
<td></td>
<td>Enters the configuration mode for the iSCSI Ethernet interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if* # create ip-if*</td>
</tr>
<tr>
<td></td>
<td>Creates an IP interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # create dhcp-ip-params</td>
</tr>
<tr>
<td></td>
<td>Specifies that you are setting the initiator to boot using DHCP.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/dhcp-ip-params* # commit buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the initiator to boot using DHCP and commit the transaction:

```plaintext
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI
UCS-A /org/service-profile/vnic-iscsi# scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # create ip-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # create dhcp-ip-params
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/dhcp-ip-params* # commit-buffer
```

What to Do Next
Create an iSCSI target.

Deleting the DHCP Boot Parameter from an iSCSI Initiator

In a service profile, you can remove the DHCP boot parameter from an iSCSI initiator.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A # scope org org-name</td>
</tr>
<tr>
<td></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
</tr>
<tr>
<td></td>
<td>Enters service profile organization mode for the service profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
</tr>
<tr>
<td></td>
<td>Enters the configuration mode for the specified iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vnic-iscsi* # scope eth-if#</td>
</tr>
<tr>
<td></td>
<td>Enters the configuration mode for the iSCSI Ethernet interface.</td>
</tr>
</tbody>
</table>
iSCSI Boot

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 UCS-A /org/service-profile/vnic-iscsi/eth-if* # enter ip-if</td>
<td>Enters the configuration mode for an IP interface.</td>
</tr>
<tr>
<td>Step 6 UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # delete dhcp-ip-params</td>
<td>Specifies that the initiator does not use DHCP to boot.</td>
</tr>
<tr>
<td>Step 7 UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/dhcp-ip-params* # commit buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete the boot using DHCP parameter and commit the transaction:

```
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi* # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # **enter ip-if**
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if* # **delete dhcp-ip-params**
UCS-A /org/service-profile/vnic-iscsi/eth-if/ip-if/dhcp-ip-params* # **commit-buffer**
```

IQN Pools

An IQN pool is a collection of iSCSI Qualified Names (IQNs) for use as initiator identifiers by iSCSI vNICs in a Cisco UCS domain.

IQN pool members are of the form `prefix:suffix:numbers`, where you can specify the prefix, suffix, and a block (range) of numbers.

An IQN pool can contain more than one IQN block, with different number ranges and different suffixes, but sharing the same prefix.

Creating an IQN Pool

Note

In most cases, the maximum IQN size (prefix + suffix + additional characters) is 223 characters. When using the Cisco UCS NIC M51KR-B adapter, you must limit the IQN size to 128 characters.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # create iqn-pool pool-name</td>
<td>Creates an IQN pool with the specified pool name and enters organization IQN pool mode. The pool name can be up to 32 characters.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/iqn-pool # set iqn-prefix prefix</td>
</tr>
</tbody>
</table>
| **Step 4** | UCS-A /org/iqn-pool # set descr description | (Optional) Provides a description for the IQN pool. Enter up to 256 characters.
Note
If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output. |
| **Step 5** | UCS-A /org/iqn-pool # create block suffix from to | Creates a block (range) of IQNs, and enters organization IQN pool block mode. You must specify the base suffix, the starting suffix number, and the ending suffix number. The resulting IQN pool members are of the form prefix:suffix:number. The suffix can be up to 64 characters.
Note
An IQN pool can contain more than one IQN block. To create multiple blocks, enter multiple create block commands from organization IQN pool mode. |
| **Step 6** | UCS-A /org/iqn-pool/block # commit-buffer | Commits the transaction to the system configuration. |

The following example creates an IQN pool named pool4, provides a description for the pool, specifies a prefix and a block of suffixes to be used for the pool, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # create iqn-pool pool4
UCS-A /org/iqn-pool* # set iqn-prefix iqn.alpha.com
UCS-A /org/iqn-pool* # set descr "This is IQN pool 4"
UCS-A /org/iqn-pool* # create block beta 3 5
UCS-A /org/iqn-pool/block* # commit-buffer
UCS-A /org/iqn-pool/block # exit
UCS-A /org/iqn-pool # show detail
IQN Pool:  
  Name: pool4  
  IQN Prefix: iqn.alpha.com  
  Size: 3  
  Assigned: 0  
  Description: This is IQN pool 4

UCS-A /org/iqn-pool #
```

This example creates a range of IQNs from `iqn.alpha.com:beta:3` to `iqn.alpha.com:beta:5`.

What to Do Next

- Add one or more blocks of IQNs to the IQN suffix pool.
- Include the IQN suffix pool in a service profile and/or template.
Adding a Block to an IQN Pool

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope iqn-pool pool-name</td>
<td>Enters organization IQN pool mode for the specified pool.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/iqn-pool # create block suffix from to</td>
<td>Creates a block (range) of IQN suffixes, and enters organization IQN pool block mode. You must specify the base suffix, the starting suffix number, and the ending suffix number. The resulting IQN pool members are of the form prefix:suffix:number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: An IQN pool can contain more than one IQN block. To create multiple blocks, enter multiple create block commands from organization IQN pool mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/iqn-pool/block # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/iqn-pool/block # exit</td>
<td>Optional) Returns to organization IQN pool mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/iqn-pool # show block</td>
<td>(Optional) Displays the blocks of suffixes.</td>
</tr>
</tbody>
</table>

This example creates a block of IQN suffixes in an IQN pool named pool4 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope iqn-pool pool4
UCS-A /org/iqn-pool # create block beta 3 5
UCS-A /org/iqn-pool/block* # commit-buffer
UCS-A /org/iqn-pool/block # exit
UCS-A /org/iqn-pool # show block
Block of IQN Names:
 Suffix From To
 ------- ---- ----
 beta 3 5

This example creates a range of IQN suffixes from beta:3 to beta:5.

Deleting a Block from an IQN Pool

If you delete an address block from a pool, Cisco UCS Manager does not reallocate any addresses in that block that have been assigned to vNICs or vHBAs. All assigned addresses from a deleted block remain with the vNIC or vHBA to which they are assigned until one of the following occurs:
• The associated service profiles are deleted.
• The vNIC or vHBA to which the address is assigned is deleted.
• The vNIC or vHBA is assigned to a different pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope iqn-pool pool-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/iqn-pool # delete block suffix from to</td>
</tr>
</tbody>
</table>

This example deletes a block of suffixes from an IQN pool named pool4 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope iqn-pool pool4
UCS-A /org/iqn-pool # delete block beta 0 12
UCS-A /org/iqn-pool* # commit-buffer
UCS-A /org/iqn-pool #

Deleting an IQN Pool

If you delete a pool, Cisco UCS Manager does not reallocate any addresses from that pool that have been assigned to vNICs or vHBAs. All assigned addresses from a deleted pool remain with the vNIC or vHBA to which they are assigned until one of the following occurs:

• The associated service profiles are deleted.
• The vNIC or vHBA to which the address is assigned is deleted.
• The vNIC or vHBA is assigned to a different pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete iqn-pool pool-name</td>
</tr>
</tbody>
</table>
Viewing IQN Pool Usage

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>UCS-A # scope org org-name</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters organization IQN pool mode for the specified pool.</td>
</tr>
<tr>
<td>UCS-A /org # scope iqn-pool pool-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays the assignments of the IQN block members.</td>
</tr>
<tr>
<td>UCS-A /org/iqn-pool # show pooled</td>
<td></td>
</tr>
</tbody>
</table>

This example displays the assignments of suffixes in the IQN pool named pool4:

```
UCS-A# scope org /
UCS-A /org # scope iqn-pool pool4
UCS-A /org/iqn-pool # show pooled
Pooled:
Name     Assigned Assigned To Dn
---------- ------- ---------------
beta:3    No      No              
beta:4    No      No              
beta:5    No      No              
UCS-A /org/iqn-pool #
```

Creating an iSCSI Static Target

You can create a static target.

Before You Begin

You have already created an iSCSI vNIC.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters service profile organization mode for the service profile to which you want to add an iSCSI target.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
<td>Enters the iSCSI vNIC mode for the specified vNIC name.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vnic-iscsi # scope eth-if</td>
<td>Enters the Ethernet interface mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if # create static-target-if {1</td>
<td>2}</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if # set name name</td>
<td>A regular expression that defines the iSCSI Qualified Name (IQN) or Extended Unique Identifier (EUI) name of the iSCSI target. You can enter any alphanumeric characters as well as the following special characters:</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if # set port port-num</td>
<td>The port associated with the iSCSI target. Enter an integer between 1 and 65535. The default is 3260.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if # set auth-name auth-profile</td>
<td>(Optional) If you need the target to authenticate itself and have set an authentication profile, you need to specify the name of the associated authentication profile.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager CLI Configuration Guide, Release 2.0

OL-25721-05
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/# set ipaddress ipv4-address</td>
<td>The IPv4 address assigned to the iSCSI target.</td>
</tr>
<tr>
<td>Step 10 UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/# create lun</td>
<td>Creates the LUN that corresponds to the location of the interface.</td>
</tr>
<tr>
<td>Step 11 UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # set id id-number</td>
<td>Specifies the target LUN id. Valid values are from 0 to 65535.</td>
</tr>
<tr>
<td>Step 12 UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 13 UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 14 UCS-A /org/service-profile/vnic-iscsi/eth-if/# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Repeat steps 5 through 14 to create a second static target. (Optional)</td>
</tr>
</tbody>
</table>

The following example shows how to create two iSCSI static target interfaces and commit the transaction:

```
UCS-A # scope org test
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if # create static-target-if 1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set name statictarget1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set port 3260
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set auth-name authprofile1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set ip-address 192.168.10.10
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # create lun
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # set id 1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # exit
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # commit-buffer
UCS-A /org/service-profile/vnic-iscsi/eth-if # create static-target-if 2
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set ipaddress 192.168.10.11
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set name statictarget2
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set port 3260
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # set auth-name authprofile1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # create lun
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # set id 1
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if/lun* # exit
UCS-A /org/service-profile/vnic-iscsi/eth-if/static-target-if* # commit-buffer
```

What to Do Next

To configure a second iSCSI device, repeat the steps for creating an iSCSI vNIC, initiator, and target.
Deleting an iSCSI Static Target

You can delete an iSCSI static target. However, you must have at least one iSCSI static target remaining after you delete one. Therefore, you must have two iSCSI static targets in order to delete one of them.

If you have two iSCSI targets and you delete the first priority target, the second priority target becomes the first priority target, although the Cisco UCS Manager still shows it as the second priority target.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # scope service-profile profile-name</td>
<td>Enters service profile organization mode for the service profile to which you want to add an iSCSI target.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
<td>Enters the iSCSI vNIC mode for the specified vNIC name.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/service-profile/vnic-iscsi # scope eth-if</td>
<td>Enters the Ethernet interface mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/service-profile/vnic-iscsi/eth-if # delete static-target-if</td>
<td>Deletes the static target for the iSCSI vNIC.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A/org/service-profile/vnic-iscsi/eth-if # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an iSCSI static target and commit the transaction:

```
UCS-A # scope org test
UCS-A /org # scope service-profile sample
UCS-A /org/service-profile # scope vnic-iscsi trial
UCS-A /org/service-profile/vnic-iscsi # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if # delete static-target-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # commit-buffer
UCS-A /org/service-profile/vnic-iscsi/eth-if #
```

Creating an iSCSI Auto Target

You can create an iSCSI auto target with or without the vendor IDs.

Before You Begin

These prerequisites must be met before creating iSCSI auto target:

- You have already created an iSCSI vNIC in a service profile.
You have considered the prerequisites for the VIC that you are using. For more information, see iSCSI Boot Guidelines and Prerequisites, on page 418

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/ as the </code>org-name`.</td>
</tr>
<tr>
<td>Step 2 UCS-A <code>/org # scope service-profile profile-name</code></td>
<td>Enters service profile organization mode for the service profile that you want to add an iSCSI target interface to.</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/org/service-profile # scope vnic-iscsi iscsi-vnic-name</code></td>
<td>Enters iSCSI vNIC service profile organization mode for the specified vNIC name.</td>
</tr>
<tr>
<td>Step 4 UCS-A <code>/org/service-profile/vnic-iscsi # scope eth-if</code></td>
<td>Enters Ethernet interface iSCSI vNIC service profile organization mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if # create auto-target-if</code></td>
<td>Creates an auto target for the iSCSI vNIC. If you plan to use an auto target without the vendor ID, you must configure an initiator name. For more information, see Creating an iSCSI vNIC in a Service Profile, on page 429.</td>
</tr>
<tr>
<td>Step 6 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/auto-target-if* # set dhcp-vendor-id vendor-id</code></td>
<td>(Optional) Sets a vendor ID for the auto target. The vendor ID can be up to 32 alphanumeric characters.</td>
</tr>
<tr>
<td>Step 7 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if/auto-target-if* # exit</code></td>
<td>Exists the current configuration mode.</td>
</tr>
<tr>
<td>Step 8 UCS-A <code>/org/service-profile/vnic-iscsi/eth-if # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to create an iSCSI auto target without a vendor ID and commit the transaction:

```
UCS-A # scope org
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if # create auto-target-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/auto-target-if* # exit
```

The following example shows how to create an iSCSI auto target with a vendor ID and commit the transaction:

```
UCS-A # scope org
```
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if # create auto-target-if
UCS-A /org/service-profile/vnic-iscsi/eth-if/auto-target-if* # set dhcp-vendor-id iSCSI_Vendor
UCS-A /org/service-profile/vnic-iscsi/eth-if/auto-target-if* # exit
UCS-A /org/service-profile/vnic-iscsi/eth-if* # commit-buffer

What to Do Next
To configure a second iSCSI device, repeat the steps for creating an iSCSI vNIC, initiator, and target.

Deleting an iSCSI Auto Target
You can delete an auto target only if you have a static target set.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters the service profile mode for the service profile to which you want to add an iSCSI target.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # scope vnic-iscsi iscsi-vnic-name</td>
<td>Enters the iSCSI vNIC mode for the specified vNIC name.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile/vnic-iscsi # scope eth-if</td>
<td>Enters the Ethernet interface mode.</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/service-profile/vnic-iscsi/eth-if # delete auto-target-if</td>
<td>Deletes the auto target.</td>
</tr>
<tr>
<td>Step 6 UCS-A /org/service-profile/vnic-iscsi/eth-if # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to delete an iSCSI auto target and commit the transaction:

UCS-A # scope org test
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # scope vnic-iscsi iSCSI1
UCS-A /org/service-profile/vnic-iscsi # scope eth-if
UCS-A /org/service-profile/vnic-iscsi/eth-if # delete auto-target-if
UCS-A /org/service-profile/vnic-iscsi/eth-if* # commit-buffer

Verifying iSCSI Boot
Use the KVM console to view the boot up messages as the adapter is booting. For information on how to access the KVM console, see the Starting the KVM Console chapter.

This step can only be performed using the Cisco UCS Manager GUI. For more information, see the Starting the KVM Console chapter in the UCS Manager GUI Configuration Guide.
LAN Boot

You can configure a boot policy to boot one or more servers from a centralized provisioning server on the LAN. A LAN (or PXE) boot is frequently used to install operating systems on a server from that LAN server. You can add more than one type of boot device to a LAN boot policy. For example, you could add a local disk or virtual media boot as a secondary boot device.

Configuring a LAN Boot for a Boot Policy

Before You Begin
Create a boot policy to contain the LAN boot configuration.

Procedure

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td>Enters organization boot policy mode for the specified boot policy.</td>
<td>UCS-A /org # scope boot-policy policy-name</td>
</tr>
<tr>
<td>Creates a LAN boot for the boot policy and enters organization boot policy LAN mode.</td>
<td>UCS-A /org/boot-policy # create lan</td>
</tr>
<tr>
<td>Specifies the boot order for the LAN boot.</td>
<td>UCS-A /org/boot-policy/lan # set order {1</td>
</tr>
<tr>
<td>Creates a primary or secondary LAN boot path and enters organization boot policy LAN path mode.</td>
<td>UCS-A /org/boot-policy/lan # create path {primary</td>
</tr>
<tr>
<td>Specifies the vNIC to use for the LAN path to the boot image.</td>
<td>UCS-A /org/boot-policy/lan/path # set vnic vnic-name</td>
</tr>
<tr>
<td>Commits the transaction to the system configuration.</td>
<td>UCS-A /org/boot-policy/lan/path # commit-buffer</td>
</tr>
</tbody>
</table>

The following example enters the boot policy named lab2-boot-policy, creates a LAN boot for the policy, sets the boot order to 2, creates primary and secondary paths using the vNICs named vNIC1 and vNIC2, and commits the transaction:

UCS-A# scope org /
UCS-A /org* # scope boot-policy lab2-boot-policy
Local Disk Boot

If a server has a local drive, you can configure a boot policy to boot the server from that drive.

Note
Cisco UCS Manager does not differentiate between the types of local drives. If an operating system has been installed on more than one local drive or on an internal USB drive (eUSB), you cannot specify which of these local drives the server should use as the boot drive.

Configuring a Local Disk Boot for a Boot Policy

You can also create a local boot policy that is restricted to a service profile or service profile template. However, except for iSCSI boot, we recommend that you create a global boot policy that can be included in multiple service profiles or service profile templates.

You can add more than one type of boot device to a boot policy. For example, you could add a virtual media boot as a secondary boot device.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope boot-policy policy-name</td>
<td>Enters organization boot policy mode for the specified boot policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/boot-policy # create storage</td>
<td>Creates a storage boot for the boot policy and enters organization boot policy storage mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/boot-policy/storage # create local</td>
<td>Creates a local storage location. The use of the terms primary or secondary boot devices does not imply a boot order. The effective order of boot devices within the same device class is determined by PCIe bus scan order.</td>
</tr>
</tbody>
</table>
Virtual Media Boot

You can configure a boot policy to boot one or more servers from a virtual media device that is accessible from the server. A virtual media device mimics the insertion of a physical CD-ROM disk (read-only) or floppy disk (read-write) into a server. This type of server boot is typically used to manually install operating systems on a server.

Configuring a Virtual Media Boot for a Boot Policy

Virtual Media requires the USB to be enabled. If you modify the BIOS settings that affect the USB functionality, you also affect the Virtual Media. Therefore, we recommend that you leave the following USB BIOS defaults for best performance:

- Make Device Non Bootable—set to disabled
- USB Idle Power Optimizing Setting—set to high-performance

Before You Begin

Create a boot policy to contain the virtual media boot configuration.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A /org # <code>scope boot-policy policy-name</code></td>
<td>Enters organization boot policy mode for the specified boot policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org-boot-policy # `create virtual-media {read-only</td>
<td>read-write}`</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/boot-policy/virtual-media # `set order {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/boot-policy/virtual-media # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enters the boot policy named lab3-boot-policy, creates a virtual media boot with read-only privileges for the policy, sets the boot order to 3, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # `scope boot-policy lab3-boot-policy`
UCS-A /org/boot-policy* # `create virtual-media read-only`
UCS-A /org/boot-policy/virtual-media* # `set order 3`
UCS-A /org/boot-policy/virtual-media* # `commit-buffer`
```

What to Do Next

Include the boot policy in a service profile and/or template.

Deleting a Boot Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # <code>delete boot-policy policy-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example deletes the boot policy named boot-policy-LAN and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # `delete boot-policy boot-policy-LAN`
UCS-A /org* # `commit-buffer`
UCS-A /org #
```
Deferring Deployment of Service Profile Updates

This chapter includes the following sections:

- Deferred Deployment of Service Profiles, page 453
- Configuring Schedules, page 456
- Configuring Maintenance Policies, page 461
- Managing Pending Activities, page 462

Deferred Deployment of Service Profiles

Some modifications to a service profile or to an updating service profile template can be disruptive and require a reboot of the server. You can, however, configure deferred deployment to control when those disruptive configuration changes are implemented. For example, you can choose to deploy the service profile changes immediately or have them deployed during a specified maintenance window. You can also choose whether or not a service profile deployment requires explicit user acknowledgement.

Deferred deployment is available for all configuration changes that occur through the association of a service profile with a server. These configuration changes can be prompted by a change to a service profile, to a policy that is included in a service profile, or to an updating service profile template. For example, you can defer the upgrade and activation of firmware through host firmware packages and management firmware packages, such as server BIOS, RAID controller, host HBA, and network adapters. However, you cannot defer the direct deployment of firmware images for components that do not use either of the firmware packages, such as Cisco UCS Manager, fabric interconnects, and I/O modules.

Deferred deployment is not available for the following actions which require the reboot of a server:

- Initial association of a service profile with a server
- Final disassociation of a service profile from a server, without associating the service profile with a different server
- Decommissioning a server
- Reacknowledging a server
- Resetting a server
If you want to defer the deployment of service profile changes, you must configure one or more maintenance policies and configure each service profile with a maintenance policy. If you want to define the time period when the deployment should occur, you also need to create at least one schedule with one or more recurring occurrences or one time occurrences, and include that schedule in a maintenance policy.

Deferred Deployment Schedules

A schedule contains a set of occurrences. These occurrences can be one time only or can recur at a specified time and day each week. The options defined in the occurrence, such as the duration of the occurrence or the maximum number of tasks to be run, determine whether a service profile change is deployed. For example, if a change cannot be deployed during a given maintenance window because the maximum duration or number of tasks has been reached, that deployment is carried over to the next maintenance window.

Each schedule checks periodically to see whether the Cisco UCS domain has entered one or more maintenance windows. If it has, the schedule executes the deployments that are eligible according to the constraints specified in the maintenance policy.

A schedule contains one or more occurrences, which determine the maintenance windows associated with that schedule. An occurrence can be one of the following:

One Time Occurrence

One time occurrences define a single maintenance window. These windows continue until the maximum duration of the window or the maximum number of tasks that can be run in the window has been reached.

Recurring Occurrence

Recurring occurrences define a series of maintenance windows. These windows continue until the maximum number of tasks or the end of the day specified in the occurrence has been reached.

Maintenance Policy

A maintenance policy determines how Cisco UCS Manager reacts when a change that requires a server reboot is made to a service profile associated with a server or to an updating service profile bound to one or more service profiles.

The maintenance policy specifies how Cisco UCS Manager deploys the service profile changes. The deployment can occur in one of the following ways:

- Immediately
- When acknowledged by a user with admin privileges
- Automatically at the time specified in the schedule

If the maintenance policy is configured to deploy the change during a scheduled maintenance window, the policy must include a valid schedule. The schedule deploys the changes in the first available maintenance window.
Pending Activities

If you configure deferred deployment in a Cisco UCS domain, Cisco UCS Manager enables you to view all pending activities. You can see activities that are waiting for user acknowledgement and those that have been scheduled.

If a Cisco UCS domain has pending activities, Cisco UCS Manager GUI notifies users with admin privileges when they log in.

Cisco UCS Manager displays information about all pending activities, including the following:

- Name of the service profile to be deployed and associated with a server
- Server affected by the deployment
- Disruption caused by the deployment
- Change performed by the deployment

Note

You cannot specify the maintenance window in which a specific pending activity is applied to the server. The maintenance window depends upon how many activities are pending and which maintenance policy is assigned to the service profile. However, any user with admin privileges can manually initiate a pending activity and reboot the server immediately, whether it is waiting for user acknowledgment or for a maintenance window.

Guidelines and Limitations for Deferred Deployment

Cannot Undo All Changes to Service Profiles or Service Profile Templates

If you cancel a pending change, Cisco UCS Manager attempts to roll back the change without rebooting the server. However, for complex changes, Cisco UCS Manager may have to reboot the server a second time to roll back the change. For example, if you delete a vNIC, Cisco UCS Manager reboots the server according to the maintenance policy included in the service profile. You cannot cancel this reboot and change, even if you restore the original vNIC in the service profile. Instead, Cisco UCS Manager schedules a second deployment and reboot of the server.

Association of Service Profile Can Exceed Boundaries of Maintenance Window

After Cisco UCS Manager begins the association of the service profile, the scheduler and maintenance policy do not have any control over the procedure. If the service profile association does not complete within the allotted maintenance window, the process continues until it is completed. For example, this can occur if the association does not complete in time because of retried stages or other issues.

Cannot Specify Order of Pending Activities

Scheduled deployments run in parallel and independently. You cannot specify the order in which the deployments occur. You also cannot make the deployment of one service profile change dependent upon the completion of another.
Cannot Perform Partial Deployment of Pending Activity

Cisco UCS Manager applies all changes made to a service profile in the scheduled maintenance window. You cannot make several changes to a service profile at the same time and then have those changes be spread across several maintenance windows. When Cisco UCS Manager deploys the service profile changes, it updates the service profile to match the most recent configuration in the database.

Configuring Schedules

Creating a Schedule

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # create scheduler sched-name</td>
<td>Creates a scheduler and enters scheduler mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/scheduler # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a scheduler called maintenancesched and commits the transaction:

```
UCS-A# scope system
UCS-A /system # create scheduler maintenancesched
UCS-A /system/scheduler* # commit-buffer
```

What to Do Next

Create a one time occurrence or recurring occurrence for the schedule.

Creating a One Time Occurrence for a Schedule

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # scope schedule sched-name</td>
<td>Enters scheduler system mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/scheduler # create occurrence one-time occurrence-name</td>
<td>Creates a one-time occurrence.</td>
</tr>
<tr>
<td>Step 4 UCS-A /system/scheduler/one-time # set date month day-of-month year hour minute</td>
<td>Sets the date and time this occurrence should run.</td>
</tr>
</tbody>
</table>
Configuring Schedules

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | UCS-A /system/scheduler/one-time # set concur-tasks {unlimited | (Optional) Sets the maximum number of tasks that can run concurrently during this occurrence.
| | max-num-concur-tasks} | If the maximum number of tasks is reached, the scheduler waits for the amount of time set in the minimum interval property before scheduling new tasks. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /system/scheduler/one-time # set max-duration {none</td>
<td>(Optional) Sets the maximum length of time that this schedule occurrence can run. Cisco UCS completes as many scheduled tasks as possible within the specified time.</td>
</tr>
<tr>
<td></td>
<td>num-of-days num-of-hours num-of-minutes num-of-seconds}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /system/scheduler/one-time # set min-interval {none</td>
<td>(Optional) Sets the minimum length of time that the system should wait before starting a new task.</td>
</tr>
<tr>
<td></td>
<td>num-of-days num-of-hours num-of-minutes num-of-seconds}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /system/scheduler/one-time # set proc-cap {unlimited</td>
<td>(Optional) Sets the maximum number of scheduled tasks that can be run during this occurrence.</td>
</tr>
<tr>
<td></td>
<td>max-num-of-tasks}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /system/scheduler/one-time # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a one time occurrence called onetimemaint for a scheduler called maintsched, sets the maximum number of concurrent tasks to 5, sets the start date to April 1, 2011 at 11:00, and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope scheduler maintsched
UCS-A /system/scheduler # create occurrence one-time onetimemaint
UCS-A /system/scheduler/one-time* # set date apr 1 2011 11 00
UCS-A /system/scheduler/one-time* # set concur-tasks 5
UCS-A /system/scheduler/one-time* # commit-buffer

UCS-A /system/scheduler/one-time #
```

Creating a Recurring Occurrence for a Schedule

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /system # scope schedule sched-name</td>
<td>Enters scheduler system mode.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 UCS-A /system/scheduler # create occurrence recurring occurrence-name</td>
<td>Creates a recurring occurrence.</td>
</tr>
<tr>
<td>Step 4 UCS-A /system/scheduler/recurring # set day {even-day</td>
<td>every-day</td>
</tr>
<tr>
<td>Step 5 UCS-A /system/scheduler/recurring # set hour hour</td>
<td>(Optional) Specifies the hour at which this occurrence starts. Note Cisco UCS ends all recurring occurrences on the same day in which they start, even if the maximum duration has not been reached. For example, if you specify a start time of 11 p.m. and a maximum duration of 3 hours, Cisco UCS starts the occurrence at 11 p.m. but ends it at 11:59 p.m. after only 59 minutes.</td>
</tr>
<tr>
<td>Step 6 UCS-A /system/scheduler/recurring # set minute minute</td>
<td>(Optional) Specifies the minute at which this occurrence starts.</td>
</tr>
<tr>
<td>Step 7 UCS-A /system/scheduler/recurring # set concur-tasks {unlimited</td>
<td>max-num-concur-tasks}</td>
</tr>
<tr>
<td>Step 8 UCS-A /system/scheduler/recurring # set max-duration {none</td>
<td>num-of-hours num-of-minutes num-of-seconds}</td>
</tr>
<tr>
<td>Step 9 UCS-A /system/scheduler/recurring # set min-interval {none</td>
<td>num-of-days num-of-hours num-of-minutes num-of-seconds}</td>
</tr>
<tr>
<td>Step 10 UCS-A /system/scheduler/recurring # set proc-cap {unlimited</td>
<td>max-num-of-tasks}</td>
</tr>
<tr>
<td>Step 11 UCS-A /system/scheduler/recurring # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example creates a recurring occurrence called recurringmaint for a scheduler called maintsched, sets the maximum number of concurrent tasks to 5, sets the day this occurrence will run to even days, sets the time it will start to 11:05, and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope scheduler maintsched
UCS-A /system/scheduler/maintsched # create occurrence recurring recurringmaint
UCS-A /system/scheduler/recurring* # set day even-day
UCS-A /system/scheduler/recurring* # set hour 11
UCS-A /system/scheduler/recurring* # set minute 5
UCS-A /system/scheduler/recurring* # set concur-tasks 5
UCS-A /system/scheduler/recurring* # commit-buffer
UCS-A /system/scheduler/recurring#
```

Deleting a One Time Occurrence from a Schedule

If this is the only occurrence in a schedule, that schedule is reconfigured with no occurrences. If the schedule is included in a maintenance policy and that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a one time occurrence or a recurring occurrence to the schedule to deploy the pending activity.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system # scope scheduler sched-name</td>
<td>Enters scheduler system mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/scheduler # delete occurrence one-time occurrence-name</td>
<td>Deletes the specified one-time occurrence.</td>
</tr>
<tr>
<td>Step 4 UCS-A /system/scheduler # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a one time occurrence called ontimemaint from scheduler maintsched and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope scheduler maintsched
UCS-A /system/scheduler/maintsched # delete occurrence one-time ontimemaint
UCS-A /system/scheduler* # commit-buffer
UCS-A /system/scheduler#
```

Deleting a Recurring Occurrence from a Schedule

If this is the only occurrence in a schedule, that schedule is reconfigured with no occurrences. If the schedule is included in a maintenance policy and that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a one time occurrence or a recurring occurrence to the schedule to deploy the pending activity.
Configuring Schedules

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>UCS-A# scope system</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters scheduler system mode.</td>
</tr>
<tr>
<td>UCS-A /system # scope scheduler sched-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Deletes the specified recurring occurrence.</td>
</tr>
<tr>
<td>UCS-A /system/scheduler # delete occurrence recurring occurrence-name</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /system/scheduler # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example deletes a recurring occurrence called onetimemaint from scheduler maintsched and commits the transaction:

UCS-A# scope system
UCS-A /system # scope scheduler maintsched
UCS-A /system/scheduler # delete occurrence recurring onetimemaint
UCS-A /system/scheduler* # commit-buffer
UCS-A /system/scheduler #

Deleting a Schedule

If this schedule is included in a maintenance policy, the policy is reconfigured with no schedule. If that policy is assigned to a service profile, any pending activities related to the server associated with the service profile cannot be deployed. You must add a schedule to the maintenance policy to deploy the pending activity.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>UCS-A# scope system</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Deletes a scheduler and enters scheduler mode.</td>
</tr>
<tr>
<td>UCS-A /system # delete scheduler sched-name</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /system # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example deletes a scheduler called maintenancesched and commits the transaction:

UCS-A# scope system
UCS-A /system # delete scheduler maintenancesched
UCS-A /system* # commit-buffer
UCS-A /system #
Configuring Maintenance Policies

Creating a Maintenance Policy

Before You Begin

If you plan to configure this maintenance policy for deferred deployment, create a schedule.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | UCS-A# `scope org org-name` | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| Step 2 | UCS-A /org # `create maint-policy policy-name` | Creates the specified maintenance policy and enters maintenance policy mode. | | |
| Step 3 | UCS-A /org/maint-policy # `set reboot-policy {immediate | timer-automatic | user-ack}` | When a service profile is associated with a server, the server needs to be rebooted to complete the association. Specifying the reboot-policy command determines when the reboot occurs for all service profiles that include this maintenance policy. Possible values include: |
| | | • `immediate` -- The server reboots as soon as the change is made to the service profile. |
| | | • `timer-automatic` -- You select the schedule that specifies when maintenance operations can be applied to the server using the set scheduler command. Cisco UCS reboots the server and completes the service profile changes at the scheduled time. |
| | | • `user-ack` -- The user must explicitly acknowledge the changes by using the `apply pending-changes` command before changes are applied. |
| Step 4 | UCS-A /org/maint-policy # `set scheduler scheduler-name` (Optional) | If the reboot-policy property is set to timer-automatic, you must select the schedule that specifies when maintenance operations can be applied to the server. Cisco UCS reboots the server and completes the service profile changes at the scheduled time. |
| Step 5 | UCS-A /org/maint-policy # `commit-buffer` | Commits the transaction to the system configuration. |

The following example creates a maintenance policy called maintenance, sets the system to reboot immediately when a service profile is associated with a server, and commits the transaction:

```
UCS-A# `scope org` /
UCS-A /org # `create maint-policy maintenance`
UCS-A /org/maint-policy* # `set reboot-policy immediate`
```
Deleting a Maintenance Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # delete maint-policy policy-name</td>
<td>Deletes the specified maintenance policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a maintenance policy called maintenance and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete maint-policy maintenance
UCS-A /org/maint-policy* # commit-buffer
UCS-A /org/maint-policy #
```

Managing Pending Activities

Viewing Pending Activities

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # show pending-changes [detail</td>
<td>expand]</td>
</tr>
</tbody>
</table>

The following example shows how to display pending changes for a service profile called accounting:

```
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # show pending-changes detail
```

Pending Changes:
Deploying a Service Profile Change Waiting for User Acknowledgement

Cisco UCS Manager CLI cannot deploy all pending service profile changes (for multiple service profiles) waiting for user acknowledgement. To simultaneously deploy all pending service profile changes for multiple service profiles, use Cisco UCS Manager GUI.

Important
You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # apply pending-changes immediate</td>
<td>Applies the pending changes immediately. Cisco UCS Manager immediately reboots the server affected by the pending activity.</td>
</tr>
</tbody>
</table>

The following example shows how to apply pending changes for a service profile called accounting:

```
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # apply pending-changes immediate
UCS-A /org/service-profile #
```

Deploying a Scheduled Service Profile Change Immediately

Cisco UCS Manager CLI cannot deploy all scheduled service profile changes (for multiple service profiles) at the same time. To simultaneously deploy all scheduled service profile changes for multiple service profiles, use Cisco UCS Manager GUI.

Important
You cannot stop Cisco UCS Manager from rebooting the affected server after you acknowledge a pending activity.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # apply pending-changes immediate</td>
<td>Applies the pending changes immediately. Cisco UCS Manager immediately reboots the server affected by the pending activity.</td>
</tr>
</tbody>
</table>

The following example shows how to apply pending changes for a service profile called accounting:

```
UCS-A# scope org /
UCS-A /org # scope service-profile accounting
UCS-A /org/service-profile # apply pending-changes immediate
UCS-A /org/service-profile #
```
Service Profiles that Override Server Identity

This type of service profile provides the maximum amount of flexibility and control. This profile allows you to override the identity values that are on the server at the time of association and use the resource pools and policies set up in Cisco UCS Manager to automate some administration tasks.

You can disassociate this service profile from one server and then associate it with another server. This re-association can be done either manually or through an automated server pool policy. The burned-in settings, such as UUID and MAC address, on the new server are overwritten with the configuration in the service profile. As a result, the change in server is transparent to your network. You do not need to reconfigure any component or application on your network to begin using the new server.

This profile allows you to take advantage of and manage system resources through resource pools and policies, such as the following:

- Virtualized identity information, including pools of MAC addresses, WWN addresses, and UUIDs
• Ethernet and Fibre Channel adapter profile policies
• Firmware package policies
• Operating system boot order policies

Unless the service profile contains power management policies, a server pool qualification policy, or another policy that requires a specific hardware configuration, the profile can be used for any type of server in the Cisco UCS domain.

You can associate these service profiles with either a rack-mount server or a blade server. The ability to migrate the service profile depends upon whether you choose to restrict migration of the service profile.

Note
If you choose not to restrict migration, Cisco UCS Manager does not perform any compatibility checks on the new server before migrating the existing service profile. If the hardware of both servers are not similar, the association might fail.

Service Profiles that Inherit Server Identity

This hardware-based service profile is the simplest to use and create. This profile uses the default values in the server and mimics the management of a rack-mounted server. It is tied to a specific server and cannot be moved or migrated to another server.

You do not need to create pools or configuration policies to use this service profile.

This service profile inherits and applies the identity and configuration information that is present at the time of association, such as the following:

• MAC addresses for the two NICs
• For a converged network adapter or a virtual interface card, the WWN addresses for the two HBAs
• BIOS versions
• Server UUID

Important
The server identity and configuration information inherited through this service profile may not be the values burned into the server hardware at manufacture if those values were changed before this profile is associated with the server.

Guidelines and Recommendations for Service Profiles

In addition to any guidelines or recommendations that are specific to policies and pools included in service profiles and service profile templates, such as the local disk configuration policy, you need to be aware of the following guidelines and recommendations that impact the ability to associate a service profile with a server:
Limit to the Number of vNICs that Can Be Configured on a Rack-Mount Server

You can configure up to 56 vNICs per supported adapter, such as the Cisco UCS P81E Virtual Interface Card (N2XX-ACPCI01), on any rack-mount server that is integrated with Cisco UCS Manager.

No Power Capping Support for Rack-Mount Servers

Power capping is not supported for rack servers. If you include a power control policy in a service profile that is associated with a rack-mount server, the policy is not implemented.

Service Profile Templates

With a service profile template, you can quickly create several service profiles with the same basic parameters, such as the number of vNICs and vHBAs, and with identity information drawn from the same pools.

Tip

If you need only one service profile with similar values to an existing service profile, you can clone a service profile in the Cisco UCS Manager GUI.

For example, if you need several service profiles with similar values to configure servers to host database software, you can create a service profile template, either manually or from an existing service profile. You then use the template to create the service profiles.

Cisco UCS supports the following types of service profile templates:

Initial template

Service profiles created from an initial template inherit all the properties of the template. However, after you create the profile, it is no longer connected to the template. If you need to make changes to one or more profiles created from this template, you must change each profile individually.

Updating template

Service profiles created from an updating template inherit all the properties of the template and remain connected to the template. Any changes to the template automatically update the service profiles created from the template.

Creating a Service Profile Template

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # create service-profile profile-name {initial-template</td>
<td>updating-template}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # set bios-policy policy-name</td>
<td>Associates the specified BIOS policy with the service profile.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile # set boot-policy policy-name</td>
<td>Associates the specified boot policy with the service profile.</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/service-profile # set descr description</td>
<td>(Optional) Provides a description for the service profile.</td>
</tr>
<tr>
<td>Step 6 UCS-A /org/service-profile # set dynamic-vnic-conn-policy policy-name</td>
<td>Associates the specified dynamic vNIC connection policy with the service profile.</td>
</tr>
<tr>
<td>Step 7 UCS-A /org/service-profile # set ext-mgmt-ip-state {none</td>
<td>pooled}</td>
</tr>
<tr>
<td></td>
<td>• None-- The service profile is not assigned an IP address.</td>
</tr>
<tr>
<td></td>
<td>• Pooled-- The service profile is assigned an IP address from the management IP pool.</td>
</tr>
<tr>
<td>Step 8 UCS-A /org/service-profile # set host-fw-policy policy-name</td>
<td>Associates the specified host firmware policy with the service profile.</td>
</tr>
<tr>
<td>Step 9 UCS-A /org/service-profile # set identity {dynamic-uuid {uuid</td>
<td>derived}</td>
</tr>
<tr>
<td></td>
<td>• Create a unique UUID in the form $nnnnnnn-nnn-nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn$.</td>
</tr>
<tr>
<td></td>
<td>• Derive the UUID from the one burned into the hardware at manufacture.</td>
</tr>
<tr>
<td></td>
<td>• Use a UUID pool.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>• Create a unique WWNN in the form \texttt{hh:hh:hh:hh:hh:hh:hh:hh}.</td>
<td>• Derive the WWNN from one burned into the hardware at manufacture.</td>
</tr>
<tr>
<td>• Use a WWNN pool.</td>
<td></td>
</tr>
<tr>
<td>Step 10 UCS-A /org/service-profile # set ipmi-access-profile profile-name</td>
<td>Associates the specified IPMI access profile with the service profile.</td>
</tr>
<tr>
<td>Step 11 UCS-A /org/service-profile # set local-disk-policy policy-name</td>
<td>Associates the specified local disk policy with the service profile.</td>
</tr>
<tr>
<td>Step 12 UCS-A /org/service-profile # set maint-policy policy-name</td>
<td>Associates the specified maintenance policy with the service profile.</td>
</tr>
<tr>
<td>Step 13 UCS-A /org/service-profile # set mgmt-fw-policy policy-name</td>
<td>Associates the specified management firmware policy with the service profile.</td>
</tr>
<tr>
<td>Step 14 UCS-A /org/service-profile # set power-control-policy policy-name</td>
<td>Associates the specified power control policy with the service profile.</td>
</tr>
<tr>
<td>Step 15 UCS-A /org/service-profile # set scrub-policy policy-name</td>
<td>Associates the specified scrub policy with the service profile.</td>
</tr>
<tr>
<td>Step 16 UCS-A /org/service-profile # set sol-policy policy-name</td>
<td>Associates the specified serial over LAN policy with the service profile.</td>
</tr>
<tr>
<td>Step 17 UCS-A /org/service-profile # set stats-policy policy-name</td>
<td>Associates the specified statistics policy with the service profile.</td>
</tr>
<tr>
<td>Step 18 UCS-A /org/service-profile # set user-label label-name</td>
<td>Specifies the user label associated with the service profile.</td>
</tr>
<tr>
<td>Step 19 UCS-A /org/service-profile # set vcon {1</td>
<td>2} selection {all</td>
</tr>
<tr>
<td>Step 20 UCS-A /org/service-profile # set vcon-profile policy-name</td>
<td>Associates the specified vNIC/vHBA placement profile with the service profile.</td>
</tr>
<tr>
<td>Note You can either assign a vNIC/vHBA placement profile to the service profile, or set vCon selection preferences for the service profile, but you do not need to do both.</td>
<td></td>
</tr>
<tr>
<td>Step 21 UCS-A /org/service-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example shows how to create a service profile template and commit the transaction:

```
UCS-A# scope org /
UCS-A /org* # create service-profile ServTemp2 updating-template
UCS-A /org/service-profile* # set bios-policy biospol11
UCS-A /org/service-profile* # set boot-policy bootpol32
UCS-A /org/service-profile* # set descr "This is a service profile example."
UCS-A /org/service-profile* # set dynamic-vmnic-conn-policy mydynvnicconnpolicy
UCS-A /org/service-profile* # set ext-mgmt-ip-state pooled
UCS-A /org/service-profile* # set host-fw-policy ipmi-user987
UCS-A /org/service-profile* # set identity dynamic-uuid derived
UCS-A /org/service-profile* # set ipmi-access-profile ipmiProf16
UCS-A /org/service-profile* # set local-disk-policy localdiskpol33
UCS-A /org/service-profile* # set maint-policy maintpol14
UCS-A /org/service-profile* # set mgmt-fw-policy mgmtfwpol175
UCS-A /org/service-profile* # set power-control-policy powcontrpol13
UCS-A /org/service-profile* # set scrub-policy scrubpol55
UCS-A /org/service-profile* # set sol-policy solpol12
UCS-A /org/service-profile* # set stats-policy statspol14
UCS-A /org/service-profile* # set user-label mylabel
UCS-A /org/service-profile* # set vcon-policy myvconpolicy
UCS-A /org/service-profile* # commit-buffer
UCS-A /org/service-profile#
```

What to Do Next

- (Optional) Configure a boot definition for the service profile. Use this option only if you have not associated a boot policy with the service profile.
- Create a service profile instance from the service profile template.

Creating a Service Profile Instance from a Service Profile Template

Before You Begin

Verify that there is a service profile template from which to create a service profile instance.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # create service-profile profile-name instance</td>
<td>Creates the specified service profile instance and enters organization service profile mode. Enter a unique profile-name to identify this service profile template. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters other than - (hyphen), _ (underscore), : (colon), and . (period), and this name must be unique across all service profiles and service profile templates within the same organization.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # set src-templ-name profile-name</td>
<td>Specifies the source service profile template to apply to the service profile instance. All configuration settings from the</td>
</tr>
</tbody>
</table>
Creating a Hardware-Based Service Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A # <code>**s**cope **o**rg **o**rg-name</code></td>
<td>Enters organization mode for the specified organization.</td>
</tr>
<tr>
<td></td>
<td>To enter the root organization mode, type <code>/</code> as the <code>**o**rg-name</code>.</td>
</tr>
<tr>
<td>Step 2 UCS-A /<code>**o**rg</code> # <code>**c**reate **s**ervice-**p**rofile **p**rofile-name **i**nstance</code></td>
<td>Creates the specified service profile instance and enters organization service profile mode. Enter a unique <code>**p**rofile-name</code> to identify this service profile template. This name can be between 2 and 32 alphanumeric characters. You cannot use spaces or any special characters other than - (hyphen), _ (underscore), : (colon), and . (period), and this name must be unique across all service profiles and service profile templates within the same organization.</td>
</tr>
<tr>
<td>Step 3 UCS-A /<code>**o**rg/service-profile</code> # <code>**s**et **b**ios-**p**olicy **p**olicy-name</code></td>
<td>Associates the specified BIOS policy with the service profile.</td>
</tr>
<tr>
<td>Step 4 UCS-A /<code>**o**rg/service-profile</code> # <code>**s**et **b**oot-**p**olicy **p**olicy-name</code></td>
<td>Associates the specified boot policy with the service profile.</td>
</tr>
<tr>
<td>Step 5 UCS-A /<code>**o**rg/service-profile</code> # <code>**s**et **d**escr **d**escription</code></td>
<td>(Optional) Provides a description for the service profile.</td>
</tr>
</tbody>
</table>

The following example creates a service profile instance named ServProf34, applies the service profile template named ServTemp2, and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org* # create service-profile ServProf34 instance
UCS-A /org/service-profile* # set src-templ-name ServTemp2
UCS-A /org/service-profile* # commit-buffer
UCS-A /org/service-profile #
```

What to Do Next

Associate the service profile to a server, rack server, or server pool.

Cisco UCS Manager CLI Configuration Guide, Release 2.0
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile # set dynamic-vnic-conn-policy policy-name</td>
</tr>
</tbody>
</table>
| **Step 7** | UCS-A /org/service-profile # set ext-mgmt-ip-state {none | pooled | static} | Specifies how the management IP address will be assigned to the service profile. You can set the management IP address policy using the following options:
- **None**-- The service profile is not assigned an IP address.
- **Pooled**-- The service profile is assigned an IP address from the management IP pool.
- **Static**-- The service profile is assigned the configured static IP address. |
| **Step 8** | UCS-A /org/service-profile # set host-fw-policy ipmi-user-name | Associates the specified host forwarding policy with the service profile. |
| **Step 9** | UCS-A /org/service-profile # set identity {dynamic-uuid {uuid | derived} | dynamic-wwnn {wwnn | derived} | uuid-pool pool-name | wwnn-pool pool-name} | Specifies how the server acquires a UUID or WWNN. You can do one of the following:
- Create a unique UUID in the form `nnnnnnnn-nnnn-nnnn-nnnnnnnnnnn`.
- Derive the UUID from the one burned into the hardware at manufacture.
- Use a UUID pool.
- Derive the WWNN from one burned into the hardware at manufacture.
- Use a WWNN pool. |
<p>| Step 10 | UCS-A /org/service-profile # set ipmi-access-profile profile-name | Associates the specified IPMI access profile with the service profile. |
| Step 11 | UCS-A /org/service-profile # set local-disk-policy policy-name | Associates the specified local disk policy with the service profile. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>UCS-A/org/service-profile set maint-policy policy-name</td>
<td>Associates the specified maintenance policy with the service profile.</td>
</tr>
<tr>
<td>13</td>
<td>UCS-A/org/service-profile set mgmt-fw-policy policy-name</td>
<td>Associates the specified management forwarding policy with the service profile.</td>
</tr>
<tr>
<td>14</td>
<td>UCS-A/org/service-profile set power-control-policy policy-name</td>
<td>Associates the specified power control policy with the service profile.</td>
</tr>
<tr>
<td>15</td>
<td>UCS-A/org/service-profile set scrub-policy policy-name</td>
<td>Associates the specified scrub policy with the service profile.</td>
</tr>
<tr>
<td>16</td>
<td>UCS-A/org/service-profile set sol-policy policy-name</td>
<td>Associates the specified serial over LAN policy with the service profile.</td>
</tr>
<tr>
<td>17</td>
<td>UCS-A/org/service-profile set stats-policy policy-name</td>
<td>Associates the specified statistics policy with the service profile.</td>
</tr>
<tr>
<td>18</td>
<td>UCS-A/org/service-profile set user-label label-name</td>
<td>Specifies the user label associated with the service profile.</td>
</tr>
<tr>
<td>19</td>
<td>UCS-A/org/service-profile set vcon {1</td>
<td>2} selection {all</td>
</tr>
<tr>
<td>20</td>
<td>UCS-A/org/service-profile set vcon-policy policy-name</td>
<td>Associates the specified vNIC/vHBA placement policy with the service profile.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>You can either assign a vNIC/vHBA placement profile to the service profile, or set vCon selection preferences for the service profile, but you do not need to do both.</td>
</tr>
<tr>
<td>21</td>
<td>UCS-A/org/service-profile commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shows how to create a service profile instance and commit the transaction:

```
UCS-A# scope org /
UCS-A /org* # create service-profile ServInst90 instance
UCS-A /org/service-profile* # set bios-policy biospol11
UCS-A /org/service-profile* # set boot-policy bootpol132
UCS-A /org/service-profile* # set descr "This is a service profile example."
UCS-A /org/service-profile* # set ext-mgmt-ip-state pooled
UCS-A /org/service-profile* # set host-fw-policy ipmi-user987
UCS-A /org/service-profile* # set identity dynamic-uuid derived
UCS-A /org/service-profile* # set ipmi-access-profile ipmiProf16
UCS-A /org/service-profile* # set local-disk-policy localhostpol133
UCS-A /org/service-profile* # set maint-policy maintpol14
UCS-A /org/service-profile* # set mgmt-fw-policy mgmtfwpol75
UCS-A /org/service-profile* # set power-control-policy powconstrpol13
UCS-A /org/service-profile* # set scrub-policy scrubpol155
UCS-A /org/service-profile* # set sol-policy solpol12
UCS-A /org/service-profile* # set stats-policy statspol14
UCS-A /org/service-profile* # set user-label mylabel
```
Configuring a vNIC for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enters organization mode for the specified organization. To enter the root organization mode, type `/` as the `org-name`.
| UCS-A# `scope org org-name` | |
| **Step 2** | Enters organization service profile mode for the specified service.
| UCS-A/org# `scope service-profile profile-name` | |
| **Step 3** | Creates a vNIC for the specified service profile and enters organization service profile vNIC mode.
| UCS-A/org/service-profile# `create vnic vnic-name [eth-if eth-if-name] [fabric {a | b}]` | |
| **Step 4** | Specifies the adapter policy to use for the vNIC.
| UCS-A/org/service-profile/vnic# `set adapter-policy policy-name` | |
| **Step 5** | Specifies the fabric to use for the vNIC. If you did not specify the fabric when creating the vNIC template in Step 3, you have the option to specify it with this command. If you want this vNIC to be able to access the second fabric interconnect if the default one is unavailable, choose **a-b** (A is the primary) or **b-a** (B is the primary).
| UCS-A/org/service-profile/vnic# `set fabric {a | a-b | b | b-a}` | |

Note

Do not enable fabric failover for the vNIC under the following circumstances:

- If the Cisco UCS domain is running in Ethernet Switch Mode. vNIC fabric failover is not supported in that mode. If all Ethernet uplinks on one fabric interconnect fail, the vNICs do not fail over to the other.
- If you plan to associate this vNIC with a server that has an adapter which does not support fabric failover, such as the Cisco UCS 82598KR-CI 10-Gigabit Ethernet Adapter. If you do so, Cisco UCS Manager generates a configuration fault when you associate the service profile with the server.

What to Do Next

- (Optional) Configure a boot definition for the service profile. Use this option only if you have not associated a boot policy with the service profile.
- Associate the service profile with a blade server, server pool, or rack server.

Configuring a vNIC for a Service Profile

Procedure
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 6 | UCS-A /org/service-profile/vnic # set identity {dynamic-mac {mac-addr | derived} | mac-pool mac-pool-name} | Specifies the identity (MAC address) for the vNIC. You can set the identity using one of the following options:
 - Create a unique MAC address in the form \(nn : nn : nn : nn : nn \).
 - Derive the MAC address from one burned into the hardware at manufacture.
 - Assign a MAC address from a MAC pool. |
| 7 | UCS-A /org/service-profile/vnic # set mtu size-num | The maximum transmission unit, or packet size, that this vNIC accepts. Enter an integer between 1500 and 9216.
 Note If the vNIC has an associated QoS policy, the MTU specified here must be equal to or less than the MTU specified in the associated QoS system class. If this MTU value exceeds the MTU value in the QoS system class, packets may be dropped during data transmission. |
| 8 | UCS-A /org/service-profile/vnic # set nw-control-policy policy-name | The network control policy the vNIC should use. | | |
| 9 | UCS-A /org/service-profile/vnic # set order {order-num | unspecified} | Specifies the relative order for the vNIC. |
| 10 | UCS-A /org/service-profile/vnic # set pin-group group-name | The LAN pin group the vNIC should use. |
| 11 | UCS-A /org/service-profile/vnic # set qos-policy policy-name | The quality of service policy the vNIC should use. |
| 12 | UCS-A /org/service-profile/vnic # set stats-policy policy-name | The statistics collection policy the vNIC should use. |
| 13 | UCS-A /org/service-profile/vnic # set template-name policy-name | Specifies the dynamic vNIC connectivity policy to use for the vNIC. |
| 14 | UCS-A /org/service-profile/vnic # set vcon {1 | 2 | any} | Assigns the vNIC to the specified vCon. Use the any keyword to have Cisco UCS Manager automatically assign the vNIC. |
| 15 | UCS-A /org/service-profile/vnic # commit-buffer | Commits the transaction to the system configuration. |

The following example configures a vNIC for a service profile and commits the transaction:

```bash
UCS-A# scope org /  
UCS-A /org* # scope service-profile ServInst90  
UCS-A /org/service-profile* # create vnic vnic3 fabric a  
UCS-A /org/service-profile/vnic* # set adapter-policy AdaptPol12  
UCS-A /org/service-profile/vnic* # set fabric a-b
```
UCS-A /org/service-profile/vnic* # set identity mac-pool MacPool3
UCS-A /org/service-profile/vnic* # set mtu 8900
UCS-A /org/service-profile/vnic* # set nw-control-policy ncp5
UCS-A /org/service-profile/vnic* # set order 0
UCS-A /org/service-profile/vnic* # set pin-group EthPinGroup12
UCS-A /org/service-profile/vnic* # set qos-policy QosPol15
UCS-A /org/service-profile/vnic* # set stats-policy StatsPol12
UCS-A /org/service-profile/vnic* # set template-name VnicConnPol13
UCS-A /org/service-profile/vnic* # set vcon any
UCS-A /org/service-profile/vnic # commit-buffer

Configuring a vHBA for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # create vhba vhba-name [fabric {a</td>
<td>b}] [fc-if fc-if-name]</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/vhba # set adapter-policy policy-name</td>
<td>Specifies the adapter policy to use for the vHBA.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/vhba # set admin-vcon {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/vhba # set identity {dynamic-wwpn {wwpn</td>
<td>derived}</td>
</tr>
</tbody>
</table>

You can set the storage identity using one of the following options:

- Create a unique WWPN in the form \(hh : hh \)
 - Create a unique WWPN in the form \(hh : hh \)
 - Create a unique WWPN in the form \(hh : hh \)
 - Create a unique WWPN in the form \(hh : hh \)
 - Create a unique WWPN in the form \(hh : hh \)

 You can specify a WWPN in the range from 20:00:00:00:00:00:00:00 to 20:FF:FF:FF:FF:FF:FF or from 50:00:00:00:00:00:00:00 to 5F:FF:FF:FF:FF:FF:FF.

- Derive the WWPN from one burned into the hardware at manufacture.

- Assign a WWPN from a WNN pool.
If you want the WWPN to be compatible with Cisco MDS Fibre Channel switches, use the manual template and WWPN 20:00:00:25:B5:XX:XX:XX.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If you want the WWPN to be compatible with Cisco MDS Fibre Channel switches, use the manual template and WWPN 20:00:00:25:B5:XX:XX:XX.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Specifies the maximum size of the Fibre Channel frame payload (in bytes) that the vHBA supports.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set max-field-size size-num</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Specifies the PCI scan order for the vHBA.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set order {order-num</td>
<td>unspecified}</td>
</tr>
<tr>
<td>Step 9</td>
<td>Disables or enables persistent binding to Fibre Channel targets.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set pers-bind {disabled</td>
<td>enabled}</td>
</tr>
<tr>
<td>Step 10</td>
<td>Specifies the pin group to use for the vHBA.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set pin-group group-name</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Specifies the QoS policy to use for the vHBA.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set qos-policy policy-name</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Specifies the stats policy to use for the vHBA.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set stats-policy policy-name</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Specifies the vHBA SAN connectivity policy to use for the vHBA.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # set template-name policy-name</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vhba # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example configures a vHBA for a service profile and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope service-profile ServInst90
UCS-A /org/service-profile* # create vhba vhba3 fabric b
UCS-A /org/service-profile/vhba* # set adapter-policy AdaptPol12
UCS-A /org/service-profile/vhba* # set set admin-vcon any
UCS-A /org/service-profile/vhba* # set admin-vcon any
UCS-A /org/service-profile/vhba* # set identity wwpn-pool SanPool17
UCS-A /org/service-profile/vhba* # set max-field-size 2112
UCS-A /org/service-profile/vhba* # set order 0
UCS-A /org/service-profile/vhba* # set pers-bind enabled
UCS-A /org/service-profile/vhba* # set pin-group FcPinGroup12
UCS-A /org/service-profile/vhba* # set qos-policy QosPol15
UCS-A /org/service-profile/vhba* # set stats-policy StatsPol12
UCS-A /org/service-profile/vhba* # set template-name SanConnPol3
UCS-A /org/service-profile/vhba* # commit-buffer
UCS-A /org/service-profile/vhba #
```
Configuring a Local Disk for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # <code>scope service-profile profile-name</code></td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/service-profile # <code>create local-disk-config</code></td>
<td>Creates a local disk configuration for the service profile and enters organization service profile local disk configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/service-profile/local-disk-config # <code>set descr description</code></td>
<td>(Optional) Provides a description for the local disk configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/service-profile/local-disk-config # `set mode {any-configuration</td>
<td>no-local-storage</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A/org/service-profile/local-disk-config # <code>create partition</code></td>
<td>Creates a partition for the local disk and enters organization service profile local disk configuration partition mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A/org/service-profile/local-disk-config/partition # <code>set descr description</code></td>
<td>(Optional) Provides a description for the partition.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A/org/service-profile/local-disk-config/partition # `set size {size-num</td>
<td>unspecified}`</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A/org/service-profile/local-disk-config/partition # `set type {ext2</td>
<td>ext3</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A/org/service-profile/local-disk-config/partition # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a local disk for a service profile and commits the transaction:

```
UCS-A# `scope org /`
UCS-A /org # `scope service-profile ServInst90`
UCS-A /org/service-profile # `scope boot-definition`
```
Configuring Serial over LAN for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # create sol-config</td>
<td>Creates a serial over LAN configuration for the service profile and enters organization service profile SoL configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/sol-config # {disable</td>
<td>enable}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/sol-config # set descr description</td>
<td>(Optional) Provides a description for the serial over LAN configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/sol-config # set speed {115200</td>
<td>19200</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/service-profile/sol-config # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures serial over LAN for the service profile named ServInst90 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope service-profile ServInst90
UCS-A /org/service-profile # create sol-config
UCS-A /org/service-profile/sol-config* # enable
UCS-A /org/service-profile/sol-config* # set descr "Sets serial over LAN to 9600 baud."
UCS-A /org/service-profile/sol-config* # set speed 9600
UCS-A /org/service-profile/sol-config* # commit-buffer
UCS-A /org/service-profile/sol-config #
Service Profile Boot Definition Configuration

Configuring a Boot Definition for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/service-profile # create boot-definition</td>
<td>Creates a boot definition for the service profile and enters organization service profile boot definition mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/service-profile/boot-definition # set descr description</td>
<td>(Optional) Provides a description for the boot definition.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/service-profile/boot-definition # set reboot-on-update {no</td>
<td>yes}</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A/org/service-profile/boot-definition # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures a boot definition for a service profile and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope service-profile ServInst90
UCS-A /org/service-profile* # create boot-definition
UCS-A /org/service-profile/boot-definition* # set descr "This boot definition reboots on update."
UCS-A /org/service-profile/boot-definition* # set reboot-on-update yes
UCS-A /org/service-profile/boot-definition* # commit-buffer
```

What to Do Next

Configure one or more of the following boot options for the boot definition and set their boot order:

- **LAN Boot** —Boots from a centralized provisioning server. It is frequently used to install operating systems on a server from that server.

 If you choose the LAN Boot option, continue to [Configuring a LAN Boot for a Service Profile Boot Definition](#), on page 481.
• **Storage Boot** — Boots from an operating system image on the SAN. You can specify a primary and a secondary SAN boot. If the primary boot fails, the server attempts to boot from the secondary.

We recommend that you use a SAN boot, because it offers the most service profile mobility within the system. If you boot from the SAN, when you move a service profile from one server to another, the new server boots from exactly the same operating system image. Therefore, the new server appears to be exactly the same server to the network.

If you choose the Storage Boot option, continue to *Configuring a Storage Boot for a Service Profile Boot Definition*, on page 482.

• **Virtual Media Boot** — Mimics the insertion of a physical CD into a server. It is typically used to manually install operating systems on a server.

If you choose the Virtual Media boot option, continue to *Configuring a Virtual Media Boot for a Service Profile Boot Definition*, on page 483.

Configuring a LAN Boot for a Service Profile Boot Definition

Before You Begin

Configure a boot definition for a service profile.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # scope boot-definition</td>
<td>Enters organization service profile boot definition mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile/boot-definition # create lan</td>
<td>Creates a LAN boot for the service profile boot definition and enters service profile boot definition LAN mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /org/service-profile/boot-definition/lan # set order {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /org/service-profile/boot-definition/lan # create path {primary</td>
<td>secondary}</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /org/service-profile/boot-definition/lan/path # set vnic vnic-name</td>
<td>Specifies the vNIC to use for the LAN image path.</td>
</tr>
</tbody>
</table>
Configuring a Storage Boot for a Service Profile Boot Definition

Before You Begin

Configure a boot definition for a service profile.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/org # scope service-profile profile-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/org/service-profile # scope boot-definition</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/org/service-profile/boot-definition # create storage</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/org/service-profile/boot-definition/storage # set order {1</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A/org/service-profile/boot-definition/storage # create {local</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 7 UCS-A /org/service-profile/boot-definition/storage/san-image # create path {primary</td>
<td>secondary}</td>
</tr>
<tr>
<td>Step 8 UCS-A /org/service-profile/boot-definition/storage/san-image/path # set lun lun-num</td>
<td>Specifies the LUN used for the SAN image path.</td>
</tr>
<tr>
<td>Step 9 UCS-A /org/service-profile/boot-definition/storage/san-image/path # set vhba vhba-name</td>
<td>Specifies the vHBA used for the SAN image path.</td>
</tr>
<tr>
<td>Step 10 UCS-A /org/service-profile/boot-definition/storage/san-image/path # set wwn wwn-num</td>
<td>Specifies the WWN used for the SAN image path.</td>
</tr>
<tr>
<td>Step 11 UCS-A /org/service-profile/boot-definition/storage/san-image/path # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enters the service profile named ServInst90, creates a storage boot for the service profile boot definition, sets the boot order to 2, creates a primary path, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope service-profile ServInst90
UCS-A /org/service-profile* # scope boot-definition
UCS-A /org/service-profile/boot-definition* # create storage
UCS-A /org/service-profile/boot-definition/storage* # create san-image primary
UCS-A /org/service-profile/boot-definition/storage* # set order 2
UCS-A /org/service-profile/boot-definition/storage/san-image* # create path primary
UCS-A /org/service-profile/boot-definition/storage/san-image/path* # set lun 27512
UCS-A /org/service-profile/boot-definition/storage/san-image/path* # set vhba vhba3
UCS-A /org/service-profile/boot-definition/storage/san-image/path* # set wwn 20:00:00:00:20:00:00:23
UCS-A /org/service-profile/boot-definition/storage/san-image/path* # commit-buffer
UCS-A /org/service-profile/boot-definition/storage/san-image/path #
```

Configuring a Virtual Media Boot for a Service Profile Boot Definition

Before You Begin

Configure a boot definition for a service profile.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # scope boot-definition</td>
<td>Enters organization service profile boot definition mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile/boot-definition # create virtual-media [read-only</td>
<td>read-write]</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/service-profile/boot-definition/virtual-media # set order {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 6 UCS-A /org/service-profile/boot-definition/virtual-media # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enters the service profile named ServInst90, creates a virtual media boot with read-only privileges for the service profile boot definition, sets the boot order to 3, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope service-profile ServInst90
UCS-A /org/service-profile* # scope boot-definition
UCS-A /org/service-profile/boot-definition* # create virtual-media read-only
UCS-A /org/service-profile/boot-definition/virtual-media* # set order 1
UCS-A /org/service-profile/boot-definition/virtual-media* # commit-buffer
UCS-A /org/service-profile/boot-definition/virtual-media #
```

Deleting a Boot Definition for a Service Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service.</td>
</tr>
</tbody>
</table>
Service Profiles and Service Profile Template Management

Associating a Service Profile with a Blade Server or Server Pool

Follow this procedure if you did not associate the service profile with a blade server or server pool when you created it, or to change the blade server or server pool with which a service profile is associated.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A # scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/service-profile # associate [server chassis-id</td>
<td>slot-id</td>
</tr>
<tr>
<td></td>
<td>UCS-A /org/service-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example associates the service profile named ServProf34 with the server in slot 4 of chassis 1 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope service-profile ServProf34
UCS-A /org/service-profile* # associate server 1/4
Associating a Service Profile with a Rack Server

Follow this procedure if you did not associate the service profile with a rack server when you created it, or to change the rack server with which a service profile is associated.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /org/service-profile # associate server serv-id [restrict-migration]</td>
<td>Associates the service profile with the specified rack server. Adding the optional the restrict-migration command prevents the service profile from being migrated to another server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /org/service-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example associates the service profile named ServProf34 with the rack server 1 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope service-profile ServProf34
UCS-A /org/service-profile* # associate server 1
UCS-A /org/service-profile* # commit-buffer
```

Disassociating a Service Profile from a Server or Server Pool

This procedure covers disassociating a service profile from a blade server, rack server, or server pool.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
</tbody>
</table>
Resetting the UUID Assigned to a Service Profile from a Pool in a Service Profile Template

If you change the UUID suffix pool assigned to an updating service profile template, Cisco UCS Manager does not change the UUID assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a UUID from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the UUID. You can only reset the UUID assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a UUID assigned from a UUID suffix pool.
- The UUID suffix pool name is specified in the service profile. For example, the pool name is not empty.
- The UUID value is not 0, and is therefore not derived from the server hardware.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope org org-name</code> Enters the command mode for the organization for which you want to reset the UUID. If the system does not include multi-tenancy, type <code>/</code> as the <code>org-name</code> to enter the root organization.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A <code>/org # scope service-profile profile-name</code> Enters the service profile that requires the UUID for the associated server to be reset to a different UUID suffix pool.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A <code>/org/service-profile # set identity dynamic-uuid derived</code> Specifies that the service profile will obtain a UUID dynamically from a pool.</td>
</tr>
</tbody>
</table>
This example resets the UUID of a service profile to a different UUID suffix pool:

```
UCS-A# scope org /
UCS-A /org # scope service-profile ServInst90
UCS-A /org/service-profile # set identity dynamic-uuid derived
UCS-A /org/service-profile* # commit-buffer
UCS-A /org/service-profile #
```

Resetting the MAC Address Assigned to a vNIC from a Pool in a Service Profile Template

If you change the MAC pool assigned to an updating service profile template, Cisco UCS Manager does not change the MAC address assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a MAC address from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the MAC address. You can only reset the MAC address assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a MAC address assigned from a MAC pool.
- The MAC pool name is specified in the service profile. For example, the pool name is not empty.
- The MAC address value is not 0, and is therefore not derived from the server hardware.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters the command mode for the organization that contains the service profile for which you want to reset the MAC address. If the system does not include multi-tenancy, type <code>/</code> as the <code>org-name</code> to enter the root organization.</td>
</tr>
<tr>
<td>UCS-A# scope org <code>org-name</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the command mode for the service profile that requires the MAC address of the associated server to be reset to a different MAC address.</td>
</tr>
<tr>
<td>UCS-A /org # scope service-profile <code>profile-name</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters the command mode for the vNIC for which you want to reset the MAC address.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vnic <code>vnic-name</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies that the vNIC will obtain a MAC address dynamically from a pool.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vnic # set identity dynamic-mac derived</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
<tr>
<td>UCS-A /org/service-profile/vnic # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>
This example resets the MAC address of a vNIC in a service profile:

```
UCS-A# scope org /
UCS-A /org # scope service-profile ServInst90
UCS-A /org/service-profile # scope vnic dynamic-prot-001
UCS-A /org/service-profile/vnic # set identity dynamic-mac derived
UCS-A /org/service-profile/vnic* # commit-buffer
UCS-A /org/service-profile/vnic #
```

Resetting the WWPN Assigned to a vHBA from a Pool in a Service Profile Template

If you change the WWPN pool assigned to an updating service profile template, Cisco UCS Manager does not change the WWPN assigned to a service profile created with that template. If you want Cisco UCS Manager to assign a WWPN from the newly assigned pool to the service profile, and therefore to the associated server, you must reset the WWPN. You can only reset the WWPN assigned to a service profile and its associated server under the following circumstances:

- The service profile was created from an updating service profile template and includes a WWPN assigned from a WWPN pool.
- The WWPN pool name is specified in the service profile. For example, the pool name is not empty.
- The WWPN value is not 0, and is therefore not derived from the server hardware.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters the command mode for the organization that contains the service profile for which you want to reset the WWPN. If the system does not include multi-tenancy, type / as the <code>org-name</code> to enter the root organization.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters the service profile of the vHBA for which you want to reset the WWPN.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # scope vhba vhba-name</td>
<td>Enters the command mode for vHBA for which you want to reset the WWPN.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile/vhba # set identity dynamic-wwpn derived</td>
<td>Specifies that the vHBA will obtain a WWPN dynamically from a pool.</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/service-profile/vhba # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

This example resets the WWPN of a vHBA in a service profile:

```
UCS-A# scope org /
UCS-A /org # scope service-profile ServInst90
UCS-A /org/service-profile # scope vhba vhba3
UCS-A /org/service-profile/vhba # set identity dynamic-wwpn derived
UCS-A /org/service-profile/vhba* # commit-buffer
UCS-A /org/service-profile/vhba #
```
Managing Power in Cisco UCS

This chapter includes the following sections:

- Power Management in Cisco UCS, page 491
- Rack Server Power Management, page 491
- Power Management Precautions, page 491
- Configuring the Power Policy, page 492
- Configuring the Global Cap Policy, page 493
- Configuring Policy-Driven Chassis Group Power Capping, page 493
- Configuring Manual Blade-Level Power Capping, page 497

Power Management in Cisco UCS

You can manage power through Cisco UCS Manager by configuring any of the following features:

- Power supply redundancy for all chassis in a Cisco UCS domain
- Policy-driven chassis-level power capping
- Manual blade-level power capping

Rack Server Power Management

Power capping is not supported for rack servers.

Power Management Precautions

If the CIMC is reset, the power monitoring functions of Cisco UCS become briefly unavailable for as long as it takes for the CIMC to reboot. While this usually only takes 20 seconds, there is a possibility that the peak power cap could be exceeded during that time. To avoid exceeding the configured power cap in a very low power-capped environment, consider staggering the rebooting or activation of CIMCs.
Configuring the Power Policy

Power Policy

The power policy is a global policy that specifies the redundancy for power supplies in all chassis in the Cisco UCS domain. This policy is also known as the PSU policy.

For more information about power supply redundancy, see Cisco UCS 5108 Server Chassis Hardware Installation Guide.

Configuring the Power Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /org # scope psu-policy</td>
<td>Enters PSU policy mode.</td>
</tr>
</tbody>
</table>
| Step 3 | UCS-A /org/psu-policy # set redundancy {grid | n-plus-1 | non-redund} | Specifies one of the following redundancy types:
 - **grid** — Provides power redundancy when two power sources are used to power the chassis. If one power source fails, the surviving power supplies on the other power circuit continue to provide power to the chassis.
 - **n-plus-1** — Balances the power load for the chassis across the number of power supplies needed to satisfy non-redundancy plus one additional power supply for redundancy. If any additional power supplies are installed, they are recognized and powered off.
 - **non-redund** — Balances the power load for the chassis evenly across all installed power supplies.
For more information about power redundancy, see the Cisco UCS 5108 Server Chassis Installation Guide. |
| Step 4 | UCS-A /org/psu-policy # commit-buffer | Commits the transaction to the system configuration. |

The following example configures the power policy to use grid redundancy and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope psu-policy
UCS-A /org/psu-policy # set redundancy grid
UCS-A /org/psu-policy* # commit-buffer
UCS-A /org/psu-policy #
```
Configuring the Global Cap Policy

Global Cap Policy

The global cap policy is a global policy that specifies whether policy-driven chassis group power capping or manual blade-level power capping will be applied to all servers in a chassis.

We recommend that you use the default power capping method: policy-driven chassis group power capping.

Important

Any change to the manual blade-level power cap configuration will result in the loss of any groups or configuration options set for policy-driven chassis group power capping.

Configuring the Global Cap Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope power-cap-mgmt</td>
<td>Enters power cap management mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/power-cap-mgmt # set cap-policy {manual-blade-level-cap</td>
<td>policy-driven-chassis-group-cap}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/power-cap-mgmt # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example sets the global cap policy to manual blade power cap and commits the transaction:

UCS-A# scope power-cap-mgmt
UCS-A/power-cap-mgmt # set cap-policy manual-blade-level-cap
UCS-A/power-cap-mgmt* # commit-buffer
UCS-A/power-cap-mgmt #

Configuring Policy-Driven Chassis Group Power Capping

Policy-Driven Chassis Group Power Capping

When policy-driven power chassis group power capping is selected in the global cap policy, Cisco UCS can maintain the oversubscription of servers without risking costly power failures. This is achieved through a two-tier process. At the chassis level, Cisco UCS divides the amount of power available between members of the power group. At the blade level, the amount of power allotted to a chassis is divided between blades based on priority.
Each time a service profile is associated or disassociated, UCS Manager recalculates the power allotment for each blade server within the chassis. If necessary, power from lower-priority service profiles is redistributed to higher-priority service profiles.

UCS power groups cap power in less than one second in order to safely protect data center circuit breakers. A blade must stay at its cap for 20 seconds before the chassis power distribution is optimized. This is intentionally carried out over a slower timescale to prevent reacting to transient spikes in demand.

Note
The system reserves enough power to boot a server in each slot, even if that slot is empty. This reserved power cannot be leveraged by servers requiring more power. Blades that fail to comply with the power cap are penalized or shut down.

Power Groups

A power group is a set of chassis that all draw power from the same power distribution unit (PDU). In Cisco UCS Manager, you can create power groups that include one or more chassis and then set a peak power cap in AC watts for that power grouping.

Instituting power capping at the chassis level requires the following:

- IOM, CIMC, and BIOS version 1.4 or higher
- 2 PSUs

The peak power cap is a static value that represents the maximum power available to all blade servers within a given power group. If you add or remove a blade from a power group, but do not manually modify the peak power value, the power group adjusts the peak power cap to accommodate the basic power-on requirements of all blades within that power group.

A minimum of 3788 AC watts should be set for each chassis. This converts to 3400 watts of DC power, which is the minimum amount of power required to power a fully-populated chassis.

If insufficient power is available, Cisco UCS Manager raises an alert.

Once a chassis is added to a power group, every service profile associated with that chassis also becomes part of that power group. Similarly, if you add a new blade to a chassis, that blade inherently becomes part of the chassis’ power group.

Note
Creating a power group is not the same as creating a server pool. However, you can populate a server pool with members of the same power group by creating a power qualifier and adding it to server pool policy.

Creating a Power Group

Before You Begin

Make sure the global power allocation policy is set to Policy Driven Chassis Group Cap.
Configuring Policy-Driven Chassis Group Power Capping

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>UCS-A# scope power-cap-mgmt</th>
<th>Enters power cap management mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A/power-cap-mgmt # create power-group power-group-name</td>
<td>Creates a power group and enters power group mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/power-cap-mgmt/power-group # set peak {peak-num</td>
<td>disabled</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/power-cap-mgmt/power-group # create chassis chassis-id</td>
<td>Adds the specified chassis to the power group and enters power group chassis mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A/power-cap-mgmt/power-group/chassis # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a power group called powergroup1, specifies the maximum peak power for the power group (10000 watts), adds chassis 1 to the group, and commits the transaction:

```
UCS-A# scope power-cap-mgmt
UCS-A /power-cap-mgmt # create power-group powergroup1
UCS-A /power-cap-mgmt/power-group* # set peak 10000
UCS-A /power-cap-mgmt/power-group* # create chassis 1
UCS-A /power-cap-mgmt/power-group/chassis* # commit-buffer
UCS-A /power-cap-mgmt/power-group/chassis #
```

Deleting a Power Group

<table>
<thead>
<tr>
<th>Step 1</th>
<th>UCS-A# scope power-cap-mgmt</th>
<th>Enters power cap management mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A/power-cap-mgmt # delete power-group power-group-name</td>
<td>Deletes the specified power group.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/power-cap-mgmt/power-group/chassis # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a power group called powergroup1 and commits the transaction:

```
UCS-A# scope power-cap-mgmt
UCS-A /power-cap-mgmt # delete power-group powergroup1
UCS-A /power-cap-mgmt* # commit-buffer
UCS-A /power-cap-mgmt #
```
Power Control Policy

Cisco UCS uses the priority set in the power control policy, along with the blade type and configuration, to calculate the initial power allocation for each blade within a chassis. During normal operation, the active blades within a chassis can borrow power from idle blades within the same chassis. If all blades are active and reach the power cap, service profiles with higher priority power control policies take precedence over service profiles with lower priority power control policies.

Priority is ranked on a scale of 1-10, where 1 indicates the highest priority and 10 indicates lowest priority. The default priority is 5.

For mission-critical application a special priority called no-cap is also available. Setting the priority to no-cap prevents Cisco UCS from leveraging unused power from that particular blade server. The server is allocated the maximum amount of power that that blade can reach.

Note
You must include this policy in a service profile and that service profile must be associated with a server for it to take effect.

Creating a Power Control Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # create power-control-policy power-control-pol-name</td>
<td>Creates a power control policy and enters power control policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/power-control-policy # set priority {priority-num</td>
<td>no-cap}</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/power-control-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a power control policy called powerpolicy15, sets the priority at level 2, and commits the transaction:

UCS-A# scope org /
UCS-A /org # create power-control-policy powerpolicy15
UCS-A /org/power-control-policy# set priority 2
UCS-A /org/power-control policy# commit-buffer
UCS-A /org/power-control policy#

What to Do Next
Include the power control policy in a service profile.
Deleting a Power Control Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # delete power-control-policy power-control-pol-name</td>
<td>Deletes the specified power control policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes a power control policy called powerpolicy15 and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # delete power-control-policy powerpolicy15
UCS-A /org* # commit-buffer
UCS-A /org #
```

Configuring Manual Blade-Level Power Capping

Manual Blade-Level Power Capping

When manual blade-level power capping is configured in the global cap policy, you can set a power cap for each blade server in a Cisco UCS domain.

The following configuration options are available:

Enabled

You can specify the maximum amount of power that the server can consume at one time. This maximum can be any amount between 0 watts and 1100 watts.

Disabled

No power usage limitations are imposed upon the server. The server can use as much power as it requires.

If the server encounters a spike in power usage that meets or exceeds the maximum configured for the server, Cisco UCS Manager does not disconnect or shut down the server. Instead, Cisco UCS Manager reduces the power that is made available to the server. This reduction can slow down the server, including a reduction in CPU speed.
Setting the Blade-Level Power Cap for a Server

Before You Begin
Make sure the global power allocation policy is set to Manual Blade Level Cap.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server chassis-id / server-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
</tbody>
</table>
| Step 2 | UCS-A/chassis/server # set power-budget committed {disabled | watts} | Commits the server to one of the following power usage levels:
 • disabled — Does not impose any power usage limitations on the server.
 • watts — Allows you to specify the upper level for power usage by the server. If you choose this setting, enter the maximum number of watts that the server can use. The range is 0 to 10000000 watts. |
| Step 3 | UCS-A/chassis/server # commit-buffer | Commits the transaction to the system configuration. |
| Step 4 | UCS-A/chassis/server # show power-budget | (Optional) Displays the power usage level setting. |

The following example limits the power usage for a server to 1000 watts and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A/chassis/server # set power-budget committed 1000
UCS-A/chassis/server* # commit-buffer
UCS-A/chassis/server # show power-budget
Power Budget:  
  Committed (W): 1100  
  Oper Committed (W): Disabled
```

Viewing the Blade-Level Power Cap

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server chassis-id / server-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
</tbody>
</table>
The following example shows the server power usage:

```
UCS-A# scope server 2/4
UCS-A /chassis/server # show stats
Mb Power Stats:
  Monitored Object: sys/chassis-1/blade-2/board
  Suspect: No
  Consumed Power (W): 118.285194
  Input Voltage (V): 11.948000
  Input Current (A): 9.900000
  Thresholded: Input Voltage Min

UCS-A /chassis/server #
```
Part VI

System Management

- Managing Time Zones, page 503
- Managing the Chassis, page 507
- Managing Blade Servers, page 513
- Managing Rack-Mount Servers, page 525
- Managing the I/O Modules, page 539
- Backing Up and Restoring the Configuration, page 541
- Recovering a Lost Password, page 555
Managing Time Zones

This chapter includes the following sections:

- Time Zones, page 503
- Setting the Time Zone, page 503
- Adding an NTP Server, page 505
- Deleting an NTP Server, page 506
- Setting the System Clock Manually, page 506

Time Zones

Cisco UCS requires a domain-specific time zone setting and an NTP server to ensure the correct time display in Cisco UCS Manager. If you do not configure both of these settings in a Cisco UCS domain, the time does not display correctly.

Setting the Time Zone

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/services # set timezone</td>
<td>At this point, you are prompted to enter a number corresponding to your continent, country, and time zone region. Enter the appropriate information at each prompt. When you have finished specifying the location information, you are prompted to confirm that the</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>correct timezone information is being set. Enter 1 (yes) to confirm, or 2 (no) to cancel the operation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 4
```
UCS-A /system/services # commit-buffer
```
Commits the transaction to the system configuration.

Step 5
```
UCS-A /system/services # exit
```
Enter system mode.

Step 6
```
UCS-A /system/services # exit
```
Enter EXEC mode.

Step 7
```
UCS-A /system/services # show timezone
```
Displays the configured timezone.

The following example configures the timezone to the Pacific time zone region, commits the transaction, and displays the configured timezone:

```
UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # set timezone
Please identify a location so that time zone rules can be set correctly.
Please select a continent or ocean.
1) Africa 4) Arctic Ocean 7) Australia 10) Pacific Ocean
2) Americas 5) Asia 8) Europe
3) Antarctica 6) Atlantic Ocean 9) Indian Ocean
Please select a country.
1) Anguilla 18) Ecuador 35) Paraguay
2) Antigua & Barbuda 19) El Salvador 36) Peru
3) Argentina 20) French Guiana 37) Puerto Rico
4) Aruba 21) Greenland 38) St Kitts & Nevis
5) Bahamas 22) Grenada 39) St Lucia
6) Barbados 23) Guadeloupe 40) St Pierre & Miquelon
7) Belize 24) Guatemala 41) St Vincent
8) Bolivia 25) Guyana 42) Suriname
9) Brazil 26) Haiti 43) Trinidad & Tobago
10) Canada 27) Honduras 44) Turks & Caicos Is
11) Cayman Islands 28) Jamaica 45) United States
12) Chile 29) Martinique 46) Uruguay
13) Colombia 30) Mexico 47) Venezuela
14) Costa Rica 31) Montserrat 48) Virgin Islands (UK)
15) Cuba 32) Netherlands Antilles 49) Virgin Islands (US)
16) Dominica 33) Nicaragua
17) Dominican Republic 34) Panama
Please select one of the following time zone regions.
1) Eastern Time
2) Eastern Time - Michigan - most locations
3) Eastern Time - Kentucky - Louisville area
4) Eastern Time - Kentucky - Wayne County
5) Eastern Standard Time - Indiana - most locations
6) Eastern Standard Time - Indiana - Crawford County
7) Eastern Standard Time - Indiana - Starke County
8) Eastern Standard Time - Indiana - Switzerland County
9) Central Time
10) Central Time - Michigan - Wisconsin border
11) Central Time - North Dakota - Oliver County
12) Mountain Time
13) Mountain Time - south Idaho & east Oregon
14) Mountain Time - Navajo
15) Mountain Standard Time - Arizona
16) Pacific Time
```
The following information has been given:

- United States
- Pacific Time

Therefore timezone 'America/Los_Angeles' will be set.

Local time is now: Fri May 15 07:39:25 PDT 2009.
Is the above information OK?
1) Yes
2) No

Adding an NTP Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A#</td>
</tr>
<tr>
<td>scope system</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A</td>
</tr>
<tr>
<td>/system # scope services</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A</td>
</tr>
<tr>
<td>/system/services # create ntp-server {hostname</td>
<td>ip-addr}</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A</td>
</tr>
<tr>
<td>/system/services # commit-buffer</td>
<td></td>
</tr>
</tbody>
</table>

The following example configures an NTP server with the IP address 192.168.200.101 and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # create ntp-server 192.168.200.101
UCS-A /system/services* # commit-buffer
UCS-A /system/services #
Deleting an NTP Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>UCS-A /system/services # delete ntp-server {hostname</td>
<td>ip-addr}</td>
</tr>
</tbody>
</table>

The following example deletes the NTP server with the IP address 192.168.200.101 and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # delete ntp-server 192.168.200.101
UCS-A /system/services* # commit-buffer
UCS-A /system/services #

Setting the System Clock Manually

System clock modifications take effect immediately.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>UCS-A /system # scope services</td>
<td>Enters system services mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>UCS-A /system/services # set clock mon date year hour min sec</td>
<td>Configures the system clock.</td>
</tr>
</tbody>
</table>

The following example configures the system clock and commits the transaction:

UCS-A# scope system
UCS-A /system # scope services
UCS-A /system/services # set clock apr 14 2010 15 27 00
UCS-A /system/services #
Managing the Chassis

This chapter includes the following sections:

- Guidelines for Removing and Decommissioning Chassis, page 507
- Acknowledging a Chassis, page 508
- Decommissioning a Chassis, page 508
- Removing a Chassis, page 509
- Recommissioning a Chassis, page 509
- Renumbering a Chassis, page 510
- Toggling the Locator LED, page 512

Guidelines for Removing and Decommissioning Chassis

Consider the following guidelines when deciding whether to remove or decommission a chassis using Cisco UCS Manager:

Decommissioning a Chassis

Decommissioning is performed when a chassis is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned chassis will be eventually recommissioned, a portion of the chassis’ information is retained by Cisco UCS Manager for future use.

Removing a Chassis

Removing is performed when you physically remove a chassis from the system. Once the physical removal of the chassis is completed, the configuration for that chassis can be removed in Cisco UCS Manager.

Note

You cannot remove a chassis from Cisco UCS Manager if it is physically present and connected.

If you need to add a removed chassis back to the configuration, it must be reconnected and then rediscovered. During rediscovery Cisco UCS Manager will assign the chassis a new ID that may be different from ID that it held before.
Acknowledging a Chassis

Perform the following procedure if you increase or decrease the number of links that connect the chassis to the fabric interconnect. Acknowledging the chassis ensures that Cisco UCS Manager is aware of the change in the number of links and that traffic flows along all available links.

After you enable or disable a port on a fabric interconnect, wait for at least 1 minute before you reacknowledge the chassis. If you reacknowledge the chassis too soon, the pinning of server traffic from the chassis may not be updated with the changes to the port that you enabled or disabled.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# acknowledge chassis</td>
<td>Acknowledges the specified chassis.</td>
</tr>
<tr>
<td></td>
<td>chassis-num</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction to the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration.</td>
</tr>
</tbody>
</table>

The following example acknowledges chassis 2 and commits the transaction:

```
UCS-A# acknowledge chassis 2
UCS-A* # commit-buffer
UCS-A #
```

Decommissioning a Chassis

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# decommission chassis</td>
<td>Decommissions the specified chassis.</td>
</tr>
<tr>
<td></td>
<td>chassis-num</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction to the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration.</td>
</tr>
</tbody>
</table>

The decommission may take several minutes to complete.

The following example decommissions chassis 2 and commits the transaction:

```
UCS-A# decommission chassis 2
UCS-A* # commit-buffer
UCS-A #
```

```
Chassis:
  Chassis Overall Status  Admin State
------------  ---------------  ---------------
  1 Operable  Acknowledged
  2 Accessibility Problem  Decommission
```
Removing a Chassis

Before You Begin
Physically remove the chassis before performing the following procedure.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# remove chassis</td>
<td>Removes the specified chassis.</td>
</tr>
<tr>
<td>chassis-num</td>
<td></td>
</tr>
<tr>
<td>Step 2 UCS-A# commit-buffer</td>
<td>Commits the transaction to the</td>
</tr>
<tr>
<td></td>
<td>system configuration.</td>
</tr>
</tbody>
</table>

The removal may take several minutes to complete.
The following example removes chassis 2 and commits the transaction:

```
UCS-A# remove chassis 2
UCS-A# commit-buffer
UCS-A #
```

Recommissioning a Chassis

This procedure returns the chassis to the configuration and applies the chassis discovery policy to the chassis. After this procedure, you can access the chassis and any servers in it.

Before You Begin
Collect the following information about the chassis to be recommissioned:

- Vendor name
- Model name
- Serial number

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# recommission</td>
<td>Recommissions the specified</td>
</tr>
<tr>
<td>chassis vendor-name model-name</td>
<td>chassis.</td>
</tr>
<tr>
<td>serial-num</td>
<td></td>
</tr>
<tr>
<td>Step 2 UCS-A# commit-buffer</td>
<td>Commits the transaction to the</td>
</tr>
<tr>
<td></td>
<td>system configuration.</td>
</tr>
</tbody>
</table>
The following example recommissions a Cisco UCS 5108 chassis and commits the transaction:

```console
UCS-A# show chassis
Chassis:
------------------------  -----------
1 Accessibility Problem Decommission

UCS-A# recommission chassis "Cisco Systems Inc" "N20-C6508" FOX1252GNNN
UCS-A* # commit-buffer
UCS-A #
```

Renumbering a Chassis

Note

You cannot renumber a blade server through Cisco UCS Manager. The ID assigned to a blade server is determined by its physical slot in the chassis. To renumber a blade server, you must physically move the server to a different slot in the chassis.

Before You Begin

If you are swapping IDs between chassis, you must first decommission both chassis and then wait for the chassis decommission FSM to complete before proceeding with the renumbering steps.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UCS-A# show chassis inventory</td>
<td>Displays information about your chassis.</td>
</tr>
</tbody>
</table>
| 2 | Verify that the chassis inventory does not include the following: | • The chassis you want to renumber
| | | • A chassis with the number you want to use |
| 3 | UCS-A# recommission chassis | Recommissions and renumbers the specified chassis. |
| | vendor-name model-name serial-num [chassis-num] | |
| 4 | UCS-A# commit-buffer | Commits the transaction to the system configuration. |
The following example decommissions two Cisco UCS chassis (chassis 7 and 8), switches their IDs, and commits the transaction:

```
UCS-A# show chassis inventory

Chassis PID Vendor Serial (SN) HW Revision
------- --------- --------------- ----------- -------------
1 N20-C6508 Cisco Systems Inc FOX1252GAAA 0
2 N20-C6508 Cisco Systems Inc FOX1252GBBB 0
3 N20-C6508 Cisco Systems Inc FOX1252GCCC 0
4 N20-C6508 Cisco Systems Inc FOX1252GDDD 0
5 N20-C6508 Cisco Systems Inc FOX1252GEEE 0
6 N20-C6508 Cisco Systems Inc FOX1252GFFF 0
7 N20-C6508 Cisco Systems Inc FOX1252GGGG 0
8 N20-C6508 Cisco Systems Inc FOX1252GHHH 0
9 N20-C6508 Cisco Systems Inc FOX1252GIII 0
10 N20-C6508 Cisco Systems Inc FOX1252GJJJ 0
11 N20-C6508 Cisco Systems Inc FOX1252GKKK 0
12 N20-C6508 Cisco Systems Inc FOX1252GLLL 0
13 N20-C6508 Cisco Systems Inc FOX1252GMMM 0
14 N20-C6508 Cisco Systems Inc FOX1252GNNN 0

UCS-A# decommission chassis "Cisco Systems Inc" "N20-C6508" FOX1252GHHH
UCS-A*# commit-buffer
```

```
UCS-A# decommission chassis "Cisco Systems Inc" "N20-C6508" FOX1252GIII
UCS-A*# commit-buffer
```

```
UCS-A# show chassis inventory

Chassis PID Vendor Serial (SN) HW Revision
------- --------- --------------- ----------- -------------
1 N20-C6508 Cisco Systems Inc FOX1252GAAA 0
2 N20-C6508 Cisco Systems Inc FOX1252GBBB 0
3 N20-C6508 Cisco Systems Inc FOX1252GCCC 0
4 N20-C6508 Cisco Systems Inc FOX1252GDDD 0
5 N20-C6508 Cisco Systems Inc FOX1252GEEE 0
6 N20-C6508 Cisco Systems Inc FOX1252GFFF 0
7 N20-C6508 Cisco Systems Inc FOX1252GGGG 0
8 N20-C6508 Cisco Systems Inc FOX1252GHHH 0
9 N20-C6508 Cisco Systems Inc FOX1252GIII 0
10 N20-C6508 Cisco Systems Inc FOX1252GJJJ 0
11 N20-C6508 Cisco Systems Inc FOX1252GKKK 0
12 N20-C6508 Cisco Systems Inc FOX1252GLLL 0
13 N20-C6508 Cisco Systems Inc FOX1252GMMM 0
14 N20-C6508 Cisco Systems Inc FOX1252GNNN 0

UCS-A# show chassis decommissioned

Chassis PID Vendor Serial (SN) HW Revision
------- --------- --------------- ----------- -------------
8 N20-C6508 Cisco Systems Inc FOX1252GHHH 0
9 N20-C6508 Cisco Systems Inc FOX1252GIII 0
```

```
UCS-A# recommission chassis "Cisco Systems Inc" "N20-C6508" FOX1252GHHH 9
UCS-A*# commit-buffer
```

```
UCS-A# recommission chassis "Cisco Systems Inc" "N20-C6508" FOX1252GIII 8
UCS-A*# commit-buffer
```

```
UCS-A# show chassis inventory

Chassis PID Vendor Serial (SN) HW Revision
------- --------- --------------- ----------- -------------
1 N20-C6508 Cisco Systems Inc FOX1252GAAA 0
2 N20-C6508 Cisco Systems Inc FOX1252GBBB 0
3 N20-C6508 Cisco Systems Inc FOX1252GCCC 0
4 N20-C6508 Cisco Systems Inc FOX1252GDDD 0
5 N20-C6508 Cisco Systems Inc FOX1252GEEE 0
6 N20-C6508 Cisco Systems Inc FOX1252GFFF 0
7 N20-C6508 Cisco Systems Inc FOX1252GGGG 0
8 N20-C6508 Cisco Systems Inc FOX1252GHHH 0
9 N20-C6508 Cisco Systems Inc FOX1252GIII 0
10 N20-C6508 Cisco Systems Inc FOX1252GJJJ 0
11 N20-C6508 Cisco Systems Inc FOX1252GKKK 0
12 N20-C6508 Cisco Systems Inc FOX1252GLLL 0
13 N20-C6508 Cisco Systems Inc FOX1252GMMM 0
14 N20-C6508 Cisco Systems Inc FOX1252GNNN 0
```
Toggling the Locator LED

Turning On the Locator LED for a Chassis

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope chassis chassis-num</td>
</tr>
<tr>
<td></td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis # enable locator-led</td>
</tr>
<tr>
<td></td>
<td>Turns on the chassis locator LED.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns on the locator LED for chassis 2 and commits the transaction:

```
UCS-A# scope chassis 2
UCS-A /chassis # enable locator-led
UCS-A /chassis* # commit-buffer
UCS-A /chassis #
```

Turning Off the Locator LED for a Chassis

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope chassis chassis-num</td>
</tr>
<tr>
<td></td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis # disable locator-led</td>
</tr>
<tr>
<td></td>
<td>Turns off the chassis locator LED.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns off the locator LED for chassis 2 and commits the transaction:

```
UCS-A# scope chassis 2
UCS-A /chassis # disable locator-led
UCS-A /chassis* # commit-buffer
UCS-A /chassis #
```
Managing Blade Servers

This chapter includes the following sections:

- Blade Server Management, page 513
- Guidelines for Removing and Decommissioning Blade Servers, page 514
- Booting a Blade Server, page 514
- Shutting Down a Blade Server, page 515
- Power Cycling a Blade Server, page 516
- Performing a Hard Reset on a Blade Server, page 516
- Avoiding Unexpected Server Power Changes, page 517
- Acknowledging a Blade Server, page 518
- Removing a Blade Server from a Chassis, page 519
- Decommissioning a Blade Server, page 519
- Turning On the Locator LED for a Blade Server, page 520
- Turning Off the Locator LED for a Blade Server, page 520
- Resetting the CMOS for a Blade Server, page 520
- Resetting the CIMC for a Blade Server, page 521
- Recovering the Corrupt BIOS on a Blade Server, page 522
- Issuing an NMI from a Blade Server, page 522

Blade Server Management

You can manage and monitor all blade servers in a Cisco UCS domain through Cisco UCS Manager. Some blade server management tasks, such as changes to the power state, can be performed from the server and service profile.

The remaining management tasks can only be performed on the server.
If a blade server slot in a chassis is empty, Cisco UCS Manager provides information, errors, and faults for that slot. You can also reacknowledge the slot to resolve server mismatch errors and to have Cisco UCS Manager rediscover the blade server in the slot.

Guidelines for Removing and Decommissioning Blade Servers

Consider the following guidelines when deciding whether to remove or decommission a blade server using Cisco UCS Manager:

Decommissioning a Blade Server

Decommissioning is performed when a blade server is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned blade server will be eventually recommissioned, a portion of the server's information is retained by Cisco UCS Manager for future use.

Removing a Blade Server

Removing is performed when you physically remove a blade server from the server by disconnecting it from the chassis. You cannot remove a blade server from Cisco UCS Manager if it is physically present and connected to a chassis. Once the physical removal of the blade server is completed, the configuration for that blade server can be removed in Cisco UCS Manager.

During removal, active links to the blade server are disabled, all entries from databases are removed, and the server is automatically removed from any server pools that it was assigned to during discovery.

Note

Only those servers added to a server pool automatically during discovery will be removed automatically. Servers that have been manually added to a server pool have to be removed manually.

If you need to add a removed blade server back to the configuration, it must be reconnected and then rediscovered. When a server is reintroduced to Cisco UCS Manager it is treated like a new server and is subject to the deep discovery process. For this reason, it's possible that Cisco UCS Manager will assign the server a new ID that may be different from the ID that it held before.

Booting a Blade Server

Before You Begin

Associate a service profile with a blade server or server pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
</tbody>
</table>
Shutting Down a Blade Server

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

Before You Begin

Associate a service profile with a blade server or server pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope org org-name</code></td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type <code>/</code> as the <code>org-name</code>.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # <code>scope service-profile profile-name</code></td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # <code>power down</code></td>
<td>Shuts down the blade server associated with the service profile.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example shuts down the blade server associated with the service profile named ServProf34 and commits the transaction:

UCS-A# `scope org /`
UCS-A /org # `scope service-profile ServProf34`
UCS-A /org/service-profile # `power down`
Power Cycling a Blade Server

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope server chassis-num / server-num</code></td>
<td>Enters chassis server mode for the specified blade server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis/server # `cycle {cycle-immediate</td>
<td>cycle-wait}`</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A# <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example immediately power cycles blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A /chassis/server # `cycle cycle-immediate`
UCS-A /chassis/server* # `commit-buffer`
UCS-A /chassis/server #
```

Performing a Hard Reset on a Blade Server

When you reset a server, Cisco UCS Manager sends a pulse on the reset line. You can choose to gracefully shut down the operating system. If the operating system does not support a graceful shut down, the server is power cycled. The option to have Cisco UCS Manager complete all management operations before it resets the server does not guarantee that these operations will be completed before the server is reset.

Note

If you are trying to boot a server from a power-down state, you should not use `Reset`. If you continue the power-up with this process, the desired power state of the servers will become out of sync with the actual power state and the servers may unexpectedly shut down at a later time. To safely reboot the selected servers from a power-down state, click `Cancel` then select the `Boot Server` action.
Command or Action

| Step 2 | UCS-A /chassis/server # reset {hard-reset-immediate | hard-reset-wait} |
|--------|--|
| **Purpose** | Performs a hard reset of the blade server. Use the **hard-reset-immediate** keyword to immediately begin hard resetting the server; use the **hard-reset-wait** keyword to schedule the hard reset to begin after all pending management operations have completed. |

<table>
<thead>
<tr>
<th>Step 3</th>
<th>UCS-A /server # commit-buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example performs an immediate hard reset of blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A /chassis/server # reset hard-reset-immediate
UCS-A /chassis/server* # commit-buffer
```

Avoiding Unexpected Server Power Changes

If a server is not associated with a service profile, you can use any available means to change the server power state, including the physical Power or Reset buttons on the server.

If a server is associated with, or assigned to, a service profile, you should only use the following methods to change the server power state:

- In Cisco UCS Manager GUI, go to the **General** tab for the server or the service profile associated with the server and select **Boot Server** or **Shutdown Server** from the **Actions** area.
- In Cisco UCS Manager CLI, scope to the server or the service profile associated with the server and use the **power up** or **power down** commands.

Important

Do **not** use any of the following options on an associated server that is currently powered off:

- **Reset** in the GUI
- **cycle cycle-immediate** or **reset hard-reset-immediate** in the CLI
- The physical Power or Reset buttons on the server

If you reset, cycle, or use the physical power buttons on a server that is currently powered off, the server's actual power state may become out of sync with the desired power state setting in the service profile. If the communication between the server and Cisco UCS Manager is disrupted or if the service profile configuration changes, Cisco UCS Manager may apply the desired power state from the service profile to the server, causing an unexpected power change.

In Cisco UCS release 2.0.1, power synchronization issues can lead to unexpected server shut downs or restarts as shown below:
Starting in Cisco UCS release 2.0.2, power synchronization issues can lead to an unexpected server restart, as shown below:

<table>
<thead>
<tr>
<th>Desired Power State in Service Profile</th>
<th>Current Server Power State</th>
<th>Server Power State After Communication Is Disrupted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Powered Off</td>
<td>Powered On</td>
</tr>
<tr>
<td>Down</td>
<td>Powered On</td>
<td>Powered On</td>
</tr>
</tbody>
</table>

Running servers are not shut down regardless of the desired power state in the service profile.

Acknowledging a Blade Server

Perform the following procedure if you need to have Cisco UCS Manager rediscover the server and all endpoints in the server. For example, you can use this procedure if a server is stuck in an unexpected state, such as the discovery state.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1:</td>
<td></td>
</tr>
<tr>
<td>UCS-A# acknowledge server chassis-num / server-num</td>
<td>Acknowledges the specified blade server.</td>
</tr>
<tr>
<td>Step 2:</td>
<td></td>
</tr>
<tr>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example acknowledges server 4 in chassis 2 and commits the transaction:

```
UCS-A# acknowledge server 2/4
UCS-A* # commit-buffer
UCS-A #
```
Removing a Blade Server from a Chassis

Before You Begin

Physically remove the server from its chassis before performing the following procedure.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>remove server chassis-num / server-num</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example removes blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# remove server 2/4
UCS-A* # commit-buffer
UCS-A #
```

What to Do Next

If you physically re-install the blade server, you must re-acknowledge the slot to have Cisco UCS Manager rediscover the server.

For more information, see Acknowledging a Blade Server, on page 518.

Decommissioning a Blade Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>decommission server chassis-num / server-num</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example decommissions blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# decommission server 2/4
UCS-A* # commit-buffer
UCS-A #
```
Turning On the Locator LED for a Blade Server

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server chassis-num / server-num</td>
<td>Enters chassis server mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/chassis/server # enable locator-led</td>
<td>Turns on the blade server locator LED.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/chassis/server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns on the locator LED for blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A/chassis/server # enable locator-led
UCS-A/chassis/server* # commit-buffer
UCS-A/chassis/server #
```

Turning Off the Locator LED for a Blade Server

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server chassis-num / server-num</td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/chassis/server # disable locator-led</td>
<td>Turns off the blade server locator LED.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/chassis/server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns off the locator LED for blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope chassis 2/4
UCS-A/chassis/server # disable locator-led
UCS-A/chassis/server* # commit-buffer
UCS-A/chassis/server #
```

Resetting the CMOS for a Blade Server

On rare occasions, troubleshooting a server may require you to reset the CMOS. This procedure is not part of the normal maintenance of a server.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope server chassis-num / server-num</td>
<td>Enters chassis server mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2 UCS-A /chassis/server # reset-cmos</td>
<td>Resets the CMOS for the blade server.</td>
</tr>
<tr>
<td>Step 3 UCS-A /chassis/server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example resets the CMOS for blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A /chassis/server # reset-cmos
UCS-A /chassis/server* # commit-buffer
UCS-A /chassis/server #
```

Resetting the CIMC for a Blade Server

On rare occasions, such as an issue with the current running firmware, troubleshooting a server may require you to reset the CIMC. This procedure is not part of the normal maintenance of a server. After you reset the CIMC, the server boots with the running version of the firmware for that server.

If the CIMC is reset, the power monitoring functions of Cisco UCS become briefly unavailable for as long as it takes for the CIMC to reboot. While this usually only takes 20 seconds, there is a possibility that the peak power cap could be exceeded during that time. To avoid exceeding the configured power cap in a very low power-capped environment, consider staggering the rebooting or activation of CIMCs.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope server chassis-num / server-num</td>
<td>Enters chassis server mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2 UCS-A /chassis/server # scope CIMC</td>
<td>Enters chassis server CIMC mode</td>
</tr>
<tr>
<td>Step 3 UCS-A /chassis/server/CIMC # reset</td>
<td>Resets the CIMC for the blade server.</td>
</tr>
<tr>
<td>Step 4 UCS-A /chassis/server/CIMC # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example resets the CIMC for blade server 4 in chassis 2 and commits the transaction:

```
UCS-A# scope server 2/4
UCS-A /chassis/server # scope CIMC
UCS-A /chassis/server/cimc # reset
UCS-A /chassis/server/cimc* # commit-buffer
UCS-A /chassis/server/cimc #
```
Recovering the Corrupt BIOS on a Blade Server

On rare occasions, an issue with a blade server may require you to recover the corrupted BIOS. This procedure is not part of the normal maintenance of a server. After you recover the BIOS, the blade server boots with the running version of the firmware for that server.

Before You Begin

Important Remove all attached or mapped USB storage from a server before you attempt to recover the corrupt BIOS on that server. If an external USB drive is attached or mapped from vMedia to the server, BIOS recovery fails.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope server chassis-id / server-id</code> Enters chassis server mode for the specified blade server in the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A <code>/chassis/server # recover-bios version [ignorecompcheck]</code> Loads and activates the specified BIOS version. To activate the firmware without making sure that it is compatible first, include the <code>ignorecompcheck</code> keyword. We recommend that you use this option only when explicitly directed to do so by a technical support representative.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A <code>/chassis/server # commit-buffer</code>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example shows how to recover the BIOS:

- UCS-A# `scope server 1/7`
- UCS-A `/chassis/server # recover-bios S5500.0044.0.3.1.010620101125`
- UCS-A `/chassis/server* # commit-buffer`
- UCS-A `/chassis/server #`

Issuing an NMI from a Blade Server

Perform the following procedure if the system remains unresponsive and you need Cisco UCS Manager to issue a Non Maskable Interrupt (NMI) to the BIOS or operating system from the CIMC. This action creates a core dump or stack trace, depending on the operating system installed on the server.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope server [chassis-num/server-num/dynamic-uuid]</code></td>
<td>Enters server mode for the specified server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis/server # <code>diagnostic-interrupt</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis/server* # <code>commit-buffer</code></td>
<td>Commits any pending transactions.</td>
</tr>
</tbody>
</table>

The following example sends an NMI from server 4 in chassis 2 and commits the transaction:

```
UCS-A# `scope server 2/4`
UCS-A /chassis/server # `diagnostic-interrupt`
UCS-A /chassis/server* # `commit-buffer`
UCS-A /chassis/server #
```
Managing Rack-Mount Servers

This chapter includes the following sections:

• Rack-Mount Server Management, page 525
• Guidelines for Removing and Decommissioning Rack-Mount Servers, page 526
• Booting a Rack-Mount Server, page 526
• Shutting Down a Rack-Mount Server, page 527
• Power Cycling a Rack-Mount Server, page 528
• Performing a Hard Reset on a Rack-Mount Server, page 528
• Avoiding Unexpected Server Power Changes, page 529
• Acknowledging a Rack-Mount Server, page 530
• Decommissioning a Rack-Mount Server, page 531
• Renumbering a Rack-Mount Server, page 531
• Removing a Rack-Mount Server, page 532
• Turning On the Locator LED for a Rack-Mount Server, page 533
• Turning Off the Locator LED for a Rack-Mount Server, page 534
• Resetting the CMOS for a Rack-Mount Server, page 534
• Resetting the CIMC for a Rack-Mount Server, page 535
• Recovering the Corrupt BIOS on a Rack-Mount Server, page 535
• Showing the Status for a Rack-Mount Server, page 536
• Issuing an NMI from a Rack-Mount Server, page 536

Rack-Mount Server Management

You can manage and monitor all rack-mount servers that have been integrated with a Cisco UCS domain through Cisco UCS Manager. All management and monitoring features are supported for rack-mount servers except power capping. Some rack-mount server management tasks, such as changes to the power state, can
be performed from both the server and service profile. The remaining management tasks can only be performed on the server.

Cisco UCS Manager provides information, errors, and faults for each rack-mount server that it has discovered.

Tip

For information about how to integrate a supported Cisco UCS rack-mount server with Cisco UCS Manager, see the hardware installation guide for that server.

Guidelines for Removing and Decommissioning Rack-Mount Servers

Consider the following guidelines when deciding whether to remove or decommission a rack-mount server using Cisco UCS Manager:

Decommissioning a Rack-Mount server

Decommissioning is performed when a rack-mount server is physically present and connected but you want to temporarily remove it from the configuration. Because it is expected that a decommissioned rack-mount server will be eventually recommissioned, a portion of the server's information is retained by Cisco UCS Manager for future use.

Removing a Rack-Mount server

Removing is performed when you physically remove the server from the system by disconnecting the rack-mount server from the fabric extender. You cannot remove a rack-mount server from Cisco UCS Manager if it is physically present and connected to the fabric extender. Once the rack-mount server is disconnected, the configuration for that rack-mount server can be removed in Cisco UCS Manager.

During removal, management interfaces are disconnected, all entries from databases are removed, and the server is automatically removed from any server pools that it was assigned to during discovery.

Note

Only those servers added to a server pool automatically during discovery will be removed automatically. Servers that have been manually added to a server pool have to be removed manually.

If you need to add a removed rack-mount server back to the configuration, it must be reconnected and then rediscovered. When a server is reintroduced to Cisco UCS Manager it is treated like a new server and is subject to the deep discovery process. For this reason, it's possible that Cisco UCS Manager will assign the server a new ID that may be different from the ID that it held before.

Booting a Rack-Mount Server

Before You Begin

Associate a service profile with a rack-mount server.
Shutting Down a Rack-Mount Server

When you use this procedure to shut down a server with an installed operating system, Cisco UCS Manager triggers the OS into a graceful shutdown sequence.

Before You Begin
Associate a service profile with a rack-mount server.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope service-profile profile-name</td>
<td>Enters organization service profile mode for the specified service profile.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/service-profile # power down</td>
<td>Shuts down the rack-mount server associated with the service profile.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/service-profile # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example shuts down the rack-mount server associated with the service profile named ServProf34 and commits the transaction:

UCS-A# scope org /
UCS-A /org # scope service-profile ServProf34
UCS-A /org/service-profile # power down
UCS-A /org/service-profile* # commit-buffer
UCS-A /org/service-profile #

Power Cycling a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope server server-num</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /server # cycle {cycle-immediate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A# commit-buffer</td>
</tr>
</tbody>
</table>

The following example immediately power cycles rack-mount server 2 and commits the transaction:

UCS-A# scope server 2
UCS-A /server # cycle cycle-immediate
UCS-A /server* # commit-buffer
UCS-A /server #

Performing a Hard Reset on a Rack-Mount Server

When you reset a server, Cisco UCS Manager sends a pulse on the reset line. You can choose to gracefully shut down the operating system. If the operating system does not support a graceful shut down, the server is power cycled. The option to have Cisco UCS Manager complete all management operations before it resets the server does not guarantee that these operations will be completed before the server is reset.

Note

If you are trying to boot a server from a power-down state, you should not use Reset.

If you continue the power-up with this process, the desired power state of the servers will become out of sync with the actual power state and the servers may unexpectedly shut down at a later time. To safely reboot the selected servers from a power-down state, click Cancel then select the Boot Server action.
Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>UCS-A /server # reset { hard-reset-immediate</td>
<td>hard-reset-wait }</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example performs an immediate hard reset of rack-mount server 2 and commits the transaction:

```
UCS-A# scope server 2
UCS-A /server # reset hard-reset-immediate
UCS-A /server* # commit-buffer
UCS-A /server 
```

Avoiding Unexpected Server Power Changes

If a server is not associated with a service profile, you can use any available means to change the server power state, including the physical Power or Reset buttons on the server.

If a server is associated with, or assigned to, a service profile, you should only use the following methods to change the server power state:

- In Cisco UCS Manager GUI, go to the General tab for the server or the service profile associated with the server and select Boot Server or Shutdown Server from the Actions area.
- In Cisco UCS Manager CLI, scope to the server or the service profile associated with the server and use the power up or power down commands.

Important

Do not use any of the following options on an associated server that is currently powered off:

- Reset in the GUI
- cycle cycle-immediate or reset hard-reset-immediate in the CLI
- The physical Power or Reset buttons on the server

If you reset, cycle, or use the physical power buttons on a server that is currently powered off, the server's actual power state may become out of sync with the desired power state setting in the service profile. If the communication between the server and Cisco UCS Manager is disrupted or if the service profile configuration changes, Cisco UCS Manager may apply the desired power state from the service profile to the server, causing an unexpected power change.
In Cisco UCS release 2.0.1, power synchronization issues can lead to unexpected server shut downs or restarts as shown below:

<table>
<thead>
<tr>
<th>Desired Power State in Service Profile</th>
<th>Current Server Power State</th>
<th>Server Power State After Communication Is Disrupted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Powered Off</td>
<td>Powered On</td>
</tr>
<tr>
<td>Down</td>
<td>Powered On</td>
<td>Powered Off</td>
</tr>
</tbody>
</table>

Starting in Cisco UCS release 2.0.2, power synchronization issues can lead to an unexpected server restart, as shown below:

<table>
<thead>
<tr>
<th>Desired Power State in Service Profile</th>
<th>Current Server Power State</th>
<th>Server Power State After Communication Is Disrupted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Powered Off</td>
<td>Powered On</td>
</tr>
<tr>
<td>Down</td>
<td>Powered On</td>
<td>Powered On</td>
</tr>
</tbody>
</table>

Running servers are not shut down regardless of the desired power state in the service profile.

Acknowledging a Rack-Mount Server

Perform the following procedure if you need to have Cisco UCS Manager rediscover the server and all endpoints in the server. For example, you can use this procedure if a server is stuck in an unexpected state, such as the discovery state.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# acknowledge server server-num</td>
<td>Acknowledges the specified rack-mount server.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example acknowledges rack-mount server 2 and commits the transaction:

```
UCS-A# acknowledge server 2
UCS-A* # commit-buffer
UCS-A #
```
Decommissioning a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>decommission server server-num</code></td>
<td>Decommissions the specified rack-mount server.</td>
</tr>
<tr>
<td>Step 2 UCS-A# <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example decommissions rack-mount server 2 and commits the transaction:

```
UCS-A# decommission server 2
UCS-A* # commit-buffer
UCS-A #
```

Renumbering a Rack-Mount Server

Before You Begin

If you are swapping IDs between servers, you must first decommission both servers and then wait for the server decommission FSM to complete before proceeding with the renumbering steps.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>show server inventory</code></td>
<td>Displays information about your servers.</td>
</tr>
</tbody>
</table>
| **Step 2** Verify that the server inventory does not include the following:
 • The rack-mount server you want to renumber
 • A rack-mount server with the number you want to use | If either of these rack-mount servers are listed in the server inventory, decommission those servers. You must wait until the decommission FSM is complete and the rack-mount servers are not listed in the server inventory before continuing. This might take several minutes.
To see which servers have been decommissioned, issue the `show server decommissioned` command. |
| **Step 3** UCS-A# `recommission server vendor-name model-name serial-num new-id` | Recommissions and renumbers the specified rack-mount server. |
| **Step 4** UCS-A# `commit-buffer` | Commits the transaction to the system configuration. |
The following example decommissions a rack-mount server with ID 2, changes the ID to 3, recommissions that server, and commits the transaction:

```
UCS-A# show server inventory
Server Equipped PID Equipped VID Equipped Serial (SN) Slot Status Ackd Memory (MB)
Ackd Cores
------- ------------ ------------ -------------------- ---------------- ----------------
----------
1/1 UCSB-B200-M3 V01 FCH1532718P Equipped 131072
16
1/2 UCSB-B200-M3 V01 FCH153271DF Equipped 131072
16
1/3 UCSB-B200-M3 V01 FCH153271DL Equipped 114688
16
1/4 UCSB-B200-M3 V01 Empty
1/5 Empty
1/6 Empty
1/7 N20-B6730-1 V01 JAF1432CFDH Equipped 65536
16
1/8 Empty
1 R200-1120402W V01 QCI1414A02J N/A 49152
12
2 R210-2121605W V01 QCI1442AHFX N/A 24576 8
4 UCSC-BSE-SFF-C200 V01 QCI1514A0J7 N/A 8192 8

UCS-A# decommission server 2
UCS-A#* commit-buffer
UCS-A# show server decommissioned
Vendor Model Serial (SN) Server
----------------- ---------- ----------- -----
Cisco Systems Inc R210-2121605W QCI1442AHFX 2

UCS-A# recommission chassis "Cisco Systems Inc" "R210-2121605W" QCI1442AHFX 3
UCS-A#* commit-buffer
UCS-A# show server inventory
Server Equipped PID Equipped VID Equipped Serial (SN) Slot Status Ackd Memory (MB)
Ackd Cores
------- ------------ ------------ -------------------- ---------------- ----------------
----------
1/1 UCSB-B200-M3 V01 FCH1532718P Equipped 131072
16
1/2 UCSB-B200-M3 V01 FCH153271DF Equipped 131072
16
1/3 UCSB-B200-M3 V01 FCH153271DL Equipped 114688
16
1/4 UCSB-B200-M3 V01 Empty
1/5 Empty
1/6 Empty
1/7 N20-B6730-1 V01 JAF1432CFDH Equipped 65536
16
1/8 Empty
1 R200-1120402W V01 QCI1414A02J N/A 49152
12
3 R210-2121605W V01 QCI1442AHFX N/A 24576 8
4 UCSC-BSE-SFF-C200 V01 QCI1514A0J7 N/A 8192 8
```

Removing a Rack-Mount Server

Before You Begin

Physically disconnect the CIMC LOM cables that connect the rack-mount server to the fabric extender before performing the following procedure. For high availability setups, remove both cables.
Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A# remove server server-num</td>
<td>Removes the specified rack-mount server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example removes rack-mount server 4 and commits the transaction:

```
UCS-A# remove server 4
UCS-A* # commit-buffer
UCS-A #
```

What to Do Next

If you physically reconnect the rack-mount server, you must re-acknowledge it to have Cisco UCS Manager rediscover the server.

For more information, see Acknowledging a Rack-Mount Server, on page 530.

Turning On the Locator LED for a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A# scope server server-num</td>
<td>Enters server mode for the specified rack-mount server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /server # enable locator-led</td>
<td>Turns on the rack-mount server locator LED.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCS-A /server # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns on the locator LED for rack-mount server 2 and commits the transaction:

```
UCS-A# scope server 2
UCS-A /server # enable locator-led
UCS-A /server* # commit-buffer
UCS-A /server #
```
Turning Off the Locator LED for a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope server server-num</code></td>
<td>Enters server mode for the specified rack-mount server.</td>
</tr>
<tr>
<td>Step 2 UCS-A <code>/server # disable locator-led</code></td>
<td>Turns off the rack-mount server locator LED.</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/server # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example turns off the locator LED for rack-mount server 2 and commits the transaction:

```
UCS-A# scope server 2
UCS-A /server # disable locator-led
UCS-A /server* # commit-buffer
UCS-A /server #
```

Resetting the CMOS for a Rack-Mount Server

On rare occasions, troubleshooting a server may require you to reset the CMOS. This procedure is not part of the normal maintenance of a server.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope server server-num</code></td>
<td>Enters server mode for the rack-mount server.</td>
</tr>
<tr>
<td>Step 2 UCS-A <code>/server # reset-cmos</code></td>
<td>Resets the CMOS for the rack-mount server.</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/server # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example resets the CMOS for rack-mount server 2 and commits the transaction:

```
UCS-A# scope server 2
UCS-A /server # reset-cmos
UCS-A /server* # commit-buffer
UCS-A /server #
```
Resetting the CIMC for a Rack-Mount Server

On rare occasions, such as an issue with the current running firmware, troubleshooting a server may require you to reset the CIMC. This procedure is not part of the normal maintenance of a server. After you reset the CIMC, the server boots with the running version of the firmware for that server.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope server server-num</td>
<td>Enters server mode for the specified rack-mount server.</td>
</tr>
<tr>
<td>Step 2 UCS-A /server # scope CIMC</td>
<td>Enters server CIMC mode</td>
</tr>
<tr>
<td>Step 3 UCS-A /server/CIMC # reset</td>
<td>Resets the CIMC for the rack-mount server.</td>
</tr>
<tr>
<td>Step 4 UCS-A /server/CIMC # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example resets the CIMC for rack-mount server 2 and commits the transaction:

UCS-A# scope server 2
UCS-A /server # scope CIMC
UCS-A /server/cimc # reset
UCS-A /server/cimc* # commit-buffer

Recovering the Corrupt BIOS on a Rack-Mount Server

On rare occasions, an issue with a rack-mount server may require you to recover the corrupted BIOS. This procedure is not part of the normal maintenance of a rack-mount server. After you recover the BIOS, the rack-mount server boots with the running version of the firmware for that server.

Before You Begin

Important Remove all attached or mapped USB storage from a server before you attempt to recover the corrupt BIOS on that server. If an external USB drive is attached or mapped from vMedia to the server, BIOS recovery fails.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope server server-id</td>
<td>Enters server mode for the specified rack-mount server.</td>
</tr>
<tr>
<td>Step 2 UCS-A /server # recover-bios version [ignorecompcheck]</td>
<td>Loads and activates the specified BIOS version.</td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose
---|---
| To activate the firmware without making sure that it is compatible first, include the `ignorecompcheck` keyword. We recommend that you use this option only when explicitly directed to do so by a technical support representative.

Step 3 | UCS-A /server # `commit-buffer` | Commits the transaction.

The following example shows how to recover the BIOS:

```
UCS-A# `scope server 1`
UCS-A /server # `recover-bios S5500.0044.0.3.1.010620101125`
UCS-A /server* # `commit-buffer`
```

Showing the Status for a Rack-Mount Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** UCS-A# `show server status` | Shows the status for all servers in the Cisco UCS domain.

The following example shows the status for all servers in the Cisco UCS domain. The servers numbered 1 and 2 do not have a slot listed in the table because they are rack-mount servers.

<table>
<thead>
<tr>
<th>Server Slot</th>
<th>Status</th>
<th>Availability</th>
<th>Overall Status</th>
<th>Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/2</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/3</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/4</td>
<td>Empty</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/5</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/6</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/7</td>
<td>Empty</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1/8</td>
<td>Empty</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>1</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
<tr>
<td>2</td>
<td>Equipped</td>
<td>Unavailable</td>
<td>Ok</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Issuing an NMI from a Rack-Mount Server

Perform the following procedure if the system remains unresponsive and you need Cisco UCS Manager to issue a Non Maskable Interrupt (NMI) to the BIOS or operating system from the CIMC. This action creates a core dump or stack trace, depending on the operating system installed on the server.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# `scope server [chassis-num/server-num</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /chassis/server# <code>diagnostic-interrupt</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis/server* # <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example sends an NMI from server 4 in chassis 2 and commits the transaction:

```
UCS-A# `scope server 2/4`
UCS-A /chassis/server # `diagnostic-interrupt`
UCS-A /chassis/server* # `commit-buffer`
UCS-A /chassis/server #
```
Managing the I/O Modules

This chapter includes the following sections:

- I/O Module Management in Cisco UCS Manager GUI, page 539
- Resetting the I/O Module, page 539

I/O Module Management in Cisco UCS Manager GUI

You can manage and monitor all I/O modules in a Cisco UCS domain through Cisco UCS Manager GUI.

Resetting the I/O Module

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope chassis chassis-num</td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2 UCS-A /chassis # scope iom {a b}</td>
<td>Enters chassis IOM mode for the specified IOM.</td>
</tr>
<tr>
<td>Step 3 UCS-A /chassis/iom # reset</td>
<td>Resets the IOM.</td>
</tr>
<tr>
<td>Step 4 UCS-A /chassis/iom # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example resets the IOM on fabric A and commits the transaction:

UCS-A# scope chassis 1
UCS-A /chassis # scope iom a
UCS-A /chassis/iom # reset
UCS-A /chassis/iom* # commit-buffer
UCS-A /chassis/iom #
Resetting the I/O Module
Backing Up and Restoring the Configuration

This chapter includes the following sections:

• Backup and Export Configuration, page 541
• Backup Types, page 541
• Considerations and Recommendations for Backup Operations, page 542
• Import Configuration, page 543
• Import Methods, page 543
• System Restore, page 543
• Required User Role for Backup and Import Operations, page 544
• Backup Operations, page 544
• Import Operations, page 548
• Restoring the Configuration for a Fabric Interconnect, page 552
• Erasing the Configuration, page 553

Backup and Export Configuration

When you perform a backup through Cisco UCS Manager, you take a snapshot of all or part of the system configuration and export the file to a location on your network. You cannot use Cisco UCS Manager to back up data on the servers.

You can perform a backup while the system is up and running. The backup operation only saves information from the management plane. It does not have any impact on the server or network traffic.

Backup Types

You can perform one or more of the following types of backups through Cisco UCS Manager:

• **Full state**—A binary file that includes a snapshot of the entire system. You can use the file generated from this backup to restore the system during disaster recovery. This file can restore or rebuild the
configuration on the original fabric interconnect, or recreate the configuration on a different fabric interconnect. You cannot use this file for an import.

• **All configuration**—An XML file that includes all system and logical configuration settings. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore. This file does not include passwords for locally authenticated users.

• **System configuration**—An XML file that includes all system configuration settings such as usernames, roles, and locales. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore.

• **Logical configuration**—An XML file that includes all logical configuration settings such as service profiles, VLANs, VSANs, pools, and policies. You can use the file generated from this backup to import these configuration settings to the original fabric interconnect or to a different fabric interconnect. You cannot use this file for a system restore.

Considerations and Recommendations for Backup Operations

Before you create a backup operation, consider the following:

Backup Locations

The backup location is the destination or folder on the network where you want Cisco UCS Manager to export the backup file. You can maintain only one backup operation for each location where you plan to save a backup file.

Potential to Overwrite Backup Files

If you rerun a backup operation without changing the filename, Cisco UCS Manager overwrites the existing file on the server. To avoid overwriting existing backup files, change the filename in the backup operation or copy the existing file to another location.

Multiple Types of Backups

You can run and export more than one type of backup to the same location. You need to change the backup type before you rerun the backup operation. We recommend that you change the filename for easier identification of the backup type and to avoid overwriting the existing backup file.

Scheduled Backups

You cannot schedule a backup operation. You can, however, create a backup operation in advance and leave the admin state disabled until you are ready to run the backup. Cisco UCS Manager does not run the backup operation, save, or export the configuration file until you set the admin state of the backup operation to enabled.

Incremental Backups

You cannot perform incremental backups of the Cisco UCS Manager system configuration.
Backwards Compatibility

Starting with Release 1.1(1) of the Cisco UCS Manager, full state backups are encrypted so that passwords and other sensitive information are not exported as clear text. As a result, full state backups made from Release 1.1(1) or later cannot be restored to a Cisco UCS domain running an earlier software release.

Import Configuration

You can import any configuration file that was exported from Cisco UCS Manager. The file does not need to have been exported from the same Cisco UCS Manager.

The import function is available for all configuration, system configuration, and logical configuration files. You can perform an import while the system is up and running. An import operation modifies information on the management plane only. Some modifications caused by an import operation, such as a change to a vNIC assigned to a server, can cause a server reboot or other operations that disrupt traffic.

You cannot schedule an import operation. You can, however, create an import operation in advance and leave the admin state disabled until you are ready to run the import. Cisco UCS Manager will not run the import operation on the configuration file until you set the admin state to enabled.

You can maintain only one import operation for each location where you saved a configuration backup file.

Import Methods

You can use one of the following methods to import and update a system configuration through Cisco UCS Manager:

• **Merge**—The information in the imported configuration file is compared with the existing configuration information. If there are conflicts, the import operation overwrites the information on the Cisco UCS domain with the information in the import configuration file.

• **Replace**—The current configuration information is replaced with the information in the imported configuration file one object at a time.

System Restore

You can use the restore function for disaster recovery.

You can restore a system configuration from any full state backup file that was exported from Cisco UCS Manager. The file does not need to have been exported from the Cisco UCS Manager on the system that you are restoring. When restoring using a backup file that was exported from a different system, we strongly recommend that you use a system with the same or similar system configuration and hardware, including fabric interconnects, servers, adapters, and I/O module or FEX connectivity. Mismatched hardware and/or system configuration can lead to the restored system not fully functioning. If there is a mismatch between the I/O module links or servers on the two systems, acknowledge the chassis and/or servers after the restore operation.

The restore function is only available for a full state backup file. You cannot import a full state backup file. You perform a restore through the initial system setup.
Required User Role for Backup and Import Operations

You must have a user account that includes the admin role to create and run backup and import operations.

Backup Operations

Creating a Backup Operation

Before You Begin

Obtain the backup server IP address and authentication credentials.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope system</code></td>
<td>Enters system mode.</td>
</tr>
</tbody>
</table>
| **Step 2** UCS-A/system # `create backup URL backup-type {disabled | enabled}` | Creates a backup operation. Specify the `URL` for the backup file using one of the following syntax:
 - `ftp://username@hostname / path`
 - `scp://username@hostname / path`
 - `sftp://username@hostname / path`
 - `tftp://hostname : port-num / path`

The `backup-type` argument can be one of the following values:

- `all-configuration` — Backs up the server-, fabric-, and system-related configuration
- `logical-configuration` — Backs up the fabric- and service profile-related configuration
- `system-configuration` — Backs up the system-related configuration
- `full-state` — Backs up the full state for disaster recovery

Note Full-state backup files cannot be imported using an import operation. They are used only to restore the configuration for a fabric interconnect.

You can save multiple backup operations, but only one operation for each hostname is saved.

If you use the `enable` keyword, the backup operation automatically runs as soon as you enter the `commit-buffer` command. If you use the `disable` keyword, the backup operation will not run until it is enabled. When enabling a backup operation, you must specify the hostname you used when creating the backup operation.
Running a Backup Operation

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A~</td>
<td>scope system</td>
<td>Enters system mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /system# scope backup hostname</td>
<td>Enters system backup mode for the specified hostname.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /system/backup# enable</td>
<td>Enables the backup operation. Note: For backup operations using FTP, SCP, SFTP, you are prompted for the password. Enter the password before committing the transaction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /system/backup# commit-buffer</td>
<td>Commits the transaction.</td>
<td></td>
</tr>
</tbody>
</table>

The following example enables a backup operation named host35, enters the password for the SCP protocol, and commits the transaction:

```
UCS-A# scope system
UCS-A /system# scope backup host35
UCS-A /system/backup# enable
Password:
UCS-A /system/backup# commit-buffer
UCS-A /system/backup#
```

Modifying a Backup Operation

You can modify a backup operation to save a file of another backup type to that location or to change the filename and avoid overwriting previous backup files.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/system # scope backup hostname</td>
<td>Enters system backup mode for the specified hostname.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/backup # disable</td>
<td>(Optional) Disables an enabled backup operation so that it does not automatically run when the transaction is committed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/backup # enable</td>
<td>(Optional) Automatically runs the backup operation as soon as you commit the transaction.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /system/backup # set descr description</td>
<td>(Optional) Provides a description for the backup operation. Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /system/backup # set protocol {ftp</td>
<td>scp</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /system/backup # set remote-file filename</td>
<td>(Optional) Specifies the name of the configuration file that is being backed up.</td>
</tr>
</tbody>
</table>
| Step 8 | UCS-A /system/backup # set type backup-type | (Optional) Specifies the type of backup file to be made. The backup-type argument can be one of the following values:
 • all-configuration — Backs up the server, fabric, and system related configuration
 • logical-configuration — Backs up the fabric and service profile related configuration
 • system-configuration — Backs up the system related configuration
 • full-state — Backs up the full state for disaster recovery
 Note Full-state backup files cannot be imported using an import operation. They are used only to restore the configuration for a fabric interconnect. |
Backup Operations

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>UCS-A /system/backup # set preserve-pooled-values {no</td>
<td>yes}</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /system/backup # set user username</td>
<td>(Optional) Specifies the username the system should use to log in to the remote server. This step does not apply if the TFTP protocol is used.</td>
</tr>
<tr>
<td>Step 11</td>
<td>UCS-A /system/backup # set password password</td>
<td>(Optional) Specifies the password for the remote server username. This step does not apply if the TFTP protocol is used.</td>
</tr>
<tr>
<td>Note</td>
<td>Cisco UCS Manager does not store this password. Therefore, you do not need to enter this password unless you intend to enable and run the backup operation immediately.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>UCS-A /system/backup # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example adds a description and changes the protocol, username, and password for the host35 backup operation and commits the transaction:

```bash
UCS-A# scope system
UCS-A /system # scope backup host35
UCS-A /system/backup # set descr "This is a backup operation for host35."
UCS-A /system/backup* # set protocol sftp
UCS-A /system/backup* # set user UserName32
UCS-A /system/backup* # set password
Password: 
UCS-A /system/backup* # set preserve-pooled-values no
UCS-A /system/backup* # commit-buffer
UCS-A /system #
```

Deleting a Backup Operation

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # delete backup hostname</td>
<td>Deletes the backup operation for the specified hostname.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>
The following example deletes a backup operation for the host35 hostname and commits the transaction:

```
UCS-A# scope system
UCS-A /system # delete backup host35
UCS-A /system* # commit-buffer
UCS-A /system #
```

Import Operations

Creating an Import Operation

You cannot import a Full State configuration file. You can import any of the following configuration files:

- All configuration
- System configuration
- Logical configuration

Before You Begin

Collect the following information that you will need to import a configuration file:

- Backup server IP address and authentication credentials
- Fully qualified name of a backup file

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
</tbody>
</table>
| **Step 2** UCS-A /system # create import-config URL {disabled | enabled} {merge | replace} | Creates an import operation. Specify the URL for the file being imported using one of the following syntax:
 - ftp:// username@hostname / path
 - scp:// username@hostname / path
 - sftp:// username@hostname / path
 - tftp:// hostname : port-num / path

You can save multiple import operations, but only one operation for each hostname is saved.

If you use the `enable` keyword, the import operation automatically runs as soon as you enter the `commit-buffer` command. If you use the `disable` keyword, the import operation will not run until it is enabled. When enabling an import operation, you must specify the hostname you used when creating the import operation.

If you use the `merge` keyword, the configuration information is merged with the existing information. If there are conflicts, the system replaces the information on the current system with the information in
The following example creates a disabled import operation for hostname host35 that replaces the existing configuration and commits the transaction:

```bash
UCS-A# scope system
UCS-A /system* # create import-config scp://user@host35/backups/all-config9.bak disabled replace
Password:
UCS-A /system/import-config* # commit-buffer
```

Running an Import Operation

You cannot import a Full State configuration file. You can import any of the following configuration files:

- All configuration
- System configuration
- Logical configuration

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /system# scope import-config hostname</td>
<td>Enters system backup mode for the specified hostname.</td>
</tr>
<tr>
<td>Step 3 UCS-A /system/import-config# enable</td>
<td>Enables the import operation.</td>
</tr>
<tr>
<td>Step 4 UCS-A /system/import-config# commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>
The following example enables an import operation for the host35 hostname and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope import-config host35
UCS-A /system/import-config # enable
UCS-A /system/import-config# commit-buffer
```

Modifying an Import Operation

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope system</td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /system # scope import-config hostname</td>
<td>Enters system import configuration mode for the specified hostname.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /system/import-config # disable</td>
<td>(Optional) Disables an enabled import operation so that it does not automatically run when the transaction is committed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /system/import-config # enable</td>
<td>(Optional) Automatically runs the import operation as soon as you commit the transaction.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /system/import-config # set action {merge</td>
<td>replace}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Merge — The configuration information is merged with the existing information. If there are conflicts, the system replaces the information on the current system with the information in the import configuration file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace — The system takes each object in the import configuration file and overwrites the corresponding object in the current configuration.</td>
</tr>
</tbody>
</table>
| Step 6 | UCS-A /system/import-config # set descr description | (Optional) Provides a description for the import operation.
Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output. |
| Step 7 | UCS-A /system/import-config # set password password | (Optional) Specifies the password for the remote server username. This step does not apply if the TFTP protocol is used. |
Import Operations

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS Manager does not store this password. Therefore, you do not need to enter this password unless you intend to enable and run the import operation immediately.</td>
<td></td>
</tr>
</tbody>
</table>

Step 8

UCS-A /system/import-config #

set protocol {ftp | scp | sftp | tftp}

(Optional)

Specifies the protocol to use when communicating with the remote server.

Step 9

UCS-A /system/import-config #

set remote-file filename

(Optional)

Specifies the name of the configuration file that is being imported.

Step 10

UCS-A /system/import-config #

set user username

(Optional)

Specifies the username the system should use to log in to the remote server. This step does not apply if the TFTP protocol is used.

Step 11

UCS-A /system/import-config #

commit-buffer

Commits the transaction.

The following example adds a description, changes the password, protocol and username for the host35 import operation, and commits the transaction:

```
UCS-A# scope system
UCS-A /system # scope import-config host35
UCS-A /system/import-config # set descr "This is an import operation for host35."
UCS-A /system/import-config* # set password
Password:  
UCS-A /system/import-config* # set protocol sftp
UCS-A /system/import-config* # set user jforlenz32
UCS-A /system/import-config* # commit-buffer
```

Deleting an Import Operation

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters system mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 1

UCS-A# scope system

Step 2

UCS-A /system # delete import-config hostname

Deletes the import operation for the specified hostname.

Step 3

UCS-A /system # commit-buffer

Commits the transaction.

The following example deletes the import operation for the host35 hostname and commits the transaction:

```
UCS-A# scope system
UCS-A /system # delete import-config host35
```
Restoring the Configuration for a Fabric Interconnect

Before You Begin
Collect the following information that you will need to restore the system configuration:

- Fabric interconnect management port IP address and subnet mask
- Default gateway IP address
- Backup server IP address and authentication credentials
- Fully qualified name of a Full State backup file

Note
You must have access to a Full State configuration file to perform a system restore. You cannot perform a system restore with any other type of configuration or backup file.

Procedure

Step 1 Connect to the console port.
Step 2 If the fabric interconnect is off, power on the fabric interconnect. You will see the power on self-test message as the fabric interconnect boots.
Step 3 At the installation method prompt, enter console.
Step 4 Enter restore to restore the configuration from a full-state backup.
Step 5 Enter y to confirm that you want to restore from a full-state backup.
Step 6 Enter the IP address for the management port on the fabric interconnect.
Step 7 Enter the subnet mask for the management port on the fabric interconnect.
Step 8 Enter the IP address for the default gateway.
Step 9 Enter one of the following protocols to use when retrieving the backup configuration file:
 - scp
 - ftp
 - tftp
 - sftp
Step 10 Enter the IP address of the backup server.
Step 11 Enter the full path and filename of the Full State backup file.
Step 12 Enter the username and password to access the backup server.
 The fabric interconnect logs in to the backup server, retrieves a copy of the specified Full State backup file, and restores the system configuration. For a cluster configuration, you do not need to restore the secondary fabric interconnect. As soon as the secondary fabric interconnect reboots, Cisco UCS Manager synchronizes the configuration with the primary fabric interconnect.
The following example restores a system configuration from the Backup.bak file, which was retrieved from the 20.10.20.10 backup server using FTP:

Enter the configuration method. (console/gui) ? console
Enter the setup mode; setup newly or restore from backup. (setup/restore) ? restore

NOTE:
To configure Fabric interconnect using a backup file on a remote server, you will need to setup management interface.
The management interface will be re-configured (if necessary), based on information stored in the backup file.

Continue to restore this Fabric interconnect from a backup file (yes/no) ? yes
Physical Switch Mgmt0 IPv4 address : 192.168.10.10
Physical Switch Mgmt0 IPv4 netmask : 255.255.255.0
IPv4 address of the default gateway : 192.168.10.1
Enter the protocol to get backup file (scp/ftp/tftp/sftp) ? scp
Enter the IP address of backup server: 20.10.20.10
Enter fully qualified backup file name: Backup.bak
Enter user ID: user
Enter password:
Retrieved backup configuration file.
Configuration file - Ok

Erasing the Configuration

Warning
You should erase the configuration only when it is necessary. Erasing the configuration completely removes the configuration and reboots the system in an unconfigured state. You must then either restore the configuration from a backup file or perform an initial system setup.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# connect local-mgmt</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A(local-mgmt)# erase configuration</td>
</tr>
</tbody>
</table>
The following example erases the configuration:

```
UCS-A# connect local-mgmt
UCS-A(local-mgmt)# erase configuration
All UCS configurations will be erased and system will reboot. Are you sure? (yes/no): yes
```
Recovering a Lost Password

This chapter includes the following sections:

• Password Recovery for the Admin Account, page 555
• Determining the Leadership Role of a Fabric Interconnect, page 556
• Recovering the Admin Account Password in a Standalone Configuration, page 556
• Recovering the Admin Account Password in a Cluster Configuration, page 557

Password Recovery for the Admin Account

The admin account is the system administrator or superuser account. If an administrator loses the password to this account, you can have a serious security issue. As a result, the procedure to recover the password for the admin account requires you to power cycle all fabric interconnects in a Cisco UCS domain.

When you recover the password for the admin account, you actually change the password for that account. You cannot retrieve the original password for that account.

You can reset the password for all other local accounts through Cisco UCS Manager. However, you must log in to Cisco UCS Manager with an account that includes aaa or admin privileges.

⚠️ Caution

This procedure requires you to power down all fabric interconnects in a Cisco UCS domain. As a result, all data transmission in the Cisco UCS domain is stopped until you restart the fabric interconnects.
Determining the Leadership Role of a Fabric Interconnect

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# show cluster state Displays the operational state and leadership role for both fabric interconnects in a cluster.</td>
</tr>
</tbody>
</table>

The following example displays the leadership role for both fabric interconnects in a cluster, where fabric interconnect A has the primary role and fabric interconnect B has the subordinate role:

```
UCS-A# show cluster state
Cluster Id: 0x4432f72a371511de-0xb97c000de1b1ada4
A: UP, PRIMARY
B: UP, SUBORDINATE
HA READY
```

Recovering the Admin Account Password in a Standalone Configuration

This procedure will help you to recover the password that you set for the admin account when you performed an initial system setup on the fabric interconnect. The admin account is the system administrator or superuser account.

Before You Begin

1. Physically connect the console port on the fabric interconnect to a computer terminal or console server
2. Determine the running versions of the following firmware:
 - The firmware kernel version on the fabric interconnect
 - The firmware system version

 Tip To find this information, you can log in with any user account on the Cisco UCS domain.

Procedure

Step 1 Connect to the console port.

Step 2 Power cycle the fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.

Step 3 In the console, press one of the following key combinations as it boots to get the `loader` prompt:
Recovering the Admin Account Password in a Cluster Configuration

This procedure will help you to recover the password that you set for the admin account when you performed an initial system setup on the fabric interconnects. The admin account is the system administrator or superuser account.

Step 4 Boot the kernel firmware version on the fabric interconnect.

```
loader >
boot /installables/switch/
kernel_firmware_version
```

Example:

```
loader >
boot /installables/switch/ucs-6100-k9-kickstart.4.1.3.N2.1.0.11.gbin
```

Step 5 Enter config terminal mode.

```
Fabric(boot)#
config terminal
```

Step 6 Reset the admin password.

```
Fabric(boot) (config)#
admin-password
password
```

Choose a strong password that includes at least one capital letter and one number. The password cannot be blank.

The new password displays in clear text mode.

Step 7 Exit config terminal mode and return to the boot prompt.

Step 8 Boot the system firmware version on the fabric interconnect.

```
Fabric(boot)#
load /installables/switch/
system_firmware_version
```

Example:

```
Fabric(boot)#
load /installables/switch/ucs-6100-k9-system.4.1.3.N2.1.0.211.bin
```

Step 9 After the system image loads, log in to Cisco UCS Manager.
Before You Begin

1 Physically connect a console port on one of the fabric interconnects to a computer terminal or console server.

2 Obtain the following information:
 • The firmware kernel version on the fabric interconnect
 • The firmware system version
 • Which fabric interconnect has the primary leadership role and which is the subordinate

Tip To find this information, you can log in with any user account on the Cisco UCS domain.

Procedure

Step 1 Connect to the console port.

Step 2 For the subordinate fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.
 c) In the console, press one of the following key combinations as it boots to get the loader prompt:
 • Ctrl+l
 • Ctrl+Shift+r

You may need to press the selected key combination multiple times before your screen displays the loader prompt.

Step 3 Power cycle the primary fabric interconnect:
 a) Turn off the power to the fabric interconnect.
 b) Turn on the power to the fabric interconnect.

Step 4 In the console, press one of the following key combinations as it boots to get the loader prompt:
 • Ctrl+l
 • Ctrl+Shift+r

You may need to press the selected key combination multiple times before your screen displays the loader prompt.

Step 5 Boot the kernel firmware version on the primary fabric interconnect.

```
loader > boot /installables/switch/
kernal_firmware_version
```
Example:
loader > boot /installables/switch/ucs-6100-k9-kickstart.4.1.3.N2.1.0.11.gbin

Step 6 Enter config terminal mode.
Fabric(boot)# config terminal

Step 7 Reset the admin password.
Fabric(boot)(config)# admin-password password
Choose a strong password that includes at least one capital letter and one number. The password cannot be blank.
The new password displays in clear text mode.

Step 8 Exit config terminal mode and return to the boot prompt.

Step 9 Boot the system firmware version on the primary fabric interconnect.
Fabric(boot)# load /installables/switch/
 system_firmware_version

Example:
Fabric(boot)# load /installables/switch/ucs-6100-k9-system.4.1.3.N2.1.0.211.bin

Step 10 After the system image loads, log in to Cisco UCS Manager.

Step 11 In the console for the subordinate fabric interconnect, do the following to bring it up:
 a) Boot the kernel firmware version on the subordinate fabric interconnect.
 loader > boot /installables/switch/
 kernel_firmware_version
 b) Boot the system firmware version on the subordinate fabric interconnect.
 Fabric(boot)# load /installables/switch/
 system_firmware_version
PART VII

System Monitoring

- Monitoring Traffic, page 563
- Monitoring Hardware, page 575
- Configuring Statistics-Related Policies, page 585
- Configuring Call Home, page 601
- Managing the System Event Log, page 623
- Configuring Settings for Faults, Events, and Logs, page 631
Monitoring Traffic

This chapter includes the following sections:

- Traffic Monitoring, page 563
- Guidelines and Recommendations for Traffic Monitoring, page 564
- Creating an Ethernet Traffic Monitoring Session, page 565
- Creating a Fibre Channel Traffic Monitoring Session, page 566
- Adding Traffic Sources to a Monitoring Session, page 567
- Activating a Traffic Monitoring Session, page 572
- Deleting a Traffic Monitoring Session, page 573

Traffic Monitoring

Traffic monitoring copies traffic from one or more sources and sends the copied traffic to a dedicated destination port for analysis by a network analyzer. This feature is also known as Switched Port Analyzer (SPAN).

Type of Session

When you create a traffic monitoring session, you can choose either an Ethernet or Fibre Channel destination port to receive the traffic. The type of destination port determines the type of session, which in turn determines the types of available traffic sources. For an Ethernet traffic monitoring session, the destination port must be an unconfigured physical port. For a Fibre Channel traffic monitoring session, the destination port must be a Fibre Channel uplink port.

Traffic Sources

An Ethernet traffic monitoring session can monitor any of the following traffic sources:

- Uplink Ethernet port
- Ethernet port channel
- VLAN
- Service profile vNIC
• Service profile vHBA
• FCoE port
• Port channels
• Server port

A Fibre Channel traffic monitoring session can monitor any of the following traffic sources:
• Uplink Fibre Channel port
• SAN port channel
• VSAN
• Service profile vHBA
• Fibre Channel storage port

Guidelines and Recommendations for Traffic Monitoring

When configuring or activating traffic monitoring, consider the following guidelines:

• You can create and store up to 16 traffic monitoring sessions, but only two can be active at the same time.

• A traffic monitoring session is disabled by default when created. To begin monitoring traffic, you must activate the session.

• To monitor traffic from a server, add all vNICs from the service profile corresponding to the server.

• You can monitor Fibre Channel traffic using either a Fibre Channel traffic analyzer or an Ethernet traffic analyzer. When Fibre Channel traffic is monitored using an Ethernet traffic monitoring session, with an Ethernet destination port, the destination traffic will be FCoE.

• Because a traffic monitoring destination is a single physical port, a traffic monitoring session can monitor only a single fabric. To monitor uninterrupted vNIC traffic across a fabric failover, you must create two sessions—one per fabric—and connect two analyzers. Add the vNIC as the traffic source for both sessions.

• All traffic sources must be located within the same switch as the destination port.

• A port configured as a destination port cannot also be configured as a source port.

• A member port of a port channel cannot be configured individually as a source. If the port channel is configured as a source, all member ports are source ports.

• A vHBA can be a source for either an Ethernet or Fibre Channel monitoring session, but it cannot be a source for both simultaneously.

• A server port can be a source only if it is a non-virtualized rack server adapter-facing port.

• A Fibre Channel port on a Cisco UCS 6248 fabric interconnect cannot be configured as a source port.

• If you change the port profile of a virtual machine, any associated vNICs being used as source ports are removed from monitoring, and you must reconfigure the monitoring session.
If a traffic monitoring session was configured on a dynamic vNIC under a release earlier than Cisco UCS Manager Release 2.0, you must reconfigure the traffic monitoring session after upgrading.

Traffic monitoring can impose a significant load on your system resources. To minimize the load, select sources that carry as little unwanted traffic as possible and disable traffic monitoring when it is not needed.

Creating an Ethernet Traffic Monitoring Session

This procedure describes creating an Ethernet traffic monitoring session. To create a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the `scope fc-traffic-mon` command instead of the `scope eth-traffic-mon` command in Step 1.
- Enter the `create fc-mon-session` command instead of the `create eth-mon-session` command in Step 3.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope eth-traffic-mon</td>
<td>Enters Ethernet traffic monitoring command mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-traffic-mon # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-traffic-mon/fabric # create eth-mon-session session-name</td>
<td>Creates a traffic monitoring session with the specified name.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-traffic-mon/fabric/eth-mon-session # create dest-interface slot-num port-num</td>
<td>Configures the interface at the specified slot and port number to be the destination for the traffic monitoring session. Enters the command mode for the interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface # set speed admin-speed</td>
<td>Sets the data transfer rate of the port channel to be monitored. This can be:</td>
</tr>
</tbody>
</table>

- 10gbps—10 Gbps
- 1gbps—1 Gbps
- 20gbps—20 Gbps
- 40gbps—40 Gbps
Creating a Fibre Channel Traffic Monitoring Session

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-traffic-mon</td>
<td>Enters Fibre Channel traffic monitoring command mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-traffic-mon # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-traffic-mon/fabric # create fc-mon-session session-name</td>
<td>Creates a Fibre Channel traffic monitoring session with the specified name.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-traffic-mon/fabric/fc-mon-session # create dest-interface slot-num port-num</td>
<td>Creates and enters the command mode of the destination slot and port for the Fibre Channel traffic monitoring session.</td>
</tr>
<tr>
<td>Step 5 UCS-A /fc-traffic-mon/fabric/fc-mon-session/dest-interface # set speed admin-speed</td>
<td>Sets the data transfer rate of the port channel to be monitored. This can be: • 1gbps—1 Gbps • 2gbps—2 Gbps • 4gbps—4 Gbps • 8gbps—8 Gbps</td>
</tr>
</tbody>
</table>

The following example creates an Ethernet traffic monitoring session to copy and forward traffic to the destination port at slot 2, port 12, sets the admin speed to 20 Gbps, and commits the transaction:

UCS-A# scope eth-traffic-mon
UCS-A /eth-traffic-mon # scope fabric a
UCS-A /eth-traffic-mon/fabric # create eth-mon-session EthMonitor33
UCS-A /eth-traffic-mon/fabric/eth-mon-session* # create dest-interface 2 12
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface* # set speed 20gbps
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface* # commit-buffer
UCS-A /eth-traffic-mon/fabric/eth-mon-session/dest-interface #

What to Do Next

- Add traffic sources to the traffic monitoring session.
- Activate the traffic monitoring session.
Adding Traffic Sources to a Monitoring Session

Adding an Uplink Source Port to a Monitoring Session

Note

This procedure describes adding an Ethernet uplink port as a source for a traffic monitoring session. To add a Fibre Channel uplink port as a source, enter the `scope fc-uplink` command instead of the `scope eth-uplink` command in Step 1.

Before You Begin

A traffic monitoring session must be created.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope eth-uplink</code></td>
<td>Enters Ethernet uplink command mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A `/eth-uplink # scope fabric {a</td>
<td>b}`</td>
</tr>
</tbody>
</table>
Adding Traffic Sources to a Monitoring Session

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 [UCS-A /eth-uplink/fabric # scope interface slot-num port-num]</td>
<td>Enters the interface command mode for the specified uplink port.</td>
</tr>
<tr>
<td>Step 4 [UCS-A /eth-uplink/fabric/interface # create mon-src session-name]</td>
<td>Adds the uplink port as a source to the specified monitoring session.</td>
</tr>
<tr>
<td>Step 5 [UCS-A /eth-uplink/fabric/interface/mon-src # set direction {both</td>
<td>receive</td>
</tr>
<tr>
<td>Step 6 [UCS-A /eth-uplink/fabric/interface/mon-src # commit-buffer]</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds the ingress traffic on Ethernet uplink port 3 on slot 2 of fabric A as a source for a monitoring session and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope fabric a
UCS-A /eth-uplink/fabric # scope interface 2 3
UCS-A /eth-uplink/fabric/interface # create mon-src Monitor23
UCS-A /eth-uplink/fabric/interface/mon-src* # set direction receive
UCS-A /eth-uplink/fabric/interface/mon-src* # commit-buffer
UCS-A /eth-uplink/fabric/interface/mon-src #
```

What to Do Next

You can add additional sources to the traffic monitoring session.

Adding a vNIC or vHBA Source to a Monitoring Session

This procedure describes adding a vNIC as a source for a traffic monitoring session. To add a vHBA as a source, enter the `scope vhba` command instead of the `scope vnic` command in Step 2.

Before You Begin

A traffic monitoring session must be created.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Switch-A# <code>scope system</code></td>
<td>Enters system mode.</td>
</tr>
<tr>
<td>Step 2 Switch-A /system # <code>scope vm-mgmt</code></td>
<td>Enters VM management mode.</td>
</tr>
<tr>
<td>Step 3 Switch-A /system/vm-mgmt # show virtual-machine</td>
<td>(Optional) Displays the running virtual machines.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Switch-A /system/vm-mgmt # scope virtual-machine uuid</td>
</tr>
<tr>
<td></td>
<td>Enters command mode for the virtual machine that contains the dynamic vNIC.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Switch-A /system/vm-mgmt/virtual-machine # show expand</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays the virtual machine details, including the vNIC MAC address.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Switch-A /system/vm-mgmt/virtual-machine # scope vnic mac-address</td>
</tr>
<tr>
<td></td>
<td>Enters the command mode for the vNIC at the specified MAC address.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Switch-A /system/vm-mgmt/virtual-machine/vnic # create mon-src session-name</td>
</tr>
<tr>
<td></td>
<td>Adds the vNIC as a source to the specified monitoring session.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # set direction</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies the traffic direction to be monitored.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds the ingress traffic on a dynamic vNIC as a source for a monitoring session and commits the transaction:

Switch-A# scope system
Switch-A /system # scope vm-mgmt
Switch-A /system/vm-mgmt # show virtual-machine
Virtual Machine:
 UUID: 42327c42-e00c-886f-e3f7-e615906f51e9
 Service Profile: org-root/ls-dsw-bld1-esx
 Server: sys/chassis-1/blade-1
 Status: Online

Switch-A /system/vm-mgmt # scope virtual-machine 42327c42-e00c-886f-e3f7-e615906f51e9
Switch-A /system/vm-mgmt/virtual-machine # show expand
Virtual Machine:
 UUID: 42327c42-e00c-886f-e3f7-e615906f51e9
 Service Profile: org-root/ls-dsw-bld1-esx
 Server: sys/chassis-1/blade-1
 Status: Online

 VNIC:
 Name:
 Status: Online
 MAC Address: 00:50:56:B2:00:00

 VIF:
 Vif Id: 32772
 Status: Online
 Phys Fabric ID: B
 Virtual Fabric:
Switch-A /system/vm-mgmt/virtual-machine # scope vnic 00:50:56:B2:00:00
Switch-A /system/vm-mgmt/virtual-machine/vnic # create mon-src Monitor23
Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src Monitor23 # set direction receive
Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src Monitor23 # commit-buffer

Switch-A /system/vm-mgmt/virtual-machine/vnic/mon-src #
What to Do Next
You can add additional sources to the traffic monitoring session.

Adding a VLAN or VSAN Source to a Monitoring Session

Note
This procedure describes adding a VLAN as a source for a traffic monitoring session. To add a VSAN as a source, the following changes are required:

- Enter the `scope fc-uplink` command instead of the `scope eth-uplink` command in Step 1.
- Enter the `create vsan` command instead of the `create vlan` command in Step 3.

Before You Begin
A traffic monitoring session must be created.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope eth-uplink</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-uplink/fabric # <code>create vlan</code> <code>vlan-name vlan-id</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-uplink/fabric/vlan # <code>create mon-src</code> <code>session-name</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /eth-uplink/fabric/vlan/mon-src # <code>commit-buffer</code></td>
</tr>
</tbody>
</table>

The following example adds a local VLAN as a source for an Ethernet monitoring session and commits the transaction:

```
UCS-A# `scope eth-uplink`
UCS-A /eth-uplink # `scope fabric` a
UCS-A /eth-uplink/fabric # `create vlan` `vlan23` `23`
UCS-A /eth-uplink/fabric/vlan # `create mon-src` `Monitor23`
UCS-A /eth-uplink/fabric/vlan/mon-src* # `commit-buffer`
UCS-A /eth-uplink/fabric/vlan/mon-src #
```

What to Do Next
You can add additional sources to the traffic monitoring session.
Adding a Storage Port Source to a Monitoring Session

Note
This procedure describes adding a Fibre Channel storage port as a source for a Fibre Channel traffic monitoring session. To add an FCoE storage port as a source for an Ethernet traffic monitoring session, enter the `create interface fcoe` command instead of the `create interface fc` command in Step 3.

Before You Begin
A traffic monitoring session must be created.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-storage</td>
<td>Enters Fibre Channel storage port command mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-storage # scope fabric {a</td>
<td>b}</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-storage/fabric # create interface fc slot-num port-num</td>
<td>Creates a Fibre Channel storage port interface and enters the interface command mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-storage/fabric/fc # create mon-src session-name</td>
<td>Adds the storage port as a source to the specified monitoring session.</td>
</tr>
<tr>
<td>Step 5 UCS-A /fc-storage/fabric/fc/mon-src # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example adds a Fibre Channel storage port on port 3 of slot 2 as a source for a Fibre Channel monitoring session and commits the transaction:

UCS-A# scope fc-storage
UCS-A /fc-storage # scope fabric a
UCS-A /fc-storage/fabric # create interface fc 2 3
UCS-A /fc-storage/fabric/fc* # create mon-src Monitor23
UCS-A /fc-storage/fabric/fc/mon-src* # commit-buffer
UCS-A /fc-storage/fabric/fc/mon-src #

What to Do Next
You can add additional sources to the traffic monitoring session.
Activating a Traffic Monitoring Session

This procedure describes activating an Ethernet traffic monitoring session. To activate a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the `scope fc-traffic-mon` command instead of the `scope eth-traffic-mon` command in Step 1.
- Enter the `scope fc-mon-session` command instead of the `scope eth-mon-session` command in Step 3.

Before You Begin

Configure a traffic monitoring session.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope eth-traffic-mon</code></td>
<td>Enters Ethernet traffic monitoring command mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A `/eth-traffic-mon # scope fabric {a</td>
<td>b}`</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/eth-traffic-mon/fabric # scope eth-mon-session session-name</code></td>
<td>Enters the command mode of the traffic monitoring session with the specified name.</td>
</tr>
<tr>
<td>Step 4 UCS-A `/eth-traffic-mon/fabric/eth-mon-session # disable</td>
<td>enable`</td>
</tr>
<tr>
<td>Step 5 UCS-A <code>/eth-traffic-mon/fabric/eth-mon-session # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

When activated, the traffic monitoring session begins forwarding traffic to the destination as soon as a traffic source is configured.

The following example activates an Ethernet traffic monitoring session and commits the transaction:

```
UCS-A# scope eth-traffic-mon
UCS-A /eth-traffic-mon # scope fabric a
UCS-A /eth-traffic-mon/fabric # scope eth-mon-session Monitor33
UCS-A /eth-traffic-mon/fabric/eth-mon-session # enable
UCS-A /eth-traffic-mon/fabric/eth-mon-session* # commit-buffer
UCS-A /eth-traffic-mon/fabric/eth-mon-session # show
```

Ether Traffic Monitoring Session:

<table>
<thead>
<tr>
<th>Name</th>
<th>Admin State</th>
<th>Oper State</th>
<th>Oper State Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor33</td>
<td>Enabled</td>
<td>Up</td>
<td>Active</td>
</tr>
</tbody>
</table>

Cisco UCS Manager CLI Configuration Guide, Release 2.0

OL-25721-05
Deleting a Traffic Monitoring Session

This procedure describes deleting an Ethernet traffic monitoring session. To delete a Fibre Channel traffic monitoring session, the following changes are required:

- Enter the `scope fc-traffic-mon` command instead of the `scope eth-traffic-mon` command in Step 1.
- Enter the `delete fc-mon-session` command instead of the `delete eth-mon-session` command in Step 3.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope eth-traffic-mon</code></td>
<td>Enters Ethernet traffic monitoring command mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /eth-traffic-mon # `scope fabric {a</td>
<td>b}`</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /eth-traffic-mon/fabric # <code>delete eth-mon-session session-name</code></td>
<td>Deletes the traffic monitoring session with the specified name.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /eth-traffic-mon/fabric # <code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes an Ethernet traffic monitoring session and commits the transaction:

```
UCS-A# `scope eth-traffic-mon`
UCS-A /eth-traffic-mon # `scope fabric a`
UCS-A /eth-traffic-mon/fabric # `delete eth-mon-session Monitor33`
UCS-A /eth-traffic-mon/fabric* # `commit-buffer`
UCS-A /eth-traffic-mon/fabric #
```
CHAPTER 41

Monitoring Hardware

This chapter includes the following sections:

- Monitoring Fan Modules, page 575
- Monitoring Management Interfaces, page 577
- Server Disk Drive Monitoring, page 579

Monitoring Fan Modules

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope chassis chassis-num</code></td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/chassis # <code>show environment fan</code></td>
<td>Displays the environment status for all fans within the chassis. This includes the following information:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Overall status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Thermal status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Threshold status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Voltage status</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /chassis # <code>scope fan-module tray-num module-num</code></td>
<td>Enters fan module chassis mode for the specified fan module.</td>
</tr>
</tbody>
</table>

Note Each chassis contains one tray, so the tray number in this command is always 1.
The following example displays information about the fan modules in chassis 1:

```
UCS-A# scope chassis 1
UCS-A /chassis # show environment fan
Chassis 1:
  Overall Status: Power Problem
  Operability: Operable
  Power State: Redundancy Failed
  Thermal Status: Upper Non Recoverable

Tray 1 Module 1:
  Threshold Status: OK
  Overall Status: Operable
  Operability: Operable
  Power State: On
  Thermal Status: OK
  Voltage Status: N/A

  Fan Module Stats:
    Ambient Temp (C): 25.000000

  Fan 1:
    Threshold Status: OK
    Overall Status: Operable
    Operability: Operable
    Power State: On
    Thermal Status: OK
    Voltage Status: N/A

  Fan 2:
    Threshold Status: OK
    Overall Status: Operable
    Operability: Operable
    Power State: On
    Thermal Status: OK
    Voltage Status: N/A

Tray 1 Module 2:
  Threshold Status: OK
  Overall Status: Operable
  Operability: Operable
  Power State: On
  Thermal Status: OK
  Voltage Status: N/A

  Fan Module Stats:
    Ambient Temp (C): 24.000000

  Fan 1:
    Threshold Status: OK
    Overall Status: Operable
    Operability: Operable
    Power State: On
    Thermal Status: OK
    Voltage Status: N/A

  Fan 2:
    Threshold Status: OK
    Overall Status: Operable
    Operability: Operable
    Power State: On
    Thermal Status: OK
```
Voltage Status: N/A

The following example displays information about fan module 2 in chassis 1:

UCS-A# scope chassis 1
UCS-A /chassis # scope fan-module 1 2
UCS-A /chassis/fan-module # show detail

Fan Module:
 Tray: 1
 Module: 2
 Overall Status: Operable
 Operability: Operable
 Threshold Status: OK
 Power State: On
 Presence: Equipped
 Thermal Status: OK
 Product Name: Fan Module for UCS 5108 Blade Server Chassis
 PID: N20-FAN5
 VID: V01
 Vendor: Cisco Systems Inc
 Serial (SN): NWG14350B6N
 HW Revision: 0
 Mfg Date: 1997-04-01T08:41:00.000

Monitoring Management Interfaces

Management Interfaces Monitoring Policy

This policy defines how the mgmt0 Ethernet interface on the fabric interconnect should be monitored. If Cisco UCS detects a management interface failure, a failure report is generated. If the configured number of failure reports is reached, the system assumes that the management interface is unavailable and generates a fault. By default, the management interfaces monitoring policy is disabled.

If the affected management interface belongs to a fabric interconnect which is the managing instance, Cisco UCS confirms that the subordinate fabric interconnect's status is up, that there are no current failure reports logged against it, and then modifies the managing instance for the end-points.

If the affected fabric interconnect is currently the primary inside of a high availability setup, a failover of the management plane is triggered. The data plane is not affected by this failover.

You can set the following properties related to monitoring the management interface:

• Type of mechanism used to monitor the management interface.
• Interval at which the management interface's status is monitored.
• Maximum number of monitoring attempts that can fail before the system assumes that the management is unavailable and generates a fault message.

Important

In the event of a management interface failure on a fabric interconnect, the managing instance may not change if one of the following occurs:

• A path to the end-point through the subordinate fabric interconnect does not exist.
• The management interface for the subordinate fabric interconnect has failed.
• The path to the end-point through the subordinate fabric interconnect has failed.
Configuring the Management Interfaces Monitoring Policy

Procedure

Step 1 Enter monitoring mode.
UCS-A# scope monitoring

Step 2 Enable or disable the management interfaces monitoring policy.
UCS-A /monitoring # set mgmt-if-mon-policy admin-state {enabled | disabled}

Step 3 Specify the number of seconds that the system should wait between data recordings.
UCS-A /monitoring # set mgmt-if-mon-policy poll-interval
Enter an integer between 90 and 300.

Step 4 Specify the maximum number of monitoring attempts that can fail before the system assumes that the
management interface is unavailable and generates a fault message.
UCS-A /monitoring # set mgmt-if-mon-policy max-fail-reports num-mon-attempts
Enter an integer between 2 and 5.

Step 5 Specify the monitoring mechanism that you want the system to use.
UCS-A /monitoring # set mgmt-if-mon-policy monitor-mechanism {mii-status | ping-arp-targets | ping-gateway}
 • mii-status — The system monitors the availability of the Media Independent Interface (MII).
 • ping-arp-targets — The system pings designated targets using the Address Resolution Protocol (ARP).
 • ping-gateway — The system pings the default gateway address specified for this Cisco UCS domain in
 the management interface.

Step 6 If you selected mii-status as your monitoring mechanism, configure the following properties:
 a) Specify the number of seconds that the system should wait before requesting another response from the
 MII if a previous attempt fails.
 UCS-A /monitoring # set mgmt-if-mon-policy mii-retry-interval num-seconds
 Enter an integer between 3 and 10.
 b) Specify the number of times that the system polls the MII until the system assumes that the interface is
 unavailable.
 UCS-A /monitoring # set mgmt-if-mon-policy mii-retry-count num-retries
 Enter an integer between 1 and 3.

Step 7 If you selected ping-arp-targets as your monitoring mechanism, configure the following properties:
 a) Specify the first IP address the system pings.
 UCS-A /monitoring # set mgmt-if-mon-policy arp-target1 ip-addr
 Type 0.0.0.0 to remove the ARP target.
 b) Specify the second IP address the system pings.
 UCS-A /monitoring # set mgmt-if-mon-policy arp-target2 ip-addr
 Type 0.0.0.0 to remove the ARP target.
c) Specify the third IP address the system pings.
 UCS-A /monitoring # set mgmt-if-mon-policy arp-target3 ip-addr
 Type 0.0.0.0 to remove the ARP target.

d) Specify the number of ARP requests to send to the target IP addresses.
 UCS-A /monitoring # set mgmt-if-mon-policy arp-requests num-requests
 Enter an integer between 1 and 5.

e) Specify the number of seconds to wait for responses from the ARP targets before the system assumes that they are unavailable.
 UCS-A /monitoring # set mgmt-if-mon-policy arp-deadline num-seconds
 Enter a number between 5 and 15.

Step 8 If you selected ping-gateway as your monitoring mechanism, configure the following properties:

a) Specify the number of times the system should ping the gateway.
 UCS-A /monitoring # set mgmt-if-mon-policy ping-requests
 Enter an integer between 1 and 5.

b) Specify the number of seconds to wait for a response from the gateway until the system assumes that the address is unavailable.
 UCS-A /monitoring # set mgmt-if-mon-policy ping-deadline
 Enter an integer between 5 and 15.

Step 9 Commit the transaction to the system configuration.
UCS-A /monitoring # commit-buffer

The following example creates a monitoring interface management policy using the Media Independent Interface (MII) monitoring mechanism and commits the transaction:

UCS-A# scope monitoring
UCS-A /monitoring # set mgmt-if-mon-policy admin-state enabled
UCS-A /monitoring* # set mgmt-if-mon-policy poll-interval 250
UCS-A /monitoring* # set mgmt-if-mon-policy max-fail-reports 2
UCS-A /monitoring* # set mgmt-if-mon-policy monitor-mechanism set mii-status
UCS-A /monitoring* # set mgmt-if-mon-policy mii-retry-count 3
UCS-A /monitoring* # set mgmt-if-mon-policy mii-retry-interval 7
UCS-A /monitoring* # commit-buffer
UCS-A /monitoring #

Server Disk Drive Monitoring

The disk drive monitoring for Cisco UCS provides Cisco UCS Manager with blade-resident disk drive status for supported blade servers in a Cisco UCS domain. Disk drive monitoring provides a unidirectional fault signal from the LSI firmware to Cisco UCS Manager to provide status information.

The following server and firmware components gather, send, and aggregate information about the disk drive status in a server:

- Physical presence sensor—Determines whether the disk drive is inserted in the server drive bay.
- Physical fault sensor—Determines the operability status reported by the LSI storage controller firmware for the disk drive.
- IPMI disk drive fault and presence sensors—Sends the sensor results to Cisco UCS Manager.
- Disk drive fault LED control and associated IPMI sensors—Controls disk drive fault LED states (on/off) and relays the states to Cisco UCS Manager.

Support for Disk Drive Monitoring

Disk drive monitoring only supports certain blade servers and a specific LSI storage controller firmware level.

Supported Cisco UCS Servers

Through Cisco UCS Manager, you can monitor disk drives for the following servers:

- B-200 blade server
- B-230 blade server
- B-250 blade server
- B-440 blade server

Cisco UCS Manager cannot monitor disk drives in any other blade server or rack-mount server.

Storage Controller Firmware Level

The storage controller on a supported server must have LSI 1064E firmware.

Cisco UCS Manager cannot monitor disk drives in servers with a different level of storage controller firmware.

Prerequisites for Disk Drive Monitoring

In addition to the supported servers and storage controller firmware version, you must ensure that the following prerequisites have been met for disk drive monitoring to provide useful status information:

- The drive must be inserted in the server drive bay.
- The server must be powered on.
- The server must have completed discovery.
- The results of the BIOS POST complete must be TRUE.

Viewing the Status of a Disk Drive

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope chassis chassis-num</td>
<td>Enters chassis mode for the specified chassis.</td>
</tr>
<tr>
<td>Step 2 UCS-A /chassis # scope server server-num</td>
<td>Enters server chassis mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 UCS-A /chassis/server # scope raid-controller raid-contr-id {sas</td>
<td>sata}</td>
</tr>
<tr>
<td>Step 4 UCS-A /chassis/server/raid-controller # show local-disk [local-disk-id</td>
<td>detail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operability field</td>
<td>The operational state of the disk drive. This can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Operable—The disk drive is operable.</td>
</tr>
<tr>
<td></td>
<td>• Inoperable—The disk drive is inoperable, possibly due to a hardware issue such as bad blocks.</td>
</tr>
<tr>
<td></td>
<td>• N/A—The operability of the disk drive cannot be determined. This could be due to the server or firmware not being support for disk drive monitoring, or because the server is powered off.</td>
</tr>
</tbody>
</table>

Note The Operability field may show the incorrect status for several reasons, such as if the disk is part of a broken RAID set or if the BIOS POST (Power On Self Test) has not completed.

<table>
<thead>
<tr>
<th>Presence field</th>
<th>The presence of the disk drive, and whether it can be detected in the server drive bay, regardless of its operational state. This can be the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Equipped—A disk drive can be detected in the server drive bay.</td>
</tr>
<tr>
<td></td>
<td>• Missing—No disk drive can be detected in the server drive bay.</td>
</tr>
</tbody>
</table>

The following example shows the status of a disk drive:

```
UCS-A# scope chassis 1
UCS-A /chassis # scope server 6
UCS-A /chassis/server # scope raid-controller 1 sas
UCS-A /chassis/server/raid-controller # show local-disk 1
```
Local Disk:
ID: 1
Block Size: 512
Blocks: 60545024
Size (MB): 29563
Operability: Operable
Presence: Equipped

Interpreting the Status of a Monitored Disk Drive

Cisco UCS Manager displays the following properties for each monitored disk drive:

• Operability—The operational state of the disk drive.
• Presence—The presence of the disk drive, and whether it can be detected in the server drive bay, regardless of its operational state.

You need to look at both properties to determine the status of the monitored disk drive. The following table shows the likely interpretations of the property values.

<table>
<thead>
<tr>
<th>Operability Status</th>
<th>Presence Status</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operable</td>
<td>Equipped</td>
<td>No fault condition. The disk drive is in the server and can be used.</td>
</tr>
</tbody>
</table>
| Inoperable | Equipped | Fault condition. The disk drive is in the server, but one of the following could be causing an operability problem:
| | | • The disk drive is unusable due to a hardware issue such as bad blocks. |
| | | • There is a problem with the IPMI link to the storage controller. |

<table>
<thead>
<tr>
<th>Operability Status</th>
<th>Presence Status</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Missing</td>
<td>Fault condition. The server drive bay does not contain a disk drive.</td>
</tr>
</tbody>
</table>
| N/A | Equipped | Fault condition. The disk drive is in the server, but one of the following could be causing an operability problem:
| | | • The server is powered off. |
| | | • The storage controller firmware is the wrong version and does not support disk drive monitoring. |
| | | • The server does not support disk drive monitoring. |
The **Operability** field may show the incorrect status for several reasons, such as if the disk is part of a broken RAID set or if the BIOS POST (Power On Self Test) has not completed.
Configuring Statistics-Related Policies

This chapter includes the following sections:

- Configuring Statistics Collection Policies, page 585
- Configuring Statistics Threshold Policies, page 586

Configuring Statistics Collection Policies

Statistics Collection Policy

A statistics collection policy defines how frequently statistics are to be collected (collection interval) and how frequently the statistics are to be reported (reporting interval). Reporting intervals are longer than collection intervals so that multiple statistical data points can be collected during the reporting interval, which provides Cisco UCS Manager with sufficient data to calculate and report minimum, maximum, and average values.

For NIC statistics, Cisco UCS Manager displays the average, minimum, and maximum of the change since the last collection of statistics. If the values are 0, there has been no change since the last collection.

Statistics can be collected and reported for the following five functional areas of the Cisco UCS system:

- Adapter—statistics related to the adapters
- Chassis—statistics related to the blade chassis
- Host—this policy is a placeholder for future support
- Port—statistics related to the ports, including server ports, uplink Ethernet ports, and uplink Fibre Channel ports
- Server—statistics related to servers

Note

Cisco UCS Manager has one default statistics collection policy for each of the five functional areas. You cannot create additional statistics collection policies and you cannot delete the existing default policies. You can only modify the default policies.
Configuring a Statistics Collection Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/monitoring # scope stats-collection-policy {adapter</td>
<td>chassis</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/stats-collection-policy # set collection-interval {1 minute</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/stats-collection-policy # set reporting-interval {15 minutes</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/stats-collection-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a statistics collection policy for ports, sets the collection interval to one minute, the reporting interval to 30 minutes, and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope stats-collection-policy port
UCS-A /monitoring/stats-collection-policy* # set collection-interval 1 minute
UCS-A /monitoring/stats-collection-policy* # set reporting-interval 30 minutes
UCS-A /monitoring/stats-collection-policy* # commit-buffer
UCS-A /monitoring/stats-collection-policy #
```

Configuring Statistics Threshold Policies

Statistics Threshold Policy

A statistics threshold policy monitors statistics about certain aspects of the system and generates an event if the threshold is crossed. You can set both minimum and maximum thresholds. For example, you can configure the policy to raise an alarm if the CPU temperature exceeds a certain value, or if a server is overutilized or underutilized.

These threshold policies do not control the hardware or device-level thresholds enforced by endpoints, such as the CIMC. Those thresholds are burned into the hardware components at manufacture.

Cisco UCS enables you to configure statistics threshold policies for the following components:

- Servers and server components
- Uplink Ethernet ports
- Ethernet server ports, chassis, and fabric interconnects
- Fibre Channel port
You cannot create or delete a statistics threshold policy for Ethernet server ports, uplink Ethernet ports, or uplink Fibre Channel ports. You can only configure the existing default policy.

Server and Server Component Statistics Threshold Policy Configuration

Configuring a Server and Server Component Statistics Threshold Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # create stats-threshold-policy policy-name</td>
<td>Creates the specified statistics threshold policy and enters organization statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/stats-threshold-policy # set descr description</td>
<td>(Optional) Provides a description for the policy. Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/stats-threshold-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates the server and server component statistics threshold policy named ServStatsPolicy, provides a description for the policy, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org# create stats-threshold-policy ServStatsPolicy
UCS-A /org/stats-threshold-policy# set descr "Server stats threshold policy."
UCS-A /org/stats-threshold-policy# commit-buffer
UCS-A /org/stats-threshold-policy#
```

What to Do Next

Configure one or more policy classes for the statistics threshold policy. For more information, see “Configuring a Server and Server Component Statistics Threshold Policy Class, on page 588.”
Deleting a Server and Server Component Statistics Threshold Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # delete stats-threshold-policy policy-name</td>
<td>Deletes the specified statistics threshold policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server and server component statistics threshold policy named ServStatsPolicy and commits the transaction:

```plaintext
UCS-A# scope org /
UCS-A /org* # delete stats-threshold-policy ServStatsPolicy
UCS-A /org* # commit-buffer
```

Configuring a Server and Server Component Statistics Threshold Policy Class

Before You Begin

Configure or identify the server and server component statistics threshold policy that will contain the policy class. For more information, see "Configuring a Server and Server Component Statistics Threshold Policy, on page 587."

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope stats-threshold-policy policy-name</td>
<td>Enters organization statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/stats-threshold-policy # create class class-name</td>
<td>Creates the specified statistics threshold policy class and enters organization statistics threshold policy class mode. The class-name argument can be any of the class name keywords available for the particular statistics threshold policy being configured. To see a list of the available class name keywords, enter the create class ? command in organization statistics threshold policy mode. You can configure multiple classes for the statistics threshold policy.</td>
</tr>
</tbody>
</table>

Note You can configure multiple classes for the statistics threshold policy.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 4 | UCS-A /org/stats-threshold-policy/class
create property property-name | Creates the specified statistics threshold policy class property and enters organization statistics threshold policy class property mode. The `property-name` argument can be any of the property name keywords available for the particular policy class being configured. To see a list of the available property name keywords, enter the `create property ?` command in organization statistics threshold policy class mode. **Note** You can configure multiple properties for the policy class. |
| 5 | UCS-A /org/stats-threshold-policy/class/property
set normal-value value | Specifies the normal value for the class property. The `value` format can vary depending on the class property being configured. To see the required format, enter the `set normal-value ?` command in organization statistics threshold policy class property mode. |
| 6 | UCS-A /org/stats-threshold-policy/class/property # create threshold-value
{above-normal | below-normal} {cleared | condition | critical | info | major | minor | warning} | Creates the specified threshold value for the class property and enters organization statistics threshold policy class property threshold value mode. **Note** You can configure multiple threshold values for the class property. |
| 7 | UCS-A /org/stats-threshold-policy/class/property/threshold-value
set {deescalating | escalating} value | Specifies the de-escalating or escalating class property threshold value. The `value` format can vary depending on the class property threshold value being configured. To see the required format, enter the `set deescalating ?` or `set escalating ?` command in organization statistics threshold policy class property threshold value mode. **Note** You can specify both de-escalating and escalating class property threshold values. |
| 8 | UCS-A /org/stats-threshold-policy/class/property/threshold-value # commit-buffer | Commits the transaction to the system configuration. |

The following example creates the server and server component statistics threshold policy class for CPU statistics, creates a CPU temperature property, specifies that the normal CPU temperature is 48.5°C, creates an above normal warning threshold of 50°C, and commits the transaction:

```
UCS-A# scope org /
UCS-A /org* # scope stats-threshold-policy ServStatsPolicy
UCS-A /org/stats-threshold-policy* # create class cpu-stats
UCS-A /org/stats-threshold-policy/class* # create property cpu-temp
UCS-A /org/stats-threshold-policy/class/property* # set normal-value 48.5
UCS-A /org/stats-threshold-policy/class/property/threshold-value* # create threshold-value above-normal warning
UCS-A /org/stats-threshold-policy/class/property/threshold-value* # set escalating 50.0
UCS-A /org/stats-threshold-policy/class/property/threshold-value* # commit-buffer
UCS-A /org/stats-threshold-policy/class/property/threshold-value* # commit-buffer
```

Cisco UCS Manager CLI Configuration Guide, Release 2.0
Deleting a Server and Server Component Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A/org # scope stats-threshold-policy policy-name</td>
<td>Enters the specified statistics threshold policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A/org/stats-threshold-policy # delete class class-name</td>
<td>Deletes the specified statistics threshold policy class from the policy.</td>
</tr>
<tr>
<td>Step 4 UCS-A/org/stats-threshold-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server and server component statistics threshold policy class for CPU statistics and commits the transaction:

UCS-A# scope org /
UCS-A/ org*/ # scope stats-threshold-policy ServStatsPolicy
UCS-A/ org/stats-threshold-policy* # delete class cpu-stats
UCS-A/ org/stats-threshold-policy* # commit-buffer

Uplink Ethernet Port Statistics Threshold Policy Configuration

Configuring an Uplink Ethernet Port Statistics Threshold Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A/eth-uplink # scope stats-threshold-policy default</td>
<td>Enters Ethernet uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Note You cannot create (or delete) an uplink Ethernet port statistics threshold policy. You can only enter (scope to) the existing default policy.</td>
<td></td>
</tr>
<tr>
<td>Step 3 UCS-A/eth-uplink/stats-threshold-policy # set descr description</td>
<td>(Optional) Provides a description for the policy.</td>
</tr>
<tr>
<td>Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 4 | Commits the transaction to the system configuration.

UCS-A
/eth-uplink/stats-threshold-policy # commit-buffer

Step 4

The following example enters the default uplink Ethernet port threshold policy, provides a description for the policy, and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink* # scope stats-threshold-policy default
UCS-A /eth-uplink/stats-threshold-policy* # set descr "Uplink Ethernet port stats threshold policy."
UCS-A /eth-uplink/stats-threshold-policy* # commit-buffer
UCS-A /eth-uplink/stats-threshold-policy #

What to Do Next

Configure one or more policy classes for the statistics threshold policy. For more information, see "Configuring an Uplink Ethernet Port Statistics Threshold Policy Class, on page 591."

Configuring an Uplink Ethernet Port Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>UCS-A# scope eth-uplink</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters Ethernet uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink # scope stats-threshold-policy default</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates the specified statistics threshold policy class and enters Ethernet uplink statistics threshold policy class mode. The class-name argument can be any of the class name keywords available for the particular statistics threshold policy being configured. To see a list of the available class name keywords, enter the create class ? command in Ethernet uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink/stats-threshold-policy # create class class-name</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>You can configure multiple classes for the statistics threshold policy.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Creates the specified statistics threshold policy class property and enters Ethernet uplink statistics threshold policy class property mode. The property-name argument can be any of the property name keywords available for the particular policy class being configured. To see a list of the available property name keywords, enter the create property ? command in Ethernet uplink statistics threshold policy class mode.</td>
</tr>
<tr>
<td>UCS-A /eth-uplink/stats-threshold-policy /class # create property property-name</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>You can configure multiple properties for the policy class.</td>
</tr>
</tbody>
</table>
Configuring Statistics Threshold Policies

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 UCS-A /eth-uplink/stats-threshold-policy /class/property # set normal-value ?</td>
<td>Specifies the normal value for the class property. The value format can vary depending on the class property being configured. To see the required format, enter the set normal-value ? command in Ethernet uplink statistics threshold policy class property mode.</td>
</tr>
<tr>
<td>Step 6 UCS-A /eth-uplink/stats-threshold-policy /class/property # create threshold-value {above-normal</td>
<td>below-normal} {cleared</td>
</tr>
<tr>
<td>Step 7 UCS-A /eth-uplink/stats-threshold-policy /class/property/threshold-value # set {deescalating</td>
<td>escalating} value</td>
</tr>
<tr>
<td>Step 8 UCS-A /eth-uplink/stats-threshold-policy /class/property/threshold-value # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates the uplink Ethernet port statistics threshold policy class for Ethernet error statistics, creates a cyclic redundancy check (CRC) error count property, specifies that the normal CRC error count for each polling interval is 1000, creates an above normal warning threshold of 1250, and commits the transaction:

```
UCS-A# scope eth-uplink
UCS-A /eth-uplink* # scope stats-threshold-policy default
UCS-A /eth-uplink/stats-threshold-policy* # create class ether-error-stats
UCS-A /eth-uplink/stats-threshold-policy/class* # create property crc-delta
UCS-A /eth-uplink/stats-threshold-policy/class/property* # set normal-value 1000
UCS-A /eth-uplink/stats-threshold-policy/class/property/threshold-value* # create threshold-value above-normal warning
UCS-A /eth-uplink/stats-threshold-policy/class/property/threshold-value* # set escalating 1250
UCS-A /eth-uplink/stats-threshold-policy/class/property/threshold-value* # commit-buffer
```
Deleting an Uplink Ethernet Port Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-uplink</td>
<td>Enters Ethernet uplink mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-uplink # scope stats-threshold-policy default</td>
<td>Enters Ethernet uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-uplink/stats-threshold-policy # delete class class-name</td>
<td>Deletes the specified statistics threshold policy class from the policy.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-uplink/stats-threshold-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the uplink Ethernet port statistics threshold policy class for Ethernet error statistics and commits the transaction:

UCS-A# scope eth-uplink
UCS-A /eth-uplink # scope stats-threshold-policy default
UCS-A /eth-uplink/stats-threshold-policy # delete class ether-error-stats
UCS-A /eth-uplink/stats-threshold-policy* # commit-buffer
UCS-A /eth-uplink/stats-threshold-policy #

Server Port, Chassis, and Fabric Interconnect Statistics Threshold Policy Configuration

Configuring a Server Port, Chassis, and Fabric Interconnect Statistics Threshold Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-server # scope stats-threshold-policy default</td>
<td>Enters Ethernet server statistics threshold policy mode.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot create (or delete) a server port, chassis, and fabric interconnect statistics threshold policy. You can only enter (scope to) the existing default policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-server/stats-threshold-policy # set descr description</td>
<td>(Optional) Provides a description for the policy.</td>
</tr>
<tr>
<td>Note</td>
<td>If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
</tbody>
</table>
Configuring Statistics Threshold Policies

The following example enters the default server port, chassis, and fabric interconnect statistics threshold policy, provides a description for the policy, and commits the transaction:

UCS-A# scope eth-server
UCS-A /eth-server* # scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy* # set descr "Server port, chassis, and fabric interconnect stats threshold policy."
UCS-A /eth-server/stats-threshold-policy* # commit-buffer
UCS-A /eth-server/stats-threshold-policy#

What to Do Next

Configure one or more policy classes for the statistics threshold policy. For more information, see "Configuring a Server Port, Chassis, and Fabric Interconnect Statistics Threshold Policy Class, on page 594."

Configuring a Server Port, Chassis, and Fabric Interconnect Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope eth-server</td>
<td>Enters Ethernet server mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /eth-server# scope stats-threshold-policy default</td>
<td>Enters Ethernet server statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /eth-server/stats-threshold-policy# create class class-name</td>
<td>Creates the specified statistics threshold policy class and enters Ethernet server statistics threshold policy class mode. The class-name argument can be any of the class name keywords available for the particular statistics threshold policy being configured. To see a list of the available class name keywords, enter the create class ? command in Ethernet server statistics threshold policy mode. Note You can configure multiple classes for the statistics threshold policy.</td>
</tr>
<tr>
<td>Step 4 UCS-A /eth-server/stats-threshold-policy/class# create property property-name</td>
<td>Creates the specified statistics threshold policy class property and enters Ethernet server statistics threshold policy class property mode. The property-name argument can be any of the property name keywords available for the particular policy class being configured. To see a list of the available property name keywords, enter the create property ? command in Ethernet server statistics threshold policy class mode. Note You can configure multiple properties for the policy class.</td>
</tr>
</tbody>
</table>
Command or Action

Step 5	UCS-A /eth-server/stats-threshold-policy/class/property # set normal-value value	Specifies the normal value for the class property. The value format can vary depending on the class property being configured. To see the required format, enter the set normal-value ? command in Ethernet server statistics threshold policy class property mode.	
Step 6	UCS-A /eth-server/stats-threshold-policy/class/property # create threshold-value {above-normal	below-normal}	Creates the specified threshold value for the class property and enters Ethernet server statistics threshold policy class property threshold value mode. **Note** You can configure multiple threshold values for the class property.
Step 7	UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value # set {deescalating	escalating} value	Specifies the de-escalating or escalating class property threshold value. The value format can vary depending on the class property threshold value being configured. To see the required format, enter the set deescalating ? or set escalating ? command in Ethernet server statistics threshold policy class property threshold value mode. **Note** You can specify both de-escalating and escalating class property threshold values.
Step 8	UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value # commit-buffer	Commits the transaction to the system configuration.	

The following example creates the server port, chassis, and fabric interconnect statistics threshold policy class for chassis statistics, creates an input power (Watts) property, specifies that the normal power is 8kW, creates an above normal warning threshold of 11kW, and commits the transaction:

```
UCS-A# scope eth-server
UCS-A /eth-server* # scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy* # create class chassis-stats
UCS-A /eth-server/stats-threshold-policy/class* # create property input-power
UCS-A /eth-server/stats-threshold-policy/class/property* # set normal-value 8000.0
UCS-A /eth-server/stats-threshold-policy/class/property* # create threshold-value above-normal
UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value* # set escalating
UCS-A /eth-server/stats-threshold-policy/class/property/threshold-value* # commit-buffer
```
Deleting a Server Port, Chassis, and Fabric Interconnect Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A#</td>
<td><code>scope eth-server</code></td>
<td>Enters Ethernet server mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /eth-server #</td>
<td><code>scope stats-threshold-policy default</code></td>
<td>Enters Ethernet server statistics threshold policy mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /eth-server/stats-threshold-policy #</td>
<td><code>delete class class-name</code></td>
<td>Deletes the specified statistics threshold policy class from the policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /eth-server/stats-threshold-policy #</td>
<td><code>commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the server port, chassis, and fabric interconnect statistics threshold policy class for chassis statistics and commits the transaction:

```
UCS-A#  scope eth-server
UCS-A /eth-server* #  scope stats-threshold-policy default
UCS-A /eth-server/stats-threshold-policy* #  delete class chassis-stats
UCS-A /eth-server/stats-threshold-policy* #  commit-buffer
UCS-A /eth-server/stats-threshold-policy #
```

Fibre Channel Port Statistics Threshold Policy Configuration

Configuring a Fibre Channel Port Statistics Threshold Policy

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A#</td>
<td><code>scope fc-uplink</code></td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /fc-uplink #</td>
<td><code>scope stats-threshold-policy default</code></td>
<td>Enters Fibre Channel uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot create (or delete) an uplink Fibre Channel port statistics threshold policy. You can only enter (scope to) the existing default policy.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A /fc-uplink/stats-threshold-policy #</td>
<td><code>set descr description</code></td>
<td>(Optional) Provides a description for the policy.</td>
</tr>
<tr>
<td>Note</td>
<td>If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any <code>show</code> command output.</td>
<td></td>
</tr>
</tbody>
</table>
The following example enters the default uplink Fibre Channel port statistics threshold policy, provides a description for the policy, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink* # scope stats-threshold-policy default
UCS-A /fc-uplink/stats-threshold-policy* # set descr "Uplink Fibre Channel stats threshold policy."
UCS-A /fc-uplink/stats-threshold-policy* # commit-buffer
UCS-A /fc-uplink/stats-threshold-policy #
```

What to Do Next

Configure one or more policy classes for the statistics threshold policy. For more information, see "Configuring a Fibre Channel Port Statistics Threshold Policy Class, on page 597."

Configuring a Fibre Channel Port Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope fc-uplink</td>
</tr>
<tr>
<td></td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /fc-uplink # scope stats-threshold-policy default</td>
</tr>
<tr>
<td></td>
<td>Enters Fibre Channel uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /fc-uplink/stats-threshold-policy # create class class-name</td>
</tr>
<tr>
<td></td>
<td>Creates the specified statistics threshold policy class and enters Fibre Channel uplink statistics threshold policy class mode. The class-name argument can be any of the class name keywords available for the particular statistics threshold policy being configured. To see a list of the available class name keywords, enter the create class ? command in Fibre Channel uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Note</td>
<td>You can configure multiple classes for the statistics threshold policy.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /fc-uplink/stats-threshold-policy /class # create property property-name</td>
</tr>
<tr>
<td></td>
<td>Creates the specified statistics threshold policy class property and enters Fibre Channel uplink statistics threshold policy class property mode. The property-name argument can be any of the property name keywords available for the particular policy class being configured. To see a list of the available property name keywords, enter the create property ? command in Fibre Channel uplink statistics threshold policy class mode.</td>
</tr>
<tr>
<td>Note</td>
<td>You can configure multiple properties for the policy class.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>UCS-A /fc-uplink/stats-threshold-policy /class/property # set normal-value value</td>
<td>Specifies the normal value for the class property. The value format can vary depending on the class property being configured. To see the required format, enter the set normal-value ? command in Fibre Channel uplink statistics threshold policy class property mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /fc-uplink/stats-threshold-policy /class/property # create threshold-value {above-normal</td>
<td>below-normal} {cleared</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /fc-uplink/stats-threshold-policy /class/property/threshold-value # set {deescalating</td>
<td>escalating} value</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /fc-uplink/stats-threshold-policy /class/property/threshold-value # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates the uplink Fibre Channel port statistics threshold policy class for Fibre Channel statistics, creates an average bytes received property, specifies that the normal average number of bytes received for each polling interval is 150MB, creates an above normal warning threshold of 200MB, and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink* # scope stats-threshold-policy default
UCS-A /fc-uplink/stats-threshold-policy* # create class fc-stats
UCS-A /fc-uplink/stats-threshold-policy/class* # create property bytes-rx-avg
UCS-A /fc-uplink/stats-threshold-policy/class/property* # set normal-value 150000000
UCS-A /fc-uplink/stats-threshold-policy/class/property/threshold-value* # create threshold-value above-normal warning
UCS-A /fc-uplink/stats-threshold-policy/class/property/threshold-value* # set escalating 200000000
UCS-A /fc-uplink/stats-threshold-policy/class/property/threshold-value* # commit-buffer
UCS-A /fc-uplink/stats-threshold-policy/class/property/threshold-value #
```
Deleting an Uplink Fibre Channel Port Statistics Threshold Policy Class

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope fc-uplink</td>
<td>Enters Fibre Channel uplink mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /fc-uplink # scope stats-threshold-policy default</td>
<td>Enters Fibre Channel uplink statistics threshold policy mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /fc-uplink/stats-threshold-policy # delete class class-name</td>
<td>Deletes the specified statistics threshold policy class from the policy.</td>
</tr>
<tr>
<td>Step 4 UCS-A /fc-uplink/stats-threshold-policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the uplink Fibre Channel port statistics threshold policy class for Fibre Channel statistics and commits the transaction:

```
UCS-A# scope fc-uplink
UCS-A /fc-uplink # scope stats-threshold-policy default
UCS-A /fc-uplink/stats-threshold-policy # delete class fc-stats
UCS-A /fc-uplink/stats-threshold-policy* # commit-buffer
UCS-A /fc-uplink/stats-threshold-policy #
```
Configuring Call Home

This chapter includes the following sections:

- Call Home, page 601
- Call Home Considerations and Guidelines, page 603
- Cisco UCS Faults and Call Home Severity Levels, page 604
- Cisco Smart Call Home, page 605
- Configuring Call Home, page 606
- Disabling Call Home, page 608
- Enabling Call Home, page 608
- Configuring System Inventory Messages, page 609
- Configuring Call Home Profiles, page 610
- Sending a Test Call Home Alert, page 613
- Configuring Call Home Policies, page 614
- Example: Configuring Call Home for Smart Call Home, page 616

Call Home

Call Home provides an email-based notification for critical system policies. A range of message formats are available for compatibility with pager services or XML-based automated parsing applications. You can use this feature to page a network support engineer, email a Network Operations Center, or use Cisco Smart Call Home services to generate a case with the Technical Assistance Center.

The Call Home feature can deliver alert messages containing information about diagnostics and environmental faults and events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles. Each profile includes configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco TAC, but you also can define your own destination profiles.

When you configure Call Home to send messages, Cisco UCS Manager executes the appropriate CLI `show` command and attaches the command output to the message.
Cisco UCS delivers Call Home messages in the following formats:

- Short text format which provides a one or two line description of the fault that is suitable for pagers or printed reports.
- Full text format which provides fully formatted message with detailed information that is suitable for human reading.
- XML machine readable format that uses Extensible Markup Language (XML) and Adaptive Messaging Language (AML) XML schema definition (XSD). The AML XSD is published on the Cisco.com website. The XML format enables communication with the Cisco Systems Technical Assistance Center.

For information about the faults that can trigger Call Home email alerts, see the Cisco UCS Faults and Error Messages Reference.
The following figure shows the flow of events after a Cisco UCS fault is triggered in a system with Call Home configured:

Figure 2: Flow of Events after a Fault is Triggered

- UCS Fault is Triggered
 - Is this fault call home enabled?
 - yes
 - Is this fault disabled by a call home policy?
 - yes
 - end
 - no
 - end
 - no
 - For each profile
 - Is UCS fault level call home profile level?
 - yes
 - Send the completed call home email for this profile
 - no
 - For each alert group in this profile
 - Is alert group meaningful for this fault?
 - yes
 - Collect this alert group call home information
 - no
 - Append the information to the email message

This is really a table as opposed to a test. For some Call Home Alert types, there will simply not be any corresponding applicable data to be collected.

Call Home Considerations and Guidelines

How you configure Call Home depends on how you intend to use the feature. The information you need to consider before you configure Call Home includes the following:
Destination Profile

You must configure at least one destination profile. The destination profile or profiles that you use depend upon whether the receiving entity is a pager, email, or automated service such as Cisco Smart Call Home. If the destination profile uses email message delivery, you must specify a Simple Mail Transfer Protocol (SMTP) server when you configure Call Home.

Contact Information

The contact email, phone, and street address information should be configured so that the receiver can determine the origin of messages received from the Cisco UCS domain.

Cisco Smart Call Home sends the registration email to this email address after you send a system inventory to begin the registration process.

If an email address includes special characters, such as # (hash), spaces, or & (ampersand), the email server may not be able to deliver email messages to that address. Cisco recommends that you use email addresses which comply with RFC2821 and RFC2822 and include only 7bit ASCII characters.

IP Connectivity to Email Server or HTTP Server

The fabric interconnect must have IP connectivity to an email server or the destination HTTP server. In a cluster configuration, both fabric interconnects must have IP connectivity. This connectivity ensures that the current, active fabric interconnect can send Call Home email messages. The source of these email messages is always the IP address of a fabric interconnect. The virtual IP address assigned Cisco UCS Manager in a cluster configuration is never the source of the email.

Smart Call Home

If Cisco Smart Call Home is used, the following are required:

- An active service contract must cover the device being configured
- The customer ID associated with the Smart Call Home configuration in Cisco UCS must be the CCO (Cisco.com) account name associated with a support contract that includes Smart Call Home

Cisco UCS Faults and Call Home Severity Levels

Because Call Home is present across several Cisco product lines, Call Home has developed its own standardized severity levels. The following table describes how the underlying Cisco UCS fault levels map to the Call Home severity levels. You need to understand this mapping when you configure the Level setting for Call Home profiles.

Table 15: Mapping of Faults and Call Home Severity Levels

<table>
<thead>
<tr>
<th>Call Home Severity</th>
<th>Cisco UCS Fault</th>
<th>Call Home Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9) Catastrophic</td>
<td>N/A</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>(8) Disaster</td>
<td>N/A</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>(7) Fatal</td>
<td>N/A</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>Call Home Severity</td>
<td>Cisco UCS Fault</td>
<td>Call Home Meaning</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>(6) Critical</td>
<td>Critical</td>
<td>Critical conditions, immediate attention needed.</td>
</tr>
<tr>
<td>(5) Major</td>
<td>Major</td>
<td>Major conditions.</td>
</tr>
<tr>
<td>(4) Minor</td>
<td>Minor</td>
<td>Minor conditions.</td>
</tr>
<tr>
<td>(3) Warning</td>
<td>Warning</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>(2) Notification</td>
<td>Info</td>
<td>Basic notifications and informational messages. Possibly independently insignificant.</td>
</tr>
<tr>
<td>(1) Normal</td>
<td>Clear</td>
<td>Normal event, signifying a return to normal state.</td>
</tr>
<tr>
<td>(0) debug</td>
<td>N/A</td>
<td>Debugging messages.</td>
</tr>
</tbody>
</table>

Cisco Smart Call Home

Cisco Smart Call Home is a web application which leverages the Call Home feature of Cisco UCS. Smart Call Home offers proactive diagnostics and real-time email alerts of critical system events, which results in higher network availability and increased operational efficiency. Smart Call Home is a secure connected service offered by Cisco Unified Computing Support Service and Cisco Unified Computing Mission Critical Support Service for Cisco UCS.

Note
Using Smart Call Home requires the following:

- Cisco Unified Computing Support Service or Cisco Unified Computing Mission Critical Support Service for the device to be registered.

You can configure and register Cisco UCS Manager to send Smart Call Home email alerts to either the Smart Call Home System or the secure Transport Gateway. Email alerts sent to the secure Transport Gateway are forwarded to the Smart Call Home System using HTTPS.

Note
For security reasons, we recommend using the Transport Gateway option. The Transport Gateway can be downloaded from Cisco.

To configure Smart Call Home, you must do the following:

- Enable the Smart Call Home feature.
- Configure the contact information.
- Configure the email information.
- Configure the SMTP server information.
- Configure the default CiscoTAC-1 profile.
- Send a Smart Call Home inventory message to start the registration process.
- Ensure that the CCO ID you plan to use as the Call Home Customer ID for the Cisco UCS domain has the contract numbers from the registration added to its entitlements. You can update the ID in the account properties under Additional Access in the Profile Manager on CCO.

Configuring Call Home

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring/callhome # enable</td>
<td>Enables Call Home.</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring/callhome # set contact name</td>
<td>Specifies the name of the main Call Home contact person.</td>
</tr>
<tr>
<td>Step 5 UCS-A /monitoring/callhome # set email email-addr</td>
<td>Specifies the email address of the main Call Home contact person. Note If an email address includes special characters, such as # (hash), spaces, or & (ampersand), the email server may not be able to deliver email messages to that address. Cisco recommends that you use email addresses which comply with RFC2821 and RFC2822 and include only 7bit ASCII characters.</td>
</tr>
<tr>
<td>Step 6 UCS-A /monitoring/callhome # set phone-contact phone-num</td>
<td>Specifies the phone number of the main Call Home contact person. The phone number must be in international format, starting with a + (plus sign) and a country code.</td>
</tr>
<tr>
<td>Step 7 UCS-A /monitoring/callhome # set street-address street-addr</td>
<td>Specifies the street address of the main Call Home contact person. Enter up to 255 ASCII characters.</td>
</tr>
<tr>
<td>Step 8 UCS-A /monitoring/callhome # set customer-id id-num</td>
<td>Specifies the CCO identification number that includes the contract numbers for the support contract in its entitlements. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
</tbody>
</table>
Configuring Call Home

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>UCS-A /monitoring/callhome # set contract-id id-num</td>
<td>Specifies the contract identification number from the service agreement. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /monitoring/callhome # set site-id id-num</td>
<td>Specifies the site identification number from the service agreement. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
<tr>
<td>Step 11</td>
<td>UCS-A /monitoring/callhome # set from-email email-addr</td>
<td>Specifies the email address to use for the From field in Call Home messages.</td>
</tr>
<tr>
<td>Step 12</td>
<td>UCS-A /monitoring/callhome # set reply-to-email email-addr</td>
<td>Specifies the email address to use for the Reply To field in Call Home messages.</td>
</tr>
<tr>
<td>Step 13</td>
<td>UCS-A /monitoring/callhome # set hostname {hostname</td>
<td>ip-addr}</td>
</tr>
<tr>
<td>Step 14</td>
<td>UCS-A /monitoring/callhome # set port port-num</td>
<td>Specifies the SMTP server port that Call Home uses to send email messages. Valid port numbers are 1 to 65535.</td>
</tr>
<tr>
<td>Step 15</td>
<td>UCS-A /monitoring/callhome # set throttling {off</td>
<td>on}</td>
</tr>
<tr>
<td>Step 16</td>
<td>UCS-A /monitoring/callhome # set urgency {alerts</td>
<td>critical</td>
</tr>
<tr>
<td>Step 17</td>
<td>UCS-A /monitoring/callhome # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures Call Home and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring* # scope callhome
UCS-A /monitoring/callhome* # enable
UCS-A /monitoring/callhome* # set contact "Steve Jones"
UCS-A /monitoring/callhome* # set email admin@MyCompany.com
UCS-A /monitoring/callhome* # set phone-contact +1-001-408-555-1234
UCS-A /monitoring/callhome* # set street-address "123 N. Main Street, Anytown, CA, 99885"
UCS-A /monitoring/callhome* # set customer-id 1234567
UCS-A /monitoring/callhome* # set contract-id 99887766
UCS-A /monitoring/callhome* # set site-id 5432112
UCS-A /monitoring/callhome* # set from-email person@MyCompany.com
UCS-A /monitoring/callhome* # set reply-to-email person@MyCompany.com
UCS-A /monitoring/callhome* # set hostname 192.168.100.12
UCS-A /monitoring/callhome* # set port 25
UCS-A /monitoring/callhome* # set throttling on
```
Disabling Call Home

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
</tr>
<tr>
<td></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # scope callhome</td>
</tr>
<tr>
<td></td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/callhome # disable</td>
</tr>
<tr>
<td></td>
<td>Enables Call Home.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/callhome # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables Call Home and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # disable
UCS-A /monitoring/callhome* # commit-buffer
UCS-A /monitoring/callhome #
```

Enabling Call Home

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
</tr>
<tr>
<td></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # scope callhome</td>
</tr>
<tr>
<td></td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/callhome # enable</td>
</tr>
<tr>
<td></td>
<td>Enables Call Home.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/callhome # commit-buffer</td>
</tr>
<tr>
<td></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example enables Call Home and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # enable
UCS-A /monitoring/callhome* # commit-buffer
UCS-A /monitoring/callhome #
```
Configuring System Inventory Messages

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/callhome # scope inventory</td>
<td>Enters monitoring call home inventory mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/callhome/inventory # set send-periodically {off</td>
<td>on}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/callhome/inventory # set interval-days interval-num</td>
<td>Specifies the time interval (in days) at which inventory messages will be sent.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /monitoring/callhome/inventory # set timeofday-hour hour</td>
<td>Specifies the hour (using 24-hour format) that inventory messages are sent.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /monitoring/callhome/inventory # set timeofday-minute minute</td>
<td>Specifies the number of minutes after the hour that inventory messages are sent.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /monitoring/callhome/inventory # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example configures Call Home system inventory messages and commits the transaction:

UCS-A# scope monitoring
UCS-A /monitoring* # scope callhome
UCS-A /monitoring/callhome* # scope inventory
UCS-A /monitoring/callhome/inventory* # set send-periodically on
UCS-A /monitoring/callhome/inventory* # set interval-days 15
UCS-A /monitoring/callhome/inventory* # set timeofday-hour 21
UCS-A /monitoring/callhome/inventory* # set timeofday-minute 30
UCS-A /monitoring/callhome/inventory #

Sending a System Inventory Message

Use this procedure if you need to manually send a system inventory message outside of the scheduled messages.

Note

The system inventory message is sent only to those recipients defined in CiscoTAC-1 profile.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A/monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A/monitoring/callhome # scope inventory</td>
<td>Enters monitoring call home inventory mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A/monitoring/callhome/inventory # send</td>
<td>Sends the system inventory message to the Call Home database.</td>
</tr>
</tbody>
</table>

The following example sends the system inventory message to the Call Home database:

```
UCS-A# scope monitoring
UCS-A/monitoring # scope callhome
UCS-A/monitoring/callhome # scope inventory
UCS-A/monitoring/callhome/inventory* # send
```

Configuring Call Home Profiles

Call Home Profiles

Call Home profiles determine which alerts are sent to designated recipients. You can configure the profiles to send email alerts for events and faults at a desired severity level and for specific alert groups that represent categories of alerts. You can also use these profiles to specify the format of the alert for a specific set of recipients and alert groups.

Each alert that Cisco UCS generates fits into a category represented by an alert group, such as the following:

- Environmental alerts, including fans and power supplies
- Diagnostic alerts, such as POST completion failure on a server

Alert groups and Call Home profiles enable you to filter the alerts and ensure that a specific profile only receives certain categories of alerts. For example, a data center may have a hardware team that handles issues with fans and power supplies. This hardware team does not care about server POST failures or licensing issues. To ensure that the hardware team only receives relevant alerts, create a Call Home profile for the hardware team and check only the "environmental" alert group.

By default, you must configure the Cisco TAC-1 profile. However, you can also create additional profiles to send email alerts to one or more alert groups when events occur at the level that you specify and provide the recipients with the appropriate amount of information about those alerts.

For example, you may want to configure two profiles for faults with a major severity:

- A profile that sends an alert to the Supervisor alert group in the short text format. Members of this group receive a one- or two-line description of the fault that they can use to track the issue.
• A profile that sends an alert to the CiscoTAC alert group in the XML format. Members of this group receive a detailed message in the machine readable format preferred by the Cisco Systems Technical Assistance Center.

Configuring a Call Home Profile

By default, you must configure the Cisco TAC-1 profile, However, you can also create additional profiles to send email alerts to one or more specified groups when events occur at the level that you specify.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# <code>scope monitoring</code></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A <code>/monitoring # scope callhome</code></td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A <code>/monitoring/callhome # create profile profile-name</code></td>
<td>Enters monitoring call home profile mode.</td>
</tr>
<tr>
<td>Step 4 UCS-A `/monitoring/callhome/profile # set level {critical</td>
<td>debug</td>
</tr>
<tr>
<td>Step 5 UCS-A <code>/monitoring/callhome/profile # set alertgroups group-name</code></td>
<td>Specifies one or more groups that are alerted based on the profile. The <code>group-name</code> argument can be one or more of the following keywords entered on the same command line:</td>
</tr>
<tr>
<td>• ciscotac</td>
<td></td>
</tr>
<tr>
<td>• diagnostic</td>
<td></td>
</tr>
<tr>
<td>• environmental</td>
<td></td>
</tr>
<tr>
<td>• inventory</td>
<td></td>
</tr>
<tr>
<td>• license</td>
<td></td>
</tr>
<tr>
<td>• lifecycle</td>
<td></td>
</tr>
<tr>
<td>• linecard</td>
<td></td>
</tr>
<tr>
<td>• supervisor</td>
<td></td>
</tr>
<tr>
<td>• syslogport</td>
<td></td>
</tr>
<tr>
<td>• system</td>
<td></td>
</tr>
<tr>
<td>• test</td>
<td></td>
</tr>
<tr>
<td>Step 6 UCS-A <code>/monitoring/callhome/profile # add alertgroups group-names</code></td>
<td>(Optional) Adds one or more groups to the existing list of groups that are alerted based on the Call Home profile.</td>
</tr>
</tbody>
</table>
Configuring Call Home Profiles

Command or Action | Purpose
---|---
You must use the `add alertgroups` command to add more alert groups to the existing alert group list. Using the `set alertgroups` command will replace any pre-existing alert groups with a new group list.

Step 7

UCS-A /monitoring/callhome/profile #
`set format {shorttxt | xml}`

Specifies the formatting method to use for the e-mail messages.

Step 8

UCS-A /monitoring/callhome/profile #
`set maxsize id-num`

Specifies the maximum size (in characters) of the email message.

Step 9

UCS-A /monitoring/callhome/profile #
`create destination email-addr`

Specifies the email address to which Call Home alerts should be sent. Use multiple `create destination` commands in monitoring call home profile mode to specify multiple email recipients. Use the `delete destination` command in monitoring call home profile mode to delete a specified email recipient.

Step 10

UCS-A /monitoring/callhome/profile/destination #
`commit-buffer`

Commits the transaction to the system configuration.

The following example configures a Call Home profile and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring* # scope callhome
UCS-A /monitoring/callhome* # create profile TestProfile
UCS-A /monitoring/callhome/profile* # set level normal
UCS-A /monitoring/callhome/profile* # set alertgroups test diagnostic
UCS-A /monitoring/callhome/profile* # set format xml
UCS-A /monitoring/callhome/profile* # set maxsize 100000
UCS-A /monitoring/callhome/profile* # create destination admin@MyCompany.com
UCS-A /monitoring/callhome/profile/destination* # commit-buffer
```

Deleting a Call Home Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # scope callhome</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/callhome # delete profile profile-name</td>
</tr>
</tbody>
</table>
The following example deletes the Call Home profile named TestProfile and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # delete profile TestProfile
UCS-A /monitoring/callhome* # commit-buffer
UCS-A /monitoring/callhome#
```

Sending a Test Call Home Alert

Before You Begin
Configure Call Home and a Call Home Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
</tbody>
</table>
| **Step 3** UCS-A /monitoring/callhome # send-test-alert {[alert-group {diagnostic | environmental}] [alert-level {critical | debug | fatal | major | minor | normal | notify | warning}] [alert-message-type {conf | diag | env | inventory | syslog | test}] [alert-message-subtype {delta | full | goldmajor | goldminor | goldnormal | major | minor | nosubtype | test}] [alert-description description]}
| Sends a test Call Home alert. The test Call Home alert must specify all alert-* parameters or Cisco UCS Manager cannot generate the test message. The alert-* parameters include the following:

- alert-description—Alert description
- alert-group—Alert group
- alert-level—Event severity level
- alert-message-type—Message type
- alert-message-subtype—Message subtype

When a test Call Home alert is sent, Call Home responds as it would to any other alert and delivers it to the configured destination email addresses. |

The following example sends a test Call Home alert to the configured destination email address of the environmental alert group:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # send-test-alert alert-description "This is a test alert"
UCS-A /monitoring/callhome diagnostic alert-level critical alert-message-subtype
```
Configuring Call Home Policies

Call Home Policies

Call Home policies determine whether or not Call Home alerts are sent for a specific type of fault or system event. By default, Call Home is enabled to send alerts for certain types of faults and system events. However, you can configure Cisco UCS not to process certain types.

To disable alerts for a type of fault or events, you must create a Call Home policy for that type, and you must first create a policy for that type and then disable the policy.

Configuring a Call Home Policy

Tip

By default, email alerts are sent for all critical system events. However, you can optionally configure Call Home policies to enable or disable sending email alerts for other critical system events.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/callhome # create policy {equipment-inoperable</td>
<td>fru-problem</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/callhome/policy # {disabled</td>
<td>enabled}</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/callhome/policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example creates a Call Home policy that disables the sending of email alerts for system events pertaining to voltage problems and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring* # scope callhome
UCS-A /monitoring/callhome* # create policy voltage-problem
UCS-A /monitoring/callhome/policy* # disabled
UCS-A /monitoring/callhome/policy* # commit-buffer
UCS-A /monitoring/callhome/policy #
```
Disabling a Call Home Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring/callhome # scope policy {equipment-inoperable</td>
<td>fru-problem</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring/callhome/policy # disable</td>
<td>Disables the specified policy.</td>
</tr>
<tr>
<td>Step 5 UCS-A /monitoring/callhome/policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example disables the Call Home policy named voltage-problem and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # scope policy voltage-problem
UCS-A /monitoring/callhome/policy # disable
UCS-A /monitoring/callhome/policy* # commit-buffer
UCS-A /monitoring/callhome/policy#
```

Enabling a Call Home Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # scope callhome</td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring/callhome # scope policy {equipment-inoperable</td>
<td>fru-problem</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring/callhome/policy # enable</td>
<td>Enables the specified policy.</td>
</tr>
<tr>
<td>Step 5 UCS-A /monitoring/callhome/policy # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
Deleting a Call Home Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope monitoring</code></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A <code>/monitoring # scope callhome</code></td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A `/monitoring/callhome # delete policy {equipment-inoperable</td>
<td>fru-problem</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A <code>/monitoring/callhome # commit-buffer</code></td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>

The following example deletes the Call Home policy named voltage-problem and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # scope callhome
UCS-A /monitoring/callhome # delete policy {voltage-problem}
UCS-A /monitoring/callhome* # commit-buffer
```

Example: Configuring Call Home for Smart Call Home

Configuring Smart Call Home

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope monitoring</code></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A <code>/monitoring # scope callhome</code></td>
<td>Enters monitoring call home mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A <code>/monitoring/callhome # enable</code></td>
<td>Enables Call Home.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A <code>/monitoring/callhome # set contact name</code></td>
<td>Cisco Smart Call Home sends the registration email to this email address.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>UCS-A /monitoring/callhome # set email email-addr</th>
<th>Specifies the email address of the main Call Home contact person. Cisco Smart Call Home sends the registration email to this email address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>UCS-A /monitoring/callhome # set phone-contact phone-num</td>
<td>Specifies the phone number of the main Call Home contact person. The phone number must be in international format, starting with a + (plus sign) and a country code.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /monitoring/callhome # set street-address street-addr</td>
<td>Specifies the street address of the main Call Home contact person.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /monitoring/callhome # set customer-id id-num</td>
<td>Specifies the CCO identification number that includes the contract numbers for the support contract in its entitlements. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
<tr>
<td>Step 9</td>
<td>UCS-A /monitoring/callhome # set contract-id id-num</td>
<td>Specifies the contract identification number from the service agreement. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
<tr>
<td>Step 10</td>
<td>UCS-A /monitoring/callhome # set site-id id-num</td>
<td>Specifies the site identification number from the service agreement. The number can be up to 255 alphanumeric characters in free format.</td>
</tr>
<tr>
<td>Step 11</td>
<td>UCS-A /monitoring/callhome # set from-email email-addr</td>
<td>Specifies the email address to use for the From field in Call Home messages.</td>
</tr>
<tr>
<td>Step 12</td>
<td>UCS-A /monitoring/callhome # set reply-to-email email-addr</td>
<td>Specifies the email address to use for the Reply To field in Call Home messages.</td>
</tr>
<tr>
<td>Step 13</td>
<td>UCS-A /monitoring/callhome # set hostname {hostname</td>
<td>ip-addr}</td>
</tr>
<tr>
<td>Step 14</td>
<td>UCS-A /monitoring/callhome # set port port-num</td>
<td>Specifies the SMTP server port that Call Home uses to send email messages. Valid port numbers are 1 to 65535.</td>
</tr>
<tr>
<td>Step 15</td>
<td>UCS-A /monitoring/callhome # set throttling {off</td>
<td>on}</td>
</tr>
<tr>
<td>Step 16</td>
<td>UCS-A /monitoring/callhome # set urgency {alerts</td>
<td>critical</td>
</tr>
<tr>
<td>Step 17</td>
<td>UCS-A /monitoring/callhome # commit-buffer</td>
<td>Commits the transaction to the system configuration.</td>
</tr>
</tbody>
</table>
The following example configures Call Home and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring* # scope callhome
UCS-A /monitoring/callhome* # enable
UCS-A /monitoring/callhome* # set contact "Steve Jones"
UCS-A /monitoring/callhome* # set email admin@MyCompany.com
UCS-A /monitoring/callhome* # set phone-contact +1-001-408-555-1234
UCS-A /monitoring/callhome* # set street-address "123 N. Main Street, Anytown, CA, 99885"
UCS-A /monitoring/callhome* # set customer-id 1234567
UCS-A /monitoring/callhome* # set contract-id 99887766
UCS-A /monitoring/callhome* # set site-id 5432112
UCS-A /monitoring/callhome* # set from-email person@MyCompany.com
UCS-A /monitoring/callhome* # set reply-to-email person@MyCompany.com
UCS-A /monitoring/callhome* # set hostname 192.168.100.12
UCS-A /monitoring/callhome* # set port 25
UCS-A /monitoring/callhome* # set throttling on
UCS-A /monitoring/callhome* # set urgency information
UCS-A /monitoring/callhome* # commit-buffer
```

What to Do Next

Continue to "Configuring the Default Cisco TAC-1 Profile, on page 618" to configure a Call Home profile for use with Smart Call Home.

Configuring the Default Cisco TAC-1 Profile

The following are the default settings for the CiscoTAC-1 profile:

- Level is normal
- Only the CiscoTAC alert group is selected
- Format is xml
- Maximum message size is 5000000

Before You Begin

Complete the "Configuring Smart Call Home, on page 616" section.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A /monitoring/callhome # scope profile</td>
<td>Enters monitoring call home profile mode for the default Cisco TAC-1 profile.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring/callhome/profile # set level</td>
<td>Specifies the normal event level for the profile.</td>
</tr>
<tr>
<td>normal</td>
<td></td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring/callhome/profile # set</td>
<td>Specifies the ciscotac alert group for the profile.</td>
</tr>
<tr>
<td>alertgroups ciscotac</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring/callhome/profile # set</td>
<td>Specifies the e-mail message format to xml</td>
</tr>
<tr>
<td>format xml</td>
<td></td>
</tr>
<tr>
<td>Step 5 UCS-A /monitoring/callhome/profile # set</td>
<td>Specifies the maximum size of 5000000 for</td>
</tr>
<tr>
<td>maxsize 5000000</td>
<td>email messages.</td>
</tr>
<tr>
<td>Step 6 UCS-A /monitoring/callhome/profile #</td>
<td>Specifies the email recipient to</td>
</tr>
<tr>
<td>create</td>
<td>callhome@cisco.com.</td>
</tr>
<tr>
<td>destination callhome@cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 7 UCS-A /monitoring/callhome/profile/</td>
<td>Exits to monitoring call home profile mode.</td>
</tr>
<tr>
<td>destination</td>
<td></td>
</tr>
<tr>
<td># exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 UCS-A /monitoring/callhome/profile #</td>
<td>Exits to monitoring call home mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
</tbody>
</table>

The following example configures the default Cisco TAC-1 profile for use with Smart Call Home:

UCS-A /monitoring/callhome* # scope profile CiscoTac-1
UCS-A /monitoring/callhome/profile* # set level normal
UCS-A /monitoring/callhome/profile* # set alertgroups ciscotac
UCS-A /monitoring/callhome/profile* # set format xml
UCS-A /monitoring/callhome/profile* # set maxsize 5000000
UCS-A /monitoring/callhome/profile* # create destination callhome@cisco.com
UCS-A /monitoring/callhome/profile/destination* # exit
UCS-A /monitoring/callhome/profile* # exit
UCS-A /monitoring/callhome* #

What to Do Next

Continue to "Configuring a System Inventory Message for Smart Call Home, on page 619" to configure system inventory messages for use with Smart Call Home.

Configuring a System Inventory Message for Smart Call Home

Before You Begin

Complete the "Configuring the Default Cisco TAC-1 Profile, on page 618" section.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A /monitoring/callhome # scope</td>
<td>Enters monitoring call home inventory mode.</td>
</tr>
<tr>
<td>inventory</td>
<td></td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring/callhome/inventory # set</td>
<td>Enables or disables the sending of inventory</td>
</tr>
<tr>
<td>send-periodically {off</td>
<td>on}</td>
</tr>
<tr>
<td></td>
<td>inventory messages are automatically sent to</td>
</tr>
<tr>
<td></td>
<td>the Call Home database.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 | UCS-A /monitoring/callhome/inventory # set interval-days *interval-num*
Specifies the time interval (in days) at which inventory messages will be sent.

Step 4 | UCS-A /monitoring/callhome/inventory # set timeofday-hour *hour*
Specifies the hour (using 24-hour format) that inventory messages are sent.

Step 5 | UCS-A /monitoring/callhome/inventory # set timeofday-minute *minute*
Specifies the number of minutes after the hour that inventory messages are sent.

Step 6 | UCS-A /monitoring/callhome/inventory # commit-buffer
Commits the transaction to the system configuration.

The following example configures Call Home system inventory messages and commits the transaction:

```
UCS-A /monitoring/callhome* # scope inventory
UCS-A /monitoring/callhome/inventory* # set send-periodically on
UCS-A /monitoring/callhome/inventory* # set interval-days 15
UCS-A /monitoring/callhome/inventory* # set timeofday-hour 21
UCS-A /monitoring/callhome/inventory* # set timeofday-minute 30
UCS-A /monitoring/callhome/inventory* # commit-buffer
```

What to Do Next

Continue to "Registering Smart Call Home, on page 620" to send an inventory message that starts the Smart Call Home registration process.

Registering Smart Call Home

Before You Begin

Complete the "Configuring a System Inventory Message for Smart Call Home, on page 619" section.

Procedure

Command or Action | Purpose
--- | ---
Step 1 | UCS-A /monitoring/callhome/inventory # send
Sends the system inventory message to the Smart Call Home database.

When Cisco receives the system inventory, a Smart Call Home registration email is sent to the email address that you configured as the email address for the main Smart Call Home contact.

The following example sends the system inventory message to the Smart Call Home database:

```
UCS-A /monitoring/callhome/inventory # send
```
What to Do Next

When you receive the registration email from Cisco, do the following to complete registration for Smart Call Home:

1. Click the link in the email.
 The link opens the Cisco Smart Call Home portal in your web browser.
2. Log into the Cisco Smart Call Home portal.
3. Follow the steps provided by Cisco Smart Call Home.
 After you agree to the terms and conditions, the Cisco Smart Call Home registration for the Cisco UCS domain is complete.
Managing the System Event Log

This chapter includes the following sections:

- System Event Log, page 623
- Viewing the System Event Log for a Server, page 624
- Configuring the SEL Policy, page 625
- Backing Up the System Event Log for a Server, page 627
- Clearing the System Event Log for a Server, page 628

System Event Log

The system event log (SEL) resides on the CIMC in NVRAM. It records most server-related events, such as over and under voltage, temperature events, fan events, and events from BIOS. The SEL is mainly used for troubleshooting purposes.

The SEL file is approximately 40KB in size, and no further events can be recorded when it is full. It must be cleared before additional events can be recorded.

You can use the SEL policy to backup the SEL to a remote server, and optionally clear the SEL after a backup operation occurs. Backup operations can be triggered based on specific actions, or they can occur at regular intervals. You can also manually backup or clear the SEL.

The backup file is automatically generated. The filename format is sel-SystemName-ChassisID-ServerID-ServerSerialNumber-Timestamp; for example, sel-UCS-A-ch01-serv01-QC112522939-20091121160736.
Viewing the System Event Log for a Server

Viewing the System Event Log for an Individual Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: UCS-A# show sel chassis-id / blade-id</td>
<td>Displays the system event log for the specified server.</td>
</tr>
</tbody>
</table>

The following example displays the system event log for blade 3 in chassis 1.

UCS-A# show sel 1/3
1 | 01/01/1970 01:23:27 | System Event 0x83 | Timestamp clock synch | SEL timestamp clock updated, event is first of pair | Asserted
2 | 01/01/1970 01:23:28 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to Degraded | Asserted
3 | 01/01/1970 01:23:28 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to On Line | Deasserted
4 | 01/01/1970 01:23:28 | Platform alert LED_SAS0_FAULT | LED is blinking fast | Asserted
5 | 01/01/1970 01:23:28 | Platform alert LED_SAS0_FAULT | LED is on | Deasserted
6 | 01/01/1970 01:23:28 | Platform alert LED_FPID | LED is on | Asserted
7 | 01/01/1970 01:23:28 | Platform alert LED_FPID | LED is off | Deasserted
8 | 01/01/1970 01:23:29 | Entity presence MAIN_POWER | Device Absent | Asserted
9 | 01/01/1970 01:23:29 | Entity presence MAIN_POWER | Device Present | Deasserted
a | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED is on | Asserted
b | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED color is green | Asserted
c | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED is blinking fast | Deasserted
d | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED color is amber | Deasserted
e | 01/01/1970 00:00:22 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to Degraded | Asserted
f | 01/01/1970 00:00:22 | Entity presence MEZZ_PRS | Device Present | Asserted
g | 01/01/1970 00:00:22 | Entity presence HDD1_PRS | Device Absent | Asserted

Viewing the System Event Log for All of the Servers in a Chassis

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: UCS-A# scope server chassis-id / blade-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td>Step 2: UCS-A/chassis/server # show sel</td>
<td>Displays the system event log.</td>
</tr>
</tbody>
</table>
The following example displays the system event log from chassis server mode for blade 3 in chassis 1.

UCS-A# scope server 1/3
UCS-A/chassis/server # show sel
 1 | 01/01/1970 01:23:27 | System Event 0x83 | Timestamp clock synch | SEL timestamp clock updated, event is first of pair | Asserted
 2 | 01/01/1970 01:23:28 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to Degraded | Asserted
 3 | 01/01/1970 01:23:28 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to On Line | Deasserted
 4 | 01/01/1970 01:23:28 | Platform alert LED_SAS0_FAULT | LED is blinking fast | Asserted
 5 | 01/01/1970 01:23:28 | Platform alert LED_SAS0_FAULT | LED is on | Deasserted
 6 | 01/01/1970 01:23:28 | Platform alert LED_FPID | LED is on | Asserted
 7 | 01/01/1970 01:23:28 | Platform alert LED_FPID | LED is off | Deasserted
 8 | 01/01/1970 01:23:29 | Entity presence MAIN_POWER | Device Absent | Asserted
 9 | 01/01/1970 01:23:29 | Entity presence MAIN_POWER | Device Present | Deasserted
 a | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED is on | Asserted
 b | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED color is green | Asserted
 c | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED is blinking fast | Deasserted
 d | 01/01/1970 01:23:29 | Platform alert LED_SAS0_FAULT | LED color is amber | Deasserted
 e | 01/01/1970 00:00:22 | Drive slot(Bay) SAS0_LINK_STATUS | Transition to Degraded | Asserted
 f | 01/01/1970 00:00:22 | Entity presence MEZZ_PRS | Device Present | Asserted
10 | 01/01/1970 00:00:22 | Entity presence HDD1_PRS | Device Absent | Asserted

Configuring the SEL Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope org org-name</td>
<td>Enters organization mode for the specified organization. To enter the root organization mode, type / as the org-name.</td>
</tr>
<tr>
<td>Step 2 UCS-A /org # scope ep-log-policy sel</td>
<td>Enters organization endpoint log policy mode and scopes the SEL policy.</td>
</tr>
<tr>
<td>Step 3 UCS-A /org/ep-log-policy # set description description</td>
<td>(Optional) Provides a description for the policy. Note If your description includes spaces, special characters, or punctuation, you must begin and end your description with quotation marks. The quotation marks will not appear in the description field of any show command output.</td>
</tr>
<tr>
<td>Step 4 UCS-A /org/ep-log-policy # set backup action [log-full] [on-change-of-association] [on-clear] [timer] [none]</td>
<td>Specifies an action or actions that will trigger a backup operation.</td>
</tr>
<tr>
<td>Step 5 UCS-A /org/ep-log-policy # set backup clear-on-backup {no</td>
<td>yes}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 6** UCS-A /org/ep-log-policy # set backup destination **URL** | Specifies the protocol, user, password, remote hostname, and remote path for the backup operation. Depending on the protocol used, specify the URL using one of the following syntax:
 - `ftp:// username@hostname / path`
 - `scp:// username @ hostname / path`
 - `sftp:// username @ hostname / path`
 - `tftp:// hostname : port-num / path`

 Note You can also specify the backup destination by using the `set backup hostname`, `set backup password`, `set backup protocol`, `set backup remote-path`, `set backup user` commands, or by using the `set backup destination` command. Use either method to specify the backup destination. |
| **Step 7** UCS-A /org/ep-log-policy # set backup format `{ascii | binary}` | Specifies the format for the backup file. | | | | |
| **Step 8** UCS-A /org/ep-log-policy # set backup hostname `{hostname | ip-addr}` | Specifies the hostname or IP address of the remote server. |
| **Step 9** UCS-A /org/ep-log-policy # set backup interval `{1-hour | 2-hours | 4-hours | 8-hours | 24-hours | never}` | Specifies the time interval for the automatic backup operation. Specifying the `never` keyword means that automatic backups will not be made. |
| **Step 10** UCS-A /org/ep-log-policy # set backup password `password` | Specifies the password for the username. This step does not apply if the TFTP protocol is used. |
| **Step 11** UCS-A /org/ep-log-policy # set backup protocol `{ftp | scp | sftp | tftp}` | Specifies the protocol to use when communicating with the remote server. |
| **Step 12** UCS-A /org/ep-log-policy # set backup remote-path `path` | Specifies the path on the remote server where the backup file is to be saved. |
| **Step 13** UCS-A /org/ep-log-policy # set backup user `username` | Specifies the username the system should use to log in to the remote server. This step does not apply if the TFTP protocol is used. |
| **Step 14** UCS-A /org/ep-log-policy # commit-buffer | Commits the transaction. |
The following example configures the SEL policy to back up the system event log (in ascii format) every 24 hours or when the log is full and clear the system event log after a backup operation occurs and commits the transaction:

```
UCS-A# scope org /
UCS-A /org # scope ep-log-policy sel
UCS-A /org/ep-log-policy # set backup destination scp://user@192.168.1.10/logs
Password:
UCS-A /org/ep-log-policy* # set backup action log-full
UCS-A /org/ep-log-policy* # set backup clear-on-backup yes
UCS-A /org/ep-log-policy* # set backup format ascii
UCS-A /org/ep-log-policy* # set backup interval 24-hours
UCS-A /org/ep-log-policy* # commit-buffer
UCS-A /org/ep-log-policy #
```

Backing Up the System Event Log for a Server

Backing Up the System Event Log for an Individual Server

Before You Begin

Configure the system event log policy. The manual backup operation uses the remote destination configured in the system event log policy.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A/chassis/server # backup sel chassis-id / blade-id</td>
<td>Clears the system event log.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example backs up the system event log for blade 3 in chassis 1 and commits the transaction.

```
UCS-A# backup sel 1/3
UCS-A# # commit-buffer
UCS-A#
```

Backing Up the System Event Log for All of the Servers in a Chassis

Before You Begin

Configure the system event log policy. The manual backup operation uses the remote destination configured in the system event log policy.
Clearing the System Event Log for a Server

Clearing the System Event Log for an Individual Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# clear sel chassis-id / blade-id</td>
<td>Clears the system event log.</td>
</tr>
<tr>
<td>UCS-A# commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example clears the system event log for blade 3 in chassis 1 and commits the transaction:

UCS-A# clear sel 1/3
UCS-A# commit-buffer

Clearing the System Event Log for All of the Servers in a Chassis

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS-A# scope server chassis-id / blade-id</td>
<td>Enters chassis server mode for the specified server.</td>
</tr>
<tr>
<td>UCS-A /chassis/server # clear sel</td>
<td>Clears the system event log.</td>
</tr>
<tr>
<td>UCS-A /chassis/server # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example backs up the system event log from chassis server mode for blade 3 in chassis 1 and commits the transaction:

UCS-A# scope server 1/3
UCS-A /chassis/server # backup sel
UCS-A /chassis/server # commit-buffer
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 UCS-A /chassis/server # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example clears the system event log from chassis server mode for blade 3 in chassis 1 and commits the transaction:

```
UCS-A# scope server 1/3
UCS-A /chassis/server # clear sel
UCS-A /chassis/server* # commit-buffer
UCS-A /chassis/server #
```
Configuring Settings for Faults, Events, and Logs

This chapter includes the following sections:

- Configuring Settings for the Fault Collection Policy, page 631
- Configuring Settings for the Core File Exporter, page 632
- Configuring the Syslog, page 634

Configuring Settings for the Fault Collection Policy

Fault Collection Policy

The fault collection policy controls the lifecycle of a fault in a Cisco UCS domain, including when faults are cleared, the flapping interval (the length of time between the fault being raised and the condition being cleared), and the retention interval (the length of time a fault is retained in the system).

A fault in Cisco UCS has the following lifecycle:

1. A condition occurs in the system and Cisco UCS Manager raises a fault. This is the active state.
2. When the fault is alleviated, it enters a flapping or soaking interval that is designed to prevent flapping. Flapping occurs when a fault is raised and cleared several times in rapid succession. During the flapping interval, the fault retains its severity for the length of time specified in the fault collection policy.
3. If the condition reoccurs during the flapping interval, the fault returns to the active state. If the condition does not reoccur during the flapping interval, the fault is cleared.
4. The cleared fault enters the retention interval. This interval ensures that the fault reaches the attention of an administrator even if the condition that caused the fault has been alleviated and the fault has not been deleted prematurely. The retention interval retains the cleared fault for the length of time specified in the fault collection policy.
5. If the condition reoccurs during the retention interval, the fault returns to the active state. If the condition does not reoccur, the fault is deleted.
Configuring the Fault Collection Policy

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>UCS-A# scope monitoring</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters monitoring fault policy mode.</td>
</tr>
<tr>
<td>UCS-A /monitoring # scope fault policy</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies whether to retain or delete all cleared messages.</td>
</tr>
<tr>
<td>UCS-A /monitoring/fault-policy # set clear-action {delete</td>
<td>retain}</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the time interval (in seconds) the system waits</td>
</tr>
<tr>
<td>UCS-A /monitoring/fault-policy # set flap-interval seconds</td>
<td>Specifies the time interval (in seconds) the system waits</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the time interval the system retains all cleared</td>
</tr>
<tr>
<td>UCS-A /monitoring/fault-policy # set retention-interval {days hours minutes seconds</td>
<td>Specifies the time interval the system retains all cleared</td>
</tr>
<tr>
<td>Step 6</td>
<td>commits the transaction.</td>
</tr>
<tr>
<td>UCS-A /monitoring/fault-policy # commit-buffer</td>
<td>commits the transaction.</td>
</tr>
</tbody>
</table>

This example configures the fault collection policy to retain cleared fault messages for 30 days, sets the flapping interval to 10 seconds, and commits the transaction.

UCS-A# scope monitoring
UCS-A /monitoring # scope fault policy
UCS-A /monitoring/fault-policy # set clear-action retain
UCS-A /monitoring/fault-policy* # set flap-interval 10
UCS-A /monitoring/fault-policy* # set retention-interval 30 0 0 0
UCS-A /monitoring/fault-policy* # commit-buffer
UCS-A /monitoring/fault-policy #

Configuring Settings for the Core File Exporter

Core File Exporter

Cisco UCS Manager uses the Core File Exporter to export core files as soon as they occur to a specified location on the network through TFTP. This functionality allows you to export the tar file with the contents of the core file.
Configuring the Core File Exporter

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>UCS-A# <code>scope monitoring</code></td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>UCS-A /monitoring # <code>scope sysdebug</code></td>
<td>Enters monitoring system debug mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>UCS-A /monitoring/sysdebug # <code>enable core-export-target</code></td>
<td>Enables the core file exporter. When the core file exporter is enabled and an error causes the server to perform a core dump, the system exports the core file via TFTP to the specified remote server.</td>
</tr>
<tr>
<td>Step 4</td>
<td>UCS-A /monitoring/sysdebug # <code>set core-export-target path path</code></td>
<td>Specifies the path to use when exporting the core file to the remote server.</td>
</tr>
<tr>
<td>Step 5</td>
<td>UCS-A /monitoring/sysdebug # <code>set core-export-target port port-num</code></td>
<td>Specifies the port number to use when exporting the core file via TFTP. The range of valid values is 1 to 65,535.</td>
</tr>
<tr>
<td>Step 6</td>
<td>UCS-A /monitoring/sysdebug # <code>set core-export-target server-description description</code></td>
<td>Provides a description for the remote server used to store the core file.</td>
</tr>
<tr>
<td>Step 7</td>
<td>UCS-A /monitoring/sysdebug # <code>set core-export-target server-name hostname</code></td>
<td>Specifies the hostname of the remote server to connect with via TFTP.</td>
</tr>
<tr>
<td>Step 8</td>
<td>UCS-A /monitoring/sysdebug # <code>commit-buffer</code></td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example enables the core file exporter, specifies the path and port to use when sending the core file, specifies the remote server hostname, provides a description for the remote server, and commits the transaction.

```
UCS-A# `scope monitoring`
UCS-A /monitoring # `scope sysdebug`
UCS-A /monitoring/sysdebug # `enable core-export-target`
UCS-A /monitoring/sysdebug* # `set core-export-target path /root/CoreFiles/core`
UCS-A /monitoring/sysdebug* # `set core-export-target port 45000`
UCS-A /monitoring/sysdebug* # `set core-export-target server-description CoreFile102.168.10.10`
UCS-A /monitoring/sysdebug* # `set core-export-target server-name 192.168.10.10`
UCS-A /monitoring/sysdebug* # `commit-buffer`
```
Disabling the Core File Exporter

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # scope sysdebug</td>
<td>Enters monitoring system debug mode.</td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring/sysdebug # disable core-export-target</td>
<td>Disables the core file exporter. When the core file exporter is disabled core files are not automatically exported.</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring/sysdebug # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

The following example disables the core file exporter and commits the transaction.

```text
UCS-A# scope monitoring
UCS-A /monitoring # scope sysdebug
UCS-A /monitoring/sysdebug # disable core-export-target
UCS-A /monitoring/sysdebug # commit-buffer
```  

Configuring the Syslog

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 UCS-A# scope monitoring</td>
<td>Enters monitoring mode.</td>
</tr>
<tr>
<td>Step 2 UCS-A /monitoring # {enable</td>
<td>disable} syslog console</td>
</tr>
<tr>
<td>Step 3 UCS-A /monitoring # set syslog console level {emergencies</td>
<td>alerts</td>
</tr>
<tr>
<td>Step 4 UCS-A /monitoring # {enable</td>
<td>disable} syslog monitor</td>
</tr>
<tr>
<td>Step 5 UCS-A /monitoring # set syslog monitor level {emergencies</td>
<td>alerts</td>
</tr>
</tbody>
</table>
Configuring the Syslog

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>listed in order of decreasing urgency. The default level is Critical.</td>
</tr>
<tr>
<td>Note</td>
<td>Messages at levels below Critical are displayed on the terminal monitor only if you have entered the terminal monitor command.</td>
</tr>
<tr>
<td>Step 6 UCS-A /monitoring # {enable</td>
<td>disable} syslog file</td>
</tr>
<tr>
<td>Step 7 UCS-A /monitoring # set syslog file name filename</td>
<td>The name of the file in which the messages are logged. Up to 16 characters are allowed in the file name.</td>
</tr>
<tr>
<td>Step 8 UCS-A /monitoring # set syslog file level {emergencies</td>
<td>alerts</td>
</tr>
<tr>
<td>Step 9 UCS-A /monitoring # set syslog file size filesize</td>
<td>(Optional) The maximum file size, in bytes, before the system begins to write over the oldest messages with the newest ones. The range is 4096 to 4194304 bytes.</td>
</tr>
<tr>
<td>Step 10 UCS-A /monitoring # {enable</td>
<td>disable} syslog remote-destination {server-1</td>
</tr>
<tr>
<td>Step 11 UCS-A /monitoring # set syslog remote-destination {server-1</td>
<td>server-2</td>
</tr>
<tr>
<td>Step 12 UCS-A /monitoring # set syslog remote-destination {server-1</td>
<td>server-2</td>
</tr>
<tr>
<td>Step 13 UCS-A /monitoring # set syslog remote-destination {server-1</td>
<td>server-2</td>
</tr>
<tr>
<td>Step 14 UCS-A /monitoring # commit-buffer</td>
<td>Commits the transaction.</td>
</tr>
</tbody>
</table>

This example shows how to enable the storage of syslog messages in a local file and commits the transaction:

```
UCS-A# scope monitoring
UCS-A /monitoring # disable syslog console
```
Configuring the Syslog

UCS-A /monitoring* # disable syslog monitor
UCS-A /monitoring* # enable syslog file
UCS-A /monitoring* # set syslog file name SysMsgsUCSA
UCS-A /monitoring* # set syslog file level notifications
UCS-A /monitoring* # set syslog file size 4194304
UCS-A /monitoring* # disable syslog remote-destination server-1
UCS-A /monitoring* # disable syslog remote-destination server-2
UCS-A /monitoring* # disable syslog remote-destination server-3
UCS-A /monitoring* # commit-buffer
UCS-A /monitoring #
INDEX

A

accounts 159, 160, 162, 178, 179, 180, 181
admin 160
expiration 160
locally authenticated 160, 178, 179, 180, 181
remotely authenticated 160
user 159, 162
username guidelines 160
acknowledging 508, 518, 530, 536
blade server 518, 522, 536
chassis 508
rack server 530
activate firmware 188
activating 214, 216, 218, 220, 222, 223, 224, 233, 239
adapters 214
BIOS firmware 216
board controller firmware 222
capability catalog 233
CIMC 218
fabric interconnects 224
I/O modules 220
management extensions 239
UCS manager 223
activities 455, 462, 463
pending 455, 462, 463
adapter 98
port channels 98
adapter port channels 98
viewing 98
adapter qualification 395, 396
creating 395
deleting 396
adapters 41, 205, 214, 406
NIC 41
updating and activating 214
vCon placement 406
verifying status 205
VIC 41
virtualization 41
Address Resolution Protocol 578
management interfaces monitoring policy 578
configuring 578
admin account 160
administration 43
aging time 250
MAC address table 250
aging time, Mac address table 250
configuring 250
alert groups 610
profiles 610
alert, call home test 613
all configuration 541
appliance port channel, NAS port channel 83
assigning MAC address 83
appliance port channels 94
member ports 94
deleting 94
appliance port, NAS port 83
assigning MAC address 83
appliance ports 92, 93, 94
port channels 92, 93, 94
member ports, adding 93
member ports, deleting 94
unconfiguring 92
appliance, NAS 81
ports 81
configuring 81
architectural simplification 9
assigning port channels to vlans 305
assigning ports to vlans 305
authentication 125
primary 125
remote 125
authentication domains 146, 147
about 146
authentication profile 424, 425
authentication service 149
selecting default 149
authentication services 125
about 125
authNoPriv 117
authPriv 117
autoconfiguration policy 25, 385
 about 25, 385

B
backing up 202, 541, 542, 544, 545, 547
 about 541
 all-configuration 202
 considerations 542
 creating operations 544
 deleting operations 547
 modifying operations 545
 running operations 545
 types 541
 user role 544
backup operations 544, 545, 547
 creating 544
 deleting 547
 modifying 545
 running 545
banner 52, 53, 54
 pre-login 52, 53, 54
beacon leds 74, 78
 configuring 78
best effort system class 37, 282
BIOS 216, 347, 348, 350, 356, 358, 360, 361, 362, 363, 368, 371, 381
 actual settings 371
 default settings 368
 policy 368
 scrub policy 381
 about 347
 boot options 362
 Intel Directed I/O 356
 main 348
 PCI configuration 361
 processor 350
 RAS memory 358
 serial port 360
 server management 363
 USB 360
 updating and activating 216
BIOS defaults 370
 modifying 370
BIOS policy 369
 creating 369
BIOS, recovering 522, 535
blade 498
 viewing power cap 498
blade server (continued)
 booting 514
 CIMC 521
 resetting 521
 decommissioning 519
 power cycling 516
 removing 519
 resetting 516
 resetting CMOS 520
 shutting down 515
 turning off locator LED 520
 turning on locator LED 520
blade servers 513, 517, 522, 529
 managing 513
 recovering BIOS 522
 unexpected power changes 517, 529
blade-level power cap 498
 setting for server 498
board controllers, activating firmware 222
boot 415, 448, 449, 450
 LAN 448
 local disk 449
 SAN 415
 virtual media 450
boot definitions 480, 481, 482, 483, 484
 configuring 480
 deleting 484
 LAN boot 481
 storage boot 482
 virtual media boot 483
boot options, BIOS settings 362
boot policies 15, 413, 414, 415, 416, 448, 449, 450, 451
 about 15, 413
 configuring 414
 deleting 451
 LAN boot 448
 local disk boot 449
 SAN boot 415, 416
 virtual media boot 450
boot process 418
 iSCSI 418
bootflash, available space 212
bronze system class 37, 282
bundles, firmware 186
burned in values 14, 466

C
Cabling Considerations for Port Channel Mode 99
 About 99
call home 606, 609, 611, 612, 613, 614, 615, 616, 618
 configuring 606
call home (continued)
 inventory messages, configuring 609
 inventory messages, sending 609
 policies, configuring 614
 policies, deleting 616
 policies, disabling 615
 policies, enabling 615
 profiles, configuring 611
 profiles, deleting 612
 sending test alert 613
 smart call home, configuring 616
 TAC-I profile, configuring 618
Call Home 601, 603, 604, 605, 610, 614
 about 601
 considerations 603
 policies 614
 profiles 610
 severity levels 604
 Smart Call Home 605
canceling image downloads 209
capability catalog 232, 233, 234, 235, 237
 about 232
 activating 233
 contents 232
 restarting an update 234
 updates 233
 updating 237
 verifying version 234
 viewing provider 235
capping server power usage 498
catalog 187, 232, 233
 capability 232, 233
 firmware images 187
certificate 106
 about 106
changing 132
 LDAP group rule 132
chassis 16, 243, 508, 509, 510, 512
 acknowledging 508
 decommissioning 508
 discovery policy 16, 243
 recommissioning 509
 removing 509
 renumbering 510
 turning off locator LED 512
 turning on locator LED 512
chassis connectivity policy 248
 system-related policies 248
 chassis 248
chassis discovery policy 16, 243, 246
 about 16, 243
 discovery policies 246
 chassis 246
chassis management 509
 removing 509
 chassis qualification 396, 397
 configuring 396
 deleting 397
 CIM XML 104
 configuring 104
 CIMC 218, 339, 521, 535
 IP address 339
 resetting 521, 535
 blade server 521
 rack server 535
 updating and activating 218
Cisco Discovery Protocol 23, 297
Cisco UCS Manager 43, 198
 about 43
 impact of firmware upgrade 198
Cisco VM-FEX 41
cisco-av-pair 126
CiscoAVPair 126
CLI session limits 51
clock 506
 setting manually 506
commands for object management 49
communication services 51, 103, 107, 108, 109, 111, 112, 119, 122, 123, 124
 about 103
 disabling 124
HTTPS 107, 108, 109, 111, 112
SNMP 119, 122, 123
 web session limits 51
community, SNMP 119
component, firmware 186
configuration 202, 543, 544, 548, 552, 553
 backing up 202, 544
 erasing 553
 import methods 543
 importing 543, 548
 restoring 543, 552
 configuring 81, 84, 107, 108, 109, 111, 112, 340, 341, 342, 493
 blade server 340, 341
 management IP pool 341
 static IP address 340
Fibre Channel 84
 storage ports 84
 global cap policy 493
HTTPS 107, 108, 109, 111, 112
 ports 81
 appliance, NAS 81
 rack server 341, 342
 management IP pool 342
 static IP address 341
considerations 542, 603
backup operations 542
considerations (continued)
 Call Home 603
 console authentication service 148
 selecting 148
 converged network adapters 41
 virtualization 41
 core file exporter 633, 634
 configuring 633
 disabling 634
 Core File Exporter 632
 about 632
 corrupt BIOS 522, 535
 cpu qualification 398, 399
 creating 398
 deleting 399
 create 49
 creating 134, 141, 266, 267, 494, 496
 LDAP group map 134
 LDAP provider group 141
 named VLANS 266, 267
 storage Ethernet mode 267
 uplink Ethernet mode 266
 power groups 494
 power power control policy 496
 custom roles 164
 reserved words 164

d
 database 541, 543
 backing up 541
 restoring 543
 decommissioning 508, 519, 531
 blade server 519
 chassis 508
 rack server 531
 decommissioning chassis, guidelines 507
 decommissioning rack-mount servers 526
 decommissioning servers 514
 default service profiles 14, 466
 default zoning 86, 87
 about 86
 disabling 87
 enabling 86
 deferring deployment 29, 453, 454, 455, 456, 457, 459, 460, 461, 462, 463
 guidelines 455
 maintenance policies 29, 454, 461, 462
 one time occurrences 456, 459
 pending activities 455, 462, 463
 deploying 463
 viewing 462
 recurring occurrences 457, 459
 schedules 454, 456, 460
 service profiles 453
 delete 49
 deleting 135, 142, 144, 146, 495, 497
 LDAP group map 135
 LDAP provider group 142
 power groups 495
 power power control policy 497
 RADIUS provider group 144
 TACACS provider group 146
 deleting a RADIUS provider 138
 deleting a TACACS provider 140
 deleting an LDAP provider 133
 DHCP 436, 437
 iSCSI initiator 436, 437
 deleting DHCP boot parameter 437
 setting 436
 disabling 87
 default zoning 87
 disaster recovery 541, 543
 discovery policy 16, 25, 243, 248, 249, 387
 chassis 16, 243
 rack server 25, 248, 249
 server 25, 387
 disjoint L2 networks 301, 302, 303, 304
 about 301
 configuring 304
 guidelines 302
 pinning considerations 303
 disk drive monitoring 579, 580, 582
 about 579
 interpreting results 580, 582
 limitations 580
 prerequisites 580
 support 580
 disk scrub policy 381
 DNS servers 241, 242
 about 241
 configuring 241
 deleting 242
 domains, disjoint L2 301
 downgrading 201
 firmware 201
 prerequisites 201
 download firmware 188
 downloading 207, 209
 canceling 209
 images 207
 dynamic vNIC connection policy 19
 about 19
Index

E

enabling 86, 116, 119
 default zoning 86
http to https redirection 116
SNMP 119
endpoints 196, 198, 199
 direct firmware upgrade 196, 198
 service profile upgrade 199
enforcing password strength 173
 enter 49
Ethernet 11, 29, 38, 71, 79, 80, 81, 87, 88, 89, 90, 287, 567
 Fibre Channel over 11
 flow control policies 29, 38, 287
 server ports 79
 configuring 79
 unconfiguring 79
 uplink port channels 87, 88, 89, 90
 configuring 87
 member ports, adding 89
 member ports, deleting 90
 unconfiguring 88
 uplink ports 71, 80, 81, 567
 configuring 80
 monitoring 567
 unconfiguring 81
Ethernet adapter policies 19, 294, 329
 about 19, 294, 329
Ethernet adapter policy 295, 297
 configuring 295
 deleting 297
Ethernet switching mode 66, 67
 about 66
expiration, accounts 160
explicit assignment 407, 410
exporting 541, 544, 633
 backup types 541
 configuration 541
 core file 633
 user role 544

F

fabric 99
 port channels 99
fabric interconnects (continued)
 Ethernet switching mode 66
 failover 58
 FC uplink trunking 312
 Fibre Channel switching mode 68
 high availability 46
 host ID 252
 impact of firmware upgrade 198
 initial setup 57, 58
 about 57
 management port 58
 setup mode 58
 licenses 251, 254, 256, 257
 installing 254
 uninstalling 257
 viewing 254
 viewing usage 255
 system configuration type 58
 verifying high availability status and roles 203
 verifying operability 203
fabric port channels 100, 101
 member ports 101
 deleting 101
 viewing 100
fabric ports 101
 port channels 101
 member ports, deleting 101
fan environment 575
fan modules 575
fault collection policy 28, 631, 632
 about 28, 631
 configuring 632
faults 28, 604, 631, 632
 Call Home severity levels 604
 collection policy 28, 631
 Core File Exporter 632
 lifecycle 28, 631
 FC end-host mode 312
 VSAN ID restrictions 312
 FC switch mode 312
 VSAN ID restrictions 312
 FC uplinks 312
 trunking 312
 about 312
 FCoE 11
 FCoE ports 85
 unconfiguring 85
 FCoE VLAN ID 318, 319
 changing 318, 319
 feature 251
 licenses 251
 features 38
 opt-in 38
 stateless computing 38
Fibre Channel 11, 71, 93, 94, 95, 96, 97, 596, 597
link-level flow control 11
over Ethernet 11
port channels 94, 95, 96, 97
configuring 95
enabling 96
member ports, adding 97
unconfiguring 96
priority flow control 11
statistics threshold policies 596
statistics threshold policy classes 597
uplink port channels 93
enabling 93
uplink ports 71
Fibre Channel adapter policies 19, 294, 329
about 19, 294, 329
Fibre Channel adapter policy 330, 332
configuring 330
deleting 332
Fibre Channel ports 97
port channels 97
member ports, adding 97
Fibre Channel storage ports 84, 85
configuring 84
unconfiguring 85
Fibre Channel switching 86
default zoning 86
Fibre channel switching mode 68
Fibre Channel switching mode 68
about 68
Fibre Channel system class 37, 282
firmware 21, 22, 185, 186, 187, 188, 189, 190, 192, 194, 195, 196, 197, 198, 199, 200, 201, 206, 207, 209, 210, 211, 213, 214, 216, 218, 220, 222, 223, 224, 225, 226, 229, 230, 238
about 185
activating board controller 222
adapters 214
BIOS 216
bundles 186
canceling image download 209
CIMC 218
deleting images 213
deleting packages 213
direct upgrade 196
displaying download status 209
downgrades 201
downloading packages 207
fabric interconnects 224
guidelines 189, 190, 192
host package 21, 199, 225, 229
I/O modules 220
image headers 187
images 187, 210
displaying 210
firmware (continued)
management 188
management extensions 238
management package 22, 200, 226, 230
obtaining packages 206
outage impacts 198
package contents 211
packages 211
displaying 211
prerequisites 201
service profiles 199
UCS manager 223
upgrade order 194, 195
upgrade stages 197, 200
upgrades 189
firmware adapters 205
verifying status 204, 205
firmware cluster configuration 203
verifying overall status 203
firmware fabric interconnects 203
verifying overall status 203
firmware I/O modules 204
verifying status 204, 205
firmware servers 205
verifying status 204, 205
flexibility 10
flow control 11
link-level 11
priority 11
flow control policies 287, 288
configuring 287
deleting 288
flow control policy 29, 38, 287
about 29, 38, 287
full state 541

g
global cap policy 20, 493
configuring 493
gold system class 37, 282
group map 134, 135
creating 134
LDAP 134
deleting 135
LDAP 135
group rule 132
changing 132
LDAP 132
guidelines 34, 36, 160, 162, 189, 190, 192, 302, 312, 376, 377, 455, 466, 564
defered deployment 455
guidelines (continued)
 disjoint L2 networks 302
 firmware upgrades 189, 190, 192
 local disk configuration policy 376, 377
 named VSANs 312
 oversubscription 34
 passwords 162
 pinning 36
 service profiles 466
 traffic monitoring 564
 usernames 160

H

hardware based service profiles 471
 creating 471
hardware-based service profiles 14, 466
headers, images 187
high availability 10, 46, 58
 about 46
 fabric interconnect failover 58
high availability configuration 46
 about 46
history, passwords 179
host firmware package 21, 199, 225, 229
 about 21, 199, 225
 creating and updating 229
host ID, obtaining 252
host port channels 98
 viewing 98
HTTP 51, 105, 106
 configuring 105
 unconfiguring 106
 web session limits 51
HTTPS 51, 107, 108, 109, 111, 112, 113, 115
 certificate request 108, 109
 configuring 113
 creating key ring 107
 importing certificate 112
 regenerating key ring 107
 trusted point 111
 unconfiguring 115
 web session limits 51

I

I/O module 539
 management 539
I/O modules 204, 220
 updating and activating 220

I/O modules (continued)
 verifying status 204
IEEE 802.1Qbh 41
IEEE 802.3x link-level flow control 11
images 185, 186, 187, 206, 207, 213
 bundle 186
 contents 187
 deleting 213
 downloading 207
 headers 187
 obtaining 206
 packages, deleting with 213
implicit assignment 407
import operations 548, 549, 550, 551
 creating 548
 deleting 551
 modifying 550
 running 549
importing 543, 544, 548, 549, 550, 551
 about 543
 creating operations 548
 deleting operations 551
 modifying operations 550
 restore methods 543
 running operations 549
 user role 544
informs 117
 about 117
inheritance, servers 26, 389
inherited values 14, 466
initial setup 57, 58
 about 57
 management port IP address 58
 setup mode 58
initial templates 15, 467
Intel Directed I/O, BIOS settings 356
inventory messages, call home 609
 configuring 609
 sending 609
inventory messages, smart call home 619
 configuring 619
IOM 539
 resetting 539
IP address pools 425
 adding iSCSI initiator address block 425
IP addresses 33, 58, 339, 344
CIMC 339
 management IP pool 33, 344
 management port 58
IP pools 33, 344
 management 33, 344
IPMI access profile 372, 374, 375
 configuring 372, 374
 deleting 374, 375
<table>
<thead>
<tr>
<th>IPMI access profiles</th>
<th>21, 372</th>
</tr>
</thead>
<tbody>
<tr>
<td>about</td>
<td>21, 372</td>
</tr>
<tr>
<td>IQN pools</td>
<td>438, 440, 441, 442</td>
</tr>
<tr>
<td>about</td>
<td>438</td>
</tr>
<tr>
<td>adding a block</td>
<td>440</td>
</tr>
<tr>
<td>creating</td>
<td>438</td>
</tr>
<tr>
<td>deleting</td>
<td>441</td>
</tr>
<tr>
<td>deleting a block</td>
<td>440</td>
</tr>
<tr>
<td>viewing usage</td>
<td>442</td>
</tr>
<tr>
<td>iSCSI adapter policies</td>
<td>422, 424</td>
</tr>
<tr>
<td>creating</td>
<td>422</td>
</tr>
<tr>
<td>deleting</td>
<td>424</td>
</tr>
<tr>
<td>iSCSI auto target</td>
<td>445, 447</td>
</tr>
<tr>
<td>creating</td>
<td>445</td>
</tr>
<tr>
<td>deleting</td>
<td>447</td>
</tr>
<tr>
<td>iSCSI boot</td>
<td>418, 420, 424, 425</td>
</tr>
<tr>
<td>authentication profile</td>
<td>424, 425</td>
</tr>
<tr>
<td>configuring</td>
<td>420</td>
</tr>
<tr>
<td>high-level tasks</td>
<td>420</td>
</tr>
<tr>
<td>overview</td>
<td>418</td>
</tr>
<tr>
<td>prerequisites</td>
<td>418</td>
</tr>
<tr>
<td>iscsi boot policies</td>
<td>429</td>
</tr>
<tr>
<td>deleting</td>
<td>429</td>
</tr>
<tr>
<td>iSCSI boot policies</td>
<td>427</td>
</tr>
<tr>
<td>creating</td>
<td>427</td>
</tr>
<tr>
<td>iSCSI boot process</td>
<td>418</td>
</tr>
<tr>
<td>iSCSI initiator</td>
<td>432, 433, 434, 435, 436, 437</td>
</tr>
<tr>
<td>boot parameters</td>
<td>434, 435</td>
</tr>
<tr>
<td>iSCSI initiator</td>
<td>434, 435</td>
</tr>
<tr>
<td>deleting from IP pool parameter</td>
<td>435</td>
</tr>
<tr>
<td>setting to boot from IP pool</td>
<td>434</td>
</tr>
<tr>
<td>deleting boot from DHCP parameter</td>
<td>437</td>
</tr>
<tr>
<td>deleting boot from IP Pool parameter</td>
<td>435</td>
</tr>
<tr>
<td>deleting static IP address boot parameters</td>
<td>433</td>
</tr>
<tr>
<td>IP pools</td>
<td>434, 435</td>
</tr>
<tr>
<td>iSCSI initiator</td>
<td>434, 435</td>
</tr>
<tr>
<td>service profile</td>
<td>432, 433, 434, 435, 436, 437</td>
</tr>
<tr>
<td>iSCSI initiator</td>
<td>432, 433, 434, 435, 436, 437</td>
</tr>
<tr>
<td>deleting boot from IP pool parameter</td>
<td>435</td>
</tr>
<tr>
<td>deleting static IP address boot parameters</td>
<td>433</td>
</tr>
<tr>
<td>deleting the boot from DHCP parameter</td>
<td>437</td>
</tr>
<tr>
<td>setting to boot from DHCP</td>
<td>436</td>
</tr>
<tr>
<td>setting to boot from IP pool</td>
<td>434</td>
</tr>
<tr>
<td>setting to boot from static IP address</td>
<td>432</td>
</tr>
<tr>
<td>setting to boot from DHCP</td>
<td>436</td>
</tr>
<tr>
<td>setting to boot from IP Pool</td>
<td>434</td>
</tr>
<tr>
<td>setting to boot from static IP address</td>
<td>432</td>
</tr>
<tr>
<td>iSCSI static target</td>
<td>442, 445</td>
</tr>
<tr>
<td>creating</td>
<td>442</td>
</tr>
<tr>
<td>deleting</td>
<td>445</td>
</tr>
<tr>
<td>iSCSI vNIC</td>
<td>429, 431</td>
</tr>
<tr>
<td>creating</td>
<td>429</td>
</tr>
<tr>
<td>deleting from service profile</td>
<td>431</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>key ring</th>
<th>106, 107, 108, 109, 111, 112, 114</th>
</tr>
</thead>
<tbody>
<tr>
<td>about</td>
<td>106</td>
</tr>
<tr>
<td>certificate request</td>
<td>108, 109</td>
</tr>
<tr>
<td>creating</td>
<td>107</td>
</tr>
<tr>
<td>deleting</td>
<td>114</td>
</tr>
<tr>
<td>importing certificate</td>
<td>112</td>
</tr>
<tr>
<td>regenerating</td>
<td>107</td>
</tr>
<tr>
<td>trusted point</td>
<td>111</td>
</tr>
</tbody>
</table>

KVM Console 339

IP address 339

L

| **L2 networks, disjoint** | 301 |
| **LAN** | 27, 263, 264, 275, 291, 301 |
| disjoint L2 networks | 301 |
| pin groups | 275 |
| PVLANS | 264 |
| VLANs | 263 |
| vNIC policy | 27, 291 |
| **LAN boot** | 448, 481 |
| about | 448 |
| **LAN boot, boot policies** | 448 |
| **lanes, virtual** | 37, 281 |
| **LDAP** | 129, 132, 134, 135, 141, 142 |
| creating a provider | 129 |
| group map | 134, 135 |
| creating | 134 |
| deleting | 135 |
| group rule | 132 |
| changing | 132 |
| provider group | 141, 142 |
| creating | 141 |
| deleting | 142 |
| **LDAP group mapping** | 133 |
| **LDAP group rule** | 128 |
| **LDAP provider** | 125, 126, 128 |
| about | 125 |
| configuring properties | 128 |
| user attribute | 126 |
| **LDAP providers** | 133 |
| deleting | 133 |
| licenses | 251, 252, 253, 254, 255, 257 |
| about | 251 |
| installing | 254 |
| obtaining | 253 |
| obtaining host ID | 252 |
| uninstalling | 257 |
| viewing | 254 |
| viewing usage | 255 |
| lifecycle, faults | 28, 631 |
link-level flow control 11
local disk boot 449
 about 449
 configuring 449
local disk configuration policy 22, 376, 377
 about 22, 376
 guidelines 376
 RAID configuration 377
local disks 379, 380, 478
 policies 379, 380
 service profiles 478
locales 166, 169, 170, 171, 175, 176
 about 166
 assigning an organization 170
 assigning to user accounts 175
 creating 169
 deleting 171
 deleting an organization from 170
 removing from user accounts 176
locally authenticated users 160, 161, 178, 179, 180, 181
 accounts 160
 change interval 180
 clearing password history 178
 no change interval 181
 password history count 181
 password profile 179
 reserved words for accounts 161
log, system event 623, 624, 625, 627, 628
 about 623
 backing up 627
 all servers in chassis 627
 individual server 627
 clearing 628
 all servers in chassis 628
 individual server 628
 policy 625
 viewing 624
 chassis server mode 624
 one server 624
logical configuration 541

MAC pools (continued)
 deleting 278
MAC sync 58
main, BIOS settings 348
maintenance policies 29, 454, 456, 460, 461, 462
 about 29, 454
 creating 461
 deleting 462
 schedules 456, 460
management 513, 525, 539
 blade servers 513
 I/O modules 539
 rack-mount servers 525
management extensions 238, 239
 about 238
 activating 239
management firmware package 22, 200, 226, 230
 about 22, 200, 226
 creating and updating 230
management interfaces monitoring policy 23, 577, 578
 about 23, 577
 configuring 578
management IP address 343
 service profile 343
 setting 343
management IP addresses 339
management IP pool 341, 342
 configuring 341, 342
 blade server 341
 rack server 342
management IP pools 33, 344, 345
 about 33, 344
 configuring 344
 deleting 345
management port IP address 58, 65
 changing 65
manual blade-level power capping 497
Media Independent Interface 578
 management interfaces monitoring policy 578
 configuring 578
member ports, port channel 89, 90, 97
 adding 89, 97
 deleting 90
memory qualification 401, 402
 creating 401
 deleting 402
merging configuration 543
mobility 38
 mode 58, 66, 68
 end-host 66, 68
 Ethernet switching 66
 Fibre Channel switching 68
 setup 58

MAC address table 250
 aging time, about 250
MAC address table aging time 250
 configuring 250
MAC addresses 31, 277
 pools 31, 277
MAC pools 277, 278
 creating 277
monitoring 578, 579, 580, 582
disk drive 579, 580
disk drives 580, 582
interface management 578
multi-tenancy 39, 40, 153, 154
about 39
name resolution 154
opt-in 40
opt-out 40
organizations 153
multiple authentication systems 141
mutual inclusion 301

N
name resolution 154, 241
named VLANs 263, 266, 267, 268, 269, 270
about 263
creating for dual fabric interconnects 266, 267
storage Ethernet mode 267
uplink Ethernet mode 266
creating for single fabric interconnect 268, 269
deleting 270
named VSANs 311, 312, 314, 315, 316, 317, 318
about 311
creating for dual fabric interconnects 314, 315, 317
creating for single fabric interconnect 316
deleting 318
FC uplink trunking 312
ID range restrictions 312
named VSNs 318
FCoE VLAN ID 318
network 12, 263, 264, 311
connectivity 12
named VLANs 263
named VSANs 311
private VLANs 264
network control policies 298, 299
configuring 298
deleting 299
network control policy 23, 297
networks, disjoint L2 301
NIC adapters 41
virtualization 41
noAuthNoPriv 117
NTP servers 503, 505, 506
about 503
configuring 505
deleting 506

O
obtaining 206, 237
capability catalog updates 237
firmware image bundles 206
occurrences 454, 456, 457, 459
one time 454, 456, 459
about 454
creating 456
deleting 459
recurring 454, 457, 459
about 454
creating 457
deleting 459
one time occurrences 454, 456, 459
about 454
creating 456
deleting 459
opt-in 38, 39, 40
about 38
multi-tenancy 40
stateless computing 39
opt-out 38, 39, 40
multi-tenancy 40
stateless computing 39
organizations 39, 153, 154, 156, 157, 166
about 153
configuring under non-root 156
configuring under root 156
deleting 157
locales 166
multi-tenancy 39
name resolution 154
outage impacts 198
Cisco UCS Manager 198
fabric interconnects 198
firmware upgrade 198
overriding server identity 13, 465
oversubscription 33, 34
about 33
considerations 33
guidelines 34
overview 9

P
packages 206, 207, 211
contents 211
downloading 207
obtaining 206
packs 21, 22, 199, 200, 225, 226
host firmware 21, 199, 225
management firmware 22, 200, 226
password profile 178, 179, 180, 181
 about 179
 change interval 180
 clearing password history 178
 no change interval 181
 password history count 181
passwords 173, 179
 change interval 179
 history count 179
 strength check 173
passwords, guidelines 162
passwords, recovering admin 555, 556, 557
PCI configuration, BIOS settings 361
pending activities 455, 462, 463
 about 455
 deploying 463
 viewing 462
pending commands 50
PFC 11
physical qualification 402, 403
 creating 402
 deleting 403
pin groups 35, 275, 321
 about 35
 LAN 275
 SAN 321
ping gateway 578
 management interfaces monitoring policy 578
 configuring 578
pinning 35, 36, 303
 about 35
 disjoint L2 networks 303
 guidelines 36
 servers to server ports 35
PKI 106
placement policies, vNIC/VHBA 409
 configuring 409
 vcons 409
placement profiles, vNIC/VHBA 410
 deleting 410
platinum system class 37, 282
policies 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 38, 150, 199,
 200, 225, 226, 243, 248, 249, 284, 287, 291, 294, 297, 327, 329, 368,
 369, 372, 376, 379, 380, 381, 383, 385, 387, 389, 391, 393, 405, 413,
 422, 424, 427, 454, 461, 462, 492, 493, 496, 577, 585, 586, 614, 631,
 632
 about 15
 autoconfiguration 25, 385
 BIOS 368, 369
 boot 15, 413
 Call Home 614
 chassis discovery 16, 243
 dynamic vNIC connection 19
 about 19
 policies (continued)
 Ethernet 19, 294, 329
 fault collection 28, 631, 632
 Fibre Channel adapter 19, 294, 329
 flow control 29, 38, 287
 global cap policy 20, 493
 host firmware 21, 199, 225
 IPMI access 21, 372
 iSCSI adapter 422, 424
 iSCSI boot 427
 local disk configuration 22, 376
 local disks 378, 380
 maintenance 29, 454, 461, 462
 management firmware 22, 200, 226
 management interfaces monitoring 23, 577
 network control 23, 297
 power 24, 492
 power control 24, 496
 PSU 24, 492
 QoS 25, 38, 284
 rack server discovery 25, 248, 249
 role for remote users 150
 scrub 29, 381
 serial over LAN 30, 383
 about 30, 383
 server discovery 25, 387
 server inheritance 26, 389
 about 26, 389
 server pool 26, 391
 server pool qualification 26, 393
 statistics collection 30, 585
 threshold 30, 586
 vHBA 27, 327
 VM lifecycle 27
 vNIC 27, 291
 vNIC/vHBA placement 28, 405
policies, call home 614, 615, 616
 configuring 614
 deleting 616
 disabling 615
 enabling 615
policy classes 588, 590, 591, 593, 594, 596, 597, 599
 Fibre Channel port statistics, configuring 597
 server port statistics, configuring 594
 server port statistics, deleting 596
 server statistics, configuring 588
 server statistics, deleting 590
 uplink Ethernet port statistics, configuring 591
 uplink Ethernet port statistics, deleting 593, 599
policy-driven chassis group power capping 493
pools 31, 32, 33, 277, 278, 323, 324, 325, 335, 337, 338, 344, 425, 438, 441,
 442
 about 31
 adding iSCSI initiator address block 425
pools (continued)
IQN 438, 441, 442
MAC 31, 277, 278
management IP 33, 344
server 335
servers 31, 335
UUID suffix 337, 338
UUID suffixes 32, 337
WWN 32, 323, 324, 325

port channels 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99
adapter 98
appliance 90
configuring 87, 90, 95
 appliance 90
 enabling 93, 96
 fabric 99
 Fibre Channel 94
member ports 89, 90, 93, 97
 adding 89, 93, 97
 deleting 90
unconfiguring 88, 92, 96
uplink Ethernet 87

port modes 72, 75
about 72
impact on data traffic 75

port types 73

ports 35, 58, 71, 72, 74, 79, 80, 81, 84, 87, 88, 90, 92, 93, 94, 95, 96, 98, 99, 251, 275, 321, 567
appliance 81
appliance port channels 93
member ports, adding 93
appliance port, NAS port 84
unconfiguring 84
appliance, NAS 71
configuring 81
 appliance, NAS 81
fabric interconnect 71
Fibre Channel storage 84
configuring 84
licenses 251
management 58
pin groups 275, 321
pinning server traffic 35
port channels 87, 88, 90, 92, 93, 94, 95, 96, 98, 99
 configuring 87, 90, 95
 enabling 93, 96
 Fibre Channel 94
 unconfiguring 88, 92, 96
server 71, 79
 configuring 79
 unconfiguring 79
unified 72, 74
uplink 71

ports (continued)
uplink Ethernet 80, 81, 567
 configuring 80
 monitoring 567
 unconfiguring 81
ports 89, 90, 94, 97, 101
 appliance port channels 94
 member ports, deleting 94
 fabric port channels 101
 member ports, deleting 101
 port channels 89, 90, 97
 member ports, adding 89, 97
 member ports, deleting 90

power cap 498
 viewing 498
power capping 493, 497
 manual blade-level 497
 policy-driven chassis group 493
power control policy 24, 496, 497
 creating 496
 deleting 497
power cycling 516, 528
 blade server 516
 rack server 528
power group qualification 400
 configuring 400
 deleting 400
power groups 494, 495
 creating 494
 deleting 495
power management 24, 491, 494, 495, 496, 497
 creating 494, 496
 power control policy 496
 power groups 494
 deleting 495, 497
 power control policy 497
 power groups 495
policies 24, 496
 power control 24, 496
 power groups 494
 rack server 491
power policy 24, 492
 about 24, 492
power state, synchronizing 517, 529
pre-login banner 52, 53, 54
 creating 52
 deleting 54
 modifying 53
primary authentication 125
 remote 125
primary VLAN 271, 272
priority flow control 11
private VLANs 264, 271, 272, 273
 about 264
private VLANs (continued)
 creating primary 271, 272
 creating secondary 272, 273
privileges 164, 167, 168
 about 164
 adding to user roles 167
 removing from user roles 168
processor, BIOS settings 350
profiles 12, 179, 610
 Call Home alert groups 610
 password 179
profiles, call home 611, 612
 configuring 611
 deleting 612
profiles, TAC-1, smart call home 618
 configuring 618
provider group 141, 142, 143, 144, 145, 146
 creating 141, 143, 145
 LDAP 141
 RADIUS 143
 TACACS 145
 deleting 142, 144, 146
 LDAP 142, 146
 RADIUS 144
provider groups 141, 146
 authentication domains 146
provider, capability catalog 232, 235
PSU policy 24, 492
PVLANs 264, 271, 272, 273
 about 264
 creating primary 271, 272
 creating secondary 272, 273
Q
QoS policies 25, 38, 284, 286
 about 25, 38, 284
 configuring 284
 deleting 286
qualification 395, 398, 401, 402, 403
 creating adapter 395
 creating cpu 398
 creating memory 401
 creating physical 402
 creating storage 403
quality of service 25, 29, 37, 38, 281, 282, 282, 283, 284, 287
 about 37, 281
 flow control policies 29, 38, 287
 policies 25, 38, 284
 system classes 37, 281, 282, 283
 configuring 282
 disabling 283
R
rack server 526, 527, 528, 530, 531, 533, 534, 535
 acknowledging 530
 booting 526
 CIMC 535
 resetting 535
 decommissioning 531
 power cycling 528
 resetting 528
 resetting CMOS 534
 shutting down 527
 turning off locator LED 534
 turning on locator LED 533
rack server discovery policy 25, 248, 249
 about 25, 248
 configuring 249
rack server power management 491
rack servers 535
 recovering BIOS 535
rack-mount servers 25, 195, 248, 249, 466, 525
 discovery policy 25, 248, 249
 guidelines for service profiles 466
 integrating 195
 managing 525
RADIUS 136, 143, 144
 creating provider 136
 provider group 143, 144
 creating 143
 deleting 144
RADIUS provider 125, 126, 135
 about 125
 configuring properties 135
 user attribute 126
RADIUS provider group 143
RADIUS providers 138
 deleting 138
RAID configurations, local disk configuration policies 377
 range restrictions, VSAN IDs 312
 RAS memory, BIOS settings 358
 recommendations 542
 backup operations 542
 recommissioning 509
 chassis 509
 recovering admin password 555, 556, 557
 recovering BIOS 522, 535
 recurring occurrences 454, 457, 459
 about 454
 creating 457
 deleting 459
remote authentication 126
 user accounts 126
 user roles 126
remotely authenticated users 160
accounts 160
removing 509, 519
blade server 519
chassis 509
removing chassis, guidelines 507
removing rack-mount servers 526
removing servers 514
renumbering 510, 531
blade servers 510
chassis 510
rack-mount servers 531
replacing configuration 543
reserved words 161, 164
custom roles 164
locally authenticated user accounts 161
resetting 516, 528
blade server 516
rack server 528
resetting CMOS 520, 534
blade server 520
rack server 534
resolution, name 241
restoring 543, 544, 552
about 543
configuration 552
user role 544
Restoring 85
ports 85
Uplink Fibre Channel port 85
role policy for remote users 150, 151
about 150
role-based access control 159, 177
user account 177
enabling, disabling 177
roles 162, 163, 164, 174, 176, 544
about 162
assigning to user accounts 174
backing up 544
default 163
privileges 164
removing from user accounts 176
RSA 106

SAN boot, boot policies 416
scalability 10
schedules 454, 456, 457, 459, 460
about 454
creating 456
deleting 460
one time occurrences 456, 459
creating 456
deleting 459
recurring occurrences 457, 459
creating 457
deleting 459
scope 49
scrub policies 381, 382
creating 381
deleting 382
scrub policy 29, 381
about 29, 381
secondary VLAN 272, 273
SEL 623, 624, 625, 627, 628
about 623
backing up 627
all servers in chassis 627
individual server 627
clearing 628
all servers in chassis 628
individual server 628
policy 625
viewing 624
chassis server mode 624
one server 624
selective exclusion 301
serial number, obtaining 252
serial over LAN 383, 479
policies 383
service profiles 479
serial over LAN policies 385
deleting 385
serial over LAN policy 30, 383, 384
about 30, 383
viewing 384
serial port, BIOS settings 360
server 498
setting power blade-level power cap 498
server autoconfiguration policies 385, 387
configuring 385
deleting 387
server autoconfiguration policy 25, 385
about 25, 385
server discovery policies 387, 389
configuring 387
deleting 389
discovery policies 387, 389
server, configuring 387
SAN 27, 311, 321, 327
pin groups 321
vHBA policy 27, 327
VSANs 311
SAN boot 415
about 415
S
Cisco UCS Manager CLI Configuration Guide, Release 2.0
server discovery policies (continued)
discovery policies (continued)
server, deleting 389
server discovery policy 25, 387
about 25, 387
server inheritance policies 389, 391
configuring 389
deleting 391
server inheritance policy 26, 389
about 26, 389
server management 513, 525
server management, BIOS settings 363
server pool policies 391, 392
configuring 391
deleting 392
server pool policy 26, 391
about 26, 391
server pool policy qualification 26, 393, 394
about 26, 393
creating 393
deleting 394
server pools 335, 336
creating 335
deleting 336
server ports 71, 79
about 71
configuring 79
unconfiguring 79
server virtualization 10
actual BIOS settings 371
adapters 214
updating and activating 214
adding previously unsupported 195
BIOS 216
updating and activating 216
BIOS defaults 368, 370
BIOS policies 368
BIOS policy 369
blade 513
boot policies 15, 413
CIMC 218
updating and activating 218
configuration 12
discovery policy 25, 387
disk drive monitoring 579, 580
disk drive status 580, 582
disk drive support 580
DNS 241
inheritance policy 26, 389
servers (continued)
IPMI access 21, 372
iSCSI adapter policies 422, 424
iSCSI boot policies 427
local disk configuration 22, 376
multi-tenancy 39
pinning 35
pool policy 26, 391
pool qualifications 26, 393
pools 31, 335
rack-mount 525
renumbering 531
resetting UUID 487
service profiles 12, 13, 453, 465
stateless 38
unexpected power changes 517, 529
verifying status 205
service profile 429, 431
iSCSI vNIC 429, 431
creating 429
deleting 431
service profiles 12, 13, 14, 15, 199, 453, 465, 466, 467, 470, 471, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 517, 529
about 12
associating 485, 486
blade server 485
rack server 486
server pool 485
boot definitions 480, 484
creation 12
deferring deployment 453
disassociating 486
blade server 486
server pool 486
firmware upgrades 199
guidelines 466
hardware based 471
creating 471
inherited values 14, 466
instance, creating from template 470
LAN boot 481
local disks 478
network connectivity 12
override identity 13, 465
resetting MAC address 488
resetting UUID 487
resetting WWPN 489
serial over LAN 479
storage boot 482
template, creating 467
templates 15, 467
unexpected power changes 517, 529
vHBAs 476
virtual media boot 483
service profiles (continued)

vNICs 474

setting 343

management IP address 343

service profile 343

setup mode 58

severity levels, Call Home 604

shutting down 515, 527

blade server 515

rack server 527

silver system class 37, 282

smart call home 616, 618, 619, 620

configuring 616

inventory messages, configuring 619

registering 620

TAC-1 profile, configuring 618

Smart Call Home 603, 604, 605

about 605

considerations 603

severity levels 604

SNMP 116, 117, 119, 120, 121, 122, 123

about 116

community 119

enabling 119

notifications 117

privileges 117

security levels 117

SNMPv3 users 123

support 116, 119

trap 121

deleting 121

traps 120

creating 120

users 122, 123

creating 122

deleting 123

Version 3 security features 119

SNMPv3 119

security features 119

software 185

SOL policies 384, 385

deleting 385

viewing 384

SPAN, See traffic monitoring

stages, firmware upgrades 197, 200

stateless computing 38, 39

about 38

opt-in 39

opt-out 39

statelessness 38

static address 432, 433

iSCSI initiator 432, 433

deleting 433

setting 432

static IP address 340, 341

blade server 340

configuring 340

rack server 341

configuring 341

statistics 30, 586

threshold policies 30, 586

statistics collection policies 30, 585

about 30, 585

statistics collection policy 586

configuring 586

statistics threshold policies 587, 588, 590, 591, 593, 594, 596, 597, 599

Fibre channel port, classes, configuring 597

Fibre Channel port, configuring 596

server classes, deleting 590

server port classes, configuring 594

server port classes, deleting 596

server port, configuring 593

server, classes, configuring 588

server, configuring 587

server, deleting 588

uplink Ethernet port classes, deleting 593, 599

uplink Ethernet port, classes, configuring 591

uplink Ethernet port, configuring 590

statistics threshold policy classes 588, 590, 591, 593, 594, 596, 597, 599

Fibre Channel port, configuring 597

server port, configuring 594

server port, deleting 596

server, configuring 588

server, deleting 590

uplink Ethernet port, configuring 591

uplink Ethernet port, deleting 593, 599

storage boot 482

storage qualification 403, 405

creating 403

deleting 405

storage VSANS 319

FCoE VLAN ID 319

supported tasks 44

switching mode 67, 68

syslog 634

system class 282, 283

configuring 282

disabling 283

system classes 37, 281, 282

best effort 37, 282

bronze 37, 282

Fibre Channel 37, 282

gold 37, 282

platinum 37, 282

silver 37, 282

system configuration 541
system event log 623, 624, 625, 627, 628
 about 623
 backing up 627
 all servers in chassis 627
 individual server 627
 clearing 628
 all servers in chassis 628
 individual server 628
 policy 625
 viewing 624
 chassis server mode 624
 one server 624
system management 513, 525, 539
 blade servers 513
 I/O module 539
 rack-mount servers 525
system name 65
 changing 65

T
TACACS 145, 146
 provider group 145, 146
 creating 145
 deleting 146
TACACS provider group 145
TACACS providers 140
 deleting 140
TACACS+ 139
 creating provider 139
TACACS+ provider 125, 126, 138
 about 125
 configuring properties 138
 user attribute 126
tasks 44, 46
 supported 44
 unsupported 46
telnet 123
 enabling 123
templates 15, 467
 service profiles 15, 467
test alert, call home 613
TFTP Core Exporter 632
threshold policies 30, 586
 about 30, 586
time zones 503, 505, 506
 about 503
 configuring NTP servers 505
 deleting NTP servers 506
 setting 503
 setting clock manually 506
 viewing 503
traffic management 33, 34, 37, 281
 oversubscription 33, 34
 quality of service 37, 281
 system classes 37, 281
 virtual lanes 37, 281
traffic monitoring 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573
 about 563
 activating a session 572
 adding a storage port source 571
 adding a VLAN or VSAN source 570
 adding a vNIC or vHBA source 568
 adding an uplink source port 567
 deleting a session 573
 Ethernet session 565
 Fibre Channel session 566
 guidelines 564
 storage ports 571
 monitoring 571
trap 121
 deleting 121
traps 117, 120
 about 117
 creating 120
tray 575
trunking 312, 319
 Fibre Channel 312, 319
 uplink 312, 319
trunking, named VSANs 312
trusted points 106, 111, 115
 about 106
 creating 111
 deleting 115
turning off locator LED 512, 520, 534
 blade server 520
 chassis 512
 rack server 534
turning on locator LED 512, 520, 533
 blade server 520
 chassis 512
 rack server 533

U
UCS manager 223
 activating 223
unconfiguring 84
 ports 84
 appliance, NAS port 84
unexpected power changes, avoiding 517, 529
unified fabric 10, 11
 about 10
 Fibre Channel 11
unified ports 72, 73, 74, 75
 guidelines 74
port modes 72, 75
port types 73
ports 74
 unified 74
 guidelines 74
unsupported tasks 46
updating 194, 195, 214, 216, 218, 220, 237, 453
 adapters 214
 BIOS firmware 216
 capability catalog 237
 CIMC 218
 firmware order 194, 195
I/O modules 220
 service profiles 453
updating templates 15, 467
upgrading 189, 190, 192, 196, 197, 199, 200, 201, 232, 233
 capability catalog 232, 233
 firmware 189, 197, 200
 firmware, direct 196
 firmware, guidelines 189, 190, 192
 firmware, service profiles 199
 prerequisites 201
upgrading firmware 206, 207, 211
downloading images 207, 211
obtaining packages 206
Uplink Fibre Channel port 85
 restoring 85
uplink ports 29, 38, 71, 80, 81, 87, 88, 89, 90, 93, 275, 287, 321, 567
 about 71
 Ethernet 80, 81, 567
 configuring 80
 monitoring 567
 unconfiguring 81
flow control policies 29, 38, 287
pin groups 275, 321
port channels 87, 88, 89, 90, 93
 configuring 87
 enabling 93
 member ports, adding 89
 member ports, deleting 90
 unconfiguring 88
uplink Ethernet 87
uplink trunking 312, 319
 Fibre Channel 312, 319
 about 312
 enabling, disabling 319
upstream disjoint L2 networks, See disjoint L2 networks
usage, licenses 255
USB, BIOS settings 360
user account 177
 enabling, disabling 177
user accounts 159, 160, 162, 171, 174, 175, 176, 178, 179, 180, 181, 182
 about 159, 162
 creating 171
 deleting 178
locales 175, 176
 assigning 175
 removing 176
monitoring 182
password profile 178, 179, 180, 181
roles 174, 176
 assigning 174
 removing 176
username guidelines 160
web session limits 162, 174
user attributes 126
 LDAP 126
 RADIUS 126
 TACACS+ 126
user roles 162, 163, 164, 167, 169
 about 162
 creating 167
 default 163
 deleting 169
 privileges 164
usernames, guidelines 160
users 51, 122, 123, 125, 126, 150, 159, 160, 162, 163, 164, 166, 173, 178, 179, 180, 181, 555, 556, 557
access control 159
 accounts 159, 162
 authentication 125
 CLI session limits 51
 default roles 163
 guidelines 160
 locales 166
 about 166
 locally authenticated 160, 178, 179, 180, 181
 password strength check 173
 privileges 164
 recovering admin password 555, 556, 557
 remote authentication 126
 remote, role policy 150
 remotely authenticated 160
 roles 162
 SNMPv3 122, 123
 web session limits 51, 162
UUID 487
 resetting 487
UUID suffix pools 32, 337, 338
 about 32, 337
 creating 337
 deleting 338
V

vcons 409
 vNIC/vHBA placement policies 409
vCons 28, 405, 406, 407, 410
 about 28, 405
 adapter placement 406
 vNIC/vHBA assignment 407, 410
vHBA SAN Connectivity policies 27, 327
 about 27, 327
vHBA templates 27, 327, 329
 about 27, 327
 configuring 327
 deleting 329
vHBAs 407, 476, 489, 568
 assignment to vCon 407
 monitoring 568
 resetting WWPN 489
 service profiles 476
VIC adapters 41
 virtualization 41
viewing 384, 498
 blade-level power cap 498
 serial over LAN policies 384
virtual lanes 37, 281
virtual machines 40
virtual media boot 450, 483
 about 450
virtual media boot, boot policies 450
virtualization 27, 40, 41
 about 40
 converged network adapters 41
 NIC adapters 41
 VIC adapter 41
 VM lifecycle policy 27
 VM-FEX 41
 about 41
VM lifecycle policy 27
 about 27
VM-FEX 41
 about 41
vNIC 27, 291
 policy 27, 291
vNIC LAN Connectivity policies 27, 291
 about 27, 291
vNIC templates 27, 291, 292, 294
 about 27, 291
 configuring 292
 deleting 294
vNIC/vHBA placement policies 28, 405, 406, 407, 409, 410
 about 28, 405
 configuring 409
 deleting 410
vcons 409
vCons 28, 405, 406
vNIC/vHBA assignment 407
vNICs 19, 407, 410, 429, 431, 474, 488, 568
 assignment to vCon 407, 410
 dynamic vNIC connection policy 19
 iSCSI 429, 431
 creating 429
 deleting for service profile 431
 monitoring 568
 resetting MAC address 488
 service profiles 474
VSANs 311, 312, 570
 monitoring 570
 named 311, 312

W

web session limits 51, 162, 174
 user accounts 174
WWN pools 32, 323, 324, 325
 about 32, 323
 creating 324
 deleting 325
WWNN pools 32, 323
 about 32, 323
WWPN pools 32, 323
 about 32, 323