Cisco UCS Manager XML API

This chapter includes the following sections:

* Information About the Cisco UCS Manager XML API, on page 1
* Cisco Unified Computing System Overview, on page 2

* Cisco UCS Management Information Model, on page 2

* Cisco UCS Manager Sample Flow, on page 3

* Object Naming, on page 5

» API Method Categories, on page 5

* Success or Failure Response, on page 9

Information About the Cisco UCS Manager XML API

The Cisco UCS Manager XML API is a programmatic interface to Cisco Unified Computing System (UCS).
The API accepts XML documents through HTTP or HTTPS. Developers can use any programming language
to generate XML documents that contain the API methods. Configuration and state information for Cisco
UCS is stored in a hierarchical tree structure known as the management information tree, which is completely
accessible through the XML API.

The Cisco UCS Manager XML API supports operations on a single object or an object hierarchy. An API
call can initiate changes to attributes of one or more objects such as chassis, blades, adapters, policies, and
other configurable components.

The API operates in forgiving mode. Missing attributes are replaced with applicable default values that are
maintained in the internal data management engine (DME). The DME ignores incorrect attributes. When
multiple managed objects (MOs) are being configured, the API operation stops if any of the MOs (a virtual
NIC, for example) cannot be configured. In that case, the management information tree is rolled back to the
prior state that preceded the API operation and an error is returned.

Updates to MOs and properties conform to the existing object model to ensure backward compatibility. If
existing properties are changed during a product upgrade, they are managed during the database load after
the upgrade. New properties are assigned default values.

Operation of the API is transactional and terminates on a single data model. Cisco UCS is responsible for all
endpoint communication, such as state updates. Users cannot communicate directly to endpoints, which
relieves developers from administering isolated, individual component configurations.

The API model includes the following programmatic entities:

* Classes—Define the properties and states of objects in the management information tree.

Cisco UCS Manager XML API .

Cisco UCS Manager XMLAPI |

. Cisco Unified Computing System Overview

* Methods—Actions that the API performs on one or more objects.

* Types—Object properties that map values to the object state (for example, equipmentPresence).

A typical request comes into the DME and is placed in the transactor queue in FIFO order. The transactor
gets the request from the queue, interprets the request, and performs an authorization check. After the request
is confirmed, the transactor updates the management information tree. This complete operation is done in a
single transaction.

Full event subscription is enabled. After subscribing, any event notification is sent along with its type of state
change.

Cisco Unified Computing System Overview

Cisco UCS

A Cisco UCS domain can consist of up to two Cisco UCS fabric interconnects and a minimum of one Cisco
chassis with one blade or rack-mounted server. Up to 40 chassis with a mixture of blade and rack-mounted
servers can be connected and controlled by a single Cisco UCS domain.

Cisco UCS Manager runs on the primary fabric interconnect, with failover capability to the subordinate fabric
interconnect. In the event of a failover, the virtual IP address will connect to the subordinate fabric interconnect,
making it the new primary fabric interconnect.

All XML requests to Cisco UCS are asynchronous and terminate on the active Cisco UCS Manager. Cisco
UCS Manager mediates all communication within the system; no direct user access to the Cisco UCS
components is required.

Cisco UCS Manager is aware of the current configuration and performs automated device discovery whenever
a new resource is installed. After a resource is detected, Cisco UCS Manager adds it and its characteristics to
the system inventory. Cisco UCS Manager can preconfigure the new resources if it is directed to do so by an
administrator-defined policy.

Management Information Model

All the physical and logical components that comprise Cisco UCS are represented in a hierarchical management
information model (MIM), also referred to as the MIT. Each node in the tree represents a managed object
(MO) or group of objects that contains its administrative state and its operational state.

The hierarchical structure starts at the top (sys) and contains parent and child nodes. Each node in this tree

is a managed object and each object in Cisco UCS has a unique distinguished name (DN) that describes the
object and its place in the tree. Managed objects are abstractions of the Cisco UCS resources, such as fabric
interconnects, chassis, blades, and rack-mounted servers.

Configuration policies are the majority of the policies in the system and describe the configurations of different
Cisco UCS components. Policies determine how the system behaves under specific circumstances. Certain
managed objects are not created by users, but are automatically created by the Cisco UCS, for example, power
supply objects and fan objects. By invoking the API, you are reading and writing objects to the MIM.

The information model is centrally stored and managed by the data management engine (DME), a user-level
process running on the fabric interconnects. When a user initiates an administrative change to a Cisco UCS
component (for example, applying a service profile to a server), the DME first applies that change to the
information model, and then applies the change to the actual managed endpoint. This approach is called a
model-driven framework.

. Cisco UCS Manager XML API

| Cisco UCS Manager XML API

Cisco UCS Manager Sample Flow .

The following is a branch diagram that starts at sys from the toproot of the Cisco UCS management
information tree. The diagram shows a hierarchy that consists of five populated chassis with eight blades in
each chassis. All the blades shown have one or more adapters. For simplicity, only chassis number five is
expanded.

Figure 1: lllustration of MIM Structure Showing Five Chassis

Tree (topRoot): -Distinguished Name:
|—sys——————— (sys)
|—chassis-1 (sys/chassis-1)
|—chassis-2 (sys/chassis-2)
| —chassis-3 (sys/chassis-3)
|—chassis-4 (sys/chassis-4)
|—chassis-5 (sys/chassis-5)
|—blade-1 (sys/chassis-5/blade-1)
|—adaptor-1—— (sys/chassis-5/blade-1/adaptor-1)
|—blade-2 (sys/chassis-5/blade-2)
|—adaptor-1—— (sys/chassis-5/blade-2/adaptor-1)
|—adaptor-2—— (sys/chassis-5/blade-2/adaptor-2)
|—blade-3 (sys/chassis-5/blade-3)
|—adaptor-1—— (sys/chassis-5/blade-3/adaptor-1)
|—adaptor-2— (sys/chassis-5/blade-3/adaptor-2)
|—blade-4 (sys/chassis-5/blade-4)
|—adaptor-1—— (sys/chassis-5/blade-4/adaptor-1)
|—blade-5 (sys/chassis-5/blade-5)
|—adaptor-1—— (sys/chassis-5/blade-5/adaptor-1)
|—adaptor-2—— (sys/chassis-5/blade-5/adaptor-2)
|—blade-6 (sys/chassis-5/blade-6)
|—adaptor-1—— (sys/chassis-5/blade-6/adaptor-1)
|—blade-7 (sys/chassis-5/blade-7)
|—adaptor-1—— (sys/chassis-5/blade-7/adaptor-1)
|—blade-8 (sys/chassis-5/blade-38)
|—adaptor-1—— (sys/chassis-5/blade-8/adaptor-1)

Cisco UCS Manager Sample Flow

A typical request comes into the data management engine (DME) and is placed in the transactor queue in

FIFO order. The transactor gets the request from the queue, interprets the request, and performs an authorization
check. After the request is confirmed, the transactor updates the management information tree. This operation
is done in a single transaction.

The following figure shows how Cisco UCS Manager processes a boot server request. The following table
describes the steps involved in a boot server request.

Cisco UCS Manager XML API .

Cisco UCS Manager XMLAPI |
. Cisco UCS Manager Sample Flow

Figure 2: Sample Flow of Boot Server Request
5.0

H
—
= J0 'lq/

4 |

Switch A / Switch B \
DME DME

B8O 11.0
6.1
Replicator Replicator
& &
cdesbd B3 F.:-rr,i::tiﬁ-?r
Managemant
Infommation
Trea
4
S

Table 1: Explanation of Boot Server Request

Step | Command/Process Administrative Power | Operational Power

State of MO (Server) | State of MO (Server)
1 CMD request: boot server Down Down
2 Request queued Down Down
3 State change in management information tree Up Down
4 Transaction complete Up Down
5 Pass change information and boot request stimuli | Up Down
6.0 |Make persistent the managed object (MO) state Up Down
change

6.1 | Send state change information to peer DME Up Down
6.2 | Make persistent the MO state to peer’s local store | Up Down
6.3 | Reply with success (replication and persistence) Up Down
7 CMD: response and external notification Up Down
8 Apply boot stimuli Up Down
9 Instruct BMC to power on server Up Down
10 | Reply from BMC: server power on success Up Up

11 | Reply, boot stimuli success, pass new power state | Up Up

information

. Cisco UCS Manager XML API

| Cisco UCS Manager XML API
Object Naming .

Object Naming

You can identify a specific object by its distinguished name (DN) or by its relative name (RN).

Distinguished Name
The distinguished name enables you to unambiguously identify a target object. The distinguished name has
the following format consisting of a series of relative names:

dn = {rn}/{rn}/{rn}/{rn}...

In the following example, the DN provides a fully qualified path for adaptor-1 from the top of the object tree
to the object. The DN specifies the exact managed object on which the API call is operating.

< dn ="sys/chassis-5/blade-2//adaptor-1"/>

Relative Name

The relative name identifies an object within the context of its parent object. The distinguished name is
composed of a sequence of relative names.

For example, this distinguished name:
<dn = "sys/chassis-5/blade-2//adaptor-1/host-eth-2"/>
is composed of the following relative names:

topSystem MO: rn="sys"

equipmentChassis MO: rn="chassis-<id>"
computeBlade MO: rn ="blade-<slotId>"
adaptorUnit MO: rn="adaptor-<id>"
adaptorHostEthIf MO: rn="host-eth-<id>"

APl Method Categories

Each method corresponds to an XML document.

\}

Note Several code examples in this guide substitute the term <real cookie> for an actual cookie (such as
1217377205/85{7{f49-edec-42fc-9437-da77ala2¢c4bf). The XML API cookie is a 47-character string; it is
not the type of cookie that web browsers store locally to maintain session information.

Authentication Methods

Authentication methods authenticate and maintain the session. For example:

» aaaLogin—Initial method for logging in.

Cisco UCS Manager XML API .

. Query Methods

P

Tip

Cisco UCS Manager XMLAPI |

* aaaRefresh—Refreshes the current authentication cookie.

* aaaLogout—Exits the current session and deactivates the corresponding authentication cookie.

Use the aaaLogin method to get a valid cookie. Use aaaRefresh to maintain the session and keep the
cookie active. Use the aaalLogout method to terminate the session (also invalidates the cookie). A maximum
of 256 sessions to the Cisco UCS can be opened at any one time.

Operations are performed using the HTTP post method (Cisco UCS supports both HTTP and HTTPS requests)
over TCP. HTTP and HTTPS can be configured to use different port numbers, but TCP/443 (or TCP/80 for
non-secure connections) is used by default. The HTTP envelope contains the XML configuration.

In CIMC, HTTP to HTTPS redirection is enabled by default. To capture HTTP packets between the client
application and CIMC, disable redirection in the CIMC GUI or CLI.

Query Methods

RS

Tip

Query methods obtain information on the current configuration state of an object. The following are query
examples:

* configResolveDn—Retrieves objects by DN.

» configResolveDns—Retrieves objects by a set of DNs.

* configResolveClass—Retrieves objects of a given class.

* configResolveClasses—Retrieves objects of multiple classes.

* configFindDnsByClassId—Raetrieves the DNs of a specified class.
* configResolveChildren—Retrieves the child objects of an object.
* configResolveParent—Retrieves the parent object of an object.

» configScope—Performs class queries on a DN in the management information tree.

Most query methods have the argument inHierarchical (Boolean true/yes or false/no). If true, the inHierarchical
argument returns all child objects.

<configResolveDn .. inHierarchical="false"></>
<configResolveDn .. inHierarchical="true"></>

Because the amount of data returned from Cisco UCS can be quite large, the inHierarchical argument should
be used with care. For example, if the query method is used on a class or DN that refers to a managed object
(MO) that is located high on the management information tree and inHierarchical is set to true, the response
can contain almost the entire Cisco UCS configuration. The resources required for Cisco UCS to process the
request can be high, causing Cisco UCS to take an extended amount of time to respond. To avoid delays, the
query method should be performed on a smaller scale involving fewer MOs.

If a query method does not respond or is taking a long time to respond, increase the timeout period on the
client application or adjust the query method to involve fewer MOs.

. Cisco UCS Manager XML API

| Cisco UCS Manager XML API
Simple Filters .

The query API methods might also have an inRecursive argument to specify whether the call should be
recursive (for example, follow objects that point back to other objects or the parent object).

The API also provides a set of filters to increase the usefulness of the query methods. These filters can be
passed as part of a query and are used to identify the wanted result set.

\}

Note Until a host is powered on at least once, Cisco UCS may not have complete inventory and status information.
For example, if Cisco UCS is reset, it will not have detailed CPU, memory, or adapter inventory information
until the next time the host is powered on. If a query method is performed on a MO corresponding to the
unavailable data, the response will be blank.

Simple Filters

There are two simple filters, the true filter and false filter. These two filters react to the simple states of true
or false, respectively.

* True filter—Result set of objects with the Boolean condition of true.

* False filter—Result set of objects with the Boolean condition of false.

Property Filters

The property filters use the values of an object's properties as the criteria for inclusion in a result set. To create
most property filters, classId and propertyId of the target object/property is required, along with a value
for comparison.

* Equality filte—Restricts the result set to objects with the identified property of “equal” to the provided
property value.

* Not equal filte—Restricts the result set to objects with the identified property of “not equal” to the
provided property value.

* Greater than filter—Restricts the result set to objects with the identified property of “greater than” the
provided property value.

* Greater than or equal filter—Restricts the result set to objects with the identified property of “is greater
than or equal” to the provided property value.

* Less than filter—Restricts the result set to objects with the identified property of “less than” the provided
property value.

* Less than or equal filter—Restricts the result set to objects with the identified property of “less than or
equal” to the provided property value.

» Wildcard filter—Restricts the result set to objects with the identified property matches that includes a
wildcard. Supported wildcards include “%” or “*” (any sequence of characters), “?” or “-” (any single
character).

* Any bits filter—Restricts the result set to objects with the identified property that has at least one of the
passed bits set. (Use only on bitmask properties.)

+ All bits filter—Restricts the result set to objects with the identified property that has all the passed bits
set. (Use only on bitmask properties.)

Cisco UCS Manager XML API .

Cisco UCS Manager XMLAPI |
. Composite Filters

Composite Filters

The composite filters are composed of two or more component filters. They enable greater flexibility in
creating result sets. For example, a composite filter could restrict the result set to only those objects that were
accepted by at least one of the contained filters.

» AND filter—Result set must pass the filtering criteria of each component filter. For example, to obtain
all compute blades with totalMemory greater than 64 megabytes and operability of operable, the filter
is composed of one greater than filter and one equality filter.

* OR filter—Result set must pass the filtering criteria of at least one of the component filters. For example,
to obtain all the service profiles that have an assignmentstate of unassigned or an association state
value of unassociated, the filter is composed of two equality filters.

* Between filter—Result set is those objects that fall between the range of the first specified value and
second specified value, inclusive. For example, all faults that occurred starting on the first date and ending
on the last date.

* XOR filter—Result set is those objects that pass the filtering criteria of no more than one of the composite's
component filters.

Modifier Filter

A modifier filter changes the results of a contained filter.

The only modifier filter that is currently supported is the NOT filter that negates the result of a contained
filter. Use this filter to obtain objects that do not match contained criteria.

Configuration Methods

There are several methods to make configuration changes to managed objects. These changes can be applied
to the whole tree, a subtree, or an individual object. The following are examples of configuration methods:

» configConfMo—Affects a single managed object (for example, a DN).
» configConfMos—Affects multiple subtrees (for example, several DNs).

* configConfMoGroup—Makes the same configuration changes to multiple subtree structures (DNs)
or managed objects.

Most configuration methods use the argument inHierarchical (Boolean true/yes or false/no). These values do
not play a significant role during configuration because child objects are included in the XML document and
the DME operates in the forgiving mode.

Event Subscription Methods

Applications get state change information by regular polling or event subscription. For more efficient use of
resources, event subscription is the preferred method of notification. Polling should be used only under very
limited circumstances.

Use eventSubscribe to register for events, as shown the following example:

<eventSubscribe
cookie="<real cookie>">

. Cisco UCS Manager XML API

| Cisco UCS Manager XML API
Capturing XML Interchange Between the GUI and Cisco UCS .

</eventSubscribe>

To receive notifications, open an HTTP or HTTPS session over TCP and keep the session open. On receiving
eventSubscribe, Cisco UCS starts sending all new events as they occur. You can unsubscribe from these
events using the eventUnsubscribe method.

Each event has a unique event ID. Event IDs operate as counters and are included in all method responses.
When an event is generated, the event ID counter increments and is assigned as the new event ID. This
sequential numbering enables tracking of events and ensures that no event is missed.

An event channel connection opened by a user will be closed automatically by Cisco UCS after 600 seconds
of inactivity associated with the event channel session cookie. To prevent automatic closing of the event
channel connection by Cisco UCS, the user must either send the aaaKeepAlive request for the same event
channel session cookie within 600 seconds or send any other XML API method to Cisco UCS using the same
event channel session cookie.

Capturing XML Interchange Between the GUI and Cisco UCS

Interchange is stored in a log file such as C: \Documents and Settings\username\Application
Data\Sun\Java\Deployment\log\.ucsm. Due to internal security requirements, this information
is not always complete. However, you can use a commercial packet analyzer application to observe sent XML.

Success or Failure Response

When Cisco UCS responds to an XML API request, the response indicates failure if the request is impossible
to complete. A successful response indicates only that the request is valid, not that the operation is complete.
For example, it may take some time for a server to finish a power-on request. The power state changes from
down to up only after the server actually powers on.

Successful Response

When a request has executed successfully, Cisco UCS returns an XML document with the information
requested or a confirmation that the changes were made. The following is an example of a configResolveDn
query on the distinguished name sys/chassis-1/blade-1:

<configResolveDn
dn="sys/chassis-1/blade-1"
cookie="<real cookie>"
inHierarchical="false"/>

The response includes the following information:

<configResolveDn dn="sys/chassis-1/blade-1"

cookie="<real cookie>"

response="yes">

<outConfig>
<computeltem adminPower="policy"
adminState="in-service"
assignedToDn=""
association="none"
availability="available"

Cisco UCS Manager XML API .

UCSM_API_Guide_chapter3.pdf#nameddest=unique_22

. Failed Requests

chassisId="1"
checkPoint="discovered"
connPath="A"
connStatus="A"
discovery="complete"
dn="sys/chassis-1/blade-1"
fltAggr="0"

fsmDescr=""

fsmFlags=""
fsmPrev="DiscoverSuccess"
fsmRmtInvErrCode="unspecified"
fsmRmtInvErrDescr=""
fsmRmtInvRslt=""
fsmStageDescr=""
fsmStamp="2008-11-24T01:27:10"
fsmStatus="nop"

fsmTry="0"

lc="discovered"
managingInst="A"
model="Gooding"

name=""

numOfAdaptors="1"
numOfCores="4"
numOfEthHostIfs="2"
numOfFcHostIfs="2"
numOfThreads="0"
operPower="off"
operState="unassociated"
operability="operable"

originalUuid="1b4e28ba-2fal-11d2-0101-b%a761lbde3fb"

presence="equipped"

revision=""
serial="1-1"
slotId="1"
totalMemory="4096"
uuid=""
vendor="Cisco"/>
</outConfig>

</configResolveDn>

Failed Requests

Cisco UCS Manager XMLAPI |

The response to a failed request includes XML attributes for errorCode and errorDescr. The following is an

example of a response to a failed request:

<configConfMo dn="fabric/server"
cookie="<real cookie>"
response="yes"
errorCode="103"
invocationResult="unidentified-fail"
errorDescr="can't create;

</configConfMo>

Empty Results

object already exists.">

A query request for a nonexistent object is not treated as a failure by the DME. If the object does not exist,
Cisco UCS returns a success message, but the XML document contains an empty data field (<outConfig>
</outConfig>)to indicate that the requested object was not found. The following example shows the response
to an attempt to resolve the distinguished name on a nonexistent rack-mount server:

. Cisco UCS Manager XML API

| Cisco UCS Manager XML API
Empty Results .

<configResolveDn
dn="sys/chassis-1/blade-4711"
cookie="<real cookie>"
response="yes">
<outConfig>
</outConfig>
</configResolveDn>

I Cisco UCS Manager XML API .

Cisco UCS Manager XMLAPI |
. Empty Results

. Cisco UCS Manager XML API

	Cisco UCS Manager XML API
	Information About the Cisco UCS Manager XML API
	Cisco Unified Computing System Overview
	Cisco UCS Management Information Model
	Cisco UCS Manager Sample Flow
	Object Naming
	API Method Categories
	Authentication Methods
	Query Methods
	Simple Filters
	Property Filters
	Composite Filters
	Modifier Filter

	Configuration Methods
	Event Subscription Methods
	Capturing XML Interchange Between the GUI and Cisco UCS

	Success or Failure Response
	Successful Response
	Failed Requests
	Empty Results

